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Chapter 2: The Regression Model and its

Applications in Forecasting

Notes On The Text

Derivations of some Properties of Least Square Estimators

The sum of squares total (SSTO) is defined as and can be simplified as

SSTO =
∑

(yt − ȳ)2 =
∑

(yt(yt − ȳ) − ȳ(yt − ȳ))

=
∑

yt(yt − ȳ) − ȳ
∑

(yt − ȳ)

=
∑

yt(yt − ȳ) ,

since this second sum vanishes, that is
∑

(yt − ȳ) = 0. With this, the above becomes

SSTO =
∑

y2
t − ȳ

∑

yt =
∑

y2
t − nȳ2 . (1)

Now the sum of squares due to the regression (SSR) is defined and can be simplified as

SSR =
∑

(ŷt − ȳ)2 =
∑

(ŷ2
t − 2ŷtȳ + ȳ2)

=
∑

ŷ2
t − 2ȳ

∑

ŷt + nȳ2 .

Now the predicted response ŷt is equal to the true response yt plus some error residual et as
ŷt = yt + et, so that the second sum above becomes

∑

ŷt =
∑

yt +
∑

et = nȳ ,

as
∑

et = 0 if a constant (say β0) is included in the regression. Finally we find for SSR given
by

SSR =
∑

ŷ2
t − nȳ2 . (2)

Defining the sum of squares due to regression error (SSE) as
∑

(yt − ŷt)
2 we can decompose

the total sum of squares as

SSTO =
∑

(yt − ȳ)2 =
∑

(yt − ŷt + ŷt − ȳ)2

=
∑

(yt − ŷt)
2 + 2(yt − ŷt)(ŷt − ȳ) + (ŷt − ȳ)2

= SSE + 2
∑

(yt − ŷt)(ŷt − ȳ) + SSR .

The middle term of the above expression becomes
∑

(yt − ŷt)(ŷt − ȳ) =
∑

et(ŷt − ȳ) =
∑

etŷt − ȳ
∑

et =
∑

etŷt .

This last expression (in vector notation) is ŷ′e. Now again in vector notation since the
predicted values ŷ are given by ŷ = Xβ̂ the expression ŷ′e becomes β̂ ′X ′e, which is zero
since X ′e = 0.



Prediction from regression models with estimated coefficients

In this section of the book we derive several properties of least squares estimates. One in
particular is the variance of the forecast error. This can be derived as follows

V (yk − ŷpred
k ) = V (εk + x′k(β − β̂))

= σ2 + V (x′k(β − β̂)) (3)

= σ2 + x′kV (β − β̂)xk (4)

= σ2 + x′kV (β̂)xk (5)

= σ2 + σ2x′k(X
′X)−1xk .

Where in going from Equation 3 to Equation 4 we have used the fact that V (a′x) = a′V (x)a,
when a is a constant vector and x is a random random vector. In going from Equation 4 to
Equation 5 we have used the fact that adding a constant (here the true value of β) does not
affect the value of a variance.

Some Discussion on the Examples

Example 2.1: Running Performance

When we add the additional variables X2, X3, X4, X5, representing height, weight, skin-fold
sum and relative body fat, to test their individual significance as if they were the last variable
added in the regression we compare the magnitude of their computed t statistic tβ̂i

, against
the value of tα/2(n−p−1) as discussed in the section entitled: Hypothesis Tests for Individual
Components. This example has n = 14 data points and when we have added all variables
to the model we have p = 5 so that tα/2(n− p− 1) = tα/2(8). For a significance level for our
test of α = 0.05 this is the value of 2.306. The magnitude of all of the computed t statistics
for the variables X2, X3, X4, X5 are smaller than this value and heuristically we can conclude
that they are insignificant.

Example 2.2: Gas Mileage Data

For the gas mileage data set with n = 38 to determine if the estimate of the coefficient of
the quadratic term β2 is statistically significant we consider the partial F or partial t test.
The partial t test could compare the magnitude of tβ̂2

against the value of

tα/2(n− p− 1) = t0.025(38 − 2 − 1) = t0.025(35) = 2.032 .

Since |tβ̂2
| is less than this value we conclude the coefficient β2 is actually insignificant.

The partial F test would consider the statistic F ∗ = (tβ̂2
)2 = (−1.50)2 = 2.25, which is to

be compared against the value

Fα(1, n− p− 1) = F0.05(1, 35) = 4.1213 .



Since F ∗ < F0.05(1, 35) we cannot reject H0 at the level α. In other words there is not

significant evidence that value of β2 is different than zero, the same conclusion reached
above. As discussed in the text, because of the identity

Fα(1, n− p− 1) = t2α/2(n− p− 1) , (6)

the ordinary t test and the extra sum of squares test (the F test) are equivalent.

Exercise Solutions

Exercise 2.1 (an example with least squares)

Part (a): Forming the design matrix the rows of which are the augmented observations we
find

X =















1 x11 x12

1 x21 x22

1 x31 x32
...

...
...

1 xn1 xn2















,

where in this example n = 10. We desire estimations of the coefficients of our model

yt = β0 + β1xt1 + β2xt2 + εt . (7)

The coefficients βi are given by solving the normal equations

(X ′X)β̂ = X ′y . (8)

The right-hand side of this expression is given by

X ′y =





∑

yt
∑

xt1yt
∑

xt2yt



 =





10
40
40



 .

Next we compute the normal matrix X ′X given by

X ′X =





1 1 1 · · · 1
x11 x21 x31 · · · xn1

x12 x22 x32 · · · xn2



















1 x11 x12

1 x21 x22

1 x31 x32
...

...
...

1 xn1 xn2















=





n
∑

xt1

∑

xt2
∑

xt1

∑

x2
t1

∑

xt1xt2
∑

xt2

∑

xt1xt2

∑

x2
t2



 =





10 0 0
0 20 0
0 0 40



 .

Thus β̂ is given by β̂ = (X ′X)−1X ′y =





1
2
1



.



Part (b): The concept of ANOVA is discussed in the text and the basic form for an ANOVA
table given there looks like

Sum of Degrees Mean F
Source Squares of Freedom Square ratio

Regression SSR =
∑

(ŷt − ȳ)2 = β̂ ′X′y − nȳ2 p MSR = SSR
p

MSR
MSE

Error SSE = e′e n− p− 1 MSE = SSE
n−p−1

Total SSTO =
∑

(yt − ȳ)2 = y′y − nȳ2 n− 1
(correlated for mean)

Now for this problem we have ȳ = 1
10

∑

yt = 1 and using the above we find the product in

SSR given by β̂ ′X ′y = 130 and we have enough information to calculate the value of SSR.
Now to calculate SSE with the given information recall that

SSE = e′e = (y −Xβ̂)′(y −Xβ̂)

= y′y − y′Xβ̂ − β̂ ′X ′y + β̂ ′X ′Xβ̂

= y′y − 2β̂X ′y + β̂X ′Xβ̂ .

Note that from the given problem statement one can compute each of these terms. Doing
so we find the SSE given by e′e = 115. Finally, the coefficient of determination

R2 =
SSR

SSTO
= 1 − SSE

SSR + SSE
= 0.774 .

Larger values of R2 are “better” implying the ability to explain more of the variation in y
around it mean. So for this problem we find that the specific ANOVA table is given by

Sum of Degrees Mean F
Source Squares of Freedom Square ratio

Regression SSR = 120 p = 2 MSR = 60 12
Error SSE = 35 n− p− 1 = 7 MSE = 5
Total SSTO = 155 n− 1 = 9

(correlated for mean)

Part (c): Because the estimated covariance matrix of the least square estimator of β̂ is given
by

V̂ (β̂) = s2(X ′X)−1 , (9)

with s2 is estimated by

s2 =
1

n− p− 1
SSE =

1

n− p− 1

∑

(yt − ŷt)
2 . (10)

The estimated standard error on an individual component βi or β̂i is given by sβ̂i
= s

√
cii,

with cii the diagonal element in (X ′X)−1. Defining C to be the inverse of X ′X we compute
that for this problem

C ≡ (X ′X)−1 =
1

40





4 0 0
0 2 0
0 0 1



 .



The t statistic using in testing the null hypothesis H0 : βi = βi0 = 0 against the alternative
H1 : β1 6= βi0 = 0 is obtained by computing

ti =
β̂i − βi0

s
√
cii

for i = 0, 1, 2 .

For the three regression coefficients given here we compute as a vector of t statistics (assuming

βi0 = 0) given by





1.4142
4.0000
2.8284



. To test significance of these values we select a value for α (say

α = 0.05) and then compute the corresponding tα/2(n− p− 1) = t0.025(7) = 2.36 threshold.
If |ti| > tα/2(n− p− 1) we reject H0 in favor of H1 at the significance of α. Since the value
of the t statistics for βi i = 1, 2 is larger than this value we conclude that the hypothesis H0

can be rejected at the level α.

Part (d): For the joint test H0 : β1 = β2 = 0 we need a simultaneous test of H0 against the
hypothesis H1 : at least one of βi 6= 0. If the null hypothesis is true then F = MSR

MSE
, is given

by an F distribution with p and n− p− 1 degrees of freedom. Thus to asses the significance
of the observed F value we should compare it with the value

Fα(p, n− p− 1) = F0.05(2, 7) = 4.73 .

Where if F > Fα(p, n− p− 1) = 4.73 we reject H0 in favor of H1 while if this is not true we
cannot reject H0 in favor of H1. For this problem we find F = 12 considerably greater than
F0.05(2, 7) indicating that we can reject H0 at the significance of α. The simple numerical
calculations performed in this problem are worked in the MATLAB script prob 2 1.m.

Exercise 2.2 (the normal equations for a linear trend model)

For this linear trend model yt = β0 + β1t + εt for t = 1, · · · , n, the normal equations are
given by Equation 8 where in this case the design matrix X ′X is given by

X =















1 1
1 2
1 3
...

...
1 n















.

So that with this expression X ′X then looks like

X ′X =

[

n
∑n

i=1 i
∑n

i=1 i
∑n

i=1 i
2

]

=

[

n 1
2
n(n + 1)

1
2
n(n+ 1) 1

6
n(n + 1)(2n+ 1)

]

Thus our least squares estimate of β is given by

β̂ = (X ′X)−1X ′y =

[

n 1
2
n(n+ 1)

1
2
n(n + 1) 1

6
n(n+ 1)(2n+ 1)

]−1 [ ∑

yt
∑n

t=1 tyt

]

.



We can take the inverse of the above X ′X matrix to find

(X ′X)−1 =
1

n(n2 − 1)

[

2(1 + n)(1 + 2n) −6(1 + n)
−6(1 + n) 12

]

.

See the Mathematical file prob 2 2.nb where we perform these manipulations. Once we
have this, our estimates of β can then be written by multiplying the above together as

[

β̂0

β̂1

]

=
1

n(n2 − 1)

[

2(n + 1)(2n+ 1)
∑

yt − 6(n+ 1)
∑

tyt

−6(n+ 1)
∑

yt + 12
∑

tyt

]

.

With this we see that β̂1 is given by

β̂1 =
12

n(n2 − 1)

(

n
∑

t=1

(

t− 1

2
(n+ 1)

)

yt

)

. (11)

Since we can solve for
∑

tyt in terms of β̂1 as

12

n(n2 − 1)

∑

tyt = β̂1 +
6

n(n− 1)

∑

yt ,

we can put that in the equation for β̂0 to get that β̂0 in terms of β̂1 given by

β̂0 =
2(1 + 2n)

n(n− 1)

∑

yt − 6(n+ 1)

(

1

12
β̂1 +

1

2

1

n(n− 1)

∑

yt

)

=
1

n

∑

yt −
1

2
(n+ 1)β̂1

= ȳ − 1

2
β̂1 .

These expressions will be used when we initialize the procedure used in performing double
exponential smoothing in Chapter 3, see page 35.

Exercise 2.3 (an incomplete ANOVA table)

We are told to consider a linear model, yt = β0 + β1xt,1 + β2xt,2 + εt, with explanatory
variables X1 per capital real income, X2 relative price of beer, and a dependent variable Y
of per-capita beer consumption.

Part (a): The requested test H0 : β1 = 0 vs. H1 : β1 6= 0 at the α = 0.05 level is a test of
the individual coefficient and depends on the value of

t =
β̂i − βi0

s
√
cii

=
1.14 − 0

0.16
= 7.1250 .

This is to be compared with the value of tα/2(n−p−1) = t0.025(17−2−1) = t0.025(14) = 2.144.
If |t| > t0.025(14) we reject H0 in favor of H1 while if |t| < t0.025(14) there is not enough



evidence for rejecting H0 at the significance level 0.05. In this case here t is significantly
larger than t0.025(14) and we reject H0 (therefore we “accept” the hypothesis H1).

Part (b): Because SSTO = SSR + SSE and we are told that SSTO = 100 and SSE = 34
we know SSR = 66. Since n = 17 and p = 2 we find

MSR =
SSR

p
=

66

2
= 33 ,

and

MSE =
SSE

n− p− 1
=

34

14
= 2.42 .

Finally F = MSR
MSE

= 13.58. Thus the ANOVA table in this case looks like

Sum of Degrees Mean F
Source Squares of Freedom Square ratio

Regression SSR = 66 p = 2 MSR = 33 13.58
Error SSE = 34 n− p− 1 = 14 MSE = 2.42
Total SSTO = 100 n− 1 = 16

(correlated for mean)

and R2 = SSR
SSTO

= 66
100

= 0.66. To test the simultaneous hypothesis that H0 : β1 = β2 = 0
against the hypothesis that H1 : at least one βi 6= 0, recall the F statistic above follows an
F distribution with p = 2 and n− p− 1 = 14 degrees of freedom. Thus we need to compare
the value of F obtained above with the value of Fα(p, n− p− 1) = F0.05(2, 14) = 3.7389. If
the value of the F ratio above is such that F > F0.05(p, n− p− 1) then we can reject H0 in
favor of H1 at the level α. Since this is true we can reject the hypothesis H0. Some simple
calculations for this problem are done in the MATLAB script prob 2 3.m.

Exercise 2.4 (trigonometrically spaced observations)

Part (a): For a problem of such small size we can write down the normal equations exactly.
Our designs matrix in this case is given by

X =









1 cos(θ) sin(θ)
1 − sin(θ) − cos(θ)
1 sin(θ) cos(θ)
1 − cos(θ) − sin(θ)









,

so that X ′X becomes

X ′X =





1 1 1 1
cos(θ) − sin(θ) sin(θ) − cos(θ)
sin(θ) − cos(θ) cos(θ) − sin(θ)













1 cos(θ) sin(θ)
1 − sin(θ) − cos(θ)
1 sin(θ) cos(θ)
1 − cos(θ) − sin(θ)









=





4 0 0
0 2 4 cos(θ) sin(θ)
0 4 cos(θ) sin(θ) 2



 =





4 0 0
0 2 2 sin(2θ)
0 2 sin(2θ) 2



 ,



so that our least squares estimate of β is given by (X ′X)−1X ′y or

β̂ =





4 0 0
0 2 2 sin(2θ)
0 2 sin(2θ) 2





−1 



∑

yt

y1 cos(θ) − y2 sin(θ) + y3 sin(θ) − y4 cos(θ)
y1 sin(θ) − y2 cos(θ) + y3 cos(θ) − y4 sin(θ)



 .

Part (b): Because the variance of our estimate β̂ is given by V (β̂) = σ2(X ′X)−1 to evaluate
this we thus need to compute (X ′X)−1. We find since this matrix is block diagonal that its
inverse can be computed as

(X ′X)−1 =





1/4 0 0

0
0

[

2 2 sin(2θ)
2 sin(2θ) 2

]−1



 .

Now

[

2 2 sin(2θ)
2 sin(2θ) 2

]−1

=
1

(4 − 4 sin2(2θ))

[

2 −2 sin(2θ)
−2 sin(2θ) 2

]

=
1

4 cos2(2θ)

[

2 −2 sin(2θ)
−2 sin(2θ) 2

]

.

Thus

(X ′X)−1 =
1

4







1 0 0

0 2
cos2(2θ)

−2 sin(2θ)
cos2(2θ)

0 −2 sin(2θ)
cos2(2θ)

2
cos2(2θ)






.

From which we see that when we multiply this by σ2 and consider the second and third
element of the diagonal we have

V (β̂1) =
σ2

2 cos2(2θ)
= V (β̂2) ,

as we were to show.

Exercise 2.5 (some linear regression)

Part (a): For the given regression model we have p = 2, n = 20, n − p − 1 = 17. Since
SSTO = SSR + SSE we see that SSE = SSTO − SSR = 200 − 60 = 134. Then with these
values the ANOVA table looks like

Sum of Degrees Mean F
Source Squares of Freedom Square ratio

Regression SSR = 66 p = 2 MSR = 33 4.1866
Error SSE = 134 n− p− 1 = 17 MSE = 7.88
Total SSTO = 200 n− 1 = 19

(correlated for mean)



Part (b): Now we have R2 = SSR
SSTO

= 1 − SSE
SSTO

= 0.33.

Part (c): To test the joint hypothesis that β1 = β2 = 0 (or that both coefficients are in fact
zero) at the 0.05 significance level we compare the F ratio computed above with the value of
Fα(p, n− p− 1) = F0.05(2, 17) = 3.59. If F > F0.05(2, 17) we reject H0 : β1 = β2 = 0 at the
level α. In this case this is indeed true and we can reject the hypothesis H0 at the level α.

Part (d): Under the simpler model SSR = 50 so the extra regression sum of squares

SSR(X2|X1) = SSR(X1, X2) − SSR(X1) = 66 − 50 = 16 .

To test the hypothesis that the addition of X2 has significantly reduced SSR we compute
the F ∗ statistic as

F ∗ =
SSR(X2|X1)/(p− q)

SSE(X1, X2)/(n− p− 1)
=

SSR(X2|X1)/(2 − 1)

SSE(X1, X2)/(20 − 2 − 1)
=

16

(134/17)
= 2.03 .

If F ∗ > Fα(p − q, n − p − 1) = F0.05(1, 17) = 4.45 then we reject H0 the hypothesis that
all additional variables are indeed non-significant and should be taken as zero simultaneity.
Since in this case we find that the value of F ∗ is not large enough we cannot reject the
hypothesis H0. This gives the indication that the coefficient β2 does not provide enough
reduction in the SSR when included in the model and should be dropped.

Part (e): If we consider the correlation of X2t against the residuals, et = yt− ŷt in Part (d),
if X2t has predictive power this correlation should be non-zero.

Some simple calculations for this problem are performed in the MATLAB script prob 2 5.m.

Exercise 2.6 (the extra sum of squares)

Part (a): To test the hypothesis H0 : β1 = β2 = β3 = 0 at the α = 0.05 level against
the hypothesis H1 : at least one βi 6= 0 we considering a simultaneous test of all regression
coefficients. In that case if the null hypothesis is true then the statistic F

F =
MSR

MSE
=

SSR/p

SSE/(n− p− 1)
.

follows an F distribution with p and n− p− 1 degrees of freedom. For this problem p = 3,
n = 10, so n−p−1 = 6. To compute SSE recognized that since R2 = SSR

SSTO
and SSTO = 100

we see that SSR = 88 so that SSE = SSTO − SSR = 12. Thus our F statistic for this joint
test in this case becomes

F =
88/3

12/6
= 14.667 .

While the value of Fα(p, n − p − 1) = F0.05(3, 6) = 4.75. Since F > F0.05(3, 6) we conclude
that we can reject H0 at the significance level of α.



Part (b): Partial F tests for the variables X1, X2, X3 involve deciding whether the inclusion
of the variable Xi is helpful when considered after all the remaining variables Xj. Thus our
partial F tests for the variables X1, X2, and X3 involve computing F values given by

F1 =
SSR(X1|X2, X3)

SSE(X1, X2, X3)/(n− p− 1)
=

SSR(X1|X2, X3)

2

F2 =
SSR(X2|X1, X3)

SSE(X1, X2, X3)/(n− p− 1)
=

SSR(X2|X1, X3)

2
= 1

F3 =
SSR(X3|X1, X2)

SSE(X1, X2, X3)/(n− p− 1)
=

SSR(X3|X1, X2)

2
,

which we now need to evaluate in terms of the given information. We begin with SSR(X1|X2, X3)
since the others are similar. Now we find from its definition that

SSR(X1|X2, X3) = SSR(X1, X2, X3) − SSR(X2, X3) .

We know the value of SSR(X1, X2, X3) = 88 so to evaluate this we need to compute
SSR(X2, X3) from the given information. From the definition of SSR(X3|X2) we find

SSR(X3|X2) = SSR(X3, X2) − SSR(X2) .

Therefore solving for SSR(X2, X3) we find

SSR(X2, X3) = SSR(X3|X2) + SSR(X2) .

This finally gives for SSR(X1|X2, X3) the following expression

SSR(X1|X2, X3) = SSR(X1, X2, X3) − SSR(X3|X2) − SSR(X2) = 88 − 1 − 40 = 47 .

In the same way we have for the numerator in the expression for F3 the following

SSR(X3|X1, X2) = SSR(X1, X2, X3) − SSR(X1|X2) − SSR(X2) = 88 − 45 − 40 = 3 .

With these expressions evaluated we can now compute Fi. We find

F1 = 23.5 , F2 = 1.0 , F3 = 1.5 .

These are to be compared to the value of

Fα(p− q, n− p− 1) = Fα(1, n− p− 1) = F0.05(1, 6) = 5.98 .

The only statistic that is larger than this value is F1, implying that β1 is the only statistically
significant coefficient.

Part (c): To test the hypothesis H0 : β2 = β3 = 0 against the alternative hypothesis that
H1 : at least one of β2 or β3 is nonzero, we recognize that this problem is comparing a larger
model based on the three variables X1, X2, X3 with the smaller model based only on X1.
Thus we compute the extra regression sum of squares attributed to the variables X2 and X3

as
SSR(X2, X3|X1) = SSR(X1, X2, X3) − SSR(X1) = 88 − 82 = 6 ,



and since SSE(X1, X2, X3) = SSTO − SSR(X1, X2, X3) = 100 − 88 = 12. The statistics we
then compute since p = 3 and q = 1 is

F ∗ =
SSR(X2, X3|X1)/(p− q)

SSE(X1, X2, X3)/(n− p− 1)
=

6/(3 − 1)

18/(10 − 3 − 1)
= 1.5 .

This is to be compared against the value of Fα(p− q, n− p− 1) = F0.05(2, 6) = 5.143. Since
the value of F ∗ is smaller than the value of F0.05(2, 6) we cannot reject H0 at the α = 0.05
significance level. This implies that we have more confidence that the coefficients β2 and β3

are in fact zero, the same conclusion reached in Part (b).

Some simple calculations for this problem are performed in the MATLAB script prob 2 6.m.

Exercise 2.7 (filling in an lack-of-fit ANOVA table)

Our regression model is given by yt = β0 + β1xt and from the description given we have
n = 3 + 3 + 3 + 3 + 5 = 17, p = 1, and we have k = 5 level replications. For lack-of-fit
ANOVA tables when we have multiple replications the sum of squares lack-of-fit SSLF is
defined as

SSLF = SSE − SSPE = SSE −
k
∑

i=1

ni
∑

t=1

(y
(i)
t − ȳ(i))2 (12)

where SSPE is the sum of squares pure error. From the partial complete ANOVA table
given we see that SSLF = 30 − 9 = 21. The remaining entries for various mean square
expressions are simply the sum of squares expressions divided by the degrees of freedom.
Thus the ANOVA table is given by

Sum of Degrees Mean F
Source Squares of Freedom Square ratio

Regression SSR = 73 p = 1 MSR = 73 F = MSR
MSE

= 36.5
Error SSE = 30 n− p− 1 = 15 MSE = 2

Lack of fit SSLF = 21 k − p− 1 = 3 MSLF = 7 FLF = MSLF
MSPE

= 9.33
Pure error SSPE = 9 n− k = 12 MSPE = 0.75

Total SSTO = 103 n− 1 = 16
(correlated for mean)

Part (b): To asses the models adequacy is to recognize that under the hypothesis that
there is no lack-of-fit i.e. that the given model is accurate, FLF, follows a F distribution with
k − p− 1 and n− k degrees of freedom. Thus we want to compare our value of FLF above
with Fα(k − p − 1, n − k) = F0.05(3, 12) = 3.49. As the given ratio FLF is larger than this
value we can conclude that there is significant lack-of-fit present.

It is interesting to note that even with a model that is inadequate in terms of lack-of-fit to
the data, we can still test the significance of the parameters we have included. In this case
there is only one coefficient to be estimated in this model (besides the y’s mean value β0) we
will test the hypothesis H0 : β1 = 0 against the alternative hypothesis H1 : β1 6= 0. Under



hypothesis H0 the F statistic above is given by a F (p, n − p − 1) = F (1, 15) distribution.
At the level α = 0.05 we determine the value Fα(p, n − p − 1)F0.05(1, 15) = 4.54. Since
F > F0.05(1, 15) we reject H0 in favor of H1 at level α. Thus our model maybe incorrect but
in the incorrect model the coefficient is significant.

Part (c): If there was no lack of fit we could pool the variance estimates from MSLF and
MSPE to derive one estimate. In the above discussion it was found that there was significant
model miss-match and that this is not possible. In this case then we will take the value of
MSE = 2 as an estimate of the variance σ2.

Some simple calculations for this problem are performed in the MATLAB script prob 2 7.m.

Exercise 2.8 (a first order autoregressive model)

Note that in this exercise the model we propose for the time series zt is given by zt − 100 =
β(zt−1 − 100) + εt. If we define the variable, yt, as yt = zt − 100 our model of the process yt

is given by yt = βyt−1 + εt, or a first order autoregressive sequence.

Part (a): To estimate the value of β we recognize that the above model is exactly the linear
regression through the origin example where we know the ordinary least squares estimate of
β is given by

β̂ =

∑10
t=2 yt−1yt
∑10

t=2 y
2
t−1

=
y1y2 + y2y3 + · · · + y9y10

y2
1 + y2

2 + · · · + y2
9

=
160

216 − 42
= 0.8 .

Part (b): Given this model we would predict the value of zt to be

ẑt = ŷt + 100 = β̂yt−1 + 100 ,

using the value of β̂ computed above. Thus

ẑ11 = 0.8y10 + 100 = 0.8(4) + 100 = 103.2 .

Now z12 would be estimated as ẑ12 = 0.8y11 +100. Since at the time we desire the prediction
of z12 we have not observed y11 an estimate of y11 could be ŷ11 = β̂y10 = 0.8(4) = 3.2 so that
we would estimate z12 as

ẑ12 = 0.8(3.2) + 100 = 102.56 .

Part (c): We are estimating the value of β (p = 1) from n = 9 samples, then from the
discussion in the book a 100(1 − α) percent prediction interval for y11 would be given by

β̂y10 ± tα/2(n− 2)

(

1 +
y2

10
∑9

t=1 y
2
t

)1/2

= 3.2 ± 2.457 = [0.7426, 5.657] .

Here tα/2(n − 2) is the 100(1 − α/2) percentage point of a t distribution with n − 2 = 7
degrees of freedom. We find tα/2(7) = 2.36. Note that this is slightly different than the



expression the book has in that they have tα/2(n− 1) in the case of simple linear regression
through the origin. The books later expression does not match the general expression of
tα/2(n − p − 1) and I believe it is incorrect. Using this the 95% prediction interval for z11
would be that for y11 but with the mean of 100 added back, so we find the 95% confidence
interval for z11 given by

[100.74, 105.66] .

Some simple calculations for this problem are performed in the MATLAB script prob 2 8.m.

Exercise 2.9 (the adjusted coefficient of determination R2
a)

The adjusted coefficient of determination R2
a is defined as

R2
a = 1 − SSE/(n− p− 1)

SSTO/(n− 1)
= 1 − (n− 1)SSE

(n− p− 1)SSTO
. (13)

For this problem we are told that the regression performed resulted in a 70% reduction in
the residual standard deviation over what was present before the regression. Thus I took
this to mean that

SSR

SSTO
= 0.7 .

With this we then have that SSE
SSTO

= 1− SSR
SSTO

= 0.3 and the adjusted coefficient of determi-
nation R2

a using Equation 13 becomes

R2
a = 1 − 3(n− 1)

10(n− p− 1)
.

This reduction in residual standard deviation will be weighted by the number of variable p
used to achieve it.

Exercise 2.10 (some manipulation of the linear regression model)

Part (a): The vector prediction of the linear model are given by ŷ = Xβ̂ so that ŷ′ŷ =
β̂ ′X ′Xβ̂. The estimated β̂ is obtained from β̂ = (X ′X)−1(X ′y). When we put that expression
in for the right most value of β̂ only we find that

ŷ′ŷ = β̂ ′(X ′y) ,

as we were to show.

Part (b): The F statistics is calculated as

F =
MSR

MSE
=

SSR/p

SSE/(n− p− 1)
=

(

n− p− 1

p

)

SSR

SSE
.

While the coefficient of determination R2 is given by

R2 =
SSR

SSTO
=

SSR

SSR + SSE
=

SSR/SSE

SSR/SSE + 1
.



Solving this later equation for SSR
SSE

we find SSR
SSE

= R2

1−R2 , thus our F statistic now becomes

F =

(

n− p− 1

p

)(

R2

1 −R2

)

,

as we were to show.

Exercise 2.11 (the bias associated with an incorrect model)

The least squares estimate for β0 is given by the sample mean β̂0 = 1
n

∑n
t=1 yt. If the true

model for yt is in fact given by yt = β0 + β1xt + εt, i.e. a linear function of xt then the
estimate for β0 computed above is equal to

1

n

n
∑

t=1

yt = β0 +
β1

n

n
∑

t=1

xt +
1

n

n
∑

t=1

εt .

The expectation of this estimator 1
n

∑n
t=1 yt is then given by

β0 +
β1

n

n
∑

t=1

xt ,

which has a bias from the true value of β0 of

β1

n

n
∑

t=1

xt = β1x̄ ,

where x̄ is the mean of the x values.

Exercise 2.12 (more bias with an incorrect model)

Part (a): If we assume our process follows the simple linear model y = X1β1 + ε, when in
fact it satisfies the more complicated linear model y = X1β1+X2β2+ε then our least squares
estimate for β1 assuming the simple model is the standard expression β̂1 = (X ′

1X1)
−1X ′

1y.
The expectation of this is given by

E(β̂1) = (X ′
1X1)

−1X ′
1E(y)

= (X ′
1X1)

−1X ′
1(X1β1 +X2β2)

= β1 + (X ′
1X1)

−1X ′
1X2β2 ,

since the process y actually satisfies y = X1β1 + X2β2 + ε the expectation of y is given by
E(y) = X1β1 +X2β2.

Part (b): Now β̂1 will be an unbiased estimate of β1 if and only if X ′
1X2β2 = 0. That is β2

happens to be in the null space of the matrix X ′
1X2 or X ′

1X2 is the zero matrix. This second
condition implies that the predictors in X1 and X2 are orthogonal to each other.



Exercise 2.14 (related linear models)

Part (a): Our models for the dependent variables yt and zt are given by

yt = β0 + β1 + β2xt + vt

zt = β0 − β1 + β2xt + wt .

A regression model for the given specifications follow if we list the 2m observations of z at
x± c followed by the n− 2m observations of y at x = 0 as the matrix set of equations
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
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.

Part (b): As presented above determining β0, β1, and β2 is a standard least squares problem
and the least squares estimate of these β is given by

β̂ =





β̂0

β̂1

β̂2



 = (X ′X)−1X ′y .

Now in this case the matrix X ′X is given by

X ′X =





n −2m+ (n− 2m) −cm+ cm
n− 4m n mc−mc + 0

0 0 mc2 +mc2





=





n n− 4m 0
n− 4m n 0

0 0 2mc2



 .

The inverse of this matrix is given by (since it is block diagonal it can be easily inverted)

(X ′X)−1 =





n
8m(n−2m)

−n+4m
8m(n−2m)

0
−n+4m

8m(n−2m)
n

8m(n−2m)
0

0 0 1
2mc2



 .



Then the expression (X ′X)−1X ′ is given by

(X ′X)−1X ′ =





n
8m(n−2m)

−n+4m
8m(n−2m)

0
−n+4m

8m(n−2m)
n

8m(n−2m)
0

0 1
2mc2









+1 · · · +1 +1 · · · +1 1 · · · 1
−1 · · · −1 −1 · · · −1 1 · · · 1
−c · · · −c +c · · · +c 0 · · · 0





=





+ 1
4m

· · · + 1
4m

+ 1
4m

· · · + 1
4m

1
2(n−2m)

· · · 1
2(n−2m)

− 1
4m

· · · − 1
4m

− 1
4m

· · · − 1
4m

1
2(n−2m)

· · · 1
2(n−2m)

− 1
2mc

· · · − 1
2mc

+ 1
2mc

· · · + 1
2mc

0 · · · 0



 .

When we multiply this expression by the concatenated response vector of zt and yt we find
our least squares estimates of β given by

β̂0 = +
1

4m

m
∑

t=1

zt +
1

4m

2m
∑

t=m+1

zt +
1

2(n− 2m)

n
∑

t=2m+1

yt

β̂1 = − 1

4m

m
∑

t=1

zt −
1

4m

2m
∑

t=m+1

zt +
1

2(n− 2m)

n
∑

t=2m+1

yt

β̂2 = − 1

2mc

m
∑

t=1

zt +
1

2mc

2m
∑

t=m+1

zt .

Now the covariance of this estimate is given by

V (β̂) = σ2(X ′X)−1 =





n
8m(n−2m)

−n+4m
8m(n−2m)

0
−n+4m

8m(n−2m)
n

8m(n−2m)
0

0 1
2mc2



 .

We know that our predicted model for y is given by ŷpred = β̂0 + β̂1 + β̂2x and that the
variance of its estimate is given by

V̂ (y − ŷpred) = s2(1 + x′(X ′X)−1x) .

When we want to evaluate y at x = c our least squares augmented vector used in the above

is given by x =





1
1
c



, so that the inner product expression above becomes

x′(X ′X)−1x =
[

1 1 c
]





n
8m(n−2m)

−n+4m
8m(n−2m)

0
−n+4m

8m(n−2m)
n

8m(n−2m)
0

0 1
2mc2









1
1
c





=
[

1 1 c
]





1
2(n−2m)

1
2(n−2m)

1
2mc



 =
1

n− 2m
+

1

2m
.

With this expression we find

V̂ (y − ŷpred) = 1 +
1

n− 2m
+

1

2m
.



When n = 7 this becomes

V̂ (y − ŷpred) = 1 +
1

7 − 2m
+

1

2m
.

To find the value of m that minimizes this variance we take the derivative of the above
expression, set the result equal to zero and solve for m. We find m = 7

4
, with a value of

V̂ (y − ŷpred) = 4
7
. The algebra for some of this problem can be found in the Mathematica

file prob 2 14.nb.

Exercise 2.15 (regression for predicting housing prices)

The initial regression model (using all variables) for housing prices is taken to be

yt = β0 + β1xt1 + β2xt2 + β3xt3 + β4xt4 + εt ,

with the variables xti given as in the text. For this problem because we do not know a-priori
which variables will be most informative we will initially estimate β̂i, the standard error sβ̂i

,
and the t statistics tβ̂i

, for each variable. The values of the individual t statistics will signify
which variable to keep in the regression. This problem is worked in the MATLAB script
prob 2 15.m where we first load the Narula and Wellington data set using the MATLAB
function load narula wellington.m. We then construct a four variable p = 4 regression.
The estimated values of beta for this regression are given by

β̂ =















β̂0

β̂1

β̂2

β̂3

β̂4















=




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





2.4393
2.2972
−0.0546
13.9319
−0.0412













.

From these values, while not a scientific argument, the small magnitude of β̂2 and β̂4 makes
it less likely that they will be significant variables in the regression unless the standard error
on these variables is particularly small. Computing the standard errors of these variables we
find that

sβ =
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.

Thus we see that the second and fourth standard errors are indeed smaller that then others,
so the t statistics will fully determine the significance of X2 and X4. The t statistic for each
of these estimates of β is given by

tβ̂ =
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.



For a given significance level α say 0.05 these numbers are to be compared with the value of

tα/2(n− p− 1) = t0.025(23) = 2.06 ,

from which only two coefficients β̂1 and β̂3 are seen to be significant. We are unable to
simply drop all other variables (at once) because the t tests we are performing consider each
variable as if it was the last variable added to the regression. We will instead drop the least
significant variable (the one with the smallest t test value) and perform the regression again.
Dropping the variable X2 (lot size) we next compute a regression using X1, X3, and X4 only.
This give beta estimates, standard errors, and t statistics of

β̂ =


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
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β̂0

β̂1

β̂3

β̂4











=









2.2329
2.2951
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−0.0387
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, sβ̂ =


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3.6965
0.5373
2.6415
0.0631









, tβ̂ =
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0.6041
4.2716
5.2188
−0.6140


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.

The t statistics are to be compared with the value of t0.025(24) = 2.06, from which only
X1 is significant. Deleting the insignificant variable X4 (age of the house) we can perform a
regression with only two variables X1 and X3. Performing this gives beta estimates, standard
errors, and t statistics of

β̂ =





β̂0

β̂1

β̂3



 =





0.4753
2.4235
13.4073



 , sβ̂ =





2.3096
0.4887
2.5365



 , tβ̂ =





0.2058
4.9589
5.2857



 .

The t statistics are to be compared with t0.025(25) = 2.06, from which we conclude that both
the variables X2 and X3 are significant. Computing the coefficient of determination R2 for
linear regression we find R2 = 0.9241 a very good fit. To predict the sale price of the house
specified we have

X1 = 10.00 , X2 = 6.000 , X3 = 1.500 , X4 = 20 ,

of which we only need the values of X1 and X3. The augmented vector is then





1
X1

X3



 =





1
10.00
1.5



. Our predicted sale price is ŷ =





1
10.00
1.5





′

β̂ = 44.82. The 100(1 − α) percent

prediction interval is given by

ŷpred ± tα/2(n− p− 1)s(1 + x′(X ′X)−1x)1/2 .

Using the number given above we find our prediction interval given by

(35.85, 53.79) .

See the MATLAB script prob 2 15.m were we perform these calculations.



Exercise 2.16 (various regression topics)

Part (a): False. Independence of the residual is a goal of a regression but it may not be
achieved in practice. Reasons for it to not be true could result from an incorrect model
functional form. If the residuals are not independent but have some significant correlation,
a plot of xti (or ŷt) as the independent variable and et (the residual value) as the dependent
variable may highlight the functional form that needs to be added to the model.

Part (b): True. The regression sum of squares
∑

t(ŷt− ȳ)2 is equivalent to β̂ ′X ′y−nȳ2 (See

Equation 2 in these notes), but β̂ = (X ′X)−1Xy so the regression sum of squares becomes

y′X ′(X ′X)−1X ′y − nȳ2 ,

the quoted expression.

Part (c): The answer to this is yes, by adding additional variables we will always de-
crease the MSE, since the numerator in its definition SSE =

∑

(yt − ŷt)
2 will decrease.

The interesting problem to study is whether this decrease in MSE is statistically signif-
icant or not. This is described in the section of the book entitled: General Hypothesis
Tests: The Extra Sum of Squares Principle, where one considers an extended model (of
all variables say X1, X2, · · · , Xq−1, Xq, Xq+1, · · · , Xp) against the more simplistic model (say
X1, X2, · · · , Xq−1, Xq with fewer variables) and computes

SSR(Xq+1, · · · , Xp|X1, · · · , Xq) = SSR(X1, · · · , Xq, · · · , Xp) − SSR(X1, · · · , Xq)

= (SSTO − SSE(X1, · · · , Xq, · · · , Xp))

− (SSTO − SSE(X1, · · · , Xq))

= SSE(X1, · · · , Xq) − SSE(X1, · · · , Xq, · · · , Xp) ,

which we can see measures how much error reduction there is when we include the additional
variables Xq, Xq+1, · · · , Xp. We then compute the statistic

F ∗ =
SSR(Xq+1, · · · , Xp|X1, · · · , Xq)/(p− q)

SSE(X1, · · · , Xp)/(n− p− 1)
,

which we can see measures the fractional decrease in error achieved when we include the new
variables over the entire error obtainable when using all variables. The statistic is distributed
as an F distribution with p− q and n−p−1 degrees of freedom. If this F ∗ is “large enough”
we can conclude that the addition of the variables Xq+1, · · · , Xp have statistically reduced
the mean square error.

Part (d): The t statistic given by tβ̂i
= β̂i/sβ̂i

represents the contribution of the predictor
xti as if it were the last variable to enter the model. Thus one could find that while each
variable and statistics is small (implying they are all insignificant) the entire regression is
significant. Recall the argument when two variables X1 and X2 are highly correlated and
both good predictors of Y . Then taken together in a regression model they each will have a
very small t statistic but the overall regression model would still be a good one.



Part (e): I believe this is true since in the case of orthogonal columns the reduction in error
i.e. SSE should be the same independent of the other variables we may have included in the
regression. That is this error reduction is independent of the other variables

Part (f): False. The definition of R2 is

R2 =

∑

t(ŷt − ȳ)2

∑

t(yt − ȳ)2
. (14)

Using the definition of SSR and SSTO. The expression in the book for this part however
has a numerator of

∑

t(ŷt − yt)
2.

Part (g): In the simple linear regression model where yt = β0 + β1xt + εt the least squares
estimate of β1 is given by

β̂1 =
n
∑

xtyt − (
∑

xt)(
∑

yt)

n
∑

x2
t − (

∑

xt)2
. (15)

Dividing the top and bottom of this expression by n2 gives

β̂1 =
1
n

∑

xtyt − ( 1
n

∑

xt)(
1
n

∑

yt)
1
n

∑

x2
t − ( 1

n

∑

xt)2
=

r̂

s2
x

,

where
r̂ = E((xt − x̄)(yt − ȳ)) = E(xtyt) − x̄ȳ ,

is the sample covariance, and s2
x = E((xt − x̄)2) = E(x2

t ) − x̄2 is the sample variance. If we
define r to be the sample correlation coefficient so r = r̂

sxsy
(or r̂ = sxsyr) the above estimate

for β1 becomes

β̂1 =
sxsyr

s2
x

=
syr

sx
,

as we were to show.

Part (h): The estimate of β1 given in the simple linear regression model can also be written
as in Equation 15 from which there seems to be no benefit in selecting values of xt who’s
distances from x̄ are large. If we however look at the variance in the error in our estimate
of β1 given by

V (β̂1) = σ2

(

1
∑

(xt − x̄)2

)

,

we see that our variance in the estimate of β1 will decrease if we have many samples of xt

that are distributed from the mean x̄.

Part (i): If the variance of εt in the simple linear regression model is proportional to x2
t

then
V (εt) = Cx2

tσ
2 ≈ D(β0 + β1xt)

2σ2 = D′η2
t σ

2 = h(ηt)
2σ2 ,

for some constants C,D and D′. The “level” ηt defined as the value of β0 + β1xt, and the
function h is defined as h(ηt)

2 = Dη2
t . This last equation implies that h(ηt) ∼ ηt. From

the discussion in the section on non-constant variance and variance stabilization techniques
this corresponds to residuals whos standard deviation is proportional to the level and the



transformation that should be applied to the dependent variable yt to stabilize the variance
is a logarithmic one.

Part (j): The described procedure would result in a model that is difficult to fit since there
would be multiple ways to specify numerically the “level” of the dummy variable and still
obtain the given outputs yt. A better procedure is to introduce only two indicator functions
INDt1 and INDt2 that would be based relative to a one of the factories (say denoted as factory
0) such that they are zero when the t-th item does not come from factory 1 or 2. Then the
regression model we would attempt to fit would be given by (if we are only concerned about
a constant output) value say

yt = β0 + δ1INDt1 + δ2INDt2 + εt .

Part (k): The model as given cannot be fit by least squares. A simple transformation of
this model by taking the logarithm gives an alternative form for the same model of

log(y) = log(β0) + β1 log(x1) + β2 log(x2) + ε ,

which is linear in its unknown coefficients, βi, and can be fit by ordinary least squares.

Part (l): Notice that the transformation of yt given by

log

(

1

yt
− 1

)

= β0 + β1xt + log(εt) ,

could be fit by ordinary least squares.

Part (m): The lack-of-fit tests can be applied to a regression analysis regardless of the
dimensionality of the predictors X. The only requirement for the lack-of-fit tests is that for
a fixed value of the predictor vector, X, we have some number of say n > 1 of measured
independent responses y.

Part (n): In general, performing different variable selection criterion will lead to different

sets of independent variables being selected. The effect is magnified the stronger the cor-
relation present among the independent variables. For example, running forward selection
and backwards selection to determine the optimal three variable regression will often result
in different choices for the variables to include. This can be problematic if the purpose of
the regression analysis is to hypothesis sources of causation (i.e. hypothesis of the sort: the
value of Y is because of the value of Xi) but is usually not a problem if the purpose of the
regression is for prediction.

Part (o): False. One should always remember correlation does not imply causation.

Part (p): If the F statistic is very large what one can be sure of is that the regression (as
given) is statistically significant. It does not tell if the regression can be improved for example
if it is found that there is correlation among the residuals. Another benefit obtained when
we look at the residuals is that when plotting them against xti they can suggest possible



terms to include in the model for example power of the dependent variable like x2
ti. The

residuals also give a clue if the assumption of constant variance is true. If not, the regression
could be improved by variance-stabilization techniques or weighted least squares.

Part (q): A property of the least squares fit is that the fit of y produced (i.e. ŷ) is such that
X ′e = X ′(y−ŷ) = 0, and thus imposes certain linear restrictions among the n residuals. Now
assuming that the design matrix includes a column of ones and the regression model therefore
includes a constant term one of the these linear restrictions is

[

1 1 · · · 1
]

e = 0, thus
the residuals sum to zero. The regression given does not include a constant term and the
students claim is false.

Exercise 2.17 (an example of a regression using indicator variables)

The given plots look like linear models so each will have the form yt = β0 + β1xt1 + εt, but
modified to have an level shift via indicator function positioned at x = 0. To introduce this,
define the function the “indicator” function INDt as

INDt =

{

1 xt > 0
0 otherwise

(16)

Then our regression model will be given by

yt = β0 + β1xt1 + δ INDt ,

for some yet to be determined coefficient δ. The design matrix for this system from the table
of xt1 and yt is given by

X =

















1 −5 0
1 −3 0
1 −1 0
1 1 1
1 3 1
1 5 1

















.

With this expression for X, the ordinary least squares estimate of the coefficients β̂i are
given by

β̂ =





β̂0

β̂1

β̂2



 = (X ′X)−1X ′y =





10.7083
1.1250
2.2500



 .

The standard errors on these coefficients are given by

sβ̂ =





0.49257
0.13010
0.88878



 .

Using these two expressions together we compute the t statistic of these coefficients tβ̂ of

tβ̂ =





21.7399
8.6469
2.5316



 .



To determine if a given coefficient in the above regression is significant, these values are to
be compared against the values of tα/2(n− p − 1), which for this problem (note that p = 1
in this case because the indicator functions don’t change the number of coefficients fitted at
each level) and α = 0.05 has a value of tα/2(n−p−1) = 2.77. All of the coefficients, but δ̂ in
the above are larger than this value so for them we can reject the hypothesis H0 that βi = 0
at significance α. The third coefficient for δ̂ is slightly too small for the given threshold α.
This indicates that perhaps there is not a level change as we cross the value of x = 0.

If we assume there is not a level change across zero (since at the given significance level,
α, the resulting coefficient was not significant) then we would need to refit our regression
model before computing the ANOVA table. When we do that we find for estimates of β,
their standard errors, and their t statistics

β̂ =

[

11.83
1.41

]

, sβ̂ =

[

0.3427
0.1003

]

, tβ̂ =

[

34.5272
14.0950

]

.

These t statistics should be compared to the value of tα/2(4) = 2.77, from which we see that
each component is significant. For this final regression we can construct the ANOVA table

Sum of Degrees Mean F
Source Squares of Freedom Square ratio

Regression SSR = 141.01 p = 1 MSR = 140.01 198.66
Error SSE = 2.82 n− p− 1 = 4 MSE = 0.704
Total SSTO = 142.83 n− 1 = 5

(correlated for mean)

The significance of the entire regression considering all regressands can be inferred from the F
statistic calculated in the ANOVA table. We see from the above that its value is F = 198.66.
This is to be compared against the threshold value of Fα(p, n−p−1) = F0.05(6, 4) = 7.7086.
The above F statistic is significantly larger than the this threshold value we can reject the
hypothesis H0 that all βi = 0 at the significance level α = 0.05.

The numerical calculations for this problem computing the above values can be found in the
MATLAB script prob 2 17.m.

Exercise 2.18 (finding autocorrelated errors)

If the investigator finds that the error terms are autocorrelated i.e. εt = φεt−1 + at, then as
discussed in the book the initial regression model can be improved upon by instead regressing
an autoregressive model of the form

yt = φyt−1 + β0(1 − φ) +

p
∑

i=1

βi(xti − φxt−1,i) + ai .

This will result in an improved model but requires a nonlinear least squares procedure. This
in tern will result in different values for the coefficients βi and we see that the investigators
claims are in fact false.
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Figure 1: The quarterly Iowa nonfarm income example. Left: A plot of the raw data yt (in
green) vs. t for and the regression eln(ŷt) (in red). Right: A plot of the raw data for ln(yt) (in
green) vs. t for the Iowa nonfarm income and the regression ln(ŷt). The four-step look-ahead
predictions (and their confidence bounds) are plotted as black dots on the right side of each
plot. This regression is discussed in more detail below in the text that accompanies this
problem.

Exercise 2.19 (quarterly Iowa nonfarm income)

See the Figure 1 (left) for the plot of yt and Figure 1 (right) for a plot of ln(yt) (both
plots are in red). We see that the plot of ln(yt) is very linear in appearance representing a
constant growth rate. Because of this we fit a linear model to ln(yt) using the MATLAB
function developed for this chapter wwx regression.m. When given a set of regressors X
this function will compute the ordinary least squares estimates of a linear model using these
variables. The user must preprend a column of ones if a constant function is desired in
the regression. The resulting function call returns the least square estimates of βi, their
standard errors, their t statistics, and various ANOVA statistics. It is the responsibility of
the user to then study the outputs of this function to decide with coefficient are actually
statistically significant. This problem is implemented in the MATLAB script prob 2 19.m.
When we run this script we first load the Iowa nonfarm data set using the MATLAB function
load series 1.m, constructs the augmented feature matrix, and compute estimates of the
coefficients βi for the model

ln(yt) = β0 + β1t+ ǫt .

The routine wwx regression.m gives t statistics for the estimates of βi given by

[

tβ̂0

tβ̂1

]

=

[

362.20
73.71

]

,

which are to be compared with the threshold value of tα/2(n − p − 1) = t0.025(126) = 1.97.
Since both values are significantly larger than t0.025(126) there is strong evidence to reject
the hypothesis H0 (that the coefficients are actually zero). To asses the completeness of the
fit and the accuracy of the specified model, we next consider the residuals of the regression
above. We plot these residuals as a function of time in Figure 2 (left). In that figure we
see significant correlation. This indicates that the model above may not be adequate. To
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Figure 2: Left: A time series plot of the residuals found when predicting ln(yt) in the
Iowa nonfarm income. Right: A plot of the sample autocorrelation values, rk, for the
Iowa nonfarm income when fitting a linear regression to ln(yt). The two sigma confidence
bound on the hypothesis that rk ≈ 0 is drawn in red. Notice that there is significant error
autocorrelation present in this example.

quantify this, we compute the sample autocorrelations, rk, of the residuals et = yt − ŷt. As
discussed in the text, to determine whether these sample autocorrelations are significant we
need to compare their magnitude to the value of 1.96n−1/2 = 0.1732. If |rk| > 1.96n−1/2 we
cannot reject the hypothesis H0 (that they are insignificant) and to improve our regression
must model their affect. A plot of the sample autocorrelations and the constant value of
1.96n−1/2 are plotted in Figure 2 (right). From that figure we see that many of the sample
autocorrelations are in fact larger than this value and can conclude that the model, as given,
in not sufficient and could be improved upon.

Even with this difficulty in our model specification, we can compute forecasts and prediction

errors for the next four quarters using the given model. For a given input vector x =

[

1
t

]

,

our predictions for ln(yt) will be given by ln(ŷpred
t ) = x′β̂ and confidence intervals on ln(yt)

given by
ln(ŷpred

t ) ± tα/2(n− p− 1)s(1 + x′(X ′X)−1x)1/2 .

Here s is an estimate of the noise variance and X is the design matrix. To derive estimates
and confidence intervals for yt directly we would need to exponentiate the above expressions.
When these are implemented an executed they produce “log” confidence intervals (confidence
intervals on log(y)) and “direct” confidence intervals (confidence intervals on y) drawn in
black dots in Figure 1. In both cases it does not appear that the confidence bounds are
that good. A better method to forecast this data will be given in Chapter 3 where it will be
forecast with simple exponential smoothing.



Exercise 2.20 (bias introduced by correlated errors)

For the linear regression model yt = βxt +εt the standard least squares estimate of β is given
by

β̂ =

∑n
t=1 xtyt
∑n

t=1 x
2
t

. (17)

Since we are assuming that xt are not random and that we know the exact model followed
by yt the expectation of this expression is given by

E(β̂) =
1

∑n
t=1 x

2
t

n
∑

t=1

xtE(yt) =

∑n
t=1 βx

2
t

∑n
t=1 x

2
t

= β .

Since E(yt) = βxt, i.e. the expectation of εt is still zero. From this we see that β̂ is an
unbiased estimate of β. To compute the variance of our estimate β̂ we will use the identity
that Var(β̂) = E(β̂2) −E(β̂)2 and thus we need to compute E(β̂2). We find

E(β̂2) =
1

(
∑n

t=1 x
2
t )

2E

(

n
∑

u=1

n
∑

v=1

xuyuxvyv

)

=
1

(
∑n

t=1 x
2
t )

2

n
∑

u=1

n
∑

v=1

xuxvE (yuyv) .

Now the expectation of E(yuyv) involves the correlation structure of the error terms ε and
is computed by

E(yuyv) = E((βxu + εu)(βxv + εv))

= β2xuxv + E(εuεv)

= β2xuxv +







σ2 u = v
σ2ρ |u− v| = 1
0 otherwise

.

Using this expression the above sum in E(β̂2) becomes

E(β̂2) =
β2

(
∑n

t=1 x
2
t )

2

n
∑

u=1

n
∑

v=1

x2
ux

2
v +

1

(
∑n

t=1 x
2
t )

2

n
∑

u=1

x2
uσ

2 +
1

(
∑n

t=1 x
2
t )

2

n−1
∑

u=1

2xuxu+1σ
2ρ

= β2 +
σ2

(
∑n

t=1 x
2
t )

2

(

n
∑

u=1

x2
u + 2ρ

n−1
∑

u=1

xuxu+1

)

.

Then using this expression we find

Var(β̂) =
σ2

∑n
t=1 x

2
t

(

1 + 2ρ

(∑

xuxu+1
∑

x2
u

))

,

which decomposes the result for Var(β̂) into two terms. The first represented by σ2
Pn

t=1 x2
t

is

the term obtained when ρ = 0 and represents the standard least squares variance while the
second term represents the change in variance due to the correlation in the residuals.



Part (b): The t statistic for the hypothesis β = 0 is determined by computing β̂√
Var(β̂)

. Since

the values of xt are fixed when the regression is performed the sign (positive or negative) of
the expression

∑

xuxu+1 is determined. We can assume without loss of generality that it is
positive. In that case if ρ > 0 the t statistic will be smaller than it should be and we would
be more likely to conclude that the coefficient β were zero when in fact it was not. In the
other case when ρ < 0 the expression for the variance would be smaller than expected and
the value of the t statistic would lead us to think that the estimated regression coefficient
for β was significant when in fact it may not be.

Exercise 2.21 (residual variances that depend on 1/x2
t )

Part (a): As in exercise 2.20 the usual least-squares estimate of β for the model yt = βxt+εt

is given by Equation 17. As is shown in the previous problem this estimate is an unbiased
estimator of β. Its variance can be calculated by recognizing that to have the given

V (yt) = V (εt) =
σ2

x2
t

, (18)

match the general form of

V (εt) =
σ2

ωt
, (19)

we need to have ωt = x2
t . Thus the precision matrix Ω, in this case is given by

Ω−1 =











ω−1
1

ω−1
2

. . .

ω−1
n











=











1/x2
1

1/x2
2

. . .

1/x2
n











.

Now the variance of the ordinary least squares estimate of β when the individual measure-
ments yt have different variances given by Equation 19 is given by

V (β̂) = σ2(X ′X)−1X ′Ω−1X(X ′X)−1 . (20)

For the type of regression we are performing here (simple linear regression through the origin)
the design matrix is

X =











x1

x2
...
xn











,

so that X ′X =
∑

x2
t and X ′Ω−1X = n, thus the variance of our estimate of β when using

ordinary least squares is given by

V (β̂) =
nσ2

(
∑

t x
2
t )

2 .



Part (b): The weighted least squares estimate of β is given by

β̂∗ = (X ′ΩX)−1X ′Ωy . (21)

For the given definition of Ω and ωt we get

X ′ΩX =
∑

ωtx
2
t =

∑

x4
t

X ′Ωy =
∑

ωtxtyt =
∑

x3
t yt ,

so that using Equation 21 we get

β̂∗ =

∑

ωtxtyt
∑

ωtx2
t

=

∑

x3
t yt

∑

x4
t

.

This is an unbiased estimate since using E(yt) = βxt, we can compute E(β̂∗) = β. The
variance of the weighted least squares estimate is given by

V (β̂∗) = σ2(X ′ΩX)−1 , (22)

which in this case becomes

V (β̂∗) =
σ2

∑

x4
t

.

Part (d): If we measure that V (yt) = η2
t then we can use variance stabilization techniques

to transform the dependent variable yt to variable that has constant variance as discussed
in the book. Specifically, we would pick a transformation g(·) to apply such that

g′(ηt) =
1

ηt
or g(ηt) = ln(ηt) ,

so we would apply the logarithm to the dependent data yt and attempt to fit a model
instead to the terms ln(yt). Because of this transformation the variance of ln(yt) should now
be constant.

Exercise 2.22 (deriving estimates from averages)

If we are given the model yij = β0 + β1xj + εij for i = 1, 2, · · · , nj and for each of the c
“classes” j = 1, 2, · · · , c, then the standard least squares regression formulation would seek



to find values for βi such that (in the least squares sense) the following equality is satisfied























































y11

y21

y31
...

yn1 1

y12

y22
...

yn2 2
...
y1 c

y2 c
...

ync c























































=























































1 x1

1 x1

1 x1
...

...
1 x1

1 x2

1 x2
...

...
1 x2
...

...
1 xc

1 xc
...

...
1 xc























































[

β0

β1

]

.

Here the matrix in front of the column vector

[

β0

β1

]

is denoted as X and called the design

matrix. To solve this least squares problem for βi we need to compute the product X ′X
which for the above design matrix becomes

X ′X =

[

n
∑c

j=1 njxj
∑c

j=1 njxj

∑c
j=1 njx

2
j

]

,

and the product X ′y or

X ′y =

[ ∑c
j=1

∑nj

i=1 yij
∑c

j=1 xj

∑nj

i=1 yij

]

=

[ ∑c
j=1 nj ȳj

∑c
j=1 xjnj ȳj

]

.

From these two expressions we can invert the matrix X ′X and apply that operator to X ′y to
compute the solution to the normal equation β̂ = (X ′X)−1(X ′y). Note that these estimates
of βi are computed using only the information that we have.



Chapter 3: Regression and Exponential Smoothing

Methods To Forecast Nonseasonal Time Series

Notes On The Text

Notes on the Constant Mean Model

For the constant mean model we assume that zn(l) = β. To estimate β we can use ordinary
least squares with a design matrix given by

X =











1
1
...
1











.

Then we see that X ′X = n and the ordinary least squares estimate of β is given by β̂ =
1
n

∑

zt = z̄. From the expression for the variance of the forecast error given in Chapter 2 of

V̂ (yk − ŷpred
k ) = σ2[1 + x′k(X

′X)−1xk] , (23)

we find since in the constant mean model the augmented state vector is simply xk = 1 (only
the constant 1 i.e. there are no regressands) that the variance in our l step-ahead prediction
is given by

V (zn+l − ẑn(l)) = σ2

(

1 +
1(1)

n

)

,

which is equation 3.4 in the book. We will compute an estimate of σ above as

σ2 ≈ 1

(n− p− 1)
SSE =

1

(n− p− 1)

∑

t

(zt − ẑt)
2 =

1

n− 1

∑

t

(zt − z̄)2 .

Examples of discounted least squares: the locally constant model

We can use the general framework provided in the section entitled “Regression models with
time as independent variable” to derive the corresponding formulas for the constant mean

model introduced earlier. Equation 3.13 from the book is

fn+j = f ′(j)β + εn+j , (24)

which for the constant mean model we take only one fitting function (the constant) given by

f1(j) = 1 .



Then our general l step-ahead prediction is given by ẑn(l) = f ′(l)β̂n = β̂n, with β̂n given by
β̂n = F−1

n hn where

hn =

n−1
∑

j=0

ωjf(−j)zn−j =

n−1
∑

j=0

ωjzn−j

Fn =
n−1
∑

j=0

ωjf(−j)f ′(−j) =
n−1
∑

j=0

ωj =
1 − ωn

1 − ω
.

So that using these β̂n is given by

β̂n =

(

1 − ω

1 − ωn

) n−1
∑

j=0

ωjzn−j , (25)

which is the equation 3.30 in the book. Taking the limit as ω → 1 we find

lim
ω→1

(

(−1)

−nωn−1

) n−1
∑

j=0

zn−j =
1

n

n−1
∑

j=0

zn−j ,

the expression for the average of the zn values.

Examples of discounted least squares: the locally constant linear trend model

In general the discounted least squares procedure gives the l-step ahead estimates of ẑn(l) =
f ′(l)β̂n where β̂n = F−1

n hn. We can specify this general framework to the locally constant

linear trend model by taking f(j) =

[

1
j

]

so that

Fn =
n−1
∑

j=0

ωjf(−j)f ′(−j) =
n−1
∑

j=0

ωj

[

1
−j

]

[

1 −j
]

=
n−1
∑

j=0

ωj

[

1 −j
−j j2

]

. (26)

hn =

n−1
∑

j=0

ωjf(−j)zn−j =

n−1
∑

j=0

ωj

[

1
−j

]

zn−j . (27)

By using the above discounted least squares formulation to derive the locally constant linear
trend model we have fitting functions f(t) with components f1(j) = 1, f2(j) = j, and

a transition matrix f(j + 1) = Lf(j) given by L =

[

1 0
1 1

]

. The large n estimates of

β̂n = (β̂0,n, β̂1,n)′ are given by solving for β̂n = F−1
∞ h∞, which from Equation 26 and 27 we

can compute

β̂0,n = (1 − ω2)
∑

ωjzn−j − (1 − ω)2
∑

jωjzn−j

β̂1,n = (1 − ω)2
∑

ωjzn−j −
(1 − ω)3

ω

∑

jωjzn−j . (28)

The lower limit of these sums is j = 0 while the upper limit is j = n − 1. These are the
books equations 3.33 and can be used to compute the regression coefficients in this case.



The locally linear trend model viewed as double exponential smoothing

As the locally constant mean model can be interpreted as simple exponential smoothing the
locally linear model can be interpreted as “double” exponential smoothing an extension of
simple exponential smoothing. Using the output of a first order smooth S

[1]
n we will compute

a second order smooth S
[2]
n using the equations

S [1]
n = (1 − ω)zn + ωS

[1]
n−1 = (1 − ω)

n−1
∑

j=0

ωjzn−j (29)

S [2]
n = (1 − ω)S [1]

n + ωS
[2]
n−1 . (30)

Lets express S
[2]
n directly in terms of the elements of our time series zn. We will do this by

writing S
[2]
n in terms of S

[1]
n and S

[2]
0 , and then using the known summation expression for

S
[1]
n in terms of zn expressed by Equation 29. We begin by writing the above expression for
S

[2]
n in Equation 30 for n = 1, we find

S
[2]
1 = (1 − ω)S

[1]
1 + ωS

[2]
0 .

Doing the same thing for n = 2 we obtain

S
[2]
2 = (1 − ω)S

[1]
2 + ωS

[2]
1

= (1 − ω)S
[1]
2 + ω(1 − ω)S

[1]
1 + ω2S

[2]
0 .

Again for n = 3 we obtain

S
[2]
3 = (1 − ω)S

[1]
3 + ωS

[2]
2

= (1 − ω)S
[1]
3 + ω(1 − ω)(S

[1]
2 + ωS

[1]
1 ) + ω3S

[2]
0

= (1 − ω)(S
[1]
3 + ωS

[1]
2 + ω2S

[1]
1 ) + ω3S

[2]
0 .

This pattern continues and it looks like the general expression for S
[2]
n in terms of S

[1]
n is

S [2]
n = (1 − ω)

n
∑

k=1

ωn−kS
[1]
k + ωnS

[2]
0 . (31)

Since we have an expression for S
[1]
k in terms of the original series zn given by Equation 29

we can put this into Equation 31 to find

S [2]
n = (1 − ω)2

n
∑

k=1

ωn−k
k−1
∑

j=0

ωjzk−j + ωnS
[2]
0

= (1 − ω)2
n
∑

k=1

k−1
∑

j=0

ωn−k+jzk−j + ωnS
[2]
0 .



Now to further simplify this double summation lets write it out and look for a pattern. We
find

S [2]
n = (1 − ω)

(

S [1]
n + ωS

[1]
n−1 + ω2S

[1]
n−2 + · · · + ωn−1S

[1]
1

)

+ ωnS
[2]
0

= (1 − ω)2

(

n−1
∑

j=0

ωjzn−j + ω

n−2
∑

j=0

ωjzn−1−j + ω2
n−3
∑

j=0

ωjzn−2−j + · · ·+ ωn−1z1

)

+ ωnS
[2]
0

= (1 − ω)2
(

zn + ωzn−1 + ω2zn−2 + · · · + ωn−1z1

+ ωzn−1 + ω2zn−2 + · · ·+ ωn−1z1

+ ω2zn−2 + · · ·+ ωn−1z1
...

+ ωn−1z1
)

+ ωnS
[2]
0 .

Summing “down the columns” of the above expression the pattern is now clear and we see
that we have

S [2]
n = (1 − ω)2

(

zn + 2ωzn−1 + 3ω2zn−2 + 4ω3zn−3 + · · · + nωn−1z1
)

+ ωnS [2]
n

= (1 − ω)2

n−1
∑

j=0

(j + 1)ωjzn−j + ωnS [2]
n , (32)

which when we take the limit n→ ∞ is the expression given in equation 3.35 in the book.

From the expressions 29 and 32 for S
[1]
n and S

[2]
n in terms of the individual series zn−j we can

write the discounted sums of zn as
∑

j ω
jzn−j = S

[1]
n

1−ω
and

∑

j

jωjzn−j =
S

[2]
n

(1 − ω)2
−
∑

j

ωjzn−j =
S

[2]
n

(1 − ω)2
− S

[1]
n

1 − ω
.

Thus the expression for β̂0,n and β̂1,n derived in Equation 28 become in terms of S
[1]
n and S

[2]
n

β̂0,n = (1 + ω)S [1]
n − S [2]

n + (1 − ω)S [1]
n = 2S [1]

n − S [2]
n (33)

β̂1,n = (1 − ω)S [1]
n − 1 − ω

ω
(S [2]

n − (1 − ω)S [1]
n )

=
1 − ω

ω

(

ωS [1]
n − S [2]

n + (1 − ω)S [1]
n

)

=
1 − ω

ω

(

S [1]
n − S [2]

n

)

, (34)

which are the books equations 3.38.

The updating equations used to update the value of βn given the next measurement zn+1 are
given by the books equation 3.29 which in this case becomes

β̂n+1 = L′β̂n + F−1f(0)(zn+1 − ẑn(1))

=

[

1 1
0 1

] [

β̂0,n

β̂1,n

]

+

[

1 − ω2 (1 − ω)2

(1 − ω)2 (1−ω)3

ω

] [

1
0

](

zn+1 −
[

1 1
]

[

β̂0,n

β̂1,n

])

=

[

1 1
0 1

] [

β̂0,n

β̂1,n

]

+

[

1 − ω2

(1 − ω)2

]

(zn+1 − β̂0,n − β̂1,n) .



In component form this is

β̂0,n+1 = β̂0,n + β̂1,n + (1 − ω2)(zn+1 − β̂0,n − β̂1,n)

= (1 − ω2)zn+1 + ω2(β̂0,n + β̂1,n) (35)

β̂1,n+1 = β̂1,n + (1 − ω)2(zn+1 − β̂0,n − β̂1,n) . (36)

To simplify the second equation above, solve Equation 35 for zn+1 to get zn+1 =
β̂0,n+1−ω2(β̂0,n+β̂1,n)

(1−ω2)
,

and put this into Equation 36. This gives

β̂1,n+1 = β̂1,n +
(1 − ω)2

1 − ω2

(

β̂0,n+1 − ω2(β̂0,n + β̂1,n) − (1 − ω2)(β̂0,n + β̂1,n)
)

= β̂1,n +

(

1 − ω

1 + ω

)

(

β̂0,n+1 − β̂0,n − β̂1,n

)

,

since (1−ω)2

1−ω2 = 1−ω
1+ω

. Thus we find β̂1,n+1 given by

β̂1,n+1 =

(

1 − ω

1 + ω

)

(β̂0,n+1 − β̂0,n) +
2ω

1 + ω
β̂1,n .

which is equation 3.40 in the book.

Holt’s Interpretation of Double Exponential Smoothing

Holt’s procedure is given by selecting two discount factors ω1 and ω2 are specified such that
each satisfies 0.7 ≤ ωi ≤ 0.95, we have update factors for the mean level µ̂n and the slope β̂
once we have a new measurement zn+1 given by

µ̂n+1 = (1 − ω1)zn+1 + ω1(µ̂n + β̂n)

β̂n+1 = (1 − ω2)(µ̂n+1 − µ̂n) + ω2β̂n

= (1 − ω1)(1 − ω2)zn+1 − (1 − ω1)(1 − ω2)µ̂n + (ω1 + ω2 − ω1ω2)β̂n .

The Actual Implementation of Double Exponential Smoothing

To actually implement double exponential smoothing we will recursively iterate Equations 29
and 30 to evaluate S

[1]
n and S

[2]
n but to do so we will need starting values of S

[1]
n and S

[2]
n when

n = 0. These values can be determined by evaluating the expressions for β̂0,n and β̂1,n given

by Equations 33 and 34 at n = 0 and associating the values of β̂0,0 and β̂1,0 with a the least
squares coefficients of a linear fit of some subset of the given data. Evaluating Equations 33
and 34 at n = 0 gives

β̂0,0 = 2S
[1]
0 − S

[2]
0 (37)

β̂1,0 =

(

1 − ω

ω

)

(S
[1]
0 − S

[2]
0 ) ⇔ 2ω

1 − ω
β̂1,0 = 2S

[1]
0 − 2S

[2]
0 . (38)



Subtract the first equation from the second equation to get

2ω

1 − ω
β̂1,0 − β̂0,0 = S

[2]
0 − 2S

[2]
0 ,

or solving for S
[2]
0 we find

S
[2]
0 = β̂0,0 −

2ω

1 − ω
β̂1,0 . (39)

Putting this expression into Equation 37 to get

S
[1]
0 =

1

2

(

2β̂0,0 − 2
ω

1 − ω
β̂1,0

)

= β̂0,0 −
ω

1 − ω
β̂1,0 . (40)

These are the books equations 3.43. The initial values of S
[1]
0 and S

[2]
0 are specified once

initial values are given by β̂0,0 and β̂1,0. One can initialize the values of β̂0,0 and β̂1,0 using
the expression for ordinary least squares of a linear fit derived in Chapter 2, see page 6.

Example 3.4: University of Iowa Student Enrollment

We can verify that we have implemented double exponential smoothing correctly by dupli-
cating the books Example 3.4 which deals with the university of Iowa student enrollment.
Using the MATLAB script example 3 4.m we first load the data set using the function
load student enrollment.m. To get an intuitive understanding of how double exponential
smoothing performs, we plot the original data, pick an arbitrary value for the relaxation pa-
rameter ω, and plot the corresponding double exponential smooth overlayed on the original
time series. The result of this is plotted in Figure 3 (left). In addition, we then perform
a simulation over a range of relaxation values 0.01 < ω < 0.9 (chosen so that they would
duplicate Table 3.12 in the book) and from all simulations find the value of ω that minimize
the one-step ahead prediction error. When the above MATLAB script is run it also produces
plots of the autocorrelation of the residuals. Their magnitude matches quite well with the
values given in the book in Table 3.14. Because of the close agreement with many of the
results here we can be more certain that the code for double exponential smoothing in the
MATLAB script double exp smoothing.m has been implemented correctly.

Prediction intervals for future values

In this section the book shows that the variance of the l-step-ahead prediction error is given
by

V (en(l)) = σ2 + f ′(l)V (β̂n)f(l) , (41)

and that the variance of our estimate of β is given by

V (β̂n) = F−1
n V (hn)F−1

n . (42)

If we assume that the observations zt are uncorrelated and have the same variance σ2 then we
can evaluate V (hn). We have from the expression for the variance in terms of expectations
that

V (hn) = E (hnh
′
n) − E(hn)E(hn)′ (43)
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Figure 3: Left: The original university of Iowa student enrollment data (in green), the
double exponential smooth of this data with a relaxation parameters ω = 0.9 (in red), and
the optimally selected smooth (in blue). Right: The SSE(ω) as a function of ω. The
minimum was found to be ωoptimal = 0.125 or α = 0.875 and corresponds very closely with
what the book reports.

Now from the definition of hn we have the expectation in the second term above can be
simplified as

E(hn) = E

(

n−1
∑

j=0

ωjf(−j)zn−j

)

=

n−1
∑

j=0

ωjf(−j)E(zn−j) =

n−1
∑

j=0

ωjf(−j)f ′(−j)β , (44)

since we assume that zn+j = f ′(j)β + εn+j. We then square this expression to obtain

E(hn)E(hn)′ =

(

n−1
∑

j=0

ωjf(−j)f ′(−j)β
)(

n−1
∑

k=0

ωkf(−k)f ′(−k)β
)′

=

n−1
∑

j=0

n−1
∑

k=0

ωjωkf(−j)f ′(−j)ββ ′f(−k)f ′(−k) ,

as an expression for the second term in the expectation expansion of V (hn) in Equation 43.
Note we can mentally check the dimensions of this product to determine that it indeed is a
matrix as it should be. In addition, using the associativity property of matrix multiplications
we can recognize that some of the products above evaluate to scalars and we can write

f(−j)f ′(−j)ββ ′f(−k)f ′(−k) = (f ′(−j)β) (β ′f(−k)) f(−j)f ′(−k) ,



where we have factored out two scalar terms. To evaluate the first term in Equation 43 begin
by expanding the summation as

E(hnh
′
n) = E

((

n−1
∑

j=0

ωjf(−j)zn−j

)(

n−1
∑

k=0

ωjf(−k)zn−k

)′)

= E

(

n−1
∑

j=0

n−1
∑

k=0

ωjωkzn−jzn−kf(−j)f ′(−k)
)

=

n−1
∑

j=0

n−1
∑

k=0

ωjωkE(zn−jzn−k)f(−j)f ′(−k) .

Now to evaluate E(zn−jzn−k) recall our model for zn to find

E(zn−jzn−k) = E ((f ′(−j)β + εn−j)(f
′(−k)β + εn−k))

= f ′(−j)βf ′(−k)β + E(εn−jεn−k)

= f ′(−j)βf ′(−k)β +

{

0 j 6= k
σ2 j = k

.

Thus we can combined these two results to obtain

E(hnh
′
n) =

n−1
∑

j=0

n−1
∑

k=0

ωj+kf(−j)f ′(−k)(f ′(−j)βf ′(−k)β) +

n−1
∑

j=0

ω2jσ2f(−j)f ′(−j) .

Thus when we perform the subtraction needed in Equation 43 we find that the two double
sums cancel and we are left with

V (hn) = σ2
n−1
∑

j=0

ω2jf(−j)f ′(−j) , (45)

the same as the expression given in the book.

Exercise Solutions

Exercise 3.1 (an example with exponential smoothing)

To update our forecast using the simple exponential smoothing (a locally constant mean
model) where all look aheads result in the same prediction we have

ẑn(l) = ẑn−1(1) + (1 − ω)(zn − ẑn−1(1)) . (46)

In this problem we are told that ẑ30(2) = 102.5 which also means ẑ30(1) = 102.5 since the
amount of look ahead does not matter. Thus the forecaster should predict using Equation 46
with n = 31 and l = 1 that

ẑ31(1) = ẑ30(1) + (1 − ω)(z30 − ẑ30(1))

= 102.5 + 0.1(105 − 102.5) = 102.75 ,

for our new estimate of z32.



Exercise 3.2 (predicting yearly sales)

Part (a): We will assume that the data provided to the simple exponential model is in the
form of yearly sales so that the forecaster is not forecasting sales on a monthly time frame.
Then we are told that the one-step-ahead yearly prediction is given by ẑn(1) = 960. If in
January we have observed actual sales of 90 units, the forecasters revised forecast would be
960 − 90 = 870 units to be sold in the next eleven months.

Part (b): A simple method of predicting the smoothing parameter α is to simulate the
ones-step-ahead error

SSE(α) =

n
∑

t=1

e2t−1(1) =

n
∑

t=1

(zt − ẑt−1(1))2 , (47)

for many values of α and select the values of α that minimizes this expression.

Part (c): If the forecaster observes that a linear trend in the data zt seems to be changing,
then a better procedure to use would be double exponential smoothing which explicitly
incorporates a linear component into the model.

Exercise 3.3 (the two-step-ahead forecast for simple exponential smoothing)

From the given definition of exponential smoothing

ẑn(1) = α
(

zn + (1 − α)zn−1 + (1 − α)2zn−2 + · · ·
)

, (48)

if we consider ẑn(2) defined in an analogous way as above but with the unknown time series
value zn replaced with its one-step-ahead estimate given by ẑn(1). We find

ẑn(2) = α
(

ẑn(1) + (1 − α)zn + (1 − α)2zn−1 + · · ·
)

= α
[

α(zn + (1 − α)zn−1 + (1 − α)2zn−2 + · · · )
+ (1 − α)zn + (1 − α)2zn−1 + (1 − α)3zn−2 + · · ·

]

= α
[

zn + (1 − α)(α+ (1 − α))zn−1 + (1 − α)2(α + (1 − α))zn−2 + · · ·
= α

[

zn + (1 − α)zn−1 + (1 − α)2zn−2 + · · ·
= ẑn(1) ,

as we were to show.

Exercise 3.4 (simple exponential smoothing on the U.S. lumber data)

This problem is implemented in the MATLAB script prob 3 4.m. In that script we begin by
loading the data set using the utility function load us lumber.m. We then specify an initial
value to choose for the initial condition of the simple exponential smooth S0. Some possible
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Figure 4: Left: The U.S. lumber data (in black), an example of simple exponential smoothing
with a relaxation parameter ω = 0.9 (in blue), and simple exponential smoothing with the
optimal smoothing value ω = 0.99 (in green). Right: A plot of the SSE(ω) given by
Equation 47 as a function of ω = 1− α. The minimum value of SSE(ω) is clearly located at
the right end of the domain.
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Figure 5: Left: The error residuals of the simple exponential smooth using the optimal value
of ω. Right: The sample autocorrelation function of the error residuals.



simple choices are S0 = z1 the first measurement, S0 = z̄ = 1
n

∑

t zt the sample mean of the
entire data set, the sample median, or the mean of some number of initial terms. Once an
initial value for Sn is chosen, to visualize the output of simple exponential smoothing we
pick a relaxation value randomly, say ω = 0.9, and plot the resulting smoothed values Sn.
The original data series and this initial smoothed value are shown in Figure 4 (left). We
next seek to evaluate the optimal ω and determine how well we can forecast this time series
with exponential smoothing. To do this we sample from a grid of ω values between [0.7, 0.99]
and for each, compute the one-step-ahead predictions using Equation 46 for n = 0, 1, · · · .
From these values of ẑn(1) we compute the one-step-ahead prediction error using Equation 47
repeated here for convenience

SSE(ω) =
n
∑

t=1

e2t−1(1) =
n
∑

t=1

(zt − ẑt−1)
2 .

A plot of this expression for the ω values in the above grid is given in Figure 4 (right). From
this plot we see that the optimal value of ω occurs at the right end of the domain in this case
ω = 0.99. This relatively large value of ω means that the mean level changes only slowly
a fact that can be visually observed when we plot the values of ẑn(1) for the optimal ω in
Figure 4 (left) in green. Note that visually this has the appearance of a globally constant
mean model. Since the optimal smooth is so similar to the globally constant mean model we
could conclude that the significance of the model will be very similar to the results derived
in Example 3.1. A plot of the error residuals in Figure 5 (left) appears to have mean zero
and be uncorrelated. A plot of the sample autocorrelation function of the error residuals
in Figure 5 (right) gives numerical values almost the same as that given in Example 3.1.
In summary it appears that in finding the optimal ω ≈ 1 has reduced the more general
exponential smoothing to the globally constant mean model.

Exercise 3.5 (simple exponential smoothing vs. a moving average)

In simple exponential smoothing the smoothed statistic Sn is given in terms of the time series
by

Sn = S [1]
n = (1 − ω)(zn + ωzn−1 + ω2zn−2 + · · · ) . (49)

Because we have an explicit model of our process zt given by zt = µ + εt we can study the
variance of this statistic. We begin by computing the expectation of Sn. We find

E(Sn) = (1 − ω)(E(zn) + ωE(zn−1) + ω2E(zn−2) + · · · )
= (1 − ω)(µ+ ωµ+ ω2µ+ · · · )
= µ(1 − ω)(1 + ω + ω2 + · · · ) = µ .



We next consider E(S2
n), which we find is given by (using α = 1 − ω)

E(S2
n) = α2E

(

∑

k,k′≥0

ωkωk′

zn−kzn−k′

)

= α2E

(

∑

k,k′≥0

ωkωk′

(µ+ εn−k)(µ+ εn−k′)

)

= α2E

(

µ2
∑

k,k′≥0

ωkωk′

+ µ
∑

k,k′≥0

ωkωk′

εn−k + µ
∑

k,k′≥0

ωkωk′

εn−k′ +
∑

k,k′≥0

ωkωk′

εn−kεn−k′

)

= α2

(

µ2

(1 − ω)2
+
∑

k,k′≥0

ωkωk′

E(εn−kεn−k′)

)

.

Now the expectation in the second term can be evaluated since we assume that the εn are
uncorrelated with variance σ2, meaning that E(εn−kεn−k′) = σ2δn−k,n−k′ = σ2δk,k′ so the
above expression then becomes

E(S2
n) = µ2 + α2σ2

∑

k

ω2k = µ2 +
α2σ2

1 − ω2
= µ2 +

(

1 − ω

1 + ω

)

σ2 .

Thus Var(Sn) can be computed using its expansion in terms of expectations and is given by

Var(Sn) = E[S2
n] −E[Sn]2 =

(

1 − ω

1 + ω

)

σ2 . (50)

For the moving average of the most recent N observations it definition is given by

z̄
(N)
t =

1

N
(zt + zt−1 + · · · + zt−N+1) . (51)

From which we observe that E(z̄
(N)
t ) = µ and (z̄

(N)
t )2 = 1

N2

∑N−1
k,k′=0 zt−kzt−k′ so that the

expectation of (z̄
(N)
t )2 is given by

E((z̄
(N)
t )2) =

1

N2

N−1
∑

k,k′=0

E(zt−kzt−k′)

=
1

N2

N−1
∑

k,k′=0

(

µ2 + µE(εt−k) + µE(εt−k′) + E(εt−kεt−k′)
)

= µ2 +
σ2

N2

N−1
∑

k=0

1 = µ2 +
σ2

N
.

Thus the variance of the moving average of the last N observations becomes

Var(z̄
(N)
t ) = µ2 +

σ2

N
− µ2 =

σ2

N
. (52)



As suggested in the book lets consider the evaluation of Var(Sn) using Equation 50 when
α = 2

N+1
. For that specific value of α we see that ω = 1 − α = 1 − 2

N+1
= N−1

N+1
, and

1 + ω = 2N
N+1

, so that

Var(Sn) =
2/(N + 1)

(2N/(N + 1))
σ2 =

1

N
σ2 ,

the same as given in Equation 52 the variance of the moving average of the last N observa-
tions. In addition to equality we will have V (Sn) ≤ V (z̄

(N)
t ) if

1 − ω

1 + ω
≤ 1

N
,

holds. On solving for ω we find that this requires

ω ≥ 1 − 1
N

1 + 1
N

=
N − 1

N + 1
,

as the requirement on ω so that the variance of the simple exponential smooth is less than
that of the N term simple moving average.

Each of the two techniques discussed have their own recursive update procedures to use when
a new measurement zn+1 is available. For the technique of simple exponential smoothing,
this update equation is given by Equation 46 (with l = 1) repeated here in the notation of
a smooth and indexed from n rather than t− 1 as

Sn+1 = αzn+1 + (1 − α)Sn . (53)

For the moving average model z̄
(N)
t the recursive update equation can be computed as

z̄
(N)
t =

1

N
(zt + zt−1 + · · · + zt−N+2 + zt−N+1) so that

z̄
(N)
t+1 =

1

N
(zt+1 + zt + zt−1 + · · ·+ zt−N+2)

=
1

N
zt+1 +

1

N
(zt + zt−1 + · · · + zt−N+2 + zt−N+1) −

1

N
zt−N+1

= z̄
(N)
t +

1

N
(zt+1 − zt−N+1) . (54)

Note that Equation 54 is more difficult to use than Equation 46 (equivalently Equation 53)
since it requires the value of the data point zt−N+1 to update the forecast when the new datum
zt+1 arrives. In the same way when the next point zt+2 arrives to update our forecast we will
require the value of zt−N+2. Thus all of the last N data points must be stored in memory
as the algorithm processes incoming samples. This would appear to be a disadvantage over
Equation 53 where only the previous value of the “state”, Sn, is needed to be saved.

Exercise 3.6 (simple exponential smoothing of a series with an outlier)

As in Exercise 3.5 we assume our data generation process zt is of the form zt = µ+ εt. If at
the single time t0 one sample zt0 is drawn from the level µ1 = µ+δ then Sn when the number



of samples is finite would look like for n > t0 the following (this is similar to Equation 49)

Sn = c
n
∑

k=1

ωn−kzk = c

(

t0−1
∑

k=1

ωn−kzk + ωn−t0zt0 +
n
∑

k=t0+1

ωn−kzk

)

,

for c = 1−ω
1−ωn . If we are told that for this single time period t0, the random sample we observe

zt0 , is given by zt0 = µ+ δ + εt0 we find that Sn introduced above becomes

Sn = c

(

t0−1
∑

k=1

ωn−kzk + ωn−t0(µ+ δ + εt0) +

n
∑

k=t0+1

ωn−kzk

)

.

Taking the expectation of this expression to compute E(Sn) we find

E(Sn) = c
n
∑

k=1

ωn−kµ+ cδωn−t0

= µc

(

1 − ωn

1 − ω

)

+ cδωn−t0

= µ+ cδωn−t0 .

As n → 0 since 0 ≤ ω ≤ 1, the values of ωn → 0 and so the disturbance cδωn−t0 in
E(Sn) produced by the sample zt0 also decreases to zero. One could imagine a case where
the measurement at zt0 was the result of an outlier and was not truly representative of a
large number of case. The above result shows that with simple exponential smoothing the
perturbation introduced, eventually becomes negligible in its effect on the value of E(Sn).

Exercise 3.7 (simple exponential smoothing of a series where the mean changes)

If the mean of our process zt shifts to µ1 = µ + δ from just µ for all times t ≥ t0 then we
write Sn as in Exercise 3.6 as

Sn = c

(

t0−1
∑

k=1

ωn−kzk +

n
∑

k=t0

ωn−kzk

)

.

Now the expectation of our measurements zk when k ≥ t0 is given by E(zk) = µ + δ while
when t < t0 this expectation is E(zk) = µ so the above when we take the expectation



becomes

E(Sn) = c

(

t0−1
∑

k=1

ωn−kE(zk) +
n
∑

k=t0

ωn−kE(zk)

)

= c

(

t0−1
∑

k=1

ωn−kµ+

n
∑

k=t0

ωn−k(µ+ δ)

)

= c

(

µ
n
∑

k=1

ωn−k + δ
n
∑

k=t0

ωn−k

)

= µc

(

1 − ωn

1 − ω

)

+ cδ

n−t0
∑

k=0

ωk

= µ+ δ

(

1 − ωn−t0+1

1 − ωn

)

,

when n ≥ t0. Note that as n → ∞ the value of E(Sn) approaches µ + δ = µ1 the new
mean. This gives an indication that if the underlying process changes, simple exponential
smoothing will be able to track these changes.

Exercise 3.8 (the explicit representation of double exponential smoothing)

For double exponential smoothing the l step ahead predictors are given in terms of the first
and second order smooths S

[1]
n and S

[2]
n and the smoothing constant α by

ẑn(l) =

(

2 +
α

1 − α
l

)

S [1]
n −

(

1 +
α

1 − α
l

)

S [2]
n , (55)

where we know the expressions for S
[1]
n and S

[2]
n in terms of the series zn from Equations 29

and 32. When we put these two expressions in we find ẑn(l) becomes

ẑn(l) = α

(

2 +
α

1 − α
l

) n−1
∑

j=0

ωjzn−j − α2

(

1 +
α

1 − α
l

) n−1
∑

j=0

(j + 1)ωjzn−j

= α
n
∑

j=1

(

2 − αj +

(

α

1 − α

)

(1 − αj)l

)

ωj−1zn+1−j .

Thus in terms of the coefficients zn+1−j we have π
(l)
j given by

π
(l)
j = α

(

2 − αj +

(

α

1 − α

)

(1 − αj)l

)

ωj−1 for j ≥ 1 .

When α = 0.1 we have ω = 0.9 and for l = 1 and l = 2 a plot of these coefficients is shown
in Figure 6. This problem is worked in the MATLAB script prob 3 8.m.
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Figure 6: Plots of πj(l) for l = 1 and l = 2 as specified in Exercise 3.8.

Exercise 3.9 (Holt’s method vs. double exponential smoothing)

Part (a): Holt’s method iterates between performing a mean value update (updating the pa-
rameter β0) and a slope value update (updating the parameter β1) where different smoothing
constants ωi can be used for each update if desired. Specifically, we begin Holt’s iterations
by taking

µ̂0 = 30 and β̂0 = 2 ,

and as each measurement z1, z2, · · · is observed we update these variables using the following

µ̂n+1 = (1 − ω1)zn+1 + ω1(µ̂n + β̂n) (56)

β̂n+1 = (1 − ω2)(µ̂n+1 − µ̂n) + ω2β̂n , (57)

for n = 0, 1, 2, · · · and for two discount factors 0 < ωi < 1, for i = 1, 2. The prediction of
the next measurement to be received from the point n + 1 onward is then given by

ẑn+1(l) = µ̂n+1 + β̂n+1l . (58)

When we do this we obtain forecasts given by

33.120 35.040

34.574 36.451

36.765 38.671

Here ẑn+1(1) is the first column and ẑn+1(2) is the second column.

Part (b): For double exponential smoothing we need a way to calculate the initial smooth

values S
[1]
n and S

[2]
n given the global fit from β0 and β1. Such a method is given by Equa-

tions 39 and 40. Once we have these variables translated we can use the MATLAB function
double exp smoothing.m with the initial smoothing S

[1]
0 and S

[2]
0 specified to evaluate the

required smooth. When we do this we find



32.0000 35.1600

33.2000 36.6580

34.7200 38.8648

for the predicted one and two step look aheads. Note to calculate ẑn+1(l) when l = 2 we had

to use Equation 55 and the computed smooths S
[1]
n and S

[2]
n . Both parts of this problem are

worked in the MATLAB script prob 3 9.m.

Exercise 3.10 (the variance of double exponential smoothing)

For this exercise it is helpful to note that if we know the true model is given by a functional
form like yt = x′tβ+ εt, the deterministic vector xt, and the value of β then V (yt) = V (εt) =
σ2. If, however, we have to estimate β from data, then this estimation procedure introduces
additional uncertainty in the variance of our prediction ŷt = x′tβ̂ such that V (ŷt) 6= V (ε). In
terms of the a one-step-ahead error

et(1) = zt+1 − ŷt = zt+1 − x′tβ̂ = x′tβ + εt+1 − x′tβ̂ = x′t(β − β̂) + εt+1 .

So that the variance of et(1) is given by

V (et(1)) = V (εt+1) + x′tV (β̂)xt > V (εt+1) ,

which is an intuitive argument why after some algebra the book derived the result that

V (en(l)) = σ2c2l . (59)

where c2l > 1.

Now for double exponential smoothing, specifically, we recognized this as as the same as a
locally constant linear trend model, so if we use the results in Equation 59 or the book’s
equation 3.62 for double exponential smoothing we have a value of c2l given by

c2l = 1 +
1 − ω

(1 + ω)3
((1 + 4ω + 5ω2) + 2l(1 − ω)(1 + 3ω) + 2l2(1 − ω2)) . (60)

To use Equation 59 requires an estimate of σ2 the variance of the error terms εt. Given an
estimate of the mean absolute deviance ∆̂e defined as

∆̂e =
1

n

n
∑

t=1

|et−1(1)| =
1

n

n
∑

t=1

|zt − ẑt−1(1)| , (61)

we can estimate σ2. In Montgomery and Johnson (1976) specifically it is shown that σ̂e =
1.25|∆̂e|, from which we can estimate σ2 as

σ̂2 ≈ σ̂2
e

c21
.



Using this, the 100(1 − λ)% prediction interval for ẑn(l) is given by

ẑn(l) ± uλ/2σ̂cl = ẑn(l) ± uλ/2

(

σ̂e

c1

)

cl

= ẑn(l) ± 1.25uλ/2|∆̂e|
(

cl
c1

)

,

where uλ/2 is the 100(1 − λ)% percentage point for the standard normal distribution. In
MATLAB uλ/2 this value can be calculated by using

norminv( 1 - 0.5 * lambda, 0, 1 )

if the variable lambda holds the percentage desired i.e. lambda = 0.05 for a 95% confidence
interval.

The prediction interval for the sum of the next four observations is given from equation 3.68
in the book with K = 4 or

4
∑

l=1

ẑn(l) ± uλ/2
σ̂e

c1

[

4 +

(

4
∑

l=1

f ′(l)

)

F−1F∗F
−1

(

4
∑

l=1

f(l)

)]1/2

.

For double exponential smoothing f(l) =

[

1
l

]

, so
∑4

l=1 f(l) =

[

4
1 + 2 + 3 + 4

]

=

[

4
10

]

,

and F−1F∗F
−1 is given by the expression above equation 3.62 in the book.

The average of the next K observations will have a variance given by

V

(

1

K

K
∑

l=1

zn+l −
1

K

k
∑

l=1

ẑn(l)

)

=
1

K2
V

(

K
∑

l=1

zn+l −
k
∑

l=1

ẑn(l)

)

=
σ2

K2

[

K +

(

K
∑

l=1

f ′(l)

)

F−1F∗F
−1

(

K
∑

l=1

f(l)

)]

,

using the result from the book. Note the factor of 1/K2 outside this result. The remaining
steps for this problem are the same in that we are attempting to estimate σ2 from say

σ̂2 ≈ σ̂2
e

c21
=

1.252|∆̂e|2
c21

.

When we take a smoothing factor of α = 0.1 our relaxation coefficient is ω = 1 − α = 0.9,
so for the values of l = 1, 2, 3, 4 the value of cl can be calculated above. These values are
calculated in the MATLAB script prob 3 10.m.



Exercise 3.11 (some simple geometric sums)

For this problem we desire to compute
∑

j≥0 j
kωj for k = 1, 2, 3, 4. Following the hint given

we find that when k = 1 the desired sum is given by

∑

j≥0

jωj = ω
∂

∂ω

∑

j≥0

ωj = ω
∂

∂ω

(

1

1 − ω

)

=
ω

(1 − ω)2
. (62)

For k = 2 using the previous result we find

∑

j≥0

j2ωj = ω
∂

∂ω

∑

j≥0

jωj = ω
∂

∂ω

(

ω

(1 − ω)2

)

=
ω(1 + ω)

(1 − ω)3
. (63)

For k = 3 using the previous result we find

∑

j≥0

j3ωj = ω
∂

∂ω

∑

j≥0

j2ωj = ω
∂

∂ω

(

ω(1 + ω)

(1 − ω)3

)

=
ω(1 + 4ω + ω2)

(1 − ω)4
. (64)

Finally, for k = 4 we have

∑

j≥0

j4ωj = ω
∂

∂ω

∑

j≥0

j3ωj = ω
∂

∂ω

(

ω(2 + 3ω + ω2)

(1 − ω)4

)

=
ω(1 + 11ω + 11ω2 + ω3)

(1 − ω)5
. (65)

Exercise 3.12 (the general expression for the k-th order smooth)

We desire to show that for general k the k-th order smooth statistics can be written as

S [k]
n =

(1 − ω)k

(k − 1)!

n−1
∑

j=0

[

k−1
∏

i=1

(j + i)

]

ωjzn−j (66)

We will prove this by mathematical induction. To do so we begin by showing it is true for
a few initial cases. When k = 1 this expression gives

S [1]
n = (1 − ω)

n−1
∑

j=0

ωjzn−j ,

and when k = 2 this expression gives

S [2]
n = (1 − ω)

n−1
∑

j=0

(j + 1)ωjzn−j .

Both of which we have shown to be true based on Equations 29 and 32 earlier. Thus this
relationship holds true when k = 1 and k = 2, if we assume that it holds true for all k ≤ K,
we can attempt to apply a inductive argument to prove the above expression is valid for all
k. From a similar derivation given on Page 34 we will express S

[k+1]
n in terms of S

[k]
n and



then sum all terms with the same value of zn−j . From the recursive relationship of the k+ 1
smooth we have

S [k+1]
n = (1 − ω)S [k]

n + ωS
[k+1]
n−1

= (1 − ω)S [k]
n + ω((1 − ω)S

[k]
n−1 + ωS

[k+1]
n−2 )

= (1 − ω)S [k]
n + ω(1 − ω)S

[k]
n−1 + ω2S

[k+1]
n−2

= (1 − ω)S [k]
n + ω(1 − ω)S

[k]
n−1 + ω2(1 − ω)S

[k]
n−2 + ω3S

[k+1]
n−3 .

The pattern above repeats and we have

S [k+1]
n = (1 − ω)S [k]

n + ω(1 − ω)S
[k]
n−1 + ω2(1 − ω)S

[k]
n−2 + · · ·

+ ωn−1(1 − ω)S
[k]
1 + ωn(1 − ω)S

[k+1]
0

= (1 − ω)
n
∑

l=0

ωlS
[k]
n−l + ωnS

[k+1]
0 .

Using the induction hypothesis on all of the terms S
[k]
n−l we have

S [k+1]
n = (1 − ω)

n
∑

l=0

ωl (1 − ω)k

(k − 1)!

n−l−1
∑

j=0

[

k−1
∏

i=1

(j + i)

]

ωjzn−l−j + ωnS
[k+1]
0

=
(1 − ω)k+1

(k − 1)!

n
∑

l=0

n−l−1
∑

j=0

[

k−1
∏

i=1

(j + i)

]

ωl+jzn−l−j + ωnS
[k+1]
0 .

Lets now change the order of the summation in the above expression. In terms of the index
variables l and j we want to sum them “diagonally” across the l and j plane. That is we
want the sum above to be in the following order

(l, j) ∼ (0, 0)

+ (1, 0) , (0, 1)

+ (2, 0) , (1, 1) , (0, 2)

+ (3, 0) , (2, 1) , (1, 2) , (0, 3)

+ · · ·

Thus to sum in this direction we will make the following change of variables of the indices
in the double sum above. Rather than perform an outer sum over l with an inner sum over
j, we introduce two new index variables (p, q) defined as

p = l + j and q = j

so that
l = p− q and j = q .

When we make this substitution we find the sum above becomes

n
∑

l=0

n−l−1
∑

j=0

[

k−1
∏

i=1

(j + i)

]

ωl+jzn−l−j =

n−1
∑

p=0

p
∑

q=0

[

k−1
∏

i=1

(q + i)

]

ωpzn−p .



To further evaluate this recall the definition of the factorial function [1] for r = 1, 2, 3, · · · as

t(r) = t(t− 1)(t− 2) · · · (t− r + 1) , (67)

which has the property that sums of factorial functions are simple to compute

∑

t

t(r) =
t(r+1)

r + 1
. (68)

With this background the inner sum above can be expressed in terms of the factorial function
in that

k−1
∏

i=1

(q + i) = (q + k − 1)(q + k − 2) · · · (q + 3)(q + 2)(q + 1)

= (q + k − 1)(k−1) .

Thus

p
∑

q=0

[

k−1
∏

i=1

(q + i)

]

=

p
∑

q=0

(q + k − 1)(k−1) =
1

k
(q + k − 1)(k)

∣

∣

p+1

q=0

=
1

k
((p+ k)(k) − (k − 1)(k))

=
1

k
(p+ k)(k) ,

since the second term vanishes. Combining these expressions we have finally come to

S [k+1]
n =

(1 − ω)k+1

k!

n−1
∑

p=0

(p+ k)(k)ωpzn−p + ωnS
[k+1]
0

=
(1 − ω)k+1

k!

n−1
∑

p=0

[

k
∏

i=1

(p+ i)

]

ωpzn−p + ωnS
[k+1]
0 ,

which as n→ ∞ is the desired expression.

Exercise 3.13 (comments about exponential smoothing)

Part (a): In simple exponential smoothing the forecasts ẑn(l) are given by

ẑn(l) = c
n−1
∑

t=0

ωtzn−t = c(zn + ωzn−1 + · · · + ωn−1z1) , (69)

where c = 1−ω
1−ωn which are constant for all values of l.

Part (b): In double exponential smoothing the prediction l-step ahead are given by

ẑn(l) = f ′(l)β̂n ,



with f(l) =

[

1
l

]

. This equation reduces to Equation 55 which expresses ẑn(l) in terms of

the first and second order smooths S
[1]
n and S

[2]
n . To see if the value of ẑn(3) is on a straight

line containing the points (n + 1, ẑn(1)) and (n + 2, ẑn(2)) we will explicitly construct the
line containing these two points and then see if the point (n + 3, ẑn(3)) is on it. The line
(t, y) connecting the two points (n+ 1, ẑn(1)) and (n+ 2, ẑn(2)) is given by

y − ẑn(1) =

(

ẑn(2) − ẑn(1)

n+ 2 − (n+ 1)

)

(t− (n + 1))

= (ẑn(2) − ẑn(1))(t− (n+ 1)) .

Now we can check if the point (n + 3, ẑn(3)) is on it by evaluating both sides of the above
expression with the help of Equation 55 and seeing if they are equal. When t = n + 3 the
right-hand-side becomes

2(ẑn(2) − ẑn(1)) = 2

(

α

1 − α

)

S [1]
n − 2

(

α

1 − α

)

S [2]
n ,

while the left-hand-side of the above is given by

ẑn(3) − ẑn(1) = 2

(

α

1 − α

)

S [1]
n − 2

(

α

1 − α

)

S [2]
n .

Since these two expressions are equal the point (n + 3, ẑn(3)) does indeed lie on a straight
line between the points (n+ 1, ẑn(1)), and (n+ 2, ẑn(2)).

Part (c): Since simple exponential smoothing is equivalent to the locally constant model
we can use the results from the book. Recall that the 100(1 − λ)% prediction interval for
the locally constant model zn+j = β + εn+j is given by

Sn ± uλ/2σ

√

2α

1 − ω2
, (70)

which is the same for all l. This is to be expected since if we assume that the series is a
constant our prediction interval around this constant should not change.

Exercise 3.14 (forecasting sales of computer software)

This problem is implemented as a series of function calls in the MATLAB script prob 3 14.m.
For this problem we implemented MATLAB functions to perform single, double, and triple
exponential smoothing in the files: simple exp smoothing.m, double exp smoothing.m,
and triple exp smoothing.m respectively. These routines perform the requested forecasting
procedures for a given input time series zt and relaxation coefficient ω.

In addition, it is often desired to compute the optimal relaxation coefficient ω i.e. the
one that gives the smallest mean square error MSE when evaluated on a provided data
set. Given a grid of ω values the MATLAB functions simple exp smoothing optimum.m,
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Figure 7: The sales of computer software example. Left: The raw data (in green), and
the optimal single exponential smoothing (in blue), double exponential smoothing (in red)
and triple exponential smoothing (in black). Center: Plots of the mean square error as
a function of smoothing coefficient ω. Right: Plots of the sample autocorrelations as a
function of the lag k.

double exp smoothing optimum.m, and triple exp smoothing optimum.m will apply their
respective forecasting methods and return the value of ω that yields the smallest MSE. If a
grid of value for ω is not specified, one is proposed, and results are returned relative to this
grid.

Part (a): The original data set is plotted in Figure 7 (left) in green.

Part (b): As discussed in the book, since there are very few real world data sets that are
best predicted with triple exponential smoothing we expect the data set to be characterized
best by either simple exponential smoothing in which we have a slowly changing mean level
or double exponential smoothing where we have a slowly changing mean and slope. In order
to be complete, however, we will consider the use of triple exponential smoothing also.

As a summary, we present the steps involved in the implementation of simple, double, and
triple exponential smoothing (assuming we are given an value for discount factor ω) here.

For Simple Exponential Smoothing we

• Estimate an initial value for the first order smooth S0 ≡ S
[1]
0 (see below).

• Use the updating equation

Sn = (1 − ω)zn + ωSn−1

to calculate the modified values of Sn as each new data point zn is observed.

• Then the forecasts for l-step-ahead value ẑn(l) given by

ẑn(l) = Sn . (71)



For Double Exponential Smoothing we

• Estimate initial values for the smoothed statistics S
[1]
0 and S

[2]
0 (see below).

• Use the updating equations

S [1]
n = (1 − ω)zn + ωS

[1]
n−1

S [2]
n = (1 − ω)S [1]

n + ωS
[2]
n−1

as each new data point zn arrives.

• Then the forecasts for l-step-ahead value ẑn(l) is by

ẑn(l) =

(

2 +
1 − ω

ω
l

)

S [1]
n −

(

2 +
1 + ω

ω
l

)

S [2]
n (72)

For Triple Exponential Smoothing we have many of the same steps as above. We

• Estimate initial values for the smoothed statistics S
[1]
0 , S

[2]
0 , and S

[3]
0 (see below)

• Use the updating equations

S [1]
n = (1 − ω)zn + ωS

[1]
n−1

S [2]
n = (1 − ω)S [1]

n + ωS
[2]
n−1

S [3]
n = (1 − ω)S [2]

n + ωS
[3]
n−1 .

• Then the forecasts for l-step-ahead value ẑn(l) is given by

ẑn(l) =

(

2 +
1 − ω

ω
l

)

S [1]
n −

(

2 +
1 + ω

ω
l

)

S [2]
n (73)

As an example of how to estimate the values of S
[k]
0 for the various cases above, consider

the double exponential smoothing. Methods to estimate the initial smoothing values like
S

[1]
0 and S

[2]
0 involve estimating their equivalent local linear regression coefficients β̂0,0 and

β̂1,0 and then relating these values back to S
[1]
0 and S

[2]
0 . To estimate β̂0,0 and β̂1,0 we fit the

constant linear model zt = β0 + β1t+ εt to some subset of the observations say the first half
or first third or even the entire data set. Once the values of β̂0,0 and β̂1,0 are estimated from

them we derive estimates of S
[1]
0 and S

[1]
0 as

S
[1]
0 = β̂0,0 −

(

ω

1 − ω

)

β̂1,0

S
[2]
0 = β̂0,0 −

(

2ω

1 − ω

)

β̂1,0 .

Methods used to estimate S
[k]
0 for the other smoothing methods are similar.



When we implement these three smoothing methods in MATLAB and run them on the
provided data set we obtain Figure 7 (left) which compares the actual data points with the
three forecast methods. To determine the specific value for the relaxation parameter ω used
for each smoothing method we selected a grid of values for ω, generated the simple, double,
and exponential time series smooths for each of them and then selected the value of ω that
gave the least mean square error (MSE) over the in-sample data. Plots of the mean square
error as a function of ω that result are presented in Figure 7 (middle). The values of ω
selected as optimal for the three smooths were found to be

0.53 , 0.99 , 0.99 .

The value of ω ≈ 1 means that the double and triple exponential smoothing methods are
concluding that the data appears best fit by a global linear (quadratic) function.

We next introduce the data points with the indices 61 − 72. In Figure 7 (left) this data
and the one-step-ahead value ẑn(1) are also plotted. From this plot the predictions made
by simple exponential smoothing appear best. If we compute the one-step-ahead prediction
errors for the three models we find

98.4267 90.8914 99.0962

40.8526 73.2035 80.1411

14.9368 60.8603 66.7064

25.0207 72.7566 77.6324

-70.5646 -16.5911 -12.8080

92.1087 109.8409 113.4230

41.4600 95.7459 97.8521

-74.7371 -7.0782 -6.3045

-39.1319 -9.8554 -9.3844

61.9872 69.4237 69.6111

131.2855 162.1182 161.2206

74.4969 158.9518 156.0416

which have MSE expressions given by

33.012 , 71.689 , 74.436 .

These show that indeed simple exponential smoothing produces the smallest value of the
MSE. Finally, we present the sample autocorrelation functions, rk, for the in-sample data
an each of the methods in Figure 7 (right). In that plot it appears that for each method
the sample value of rk are well below their two sigma standard errors (drawn in red) indi-
cating that they can be considered insignificant and we can rule out attempting to add an
autoregressive error term to the model.
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Figure 8: Duplication of Example 4.1: Quebec monthly car sales. Left: The raw data
(in blue) and a global indicator variable model (in red and black). Right: A plot of the
autocorrelation of the error residuals (with 2σ error bars).

Chapter 4: Regression and Exponential Smoothing

Methods To Forecast Seasonal Time Series

Notes On The Text

Notes on Example 4.1: Quebec Monthly New Car Sales

In the MATLAB script example 4 1 we attempt to duplicate the the results of this example
in the book. When that script is run it loads the car data using the MATLAB function
load monthly car sales. We then generate a twelve indicator global linear model for this
data of the form

zt = β0 + β1t+

11
∑

i=1

δiINDti + εt .

When we run the above code we obtain values for the unknown coefficients given in Table 1.

These values agree with a similar table presented in the text. A plot of the original data and
the fit obtained with the global linear model is shown in Figure 8 (left). The autocorrelations
of the error residuals is plotted in Figure 8 (right).

Notes on Example 4.2: New Plant and Equipment Expenditures

In the MATLAB script example 4 2 we attempt to duplicate the the results of this example
in the book. When that script is run it loads the quarterly new plant equipment expenditure
data set using the MATLAB function load quarterly new plant equipment. We then



Coefficient Estimate Standard t Ratio
Error

β0 7.4018 0.5852 12.6481
β1 0.0881 0.0053 16.4795
δ1 -0.6051 0.7223 -0.8377
δ2 -0.0502 0.7219 -0.0695
δ3 5.3391 0.7216 7.3994
δ4 7.4884 0.7212 10.3830
δ5 8.6903 0.7209 12.0544
δ6 6.3089 0.7207 8.7542
δ7 1.4103 0.7204 1.9575
δ8 -0.8702 0.7203 -1.2081
δ9 -2.2845 0.7201 -3.1724
δ10 1.7893 0.7200 2.4850
δ11 2.3608 0.7200 3.2791

Table 1: Duplication of Example 4.1: Seasonal regression of Quebec monthly car sales using
global linear model with seasonal indicator functions.
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Figure 9: Duplication of Example 4.2: New plant and equipment expenditures modeled
with a global linear trend with seasonal indicator functions. Left: The raw data (in blue)
and a global indicator variable model (in red and black). Middle: The raw data and a
global indicator variable model. Right: A plot of the sample autocorrelation of the error
residuals (with error bars). Note that several values of rk are significant indicating that
further modeling improvements are possible, possibly with the inclusion of an AR model of
the residuals.



Coefficient Estimate Standard t Ratio
Error

β0 2.5777 0.0199 129.3897
β1 0.0191 0.0006 33.4547
δ1 -0.2138 0.0205 -10.4255
δ2 -0.0792 0.0205 -3.8675
δ3 -0.1026 0.0204 -5.0183

Table 2: Duplication of Example 4.2: A global indicator function model for the new plant
and equipment expenditures data set. These numbers are slightly different than the ones
presented in the text in that they were produced using the entire data set rather than a
subset of size n = 44.
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Figure 10: Duplication of Example 4.3: Quebec monthly car sales with a global linear
trigonometric model. Left: The raw data (in blue) and a global indicator variable model
(in red and black). Right: A plot of the autocorrelation of the error residuals (with error
bars). Note the very large value of the k = 12 element of rk.

generate a four (s = 4) indicator global linear model for the log of this data of the form

log(zt) = β0 + β1t+

3
∑

i=1

δiINDti + εt .

When we run the above code we obtain values for the unknown coefficients given in the
Table 2

Notes on Example 4.3: Another Look at Car Sales

In the MATLAB script example 4 3 we attempt to duplicate the the results of this example
in the book. When that script is run it loads the car data using the MATLAB function
load monthly car sales. We then generate a two frequency global linear model for this



Coefficient Estimate Standard t Ratio
Error

β0 9.8750 0.3203 30.8338
β1 0.0879 0.0057 15.3086
β11 2.5704 0.2247 11.4408
β21 -2.6624 0.2237 -11.9005
β12 -2.9511 0.2239 -13.1826
β22 0.8341 0.2237 3.7285

Table 3: Duplication of Example 4.3: A global linear model with trigonometric seasonal
components for the Quebec monthly car sales data set. These results match quite well the
ones given in Table 4.4 in the book.

data set of the form

zt = β0 + β1t+

2
∑

i=1

(

β1i sin(
2πi

12
t) + β2i cos(

2πi

12
t)

)

+ εt .

When we run the above code we obtain values for the unknown coefficients given in the
Table 3. These values agree with a similar table presented in the text. A plot of the original
data and the fit obtained with the global linear model can be seen in Figure 10 (left). The
autocorrelations of the error residuals are plotted in Figure 10 (right). Note the relatively
large value at the k = 12 lag. This indicates that the seasonal model can further be improved
by adding terms that include higher order harmonics.

Notes on Section 4.3: Locally Constant Seasonal Models

In this section of these notes we attempt to duplicate several of the numerical studies pre-
sented in the section on locally constant seasonal models. We should note that when we
consider locally constant seasonal models we initialize our estimate of βn the local regression
coefficients for n = 0 by evaluating a polynomial fit over the entire range or some subset of
the data. Then the iterations used in updating the values of βn as various samples of our
time series zn are given by

β̂n+1 = L′β̂n + F−1f(0)(zn+1 − ẑn(1)) , (74)

where L is transition matrix specific to our fitting functions f(l) in that f(l) = Lf(l − 1)
and F is the steady state matrix F =

∑

j≥0 ω
jf(−j)f ′(−j). To begin, we let n = 0 in the

above for which zn+1 = z1 is our first observation and the expression ẑn(1) above becomes

ẑn(1) = ẑ0(1) = f ′(1)β0 ,

or our initial guess at the initial value of z1 based on the global fit that determined β0.
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Figure 11: Duplication of a locally constant seasonal model of the new plant and equipment
expenditure data set. Left: The raw data (in blue), a local model with an arbitrarily
chosen value of the relaxation parameter α = 0.2 (in red), and the fit produced from an
optimally chosen α = 1.2 (in green). The optimal fit is extended for n ≥ 44 to show
performance out of sample. Right: A plot of the sum of square one-step-ahead errors
SSE(α) =

∑

n(ẑn(1) − zn+1)
2 as a function of α, the relaxation parameter. The minimal

value of SSE occurs at α = 1.2.

Equipment Expenditure with Locally Constant Seasonal Indicators

In the MATLAB script section 4 3 1 we attempt to duplicate some of the numerical results
on the quarterly expenditures for new plant and equipment data set. For this example we
will use a locally constant linear model with seasonal indicators. When that script is run it
loads the quarterly new plant equipment expenditure data set using the MATLAB function
load quarterly new plant equipment. We then model the log of the original time series
as

zn+j = log(yn+j) = β0 + β1j +
3
∑

i=1

δiINDji + εn+j .

This model is fit in the MATLAB function locally constant indicator model using Equa-
tion 74 to update the values for β̂n as each sample zn is presented. Then the MATLAB
function locally constant indicator model optimum is used to search for an optimum
value of the relaxation coefficient ω. When we run the above code we obtain values for the
sum of square one-step-ahead errors given in the Table 4

These values agree quite well with table 4.6 presented in the text. A plot of the original data
and the fit obtained with the local linear model can be seen in Figure 11 (left) a vertical line
is drawn to represent the in-sample vs. out-sample domains. The plot of SSE(α) vs. α is
plotted in Figure 11 (right). This later plot agrees with the one presented in the text.



α SSE(α)
0.1000 0.1114
0.3000 0.0904
0.5000 0.0691
0.7000 0.0540
0.9000 0.0455
1.1000 0.0421
1.2000 0.0418
1.3000 0.0422
1.5000 0.0445
1.6000 0.0469

Table 4: A table of α vs. SSE(α) for the new plant and equipment expenditures example
of regression with local seasonal indicator functions. This table duplicates the results from
table 4.6 in the book.
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Figure 12: Duplication of a locally constant seasonal model using trigonometric functions
for monthly Quebec cars sales data set.
Left: The raw data (in blue), a local model with an arbitrarily chosen value of the relaxation
parameter α = 0.1 (in red), and the fit produced from an optimally chosen α = 0.03 (in
green). The optimal fit is extended for n ≥ 96 to show performance out of sample. Right:
A plot of the sum of square one-step-ahead errors SSE(α) =

∑

n(ẑn(1)−zn+1)
2 as a function

of α, the relaxation parameter. The minimal value of SSE occurs at α = 0.03.



Equipment Expenditure with Locally Constant Trigonometric Functions

In this subsection we duplicate the results from the book on locally constant seasonal methods
using trigonometric functions applied specifically to the the monthly Quebec car sales data
set. In the MATLAB script section 4 3 2 we begin by loading this data set using the func-
tion load monthly car sales. We then use the function locally constant trigonometric model

to construct local linear models with trigonometric seasonal indicators of the form

zn+j = β0 + β1j +

2
∑

i=1

(β1i sin(fij) + β2i cos(fij)) + εt .

with fi = 2πi
12

. We use the function locally constant trigonometric model optimum to
find the optimal value of α. Results of this experiment are presented in Figure 12. which
duplicate the results presented in the book quite nicely.

Exercise Solutions

Exercise 4.1 (specifying transition matrices L such that f(j) = Lf(j − 1))

We want to specify the matrix L such that

f(j) = Lf(j − 1) , (75)

for the given local fitting vectors f(j). Note that if we expand f(j − 1) and write it as a
linear combination of the elements of f(j) as

f(j − 1) = Mf(j) so f(j) = M−1f(j − 1) ,

then the matrix L we desire is given by M−1.

Part (a): Consider the expression f(j − 1) in this case. We find

f(j − 1) =





1
sin(π

2
(j − 1))

cos(π
2
(j − 1))





=





1
sin(π

2
j) cos(π

2
) − cos(π

2
j) sin(π

2
)

cos(π
2
j) cos(π

2
) − sin(π

2
j) sin(π

2
)



 =





1
− cos(π

2
j)

sin(π
2
j)





=





1 0 0
0 0 −1
0 1 0









1
sin(π

2
j)

cos(π
2
j)



 .

Since we have shown that f(j − 1) = Mf(j) for the matrix M defined implicitly above we
have that f(j) = M−1f(j − 1), thus computing this inverse we find

L =





1 0 0
0 0 1
0 −1 0



 .



Part (b): Consider the expression f(j − 1) in this case. Using some of the results from
Part (a) we find that

f(j − 1) =









1
j − 1

− cos(π
2
j)

sin(π
2
j))









=









1 0 0 0
−1 1 0 0
0 0 0 −1
0 0 1 0

















1
j

sin(π
2
(j − 1))

cos(π
2
(j − 1))









.

Taking the inverse of the matrix M (defined implicitly above) we find

L =









1 0 0 0
1 1 0 0
0 0 0 1
0 0 −1 0









.

Part (c): Consider f(j−1) in this case. Using the results from Part (a) and Part (b) above
we only need to evaluate the two new terms

j sin(
π

2
j) and j cos(

π

2
j) .

We find that

(j − 1) sin(
π

2
(j − 1)) = (j − 1)

(

− cos(
π

2
j)
)

= −j cos(
π

2
j) + cos(

π

2
j) ,

and
(j − 1) cos(

π

2
(j − 1)) = (j − 1)

(

sin(
π

2
j)
)

= j sin(
π

2
j) − sin(

π

2
j) ,

Thus f ′(j − 1) becomes

f ′(j − 1) =

















1
j − 1

− cos(π
2
j)

sin(π
2
j)

−j cos(π
2
j) + cos(π

2
j)

j sin(π
2
j) − sin(π

2
j)

















=

















1 0 0 0 0 0
−1 1 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 −1 0 1 0

































1
j

sin(π
2
j)

cos(π
2
j)

j sin(π
2
j)

j cos(π
2
j)

















.

Thus taking the inverse of the matrix M defined implicitly above we find

L =

















1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 1 0 1
0 0 −1 0 −1 0

















.



Part (d): Consider f(j − 1) in this case. Using the results from above we only need to
evaluate the terms

sin(
2π

12
j) , cos(

2π

12
j) , sin(

4π

12
j) , and cos(

4π

12
j) ,

evaluated at j − 1. We find that

sin(
2π

12
(j − 1)) = sin(

2π

12
j) cos(

2π

12
) − cos(

2π

12
j) sin(

2π

12
)

= sin(
2π

12
j) cos(

π

6
) − cos(

2π

12
j) sin(

π

6
)

=

√
3

2
sin(

2π

12
j) − 1

2
cos(

2π

12
j) ,

and

cos(
2π

12
(j − 1)) = cos(

2π

12
j) cos(

2π

12
) + sin(

2π

12
j) sin(

2π

12
)

=

√
3

2
cos(

2π

12
j) +

1

2
sin(

2π

12
j) ,

and

sin(
4π

12
(j − 1)) = sin(

4π

12
j) cos(

π

3
) − cos(

4π

12
j) sin(

π

3
)

=
1

2
sin(

4π

12
j) −

√
3

2
cos(

4π

12
j) ,

with finally

cos(
4π

12
(j − 1)) = cos(

4π

12
j) cos(

π

3
) + sin(

4π

12
j) sin(

π

3
)

=
1

2
cos(

4π

12
j) +

√
3

2
sin(

4π

12
j) .

Thus f(j − 1) becomes

f(j − 1) =



















1
j − 1√

3
2

sin(2π
12
j) − 1

2
cos(2π

12
j)√

3
2

cos(2π
12
j) + 1

2
sin(2π

12
j)

1
2
sin(4π

12
j) −

√
3

2
cos(4π

12
j)

1
2
cos(4π

12
j) +

√
3

2
sin(4π

12
j)



















=



















1 0 0 0 0 0
−1 1 0 0 0 0

0 0
√

3
2

−1
2

0 0

0 0 1
2

√
3

2
0 0

0 0 0 0 1
2

−
√

3
2

0 0 0 0
√

3
2

1
2



































1
j

sin(2π
12
j)

cos(2π
12
j)

sin(4π
12
j)

cos(4π
12
j)

















.

Taking the inverse of the matrix M defined implicitly above we find

L =



















1 0 0 0 0 0
1 1 0 0 0 0

0 0
√

3
2

1
2

0 0

0 0 −1
2

√
3

2
0 0

0 0 0 0 1
2

√
3

2

0 0 0 0 −
√

3
2

1
2



















.

Rather than computing the inverses of these matrices by hand one can use the MATLAB inv

function with the format specifier rat. See the MATLAB script prob 4 1 for an example of
this.



Exercise 4.2 (general exponential smoothing of a trigonometric model)

Part (a): The transition matrix for this specification of fitting functions f(j) is given in
Exercise 4.1. Explicitly we have

f(j − 1) =





1
sin(2π

12
(j − 1))

cos(π
2
(j − 1))



 =





1√
3

2
sin(2π

12
j) − 1

2
cos(2π

12
j)√

3
2

cos(2π
12
j) + 1

2
sin(2π

12
j)





=





1 0 0

0
√

3
2

−1
2

0 1
2

√
3

2









1
sin(2π

12
j)

cos(2π
12
j)



 .

Since we have shown that f(j − 1) = Mf(j) for the matrix M defined implicitly above,
taking its inverse on both sides we have that f(j) = M−1f(j − 1). Thus computing this
inverse we find the transition matrix L given by

L =





1 0 0

0
√

3
2

1
2

0 −1
2

√
3

2



 .

Part (b): The updating equations are derived in the section entitled: “Discounted Least
Squares and general Exponential Smoothing”, where one minimized over β as each sample
zn we observed the discounted least squares problem

n−1
∑

j=0

ωj[zn−j − f ′(−j)β]2 . (76)

This gave estimates ẑn(l) for the l-step-ahead given by

ẑn(l) = f ′(l)β̂n , (77)

where the local expression for β̂ is given by β̂n = F−1
n hn where

Fn =

n−1
∑

j=0

ωjf(−j)f ′(−j) (78)

hn =

n−1
∑

j=0

ωjf(−j)zn−j . (79)

Part (b): The results on variances of the l-step-ahead forecasts we show that

V (en(l)) = σ2 + f ′(l)V (β̂n)f(l) ,

with

V (β̂n) = σ2F−1
n

(

n−1
∑

j=0

ω2jf(−j)f ′(−j)
)

F−1
n .



In the case given here with this specific fitting functions f(j) we have the needed outer
product

f(−j)f ′(−j) =





1
− sin(2π

12
j)

cos(2π
12
j)





[

1 − sin(2π
12
j) cos(2π

12
j)
]

=





1 − sin(2π
12
j) cos(2π

12
j)

− sin(2π
12
j) sin(2π

12
j)2 − sin(2π

12
j) cos(2π

12
j)

cos(2π
12
j) − sin(2π

12
j) cos(2π

12
j) cos(2π

12
j)2



 .

If we multiply by ωj or ω2j depending on whether we are evaluating Fn or V (β̂) and take
the limit n → ∞ we can use the results in Table 4.5 of the book which gives explicit
representations of sums of trigonometric functions as above. Denoting this limit in n as F ,
i.e. F =

∑∞
j=0 ω

jf(−j)f ′(−j) we find the (1, 1) of F given by

F11 =

∞
∑

j=0

ωj =
1

1 − ω
.

The (1, 2) and (2, 1) components of F are given by

∞
∑

j=0

ωj sin(
2π

12
j) =

ω sin(2π
12

)

g1

.

The (1, 3) and (3, 1) components of F are given by

∞
∑

j=0

ωj cos(
2π

12
j) =

1 − ω cos(2π
12

)

g1
.

The (2, 2) component of F is given by

∞
∑

j=0

ωj sin(
2π

12
j)2 =

1

2

[

1 − ω

g2

− 1 − ω cos(4π
12

)

g3

]

.

The (2, 3) and (3, 2) components of F are given by

−
∞
∑

j=0

ωj sin(
2π

12
j) cos(

2π

12
j) = −1

2

(

ω sin(4π
12

)

g3

)

.

Finally the (3, 3) component of F is given by

∞
∑

j=0

ωj cos(
2π

12
j)2 =

1

2

[

1 − ω

g2

+
1 − ω cos(4π

12
)

g3

]

.

Where the expressions for g1, g2, and g3 are given by

g1 = 1 − 2ω cos(
2π

12
) + ω2

g2 = 1 − 2ω + ω2 = (1 − ω)2

g3 = 1 − 2ω cos(
4π

12
) + ω2 .



The steps needed to evaluate
∑∞

j=0 ω
2jf(−j)f ′(−j) are the same as to evaluate F and can

be obtained from the manipulations just performed by replacing ω with ω2. Once we have
expressions for F and

∑∞
j=0 ω

2jf(−j)f ′(−j) we invert the former and multiply everything

together to obtain V (β̂) from which we can easily compute V (en(l)).

Exercise 4.3 (general exponential smoothing of a seasonal linear trend)

The local regression model we wish to consider is given by

zn+j = β0 + β1j + δINDj + εn+j .

Part (a): In this case the rows of the design matrix look like

f ′(t) = (1, t, INDt) .

Then to find the transition matrix L such that f(j) = Lf(j − 1), note that

INDj =

{

1 if j is odd
0 if j is even

.

First assume that j is even. Then j − 1 is odd and we have

f(j) =





1
j
0



 and f(j − 1) =





1
j − 1

INDj−1



 =





1
j − 1

1



 ,

while if j is odd then we have

f(j) =





1
j
1



 and f(j − 1) =





1
j − 1

0



 .

Both of these cases can be satisfied with a matrix M defined such that f(j− 1) = Mf(j) as

M =





1 0 0
−1 1 0
1 0 −1



 ,

so that the desired matrix L is the inverse of this M and is given by

L =





1 0 0
1 1 0
1 0 −1



 .

Part (b): We begin with the initial value of our fitting functions f(0) seen to be equal to

f(0) =





1
0

IND0



 =





1
0
0



 .



Next using Equation 78 taking the limit as n→ ∞ to get F we need to evaluate

F =

∞
∑

j=0

ωjf(−j)f ′(−j) ,

for the specified fitting functions f(j). Since the outer product, f(−j)f ′(−j), is given by

f(−j)f ′(−j) =





1
−j

IND−j





[

1 −j IND−j

]

=





1 −j IND−j

−j j2 −jIND−j

IND−j −jIND−j IND2
−j



 .

If j is even this matrix becomes

f(−j)f ′(−j) =





1 −j 0
−j j2 0
0 0 0



 ,

while if j is odd then this matrix becomes

f(−j)f ′(−j) =





1 −j 1
−j j2 −j
1 −j 1



 .

When we multiply the matrix f ′(−j)f(−j) by ωj and sum as required to calculate F some
of the sums we will need to evaluate are given as

∞
∑

j=0

ωj =
1

1 − ω
,

∞
∑

j=0

jωj =
ω

(1 − ω)2
,

∞
∑

j=0

j2ωj =
ω(1 + ω)

(1 − ω)3
.

These expressions can be used to directly evaluate the elements F11, F12, F21, and F22 of F .
To evaluate the other elements of F namely F13, F23, F31, F32, and F33 we need to evaluate

F13 = F31 =

∞
∑

j=0;jodd

ωj =

∞
∑

k=0

ω2k+1 = ω

∞
∑

k=0

(ω2)k =
ω

1 − ω2

F23 = F32 =

∞
∑

j=0;jodd

−jωj = −
∞
∑

k=0

(2k + 1)ω2k+1

= −ω
[

2

∞
∑

k=0

kω2k +

∞
∑

k=0

ω2k

]

= −ω
[

2
ω2

(1 − ω2)2
+

1

1 − ω2

]

= −ω
[

1 + ω2

(1 − ω2)2

]

F33 =

∞
∑

j=0;jodd

ωj =
ω

1 − ω2
.



Then F as a matrix looks like

F =







1
1−ω

− ω
(1−ω)2

ω
1−ω2

− ω
(1−ω)2

ω(1+ω)
(1−ω)3

−ω(1+ω2)
(1−ω2)2

ω
1−ω2 −ω(1+ω2)

(1−ω2)2
ω

1−ω2






.

If we invert this matrix we find that F−1f(0) is given by

F−1f(0) =





1 − ω2

1
2
(−1 + ω)2(1 + ω)

1
2
(−1 + ω)(1 + ω)2



 .

So that in the limit of ω → 0 we find that

f∗ = lim
ω→0

F−1f(0) =





1
1
2

−1
2



 ,

as we were to show.

Part (c): Since from above we have shown that f∗ = (1, 1
2
,−1

2
)′ the update equation for β̂n

is given by

β̂n+1 = L′β̂n +





1
1
2

−1
2



 (zn+1 − ẑn(1))

= L′β̂n +





1
1
2

−1
2



 (zn+1 − f ′(1)β̂n)

=



L′ −





1
1
2

−1
2



 f ′(1)



 β̂n +





1
1
2

−1
2



 zn+1 .

Now f(1) is given by

f(1) =





1
1

IND1



 =





1
1
1



 ,

so the matrix in-front of β̂n is given by

L′ −





1
1
2

−1
2





[

1 1 1
]

=





1 1 1
0 1 0
0 0 −1



−





1 1 1
1
2

1
2

1
2

−1
2

−1
2

−1
2



 =





0 0 0
−1

2
1
2

−1
2

1
2

1
2

−1
2



 .

With this the update equations for β̂n+1 becomes





β̂0,n+1

β̂1,n+1

δ̂n+1



 =





0 0 0
−1

2
1
2

−1
2

1
2

1
2

−1
2









β̂0,n

β̂1,n

δ̂n



+





1
1
2

−1
2



 zn+1 .



The first equation gives β̂0,n+1 = zn+1 or that β̂0,n = zn and the problem simplifies since we

explicitly know β̂0,n. By considering only the last two equations we have

[

β̂1,n+1

δ̂n+1

]

=

[

1
2

−1
2

1
2

−1
2

] [

β̂1,n

δ̂n

]

+
1

2

[

−1
1

]

β̂0,n +
1

2

[

1
−1

]

zn+1

=
1

2

[

1 −1
1 −1

] [

β̂1,n

δ̂n

]

+
1

2

[

1
−1

]

(zn+1 − zn) .

To solve this later equation we recognized that it is a forced linear difference equation and
can be solved by methods presented in [1]. Solving it we find that β̂1,n and δ̂n are given by
the expressions presented in the MATHEMATICA file prob 4 3.nb. Using these expressions
we can then evaluate

ẑn(1) = f ′(1)β̂n = β̂0,n + β̂1,n + δ̂n

= zn + (zn−1 − zn−2) = zn + zn−1 + zn−2 for n > 2 ,

as expected. Note that in the analytic expressions for β̂1,n and δ̂n, the initial conditions are
not important when we consider values of n > 2. In the same way we can compute

ẑn(2) = f ′(2)β̂n = β̂0,n + 2β̂1,n

= zn + (−zn−2 + zn) = 2zn − zn−2 ,

as expected. Some of the algebra for this problem is worked in the MATHEMATICA file
prob 4 3.nb.

Exercise 4.4 (evaluating some simple geometric sums)

We will show one result from Table 4.5 since the other results can be computed in similar
ways. The sum we will evaluate is

∑∞
j=0 ω

j sin(fj). Using Euler’s fundamental relationship

of sin(fj) = 1
2i

(efji − e−fji), where i is the imaginary unit we have that

∞
∑

j=0

ωj sin(fj) =
1

2i

( ∞
∑

j=0

ωjefji −
∞
∑

j=0

ωje−fji

)

=
1

2i

( ∞
∑

j=0

(ωefi)j −
∞
∑

j=0

(ωe−fi)j

)

=
1

2i

(

1

1 − ωefi
− 1

1 − ωe−fi

)

=
1

2i

(

ω(efi − e−fi)

(1 − ωefi)(1 − ωe−fi)

)

=
ω sin(f)

1 − 2ω cos(f) + ω2
.
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Figure 13: The sales of U.S. passenger cars fit with global seasonal models. The indicator
function model is plotted in red, while the trigonometric model is plotted in cyan. Left:
The raw data and various model predictions. Right: The sample autocorrelation of the
one-step-ahead error residuals rk under both models.

Exercise 4.5 (U.S. retail sales of passenger cars)

For this problem we load the suggested data into MATLAB using the script
load monthly us retail sales. When we do this and then plot the given time series we
observe the plot shown in Figure 13 (left). We will consider only the first n = 168 of these
values and fit several different seasonal regression models.

Part (a): Since we are given monthly data we will take the number of seasons s = 12 (one
for each month). For a globally constant linear trend model with seasonal indicators we will
therefore take a model of the following form

zt = β0 + β1t+

11
∑

i=1

δiINDti + εt . (80)

A model of this form can be fit using ordinary least squares with the MATLAB routine
wwx regression, once we have specified the appropriate design matrix X. For example the
first 11 rows of an appropriate design matrix X will be given by

X =









































1 1 1 0 0 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0 0 0 0
1 3 0 0 1 0 0 0 0 0 0 0 0
1 4 0 0 0 1 0 0 0 0 0 0 0
1 5 0 0 0 0 1 0 0 0 0 0 0
1 6 0 0 0 0 0 1 0 0 0 0 0
1 7 0 0 0 0 0 0 1 0 0 0 0
1 8 0 0 0 0 0 0 0 1 0 0 0
1 9 0 0 0 0 0 0 0 0 1 0 0
1 10 0 0 0 0 0 0 0 0 0 1 0
1 11 0 0 0 0 0 0 0 0 0 0 1
1 12 0 0 0 0 0 0 0 0 0 0 0









































,



Coefficient Estimate Standard t Ratio
Error

β0 449.6181 27.3980 16.4106
β1 2.0201 0.1440 14.0246
δ1 -84.7787 34.1716 -2.4810
δ2 -102.7274 34.1652 -3.0068
δ3 21.2525 34.1595 0.6222
δ4 57.0181 34.1543 1.6694
δ5 55.3551 34.1497 1.6210
δ6 47.0493 34.1458 1.3779
δ7 9.6720 34.1425 0.2833
δ8 -43.4195 34.1397 -1.2718
δ9 -128.7968 34.1376 -3.7729
δ10 0.1831 34.1361 0.0054
δ11 -45.9085 34.1352 -1.3449

Table 5: Estimate of the coefficients in the global linear model with seasonal indicator
functions for the U.S. sales of passenger cars data set.

and this pattern repeats for all the remaining rows of X. A matrix like this can be generated
using the MATLAB function gen global linear seasonal indicator X by providing it
appropriate arguments. In this parametrization t = 1 corresponds to the month of January
and the value of δi in the above model represents the seasonal effect of the i-th seasonal period
relative to the s-th period (December). When we run the first part of the code in prob 4 5

we obtain a table of coefficient estimate of results like that shown in Table 5. The resulting
model predictions from these coefficients is overlayed onto the data points themselves and
can be seen in Figure 13 (left) in red.

We next plot the sample autocorrelation function (SACF) for the residual for this model
we obtain the plot shown in Figure 13 (right) in red. One thing to note is that several of
the autocorrelation are significant (greater than the horizontal red line). The significant
non-zero values for the SACF indicate that this model could be improved by introducing an
autoregressive model for the error residuals.

Part (b): For this part of the problem we apply a global constant linear trend model with
sinusoidal harmonics. As discussed in the book we will have at most s

2
= 12

2
= 6 harmonics

for a monthly trend model. Thus the model we propose to fit is given by

zt = β0 + β1t+
6
∑

i=1

(β1i sin(fit) + β2i cos(fit)) ,

with fi = 2π
s
i = 2π

12
i = π

6
i. In this case the design matrix is created by calling the MAT-

LAB function gen global linear seasonal trigonometric X and the resulting coefficient
estimates obtained by calling wwx regression. This is implemented in the second part of
the problem prob 4 5. When that is run it produces the cyan plot in Figure 13 (left) and
corresponding sample autocorrelations in cyan in Figure 13 (right). Again notice the strong
autoregressive (AR) presence in the residuals of the one-step-ahead errors.



50 100 150 200 250

400

500

600

700

800

900

1000

1100

months since Jan 1955

m
on

th
ly

 s
al

es
 o

f U
.S

. c
ar

s

 

 
raw data
Opt. Local Indicator
Opt. Local Trig

0 5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

0.6

0.8

lag (k)

sa
m

pl
e 

ba
se

d 
au

to
co

rr
el

at
io

n 
r k

 

 
Local indicator
Local Trig

Figure 14: The sales of U.S. passenger cars fit with local seasonal models. The relaxation
coefficient, ω, used in each case was chosen to minimize the mean square error of the in-
sample data. The indicator function model is plotted in red, while the trigonometric model
is plotted in cyan. Left: The raw data and various model predictions. Right: The sample
autocorrelation of the one-step-ahead error residuals rk under both models.

Part (c): In this part of the problem we implement a general exponential smoothing for
the locally constant indicator version found in Part (a). This method is implemented in the
the MATLAB function locally constant indicator model which takes in an value for ω
and produces the local seasonal smooth. The optimal value of ω can be found by using
the MATLAB function locally constant indicator model optimal. Results from using
these routines can be found in Figure 14 (left) and (right) in red.

Part (d): In this part of the problem we implement a general exponential smoothing for the
locally constant trigonometric version of Part (b) above. This method is implemented in the
the MATLAB function locally constant trigonometric model and the optimal value for
ω is found with the MATLAB function call locally constant trigonometric model optimum.
Results from using these routines can be found in Figure 14 (left) and (right) in cyan.

If we compare the mean square error for each of the four methods we obtain the following
numbers:

1.9101 1.90205 0.7615 1.0797

from which it looks like the local indicator function performs best (have the smallest value)
followed by the local trigonometric model followed by the global methods. This general trend
is indicated visually in the performance plots above in that the two local methods seem to
fit the data better than the two global methods.

This entire exercise is implemented in the MATLAB script prob 4 5.
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Figure 15: Data on housing starts on single family structures (in thousands) between January
1966 and December 1975 fit with global seasonal models. The indicator function model is
plotted in red, while the trigonometric model is plotted in cyan. Left: The raw data and
various model predictions. Right: The sample autocorrelation of the one-step-ahead error
residuals rk under both models.

Exercise 4.6 (predicting housing starts)

For this exercise we repeat exercise 4.5 but on the housing starts data set (series 6 in the
data appendix). As in that exercise we fit both local and global seasonal models to the given
data. The global models are presented in Figure 15 while the local models are presented in
Figure 16. There we see that the local models do a much better job at fitting the data both
in and out of sample. This can be verified when we consider the mean square error which
for each of the four methods is given by

837.1728 830.7269 99.4340 93.3587

showing that indeed the local methods are superior to the global methods. It is interesting
to note that the global indicator method and the global trigonometric method both produce
model fits that are very close in appearance.

Exercise 4.7 (the orthogonality of global trigonometric regressions)

Part (a): The least squares estimate for the coefficients β will be given by computing
(X ′X)−1X ′z, where z is a vector of responses zt where t = 1, 2, · · · , N and X is the design
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Figure 16: Data on housing starts on single family structures (in thousands) between January
1966 and December 1975 fit with local seasonal models. The relaxation coefficient, ω, used in
each case was chosen to minimize the mean square error of the in-sample data. The indicator
function model is plotted in red, while the trigonometric model is plotted in cyan. Left: The
raw data and various model predictions. Right: The sample autocorrelation of the one-
step-ahead error residuals rk under both models. Note the strong seasonal autocorrelation
at k = 12 in the local indicator method.

matrix which for these trigonometric fitting functions looks like















1 sin(2πf11) cos(2πf11) sin(2πf21) cos(2πf21) · · · sin(2πfq1) cos(2πfq1)
1 sin(2πf12) cos(2πf12) sin(2πf22) cos(2πf22) · · · sin(2πfq2) cos(2πfq2)
1 sin(2πf13) cos(2πf13) sin(2πf23) cos(2πf23) · · · sin(2πfq3) cos(2πfq3)
...

...
...

...
...

...
...

...
1 sin(2πf1N) cos(2πf1N) sin(2πf2N) cos(2πf2N) · · · sin(2πfqN) cos(2πfqN)















.

In the above matrix representation I have explicitly denoted the time value and not simplified
the arguments of the trigonometric functions. Now the (i, j)th element ofXTX is the product
of the ith row of the matrix X ′ and jth column of the matrix X. Since row i of X ′ is the
same thing as column i of X, we see that the (i, j)th element of XTX is the product of
columns i and j of the matrix X. Thus the elements of the values in the product X ′X can
then be determined. Computing a few elements by hand and looking for a pattern we find

(X ′X)11 =
N
∑

t=1

1 = N

(X ′X)1j =

N
∑

t=1

sin(2πf j
2
t) for j ≥ 2 and even

(X ′X)1j =
N
∑

t=1

cos(2πf j−1
2
t) for j > 2 and odd .



for the elements of the first row of X ′X (equivalently the first column of X ′X, since X ′X is
symmetric). For the second row of X ′X we then have

(X ′X)22 =

N
∑

t=1

sin(2πf1t)
2 =

N

2

(X ′X)2j =
N
∑

t=1

sin(2πf1t) sin(2πf j

2
t) = 0 for j > 2 and even

(X ′X)2j =

N
∑

t=1

sin(2πf1t) cos(2πf j−1
2
t) = 0 for j > 2 and odd ,

for the elements of the second row of X ′X. Continuing to the third row we have (X ′X)33 =
∑N

t=1 cos(2πf1t)
2 = N

2
, and in the same way as before (X ′X)3j = 0 for all j 6= 3. If we

generalized these results we see that the matrix X ′X is a diagonal matrix with N in the
(1, 1) position and the value N

2
in all other diagonal positions.

Next the expression X ′z is a vector that has elements given by

(X ′z)1 =

N
∑

t=1

zt

(X ′z)j =
N
∑

t=1

zt sin(2πf j

2
t) j even

(X ′z)j =

N
∑

t=1

zt cos(2πf j−1
2
t) j odd .

Finally, inverting X ′X gives for the estimates of β

β̂0 =
1

N

N
∑

t=1

zt

β̂1j =
2

N

N
∑

t=1

zt sin(2πfjt)

β̂2j =
2

N

N
∑

t=1

zt cos(2πfjt) ,

as we were to show.



Chapter 5: Stochastic Time Series Models

Notes On The Text

Notes on second-order autoregressive process [AR(2)]

Using the operator notation discussed in the book, a second-order autoregressive process zt

can be written in terms of at as

zt = (1 − φ1B − φ2B
2)−1at ,

here at is a sequence of uncorrelated random variables. If we also write this process using
Wold’s decomposition theorem which states that the process zt can be written as

zt = (1 + ψ1B + ψ2B
2 + · · · )at = ψ(B)at ,

for some coefficients ψt. For both expressions to hold true

(1 − φ1B − φ2B
2)−1 = 1 + ψ1B + ψ2B

2 + · · · ,

or 1− φ1B − φ2B
2 and ψ(B) must be multiplicative inverses. Thus computing this product

(1 − φ1B − φ2B
2)(1 + ψ1B + ψ2B

2 + · · · ) = 1 + ψ1B + ψ2B
2 + · · ·

− φ1B − φ1ψ1B
2 − φ1ψ2B

3 − φ2ψ2B
4 + · · ·

− φ2B
2 − φ2ψ1B

3 − φ2ψ2B
4 + · · ·

= 1 + (ψ1 − φ1)B + (ψ2 − φ1ψ1 − φ2)B
2

+ (ψ3 − φ1ψ2 − φ2ψ1)B
3 + · · ·

Setting the coefficients of B in this last expression equal to zero we find that the values ψt

in the Wold decomposition in terms of the parameters of the AR(2) model are given by

ψ1 = φ1

ψ2 = φ1ψ1 + φ2 = φ2
1 + φ2

ψ3 = φ1ψ2 + φ2ψ1 = φ3
1 + φ1φ2 ,

verifying the results in the book.

Notes on pth-order autoregressive process [AR(p)]

An AR(p) model has the following form

zt = φ1zt−1 + φ2zt−2 + · · ·+ φp−1zt−p+1 + φpzt−p + at . (81)

Multiplying this expression by zt−k on both sides and taking expectations we find

E(ztzt−k) = φ1E(zk−1zt−k) + φ2E(zt−2zt−k) + · · ·+ E(zt−pzt−k) + E(atzt−k) ,



or recalling the definition the autocovariance (γk) this is equivalent to

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p + E(atzt−k) , (82)

Recall that since zt−k when written using Wold decomposition theorem only depends on
at−k, at−k−1, · · · the random shocks at that comes later is independent of zt−k if k 6= 0. Thus

E(atzt−k) =

{

σ2 k = 0
0 k = 1, 2, · · · ,

First when we then take k = 0 in Equation 82 we then get for γ0 or the variance of our
AR(p) process in terms of its parameters the following expression

γ0 = φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2 . (83)

Dividing this by γ0 we get recalling the definition of the autocorrelation function ρk of ρk ≡ γk

γ0

that

1 = φ1ρ1 + φ2ρ2 + · · ·+ φpρp +
σ2

γ0
,

or

γ0 =
σ2

1 − φ1ρ1 − φ2ρ2 − · · · − φpρp
, (84)

which is the books equation 5.26.

Next when k > 0 in Equation 82 the last term vanishes and we have

γk = φ1γk−1 + φ2γk−2 + · · · + φpγk−p , (85)

again dividing this by γ0 we see that the autocorrelation functions ρk satisfy the same type
of recursive difference equation as the process zt. That is

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p , (86)

When we explicitly enumerate Equations 86 for k = 1, 2, . . . , p we get (remembering ρ0 = 1)

ρ1 = φ1 + φ2ρ1 + φ3ρ2 + · · · + φpρp−1

ρ2 = φ1ρ1 + φ2 + φ3ρ1 + · · · + φpρp−2

...

ρp = φ1ρp−1 + φ2ρp−2 + φ3ρp−3 + · · · + φp .

These equations are known as the Yule-Walker equations. This system can be written in
matrix notation if we define a vector of autocorrelations ρ = (ρ1, ρ2, . . . , ρp)

′ and a vector of
AR(p) parameters φ = (φ1, φ2, . . . , φp)

′, as

ρ = Pφ ,

with the matrix P defined as

P =















1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3
...

...
. . .

...
...

ρp−1 ρp−2 ρp−3 · · · 1















.



Then in this notation the parameters of the AR(p) model φ in terms of the autocorrelations
ρ are given by φ = P−1ρ. With this general framework we can consider some specific cases.
For an AR(2) model we get that the Yule-Walker equations give

ρ1 = φ1 + ρ1φ2

ρ2 = φ1ρ1 + φ2 .

In matrix form this is
[

ρ1

ρ2

]

=

[

1 ρ1

ρ1 1

] [

φ1

φ2

]

.

Solving for

[

φ1

φ2

]

we find

[

φ1

φ2

]

=

[

1 ρ1

ρ1 1

]−1 [
ρ1

ρ2

]

=
1

1 − ρ2
1

[

1 −ρ1

−ρ1 1

] [

ρ1

ρ2

]

=
1

1 − ρ2
1

[

ρ1 − ρ1ρ2

−ρ2
1 + ρ2

]

.

Thus

φ1 =
ρ1(1 − ρ2)

1 − ρ2
1

and φ2 =
−ρ2

1 + ρ2

1 − ρ2
1

,

in agreement with the results in the book.

Introduction of the partial autocorrelation function

Now if we express zt as a AR(k) model as

zt = φk1zt−1 + φk2zt−2 + · · ·+ φkkzt−k + at , (87)

we can use Crammer’s rule to solve the Yule-Walker equations, φ = P−1ρ, for only the coef-
ficient φkk. The general expression is presented in the book and specializes to the following
simplifications for small k values

φ11 =
|ρ1|
|1| = ρ1

φ22 =

∣

∣

∣

∣

1 ρ1

ρ1 ρ2

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1

ρ1 1

∣

∣

∣

∣

=
ρ2 − ρ2

1

1 − ρ2
1

φ33 =

∣

∣

∣

∣

∣

∣

1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣

∣

∣

∣

∣

∣

.
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Figure 17: Left: The sample autocorrelation function, rk (in blue) and confidence regions
(in red) for the yield data time series. Right: The sample partial autocorrelation function
φkk for the yield data time series. Note the very significant φ11 value indicating that this
data set maybe fit with an AR(1) model.

The sample partial autocorrelation function for the yield data set

In the MATLAB script section 5 2 2 we duplicate some of the results found in section 5.2.2
of the book. This script begins by presenting a plot of the sample autocorrelation function
(SACF) rk of the yield data set in Figure 17 (left). This plot agrees very well with the on
presented in figure 5.2 of the book. Then using these values of rk and the Levinson/Durbin
algorithm implemented in the MATLAB function spacf, we compute the sample partial
autocorrelation function (SPACF) of the yield data set in Figure 17 (right). These numbers
presented here agree quite well with those presented in the book.

Notes on moving average processes of order q [MA(q)]

In this section we derive the autocovariance γk and partial autocorrelation φkk functions for
another fundamental stochastic process; the MA(q) process. Which is defined as

zt − µ = at − θ1at−1 − θ2at−2 − · · · − θqat−q . (88)

This representation is basically a truncated Wold decomposition in which we can write any

stochastic process zt as a series of uncorrelated random shocks at as

zt − µ =

∞
∑

j=0

ψjat−j with ψ0 = 1 . (89)



Using the results from earlier in the book where we explicitly derived the autocovariances γk

functions given the coefficients ψj in zt Wold decomposition (duplicated here for convenience)

γ0 = σ2

∞
∑

j=0

ψ2
j

γk = σ2
∞
∑

j=0

ψjψj+k ,

since ψj = −θj for 1 ≤ j ≤ q and ψj = 0 for j > q, we can easily calculate γk for MA(q)
processes.

For example, for the MA(1) process ψ0 = 1, ψ1 = −θ1 and ψj = 0 for j > 1 and we find

γ0 = σ2
∞
∑

j=0

ψ2
j = σ2(1 + θ2

1)

γ1 = σ2

∞
∑

j=0

ψjψj+1 = σ2(ψ0ψ1 + ψ1ψ2 + · · · ) = −θ1σ2

γk = σ2
∞
∑

j=0

ψjψj+k = 0 for k > 1 .

For a MA(2) process defined as

zt − µ = at − θ1at−1 − θ2at−2 , (90)

we see that ψ0 = 1, ψ1 = −θ1, ψ2 = −θ2, and ψj = 0 for j > 2 so we find

γ0 = σ2

∞
∑

j=0

ψ2
j = σ2(1 + θ2

1 + θ2
2)

γ1 = σ2
∞
∑

j=0

ψjψj+1 = σ2(ψ0ψ1 + ψ1ψ2) = σ2(−θ1 + θ1θ2)

γ2 = σ2

∞
∑

j=0

ψjψj+2 = σ2(ψ0ψ2 + ψ1ψ3 + · · · ) = σ2(−θ2) = −θ2σ2

γk = 0 when k > 2 .

Examples forecasting with stochastic models

For developing forecasting models it is important to remember that the optimal l-step-ahead
forecast is given by the following conditional expectation

zn(l) = E(zn+l|zn, zn−1, . . . ) , (91)



and that the general expression for the forecast error en(l) is given by

en(l) = an+l + ψ1an+l−1 + ψ2an+l−2 + · · ·+ ψl−2an+2 + ψl−1an+1 , (92)

this later equation has a very simple expression for its variance. We have

V (en(l)) = σ2(1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−2 + ψ2

l−1) . (93)

With these relationships we can derive forecasts and error predictions for a number of com-
mon stochastic models.

The AR(1) Model: If we consider the AR(1) process

zt − µ = φ(zt−1 − µ) + at ,

then to compute the two-step-ahead forecast, zn(2), we consider the conditional expectation

zn(2) = E(zn+2|zn, zn−1, . . . )

= E(µ+ φ(zn+1 − µ) + at+2|zn, zn−1, . . . )

= µ+ φ(zn(1) − µ) = µ+ φ((µ+ φ(zn − µ)) − µ)

= µ+ φ2(zn − µ) .

Next we compute the error in this prediction, en(2), we find

en(2) = zn+2 − zn(2)

= µ+ φ(zn+1 − µ) + an+2 − (µ+ φ2(zn − µ))

= an+2 + φ((zn+1 − µ) − φ(zn − µ)) ,

but zn+1 − µ = φ(zn − µ) + an+1 so the above becomes

en(2) = an+2 + φan+1 .

We can derive the general expression for el(n) for an AR(1) model since in that case ψj = φj

and Equation 92 becomes

en(l) = an+l + φan+l−1 + φ2an+l−2 + · · ·+ φl−2an+2 + φl−1an+1 ,

so that the variance of the l-step-ahead error is thus seen to be

V (en(l)) = σ2(1 + ψ2
1 + ψ2

2 + · · · + ψ2
l−2 + ψ2

l−1)

= σ2
l−1
∑

k=0

φ2k =
σ2(1 − φ2l)

1 − φ2
, (94)

which is equation 5.68 in the book.

The ARIMA(0,1,1) Model: As another example consider an ARIMA(0,1,1) model writ-
ten in its autoregressive operator form as π(B)zt = at or

(

1 − B

1 − θB

)

zt = at .



Expanding the function π(B) in a Taylor series about B gives

(1 − B)

∞
∑

j=0

θjBj =

∞
∑

j=0

θjBj −
∞
∑

j=0

θjBj+1

=
∞
∑

j=0

θjBj −
∞
∑

j=1

θj−1Bj

= 1 + (1 − θ)

∞
∑

j=1

θj−1Bj ,

so we have that zt can be written

zt = at + (1 − θ)

∞
∑

j=1

θj−1zt−j , (95)

so that we recognize πj = (1 − θ)θj−1 for j ≥ 1. Forecasts can be based off of this infinite
series if needed.

The ARIMA(1,1,1) Model: As another forecasting example, next consider an ARIMA(1,1,1)
process which has an general expression given by

(1 − φB)(1 −B)zt = (1 − B − φB + φB2)zt = θ0 + (1 − θB)at .

From which we see that zt can be expressed as

zt = (1 + φ)zt−1 − φzt−2 + θ0 + at − θat−1 .

Using this the predictions are given by

zn(1) = E(zn+1|zn, zn−1, · · · )
= E((1 + φ)zn − φzn−1 + θ0 + an+1 − θan|zn, zn−1, . . . )

= θ0 + (1 + φ)zn − φzn−1 − θan

zn(2) = E(zn+2|zn, zn−1, · · · )
= E((1 + φ)zn+1 − φzn + θ0 + an+2 − θan+1|zn, zn−1, . . . )

= (1 + φ)zn(1) − φzn + θ0 ,

with zn(1) computed earlier. Note that an ARIMA(1,1,0) can be computed from this one
by taking the value of θ = 0.

The ARIMA(0,2,2) Model: As another forecasting example, consider an ARIMA(0,2,2)
model given by

(1 −B)2zt = (1 − 2B +B2)zt = (1 − θ1B − θ2B
2)at .

From which we see that zt can be written as

zt = 2zt−1 − zt−2 + at − θ1at−1 − θ2at−2 .



Then taking the condition expectation to derive the required forecasts we find

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(2zn − zn−1 + an+1 − θ1an − θ2an−1|zn, zn−1, . . . )

= 2zn − zn−1 − θ1an − θ2an−1 ,

we are keeping the two terms an and an−1 since these expressions can be explicitly written in
terms of zt for t ≤ n when we consider the pure autoregressive representation π(B)(zt−µ) =
at. The term an+1 is independent of zt for t ≤ n and can be discarded. For the two-steps-
ahead forecast zn(2) we find

zn(2) = E(zn+2|zn, zn−1, . . . )

= E(2zn+1 − zn + an+2 − θ1an+1 − θ2an|zn, zn−1, . . . )

= 2zn(1) − zn − θ2an .

If we continue these derivations we begin to see that for general l the l-step-ahead prediction,
zn(l) is related to earlier predictions as

zn(l) = 2zn(l − 1) − zn(l − 2) for l ≥ 3 .

Notes on updating forecasts using stochastic models

We begin this section by recalling that the minimum mean square error (MMSE) l-step-ahead
forecast can be specified in terms of ψj the coefficients in the linear filter representation of
zt as

zn(l) = ψlan + ψl+1an−1 + ψl+2an−2 + . . . , (96)

this is equation 5.62 in the book. Now incrementing n in the above as n→ n+1 to indicate
that we have observed one more sample zn this becomes

zn+1(l) = ψlan+1 + (ψl+1an + ψl+2an−1 + · · · ) ,

where the term in parenthesis above we recognized as zn(l + 1), or the l + 1-step-ahead
prediction from the nth observation. Thus

zn+1(l) = ψlan+1 + zn(l + 1) . (97)

This can be expressed without reference to the value of an+1, the shock that arrives at the
timestep n + 1, by recalling the l-step-ahead forecast error or

en(l) = zn+l − zn(l) = an+1 + ψ1an+l−1 + · · · + ψl−1an+1 . (98)

When we take l = 1 in this expression we find

zn+1 − zn(1) = an+1 , (99)

as an expression for an+1 in terms of the error residual of the one-step-ahead error. Using
this fact we arrive at a recursive forecast updating expressions entirely in terms of zt as

zn+1(l) = zn(l + 1) + ψl(zn+1 − zn(1)) , (100)

or the books equation 5.85.
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Figure 18: Left: The raw data (in blue) for the yield data set and the AR(1) model predic-
tions (in red). Middle: The sample autocorrelation function, rk (in blue) and confidence
regions (in red) for the yield data time series. Right: The sample partial autocorrelation
function φkk for the yield data time series. Note the very significant φ11 value indicating
that this data set maybe fit with an AR(1) model.

Duplication of Section 5.8.1 ARIMA model of the yield data

In this section we duplicate the results on modeling the yield data set found in Section 5.8.1
from the book. See the MATLAB script model yield section 5 8 1.m. Since MATLAB
does not have a free maximum likelihood estimator for ARIMA models we will compute
estimate of the ARIMA(p,d,q) coefficients in the model using the R function arima which
does exactly what is needed for these examples. We begin by presenting the yield data in
Figure 18 (left), the sample autocorrelation function in Figure 18 (middle) and the sample
partial autocorrelation function in Figure 18 (right). The basic exponential decay seen in
the autocorrelation function in addition to the significant k = 1 component in the sample
partial autocorrelation function indicate that an AR(1) model might be appropriate for this
data set. Thus we choose to model this data with

zt − µ = φ(zt−1 − µ) + at .

In the Matlab script model yield section 5 8 1.m we estimate the mean of the data set zt

from the first n = 159 samples (leaving three samples to evaluate forecasts on). We find a
value and a standard error given by

µ̂ = 0.99(0.09) ,

and thus the mean is significant. We then subtract this mean from the series and then use the
R function arima in the R script model yield section 5 8 1.R to compute the maximum
likelihood estimate of the coefficients φ and σ2 (the variance of the shock at). When this is
done we find estimates given by

φ̂ = 0.8518(0.04) σ̂2 = 0.024 ,

in close agreement with what the book computes. Using these values and the l-step-ahead
predictions which for an AR(1) model like this are given by zn(l) = µ̂ + φ̂l(zn − µ̂), we
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Figure 19: The sample autocorrelation function for the residuals of an AR(1) model fit to
the yield data set. This plot is very similar to the one shown in the text.
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Figure 20: Left: The raw data (in blue) and predictions (in red) for the Iowa growth rates
data set. Note that this series has a changing mean and is therefore not stationary. Right:
The sample autocorrelation function, rk (in blue) and confidence regions (in red) computed
directly from the Iowa growth rates data time series.

can compute the prediction errors and their sample autocorrelation function. See Figure 19
where this is presented. Note that this matches very closely to a similar figure in the text.

Duplication of Section 5.8.2 Quarterly Iowa Growth Rates

In this section we duplicate the results on modeling the growth rates data set found in
Section 5.8.2 from the book. See the MATLAB script model yield section 5 8 2.m. We
begin by presenting the Iowa growth rates (directly) data in Figure 20 (left). We note that
this data set appears to have a changing mean and therefore cannot be stationary. To observe
what we would obtain if we ignored this information in Figure 20 (right) we present a plot of
the sample autocorrelation computed from the direct data series. In that figure we see that
when viewed in autocorrelation space we see several significant autocorrelations that don’t
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Figure 21: Left: A plot of the first difference of the raw Iowa growth rates data. Middle:
The sample autocorrelation function, rk (in blue) and confidence regions (in red) computed
directly from the first difference above. Right: A plot of the sample partial autocorrelation
function.

appear to decay with the index k. This behavior is indicative of a non-stationary sequence.
To introduce stationarity we will consider differencing this series. We when we compute the
sample standard deviations for the first three differences of this data we obtain

std(Y)= 0.010, std(diff(Y))= 0.013, std(diff(Y,2))= 0.023

The fact that the standard deviation increases as we take consecutive differences is indica-
tive that we should take the first difference that gives the smallest value and so we further
consider the first difference. We plot the first difference in Figure 21 (left) the sample auto-
correlation function in Figure 21 (middle) and the sample partial autocorrelation function in
Figure 21 (right). The basic exponential decay seen in the partial autocorrelation function
in addition to the significant k = 1 component in the autocorrelation function indicate that
an MA(1) model might be appropriate for this data set. Thus we choose to model the first
difference of our original time series zt with

∇zt = θ0 + at − θat−1 .

To compute the parameters for this model we begin by estimating the mean θ0. In the
Matlab script model yield section 5 8 2.m we estimate the mean of ∇zt from the first
n = 122 samples (leaving some additional samples to forecasts). We find a value and a
standard error of θ̂0 given by

θ̂0 = 0.000226 (0.00473) ,

and thus the mean is insignificant. Next we estimate the value of the parameter θ and the
variance of the shocks at using the R function arima in the R script model yield section 5 8 2.R.
When this is done we find estimates given by

θ̂ = 0.8883 (0.04) σ̂2 = 9.329 10−5 ,

which when σ̂2 is multiplied by 1002 gives results which are in close agreement with what the
book computes. Using these values and the one-step-ahead predictions for an ARIMA(0,1,1)
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Figure 22: The sample autocorrelation function for the residuals of an ARIMA(0,1,1) model
fit to the growth data set. This plot is very similar to the one shown in the text.

model like this are given by taking ân = zn − zn−1(1) and zn(1) = zn − θ̂ân. We start by
assuming â1 = 0 and then iterate

z1(1) = z1 − θ̂1â1 = z1

â2 = z2 − z1(1)

z2(1) = z2 − θ̂â2

â3 = z3 − z2(1)
...

â123 = z123 − z122(1) .

In the MATLAB script for this section we use this procedure to compute estimates of the
residuals ân and their sample autocorrelation function. See Figure 22 where this is presented.
Note that this matches very closely to a similar figure in the text.

Duplication of Section 5.8.3 Demand for Repair Parts

In this section we duplicate the results on modeling the repair for parts data set discussed
in Section 5.8.3 from the book. See the MATLAB script model demand section 5 8 3.m.
We begin by presenting the demand for parts (directly) data in Figure 23 (left). This data
has a variance that is proportional (or approximately proportional) to the level zt. Thus
a logarithmic transformation will help stabilized the variance of this process. The log of
the original data series is shown in Figure 23 (middle). We note that this data set appears
to have a changing mean and therefore cannot be stationary. To observe what we would
obtain if we ignored this information in Figure 23 (right) we present a plot of the sample
autocorrelation computed from the direct data series. In that figure we see that when viewed
in autocorrelation space we see several significant autocorrelations that decay quite slowly
with the index k. This behavior is indicative of a non-stationary sequence. To introduce
stationarity we will consider differencing this series. When we compute the sample standard
deviations for the first three differences of this data we obtain
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Figure 23: Left: The raw data (in blue) for the demand for parts data set. Note that this
series has a changing mean and is therefore not stationary. In addition, it has a variance
that is proportional (or approximately proportional) to the level zt. Thus a logarithmic
transformation will help stabilized the variance of this process. Middle: The log of the
demand for parts data set (in blue) and predictions from the ARIMA model developed below.
While not stationary the variance has been stabilized. Left: The sample autocorrelation
function of this non-stationary series.

std(Y)= 0.30, std(diff(Y))= 0.18, std(diff(Y,2))= 0.31, std(diff(Y,3))= 0.58

The fact that the standard deviation increases as we take consecutive differences is indicative
that we need only take the first difference to make the series stationary. We plot the first
difference in Figure 24 (left) the sample autocorrelation function in Figure 24 (middle) and
the sample partial autocorrelation function in Figure 24 (right). The two prominent spikes
at lag k = 1 in both plots indicate that we may model this data well by assuming an
ARMA(1,1) model for the difference in the log data. The book argues that only a MA(1)
model is needed to fit this data set. For self study we attempt to fit an ARMA(1,1) model
and then compare how well the ARMA(1,1) model performs relative to the MA(1) model the
book uses. In the ARMA(1,1) case this means that we would model the series yt ≡ log(zt)
as a ARIMA(1,1,1) model or

(1 − B)(1 − φB)(yt − µ) = (1 − θ)at ,

or
yt − µ = (1 + φ)(yt−1 − µ) − φ(yt−2 − µ) + at − θat−1 .

To compute the parameters for this model we use the R function arima. When we explicitly
compute the first difference of log(zt) and use the option which requests that a mean value
be included in the maximum likelihood estimates we find

µ̂ = 0.0084 (0.0051)

and thus the mean is insignificant. In model demand section 5 8 3.R we then rerun the
arima function this time not requesting that the mean estimated from the first difference.
We estimate the value of the parameters φ and θ and the variance of the shocks at and find

φ̂ = 0.0991 (0.2815) θ̂ = 0.64 (0.24) σ̂2 = 0.025 ,
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Figure 24: Left: A plot of the first difference of the log of the raw demand for parts data
set. Middle: The sample autocorrelation function, rk (in blue) and confidence regions (in
red) computed directly from this data. Right: A plot of the sample partial autocorrelation
function for this data set.

Thus we note that in fact the coefficient for φ is found to be insignificant and the books
initial estimate of a MA(1) model for yt was correct. Removing this parameter from the
model and refitting we find that

θ̂ = 0.55 (0.11) σ̂2 = 0.025 ,

in close agreement to the numbers the book found. For a MA(1) model the method of
prediction was discussed above when we considered the previous data set. When we compute
the prediction errors and their sample autocorrelation function. See Figure 25 where this is
presented. Note that this matches very closely to a similar figure in the text.

Exercise Solutions

Exercise 5.1 (some sample autocorrelation functions)

Part (a): The sample autocorrelation of zt plotted in Figure 26 (left) indicates that zt has
a very slowly decaying autocorrelation (every value of rk is statistically different from zero)
and therefore the sequence zt is not stationary. Because of this we can consider taking the
first difference of zt and observing if the resulting series is stationary. The SACF of (1−B)zt

appears to be that of an AR(1) model with φ < 0 since the terms oscillate above and below
zero.

To determine is this data further supports an AR(1) model we can construct from the sample
autocorrelation of (1−B)zt the sample partial autocorrelation function (SPACF) φ̂kk. Note
that in the notation φkj the k index denotes the total order of the autoregressive model while
the index j denotes which component of this total model we are considering i.e. 1 ≤ j ≤ k,
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Figure 25: The sample autocorrelation function for the residuals of an MA(1) model fit to
the demand for parts data set. This plot is very similar to the one shown in the text. Notice
the significant component at the lag k = 12.
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Figure 26: Left: The sample autocorrelation function, rk, for the time series zt in Part (a) of
Exercise 5.1. Middle: The sample autocorrelation function, rk, for the first difference of the
time series zt i.e. zt − zt−1 in Part (a) of Exercise 5.1. Right: The sample autocorrelation
for the time series zt in Part (b) of Exercise 5.1. Note standard two-sigma confidence regions
are drawn as horizontal lines (at the values 2/

√
n) in red.



so that zt will have a representation given by

zt = φk1zt−1 + φk2zt−2 + · · ·+ φkkzt−k + at .

Then using the Levinson and Durbin algorithm discussed in the text and coded in the
MATLAB function spacf, we see that the values we observe for this data set are given by
(two two decimals)

-0.53 0.18 -0.11 -0.07 -0.00 0.04

We then look at which values of φ̂kk are significant by comparing the above magnitudes to the
value of 2/

√
n = 0.2. The first value is clearly significant and indicated that an approximate

value to consider for φ would be near ≈ −0.5. Thus in summary for this data set one could
consider an ARIMA(1,1,0) model for zt.

Part (b): From Figure 26 (right) the only significant sample autocorrelation value rk is r1
which signifies we might be looking at data from a MA(1) model.

Exercise 5.2 (a stationary linear model)

To be stationary it is necessary that E(zt) = µ where µ is a constant independent of time t.
For the model given, zt = β0 + β1t+ at, we have for this expectation E(zt) = β0 + β1t which
is not independent of t and hence zt is not stationary. Now zt is not stationary but its first
difference

yt ≡ (1 − B)zt = β0 + β1t+ at − β0 − β1(t− 1) − at−1

= at − at−1 − β1 ,

would be stationary and could be fit with a MA(1) model.

Exercise 5.3 (a model for monthly sales)

Part (a): Since this is an ARMA(p,q) model for an ARMA(p,q) model to be stationary the
roots of the autoregressive polynomial, φ(B), in the representation

φ(B)(zt − µ) = θ(B)at ,

where

φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p

θ(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q ,

must have roots outside the unit circle. Since in the case considered here the polynomial is
φ(B) = (1−B)2, has a double root at B = 1 which is not outside the unit circle this model
for zt is not stationary.



Part (b): To be invertible the polynomial θ(B) must have roots outside the unit circle. In
this case θ(B) = 1 − θB, which has roots B = 1

θ
> 1, so this model is invertible.

Part (c): The given model explicitly calculates the second differences of zt as the expression

(1 − B)2zt = (1 −B)(zt − zt−1)

= zt − zt−1 − zt−1 + zt+2

= zt − 2zt−1 + zt+2 ,

is the second difference. Since this equals (1 − θB)at a MA(1) model and will have the
simplest type of autocorrelation function. In general, for any stochastic model when zt − µ
is expressed in terms of its linear filter representation as

zt − µ = at + ψ1at−1 + ψ2at−2 + · · ·

=
∞
∑

j=0

ψjat−j with ψ0 = 1

= ψ(B)at ,

that the autocorrelation function ρk for zt is given by

ρk =

∑∞
j=0 ψjψj+k
∑∞

j=0 ψ
2
j

. (101)

In the case above the linear filter representation of (1−B)2zt is ψ(B) = 1− θB, so ψ1 = −θ
and ψj = 0 for j > 1. Thus

ρ1 = − θ

1 + θ2
and ρk = 0 for k > 1 .

Part (d): The π weights are the expression of this process in terms of an infinite autore-
gressive representation. That is

π(B)(zt − µ) = at ,

so

π(B) =
(1 − B)2

(1 − θB)
(102)

so equating the coefficients in Equation 102 by multiplying both sides by 1− θB we see that
πj must satisfy

(1 − θB)(1 − π1B − π2B
2 − π3B

3 − · · · ) = (1 − B)2 = 1 − 2B +B2 ,

or expanding and grouping the left hand side we find

1 − π1B − π2B
2 − π3B

3 − · · · − θB + θπ1B
2 + θπ2B

3 + · · · = 1 − 2B +B2

1 + (−π1 − θ)B + (−π2 + θπ1)B
2 + (−π3B

3 + θπ2) + · · · = 1 − 2B +B2 .

So equating coefficients of B on both sides of this expression we see that

−π1 − θ = −2 → π1 = 2 − θ

−π2 + θπ1 = 1 → π2 = θπ1 − 1 = −(1 − θ)2

−πk + θπk−1 = 0 → πk = θπk−1 ,



for k ≥ 3. Thus when we solve for this last expression for πk we find

π1 = 2 − θ and πk = −(1 − θ)2θk−2 for k ≥ 2 .

The ψ weights are the coefficients in the linear filter representation

zt − µ = ψ(B)at = at + ψ1at−1 + ψ2at−2 + · · · .

For this process we have

zt =
(1 − θB)

(1 − B)2
at = ψ(B)at ,

so we multiply by (1 − B)2 on both sides the coefficients ψj must satisfy

1 − θB = (1 − 2B +B2)(1 + ψ1B + ψ2B
2 + · · · )

= 1 + ψ1B + ψ2B
2 + ψ3B

3 + ψ4B
4 + · · ·

+ −2B − 2ψ1B
2 − 2ψ2B

3 − 2ψ3B
4 − · · ·

+ B2 + ψ1B
3 + ψ2B

4 + · · · ,

or

1 − θB = 1 + (ψ1 − 2)B + (ψ2 − 2ψ1 + 1)B2 + (ψ3 − 2ψ2 + ψ1)B
3

+ (ψ4 − 2ψ3 + ψ2)B
4 + · · ·+ (ψk − 2ψk−1 + ψk−2)B

k + · · · .

So that

−θ = ψ1 − 2 → ψ1 = 2 − θ

ψ2 = 2ψ1 − 1 → ψ2 = 3 − 2θ

ψ3 = 2ψ2 − ψ1 → ψ3 = 4 − 3θ
...

ψk = 2ψk−1 − ψk−2 → ψk = (k + 1) − kθ = (θ − 1)k + 1 ,

for k ≥ 1.

Part (e): The one-step-ahead forecast for an ARIMA(0,2,1) model such as this one can be
derived as in section 5.4 Forecasting from the book. There it was shown that if we have the
values of ψj for j ≥ 1 in the linear system representation

zt − µ = ψ(B)at with ψ(B) = 1 + ψ1B + ψ2B
2 + · · · ,

then the minimum mean square error (MMSE) forecast and its variance is given by

zn(l) = ψlan + ψl+1an−1 + · · · (103)

V (en(l)) = σ2(1 + ψ2
1 + ψ2

2 + · · · + ψ2
l−1) . (104)

Equation 103 is often more easily implemented by converting the model into its autoregressive
formulation. Following the example in that section, we write our process as

zt = 2zt−1 − zt−2 + at − θat−1 ,



so that the one-step-ahead forecast prediction is given by

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(2zn − zn−1 + an+1 − θan|zn, zn−1, . . . )

= 2zn − zn−1 − θan .

As discussed in the text, this forecast involves the unknown values of θ and an. Once the
model is estimated and an estimate of θ, say θ̂, is obtained we can calculate the residuals ât

using Equation 99 as
ât = zt − 2zt−1 + zt−2 + θ̂ât−1 ,

and use the that value in the forecast. Of course an initial value of â1 will need to be
specified. To get this process started. The value of â1 could be taken as â1 = z1 − z0(1) or
the initial residual. The variance of the one-step-ahead forecast is given by

V (en(1)) = σ2 ,

since l = 1 in the sum in Equation 104.

Exercise 5.4 (a model for an additive process)

For this exercise we will assume that our process yt can be expressed as

yt = xt + zt ,

with xt and AR(1) process of the form (1 − φB)xt = at and zt a white-noise process.

Part (a): We want to evaluate the autocorrelation functions ρk for the process yt. Multiply
yt above by yt−k and take the expectation. We find since yt is a zero mean process that

E(ytyt−k) = E((xt + zt)(xt−k + zt−k))

= E(xtxt−k) + E(ztzt−k) .

Now since zt is white-noise with variance σ2
z the expression E(ztzt−k) = σ2

zδk,0, and since xt

is an AR(1) model we have derived (by considering the linear filter representation) that

E(x2
t ) =

σ2

1 − φ2

E(xtxt−k) =
σ2φk

1 − φ2
.

Here σ2 is the variance of the random shocks at in the AR(1) model. Thus when k = 0 we
have

E(y2
t ) =

σ2

1 − φ2
+ σ2

z ,

and when k > 0 we have

E(ytyt−k) =
σ2φk

1 − φ2
.



Thus ρk is given by

ρk =

σ2φk

1−φ2

σ2

1−φ2 + σ2
z

=
σ2φk

σ2 + (1 − φ2)σ2
z

,

for k ≥ 1.

Part (b): Since we have an exponential decay in the autocorrelation function ρk for yt,
which is the same type of phenomena as observed in an AR(1) model, an AR(1) model
would be appropriate for yt.

Exercise 5.5 (the k-th order partial autocorrelation φkk)

Part (a): The definition of the k-th order partial autocorrelation of a process zt or φkk is the
last coefficient in an autoregressive model of k-th order i.e. we regress zt on the k-previous
values of z i.e.

zt = φk1zt−1 + φk2zt−2 + · · ·+ φkkzt−k + at ,

then the value of φkk or the coefficient of the term zt−k is defined as the partial autocorrelation
of order k.

Part (b):

i: For the model
(1 − 1.2B + 0.8B2)zt = at ,

since this is an AR(2) model with coefficients φ1 = 1.2 and φ2 = −0.8, we have that

φ11 = ρ1 =
φ1

1 − φ2
=

2

3
,

and

φ22 =
ρ2 − ρ2

1

1 − ρ2
1

=

φ2
1

1−φ2
+ φ2 − φ2

1

(1−φ1)2

1 − φ2
1

(1−φ1)2

= −4

5
,

and φkk = 0 for k > 2. To derive these we have used the expression derived in the book and
these notes on the autocorrelation function ρk for an AR(2) process. Note that an AR(2)
process has only two non-zero values for φkk. These simple calculations are done in the
MATLAB script prob 5 5.m.

ii: Since this is an AR(1) model φ11 = ρ1 = φ = 0.7 and φkk = 0 for k > 1. Note that an
AR(1) process has only one non-zero value for φkk.

iii: Since the model
(1 − 0.7B)zt = (1 − 0.5B)at ,

is an ARMA(1,1) model the kth-order partial autocorrelation (PACF) will be a mix between
the the PACF of an AR(1) and a MA(1) model. Specifically the PACF of this ARMA(1,1)



model will have a single initial value φ11 = ρ1 = 0.7 and from that point onward it will decay
like the PACF of a MA(1) process having exponential decay.

iv: Since the given model is a MA(1) model it will have a partial autocorrelation function that
is infinite in extent and is dominated by contribution of damped exponentials. Specifically
we can show that φkk for a MA(1) model looks like

φkk = − θk(1 − θ2)

1 − θ2(k+1)
= −(0.5)k(1 − 0.52)

1 − (0.5)2(k+1)
for k > 0 .

Exercise 5.6 (the variance of the mean of zt = at − at−1)

Consider the sum 1
n

∑n
t=1 zt. Since we know the explicit model for zt we can write this sum

as

1

n

n
∑

t=1

(at − at−1) =
1

n

n
∑

t=1

at −
1

n

n
∑

t=1

at−1 =
1

n

n
∑

t=1

at −
1

n

n−1
∑

t=0

at

=
1

n
an − 1

n
a0 .

As a0 and an are uncorrelated, the variance of this expression is then given by

V

(

1

n

n
∑

t=1

zt

)

=
1

n2
(σ2 + σ2) =

2σ2

n2
,

as was to be shown.

Exercise 5.7 (H. Working’s example)

Recall the definitions of

t∆m = zt − zt−m ,

and

t∆
∗
m =

1

m
[zt + zt+1 + zt+2 + · · ·+ zt+m−1] −

1

m
[zt−m + zt−m+1 + zt−m+2 + · · · + zt−1] .

Then to calculate the variances of these expressions it is helpful to derive the linear filter
representation of the time series zt. From the assumed model for zt of zt − zt−1 = at we have
(1 −B)zt = at or

zt = (1 −B)−1at =
∞
∑

k=0

Bkat =
∞
∑

k=0

at−k .

Using this the linear filter representation of the first difference m-steps apart t∆m is given
by

t∆m =
∞
∑

k=0

at−k −
∞
∑

k=0

at−m−k =
m−1
∑

k=0

at−k ,



this has zero expectation and so its variance is given by

V (t∆m) =
m−1
∑

k=0

V (at−k) = σ2m.

For the second expression t∆
∗
m, its linear filter representation can be written as (after mul-

tiplying both sides by m)

m t∆
∗
m = (zt − zt−m) + (zt+1 − zt−m+1) + · · ·+ (zt+m−1 − zt−1)

=
m−1
∑

k=0

at−k +
m−1
∑

k=0

at+1−k + · · ·+
m−1
∑

k=0

at+m−1−k

= at−m+1 + at−m+2 + at−m+3 + · · ·+ at−3 + at−2 + at−1 + at

+ at−m+2 + at−m+3 + · · ·+ at−3 + at−2 + at−1 + at + at+1

+ at−m+3 + · · · + at−3 + at−2 + at−1 + at + at+1 + at+2

...

+ at + · · ·+ at+m−2 + at+m−1

= at−m+1 + 2at−m+2 + · · ·+mat + (m− 1)at+1 + (m− 2)at+2 + · · ·+ 2at+m−2 + at+m−1

=

m
∑

k=1

kat−m+k +

m−1
∑

k=1

kat+m−k .

This expression has zero mean so (remembering to divide back by m) we find its variance
given by

V (t∆
∗
m) =

1

m2
E





(

m
∑

k=1

kat−m+k +

m−1
∑

k=1

kat+m−k

)2




=
1

m2
E

(

m
∑

k=1

k2a2
t−m+k +

m−1
∑

k=1

k2a2
t+m−k

)

,

since the cross terms all vanish. Thus

V (t∆
∗
m) =

σ2

m2

m
∑

k=1

k2 +
σ2

m2

m
∑

k=1

k2

=
2σ2

m2

m
∑

k=1

k2 =
σ2

3

(

(m+ 1)(2m+ 1)

m

)

.

Thus the ratio desired is given by

V (t∆
∗
m)

V (t∆m)
=

1

3

(

1 +
1

m

)(

2 +
1

m

)

→ 2

3
,

as m→ ∞ as we were to show.
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Figure 27: Left: A stem plot of the autocorrelation of the residuals râ(k) for Exercise 5.9.
Right: A stem plot of the sample partial autocorrelation function for the residuals time
series in Exercise 5.9.

Exercise 5.8 (appropriate ARMA models for sums)

We are told that each zti is given by a MA(1) model such that zti = (1− θiB)ati with known
variances for the random shocks ati, given by V (ati) = σ2

i . Then the total annual cost, Ct,
is the sum of 100 MA(1) models

Ct =
100
∑

i=1

zti ,

Part (a): Now the total cost is simply a sum of 100 uncorrelated random variables zti the
variance of these individual random variables is given by Var(zti) = σ2

i (1 + θ2
i ), so the total

variance of Ct is the sum of these individual variances
∑100

i=1 σ
2
i (1 + θ2

i ). Then in this case Ct

is simply a zero-mean random variable with known variance.

Exercise 5.9 (considering an ARIMA model)

Consider the stem plot of the sample autocorrelation of the residuals from an ARIMA(0,1,1)
model shown in Figure 27 (left). On this plot we also plot the associated two sigma standard
errors

s[râ(k)] ≈ n−1/2 = 1/10 = 0.1 ,

we see that the lag one k = 1 (and possibly the lag two autocorrelation) is significant. In
addition, we plot the sample partial autocorrelation function (SPACF) in Figure 27 (right).
There we see a significant value for φ11. These two plots taken together imply that the
residuals at might satisfy an AR(1) model with φ < 0. If at satisfies an AR(1) model
the (1 − φB)at = bt with bt white noise. This implies that the model for zt, given as
(1 −B)zt = (1 − θB)at, should perhaps be modified to be

(1 − B)zt = (1 − θB)at = (1 − θB)

(

1

(1 − φB)
bt

)

,



or
(1 − φB)(1 − B)zt = (1 − θB)bt ,

showing that zt satisfies an ARIMA(1,1,1) model. See the MATLAB script prob 5 9.m for
the code used to generate these plots.

Exercise 5.10 (some ARIMA models)

Model 1: An easy way to generate the forecast equations is to write the model explicitly
in terms of zt i.e. in its autoregressive form. For example, the first model

(1 − φB)(zt − µ) = at ,

is equivalent to
zt − µ = φ(zk−1 − µ) + at ,

which is an AR(1) process and is discussed in the book. Thus we find that

zn(l) = µ+ φl(zn − µ) , (105)

is the l-step-ahead forecast and that

V (en(l)) =
σ2(1 − φ2l)

1 − φ2
, (106)

is the variance of the forecast.

Model 2: For this ARMA(2,0) model we have

zt = µ+ φ1(zt−1 − µ) + φ2(zt−2 − µ) + at ,

so taking the conditional expectation of both sides to compute zn(1) we find

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(µ+ φ1(zn − µ) + φ2(zn−1 − µ) + an+1|zn, zn−1, . . . )

= µ+ φ1(zn − µ) + φ2(zn−1 − µ) .

In general as shown in the book we have

zn(l) = E(zn+l|zn, zn−1, . . . )

= E(µ+ φ1(zn+l−1 − µ) + φ2(zn+l−2 − µ) + an+l|zn, zn−1, . . . )

= µ+ φ1(zn(l − 1) − µ) + φ2(zn(l − 2) − µ) , (107)

and the forecast variance is given by

v(en(l)) = σ2(1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1) ,

which relies on the given process’ linear filter representations coefficients ψj in

zn = an + ψ1an−1 + ψ2an−2 + · · · .



For an AR(2) model as show on Page 77 of these notes the ψj-linear filter representation is
given by

ψ1 = φ1 , ψ2 = φ2
1 + φ2 , ψj = φ1ψj−1 + φ2ψj−2 for j ≥ 3 .

With all of this information we can compute the desired quantities for three look-aheads
l = 1, 2, 3. We specifically find

zn(1) = µ+ φ1(zn − µ) + φ2(zn−1 − µ) with

V (en(1)) = σ2 ,

for l = 1 and

zn(2) = µ+ φ1(zn(1) − µ) + φ2(zn − µ)

= µ+ φ1(φ1(zn − µ) + φ2(zn−1 − µ)) + φ2(zn − µ)

= µ+ (φ2
1 + φ2)(zn − µ) + φ1φ2(zn−1 − µ) with

V (en(2)) = σ2(1 + φ2
1) ,

for l = 2 and finally

zn(3) = µ+ φ1(zn(2) − µ) + φ2(zn(1) − µ)

= µ+ φ1((φ
2
1 + φ2)(zn − µ) + φ1φ2(zn−1 − µ))

+ φ2(φ1(zn − µ) + φ2(zn−1 − µ))

= µ+ (φ3
1 + 2φ1φ2)(zn − µ) + (φ2

1φ2 + φ2
2)(zn−1 − µ) with

V (en(3)) = σ2(1 + φ2
1 + (φ2

1 + φ1)
2) .

for l = 3.

Model 3: For the model (1− φB)(1−B)zt = θ0 + (1− θB)at, to generate forecasts we will
write this in terms of its autoregressive formulation as in the two cases above. Alternatively
we could note that this model is exactly the ARIMA(1,1,1) model given in the example in
the text and use the results there. Then we write the model as

zt = θ0 + (1 + φ)zt−1 − φzt−2 + at − θat−1 ,

which has forecasts given as in the book i.e.

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(θ0 + (1 + φ)zn − φzn−1 + an+1 − θan|zn, zn−1, . . . )

= θ0 + (1 + φ)zn − φzn−1 − θan .

To actually use this last forecast equation one would have to estimated an (along with θ0,
θ, and φ). How to do this is indicated by the general forecast error expansion Equation 98
evaluated at l = 1 which is

en(1) = zn+1 − zn(1) = an+1 .

Thus as an estimate of an we use the residual error in the forecast of zn i.e.

an = zn − zn−1(1) .



To compute zn(2) we have

zn(2) = E(zn+2|zn, zn−1, . . . )

= E(θ0 + (1 + φ)zn+1 − φzn + an+2 − θan+1|zn, zn−1, . . . )

= θ0 + (1 + φ)zn(1) − φzn

= θ0 + (1 + φ)(θ0 + (1 + φ)zn − φzn−1 − θan) − φzn

= θ0 + (1 + φ)θ0 + ((1 + φ)2 − φ)zn − φ(1 + φ)zn−1 − θ(1 + φ)an .

An expression for zn(3) is computed in the same way.

The variance of the l-step-ahead forecast error is best expressed in terms of the coefficients
ψj in the Wold decomposition for the given model. This requires we evaluate

zt =
1

(1 − φB)(1 − B)
(θ0 + (1 − θB)at)

=
1

(1 − φB)(1 − B)
θ0 +

1

(1 − φB)(1 −B)
(1 − θB)at

= θ0 +

(

1 − θB

(1 − φB)(1 − B)

)

at ,

where the last step is since the operator 1
(1−φB)(1−B)

applied to a constant (here θ0) is that

constant again. Expanding 1−θB
(1−φB)(1−B)

in a Taylor series in B gives

ψ1 = 1

ψ2 = 1 + φ+ θ

ψ3 = 1 + φ+ φ2 − (1 + φ)θ
...

ψj =

j
∑

k=0

φk −
(

j−1
∑

k=0

φk

)

θ =

(

φj+1 − 1

φ− 1

)

−
(

φj − 1

φ− 1

)

=

(

1

φ− 1

)

(φj(φ− θ) + (θ − 1)) .

These expressions are used in Equation 93 to compute the desired variances.

Model 4: For the ARIMA(0,2,3) model

(1 −B)2zt = (1 − θ1B − θ2B
2 − θ3B

3)at .

This can be expanded to give

zt = 2zt−1 − zt−2 + at − θ1at−1 − θ2at−2 − θ3at−3 .

From this we compute

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(2zn − zn−1 + an+1 − θ1an − θ2an−1 − θ3an−2|zn, zn−1, . . . )

= 2zn − zn−1 − θ1an − θ2an−1 − θ3an−2 ,



where to actually make predictions using this formula the values of an would need to be
estimated (see the previous model for a discussion of how to do this). To compute zn(2) we
have

zn(2) = E(zn+2|zn, zn−1, . . . )

= E(2zn+1 − zn + an+2 − θ1an+1 − θ2an − θ3an−1|zn, zn−1, . . . )

= 2zn(1) − zn − θ2an − θ3an−1

= 3zn − 2zn−1 + (2θ1 − θ2)an + (−θ2 − θ3)an−1 − θ3an−2 .

An expression for zn(3) is computed in the same way.

To determine the variances of the l-step-ahead forecasts we need to determine the values of
ψj in the Wold decomposition. Thus we need to compute the jth Taylor coefficient of B in
the expression

1 − θ1B − θ2B
2 − θ3B

3

(1 −B)2
,

Using Mathematica we find

ψ0 = 1

ψ1 = 2 − θ1

ψ2 = 3 − 2θ1 − θ2

ψ3 = 4 − 3θ1 − 2θ2 − θ3
...

ψj = (j + 1) − jθ1 − (j − 1)θ2 − (j − 2)θ3

= j(1 − θ1 − θ2 − θ3) + (1 + θ2 + 2θ3) .

These expressions are used in Equation 93 to compute the desired variances.

See the Mathematica file prob 5 10.nb where we derive these Taylor series expansions.

Exercise 5.11 (the ARMA(1,1) model)

Part (a): The autoregressive form of this model is given by finding the coefficients πj in
the polynomial π(B) such that

π(B)(zt − µ) = at .

In the ARMA(1,1) model given here the specific functional form for the function π(B) is
1−φB
1−θB

, so we need to compute the values of πj such that

π(B) =
1 − φB

1 − θB
= 1 − π1B − π2B

2 − π3B
3 − · · · .



These values were derived in the book for ARMA(1,1) models and found to be πj = (φ −
θ)θj−1 for j > 0. Thus

zt − µ = at +

∞
∑

j=1

πjB
jzt = at +

∞
∑

j=1

πjzt−j

= at +
∞
∑

j=1

(φ− θ)θj−1zt−j .

The MMSE forecast using the autoregressive formulation are then given by

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(µ+ an+1 +

∞
∑

j=1

(φ− θ)θj−1zn+1−j |zn, zn−1, . . . )

= µ+
∞
∑

j=1

(φ− θ)θj−1zn+1−j .

Note that due to the MA(1) component the required number of autoregressive coefficients is
infinite and because of this the given formulation may not be the best way to compute the
MMSE predictor. For zn(2) we have a similar expression given by

zn(2) = E(µ+ an+2 +

∞
∑

j=1

(φ− θ)θj−1zn+2−j |zn, zn−1, . . . )

= µ+ (φ− θ)zn(1) +
∞
∑

j=2

(φ− θ)θj−1zn+2−j ,

with zn(1) given in the expression above.

Part (b): To calculate the l-step-ahead forecast error, we need the linear filter representation
of

ψ(B) =
1 − θB

1 − φB
= 1 + ψ1B + ψ2B

2 + · · · .

We find in the book that an ARMA(1,1) model has these coefficients given by ψj = (φ−θ)φj−1

for j > 0 so that the variance of our forecasts is given by

V (en(l)) = σ2

(

1 + (φ− θ)2

l−1
∑

j=1

φj−1

)

= σ2

(

1 +
(φ− θ)2

φ

(

φj

φ− 1

∣

∣

∣

∣

l

1

)

= σ2

(

1 +
(φ− θ)2

φ

(

φl − φ

φ− 1

))

= σ2

(

1 + (φ− θ)2

(

φl−1 − 1

φ− 1

))

.



Part (c): As φ→ 1 our prediction zn(1) becomes

zn(1) = µ+

∞
∑

j=1

(1 − θ)θj−1zn+1−j

= µ+ (1 − θ)(zn + θzn−1 + θ2zn−2 + · · · ) ,

the same as equation 5.76 for an ARIMA(0,1,1). To evaluate V (en(1)) as φ→ 1 we need to
evaluate the limit of

φl−1 − 1

φ− 1
→ (l − 1)φl−1

1
→ l − 1 .

Thus V (en(l)) goes to
V (en(l)) = σ2(1 + (l − 1)(1 − θ)2) ,

which is correct since when φ → 1 the model becomes an ARIMA(0,1,1) model this result
matches the result derived in the text for the ARIMA(0,1,1) model.

Exercise 5.12 (an example forecasting with an AR(1) model)

We are told that estimates of the parameters θ and φ are given by θ̂0 = 50 and φ̂0 = 0.6 and
in addition that z100 = 115. The forecast for an AR(1) model like this are given by

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(θ0 + φzn + an+1|zn, zn−1, . . . )

= θ̂0 + φ̂zn .

For zn(2) we have

zn(2) = E(θ0 + φzn+1 + an+2|zn, zn−1, . . . )

= θ̂0 + φ̂zn(1) .

Finally for zn(3) we have

zn(3) = E(θ0 + φzn+2 + an+3|zn, zn−1, . . . )

= θ̂0 + φ̂zn(2) .

Using the estimated values in the above we find forecasts for the periods 101, 102, and 103
of zn are given by

ẑ101 = z100(1) = 119.0

ẑ102 = z100(2) = 121.4

ẑ103 = z100(3) = 122.84 .

See the MATLAB file prob 5 12.m where we perform these calculations.



Exercise 5.13 (updating the forecasts in an ARIMA(0,1,1) model)

To update our forecasts we use

zn+1(l) = zn(l + 1) + ψl(zn+1 − zn(1)) ,

but evaluated at l − 1 or

zn+1(l − 1) = zn(l) + ψl−1(zn+1 − zn(1)) .

Now for an ARIMA(0,1,1) model ψj = 1−θ for all j so the prediction update equation above
specifically becomes

zn+1(l − 1) = zn(l) + (1 − θ)(zn+1 − zn(1)) . (108)

In addition for this type of model the eventual prediction equation is

zn(l) = zn(l − 1) for l > 1 , (109)

or a constant i.e. all predictions are the same. Thus the knowledge of z100(10) = 26 means
we also know z100(l) for 1 ≤ l ≤ 10 and they all equal the value of 26.

When we receive the measurement z101 = 24 our prior prediction for this value was ẑ100(1) =
26, so using the update Equation 108 with n = 100 and l = 10 we find

z101(9) = z100(10) + (1 − θ̂)(z101 − z100(1))

= 26 + (1 − 0.6)(24 − 26) = 26 − 0.4(2) = 25.2 .

From Equation 109 this is the value of z101(l) for 1 ≤ l ≤ 9 as well.

To compute a 95% confidence interval recall that in general it is given by

ẑn(l) ± uλ/2{V̂ (en(l))}1/2 . (110)

Since an ARIMA(0,1,1) model has a forecast variance given by

V (en(l)) = σ2(1 + (l − 1)(1 − θ)2) , (111)

we have confidence intervals specifically given by

ẑn(l) ± uλ/2σ̂(1 + (l − 1)(1 − θ)2)1/2 ,

so our confidence intervals for the samples we are interested in z102, z103, · · · , z110 are given
by (when σ̂2 = 1)

z101(1) ± uλ/2

z101(2) ± uλ/2(1 + (1 − θ̂)2)1/2

z101(3) ± uλ/2(1 + 2(1 − θ̂)2)1/2

...

z101(9) ± uλ/2(1 + 8(1 − θ̂)2)1/2 .

When we compute these nine confidence intervals for the values of 1 ≤ l ≤ 9 we find



1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

24.04 23.88 23.74 23.61 23.49 23.37 23.25 23.14 23.04

27.96 28.11 28.25 28.38 28.51 28.62 28.74 28.85 28.95

Each column contains the value of l, and the lower and upper bound of the given confidence
interval. See the MATLAB file prob 5 13.m where we perform these calculations.

Exercise 5.14 (forecasting with an ARIMA(1,1,0) model)

Part (a): Note that an ARIMA(1,1,0) model (1 − φB)(1 − B)zt = at or

zt = (1 + φ)zt−1 − φzt−2 + at ,

can be obtained from the ARIMA(1,1,1) model discussed in the book by taking the deter-
ministic trend parameter θ0 = 0 and the lag-one moving average coefficient θ = 0. In the
book we derive for those parameter settings

zn(1) = (1 + φ)zn − φzn−1

zn(2) = (1 + φ)zn(1) − φzn

...

zn(l) = (1 + φ)zn(l − 1) − φzn(l − 2) .

Since z49 = 33.4 and z50 = 33.9 we can compute z50(1), z50(2), . . . z50(5), using the above
forecasting equations. We find

zn(1) = 34.100

zn(2) = 34.180

zn(3) = 34.212

zn(4) = 34.225

zn(5) = 34.230 .

for the first five predictions.

To compute the prediction intervals about these forecasts we will use Equation 110 with
V (en(l)) given by Equation 104 for l = 1, . . . , 5. This requires ψl for an ARIMA(1,1,0)
process. To get these values we will write the model as

zt =

(

1

1 − B − φB + φB2

)

at ,

and compute the first five coefficients of the Taylor series of 1
1−B−φB+φB2 . We find

ψ0 = 1

ψ1 = 1 + φ

ψ2 = 1 + φ+ φ2

ψ3 = 1 + φ+ φ2 + φ3

ψ4 = 1 + φ+ φ2 + φ3 + φ4 ,
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Figure 28: Plots of the confidence intervals for z52, z53, · · · , z55, before (in red) and after (in
green) the measurement z51 is observed.

so that when we use
V (en(l)) = σ2(1 + ψ2

1 + ψ2
2 + · · ·+ ψ2

l−1) ,

the confidence intervals we get are given for l = 1, 2, · · · , 5 as

1.0000 2.0000 3.0000 4.0000 5.0000

33.7472 33.5730 33.3927 33.2250 33.0731

34.4528 34.7870 35.0313 35.2246 35.3867

Part (b): To update these forecasts when the new measurement z51 = 34.2 is observed we
will use Equation 100, Equation 110, and V (en(l)) given by Equation 104, this time evaluated
at n = 51 and l = 1, . . . , 4. When we do this we obtain the following new prediction intervals
from z51 and l ≥ 1 onwards

1.0000 2.0000 3.0000 4.0000

33.9672 33.7610 33.5679 33.3951

34.6728 34.9750 35.2065 35.3947

In Figure 28 we show the confidence intervals for z52 through z55 before (in red) and after (in
green) the measurement at z51 has be observed. Note that the addition of the measurement
decreases our uncertainty in the location of the remaining points. See the MATLAB file
prob 5 14.m and the Mathematica file prob 5 14.nb where we perform these calculations.



Exercise 5.15 (forecasts from an ARIMA(0,2,2) model)

The forecasts for an ARIMA(0,2,2) model like this were derived in the text. There it was
noted that with θ1 = 0.81 and θ2 = −0.38 that

zn(1) = 2zn − zn−1 − θ1an − θ2an−1

zn(2) = 2zn(1) − zn−1 − θ2an

zn(3) = 2zn(2) − zn(1)
...

zn(l) = 2zn(l − 1) − zn(l − 2) for l ≥ 3 .

As stated in the exercise these predictions depend on estimates of a100 and a99 when predictive
forward from n = 100. The derive these estimates recall that an = zn − zn(1) so if we set a91

and a92 both equal to zero we can compute zn(1) for n = 92, · · · , 100 and from these values
compute an for n = 92, · · · , 100. Specifically we compute

z92(1) = 2z92 − z91 − θ̂1a92 − θ̂2a91 = 2z92 − z91

a93 = z93 − z92(1)

z93(1) = 2z93 − z92 − θ̂1a93 − θ̂2a92 = 2z92 − z91 − θ̂1a93

a94 = z94 − z93(1)
...

z98(1) = 2z98 − z97 − θ̂1a98 − θ̂2a97

a99 = z99 − z98(1)

z99(1) = 2z99 − z98 − θ̂1a99 − θ̂2a98

a100 = z100 − z99(1) .

With the two values a99 and a100 we can compute the forecasts z100(l) for l = 1, 2, 3, · · · , 10
as requested. For the values of a91, a92, · · · , a100 we find

0.00 0.00 -0.60 -1.28 0.58 0.86 0.47 -0.74 -0.18 0.63

and using these we find

18.5 19.0 19.6 20.1 20.7 21.3 21.8 22.4 22.9 23.5

for the values of z100(l) for 1 ≤ l ≤ 10 expressed to one decimal. See the MATLAB script
prob 5 15.m where we perform the numerics needed to obtain these results.



Exercise 5.16 (the autoregressive formulation of an ARIMA(0,1,1) model)

Part (a): From the given ARMA(1,1) model (1 − B)zt = (1 − 0.8B)at which we can write
as

(

1 − B

1 − 0.8B

)

zt = at ,

or expanding the fraction with the denominator 1 − 0.8B in its Taylor series we have

(1 − B)

( ∞
∑

j=0

(0.8B)j

)

zt = at .

Simplifying this summation on the left-hand-side we find

zt = at + 0.2

∞
∑

j=1

(0.8)j−1zt−j .

From this expression we define z̄t−1 ≡ 0.2
∑∞

j=1(0.8)j−1zt−j and the coefficients πj are given
by

πj = 0.2(0.8)j−1 ,

for j = 1, 2, . . . . Now consider the requested sum
∞
∑

j=1

πj = 0.2

∞
∑

j=0

(0.8)j = 0.2
1

1 − 0.8
= 1 .

Part (b): The one-step-ahead forecast is given by

zt(1) = E(zt+1|zt, zt−1, · · · )
= E(z̄t + at+1|zt, zt−1, · · · )

= E(0.2

∞
∑

j=1

0.8j−1zt+1−j |zt, zt−1, · · · )

= 0.2

∞
∑

j=1

0.8j−1zt+1−j = z̄t .

The two step-ahead forecasts are of the form

zt(2) = E(zt+2|zt, zt−1, · · · )
= E(z̄t+1 + at+2|zt, zt−1, · · · )

= E(0.2

∞
∑

j=1

0.8j−1zt+2−j |zt, zt−1, · · · )

= 0.2

(

0.2
∞
∑

j=1

0.8jzt+1−j

)

+ 0.2
∞
∑

j=1

0.8jzt+1−j

= 0.2

[ ∞
∑

j=1

(0.2 + 0.8)0.8j−1zt+1−j

]

= 0.2

∞
∑

j=1

0.8j−1zt+1−j = z̄t ,



the same expression for zt(1).

Part (c): From the Exercise 5.18 (proved below) we have

Cov(et(1), et(2)) = σ2

0
∑

i=0

ψiψi+1 = σ2ψ0ψ1 .

An ARIMA(0,1,1) model has ψj = 1 − θ for all j ≥ 1 so ψ0 = 1 and ψ1 = 1 − θ and the
above becomes

Cov(et(1), et(2)) = σ2(1 − θ) .

Exercise 5.17 (the covariance between forecast errors from different origins)

From the section on forecasting we have

et(l) = zt+l − zt(l) = at+l + ψ1at+l−1 + ψ2at+l−2 + · · · + ψl−1at+1 =
l−1
∑

i=0

ψiat+l−i ,

with ψ0 = 1. Since this expression has a zero mean and the at’s are uncorrelated we have

Cov(et(l), et−j(l)) = E(et(l)et−j(l)) .

Using the above summation notation but now for et−j(l) (by shifting t j units to the left)
we see that this expression is given by

et−j(l) =

l−1
∑

i′=0

ψi′at−j+l−i′ ,

so that the product et(l)et−j(l) is given by

et(l)et−j(l) =

l−1
∑

i=0

l−1
∑

i′=0

ψiψi′at+l−iat−j+l−i′ .

The expectation passes through the summation and the above becomes

E(et(l)et−j(l)) =

l−1
∑

i=0

l−1
∑

i′=0

ψiψi′E(at+l−iat−j+l−i′) .

The individual expectations in the sum are zero unless t+ l− i = t−j+ l− i′ or i = i′+j and
the expectation is σ2 when this equality is true. Since the range of the index i is 0 ≤ i ≤ l−1
and i = i′ + j when the expectation is non-zero we have that i′ must satisfy 0 ≤ i′ + j ≤ l−1
or −j ≤ i′ ≤ l− j−1. In addition, since i′ is constrained to be 0 ≤ i′ ≤ l−1 the overlapping
region for non-zero expectation is given by

0 ≤ i′ ≤ l − j − 1 .



Thus the sum above becomes

E(et(l)et−j(l)) = σ2

l−j−1
∑

i′=0

ψi′+jψi′ .

On adding j to the summation limits this becomes

E(et(l)et−j(l)) = σ2
l−1
∑

i′=j

ψi′ψi′+j ,

the requested expression.

Exercise 5.18 (the covariance between forecast errors with different lead times)

As in exercise 5.17 consider

E(et(l)et(l + j)) =

l−1
∑

i=0

l+j−1
∑

i′=0

ψiψi′E(at+l−iat+l+j−i′) .

As before these expectations are zero unless t+ l− i = t+ l+ j− i′ or i = i′ − j equivalently
i′ = i+j depending on which index one wants to consider. Now the index i must be between
0 ≤ i ≤ l−1 so that adding j to both sides of this inequality we have that j ≤ i+j ≤ j+l−1
or since i′ = i+ j that i′ is constrained as j ≤ i′ ≤ j + l − 1. But since i′ itself is restricted
to the range 0 ≤ i′ ≤ l + j − 1 we see that the intersection of these two regions gives that

j ≤ i′ ≤ l + j − 1 .

All other combinations of indices give zero for the expectation. Using this in the expression
above gives

E(et(l)et(l + j)) = σ2

l+j−1
∑

i′=j

ψi′ψi′−j = σ2

l−1
∑

i′=0

ψi′+jψi′ ,

the requested expression.



Exercise 5.19 (the variance of the MMSE forecast of the sum)

Using the results from Exercise 5.18 we can evaluate this. We have for the variance of the
forecast error the following

Var

(

s
∑

l=1

zt+l −
s
∑

l=1

zt(l)

)

= Cov

(

s
∑

l=1

zt+l −
s
∑

l=1

zt(l),

s
∑

l=1

zt+l −
s
∑

l=1

zt(l)

)

= Cov

(

s
∑

l=1

et(l),

s
∑

l=1

et(l)

)

=

s
∑

l=1

s
∑

l′=1

Cov(et(l), et(l
′))

=

s
∑

l=1

Cov(et(l), et(l)) + 2

s
∑

l=1

s
∑

l′=l+1

Cov(et(l), et(l
′))

= σ2
s
∑

l=1

(

l−1
∑

i=0

ψ2
i

)

+ 2
s
∑

l=1

s−l
∑

l′=1

Cov(et(l), et(l
′ + l))

= σ2s
l−1
∑

i=0

ψ2
i + 2σ2

s
∑

l=1

s−l
∑

l′=1

(

l−1
∑

i=0

ψiψi+l′

)

.

Now if zt follows an ARIMA(0,1,1) model then ψj = 1 − θ for all j and we have that

l−1
∑

i=0

ψ2
i = (1 − θ)2l =

l−1
∑

i=0

ψiψi+l′ ,

so the above expression becomes

σ2sl(1 − θ)2 + 2σ2l(1 − θ)2
s
∑

l=1

s−l
∑

l′=1

1 ,

Now the second sum above is given by

s
∑

l=1

s−l
∑

l′=1

1 =
s
∑

l=1

(s− l) = (s− 1) + (s− 2) + · · ·+ 2 + 1 =
s−1
∑

l=1

l =
1

2
(s− 1)s .

Using this we finally arrive at

Var

(

s
∑

l=1

zt+l −
s
∑

l=1

zt(l)

)

= σ2l(1 − θ)2s2 .

Exercise 5.20 (the eventual forecast functions)

For an ARIMA(p,d,q) model when l > q the eventual forecast functions satisfy

φ(B)(1 −B)dzn(l) = 0 , (112)



where the backwards shift operator, B, is now taken to operate on l. The solution to this
difference equation is called the eventual forecast function.

Part (a): For (1 − B)zt = (1 − θ1B − θ2B
2)at or an ARIMA(0,1,2) model, for l > 2 the

eventual forecast function satisfies

(1 − B)zt(l) = 0 or zt(l) = zt(l − 1) .

Thus the eventual forecast for this model is a constant with an initial condition determined
by the value of zn(1). If θ2 = 0 then we have the ARIMA(0,1,1) model

(1 − B)zt = (1 − θ1B)at ,

or
zt = zt−1 + at − θ1at−1 .

Thus our one-step-ahead predictions is

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(zn + an+1 − θ1an|zn, zn−1, . . . )

= zn − θ1an .

Since zn(l) = zn(l − 1) for l > 1 i.e. that all eventual forecasts are the same. That is

zn(l) = zn − θ1an .

Part (b): For the ARIMA(1,3,1) model

(1 − φB)(1 −B)3zt = (1 − θB)at .

the eventual forecasts must satisfy (when l > 1) the following equation

(1 − φB)(1 − B)3zn(l) = 0 .

Exercise 5.21 (a linear trend with a stochastic intercept)

The linear trend model considered in this exercise is given by zt = µt + βt + at with µt =
µt−1 + εt where the sequences {at} and {εt} uncorrelated white-noise with variances given
by V (at) = σ2 and V (εt) = σ2

ε .

Part (a): Note zt is not stationary since E(zt) = E(µt) + βt = βt is not independent of
time, which is a necessary requirement to be stationary. Note that the first difference of zt

or

wt = zt − zt−1 = µt − µt−1 + β(t− t+ 1) + at − at−1

= β + εt + at − at−1 ,



is stationary with a mean wt = zt − zt−1 given by β.

Part (b): Lets compute the 1, 2, 3 autocorrelations γk for wt when k = 1, 2, 3. From the
above since the mean of wt is β we find

γ1 = E((wt − β)(wt−1 − β))

= E((εt + at − at−1)(εt−1 + at−1 − at−2))

= E(εtεt−1) + E(atat−1) −E(atat−2) − E(at−1at−1) + E(at−1at−2)

= −σ2 .

In the same way γ2 is given by

γ2 = E((wt − β)(wt−2 − β))

= E(εt + at − at−1)(εt−2 + at−2 − at−3) = 0 .

Finally γ3 is given by

γ3 = E((wt − β)(wt−3 − β))

= E(εt + at − at−1)(εt−3 + at−3 − at−4) = 0 .

Part (c): Since γ1 = −σ2 and γk = 0 for k ≥ 2 this implies an ARIMA(0,1,1) model for zt.

Part (d): If β = 0, then zt = µt + at = µt−1 + εt + at, which is a locally constant mean
model. From the discussion in earlier chapters exponential smoothing is optimal in this case.

Exercise 5.22 (local mean model with stochastic mean)

Part (a): From Exercise 5.21 an approximation for zt is given by an ARIMA(0,1,1) model.
Note that the given model formulation leads to

zt − zt−1 = εt + at − at−1 ,

Then the forecasts are predicted as

zn(l) = E(zn+l|zn, zn−1, . . . )

= E(zn+l−1 + εn+l + an+l − an+l−1|zn, zn−1, . . . ) .

To evaluate this expectation consider the situation when the term an+l−1 needs to be retained
in the forecast. This will happen if n + l − 1 = n or l = 1. If n + l − 1 > n then all of
the shocks from εn+l, an+l, and an+l−1 are unobservable and thus don’t contributed to the
forecasts. Thus we get

zn(l) =

{

zn(l − 1) − an l = 1
zn(l − 1) l > 1

.

To forecast using this model we need to be able to estimate an, which we can estimate using
zn − zn−1(1). Using the above we find

zn(1) = zn − an = 100.5 − 1 = 99.5

zn(2) = zn(1) = 99.5

zn(3) = zn(2) = 99.5 .
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Figure 29: Left: The sample autocorrelation function of the first difference of the logarithm
of the time series corresponding to the master card applications. Right: The sample partial
autocorrelation function of the same.

Exercise 5.24 (master card applications)

For this problem we estimate an ARIMA model for the master card application data set. In
the MATLAB script prob 5 24.m we load this data set and perform many of the steps above
to determine the model. When this script is run it produces plots of the original data, the log
transformed data, the first difference of this data, the sample autocorrelation function, and
the sample partial autocorrelation function. These later two plots are shown in Figure 29.
Based on this we will specify a ARIMA(2,1,1)

(1 −B)(1 − φ1B − φ2B
2)(zt − µ) = (1 − θB)at .

for this data set. Using the R function prob 5 24.R developed for this exercise we estimate
these coefficients and find

φ̂1 = 0.2642 (0.1720) φ̂2 = −0.1518 (0.1502) θ̂ = +0.743 (0.1187) ,

and σ̂2 = 0.042. Thus the only statistics significant coefficient is θ. We therefore drop the
two AR coefficients and estimate only a MA(1) model. When we do this we find

θ̂ = 0.6666 (0.1316) ,

and σ̂2 = 0.0453. Using the R function predict with the ARIMA developed here we predict
the next four months to have values of

9.280366, 9.280366, 9.280366, 9.280366

The same value for all future predictions as would be expected from a ARIMA(0,1,1) model.
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Figure 30: Left: The sample autocorrelation function of the first difference of the annual
farm parity data set. Right: The sample partial autocorrelation function of this same data
set.

Exercise 5.25 (annual farm parity ratios)

For this problem we estimate an ARIMA model for the annual farm parity ratio data set given
with this exercise. In the MATLAB script prob 5 25.m we load this data set and perform
many of the steps above to determine the model. When this script is run it produces plots of
the original data, the first difference of this data, the sample autocorrelation function, and
the sample partial autocorrelation function. These later two plots are shown in Figure 30.
Based on this we might specify a ARIMA(2,1,0) model or

(1 − B)(1 − φ1B − φ2B
2)(zt − µ) = at ,

for this data set. Using the R function prob 5 25.R developed for this exercise we estimate
these coefficients and find

φ̂1 = 0.5001 (0.1248) φ̂2 = −0.3407 (0.1231) ,

and σ̂2 = 39.01. Using the R function predict we can predict forward five years to obtain

74.84082 74.92062 74.67407 74.52358 74.53231

with standard errors given by

6.245749, 11.260293, 14.293271, 16.121295, 17.565683

Exercise 5.26 (modeling computer sales)

For this problem we estimate an ARIMA model for the computer sales data set given in
Chapter 3 of this book. In the MATLAB script prob 5 26.m we load this data set and
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Figure 31: Left: The sample autocorrelation function of the difference between time series
elements for the software sales data set. Right: The sample partial autocorrelation function
of the same data.

perform many of the steps above to determine the model. When this script is run it produces
plots of the original data, the first difference of this data, the sample autocorrelation function,
and the sample partial autocorrelation function. These later two plots are shown in Figure 31.
Based on this we will specify a ARIMA(0,1,1)

(1 − B)(zt − µ) = (1 − θ1B)at .

for this data set. Using the R function prob 5 26.R we estimate these coefficients and find

θ̂1 = 0.4647 (0.1162) σ̂2 = 2300 ,

Predicting ahead three months gives

412.3376 412.3376 412.3376

Exercise 5.27 (the random walk hypothesis)

For this problem we estimate an ARIMA model for the weekly closing prices of the SPY
exchange traded fund (ETF). This represents a broad selection of stocks in the US stock
market and is often thought to represent the “market”. From yahoo finance we download
these weekly closing prices and save them in the file weekly spy prices.csv. These prices
are then loaded into MATLAB with the command load spy data.m. In the MATLAB script
prob 5 27.m we load this data set and perform many of the steps above to determine the
model. When this script is run it produces plots of the original data, the first difference
of this data, the sample autocorrelation function, and the sample partial autocorrelation
function. These later two plots are shown in Figure 32. These plots indicate that the weekly
prices seem to follow a random walk model

zt = zt−1 + at ,
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Figure 32: Left: The sample autocorrelation function for the first difference of SPY weekly
closing prices. Right: The sample partial autocorrelation function of the same data set.

with at a white-noise process. There are some autocorrelations that appear to be significant
but these might just be due to sample variation. If we choose to look at a more recent time
frame the results are much the same in that there seems to be no easy linear model of this
type that predicts this time series.



Chapter 6: Seasonal Autoregressive Integrated Moving

Average Models

Notes On The Text

Examples of Seasonal ARIMA Models

Here and in the following subsections to verify understanding we will duplicate many of the
seasonal ARIMA example presented in the book. Rather than do all of the work ourselves
we will perform the initial data exploration by hand and then use the R function arima to
find the parameter estimates needed to implement the hypothetical model. The R function
arima is nice in that it allows one to construct seasonal arima models directly which are
needed for this chapter.

Note, however, that when calling the arima function one can obtain different results for the
SARIMA model parameter estimates if we use the option for producing automatic difference
when calling this function or if we explicitly compute the differences ourselves before calling
the function. For example in the gas usage data set (assuming the variable Y contains the
time series data of interest) a call like

ord <- c(0,0,1)

ssn <- list(order=c(0,1,1),period=12)

arima( Y, order=ord, seasonal=ssn, method="ML" )

will produce different parameter estimates than the function call

Yd <- diff(Y,lag=12,differences=1)

ord <- c(0,0,1)

ssn <- list(order=c(0,0,1),period=12)

arima( Yd, order=ord, seasonal=ssn, include.mean=TRUE, method="ML" )

On this data set the second example produces parameter estimates that more closely match
the ones presented in the book, but since the first example is easier to use directly in the R
function predict we will often perform model verification (plotting and verifying the values
of the sample autocorrelation function of the model fit residuals are insignificant) using it.

Examples of Seasonal ARIMA Models: Gas Usage

Here duplicate the results presented in the book on modeling the time series of gas usage
presented in the book. In the MATLAB script model gas section 6 7 2.m, using the MAT-
LAB function load gas usage.m developed in this chapter we load the data and plot many
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Figure 33: Left: The raw data for the monthly U.S. housing starts of single-family structures
for the period January 1965 to December 1974. Right: The direct sample autocorrelation
function for the U.S. housing starts data set.

of the figures provided in the book. We then use the R function model gas section 6 7 2.R

to estimate the specific coefficients of the given model and observe that after doing so the
residuals of the given model are all insignificant (the sign of a good model). Running the
above codes demonstrates these conclusions.

Examples of Seasonal ARIMA Models: Housing Starts

Here we duplicate the results presented in the book on modeling housing starts. Rather
than use a combined MATLAB/R approach we will instead perform all modeling in R. In
the R script model housing starts section 6 7 3.R, we begin by loading and plotting the
data in Figure 33 (left). When next plot the sample autocorrelation of this data to get the
plot in Figure 33 (right). This autocorrelation has the characteristic shape of a periodic
series that needs to be differenced before it will become stationary. Note that from the
sample autocorrelation function plot the period appears to be 12, corresponding to monthly
variations. We take the difference 1 − B12 and replot the autocorrelation function of this
difference in Figure 34 (left). There we see the characteristic slow decay of a non-stationary
time series. Because of this we next consider the first difference of the series (1−B12)zt plots
the corresponding autocorrelation in Figure 34 (middle). This later difference is stationary.
From the pattern of the autocorrelation function for (1 − B)(1 − B12)zt we will assume a
single moving average (MA(1)) term and a single seasonal moving average (SMA(1)) term.
Thus, if we assume a model of the form

(1 − B)(1 −B12)zt = θ0 + (1 − θB)(1 − ΘB12)at ,

we find coefficients of this model (and their standard errors given by)

θ = 0.27(0.08) Θ = 0.99(0.32) θ0 = −0.07(0.14) σ2 = 38.26 ,

dropping the insignificant mean component θ0 and refitting gives parameter estimates that
are almost identical to the ones given above. These parameters also agree relatively well with
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Figure 34: Left: The sample autocorrelation function of (1 − B12)zt for the housing starts
data set. Note the strong long range correlation indicating another difference needs to
be taken to make this series stationary. Center: The sample autocorrelation function of
(1−B)(1−B12)zt for the housing starts data set. Right: The same autocorrelation function
râ for the model found for the housing starts data set.

the ones presented in the book. Finally, for model validation we plot the autocorrelations of
residuals of the fitted model in Figure 34 (right).

Examples of Seasonal ARIMA Models: Car Sales

Here we duplicate the results presented in the book on the car sales data set. In the R
script model car sales section 6 7 3.R. We load and plot the data in Figure 35 (left).
When we plot the sample autocorrelation of this time series directly we get the plot shown
in Figure 35 (right). This has the characteristic shape of a periodic series that needed to be
seasonally differenced before it will become stationary. Note that the period again appears
to be 12 corresponding to monthly variations. We next compute the differences (1 −B12)zt

and replot the autocorrelation function in Figure 36 (left). The significant autocorrelations
are present at the lags k = 1, 2, 12, and 17. To model these we might try to first eliminate
the autocorrelation at the lags k = 1, 2, and 12 first. To do this we could attempt to fit
either an MA(2) or a AR(2) model to (1−B12)zt along with a SMA(1). By stationarity and
invertablilty these two models are similar if the coefficients AR coefficients (φl) and moving
average coefficients (θl) are small. Trying both models in R we find that both models are
quite similar as far as their log likelihoods are concerned. As the AR(2) model is the one
considered in the book we present our results here. For the model

(1 − φ1B − φ2B
2)(1 − B12)zt = θ0 + (1 − ΘB12)at ,

we find coefficients of this model (and their standard errors given by)

θ0 = 0.99(0.17) φ1 = 0.26(0.10) φ2 = 0.20(0.11) Θ = 0.49(0.15) σ2 = 2.218 ,

which are somewhat different values than the book quotes.
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Figure 35: Left: The raw data for new car sales in Quebec from January 1960 to December
1968. Right: The direct sample autocorrelation function for the new car sales in Quebec
data set.

0 5 10 15

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  Yd

0 5 10 15

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  residuals(fit)

Figure 36: Left: The sample autocorrelation function of (1 − B12)zt for the car sales data
set. Right: The same autocorrelation function râ for the model found for the car sales data
set. Note there still seems to be a significant autocorrelation at lag k = 17.
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Figure 37: Left: The raw data for the log of the demand for repair parts data set. Right:
The direct sample autocorrelation function for the log of the parts demand data set.

dropping the insignificant mean component and refitting gives parameter estimates that are
almost identical to the ones given above. These parameters also agree very well with the
ones presented in the book. Finally, for model validation we plot the autocorrelations of
residuals of the fitted model in Figure 36 (right).

Examples of Seasonal ARIMA Models: Demand for Repair Parts

Here we duplicate the results presented in the book on the car sales data set. In the R script
model demand section 6 7 5.R, we load and plot the log of the raw data for this example
in Figure 37 (left). We next plot the sample autocorrelation of this time series directly and
display it in Figure 37 (right). This has the characteristic shape of a periodic series that
needed to be differenced before it will become stationary. We next take the difference 1−B
and replot the autocorrelation function in Figure 38 (left). This autocorrelation structure
looks like it could be fit well with a MA(1) model. If we assume a model of the form

(1 − B) log(zt) = θ0 + (1 − θB)bt ,

we find coefficients of this model (and their standard errors given)

θ = 0.59(0.12) θ0 = 0.00(0.00) σ2 = 0.025 ,

dropping the insignificant mean component and refitting gives parameter estimates that
are almost identical to the ones given above. We next plot the sample autocorrelation of
the residuals bt for the above fit in Figure 38 (center). Note the significant value of the
autocorrelation at lag k = 12. To model this we will assume a seasonal MA(1) model for the
residuals bt. That is we assume that bt satisfies

bt = (1 − ΘB12)at ,

for some white noise process at. This in tern means that the process log(zt) satisfies

(1 −B) log(zt) = (1 − θB)(1 − ΘB12)at ,
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Figure 38: Left: The sample autocorrelation function of (1 − B) log(zt) for the demand
for repair parts. Center: The same autocorrelation function râ for the non-seasonal model
found for the demand for repair parts sales data set. Note there still seems to be a significant
autocorrelation at lag k = 12. Right: The same autocorrelation function râ for the seasonal
model (1 − B) log(zt) = (1 − θB)(1 − ΘB12)at found for the demand for repair parts sales
data set. Note that there no longer are any significant autocorrelations.

or a SARIMA model of (0, 1, 1)(0, 0, 1)12. Fitting this model in the R script model demand 6 7 5.R

and plotting the autocorrelation function for the resulting residuals gives the plot in Fig-
ure 38 (right). In this case, all autocorrelations are insignificant.

Appendix 6 (computing the autocorrelation of an (0, d, 1)(1, D, 1)12 model)

In this section of these notes we will perform some of the steps found in the appendix to this
chapter aimed at computing the autocorrelation function for the (0, d, 1)(1, D, 1)12 model.
To do this we will derive two equations relating γ0 and γ12 and solve these to obtain explicit
expressions for γ0 and γ12. We will then do the same procedure for γ1 and γ11, for γ2 and
γ10, etc down to γ6. After these are obtained we will then derive the requested expressions
for γk for k ≥ 13. To begin this process we recognize that when written out in full the given
model for the stationary difference wt ≡ (1 − B)d(1 − Bs)Dzt is given by

wt = Φwt−12 + at − θat−1 − Θat−12 + θΘat−13 . (113)

Multiplying this expression by wt and taking expectations we would have

E(w2
t ) = ΦE(wtwt−12) + E(wtat) − θE(wtat−1) − ΘE(wtat−12) + θΘE(wtat−13) ,

or written in terms of the autocorrelation functions γk ≡ E(wtwt−k) we have

γ0 = Φγ12 + E(wtat) − θE(wtat−1) − ΘE(wtat−12) + θΘE(wtat−13) . (114)

Now to further evaluate this expression note that if we had the Wold decomposition of the
stationary difference wt, that is an expansion of wt in terms of a linear filter representation
as

wt = at +
∞
∑

l=1

ψlat−l =
∞
∑

l=0

ψlB
lat ,



then it is easy to compute the remaining expectations, E(wtat−k), above since they are given
by

E(wtat−k) = ψkE(a2
t ) = ψkσ

2 .

Since in Equation 114 the above expansion we only need to determine some of the expec-
tations E(wtat−k) (that is we only need these values for E(wtat), E(wtat−1) and E(wtat−12)
we don’t need to compute ψk for all k. An easy way to compute ψk for a few values of k is
to recognized that in the Wold decomposition ψk is exactly equal to the kth coefficient in
the Taylor series expansion of the back-shift operator, B, that when applied to at produces
wt or π(B)

φ(B)
. Thus for the specific model given here we see that

wt =

(

π(B)

φ(B)

)

at =

(

1 − θB − ΘB12 + θΘB13

1 − ΦB12

)

at .

Therefore to evaluate E(wtat−k) for k = 0, 1, 12 we need to find is the kth coefficient with
respect to the variable B in the Taylor expansion of

1 − θB − ΘB12 + θΘB13

1 − ΦB12
.

The values can be explicitly computed from derivatives of this expression. From Taylor’s
theorem we have

E(wtat−k) =
1

k!

dk

dBk

(

1 − θB − ΘB12 + θΘB13

1 − ΦB12

)∣

∣

∣

∣

B=0

σ2 . (115)

We can use an algebraic manipulation package like Mathematica to compute the specific
values of E(wtat−k) we need. In the MATHEMATICA file appendix 6.nb we find

E(wtat) = σ2

E(wtat−1) = −θσ2

E(wtat−12) = (Φ − Θ)σ2

E(wtat−13) = θ(−Φ + Θ)σ2 .

Thus when we put these into Equation 114 we obtain

γ0 = Φγ12 + σ2 + θ2σ2 − Θ(Φ − Θ)σ2 + θ2Θ(−Φ + Θ)σ2

= Φγ12 + σ2(1 + θ2)(1 + Θ(Θ − Φ)) ,

which agrees with the result in the book.

The above equation has two unknowns γ0 and γ12. To obtain another equation that relates
them we multiply Equation 113 by wt−12 to get

wtwt−12 = Φw2
t−12 + atwt−12 − θat−1wt−12 − Θat−12wt−12 + θΘat−13wt−12 .

Taking expectations of this we get

γ12 = Φγ0 + E(atwt−12) − θE(at−1wt−12) − ΘE(at−12wt−12) + θΘE(at−13wt−12) . (116)



Again from the Wold decomposition for wt we have

wt = ψ(B)at = at +
∞
∑

l=1

ψlat−l ,

so that shifting time by twelve units gives

wt−12 = at−12 +
∞
∑

l=1

ψlat−12−l .

From this we can compute that

E(wt−12 at) = 0

E(wt−12 at−1) = 0

E(wt−12 at−12) = σ2

E(wt−12 at−13) = ψ1σ
2 .

Now from before ψ1 = −θ so Equation 116 becomes

γ12 = Φγ0 − Θσ2(1 + θ2) ,

which is the second equation for γ0 and γ12. Solving these two equations gives values for γ0

and γ12 that are given in the book.

Next to derive equations for γ1 and γ11 compute the expectation of the product wtwt−1 as

γ1 = E(wtwt−1)

= E(wt−1(Φwt−12 + at − θat−1 − Θat−12 + θΘat−13))

= Φγ11 + E(wt−1at) − θE(wt−1at−1) − ΘE(wt−1at−12) + θΘE(wt−1at−13) .

To continue this evaluation we need to compute E(wt−1at), E(wt−1at−1), E(wt−1at−12), and
E(wt−1at−13). We can evaluate many of these expectations by shifting the time index. We
find

E(wt−1at) = E(wtat+1) = 0

E(wt−1at−1) = E(wtat) = σ2

E(wt−1at−13) = E(wtat−12) = (Φ − Θ)σ2 .

The one new expression we need to evaluate is E(wt−1at−12) = E(wtat−11). In the MATHE-
MATICA file we find this to be zero. Thus with these expectations evaluated we obtain

γ1 = Φγ11 − θσ2 + Θθ(Φ − Θ)σ2 ,

which is equation 5 in the book. Now γ11 is given by

γ11 = E(wtwt−11)

= E((Φwt−12 + at − θat−1 − Θat−12 + θΘat−13)wt−11)

= Φγ1 − ΘE(at−12wt−11) + θΘE(at−13wt−11)

= Φγ1 − ΘE(at−1wt) + θΘE(at−2wt)

= Φγ1 + Θθσ2 ,



since E(at−2wt) = 0. This is equation 6 in the book. These two equations can be solved for
γ1 and γ11 giving the results found in the book.

Computing the values of γ2 and γ10 in the same way as the others thus far we find

γ2 = E(wtwt−2)

= E(wt−2(Φwt−12 + at − θat−1 − Θat−12 + θΘat−13))

= Φγ10 + E(wt−2at) − θE(wt−2at−1) − ΘE(wt−2at−12) + θΘE(wt−2at−13)

= Φγ10 ,

and

γ10 = E(wtwt−10)

= E(wt−10(Φwt−12 + at − θat−1 − Θat−12 + θΘat−13))

= Φγ2 − ΘE(wt−10at−12) + θΘE(wt−10at−13)

= Φγ2 ,

so γ2 = γ10 = 0. From these final arguments the remaining claims given in the book that
γ3 = γ4 = · · · = γ10 = 0 and γk = Φγk−12 for k > 13 is seem reasonable.

Exercise Solutions

Exercise 6.1 (computing the ACF)

This problem is aimed as comparing non-multiplicative models like that in Part (a) with
multiplicative models like that in Part (b).

Computing the autocorrelation function in this case is easy since zt is already written in a
Wold decomposition, thus

zt−k = (1 − θ1B − θ12B
12 − θ13B

13)at−k

= (Bk − θ1B
k+1 − θ12B

k+12 − θ13B
k+13)at ,

so we can compute E(ztzt−k) by multiplying the polynomial

1 − θ1B − θ12B
12 − θ13B13

(representing zt) with
Bk − θ1B

k+1 − θ12B
k+12 − θ13B

k+13

representing zt−k and then read off the coefficients that would be produced when the expec-
tation is taken. In the MATHEMATICA file prob 6 1.nb we perform this multiplication



and find (everything should be multiplied by σ2)

γ0 = 1

γ1 = −2θ1

γ2 = θ2
1

γ12 = −2θ12

γ13 = 2θ1θ12 − 2θ13

γ14 = 2θ1θ13

γ24 = θ2
12

γ25 = 2θ12θ13

γ26 = θ2
13 ,

and zero otherwise. Since γ0 (normalized by σ2) is one these are also the expressions for ρk.

Part (b): Note that this model is the special case of the model (0, 0, 1)(0, 0, 1)12 so we
can consider model number 3 from this chapter. There it was found that model has an
autocorrelation function given by

ρk =































1 k = 0
− θ

1+θ2 k = 1
θΘ

(1+θ2)(1+Θ2)
k = 11

− Θ
1+Θ2 k = 12

ρ11 k = 13
0 otherwise

Exercise 6.2 (more autocorrelation functions)

As in Exercise 6.1 since these models are already given in the Wold decomposition form,
computing the autocorrelation functions for them is relatively easy.

Part (a): Using the MATHEMATICA file prob 6 2.nb some of the coefficients are

γ0 = 1

γ1 = −2θ1

γ2 = θ2
1 − 2θ2

γ3 = 2θ1θ2

γ4 = θ2
2

γ12 = −2Θ

γ13 = 4Θθ1 ,

the remaining coefficients are found in the above MATHEMATICA file.

Part (b): For this part of the problem the value of the autocorrelation function for this
model can found in the above MATHEMATICA file.



Exercise 6.3 (observations of the sample ACF)

Part (a): If the model yt ≡ (1−B12)zt = αt, where the residual series αt has an autocorre-
lation function that dies down and a sample partial autocorrelation function with one spike
at lag 1, then possibly an AR(1) model could be used to model the residual αt. Doing this
the model for zt would become

(1 − φB)(1 − B12)zt = at ,

or (1, 0, 0)(0, 1, 0)12 model.

Part (b): If after this modification our model now has an autocorrelation function with
a spike at lag 12 then maybe we need to add a seasonal MA(1) component. That is the
residual above, at, may satisfy at = (1 − ΘB12)bt, so the resulting model for zt would be

(1 − φB)(1 −B12)zt = (1 − ΘB12)bt ,

or a (1, 0, 0)(0, 1, 1)12 model.

Exercise 6.4 (the β
(t+1)
1,2 updating equations)

To solve this expression we will evaluate the given expression for zt+l

zt+l = β
(t)
1 sin(

2πl

12
) + β

(t)
2 cos(

2πl

12
) + et(l) ,

at zt+l+1 in two ways. The first is based on considering zt+l+1 as an increment in t and not
in l. Thus we evaluate zt+l+1 centered in time on the point t+ 1 to get

zt+l+1 = β
(t+1)
1 sin(

2πl

12
) + β

(t+1)
2 cos(

2πl

12
) + et+1(l) , (117)

this is basically just evaluating β
(t)
1,2 at the time t + 1. The second way is to expand zt+l+1

about the point t (with l incremented by one) to get

zt+l+1 = β
(t)
1 sin(

2π(l + 1)

12
) + β

(t)
2 cos(

2π(l + 1)

12
) + et(l + 1) . (118)

Equating Equation 117 with Equation 118 for l = 1, 2 gives

β
(t+1)
1 sin(

π

6
) + β

(t+1)
2 cos(

π

6
) + et+1(1) = β

(t)
1 sin(

π

3
) + β

(t+1)
2 cos(

π

3
) + et(2)

β
(t+1)
1 sin(

π

3
) + β

(t+1)
2 cos(

π

3
) + et+1(2) = β

(t)
1 sin(

π

2
) + β

(t+1)
2 cos(

π

2
) + et(3) ,

or in matrix form

[

1/2
√

3/2√
3/2 1/2

]

[

β
(t+1)
1

β
(t+1)
2

]

=

[ √
3/2 1/2
1 0

]

[

β
(t)
1

β
(t)
2

]

+

[

et(2) − et+1(1)
et(3) − et+1(2)

]

.



Inverting the matrix on the left hand side gives the update equation of
[

β
(t+1)
1

β
(t+1)
2

]

=

[

−1
√

3√
3 −1

] [ √
3/2 1/2
1 0

]

[

β
(t)
1

β
(t)
2

]

+

[

−1
√

3√
3 −1

] [

et(2) − et+1(1)
et(3) − et+1(2)

]

.

Now recall that the error in the l-step-ahead prediction, et(l), is given by

et(l) = at+l + ψ1at+l−1 + ψ2at+l−2 + · · · + ψl−2at+2 + ψl−1at+1 .

Evaluating this expression for et+1(l) and et(l + 1) we find

et(l + 1) = at+l+1 + ψ1at+l + ψ2at+l−1 + · · ·+ ψl−2at+3 + ψl−1at+2 + ψlat+1

et+1(l) = at+1+l + ψ1at+l + ψ2at+l−1 + · · ·+ ψl−2at+3 + ψl−1at+2 .

Thus the difference et(l + 1) − et+1(l) is therefore given simply by

et(l + 1) − et+1(l) = ψlat+1 .

Since for this model the first two linear representation coefficients ψl are given by ψ1 =
√

3−θ1
and ψ2 = 2 −

√
3θ1 − θ2 the above becomes

[

β
(t+1)
1

β
(t+1)
2

]

=

[ √
3/2 −1/2

1/2
√

3/2

]

[

β
(t)
1

β
(t)
2

]

+

[

−1
√

3√
3 −1

] [ √
3 − θ1

2 −
√

3θ1 − θ2

]

at+1

=

[ √
3/2 −1/2

1/2
√

3/2

]

[

β
(t)
1

β
(t)
2

]

+

[ √
3 − 2θ2 −

√
3θ2

1 + θ2

]

at+1 ,

which is the result quoted in the book.

Exercise 6.5 (more β
(t+1)
i updating equations)

For the model is given by equation 6.15 in the book

zt+l = β
(t)
0 + β

(t)
26 (−1)l +

5
∑

j=1

(

β
(t)
1j sin(

2πjl

12
) + β

(t)
2j cos(

2πjl

12
)

)

+ et(l) , (119)

by incrementing t to t+ 1 we obtain the representation in terms of the coefficients β(t+1) as

zt+l+1 = β
(t+1)
0 + β

(t+1)
26 (−1)l +

5
∑

j=1

(

β
(t+1)
1j sin(

2πjl

12
) + β

(t+1)
2j cos(

2πjl

12
)

)

+ et+1(l) . (120)

We next evaluate Equation 119 at l + 1 to get

zt+l+1 = β
(t)
0 −β(t)

26 (−1)l+
5
∑

j=1

(

β
(t)
1j sin(

2πj(l + 1)

12
) + β

(t)
2j cos(

2πj(l + 1)

12
)

)

+et(l+1) . (121)

Equating Equations 120 and 121 for l = 1, 2, · · · , 12 provides a relationship that relates
β(t+1) to β(t). If we introduce a vector v(t) the values of which are β(t) in in then each



equation above can be viewed as the dot product of a certain row vector r(l) and v(t). The
components of v and r(l) in this case look like

v(t) =















































β
(t)
0

β
(t)
26

β
(t)
11

β
(t)
21

β
(t)
12

β
(t)
22

β
(t)
13

β
(t)
23

β
(t)
14

β
(t)
24

β
(t)
15

β
(t)
25















































and r(l) =









































1
(−1)l

sin(2π
12
l)

cos(2π
12
l)

sin(4π
12
l)

cos(4π
12
l)

sin(6π
12
l)

cos(6π
12
l)

sin(8π
12
l)

cos(8π
12
l)

sin(10π
12
l)

cos(10π
12
l)









































.

Then as a matrix system when we equate Equations 120 and 121 for l = 1, 2, 3, · · · , 12 we
obtain the system















r(1)′

r(2)′

r(3)′

...
r(12)

















































β
(t+1)
0

β
(t+1)
26

β
(t+1)
11

β
(t+1)
21
...

β
(t+1)
14

β
(t+1)
24

β
(t+1)
15

β
(t+1)
25



































=















r(1 + 1)′

r(2 + 1)′

r(3 + 1)′

...
r(12 + 1)

















































β
(t)
0

β
(t)
26

β
(t)
11

β
(t)
21
...

β
(t)
14

β
(t)
24

β
(t)
15

β
(t)
25



































+































et(2) − et+1(1)
et(3) − et+1(2)
et(4) − et+1(3)
et(5) − et+1(4)

...
et(10) − et+1(9)
et(11) − et+1(10)
et(12) − et+1(11)
et(13) − et+1(12)































.

As in the previous exercise since

et(l) = at+l + ψ1at+l−1 + · · ·+ ψl−2at+2 + ψl−1at+1 ,

we have

et(l + 1) − et+1(l) = at+l+1 + ψ1at+l + ψ2at+l−1 + · · ·+ ψl−1at+2 + ψlat+1

− (at+1+l + ψ1at+l + ψ2at+l−1 + · · ·+ ψl−2at+3 + ψl−1at+2)

= ψlat+1 .



Recalling that for this model ψl = 1 − Θ for j = 12, 24, · · · and is zero otherwise the above
system becomes















r(1)′

r(2)′

r(3)′

...
r(12)′

















































β
(t+1)
0

β
(t+1)
26

β
(t+1)
11

β
(t+1)
21
...

β
(t+1)
14

β
(t+1)
24

β
(t+1)
15

β
(t+1)
25



































=















r(1 + 1)′

r(2 + 1)′

r(3 + 1)′

...
r(12 + 1)′

















































β
(t)
0

β
(t)
26

β
(t)
11

β
(t)
21
...

β
(t)
14

β
(t)
24

β
(t)
15

β
(t)
25



































+































0
0
0
0
...
0
0
0

1 − Θ































at+1 .

Solving this expression for v(t+1) gives gives the following update equations

β
(t+1)
0 = β

(t)
0 +

1

12
(1 − Θ)at+1

β
(t+1)
26 = −β(t)

26 +
1

12
(1 − Θ)at+1

β
(t+1)
11 =

√
3

2
β

(t)
11 − 1

2
β

(t)
21

β
(t+1)
21 =

1

2
β

(t)
11 +

√
3

2
β

(t)
21 +

1

6
(1 − Θ)at+1

β
(t+1)
21 =

1

2
β

(t)
21 −

√
3

2
β

(t)
22

β
(t+1)
22 =

√
3

2
β

(t)
21 +

1

2
β

(t)
22 +

1

6
(1 − Θ)at+1

β
(t+1)
31 = −β(t)

32

β
(t+1)
32 = β

(t)
31 +

1

6
(1 − Θ)at+1

β
(t+1)
41 = −1

2
β

(t)
41 −

√
3

2
β

(t)
42

β
(t+1)
42 =

√
3

2
β

(t)
41 − 1

2
β

(t)
42 +

1

6
(1 − Θ)at+1

β
(t+1)
51 = −

√
3

2
β

(t)
51 − 1

2
β

(t)
52

β
(t+1)
52 =

1

2
β

(t)
51 −

√
3

2
β

(t)
52 +

1

6
(1 − Θ)at+1 ,

which is the same expression given in the book. Much of the algebra involved in the above
matrix calculations are performed in the MATHEMATICA file prob 6 5.nb.



Exercise 6.6 (the (0, 1, 1)(0, 1, 1)12 model)

The (0, 1, 1)(0, 1, 1)12 model is specifically given by

(1 − B)(1 −B12) = (1 − θB)(1 − ΘB12)at ,

or in autoregressive form by

(1 −B)(1 − B12)

(1 − θB)(1 − ΘB12)
zt = at .

Consider the first fraction above

1 − B

1 − θB
= (1 −B)

∞
∑

k=0

θkBk =

∞
∑

k=0

θkBk −
∞
∑

k=0

θkBk+1 =

∞
∑

k=0

θkBk −
∞
∑

k=1

θk−1Bk

= 1 + (θ − 1)
∞
∑

k=0

θkBk+1 .

In the same way we find the second fraction given by

1 − B12

1 − ΘB12
= 1 + (Θ − 1)

∞
∑

k=0

ΘkB12(k+1) .

Thus their product is given by

(

1 − B

1 − θB

)(

1 − B12

1 − ΘB12

)

=

(

1 + (θ − 1)

∞
∑

k=0

θkBk+1

)(

1 + (Θ − 1)

∞
∑

k=0

ΘkB12(k+1)

)

= 1 + (θ − 1)

∞
∑

k=0

θkBk+1 + (Θ − 1)

∞
∑

k=0

ΘkB12(k+1)

+ (θ − 1)(Θ − 1)
∞
∑

k1=0

∞
∑

k2=0

θk1Θk2B12k2+k1+13 .

These expressions give explicit representation of the coefficients φk in the decomposition of
zt into its pure autoregressive formulation zt = at +

∑∞
k=1 φkzt−k in that using the above but

moving every term with a shift (i.e. a B coefficient) to the right hand side of the equals sign
we find

zt = at − (θ − 1)

∞
∑

k=0

θkzt−(k+1) − (Θ − 1)

∞
∑

k=0

Θkzt−12(k+1)

− (θ − 1)(Θ − 1)

∞
∑

k1=0

∞
∑

k2=0

θk1Θk2zt−(12k2+k1+13) .

Then we can predict the value of zt+1 using the conditional expectation formula

zt(1) = E(zt+1|zt, zt−1, · · · )

= E(at+1 +
∞
∑

k=1

φkzt+1−k|zt, zt−1, · · · ) =
∞
∑

k=1

φkzt+1−k .



Using the just found autoregressive formulation for the (0, 1, 1)(0, 1, 1)12 model the expression
for zt(1) becomes

zt(1) = (1 − θ)

∞
∑

k=0

θkzt−k + (1 − Θ)

∞
∑

k=0

Θkzt−12k−11

− (1 − θ)(1 − Θ)

∞
∑

k1=0

∞
∑

k2=0

θk1Θk2zt−(12k2+k1+12)

= EWMA(zt) + SEWMA(zt−11)

− (1 − θ)(1 − Θ)

∞
∑

k1=0

∞
∑

k2=0

θk1Θk2zt−(12k2+k1+12) .

Using the definitions of the two weighted averages SEWMA and EWMA and recognizing
that the seasonal exponential weighted moving average operator SEWMA(zt) is linear, we
can write the expression presented in this exercise for the value of zt(1) as

zt(1) = EWMA(zt) + SEWMA(zt−11) − SEWMA(EWMA(zt−12))

= (1 − θ)
∑

j≥0

θjzt + (1 − Θ)
∑

j≥0

Θjzt−12j−11 − SEWMA

(

(1 − θ)
∑

j≥0

θjzt−12−j

)

= (1 − θ)
∑

j≥0

θjzt + (1 − Θ)
∑

j≥0

Θjzt−12j−11

− (1 − θ)(1 − Θ)
∑

j≥0

∑

k≥0

Θkθjzt−12k−12−j ,

since this expression is equivalent to the one we derived above we have shown the desired
relationship.

Exercise 6.7 (quarterly modeling)

Part (a): The stationary difference is (1−B)(1−B4)zt. Since this equals (1−Θ)at it would
have an autocorrelation structure with a single peak at lag k = 4.

Part (b): The given model is

(1 −B −B4 +B5)zt = (1 − ΘB4)at ,

or
zt = zt−1 + zt−4 − zt−5 + at − Θat−4 .

so incrementing t by l we get

zt+l = zt+l−1 + zt+l−4 − zt+l−5 + at+l − Θat+l−4 .



and our predictions are given by

zn(1) = E(zn+1|zn, zn−1, . . . )

= E(zn + zn−3 − zn−4 + an+1 − Θan−3|zn, zn−1, . . . )

= zn + zn−3 − zn−4 − Θan−3 .

zn(2) = zn(1) + zn−2 − zn−3 − Θan−2

zn(3) = zn(2) + zn−1 − zn−2 − Θan−1

zn(4) = zn(3) + zn − zn−1 − Θan

zn(5) = zn(4) + zn(1) − zn

zn(6) = zn(5) + zn(2) − zn(1)

zn(7) = zn(6) + zn(3) − zn(2)
...

zn(l) = zn(l − 1) + zn(l − 4) − zn(l − 5) for l ≥ 6 ,

or
(1 − B)(1 −B4)zn(l) = 0 ,

for the eventual forecast function

Part (c): To compute zn(1) we assume we have been measuring zn and making predictions
for some time. Then recalling that an estimate for an can be given by ân ≈ zn − zn(1), so

zn(1) = zn + zn−3 − zn−4 − Θ̂ân−3 ,

is how to predict one-step-ahead when we have observed the time series up to and including
zn.

Exercise 6.8 (a comparison of three seasonal ARIMA models)

For the model (0, 1, 1)(1, 0, 0)12 given by

(1 − ΦB12)(1 − B)zt = (1 − θB)at ,

we have zt given by
zt = zt−1 + Φzt−12 − Φzt−13 + at − θat−1 .

Incrementing t by l gives

zt+l = zt+l−1 + Φzt+l−12 − Φzt+l−13 + at+l − θat+l−1 .
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Figure 39: Left: A time series plot of the raw data for the quarterly earnings per share for
General Moters (GM) stock. Right: The direct sample autocorrelation function for the GM
quarterly earnings data set.

From this our forecasts are given by

zn(1) = E(zn+1|zn, zn−1, . . . )

= zn + Φzn−11 + Φzn−12 − θan .

zn(2) = zn(1) + Φzn−10 + Φzn−11

zn(3) = zn(2) + Φzn−9 + Φzn−10

...

zn(10) = zn(9) + Φzn−2 + Φzn−3

zn(11) = zn(10) + Φzn−1 + Φzn−2

zn(12) = zn(11) + Φzn + Φzn−1

zn(13) = zn(12) + Φzn(1) + Φzn

zn(14) = zn(13) + Φzn(2) + Φzn(1)
...

zn(l) = zn(l − 1) + Φzn(l − 12) + Φzn(l − 13) for l ≥ 14 ,

So the eventual forecast function is given by

zn(l) = zn(l − 1) + Φzn(l − 12) + Φzn(l − 13) ,

or
(1 − ΦB12)(1 − B)zn(l) = 0 .

Exercise 6.9 (quarterly earnings per share)

In the R script prob 6 9.R, we begin by loading and plotting the data in Figure 39 (left).
When next plot the sample autocorrelation of this data to get the plot in Figure 39 (right).
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Figure 40: Left: The sample autocorrelation function of (1 − B4)zt for the GM quarterly
earnings data set. Right: The autocorrelation function of the residuals, râ, for the model
found in the text below for the GM stock earnings data set.

This autocorrelation has the characteristic shape of a periodic series that needs to be differ-
enced before it will become stationary. From the sample autocorrelation function plot the
period appears to be 4, corresponding to quarterly variations. We thus take the difference
1 − B4 and replot the autocorrelation function of this difference in Figure 40 (left). This
later difference is stationary. From the pattern of the autocorrelation function for (1−B4)zt

we will assume a single seasonal moving average (SMA(1)) term to model this. Thus, if we
assume a model of the form

(1 − B4)zt = θ0 + (1 − ΘB4)at ,

we can find coefficients for this model (and their standard errors given by) in one of two ways
as discussed on Page 120. Taking explicit differences first and then using the R command
arima gives considerably different results than letting the arima command do the seasonal
differences itself. For example, if Y contains the initial time series and I execute the following
R commands

ord <- c(0,0,0)

ssn <- list(order=c(0,1,1),period=4)

arima( Y, order=ord, seasonal=ssn, method="ML" )

gives for estimates of the coefficients (some output trimmed)

Coefficients:

sma1

-0.6578

s.e. 0.0883

sigma^2 estimated as 0.8548: log likelihood = -151.27, aic = 306.54



while the call where we compute the explicit seasonal differences of Y ourselves

Yd <- diff(Y,lag=4,differences=1)

ord <- c(0,0,0)

ssn <- list(order=c(0,0,1),period=4)

arima( Yd, order=ord, seasonal=ssn, include.mean=TRUE, method="ML" )

gives

Coefficients:

sma1 intercept

-1.0000 0.0751

s.e. 0.2952 0.0092

sigma^2 estimated as 0.6805: log likelihood = -144.1, aic = 294.2

The problem with this last results is that if Θ = 1.0 (the sign convention of the moving
average component in R is the opposite one of the book) then the suggested model becomes
(assuming θ0 is insignificant)

(1 − B4)zt = (1 − ΘB4)at = (1 − B4)at ⇒ zt = at .

This makes me think that when using the function arima it is better to let the function
compute the seasonal differences itself rather than explicitly doing it. In either case, plots
of the sample autocorrelation function help guide the model building process. To complete
this exercise, using the first specification of the arima command we obtain the sample au-
tocorrelations of the residuals of the proposed (0, 0, 0)(0, 1, 1)4 model in Figure 40 (right).
The next four predictions (and their standard errors) under this model would be

3.130336 3.452201 1.265497 2.399056

0.924579 0.924579 0.924579 0.924579

Exercise 6.10 (monthly arrivals of U.S. citizens)

See the R script prob 6 10.R for the code to do this problem. In that R script, we load
and plot the data in Figure 41 (left). When we plot the sample autocorrelation directly we
get the plot in Figure 41 (right). This has the characteristic shape of a periodic series that
needed to be differenced before it will become stationary. Note that the period appears to
be 12 corresponding to monthly variations. We take the difference 1 − B12 and replot the
autocorrelation function in Figure 42 (left). There we see the characteristic slow decay of
a non-stationary time series. We then consider the first difference of this series and plots
the corresponding autocorrelation in Figure 42 (middle). This later difference is stationary.
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Figure 41: Left: A time series plot of the raw data for the monthly arrival of U.S. citizens.
Right: The direct sample autocorrelation function for the monthly arrival data set.
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Figure 42: Left: The sample autocorrelation function of (1−B12)zt for the monthly arrivals
of U.S. citizen data set. Center: The sample autocorrelation function of (1−B)(1−B12)zt

for the monthly arrivals of U.S. citizen data set. Right: The autocorrelation function of the
residuals, râ, for the model found in the text for the monthly arrivals of U.S. citizen data
set.
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Figure 43: Left: The raw data for the unemployed U.S. civilian labor force (in thousands)
for the period 1970-1978. Right: The direct sample autocorrelation function for this U.S.
civilian labor force data set.

From the pattern of the autocorrelation function for (1 − B)(1 − B12)zt we will assume a
model for this series consisting of a single moving average (MA(1)) term. Thus, if we assume
a model of the form

(1 − B)(1 −B12)zt = θ0 + (1 − θB)at ,

we find the coefficient θ0 insignificant, and

θ = 0.74(0.08) σ2 = 7251 ,

Finally, for model validation we plot the autocorrelations of residuals of the fitted model in
Figure 42 (right).

Exercise 6.11 (modeling unemployed U.S. civilians)

In the R script prob 6 11.R, we begin by loading and plotting the data in Figure 43 (left).
When next plot the sample autocorrelation of this data to get the plot in Figure 43 (right).
This autocorrelation has the characteristic shape of a periodic series that needs to be differ-
enced before it will become stationary. Because of the great number of adjacent significant
values of rk we take the first difference 1−B and replot the autocorrelation function of this
difference in Figure 44 (left). There we see a strong periodic component at the lag k = 12.
Because of this we next consider the first seasonal difference of the series or (1−B12)(1−B)zt.
The autocorrelation for this time series is plotted in Figure 44 (right). Based on the oscil-
lations observed we hypothesis that our model could be improved with the inclusion of a
AR(2) component. Thus the model at this point would be (2, 1, 0)(0, 1, 0)12. Plots of the
sample autocorrelation for such a model are given in Figure 45 (left) Based on this looks like
we are now missing a SMA(1) term which when we include we get the following model

(1 − φ1B − φ2B
2)(1 − B12)(1 − B)zt = (1 − ΘB)at .

Finally, for model validation we plot the autocorrelations of residuals of the fitted model in
Figure 45 (right).
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Figure 44: Left: The sample autocorrelation function of (1 − B)zt for the U.S. labor force
data set. Right: The sample autocorrelation function of (1 − B12)(1 − B)zt for the U.S.
labor force data set.

0 5 10 15 20

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  residuals(fit)

0 5 10 15 20

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  residuals(fit)

Figure 45: Left: The sample autocorrelation function of the residuals for the model (1 −
φ1B − φ2B

2)(1 − B12)(1 − B)zt for the U.S. labor force data set. Right: The sample
autocorrelation function râ for the model found for the U.S. labor force data set.
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Figure 46: Left: The raw data for the monthly Canadian wage change data set. Right:
The direct sample autocorrelation function for Canadian wage change data.
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Figure 47: Left: The sample autocorrelation function of (1−B12)zt for the monthly Canadian
wage change data set. This indicates a SMA(1) model maybe applicable. Right: The same
autocorrelation function râ for the model found for monthly Canadian wage change data set.

Exercise 6.12 (modeling monthly Canadian wage change)

In the R script prob 6 12.R, we begin by loading and plotting the data in Figure 46 (left).
When next plot the sample autocorrelation of this data to get the plot in Figure 46 (right).
Based on the large spike at lag k = 12 we will take the first seasonal difference of this data
(1 − B12)zt, and replot the autocorrelation function of this difference in Figure 47 (left).
From this plot we choose to model this data as having a single seasonal moving average
SMA(1) as

(1 −B12)zt = θ0 + (1 − ΘB12)at .

We find coefficients of this model (and their standard errors given by)

Θ = 0.43(0.10) θ0 = 0.07(0.06) σ2 = 1.00 .

Using the model above with these parameters produces residuals with autocorrelations pre-
sented in Figure 47 (right).
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Figure 48: Left: The raw data for the beer shipments data set. Right: The direct sample
autocorrelation function for the beer shipments data set.

Exercise 6.13 (modeling beer shipments)

In the R script prob 6 13.R, we begin by loading and plotting the data in Figure 48 (left).
When next plot the sample autocorrelation of this data directly to get the plot in Fig-
ure 48 (right). This autocorrelation has the characteristic shape of a non-stationary series
that needs to be differenced before it will become stationary. We take the difference 1 − B
and replot the autocorrelation function of this difference in Figure 49 (left). There we see the
characteristic profile of a periodic problem. Because the autocorrelation appears to expo-
nentially decay with a period of four we first tried a single seasonal autoregressive (SAR(1))
term to model this data. When we fit that model and plot the residual autocorrelations we
obtain the plot in Figure 49 (middle). Note that this autocorrelation still has a significant
k = 1 lag value. Thus in assuming a model of the form

(1 − ΦB4)(1 − B)zt = bt ,

we find the time series bt satisfies bt = (1− θB)at and so we should revise our original model
to be

(1 − ΦB4)(1 −B)zt = (1 − θB)at .

When this model is fit to the beer shipment data set the residuals of the fitted model are
plotted in Figure 49 (right).

Exercise 6.14 (modeling traffic fatalities)

In the R script prob 6 14.R, we begin by loading and plotting the data in Figure 50 (left).
When next plot the sample autocorrelation of this data to get the plot in Figure 50 (right).
This autocorrelation has the characteristic shape of a periodic series that needs to be differ-
enced before it will become stationary. Note that from the sample autocorrelation function
plot the period appears to be 12, corresponding to monthly variations. We take the differ-
ence 1 − B12 and replot the autocorrelation function of this difference in Figure 51 (left).
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Figure 49: Left: The sample autocorrelation function of (1 − B)zt for the beer sales data
set. Note the strong periodic component that remains and decays very slowly. Middle: The
sample autocorrelation function of the residuals for the model (1 − ΦB4)(1 − B)zt for the
beer sales data set. Right: The same autocorrelation function râ for the final model found
for beer sales data set.
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Figure 50: Left: The raw data for the monthly traffic fatalities for the period January
1960 to December 1968. Right: The direct sample autocorrelation function for the traffic
fatalities data set.
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Figure 51: Left: The sample autocorrelation function of (1−B12)zt for the traffic fatalities
data set. Center: The sample autocorrelation function of the residuals râ for the model
(1 − θB)(1 − B12)zt = (1 − ΘB12)at fit to the traffic fatalities data set. Right: The same
autocorrelation function râ for the model found for the housing starts data set.

There we see a exponential decay in the autocorrelation structure and a spike at the k = 12
lag. These observations lead us to try a first order autoregressive model AR(1) coupled with
a first order seasonal moving average model. The autocorrelation of the residuals for such a
model is plotted in in Figure 51 (middle). From this pattern of the autocorrelation function
we still have a significant k = 1 term so we will modify the original model by adding a single
moving average (MA(1)) term. Thus, our model now take the form

(1 − φB)(1 − B12)zt = (1 − θB)(1 − ΘB12)at .

Finally, for model validation we plot the autocorrelations of residuals of this fitted model in
Figure 51 (right).

Exercise 6.15 (modeling gasoline demand)

In the R script prob 6 15.R, we begin by loading and plotting the data in Figure 52 (left).
When next plot the sample autocorrelation of this data to get the plot in Figure 52 (right).
This autocorrelation has the characteristic shape of a series that needs to be differenced
before it will become stationary. We therefore take the first difference 1 − B and replot
the autocorrelation function of this difference in Figure 53 (left). From this plot we see a
strong periodic component remains in the autocorrelation. These observations lead us to
further take a seasonal difference. When we plot the sample autocorrelation function of
the time series (1 − B12)(1 − B)zt we obtain Figure 53 (right). From this pattern of the
autocorrelation function we still have several significant autocorrelations with considerable
long range structure. Because of this we add an AR(2) model to the existing model giving
a model

(1 − φ1B − φ2B
2)(1 −B)(1 − B12)zt = at .

The autocorrelation of the residuals from such a model are shown in Figure 54 (left). From
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Figure 52: Left: The raw data for the monthly gasoline demand in Ontario (in millions of
gallons) from January 1960 to December 1975. Right: The direct sample autocorrelation
function for the gasoline demand data set.
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Figure 53: Left: The sample autocorrelation function of (1 − B)zt for the gasoline demand
data set. Right: The sample autocorrelation function of (1−B12)(1−B)zt for the gasoline
demand data set.



0 5 10 15 20

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  residuals(fit)

0 5 10 15 20

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  residuals(fit)

Figure 54: Left: The sample autocorrelation function of (1 − B)zt for the gasoline demand
data set. Right: The sample autocorrelation function of (1−B12)(1−B)zt for the gasoline
demand data set.

this last plot we see that we still have a significant k = 12 term so we will modify the original
model by adding a single seasonal moving average (SMA(1)) term. Thus, our final model
now take the form

(1 − φ1B − φ2B
2)(1 − B)(1 −B12)zt = (1 − ΘB)at .

The residuals of this final model are presented in Figure 54 (right).



Chapter 7: Relationships Between Forecasts From Gen-

eral Exponential Smoothing and Forecasts from ARIMA

Time Series Models

Notes On The Text

Updating the coefficients in the eventual forecast function

If we specify f ∗ to be the fitting functions determined such that they satisfy

ϕ(B)zn(l) = φ(B)(1 − B)dzn(l) = 0 ,

that is f ∗ are the p + d independent solutions to the eventual forecast equation. Then
coefficient updates β(n) must satisfy

f ∗(l)′β(n+1) = f ∗(l + 1)′β(n) + ψl(zn+1 − zn(1)) for l > q − p− d .

If we evaluate this expression for lookaheads “l” taken to be l, l + 1, l + 2, · · · , l + p+ d− 1
we see that the total number of equations we will have specified is

(l + p+ d− 1) − l + 1 = p+ d ,

the exact number needed given the number of solutions p+d to the eventual forecast difference
equation,

ϕ(B)zn(l) = (1 −B)dφ(B)zn(l) = 0 ,

These equations specifically look like

f ∗(l)′β(n+1) = f ∗(l + 1)′β(n) + ψl(zn+1 − zn(1))

f ∗(l + 1)′β(n+1) = f ∗(l + 2)′β(n) + ψl+1(zn+1 − zn(1))

f ∗(l + 2)′β(n+1) = f ∗(l + 3)′β(n) + ψl+2(zn+1 − zn(1))
...

f ∗(l + p+ d− 1)′β(n+1) = f ∗(l + p+ d)′β(n) + ψl+p+d−1(zn+1 − zn(1)) .

Now define the matrix F ∗
l to have its rows made up of the values of f ∗(l)′, f ∗(l+1)′, . . . f ∗(l+

p+ d− 1), we see that the above system can be written as the matrix system

F ∗
l β

(n+1) = F ∗
l+1β

(n) +















ψl

ψl+1

ψl+2
...

ψl+p+d−1















(zn+1 − zn(1)) .

Multiplying both sides of this equation by F ∗
l
−1 to get

β(n+1) = F ∗
l
−1F ∗

l+1β
(n) + F ∗

l
−1















ψl

ψl+1

ψl+2
...

ψl+p+d−1















(zn+1 − zn(1)) ,



which is the coefficient update equation and is equation 7.18 in the book.

Illustrative Examples: The 12-point sinusoidal model

Note that trigonometric fitting functions of the form sin(xl) and cos(xl) the roots G of
the polynomial φm(B) are given by the complex exponentials e±ix, so that in the 12-point
sinusoidal model example given here wherem = 3, f1(l) = 1, f2(l) = sin(2π

12
l), f3(l) = sin(2π

12
l)

we have our roots given by

G± = e±i 2π
12 = cos(

π

6
) ± i sin(

π

6
) =

√
3

2
± i

2
.

Thus the reducing polynomial φ(B) that results from the trigonometric terms look like

(

1 −
(√

3

2
+
i

2

)

B

)(

1 −
(√

3

2
− i

2

)

B

)

= 1 −
√

3B +B2 ,

which is the polynomial given on the left-hand-side of equation 7.2.7 in the book.

Exercise Solutions

Exercise 7.1 (specifying appropriate ARIMA models)

For each part of this exercise, we must find an order m polynomial, φm(B), the roots, Gj ,
of which satisfy

φm(B)fi(l) =
m
∏

j=1

(1 −GjB)fi(l) = 0 ,

for 1 ≤ i ≤ m. That is the polynomial φm(B) (when considered as a difference operator)
annihilates each fi(·). Then with this polynomial φm(B) the ARIMA model that gives rise
to the same forecasts as general exponential smoothing with a discount coefficient of ω is
given by

m
∏

j=1

(1 −GjB)zt =
m
∏

j=1

(

1 − ω

Gj
B

)

at . (122)

This equation will be used in the parts below.

Part (a): If f(l) = (1, l)′ then the polynomial φm(B) that annihilates the functions f1(l) = 1
and f2(l) = l is φ2(B) = (1 − B)2. From Equation 122 the equivalent ARIMA model that
gives rise to an eventual forecast function that agrees with exponential smoothing with a
discount coefficient ω is

(1 − B)2zt = (1 − ωB)2at .



Part (b): In this case we need φ3(B) = (1 − B)3 so the ARIMA model that gives rise to
the equivalent forecasts as general exponential smoothing with a discount coefficient ω is

(1 − B)3zt = (1 − ωB)3at .

Part (c): Exponential smoothing with m = 2 fitting functions has φ2(B) = (1−B)(1−φB)
so

(1 − B)(1 − φB)zt = (1 − ωB)

(

1 − ωB

φ

)

at ,

is the ARIMA model that gives rise to the equivalent forecasts as general exponential smooth-
ing with a discount coefficient ω.

Part (d): For these trigonometric fitting functions the roots G are given by G = e±i π
2 = ±i.

Thus
φ3(B) = (1 −B)(1 − iB)(1 + iB) = (1 −B)(1 +B2) .

As a check lets verify that 1 + B2 annihilates the fitting functions sin(π
2
l) and cos(π

2
l) as it

should

(1 +B2) sin(
π

2
l) = sin(

π

2
l) + sin(

π

2
(l − 2))

= sin(
π

2
l) + sin(

π

2
l) cos(π) − cos(

π

2
l) sin(π) = 0 .

and

(1 +B2) cos(
π

2
l) = cos(

π

2
l) + cos(

π

2
(l − 2))

= cos(
π

2
l) + cos(

π

2
l) cos(π) + sin(

π

2
l) sin(π) = 0 .

Thus the ARIMA model that gives rise to the equivalent forecasts as general exponential
smoothing with a discount coefficient ω is

(1 −B)(1 +B2)zt = (1 − ωB)(1 + ω2B2)at .

Part (e): This is a similar result as in Part (d) but now we need a second factor of (1−B).
Thus we see that φ(B) = (1 − B)2(1 + B2) and the ARIMA model that gives rise to the
equivalent forecasts as general exponential smoothing with a discount coefficient ω is

(1 − B)2(1 +B2)zt = (1 − ωB)2(1 + ω2B2)at .

Part (f): In case we have added the two additional fitting functions l sin(π
2
l) and l cos(π

2
l),

which will be annihilated by a second powers of the expression (1−G±B), where G± is the
complex roots used in the modeling of the trigonometric terms sin(π

2
l) and cos(π

2
l) . Thus

we now have

φ(B) = (1 − B)2

(

1 −
(√

3

2
+
i

2

)

B

)2(

1 −
(√

3

2
− i

2

)

B

)2

= (1 − B)2(1 −
√

3B +B2)2 .

and the ARIMA model that gives rise to the equivalent forecasts as general exponential
smoothing with a discount coefficient ω is given by applying Equation 122.



Part (g): In this case we have trigonometric fitting functions with two different frequencies.
For the fitting function sin(2π

12
l) and cos(2π

12
l) we already found roots given by

G± = ei( 2π
12 ) =

√
3

2
± i

2
.

For the second set of fitting functions sin(4π
12
l) and cos(4π

12
l) we have roots given by

G± = ei( 4π
12 ) = cos(

π

3
) ± i sin(

π

3
) =

1

2
±

√
3

2
.

Thus the polynomial φ(B) looks like

φ(B) = (1 − B)2

×
(

1 −
(√

3

2
+
i

2

)

B

)(

1 −
(√

3

2
− i

2

)

B

)

×
(

1 −
(

1

2
+
i
√

3

2

)

B

)(

1 −
(

1

2
− i

√
3

2

)

B

)

= (1 − B)2(1 −
√

3B +B2)(1 − B +B2) .

Thus the ARIMA model that gives rise to the equivalent forecasts as general exponential
smoothing with a discount coefficient ω is

(1−B)2(1−
√

3B +B2)(1−B +B2)zt = (1− ωB)2(1−
√

3ωB+ω2B2)(1− ωB+ω2B2)at .

Part (h): Since this is a subset of the Part (g) above, the polynomial φ(B) in this case is

φ(B) = (1 − B)2

(

1 −
(

1

2
+
i
√

3

2

)

B

)(

1 −
(

1

2
− i

√
3

2

)

B

)

= (1 − B)2(1 − B +B2) .

Thus the ARIMA model that gives rise to the equivalent forecasts as general exponential
smoothing with a discount coefficient ω is

(1 − B)2(1 − B +B2)zt = (1 − ωB)2(1 − ωB + ω2B2)at .



Chapter 8: Special Topics

Notes On The Text

Transfer Function Analysis

To estimate the values of the totality of parameters in the type of transfer function-noise
model considered here

yt =
ω(B)

δ(B)
xt−b +

θ(B)

φ(B)
at ,

or equivalently by multiplying by δ(B)φ(B) we obtain a form without any fractions

δ(B)φ(B)yt = φ(B)ω(B)xt−b + δ(B)θ(B)at .

Taking polynomial representations for δ(·), φ(·), ω(·), and θ(·) of the type discussed in the
book where

δ(B) = 1 − δ1B − δ2B
2 − · · · − δrB

r

ω(B) = ω0 − ω1B − ω2B
2 − · · · − ωsB

s

φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p

θ(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q .

Now we see that from the order of the above polynomials the order of the polynomial products
δ(B)φ(B) is r+ p, that of φ(B)ω(B) is p+ s, and that of δ(B)θ(B) is r+ q. Thus the model
above becomes (introducing by notation some new coefficients dk, ck, and bk)

yt + d1yt−1 + d2yt−2 + · · ·+ dr+pyt−r−p

− c0xt−b − c1xt−1−b − c2xt−2−b − · · · − cp+sxt−p−s−b

+ at − b1at−1 − b2at−2 − b3at−3 − · · · br+qat−r−q ,

which is equivalent to the books equation 8.23.

Notes on 8.1.2: Forecasting with Transfer Function Models

To derive the forecast equations we begin by recalling the transfer function Model 8.4 as

Yn = ν(B)Xn +Nn . (123)

Defining xn = ∇dXn and yn = ∇dYn the stationary differences of the series Xn and Yn

obtained by taking ∇d = (1 −B)d of Equation 123 we get

yn = ν(B)xn + nn ,



with nn = ∇dNn. Assuming we have found a transfer function model of ν(B) = ω(B)
δ(B)

Bb and

an ARMA noise model of nn = θ(B)
φ(B)

an this becomes the

yn =
ω(B)

δ(B)
xt−b +

θ(B)

φ(B)
an , (124)

which is equation 8.21 in the book. Expressed with a unit coefficient in front of the white-
noise series an and the original variables Xn and Yn we have

φ(B)

θ(B)
∇dYn =

φ(B)

θ(B)

ω(B)

δ(B)
Bb∇dXn + an .

From this expression if we then Taylor expand the functions in front of Yn and Xn as

φ(B)

θ(B)
∇d =

φ(B)

θ(B)
(1 −B)d = 1 − π1B − π2B

2 − · · · − πkB
k − · · ·

and
φ(B)

θ(B)

ω(B)

δ(B)
Bd∇d =

φ(B)

θ(B)
ν(B)(1 − B)d = ν∗0 + ν∗1B + ν∗2B

2 + · · · ,

the model above could be written

Yn = π1Yt−1 + π2Yt−2 + · · ·+ ν∗0Xn + ν∗1Xt−1 + ν∗2Xt−2 + · · ·+ an . (125)

From this expression we expect that our l-step-ahead predictions, Yn(l), can be written as a
linear combination of αn the whitened xn signal and an the whitened error signal

Yn(l) = (η
(1)
0 Yn + η

(1)
1 Yn−1 + η

(1)
2 Yn−2 + · · · ) + (η

(2)
0 Xn + η

(2)
1 Xn−1 + η

(3)
2 Xn−2 + · · · ) .

As an equivalent expression for Yn(l) recall that ∇dXn = θx(B)
φx(B)

αn so Yn satisfy

(1 − B)dYn = ν(B)∇dXn +
θ(B)

φ(B)
an

= ν(B)
θx(B)

φx(B)
αn +

θ(B)

φ(B)
an ,

by using the input whitening φx(B)
θx(B)

of xt. Solving for Yn in this expression we obtain

Yn = (1 − B)−dν(B)φ−1
x (B)θx(B)αn + (1 − B)−dθ(B)φ−1(B)an . (126)

If we define functions u(B) and ψ(B) as

u(B) = (1 − B)−dν(B)φ−1
x (B)θx(B)

ψ(B) = (1 − B)−dφ−1(B)θ(B) ,

in Equation 126 we have the α, a representation for Yn+l, by setting n→ n+ l.

As an example of using these equations for the illustration model given in the text

(1 − B)(1 − δB)Yn = (1 − B)ω0Xn + (1 − θB)(1 − δB)an ,



expanding the products gives

(1 − δB −B + δ2B2)Yn = ω0Xn − ω0Xn−1 + an − (δ + θ)an−1 + δθan−2 .

So solving for Yn we get

Yn = (1 + δ)Yn−1 − δ2Yn−2 + ω0Xn − ω0Xn−1 + an − (δ + θ)an−1 + δθan−2 .

Evaluating this expression at n→ n + l gives

Yn+l = (1 + δ)Yn+l−1 − δ2Yn+l−2 + ω0Xn+l − ω0Xn+l−1 + an+l − (δ + θ)an+l−1 + δθan+l−2 ,

or the equation in the book. Now to derive the forecast error variances we need to know the
coefficients uj and ψj in the expression for Yn+l in terms of αn+l and an+l, where

Yn(l) = u(B)αn+l + ψ(B)an+l

= u0αn+l + u1αn+l−1 + · · · + ul−1αn+1 + ulαn + ul+1αn−1 + · · ·
+ an+l + ψ1an+l−1 + · · ·+ ψl−1an+1 + ψlan + ψl+1an−1 + · · ·

For the model given here since xn = (1 − θxB)αn we have

(1 −B)Yn =
ω0

1 − δB
(1 − θxB)αn + (1 − θB)an ,

or

Yn =
ω0

(1 − B)(1 − δB)
(1 − θxB)αn +

1 − θB

1 −B
an .

Thus we see that the functions u(B) and ψ(B) are

u(B) =
ω0

(1 − B)(1 − δB)
(1 − θxB)

ψ(B) =
1 − θB

1 − B
.

From which via Taylor’s theorem we can easily compute the coefficients u0, u1, · · · , ψ1, ψ2, · · ·
needed in the expression for the error variance V [en(l)].

Notes on ARIMA time series modeling

In this section we show using the method of “repeated substitution”, that the given state-
space representation of an ARIMA model is equivalent to the usual definition. If we write
the given example system (equation 8.50) in terms of its individual equations we get the
following

St+1,1 = φ1St,1 + St,2 + at+1

St+1,2 = φ2St,1 + St,3 − θ1at+1

St+1,3 = φ3St,1 + St,4 − θ2at+1

...

St+1,k−1 = φk−1St,1 + St,k − θk−2at+1

St+1,k = φkSt,1 − θk−1at+1 .



We insert the second equation in the first equation to find

St+1,1 = φ1St,1 + φ2St−1,1 + St−1,3 − θ1at + at+1 .

Using the equation for St+1,3 in the above we find St+1,1 given by

St+1,1 = φ1St,1 + φ2St−1,1 + φ3St−2,1 + St−2,4 − θ2at−1 − θ1at + at+1 .

Using the equation for St+1,4 in the above we find St+1,1 given by

St+1,1 = φ1St,1 + φ2St−1,1 + φ3St−2,1 + φ4St−3,1 + St−3,5 − θ3at−2 − θ2at−1 − θ1at + at+1 .

Continuing in this manner we can see how the solution for St,1 of this linear system (or the
state-space representation) in the same as the solution of the more standard ARIMA(p,q)
state space equation

yt = φ1yt−1 + · · · + φpyt−p + at − θ1at−1 − · · · − θqat−q .

Notes on the Section Entitled: Bayesian Forecasting

From the given linear expression for βt+l = Htβt + εt and using β̂t+l|t = Alβ̂t|t to be the
expectation of βt+l|t we have

Pt+l|t = E
(

(βt+l − β̂t+l|t)(βt+l − β̂t+l|t)
′
)

= E
([

Al(βt − β̂t|t) + at+l + Aat+l−1 + · · · + Al−1at+1

]

×
[

Al(βt − β̂t|t) + at+l + Aat+l−1 + · · ·+ Al−1at+1

]′
)

= AlPt|t(A
′)l + E(at+la

′
t+l) + AE(at+l−1a

′
t+l−1)A

′ + · · ·+ Al−1E(at+1a
′
t+1)(A

′)l−1

= AlPt|t(A
′)l +R2 + AR2A

′ + · · ·+ Al−1R2(A
′)l−1 ,

using the properties of zero mean and uncorrelated of the random shocks a’s.

Notes on the Section: Models with Time Varying Coefficients

When the system is given by the following set of equations

yt = x′tβt + εt

βt+1 = βt + at+1 ,

To cast this in the Kalman filtering framework we will take the vector βt as the “state”, the
scalar yt as the measurement, and the vector x′t as the measurement matrix Ht. Since yt is
a scalar, to parameterize this model we can take R2 = V (at) = σ2Ω where σ2 = V (εt) = R1

(thus we have “factored” out the scalar variance σ2 from the definition of the variance of



at). To complete the setup for the Kalman filter we assume a parametric model of the state
β of the following normal form

(βt+1|Yt) ∼ N(β̂t+1|t, σ
2Pt+1|t)

(βt+1|Yt+1) ∼ N(β̂t+1|t+1, σ
2Pt+1|t+1) .

A direct application of the Kalman filtering equations specified to this specific problem is
then given by

β̂t+1|t = β̂t|t

σ2Pt+1|t = σ2Pt|t + σ2Ω ⇒ Pt+1|t = Pt|t + Ω

β̂t+1|t+1 = β̂t+1|t + kt+1(yt+1 − x′t+1β̂t+1|t)

σ2Pt+1|t+1 = σ2Pt+1|t − kt+1x
′
t+1σ

2Pt+1|t ⇒ Pt+1|t+1 = Pt+1|t − kt+1x
′
t+1Pt+1|t

kt+1 = σ2Pt+1|tx
′
t+1(x

′
t+1σ

2Pt+1|txt+1 + σ2)−1 = (x′t+1Pt+1|txt+1 + 1)−1Pt+1|tx
′
t+1 .

These match the books equation 8.58. Since there are only simple modifications due to the
time update (drift), if we simplify notation by letting β̂t = β̂t|t and Pt = Pt|t we can combine
the above equations into just two equations giving

β̂t+1 = β̂t + [1 + x′t+1(Pt + Ω)xt+1]
−1(Pt + Ω)xt+1(yt+1 − x′t+1β̂t) (127)

Pt+1 = Pt + Ω − [1 + x′t+1(Pt + Ω)xt+1]
−1(Pt + Ω)xt+1x

′
t+1(Pt + Ω) , (128)

which matches the books equations 8.59. As a further simplification if we assume our state
β has no time dependence then βt+1 = βt = β (a constant) and V (at) = 0 = σ2Ω or Ω = 0
and the above two equations simplify to

β̂t+1 = β̂t + [1 + x′t+1Ptxt+1]
−1Ptxt+1(yt+1 − x′t+1β̂t) (129)

Pt+1 = Pt − [1 + x′t+1Ptxt+1]
−1Ptxt+1x

′
t+1Pt . (130)

which match the books equations 8.60.

Exercise Solutions

Exercise 8.1 (impulse response weights for various transfer function models)

With a model for Yt given by

Yt = v0Xt + v1Xt−1 + v2Xt−2 + · · · = v(B)Xt ,

where the function v(B) = v0 + v1B + v2B
2 + · · · is call a transfer function where the

coefficients v0, v1, · · · are called the impulse response weights. For this exercise to find these
values we will compute the Taylor series for each of the given functions and plot their values
as a function of their index in a “stem plot”. See the MATHEMATICA file prob 8 1.nb

where this is done.
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Figure 55: Left: The impulse response weights for the transfer function ω0/(1−δ1B). Right:
The impulse response weights for the transfer function (ω0 − ω1B)/(1 − δ1B).
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Figure 56: Left: The impulse response weights for the transfer function (ω0 − ω1B −
ω2B

2)/(1 − δ1B). Right: The impulse response weights for the transfer function (ω0 −
ω1B)/(1 − δ1B − δ2B

2).



Exercise 8.2 (the gas furnace example)

For this exercise we are asked to evaluate Y206(l) and V (e260(l)) for l = 1, 2, · · · , 6. To solve
this problem we first need to derive an expression for Yn+l implied by the given model for
Yt. To begin we multiply by (1 − 0.57B)(1 − 1.53B + 0.63B2) to get an expression without
fractions and find a left hand side (LHS) given by

LHS = (1 − 0.57B)(1 − 1.53B + 0.63B2)(Yt − 53.51) ,

with a corresponding right hand side (RHS) given by

RHS = −(0.53 + 0.37B + 0.51B2)(1 − 1.53B + 0.63B2)(Xt−3 + 0.057) + (1 − 0.57B)at .

Expanding the polynomial products above gives

LHS = (1 − 2.1B + 1.5021B2 − 0.3591B3)(Yt − 53.51)

RHS = (−0.53 + 0.4409B − 0.2778B2 + 0.5472B3 − 0.3213B4)(Xt−3 + 0.057) + (1 − 0.57B)at .

Solving for Yt in the LHS expression and equating it to the RHS we arrive at an expression
for Yt in terms of past values of Xt and Yt

Yt − 53.51 = 2.1(Yt−1 − 53.51) − 1.5021(Yt−2 − 53.51) + 0.3591(Yt−3 − 53.51)

− 0.53(Xt−3 + 0.057) + 0.4409(Xt−4 + 0.057) − 0.2778(Xt−5 + 0.057)

+ 0.5472(Xt−6 + 0.057) − 0.3213(Xt−7 + 0.057)

+ at − 0.57at−1 .

Using this we can write Yt+l directly as

Yt+l = −53.51 + 2.1(Yt+l−1 − 53.51) − 1.5021(Yt+l−2 − 53.51) + 0.3591(Yt+l−3 − 53.51)

− 0.53(Xt+l−3 + 0.057) + 0.4409(Xt+l−4 + 0.057) − 0.2778(Xt+l−5 + 0.057)

+ 0.5472(Xt+l−6 + 0.057) − 0.3213(Xt+l−7 + 0.057) (131)

+ at+l − 0.57at+l−1 .

To compute the expected forecast values Yn(l) we recall its definition as the conditional
expectation of Yn+l given everything we know up until time t = n or

Yn(l) = E[Yn+l|Yn, Yn−1, . . . ;Xn, Xn−1, . . . ] .

Using this definition and the notation E[|·] to simply the conditional expectation notation
we have

Yn(l) = −53.51 + 2.1(E[Yt+l−1|·] − 53.51) − 1.5021(E[Yt+l−2|·] − 53.51) + 0.3591(E[Yt+l−3|·] − 53.51)

− 0.53(E[Xt+l−3|·] + 0.057) + 0.4409(E[Xt+l−4|·] + 0.057) − 0.2778(E[Xt+l−5|·] + 0.057)

+ 0.5472(E[Xt+l−6|·] + 0.057) − 0.3213(E[Xt+l−7|·] + 0.057)

+ at+l − 0.57at+l−1 .

Note that to evaluate the above we need the expressions E[Xt+l|·] which are the predictions
of Xt+l using the model for Xt+l which is obtained from

Xt+l + 0.057 = 1.97(Xt−1+l + 0.057) − 1.37(Xt−2+l + 0.057) + 0.34(Xt−3+l + 0.057) + αt+l .



To use these expressions to make future predictions of Yn and Xn one way we can imagine
doing this by keeping four arrays that hold the predicted values. The four arrays would
hold the values of any observed Xn and X’s future predictions Xn(l), observed values of
Yn and Y ’s future predictions Yn(l), an and a’s expected future predictions which are zero,
and finally αn and α’s expected future predictions which are again zero. As an example, to
predict from the index 260 onward these arrays would be populated as (we introduce a fifth
array n for convenience)

n = [258, 259, 260, 261, 262, 263, · · · ]
xa = [X258, X259, X260, X260(1), X260(2), X260(3), · · · ]
ya = [Y258, Y259, Y260, Y260(1), Y260(2), Y260(3), · · · ]
aa = [Y258 − Y257(1), Y259 − Y258(1), Y260 − Y259(1), 0, 0, 0, · · · ]
Aa = [X258 −X257(1), X259 −X258(1), X260 −X259(1), 0, 0, 0, · · · ] .

The update equations can be written in terms of these arrays. For example, to compute l
steps ahead from Yn can now be written as (assuming that the array index n corresponds to
the index for 260 and that there is sufficient data in all arrays)

for( l=1, l <= L; ++l ){

xa[n+l] = - 0.057 + 1.97 (xa[n+l-1] + 0.057) - 1.37 (xa[n+l-2] + 0.057) \

+ 0.34 (xa[n+l-3] + 0.057) + Aa[n+l]

ya[n+l] = - 53.51 + 2.1 ( ya[n+l-1] - 53.51 ) - 1.5021 ( ya[n+l-2] - 53.51 ) \

+ 0.3591 ( ya[n+l-3] - 53.51 ) - 0.53 ( xa[n+l-3] + 0.057 ) \

+ 0.4409 ( xa[n+l-4] + 0.057 ) - 0.2778 ( xa[n+l-5] + 0.057 ) \

+ 0.5472 ( xa[n+l-6] + 0.057 ) - 0.3213 ( xa[n+l-7] + 0.057 ) \

+ aa[n+l] - 0.57 aa[n+l-1]

}

Predictions using this method give the following

The expression for the variance V [en(l)] is given by

V [en(l)] =
l−1
∑

j=0

(u2
jσ

2
α + ψ2

jσ
2) =

l−1
∑

j=0

(0.0353u2
j + 0.0561ψ2

j ) ,

where uj and ψj are the coefficients in the linear filter model for Yn i.e. when Yn is written
in the form

Yn = u(B)αn + ψ(B)an .

This form can be obtained by solving for Xn in terms of αn and putting the resulting
expression into the expression for Yt. For example in this problem we have Xt given by

Xt = −0.057 +
αt

1 − 1.97B + 1.37B2 − 0.34B3
,

so that using this the expression for Yt becomes

Yt − 53.51 = −0.53 + 0.37B + 0.51B2

1 − 0.57B

(

1

1 − 1.97B + 1.37B2 − 0.34B3

)

αt−3

+
1

1 − 1.53B + 0.36B2
at .



From the above our functions u(B) and ψ(B) are given by

u(B) = − (0.53 + 0.37B + 0.51B2)B3

(1 − 0.57B)(1 − 1.97B + 1.37B2 − 0.34B3)

= −0.53B3 − 1.7162B4 − 3.54791B5 − 5.32746B6 − 6.50813B7 − 6.89408B8 +O(B)6

ψ(B) =
1

1 − 1.53B + 0.36B2

= 1 + 1.97B + 2.5109B2 + 2.58757B3 + 2.32739B4 + 1.89368B5 +O(B)6 .

See the MATHEMATICA file prob 8 1.nb where some of these results are derived.

Exercise 8.7 (ARIMA(0,1,1) as a state-space model)

For the ARIMA(0,1,1) model (1 − B)yt = (1 − θB)at we have yt given by

yt = yt−1 + at − θat−1 ,

Thus we take our state vector St to be St =

[

yt

−θat

]

with k = max(p, q+1) = max(0, 2) = 2

our state update equations are given by

[

St+1,1

St+1,2

]

=

[

1 1
0 0

] [

St,1

St,2

]

+

[

1
−θ

]

at+1 .

The individual equations are then

St+1,1 = St,1 + St,2 + at+1

St+1,2 = −θat+1 .

We can check that that these are correct by putting the second equation into the first. When
we do this we find

St+1,1 = St,1 − θat + at+1 ,

which is an ARIMA(0,1,1) model as claimed.

Exercise 8.8 (ARIMA(1,1,1) as a state-space model)

The ARIMA(1,1,1) model is (1 − B)(1 − φB)zt = (1 − θB)at or

(1 − (1 + φ)B + φB2)zt = (1 − θB)at ,

or
zt = (1 + φ)zt−1 − φzt−2 + at − θat−1 . (132)



Here we have k = max(p, q + 1) = max(2, 1 + 1) = 2, φ1 = 1 + φ, and φ2 = −φ to get the
system

[

St+1,1

St+1,2

]

=

[

1 + φ 1
−φ 0

] [

St,1

St,2

]

+

[

1
−θ

]

at+1 .

Lets check that this reduces to the requested ARIMA(1,1,1) model. In the equation form
we have

St+1,1 = (1 + φ)St,1 + St,2 + at+1

St+1,2 = −φSt,1 − θat+1 .

We put the second equation into the first to get

St+1,1 = (1 + φ)St,1 − φSt−1,1 + at+1 − θat+1 ,

which is the same as Equation 132 showing the desired equivalence.

Exercise 8.9 (the Kalman updating equations for simple linear regression)

For a regression model like this one where we assume a model of the form

yt = β0 + β1xt + εt ,

with β0, β1 constant, a state-space representation is obtained by taking St =

[

β0

β1

]

with no

process/plant noise and the identity for the system matrix A, so the Kalman system equation
is simply St+1 = St. Let Ht = x′

t =
[

1 xt

]

, where xt is the scalar measurement received
at time t corresponding to the scalar response yt. Then the Kalman updating equations
become (given an initial guess at β0 and β1 which could be 0)

Ŝt+1|t = Ŝt|t

Pt+1|t = Pt|t

kt+1 = Pt+1|tH
′
t+1(Ht+1Pt+1|tH

′
t+1 +R1)

−1

= Pt|t

[

1
xt+1

]









1
[

1 xt+1

]

Pt|t

[

1
xt+1

]

+ σ2
ε









Ŝt+1|t+1 = Ŝt+1|t + kt+1(yt+1 −Ht+1Ŝt+1|t)

Pt+1|t+1 = Pt+1|t − kt+1Ht+1Pt+1|t .

Now since there is no time component / dynamics associated with our state St we can drop
the first two equations above which corresponding to state propagation and simply iterate
the state and covariance update equations. These equations then become after dropping the
conditional notation

kt+1 = PtH
′
t+1(Ht+1PtH

′
t +R1)

−1

Ŝt+1 = Ŝt + kt+1(yt+1 −Ht+1Ŝt)

Pt+1 = Pt − kt+1Ht+1Pt .



Again since Ht = x′
t =

[

1 xt

]

and Ŝt =

[

β
(t)
0

β
(t)
1

]

, R1 = σ2
ε , and Pt is the covariance matrix

of

[

β
(t)
0

β
(t)
1

]

. These vector equations become

kt+1 = Pt

[

1
xt+1

]

1
[

1 xt+1

]

Pt

[

1
xt+1

]

+ σ2
ε

Ŝt+1 = Ŝt + kt+1(yt+1 −
[

1 xt+1

]

Ŝt)

Pt+1 = Pt − Pt

[

1
xt+1

]

[

1 xt+1

]

Pt
1

[

1 xt+1

]

Pt

[

1
xt+1

]

+ σ2
ε

= Pt −









1
[

1 xt+1

]

Pt

[

1
xt+1

]

+ σ2
ε









Pt

[

1 xt+1

xt+1 x2
t+1

]

Pt .

Let Pt be given by

Pt =

[

P
(t)
11 P

(t)
12

P
(t)
12 P

(t)
22

]

.

Then one of the required matrix products in the above expressions become

[

1 xt+1

]

Pt

[

1
xt+1

]

=
[

1 xt+1

]

[

P
(t)
11 + xt+1P

(t)
12

P
(t)
12 + xt+1P

(t)
22

]

= P
(t)
11 + xt+1P

(t)
12 + xt+1P

(t)
12 + x2

t+1P
(t)
22

= P
(t)
11 + 2xt+1P

(t)
12 + x2

t+1P
(t)
22 .

Using this our state and covariance update equations become
[

β
(t+1)
0

β
(t+1)
1

]

=

[

β
(t)
0

β
(t)
1

]

+
yt+1 − (β

(t)
0 + β

(t)
0 xt+1)

P
(t)
11 + 2xt+1P

(t)
12 + x2

t+1P
(t)
22 + σ2

ε

(

Pt

[

1
xt+1

])

=

[

β
(t)
0

β
(t)
1

]

+

(

yt+1 − (β
(t)
0 + β

(t)
0 xt+1)

P
(t)
11 + 2xt+1P

(t)
12 + x2

t+1P
(t)
22 + σ2

ε

) [

P
(t)
11 + xt+1P

(t)
12

P
(t)
12 + xt+1P

(t)
22

]

,

and
[

P
(t+1)
11 P

(t+1)
12

P
(t+1)
12 P

(t+1)
22

]

=

[

P
(t)
11 P

(t)
12

P
(t)
12 P

(t)
22

]

−
(

1

P
(t)
11 + 2xt+1P

(t)
12 + x2

t+1P
(t)
22 + σ2

ε

)

×
[

P
(t)
11 P

(t)
12

P
(t)
12 P

(t)
22

]

[

1 xt+1

xt+1 x2
t+1

]

[

P
(t)
11 P

(t)
12

P
(t)
12 P

(t)
22

]

.

One could simplify these expressions further to produce scalar update equations if desired.



Exercise 8.10 (the model yt = µt + εt and µt+1 = µt + at+1)

Part (a): Let the state be equal to µt. From this system the state propagation equation
looks to be

µt+1 = 1µt + at+1 ,

so A = 1 and our scalar state is βt = µt. The Kalman measurement equation in general from
of

yt = Htβt + εt ,

will match our received value of yt if we take Ht ≡ 1. Note this is an example of system like
discussed on page 156.

Part (b): Now the Kalman update equations for a system like this were worked out on

page 156. Here we have we have Ω = V (at)
V (εt)

= ω
1

= ω, with x′t = Ht = 1, so in steady-state
where Pt+1 = Pt = P , Equation 128 becomes

P = (P + ω) − (1 + (P + ω))−1(P + ω)2 ,

or ω = (P+ω)2

1+P+ω
or

(P + ω)2 − ω(P + ω) − ω = 0 ,

Solving this quadratic for P + ω gives for P the solution

P (ω) = −ω
2
± 1

2

√
ω2 + 4ω , (133)

Thus the update equation from Equation 127 is given by

µt+1 = µt +
P (ω) + ω

1 + P (ω) + ω
(yt+1 − µt) ,

which is the expression for simple exponential smoothing with a smoothing constant, α,
given by

α =
P (ω) + ω

1 + P (ω) + ω
,

and P (ω) is given by Equation 133.

Exercise 8.11 (a linear growth model)

Part (a): Let the state for a Kalman model be equal to St =

[

µt

βt

]

, then the measurement

equation has Ht =
[

1 0
]

so that yt =
[

1 0
]

[

µt

βt

]

+ εt and the state propagation



equation is given by

St+1 =

[

µt+1

βt+1

]

=

[

µt + βt+1 + a1,t+1

βt + a2,t+1

]

=

[

µt + βt + a2,t+1 + a1,t+1

βt + a2,t+1

]

=

[

1 1
0 1

] [

µt

βt

]

+

[

1 1
0 1

] [

a1,t+1

a2,t+1

]

,

so A =

[

1 1
0 1

]

and at+1 =

[

1 1
0 1

] [

a1,t+1

a2,t+1

]

.
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