
Some Notes from the Book:

Statistical Learning from a Regression Perspective

by Richard A. Berk

John L. Weatherwax∗

October 16, 2017

∗
wax@alum.mit.edu

1

Text copyright c©2018 John L. Weatherwax
All Rights Reserved

Please Do Not Redistribute Without Permission from the Author

2

Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

Acknowledgments

Special thanks to: Renay Singh for for his corrections and comments on these solutions.

All comments (no matter how small) are much appreciated. In fact, if you find these notes
useful I would appreciate a contribution in the form of a solution to a problem that is not yet
worked in these notes. Sort of a “take a penny, leave a penny” type of approach. Remember:
pay it forward.

3

Statistical Learning as a Regression Problem

Problem Solutions

Problem 1 (the airquality dataset)

See the R script chap 1 prob 1.R.

Part (1): When we use the pairs command we get the plot shown in Figure 1. In reading
a plot like this it is helpful to note that the y axis scale in each plot is determined by the
variable denoted in the same horizontal row. The x axis variable is the variable in the same
vertical row. Thus the scatter plot presented in the (1, 2) location of the grid is a plot of
Ozone considered as a function of Solar.R. The scatter plot presented in the (3, 4) location
is a plot of Wind as a function of Temp. Thus plots like this enable one to quickly view
how two variable change in relationship to each other. The red curve is a non-parametric
“smoothing” of the data that can given a quick understanding of how the two variables
depend on each other. For example from the output of the pairs function we can see that
from the (1, 3) plot that Ozone decreases as Wind increases. From the (1, 4) plot we see that
Ozone increases as Temp increases. Comparing the “transpose” plots i.e. (1, 3) and (3, 1) can
give an argument as to which variable should be the response and which variable should be
the explanatory variable. For example in the (3, 1) plot it looks like Wind is almost a linear
function of Ozone while from (1, 3) it does not look like Ozone is a linear function of Wind.

Part (3): Using boxplot to plot Ozone as a function of the categorical variable Month we
get the plot show in Figure 2 (left). Plotting Ozone as a function of Day we get the plot
show in Figure 2 (right). There is a clear pattern in that Ozone concentration seems to peak
during the months of July and August. There is also a much larger range of possible values
during these two months. There does not seem to be much of a pattern in the behaviour of
Ozone as a function of Day. To use these variables in the scatterplots from Part (1) earlier
we would have to specify the set of months or days to study in the scatterplots.

Part (5): When we use the cloud command we get the plot shown in Figure 3. We can see
that Ozone increases as Temp increases and Wind decreases.

Part (6): When we use the coplot command we get the plot shown in Figure 4. In that
plot it looks like the way that Wind is kept constant is to break it up into ordered bins and
consider the samples that fall in each bin. From the given plot it looks like that when Wind

is held constant the general trend is for Ozone to be an increasing as Temp.

Problem 2 (complexity of the fitting function)

See the R script chap 1 prob 2.R. When that script is run we get the result show in Figure 5.

4

Ozone

0 50 150 250 60 70 80 90

0
50

10
0

15
0

0
50

10
0

15
0

20
0

25
0

30
0

Solar.R

Wind

5
10

15
20

0 50 100 150

60
70

80
90

5 10 15 20

Temp

airquality data

Figure 1: A “pairs” plot of the data in the airquality dataset.

5 6 7 8 9

0
5
0

1
0
0

1
5
0

month index; 5−9=May−Sept

o
z
o
n
e
 (

p
p
b
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0
5
0

1
0
0

1
5
0

day index

o
z
o
n
e
 (

p
p
b
)

Figure 2: Left: Using the boxplot command to plot Ozone as a function of the month.
Right: Using the boxplot command to plot Ozone as a function of the day in the month.

5

Temp
Wind

Ozone

Figure 3: A “cloud” plot of Ozone as a function of Wind and Temp.

6

0
50

10
0

15
0

60 70 80 90

60 70 80 90 60 70 80 90

0
50

10
0

15
0

Temp

Oz
on

e

5 10 15 20

Given : Wind

Figure 4: A “coplot” plot of Ozone as a function of Temp given Wind.

5 10 15 20

−2
−1

0
1

2

x

y

Figure 5: A plot of the point y vs. x generated from the data suggested in Problem 2.

7

The output from the lm command for this data gives

Call: lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-2.57442 -0.73968 0.02918 0.72450 2.53713

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.107822 0.153830 0.701 0.484

x -0.003817 0.012841 -0.297 0.767

Residual standard error: 1.047 on 198 degrees of freedom

Multiple R-squared: 0.000446, Adjusted R-squared: -0.004602

F-statistic: 0.08834 on 1 and 198 DF, p-value: 0.7666

while the summary from the glm command gives

Call: glm(formula = y ~ x)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.57442 -0.73968 0.02918 0.72450 2.53713

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.107822 0.153830 0.701 0.484

x -0.003817 0.012841 -0.297 0.767

(Dispersion parameter for gaussian family taken to be 1.096605)

Null deviance: 217.22 on 199 degrees of freedom

Residual deviance: 217.13 on 198 degrees of freedom

AIC: 590.01

Number of Fisher Scoring iterations: 2

As claimed the fit is the same but the remaining outputs are different. The fact that the
p-value (for the full model) is so large 0.7666 for the lm fit indicates that the linear model
is not very good. The p-values for the individual coefficients (the intercept and slope in this
case) are also relatively large. This again indicates that there is not much certainty in the
coefficient estimate. In the use of glm the fact that the null and the residual deviance are so
similar again indicates that the model fit is poor.

8

Problem 3 (overfitting the data)

Part (1): In this problem we generate 100 random vectors with 50 components each. As
we have 99 coefficients to vary (to find fitted coefficients for) and there are only 50 vectors
total we expect that there will be a great number of redundant (equally good) coefficient
solutions. Thus we are in the case where we should be able to exactly fit the given data.
If we look at the lm output we see that the first 50 coefficients are nonzero and there are
NA’s for most of the other diagnostic variables. This number of NA’s indicate that there is
perhaps a singularity in the fitting process.

For my version of R the function stepAIC gave the warning

attempting model selection on an essentially perfect fit is nonsense

and produces no output. This indicates that the model has been overfit. When the model
is greatly overfit the model selection problem is not well defined since removing different
predictors can result in the same change (perhaps no change) in fitting objective.

9

60 70 80 90

0
50

10
0

15
0

Temp

Oz
on

e

Figure 6: Three different models from the gam command for regressing Ozone as a function
of Temp in the airquality dataset. The blue curve represents

Regression Splines and Regression Smoothers

Problem Solutions

Problem 1 (smoothers with one predictor)

See the R script chap 2 prob 1.R.

Part (1): When we run the above script we get the plot shown in Figure 6. The three
residual deviances have values for the three models given by

[1] 62367.44 36979.84 52525.50

Selecting the residual deviance that is smallest would suggest using the second (the roughest)
model. The three AIC values for the three models given by

[1] 1023.775 1039.759 1010.711

10

60 70 80 90
0

50
10

0
15

0

span=0.25; deg=0

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.25; deg=1

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.25; deg=2

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.50; deg=0

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.50; deg=1

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.50; deg=2

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.75; deg=0

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.75; deg=1

Temp

Oz
on

e

60 70 80 90

0
50

10
0

15
0

span=0.75; deg=2

Temp

Oz
on

e

Figure 7: Ozone as a function of Temp and loess smoothing curves for varied span and degree

values.

The smallest AIC in this case corresponds to the third model. As the AIC criterion penalizes
models that have many terms it penalizes the second model due to its roughness. From plots
of the Ozone as a function of Temp it looks like the third model seems to be the best.

Part (2): We can compute a scatter plot (with a loess smooth overlayed) by using the
R command scatter.smooth. If needed we can just extract the fitted values from a loess
smooth by using the R command loess.smooth. Since we are given several values to try of
the parameters span and degree.

When we run the above script we get the plot shown in Figure 7.

Part (3): From the plots in Figure 7 it looks like to make the curve monotonically increasing
taking span at 0.5 and deg at 1 seem to be good compromise from the options.

Problem 2 (smoothers with two predictors)

See the R script chap 2 prob 2.R.

Part (1): When we run the above script we get the plot shown in Figure 8.

11

26 28 30 32 34 36

−5
0

5

lat

lo(
lat

, d
eg

re
e

=
1)

−106 −102 −98 −96 −94
−3

−2
−1

0
1

2
long

lo(
lon

g,
 d

eg
re

e
=

1)

Figure 8: The two plots produced by the routine plot.gam.

Problem 3 (smoothers with more than two predictors)

See the R script chap 2 prob 3.R.

Problem 4 (smoothers with a binary response variable)

See the R script chap 2 prob 4.R.

12

Classification and Regression Trees (CART)

Problem Solutions

Problem 1 (CART vs. linear models)

See the R script chap 3 prob 1.R, where this problem is worked.

Part (1): When we use the lm command we get summary results given by

Call: lm(formula = y1 ~ x1 + x2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9741 0.1128 8.636 3.62e-16 ***

x1 2.2295 0.1167 19.101 < 2e-16 ***

x2 2.9377 0.1121 26.199 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.952 on 297 degrees of freedom

Multiple R-squared: 0.783, Adjusted R-squared: 0.7816

F-statistic: 535.9 on 2 and 297 DF, p-value: < 2.2e-16

If we look at the estimated coefficients (and compare them to the known truth for this model)
we see that the linear model is quite good at extracting the true underlying linear function
from the given data. Next we use the rpart function to fit a CART tree to this data. When
we use the text command to plot the resulting tree we get the plot shown in Figure 9 (left).
From the given plot it is difficult to observe exactly how the data is generated under this
modeling procedure. In this case it would seem that the linear model is better. The best way
to tell the difference between models to to generate a second set of data (an out-of-sample)
set and compare performance of the two algorithms on this new data set. If we do that in
the R code and then compare the mean square error of the true response with the predicted
response we get

[1] "IS: linear model MSE= 3.770304"

[1] "IS: regression tree MSE= 3.971424"

[1] "OOS: linear model MSE= 4.731974"

[1] "OOS: regression tree MSE= 7.096532"

Note that on the in sample data the two techniques are very similar in their performance.
When tested out of sample however we see that the linear model outperforms the regression
tree.

13

|
x2< −0.6059

x1< 0.1265

x1< −0.7972 x1< 0.8882

x2< −1.541

x1< 0.523

x2< 0.7055

x1< −1.11 x2< 1.658

x2< 1.172

−5.761 −3.632

−4.158 −0.8081
1.357

−2.452 0.3015 3.296 6.869

4.288 10.39

|

Figure 9: Left: The resulting CART tree for the real valued predictors given in Problem 1.
This tree seems difficult to interpret. Right: The resulting CART tree for the boolean
predictors given in Problem 1. This tree is relatively easy to interpret.

14

Part (2): In this case we expect the regression tree to outperform linear regression. The
linear model has summary statistic given by

Call: lm(formula = y ~ x11 + x22)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9879 0.1923 5.138 5.04e-07 ***

x11TRUE 2.2675 0.2262 10.025 < 2e-16 ***

x22TRUE 2.7165 0.2262 12.011 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.955 on 297 degrees of freedom

Multiple R-squared: 0.4417, Adjusted R-squared: 0.438

F-statistic: 117.5 on 2 and 297 DF, p-value: < 2.2e-16

From this it looks like the linear regression has been fit as well as before. All of the coefficients
are significant and the p-value of the entire fit is significant. What is a bit worry some is
that the R-squared value is much lower for this fit. The rpart plot for this data looks is
given in Figure 9 (right). Note how much simpler this tree structure is. Lets now compare
the out of sample performance by generating new data as was done in Part (1). We find

[1] "IS: linear model MSE= 3.783262"

[1] "IS: regression tree MSE= 3.780213"

[1] "OOS: linear model MSE= 8.810891"

[1] "OOS: regression tree MSE= 8.857592"

Surprisingly the predictions made by these two techniques are not very different indicating
that the linear model performs well in this situation also. Here we see that the CART
technique performs as well as linear regression in that its MSE between the in and the out
of sample result is not that different. In hindsight this is not that surprising since indicator
functions (i.e. factors) are often used in linear regression to model various affects.

Part (3): In the above two examples in the case where the model was purely linear a linear
model did quite well. CART did poorly in the case where the inputs are real valued due to
it finding a biased estimate of f(·) (a function that is not strictly linear but in fact involves
summing step functions). We therefore expect that CART regression trees to perform better
than a linear model when the true function being modeled has its response function change
at “steps” or the function we are truly modeling is nonlinear. If f(·) has either of these two
properties then the CART result should outperform a linear model.

15

Problem 2 (classification with CART)

See the R script chap 3 prob 2.R, where this problem is worked.

Part (1): When we fit a linear model using glm and all predictors the summary of this gives

Call: glm(formula = pres.abs ~ ., family = binomial(), data = frogs)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.105e+02 1.388e+02 0.796 0.42587

altitude -3.086e-02 4.076e-02 -0.757 0.44901

distance -4.800e-04 2.055e-04 -2.336 0.01949 *

NoOfPools 2.986e-02 9.276e-03 3.219 0.00129 **

NoOfSites 4.364e-02 1.061e-01 0.411 0.68077

avrain -1.140e-02 5.995e-02 -0.190 0.84920

meanmin 4.899e+00 1.564e+00 3.133 0.00173 **

meanmax -5.660e+00 5.049e+00 -1.121 0.26224

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 279.99 on 211 degrees of freedom

Residual deviance: 198.74 on 204 degrees of freedom

From the above we see that the logistic regression is not fully sure of the values of many of
the coefficients for the predictors. The variables NoOfPools and meanmin seem to be the best
estimated coefficients. The variable NoOfPools is the number of potential breeding pools
and has a positive coefficient thus as there are more pools there is a great chance of finding
frogs. The variable meanmin is the mean minimum spring temperature and is also positive
meaning that as the minimum temperature increases we are more likely to find frogs. Both
of these findings seem to be reasonable results. The numbers above indicate that perhaps
the linear model is not able to extract reliable estimate of the coefficients given the amount
of data.

Part (2): When we run the stepAIC command we fit linear models by sequentially removing
predictors one at a time looking for the model that minimizes the AIC. The output from
this command shows what the AIC would be for models with various predictors removed.
The predictor that is removed is the one that (when removed) has the model that has the
smallest AIC. This process is repeated until removing a predictor results in the AIC of the
model increasing.

> stepAIC(linear_model)

Start: AIC=214.74

pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +

16

meanmin + meanmax

Df Deviance AIC

- avrain 1 198.78 212.78

- NoOfSites 1 198.91 212.91

- altitude 1 199.30 213.30

- meanmax 1 199.97 213.97

<none> 198.74 214.74

- distance 1 206.39 220.39

- meanmin 1 209.60 223.60

- NoOfPools 1 210.84 224.84

... output omitted ...

Df Deviance AIC

<none> 199.63 209.63

- distance 1 209.73 217.73

- NoOfPools 1 211.43 219.43

- meanmax 1 216.10 224.10

- meanmin 1 226.94 234.94

Call:

glm(pres.abs ~ distance + NoOfPools + meanmin + meanmax, family = binomial())

Coefficients:

(Intercept) distance NoOfPools meanmin meanmax

14.0074032 -0.0005138 0.0285643 5.6230647 -2.3717579

Degrees of Freedom: 211 Total (i.e. Null); 207 Residual

Null Deviance: 280

Residual Deviance: 199.6 AIC: 209.6

The final result indicates what the “most important variables” are. The signs of the estimated
coefficients should indicate if our estimation is reasonable. We find that the model states

• Both NoOfPools and meanmin have positive coefficients indicating that as the number
of breeding pools and the average of the lowest temperature increase we expect the
probability of finding frogs to increase.

• Both distance and meanmax have negative coefficients indicating that as the distance
to the nearest extant (still in existence or surviving) pool and the average of the largest
temperature increases we expect the probability of finding frogs to decrease.

The sign of the coefficients of the two variables NoOfPools and meanmin seems to be reason-
able. The sign of the coefficients for distance also seems to be reasonable in that when we

17

move away from existing frog populations it might become harder to find frogs. The sign of
the coefficient of meanmax could be argued in that if the spring temperature is too hot then
it might be less likely to find frogs.

Part (3): Rebuilding our linear model with the predictors found to be most important via
stepAIC we next compute a confusion table. When we do this we get the table

0 1

0 110 23

1 20 59

Thus we find 23

110+23
= 0.1729 for the false positive rate and 20

20+59
= 0.2531 for the false

negative rate. We have 23+20

110+23+20+59
= 0.20 classified incorrectly. The classifier is more

accurate in the true presence of frogs.

Part (4): We next use the gam with spline smoothing of the four predictors above to develop
a model of the probability of pres.abs.

Part (5): When we use the gam computed above to classify our samples we get a confusion
table given by

yhat

0 1

0 116 17

1 22 57

This classification seems to be more accurate for the true absence of frogs. These results are
about as good as the results from using the glm code.

Part (6): When we fit all predictors in the frogs dataset using the R command rpart we
get a plot like that shown in Figure 10. Notice that the predictors selected in defining the
tree were selected when we used logistic regression in the glm framework. The direction of
the splits in the tree correspond to the signs in the glm output. Thus the larger the variable
distance and the lower the value of meanmin the less likely we are to find frogs.

Part (7): An in-sample confusion matrix of the CART algorithm gives

yhat

0 1

0 114 19

1 19 60

This is a slightly better result than that obtained from the glm logistic regression and slightly
better than the gam model in the case of the true presence of frogs.

18

|
distance>=625

distance>=3375

meanmin< 3.15

distance>=1600

meanmin< 2.9

0

0

0 1

0 1

Figure 10: The resulting CART tree using all the predictors given in Problem 2.

Part (8): We next fit two models using rpart each with a different distribution of prior
information. When we do this and then print the classification errors and the ratio of the
false negative to false positives we get

[1] "Default CART classificaion error 0.179245; FN/FP = 1.000000"

[1] "CART with 50-50 split classificaion error 0.207547; FN/FP = 0.571429"

[1] "CART with 70-30 split classificaion error 0.160377; FN/FP = 0.619048"

Thus we see that by changing the priors we can change the false negative to false positive
ratio.

Part (9): By using the formula in the book to scale the prior probabilities we can skew the
ratio of false negatives to false positives. We find a confusion table that now looks like

yhat

0 1

0 70 63

1 0 79

Thus we see that the number of false negatives is now zero due to our choice of priors.

19

population

0 10 20 30 40 50 60 1000 3000 5000

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

2
0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0

nonwhite

density

0
2

0
0

0
6

0
0

0
1

0
0

0
0

0 2000 6000 10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

0 4000 8000 12000

crime

Freedman

|
nonwhite< 2.7

population< 861.5

nonwhite< 6.55

density< 607

density>=231

nonwhite< 11.75

1720

2349

2622 3074

3147

3099 3656

Figure 11: Left: Scatter plots (with loess smooths) of all the variables in the Freedman

dataset. Right: The CART regression tree for the Freedman dataset.

Part (10): With repeated samples from the data we will get very different in-sample trees.

Part (11): When we enforce the different trees to have a node size of 50 the trees should be
much more stable. Thus the CART algorithm in this case has much more bias but will have
a lower variance. Repeated draws from the data set will produce much the same algorithm.

Problem 3 (quantitative prediction with CART)

See the R script chap 3 prob 3.R, where this problem is worked.

Part (1): We first use the command pairs command get get a general feel for how crime

responds to the various other inputs. When we run the above R command the resulting
pairs plot is shown in Figure 11 (left). From the given scatter plots (the bottom row of
plots) it looks like crime increases with population, crime seems to increase (to a point)
with nonwhite, and crime seems to increase (to a point) with density.

Part (2): Next we use rpart to fit a CART tree to the given data. The resulting graph is
shown in Figure 11 (right). From the given CART tree it seems that the largest values of
crime are located for large values of nonwhite, density, and population. These comments
are qualitative and are based on looking at the given CART tree and finding the largest

20

2500 3000 3500 4000 4500

20
00

25
00

30
00

35
00

model predictions of crime

GAM fitted values

CA
RT

 fit
te

d
va

lue
s

Figure 12: Left: Scatter plots (with loess smooths) of all the variables in the Freedman

dataset.

predicted values for the leafs. The conclusions as how the inputs variable seem to affect
crime are basically the same.

Part (3): In the Figure 12 we present the GAM fitted values as a function of the predicted
CART tree values. If the two sets of points corresponded perfectly one would expect that
this scatter plot would have many of the points on a line. Since the CART predictions are
constant for all predictions that fall in the same leaf node we see that our scatter plot has

Part (4-6): In Figure 12 we plot the least squares linear fit of the two fitted values in red.
This least squares line has an estimated slope of 0.92483 with an intercept of 205.4. When
we compute the two correlations of the fitted values of each model with the true crime rate
we find

> cor(m1$fitted.values, Freedman$crime)

[1] 0.5540136

> cor(tree_predictions, Freedman$crime)

[1] 0.6322788

Thus it looks like the CART tree is producing an output that is more correlated with the
true output.

21

−2 −1 0 1 2 3

5
1
0

1
5

x1

y

−2 −1 0 1 2 3
5

1
0

1
5

x1

y

Figure 13: Left: The quadratic curve from Problem 1 (in green) and the linear model fit to
the response x12 (in red). Right: The quadratic curve from Problem 1 (in green) and the
linear model fit to the response x1 (in red).

Bagging

Problem Solutions

Problem 1 (linear regression, CART, and bagging)

See the R script chap 4 prob 1.R, where this problem is worked.

Part (1): When we plot the given relationship we get the plot shown in Figure 13 (left).
When we fit a linear model of y as a function of x12 we get back the expected result (edited
slightly)

Call: lm(formula = y ~ x12)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.01842 0.11192 9.10 <2e-16 ***

x12 1.91678 0.06802 28.18 <2e-16 ***

22

Residual standard error: 2.013 on 498 degrees of freedom

Multiple R-squared: 0.6146, Adjusted R-squared: 0.6138

F-statistic: 794.1 on 1 and 498 DF, p-value: < 2.2e-16

From this we see that the constant and the coefficient of x12 are estimated well. The linear
model fits shown in Figure 13 (left) confirm this statement also.

Part (3): If we don’t know that the data is generated with a quadratic term (i.e. from x12)
but instead try to fit a linear model to explain y from x1 we expect that the fit will be very
poor. Using the R command lm we see that this is so

Call: lm(formula = y ~ x1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9975 0.1546 19.386 <2e-16 ***

x1 -0.1019 0.1548 -0.658 0.511

Residual standard error: 3.453 on 498 degrees of freedom

Multiple R-squared: 0.0008695, Adjusted R-squared: -0.001137

F-statistic: 0.4334 on 1 and 498 DF, p-value: 0.5106

The p-value for the entire fit is quite poor 0.5106 and indicates that it is not clear that the
model fits the data much better than no model (i.e. using the mean of the values of y as
the predictor). The linear model fits shown in Figure 13 (right) also confirm this statement.
This is a case where we don’t know the functional form (or the mapping from the input
variable x1 to the output variable y).

Part (4): If we don’t know a valid model for how the data is generated we can use a
nonparametric model like CART to try and learn a function for the relationship between x1

and y. When we do that and then plot the CART fitted values against the true values for
f(X) we get the plot in Figure 14 (left). We see that these fitted values look much closer to
the true values of f(X) than the linear model with x1 as the predictor.

Part (5): We now apply bagging to this dataset. The plot of the estimated f(X) is shown
in Figure 14 (right). This seems to be a better model than either the linear model (using x1

as a predictor) and the direct CART model.

Problem 2 (the Freedman dataset)

See the R script chap 4 prob 2.R, where this problem is worked.

23

−2 −1 0 1 2 3

5
1
0

1
5

x1

y

−3 −2 −1 0 1 2 3

5
1
0

1
5

2
0

x1

y

Figure 14: Left: The quadratic curve from Problem 1 (in green) and the CART fitted values
(in red). Right: The quadratic curve from Problem 1 (in green) and the bagged model fit
to the response x1 (in red).

24

Part (1): When we compare the two model fits two each other it seems that the single
CART tree is producing a smaller root-mean-square

[1] "CART RMS= 739.476385"

Out-of-bag estimate of root mean squared error: 802.4587

Problem 3 (predicting frogs)

See the R script chap 4 prob 3.R, where this problem is worked.

Part (1): The confusion matrix for the CART tree looks like

y_hat_CART

0 1

0 19 114

1 63 16

while the confusion matrix for the bagging results looks like

y_hat_BAGGING

0 1

0 133 0

1 0 79

Notice that the bagging result is making perfect predictions in sample.

Part (2): Cross-tabulating the fitted classes from CART and the bagged CART gives

y_hat_BAGGING

y_hat_CART 0 1

0 19 63

1 114 16

The errors in the positions (1, 1) and (2, 2) of 19 and 16 respectively are approximately the
same as claimed in the text.

25

−3 −2 −1 0 1 2 3

−
5

0
−

4
0

−
3

0
−

2
0

−
1

0
0

x1

y

−3 −2 −1 0 1 2 3

−
4

0
−

3
0

−
2

0
−

1
0

0

x1

y

Figure 15: Left: The quadratic curve from Problem 1 (in green) and the linear model fit to
the response x12 (in red). Right: The quadratic curve from Problem 1 (in green) and the
CART model fit to the response x1 (in red).

Random Forests

Problem Solutions

Problem 1 (nonlinear curve fitting with a random forest)

See the R script chap 5 prob 1.R, where this problem is worked.

Part (1-2): When we plot the given relationship we get the plot shown in Figure 15 (left).
When we fit a linear model of y as a function of x12 we get back the expected result for the
coefficients of the model (edited slightly)

Call: lm(formula = y ~ x12)

26

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7371 0.2609 2.825 0.00492 **

x12 -4.9758 0.1667 -29.843 < 2e-16 ***

Residual standard error: 4.812 on 498 degrees of freedom

Multiple R-squared: 0.6414, Adjusted R-squared: 0.6406

F-statistic: 890.6 on 1 and 498 DF, p-value: < 2.2e-16

Notice that the intercept and the coefficient of x12 are “reasonably” well estimated.

Part (3): When we fit a CART tree to the output y with inputs x12 and then make
predictions given this model we get the plot shown in Figure 15 (right). We see that CART
is fitting constants in the domain of x1.

Part (4-5): Next we use the R package randomForest to fit a model of y to the input of
x1. The result of this fit is shown in Figure 16 (left). The random forest result seems to fit
around the green curve

Part (6): The result of using the R command partialPlot on the random forest from this
problem is shown in Figure 16 (right).

Problem 2 (various options to the randomForest code)

See the R script chap 5 prob 2.R, where this problem is worked. For each of the suggested
arguments to the command randomForest we produce a plot of the actual value of wages
as a function of the predicted value of wages. These plots are shown in Figure 17. See the
caption there for comments. We can see the over fitting in the mean square error (MSE) of
the various methods

[1] "MSE of the default fit 39.384216"

[1] "MSE with mtry=4 20.369149"

[1] "MSE with ntree=100 39.449551"

[1] "MSE with ntree=1000 39.366916"

Notice that the MSE of the forest with mtry 4 is much lower than the others.

Problem 3 (classifying diabetes with random forests)

See the R script chap 5 prob 3.R, where this problem is worked.

27

−3 −2 −1 0 1 2 3

−
4

0
−

3
0

−
2

0
−

1
0

0

x1

y

−3 −2 −1 0 1 2 3

−
4

0
−

3
0

−
2

0
−

1
0

0

Partial Dependence on x1

x1

Figure 16: Left: The quadratic curve from Problem 1 (in green) and the random forest
model fit of y to predictor x1 (in red). Right: The partial dependence plot of the random
forest (against the variable x1) developed to predict y = 1− 5x2.

28

10 15 20 25

10
20

30
40

50

randomForest defaults

predicted wages

w
ag

es
 (t

ru
th

)

5 10 15 20 25 30 35 40

10
20

30
40

50

randomForest mtry=4

predicted wages

w
ag

es
 (t

ru
th

)

10 15 20 25

10
20

30
40

50

randomForest ntree=100

predicted wages

w
ag

es
 (t

ru
th

)

10 15 20 25

10
20

30
40

50
randomForest ntree=1000

predicted wages

w
ag

es
 (t

ru
th

)

Figure 17: Upper Left: Predicting wages using the default options for the command
randomForest. Upper Right: Predicting wages requiring mtry to be four, rather than the
default value (for this problem) of 1. Lower Left: Predicting wages using 100 trees (rather
than the default value of 500). Lower Right: Predicting wages using 1000 trees (rather
than the default value of 500). Only the plot where we modify mtry looks different. The fact
that the data points are clustered so tightly to the line y = x indicates that perhaps this
model is overfitting. The fact that changing the number of trees seems to make no difference
indicates that perhaps for this problem the results are rather independent of this parameter.
Running the command plot on the produced random forest gives the (out of bag) error rate
as we increase the number of trees. After around 25 trees the error rate is about constant.

29

Part (1): When we extract the confusion matrix for this problem we get the following

No Yes

No 111 21

Yes 37 31

From this table we can compute various accuracies

[1] "Accuracy (overall) = 0.710000"

[1] "Accuracy when truth is No= 0.840909"

[1] "Accuracy when truth is Yes= 0.455882"

[1] "Accuracy when predicting No= 0.750000"

[1] "Accuracy when predicting Yes= 0.596154"

The proportion of time each of the forecasts would be incorrect is 1− 0.71 = 0.29.

30

−3 −2 −1 0 1 2 3

−
5

0
−

4
0

−
3

0
−

2
0

−
1

0
0

x1

y

0 10000 20000 30000 40000 50000

3
0

4
0

5
0

6
0

7
0

Iteration

S
q

u
a

r
e

d
 e

r
r
o

r
 l
o

s
s

Figure 18: Left: The quadratic curve from Problem 1 (in green) that represents the function
we seek to learn an approximation too. Right: The output of the gbm function gbm.perf.
The in-sample error is shown in black while the cross validated error is shown in green. The
optimal number of trees to boost with is given by the blue dotted vertical line.

Boosting

Problem Solutions

Problem 1 (nonlinear curve fitting with boosting)

See the R script chap 6 prob 1.R, where this problem is worked.

Part (1-2): When we plot the given relationship f(x) we get the plot shown in Fig-
ure 18 (left). The output of the gbm function gbm.perf is shown in Figure 18 (right).
This procedure estimates that the optimal number of trees is given by 25592.

The different partial dependence plots for various number of trees are given in Figure 19.

31

3 2 1 0 −1 −2 −3

−5
0

−4
0

−3
0

−2
0

−1
0

0

x1

f(x
1)

3 2 1 0 −1 −2 −3

−5
0

−4
0

−3
0

−2
0

−1
0

0

x1

f(x
1)

3 2 1 0 −1 −2 −3

−5
0

−4
0

−3
0

−2
0

−1
0

0

x1

f(x
1)

3 2 1 0 −1 −2 −3

−5
0

−4
0

−3
0

−2
0

−1
0

0

x1

f(x
1)

3 2 1 0 −1 −2 −3

−5
0

−4
0

−3
0

−2
0

−1
0

0

x1

f(x
1)

3 2 1 0 −1 −2 −3

−5
0

−4
0

−3
0

−2
0

−1
0

0

x1

f(x
1)

Figure 19: Partial dependence plots for various number of trees (in black). From top-to-
bottom and left-to-right the partial dependence plots have 100, 500, 1000, 5000, 10000, and
25592 (an estimated optimal number) trees. The true function f(x) is shown in green.

32

0 5000 10000 15000

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

7
0

0
0

7
5

0
0

8
0

0
0

Iteration

S
q

u
a

r
e

d
 e

r
r
o

r
 l
o

s
s

o
il

in
c
o

m
e

r
e

g
io

n

Relative influence

0 10 20 30 40 50 60

Figure 20: Left: The output of the gbm function gbm.perf when applied to the Leinhardt
dataset. The in-sample error is shown in black while the cross validated error is shown in
green. The optimal number of trees to boost with is given by the blue dotted vertical line.
Right: A plot of the variable influence produced via the summary command.

Problem 2 (the dataset Leinhardt)

See the R script chap 6 prob 2.R, where this problem is worked.

Part (1-9): The output of the gbm function gbm.perf is shown in Figure 20 (left). The
black curve is the in-sample estimate of error. Note that as we apply boosting iterations the
in-sample error decreases while the out-of-sample error decreases initially and then starts
to rise. This is an indication that for this problem additional boosting results in an overfit
model. The recommended number of iterations is given by the location of the blue dotted
line and is found to be 1814.

In Figure 20 (right) we present a plot of the variable influence based on the estimated optimal
number of trees. From that plot we see that in predicting infant mortality rate region and
income seem to be the most important variables. The variable oil does not seem to be

33

Africa Americas Asia Europe

6
0

7
0

8
0

9
0

1
0

0
1

1
0

region

f
(
r
e

g
io

n
)

0 1000 2000 3000 4000 5000

7
0

8
0

9
0

1
0

0
1

1
0

income

f
(
in

c
o

m
e

)

no yes
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

oil

f
(
o

il
)

Figure 21: Various partial dependence plots for the Leinhardt dataset.

important.

We present plots of the partial dependence of infant mortality rate on the three variables
region, income, and oil in Figure 21. These plots give a qualitative feel for how the
response changes with the input. For example, the partial dependence plot of the variable
region indicates that Africa has the highest infant mortality rate while Europe has the lowest.

The partial dependence plots over two (or three) variables can be plotted with commands
like

plot(boosts, i.var=c("region","income"), n.trees=opt_ntrees)

plot(boosts, i.var=c("region","income","oil"), n.trees=opt_ntrees)

Commands like this give the plots shown in Figure 22.

If we use a random forest on this data set we can compute many of the same metrics above.
See the R code for examples. The use of the importance command on the random forest

34

income

f(
r
e

g
io

n
,i
n

c
o

m
e

)

40

60

80

100

120

140

0 1000 2000 3000 4000 5000

Africa Americas

Asia

0 1000 2000 3000 4000 5000

40

60

80

100

120

140

Europe

income

f(
r
e

g
io

n
,i
n

c
o

m
e
,o

il
)

40

60

80

100

120

140

0 1000 3000 5000

Africa

no

Americas

no

0 1000 3000 5000

Asia

no

Europe

no

Africa

yes

0 1000 3000 5000

Americas

yes

Asia

yes

0 1000 3000 5000

40

60

80

100

120

140

Europe

yes

Figure 22: Left: The partial dependence plots of the two variables region and income.
Right: The partial dependence plots of the three variables region, income, and oil.

35

gives a ranking of variable importance. We find

> importance(rf) # variable importance measure

IncNodePurity

income 241199.29

region 141337.37

oil 92808.72

The two predictors found to be the most important in this case are the same as that found by
gradient boosting. Using the command partialPlot with the trained random forest gives
partial dependence plots that look the same as the ones given in Figure 21.

If we look at the in-sample comparison between the two methods we get

[1] "MSE gradient boosting= 6029.443839"

[1] "MSE random forest= 6504.561038"

With only around 100 data points there is really not enough data to do a proper out-of-
sample comparison. Having a small amount of data also makes overfitting more possible.

36

Support Vector Machines

Problem Solutions

Problem 1 (using svm)

Part (1): See the R script chap 7 prob 1.R, where this problem is worked. We first fit the
given data to an incorrect model (one that does not assume a quadratic term in the variable
z). When we do that and then observe the summary command we get

Call: glm(formula = y_factor ~ w + z, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.59796 0.09680 6.178 6.51e-10 ***

w 0.02329 0.09801 0.238 0.812

z -0.54188 0.10116 -5.357 8.48e-08 ***

Null deviance: 653.42 on 499 degrees of freedom

Residual deviance: 622.04 on 497 degrees of freedom

AIC: 628.04

We see that the coefficients estimated in general are not that close to the true values. The
confusion matrix for the predicted response under this model is given by

y_hat

y 0 1

0 96 84

1 105 215

When we specify the correct model the estimated coefficients are given by

Call: glm(formula = y_factor ~ w2 + z, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9190 0.1647 -5.580 2.40e-08 ***

w2 2.9110 0.3370 8.637 < 2e-16 ***

z -0.7986 0.1349 -5.919 3.23e-09 ***

37

Null deviance: 653.42 on 499 degrees of freedom

Residual deviance: 423.34 on 497 degrees of freedom

AIC: 429.34

Notice that the estimated coefficients are much closer to the true values. Also notice how
much smaller the residual deviance (and the AIC) is under this model. These give indications
that this second model is better. The confusion matrix for the predicted response under this
model is given by

y_hat

y 0 1

0 154 26

1 86 234

and again we see the better classification performance.

Part (2-3): We train a SVM using the R command svm from the e1071 library for each of
the two suggested input arguments. Given these models we then extract confusion matrices
for each and find

y_hat y_hat

y 0 1 y 0 1

0 131 49 0 131 49

1 47 273 1 49 271

Note that the performance of each of these methods is about the same. From this simple
analysis it looks like the SVM explicitly imputes nonlinear relationships into its classification
regions. This is because the kernel used in the SVM (by default) is explicitly nonlinear. To
test this idea somewhat we can try to build SVMmodels with the two different input variables
and a linear kernel. In that case the in-sample confusion matrices for each case become

y_hat y_hat

y 0 1 y 0 1

0 0 180 0 139 41

1 0 320 1 57 263

Note that with a linear kernel selecting the incorrect predictors (no quadratic term) gives
much worse results.

Problem 2 (using svm on the Pima.tr dataset)

Part (1): Using the default kernel vs. the linear we get the two different confusion matrices

38

y_hat y_hat

No Yes No Yes

No 122 10 No 115 17

Yes 26 42 Yes 29 39

The two methods appear to be about the same.

Part (2): When we add weights to our classes we can get different results. With the weights
as suggested in the book we find

y_hat y_hat

No Yes No Yes

No 132 0 No 126 6

Yes 3 65 Yes 38 30

In general this changed seemed to make the classifier much better.

39

