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Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

All comments (no matter how small) are much appreciated. In fact, if you find these notes
useful I would appreciate a contribution in the form of a solution to a problem that I did
not work, a mathematical derivation of a statement or comment made in the book that was
unclear, a piece of code that implements one of the algorithms discussed, or a correction to
a typo (spelling, grammar, etc). Sort of a “take a penny, leave a penny” type of approach.
Remember: pay it forward.

∗wax@alum.mit.edu
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Chapter 2 (The Autocorrelation Function and the Spec-

trum)

Notes on the Text

Notes on positive definiteness and the autocovariance matrix

The book defined the autocovariance matrix Γn of a stochastic process as

Γn =















γ0 γ1 γ2 · · · γn−1

γ1 γ0 γ1 · · · γn−2

γ2 γ1 γ0 · · · γn−3
...

...
... · · · ...

γn−1 γn−2 γn−3 · · · γ0















. (1)

Then holding the definition for a second, if we consider the derived time series Lt given by

Lt = l1zt + l2zt−1 + · · ·+ lnzt−n+1 ,

we can compute the variance of this series using the definition var[Lt] = E[(Lt − L̄)2]. We
first evaluate the mean of Lt

L̄ = E[l1zt + l2zt−1 + · · ·+ lnzt−n+1] = (l1 + l2 + · · ·+ ln)µ ,

since zt is assumed stationary so that E[zt] = µ for all t. We then have that

Lt − L̄ = l1(zt − µ) + l2(zt−1 − µ) + l3(zt−2 − µ) + · · ·+ ln(zt−n+1 − µ) ,

so that when we square this expression we get

(Lt − L̄)2 =

n
∑

i=1

n
∑

j=1

lilj(zt−(i−1) − µ)(zt−(j−1) − µ) .

Taking the expectation of both sides to compute the variance and using

E[(zt−(i−1) − µ)(zt−(j−1) − µ)] = γ|i−j| ,

gives

var[Lt] =

n
∑

i=1

n
∑

j=1

liljγ|i−j| .

As the expression on the right-hand-side is the same as the quadratic form

[

l1 l2 l3 · · · ln
]















γ0 γ1 γ2 · · · γn−1

γ1 γ0 γ1 · · · γn−2

γ2 γ1 γ0 · · · γn−3
...

...
... · · · ...

γn−1 γn−2 γn−3 · · · γ0





























l1
l2
l3
...
ln















. (2)
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Thus since var[Lt] > 0 (from its definition) for all possible values for l1, l2, l3, · · · ln−1 we have
shown that the inner product given by Equation 2 is positive for all nonzero vectors with
components l1, l2, l3, · · · ln−1 we have shown that the autocovariance matrix Γn is positive
definite. Since the autocorrelation matrix, Pn, is a scaled version of Γn it too is positive
definite.

Given the fact that Pn is positive definite we can use standard properties of positive definite
matrices to derive properties of the correlations ρk. Given a matrix Q of size n×n, we define
the principal minors of Q to be determinants of smaller square matrices obtained from the
matrix Q. The smaller submatrices are selected from Q by selecting a set of indices from 1
to n representing the rows (and columns) we want to downsample from. Thus if you view
the indices selected as the indices of rows from the original matrix Q, the columns we select
must equal the indices of the rows we select. As an example, if the matrix Q is 6×6 we could
construct one of the principal minors from the first, third, and sixth rows. If we denote the
elements of Q denoted as qij then this would be the value of

∣

∣

∣

∣

∣

∣

q11 q13 q16
q31 q33 q36
q61 q63 q66

∣

∣

∣

∣

∣

∣

.

Then the theorem of interest about how principal minors relate to Q that is if all principal
minors of a matrix Q are positive if and only if Q is positive definite. In addition, if all
principal minors are either positive or zero then the matrix Q is positive semidefinite.

From the above statements, the leading principal 2× 2 minor
∣

∣

∣

∣

1 ρ1
ρ1 1

∣

∣

∣

∣

,

must be positive. This gives the condition that −1 < ρ1 < +1. In addition the fact that the
principal minor from the first and third are positive row give

∣

∣

∣

∣

1 ρ2
ρ2 1

∣

∣

∣

∣

> 0 .

The principal minor obtained by taking the first, second, and third rows give
∣

∣

∣

∣

∣

∣

1 ρ1 ρ2
ρ1 1 ρ2
ρ2 ρ1 1

∣

∣

∣

∣

∣

∣

> 0 .

If we expand this using a Laplace cofactor expansion about the first row we have
∣

∣

∣

∣

1 ρ1
ρ1 1

∣

∣

∣

∣

− ρ1

∣

∣

∣

∣

ρ1 ρ1
ρ2 1

∣

∣

∣

∣

+ ρ2

∣

∣

∣

∣

ρ1 1
ρ2 1

∣

∣

∣

∣

> 0 .

If we expand these we get
1− 2ρ21 + 2ρ21ρ2 − ρ22 > 0 .

If we complete the square with respect to ρ2 we have

(ρ2 − ρ21)
2 < (ρ21 − 1)2 ,
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Figure 1: The autocorrelation function for the chemical yield data set.

or we write this as
(ρ2 − ρ21)

2

(1− ρ21)
2
< 1 ,

since we know that 1− ρ21 > 0 we can take the square root of both sides and write this as

−1 <
ρ2 − ρ21
1− ρ21

< +1 , (3)

one of the expressions presented in the book that must hold for valid values for ρ1, and ρ2.

Notes on estimating the autocorrelation function

We can use the R command acf to estimate the autocorrelation function given a set of time
series date. In the R script dup fig 2 7.R we load the batch chemical yields time series and
compute its autocorrelation function. When we do that we get the result shown in Figure 1.
Using this command we find the values of the autocorrelation function given by

Autocorrelations of series F, by lag

0 1 2 3 4 5 6 7 8 9 10

1.000 -0.390 0.304 -0.166 0.071 -0.097 -0.047 0.035 -0.043 -0.005 0.014

11 12 13 14 15 16 17 18

0.110 -0.069 0.148 0.036 -0.007 0.173 -0.111 0.020

These values agree quite well with the numbers given in the book.
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Notes on the standard error of the autocorrelation estimates

Given the expression of Bartlett for the variances of the estimated autocorrelation coefficient
rk of

var[rk] =
1

N

∞
∑

v=−∞

{

ρ2v + ρv+kρv−k − 4ρkρvρv−k + 2ρ2vρ
2
k

}

. (4)

Since ρk = ρ−k we only need to consider var[rk] for k ≥ 0. The value of var[rk] when we
take k = 0 in Equation 4 gives var[r0] = 0 as it should. Thus we only need to evaluate the
above expression when k ≥ 1. Lets consider a process where the autocorrelations are given
by ρk = φ|k|, then in that case we have

var[rk] =
1

N

∞
∑

v=−∞

{

φ2|v| + φ|v+k|φ|v−k| − 4φ|k|φ|v|φ|v−k| + 2φ2|v|φ2|k|} .

Lets evaluate each term in this summation. For the first term we find

∞
∑

v=−∞
φ2|v| = 1 + 2

∞
∑

v=1

φ2v = 1 + 2

( ∞
∑

v=0

φ2v − 1

)

= 1 + 2

(

1

1− φ2
− 1

)

=
1 + φ2

1− φ2
. (5)

For the second term we want to evaluate

∞
∑

v=−∞
φ|v+k|φ|v−k| .

If we plot |v + k| and |v − k| as functions of v we see that the above sum is equal to

2

∞
∑

v=k

φ|v+k|φ|v−k| +

k−1
∑

v=−k+1

φ|v+k|φ|v−k| . (6)

In the first sum in Equation 6 when v ≥ k both expressions v+ k and v− k are greater than
or equal to zero. Thus we can write this first term as proportional to (dropping the factor
of 2 for a second)

∞
∑

v=k

φ|v+k|φ|v−k| =
∞
∑

v=k

φv+kφv−k =
∞
∑

v=k

φ2v =
∞
∑

v=0

φ2v −
k−1
∑

v=0

φ2v

=
1

1− φ2
− 1− φ2k

1− φ2
=

φ2k

1− φ2
.

For the second sum in Equation 6, again looking at |v + k| and |v − k| viewed as functions
of v we see that for the domain −k + 1 ≤ v ≤ k − 1 since v + k > 0 and v − k < 0 we can
evaluate |v + k| and |v − k| to see that it is equal to

k−1
∑

v=−k+1

φ|v+k|φ|v−k| =
k−1
∑

v=−k+1

φv+kφ−(v−k) = φ2k(k − 1− (−k + 1) + 1) = φ2k(2k − 1) .
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Thus combining these two expressions we find the second term in total given by

∞
∑

v=−∞
φ|v+k|φ|v−k| = 2

φ2k

1− φ2
+ φ2k(2k − 1) =

φ2k

1− φ2
(1 + 2k + (1− 2k)φ2) (7)

For the third term we want to evaluate (dropping the factor of −4 for a second)

∞
∑

v=−∞
φ|k|φ|v|φ|v−k| = φk

∞
∑

v=−∞
φ|v|φ|v−k| .

Plotting |v| and |v− k| as functions of v we see that the above single summation is equal to
the following three

∞
∑

v=−∞
φ|v|φ|v−k| =

0
∑

v=−∞
φ|v|φ|v−k| +

k−1
∑

v=1

φ|v|φ|v−k| +

∞
∑

v=k

φ|v|φ|v−k| .

In each of these sums given the domain in which we are summing over we can evaluate the
absolute values to get the equivalent sums

∞
∑

v=−∞
φ|v|φ|v−k| =

∞
∑

v=0

φvφv+k +
k−1
∑

v=1

φvφ−v+k +
∞
∑

v=k

φvφv−k

= φk

(

1

1− φ2

)

+ φk(k − 1− 1 + 1) +

∞
∑

v=0

φv+kφv

= 2φk

(

1

1− φ2

)

+ φk(k − 1) =
φk

1− φ2

(

1 + k + (1− k)φ2
)

. (8)

Recall that we need to multiply this by φk to get the full third term. For the fourth term
we find ∞

∑

v=−∞
2φ2|v|φ2|k| = 2φ2k

∞
∑

v=−∞
φ2|v| = 2φ2k

(

1 + φ2

1− φ2

)

. (9)

using the results from when we computed the first term. Thus to evaluate var[rk] we need
to combine Expressions 5, 7, 8, and 9 remembering any leading coefficients to obtain

Nvar[rk] =
1 + φ2

1− φ2
+

φ2k

1− φ2
(1 + 2k + (1− 2k)φ2)− 4φ2k

1− φ2
(1 + k + (1− k)φ2) + 2φ2k 1 + φ2

1− φ2

=
1 + φ2

1− φ2
+

φ2k

1− φ2

[

1 + 2k + (1− 2k)φ2 − 4− 4k − 4(1− k)φ2 + 2 + 2φ2
]

=
1 + φ2

1− φ2
+

φ2k

1− φ2

[

−(1 + φ2)− 2k(1− φ2)
]

=
1 + φ2

1− φ2
− (1 + φ2)φ2k

1− φ2
− 2kφ2k .

when we simplify a bit. This last expression shows that

var[rk] =
1

N

[

(1 + φ2)(1− φ2)

1− φ2
− 2kφ2k

]

, (10)

as claimed in the book. If we take k = 1 in the above we find

var[r1] =
1

N

[

(1 + φ2)(1− φ2)

1− φ2
− 2φ2

]

=
1

N
(1− φ2) .
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Thus var[r1] is relatively large if N (the number of time series samples) is small or φ (the
autocorrelation decay) is close to zero.

If we consider a process such that its autocorrelation is zero for sufficiently large lag, i.e. we
assume that ρv = 0 for all |v| > q where q is a fixed positive number. We want to consider
var[rk] for “large” values of the lag k i.e. when k > q. Notice that in that case we have

• ρv+kρv−k = 0 since if v > 0 then the first factor ρv+k will be zero or if v < 0 then the
second factor ρv−k will be zero.

• ρkρvρv−k = 0 and ρ2vρ
2
k = 0 since ρk is zero when k > q.

This gives when we consider Equation 4 that

var[rk] =
1

N

(

1 + 2

q
∑

v=1

ρ2v

)

for k > q . (11)

Consider now the example presented in the book where data is generated with ρ1 = −0.4 and
ρk = 0 for k ≥ 2. We can then test the values of the sample autocorrelations for significance
under various models and then select the model that best fits. We start with the assumption
that no autocorrelation is significant (nonzero) so that q = 0. In that case Equation 11
would imply that

var[rk] =
1

200
(1) = 0.005 for k > 0 .

The standard error for these rk is given by se[rk] =
√
0.005 = 0.07. Since in fact the first

sample autocorrelation estimate r1 = −0.38 is many multiples larger than our standard error
0.07 we can reject the hypothesis q = 0. If we next assume that q = 1 or that there is only
one nonzero autocorrelation coefficient ρk then Equation 11 would imply

var[rk] ≈
1

N

{

1 + 2ρ21
}

≈ 1

N

{

1 + 2(−.38)2
}

= 0.0064 for k > 1 .

To give a standard error for these k of se[rk] =
√

var[rk] =
√
0.0064 = 0.08. Note that all

the other values of rk when k > 1 have a value that is the same order of magnitude as our
standard error. This gives doubt to their significance i.e. that we should take them to be
zero.

Notes on analysis of variance

Note that the amount of total signal variance var[zt] reduction “due” to each Fourier coeffi-
cient of frequency fi =

i
N

for 1 ≤ i ≤ q is given by the periodogram component

I(fi) =
N

2
(a2i + b2i ) for 1 ≤ i ≤ q . (12)
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If this value is “small” we expect that its contribution to the total variance of our signal
zt will be small and it can probably be dropped from the regression (or model) as it does
not provide much information. That all the Fourier coefficients sum to the total variance is
expressed as

N
∑

t=1

(zt − z̄)2 =

q
∑

i=1

I(fi) . (13)

In considering a Fourier decomposition of a given signal there are two equivalent represen-
tations of the Fourier component associated with the frequency fi =

i
N

for 1 ≤ i ≤ q. One
is given by

zt = α0 + α cos(2πfit) + β sin(2πfit) + et , (14)

an another is the single sine representation given by

zt = α0 + A sin(2πfit + F ) + et .

Here A is the amplitude and F is the phase of the trigonometric component. Expressing
the equivalence between the two representatives can be obtained by expanding the above
sinusoidal as

zt = α0 + A sin(F ) cos(2πfit) + A cos(F ) sin(2πfit) + et .

Equating this expression to the first representation in Equation 14 we get that

A sin(F ) = α and A cos(F ) = β .

We next (in the R code dup table 2 4.R) duplicate the calculation of the periodogram for
the mean monthly temperature data. There N = 12 is even so the periodogram coefficients
are given by

a0 = z̄

ai =
2

N

N
∑

t=1

zt cos(2πfit) =
2

N

N
∑

t=1

zt cos

(

2π
i

N
t

)

for i = 1, 2, · · · , q − 1

bi =
2

N

N
∑

t=1

zt sin(2πfit) =
2

N

N
∑

t=1

zt sin

(

2π
i

N
t

)

for i = 1, 2, · · · , q − 1

aq =
1

N

N
∑

t=1

(−1)tzt

bq = 0 .

When that script is run we get for ai and bi the following

> ai

[1] -5.28467875 0.05000000 0.10000000 -0.51666667 0.08467875 -3.60000000

> bi

[1] -3.8165808 0.1732051 0.5000000 -0.5196152 -0.5834192 0.0000000
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These numbers agree for the most part with the book and I think that the differences are
due to typo’s in the book. If anyone sees anything wrong with what I’ve done please contact
me.

Notes on the spectrum and spectral density functions

Recall the definition of the sample spectrum given by

I(f) = 2

{

c0 + 2
N−1
∑

k=1

ck cos(2πft)

}

. (15)

which is valid for 0 ≤ f ≤ 1
2
and ck is the sample autocovariance function at lag k. Then since

these sample autocovariance estimate ck are unbiased estimate of the process autocovariance
function γk we have E[ck] = γk, thus taking the expectation of Equation 15 we get

p(f) = E[I(f)] = 2

{

γ0 + 2
N−1
∑

k=1

γk cos(2πft)

}

,

which is the power spectrum and shows the relationship between the power spectrum p(f)
and the autocovariance functions γk. In words this relationship is that the power spectrum is
the Fourier cosign transform of the autocovariance function. Thus these two representations
are mathematically equivalent. For ease of remembering the nomenclature used in going
between the continuous Fourier representation and the discrete representation we have the
following table

sample spectrum I(f) ↔ Fourier cosign transform of sample autocovariance ck

power spectrum p(f) ↔ Fourier cosign transform of autocovariance function γk

power spectral density g(f) ↔ Fourier cosign transform of autocorrelation function ρk

Some examples of autocorrelation and spectral density functions

We now consider two example processes and their analytical autocorrelations and spectral
density functions. The two process we consider are

z1,t = 10 + at + at−1 (16)

z2,t = 10 + at − at−1 , (17)

where at are independent, random variables from a Gaussian distribution with zero mean
and unit variance commonly called discrete white noise. We can compute the theoretical
autocovariance functions using its definition

γk = cov[zt, zt+k] = E[(zt − µ)(zt+k − µ)] .

9



Note that both models have a mean value of 10. For the first model we have

γ1,k = E[(at + at−1)(at+k + at−1+k)] = E[atat+k + atat+k−1 + at−1at+k + at−1at+k−1] .

To evaluate this later expression we can take k = 0, 1, 2, · · · and evaluate the given expecta-
tion. We find

k = 0 ⇒ γ1,0 = 2

k = 1 ⇒ γ1,1 = 1

k ≥ 2 ⇒ γ1,k = 0 .

For the second model we have

γ2,k = E[(at − at−1)(at+k − at−1+k)] = E[atat+k − atat+k−1 − at−1at+k + at−1at+k−1] .

To evaluate this we again take k = 0, 1, 2, · · · and evaluate. We find

k = 0 ⇒ γ2,0 = 2

k = 1 ⇒ γ2,1 = −1

k ≥ 2 ⇒ γ2,k = 0 .

We can now use the definition of the spectral density function

g(f) = 2

{

1 + 2
∞
∑

k=1

ρk cos(2πft)

}

for 0 ≤ f ≤ 1

2
, (18)

to evaluate the spectral density for each process. For the first model we find

g(f) = 2

{

1 + 2

(

1

2

)

cos(2πf)

}

= 2(1 + cos(2πf)) .

For the second model, the plus sign above becomes a negative sign and we get

g(f) = 2(1− cos(2πf)) .

Notes on derivation of the link between the sample spectrum

In this section we just present a few simple notes on points of this derivation that seemed
difficult to understand at first. The book gets for df the following

df =
2

N

N
∑

t=1

zte
−i2πft .

We can replace zt with zt − z̄ in each term in the above because this latter sum is 2
N
z̄ times

the sum
N
∑

t=1

e−i2πft =
N
∑

t=1

(e−i2πf)t =
1− (e−i2πf)N+1

1− e−i2πf
= 0 .
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This last expression is zero because

(e−i2πf )N+1 = (e−i2π)f(N+1) ,

and since e−i2π = 1 the above expression is 1 to the power of f(N + 1) and is 1.

We then get for I(f)

I(f) =
2

N

N
∑

t=1

N
∑

t′=1

(zt − z̄)(zt′ − z̄)e−i2πf(t−t′) .

To evaluate this sum we note that in it we are evaluating the argument of the summation
over a “grid” in the (t′, t) domain where 1 ≤ t′ ≤ N and 1 ≤ t ≤ N . When we convert this to
a sum over k where k is defined by k ≡ t− t′ we need to introduce an additional summation
variable that sums along points with fixed k. Note that when k = 0 we are looking at the
points in the (t′, t) domain where 0 = t − t′ or points where t = t′ which we recognized as
the diagonal of the above grid. When k = −1 we are looking at points where −1 = t− t′ or
t = −1 + t′. This later line is the line parallel to the diagonal but shifted “down” by one.
When k = +1 we are looking at the points where +1 = t − t′ or t = 1 + t′ which is the the
line parallel to the diagonal but shifted “up” by one. To sum over all points in the (t′, t) grid
we need to take k from −(N − 1) (the grid point (N, 1) in the lower right corner). To N − 1
(the grid point (1, N) in the upper left corner). Thus we can write the above summation
as three terms: the points above the diagonal (where 1 ≤ k ≤ N − 1), the diagonal (where
k = 0), and the points below the diagonal (where −(N − 1) ≤ k ≤ −1) and we have

N

2
I(f) =

∑

1≤k≤N−1

∑

(t′,t):t−t′=k

st,t′ +
∑

(t′,t):t−t′=0

st,t′ +
∑

−(N−1)≤k≤−1

∑

(t′,t):t−t′=k

st,t′ . (19)

Where we have denoted the summand or (zt − z̄)(zt′ − z̄)e−i2πf(t−t′) as st,t′ . In the first
summations in Equation 19 we write t = t′ + k and replace

∑

(t′,t):t−t′=k with a single sum
over t′ where 1 ≤ t′ ≤ N − k. Thus we have

∑

1≤k≤N−1

∑

(t′,t):t−t′=k

st,t′ =
N−1
∑

k=1

N−k
∑

t′=1

st′+k,t′ .

Note the inner sum above contains an expression for ck the autocovariance function in that

N−k
∑

t′=1

st′+k,t′ =
N−k
∑

t′=1

(zt′+k − z̄)(zt′ − z̄)e−i2πfk = Ncke
−i2πfk .

In the third summations in Equation 19 we write t′ = t− k and replace
∑

(t′,t):t−t′=k with a

single sum over t where 1 ≤ t ≤ N − |k|. Thus we have

∑

−(N−1)≤k≤−1

∑

(t′,t):t−t′=k

st,t′ =

N−1
∑

k=1

N−|k|
∑

t=1

st,t−k .

Again we note that the inner sum above contains an expression for ck in that we have

N−|k|
∑

t=1

st,t−k =

N−|k|
∑

t=1

(zt − z̄)(zt−k − z̄)e−i2πfk = Ncke
−i2πfk .

11
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Figure 2: Left: A plot of the original time series. Center: A plot of the points (zt, zt+1).
Right: A plot of the points (zt, zt+2).

Finally the second summations in Equation 19 can be seen to be equal to Nc0. Thus we now
have

N

2
I(f) = N

N−1
∑

k=1

cke
−i2πfk +Nc0 +

−1
∑

k=−(N−1)

cke
−i2πfk = N

N−1
∑

k=−(N−1)

cke
−i2πfk .

Thus we finally have

I(f) = 2

N−1
∑

k=−(N−1)

cke
−i2πfk ,

as we were to show.

Problem Solutions

Problem 2.1 (an autocorrelated sequence)

This problem is worked in the R code chap 2 prob 1.R. When that code is run we get the
plot shown in Figure 2. Notice that it looks like zt could be used to predict zt+1 but not
zt+2. We would expect this time series to be autocorrelated.

Problem 2.2 (given autocorrelations is this a stationary time series

There are certain conditions that need to be satisfied for a sequence to represent a stable
process. These are discussed on Page 2 of these notes and in the book. For each sequences

12



given the values of the autocorrelations ρk we can evaluate the expression in Equation 3. For
the For the first sequence we find that this equals −0.25 which satisfies the given constraint.
For the second process we find that this expression equals −1.0000000000000007. Since this
value is slightly less than −1 this cannot be a stable process.

Problem 2.3 (autocorrelations of a linear combination)

The sequence z3,t is linear so has a mean value given by µ3 = E[z3,t] = µ1 + 2µ2, where µ1

and µ2 are the means of the sequences z1,t and z2,t respectively. We now compute γ3,k the
autocovariance for z3,t. We find

γ3,k = E[(z3,t − µ3)(z3,t+k − µ3)]

= E[(z1,t − µ1 + 2(z2,t − µ2))(z1,t+k − µ1 + 2(z2,t+k − µ2))]

= γ1,k + 2E[(z1,t − µ1)(z2,t+k − µ2)] + 2E[(z2,t − µ2)(z1,t+k − µ1)] + 4γ2,k .

If we assume that the two sequences z1,t and z2,t are independent (or at least uncorrelated)
then

E[(z1,t − µ1)(z2,t+k − µ2)] = E[(z1,t − µ1)]E[(z2,t+k − µ2)] = 0 ,

and the above becomes
γ3,k = γ1,k + 4γ2,k .

For the numbers given for γ1,k and γ2,k we have

γ3,0 = γ1,0 + 4γ2,0 = 0.5 + 4(2.3) = 9.7

γ3,1 = 0.2 + 4(−1.43) = −5.52

γ3,2 = 0 + 4(0.3) = 1.2

γ3,k = 0 for k ≥ 3 .

Using these we can compute the autocorrelations. We find

ρ3,0 = 1

ρ3,1 =
γ3,1
γ3,0

=
−5.52

9.7
= −0.56907

ρ3,2 =
γ3,2
γ3,0

=
1.2

9.7
= 0.123

ρ3,k = 0 for k ≥ 3 .

With these we can check the value of the expression given in Equation 3. We find

ρ2 − ρ21
1− ρ21

=
0.123− (−0.569)2

1− (−0.569)2
= −0.29 ,

since this is between −1 and +1 we conclude that z3,t is stationary.

13
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Figure 3: Plots of the sample autocorrelation rk of the chemical reactor temperature data
set. There seem to be significant correlations at lags of 1 and 6.

Problem 2.4 (calculating the autocorrelation function)

The problem is worked in the R script chap 2 prob 4.R. In that script we use the function
acf, which computes and plots if desired the autocovariance or autocorrelation function.
When we run that script we get the plot given in Figure 3. The numerical values produced
by the acf call for the autocovariance are

0 1 2 3 4 5 6 7 8 9 10

10.688 5.247 1.752 -0.519 -1.848 -3.121 -5.464 -4.557 -1.441 1.637 3.331

11 12 13 14 15

2.857 2.014 1.171 -0.350 -0.795

while for the autocorrelations we get

0 1 2 3 4 5 6 7 8 9 10

1.000 0.491 0.164 -0.049 -0.173 -0.292 -0.511 -0.426 -0.135 0.153 0.312

11 12 13 14 15

0.267 0.188 0.110 -0.033 -0.074

14



Problem 2.5 (standard errors of the autocovariance estimates rj)

Part (i): We will use the result Equation 4 and discussed on Page 5 which is Bartlett’s
approximation to the variance of the sample autocorrelation rk. If we let k = 1 we get

var[r1] =
1

N

∞
∑

v=−∞
(ρ2v + ρv+1ρv−1 − 4ρ1ρvρv−1 + 2ρ2vρ

2
1) .

Since we assume that ρj = 0 for j > 2 many of the terms in the above summation are zero
and we have

var[r1] =
1

N

2
∑

v=−2

ρ2v +
1

N

3
∑

v=−3

ρv+1ρv−1 −
4ρ1
N

3
∑

v=−2

ρvρv−1 +
2ρ21
N

2
∑

v=−2

ρ2v

=
1

N
(2ρ22 + 2ρ21 + 1) +

1

N
(ρ2 + ρ21 + ρ2)

− 4ρ1
N

(ρ1ρ2 + ρ1 + ρ1 + ρ1ρ2) +
2ρ21
N

(2ρ22 + 2ρ21 + 1)

=
1

N

(

4ρ41 − 3ρ21 + 2ρ22 − 8ρ21ρ2 + 4ρ1ρ2 + 2ρ2 + 1
)

,

when we combine terms.

To compute var[r2] we follow the same procedure as for var[r1]. We find

var[r2] =
1

N

∞
∑

v=−∞
(ρ2v + ρv+2ρv−2 − 4ρ2ρvρv−2 + 2ρ2vρ

2
2)

=
1

N
(2ρ22 + 2ρ21 + 1) +

1

N
(ρ22)−

4

N
ρ2(ρ2 + ρ21 + ρ2) + 2ρ22(2ρ

2
2 + 2ρ21 + 1)

=
1

N
(4ρ42 − 3ρ22 + 4ρ21ρ

2
2 − 2ρ21 + 1) .

To obtain the standard errors for rj when j > 2 we will use the “large lag” Bartlett approx-
imation given by

var[rk] =
1

N

{

1 + 2

q
∑

v=1

ρ2v

}

for k > q .

Since q = 2 this gives us

var[rk] =
1

N

{

1 + 2
2
∑

v=1

ρ2v

}

=
1

N
(1 + 2(ρ21 + ρ22)) .

As we were asked for the standard error of the approximate autocorrelation function rj we
need to take the square root of the above variance estimates.

Part (ii): To evaluate the covariance between the estimated correlations r4 and r5 we use

cov[rk, rk+s] =
1

N

∞
∑

v=−∞
ρvρv+s . (20)

15



When we take k = 4 and s = 1 we get

cov[r4, r5] =
1

N

∞
∑

v=−∞
ρvρv+1 =

1

N
(ρ2ρ1 + ρ1 + ρ1 + ρ1ρ2) =

2

N
(ρ1ρ2 + ρ1) .

Problem 2.6 (constructing a periodogram)

For the data in Problem 2.1 we have N = 36 which is an even number, so we have that
q = N

2
= 18. The fundamental frequencies are fi =

i
N

= i
36

which have fundamental periods
of Ti =

1
fi
= 36

i
for 1 ≤ i ≤ q. We compute the Fourier components ai and bi with

a0 = z̄

ai =
2

N

N
∑

t=1

ztcit =
2

N

N
∑

t=1

zt cos

(

2π
i

N
t

)

for 1 ≤ i ≤ q − 1

bi =
2

N

N
∑

t=1

ztsit =
2

N

N
∑

t=1

zt sin

(

2π
i

N
t

)

for 1 ≤ i ≤ q − 1

aq =
1

N

N
∑

t=1

(−1)tzt and bq = 0 .

With these we have I(fi) given by

I(fi) =
N

2
(a2i + b2i ) for 1 ≤ i ≤ q − 1 and I(fq) = I(0.5) = Na2q .

The values of I(fi) are known as the periodogram of the sequence zt. Recall that in the
analysis of variance table the mean square error for most of the Fourier components (for

which the degrees of freedom is 2) is given by from I(fi)
2

. With this background this problem
is worked in the R code chap 2 prob 6.R. When that script is run it generates the following
analysis of variance table:

[1] " ii frequency period periodogram D.O.F. mean square"

[1] " 1 0.0278 36.0000 12.8667 2 6.4333"

[1] " 2 0.0556 18.0000 42.2053 2 21.1026"

[1] " 3 0.0833 12.0000 163.9651 2 81.9826"

[1] " 4 0.1111 9.0000 27.5106 2 13.7553"

[1] " 5 0.1389 7.2000 2.6895 2 1.3447"

[1] " 6 0.1667 6.0000 2.7222 2 1.3611"

[1] " 7 0.1944 5.1429 13.9010 2 6.9505"

[1] " 8 0.2222 4.5000 27.5449 2 13.7725"

[1] " 9 0.2500 4.0000 22.7222 2 11.3611"

[1] " 10 0.2778 3.6000 13.1995 2 6.5998"

[1] " 11 0.3056 3.2727 4.1406 2 2.0703"

[1] " 12 0.3333 3.0000 13.5000 2 6.7500"
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Figure 4: A plot of the periodogram for the temperature data.

[1] " 13 0.3611 2.7692 6.9720 2 3.4860"

[1] " 14 0.3889 2.5714 8.0952 2 4.0476"

[1] " 15 0.4167 2.4000 9.8126 2 4.9063"

[1] " 16 0.4444 2.2500 1.4445 2 0.7223"

[1] " 17 0.4722 2.1176 11.4303 2 5.7152"

[1] " 18 0.5000 2.0000 36.0000 1 36.0000"

[1] " total 384.7500 35 10.9929"

From the above table we see that the component with i = 3 corresponding to a frequency
i
N

= 3
36

= 1
12

has a very large magnitude. This gives an indication that there is a periodic
component to this data. A look at the raw data given in Figure 2 (left) indicates that this
might be true. A plot of the periodogram is given in Figure 4.
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Chapter 3 (Linear Stationary Models)

Notes on the Text

Notes on the general linear process

Reading further in the book we use the B and F notation to summarize the symbols and
nomenclature for the various stochastic process models that we consider. We have the linear
process

z̃t = at +

∞
∑

j=1

ψjat−j = ψ(B)at , (21)

which defines the function ψ(·) in terms of the coefficients ψj (we take ψ0 = 1). The function
ψ(B) is sometimes called the transfer function of the linear relationship relating z̃t to at or
the generating function of the ψj weights. This relationship under suitable conditions can
be written as a function of past values of z̃ as

z̃t =

∞
∑

j=1

πj z̃t−j + at . (22)

When we bring the summation to the left-hand-side we get
(

1−
∞
∑

j=1

πjB
j

)

z̃t = at ⇒ π(B)z̃t = at , (23)

which defines the function π(·) in terms of the coefficients πj as

π(B) = 1−
∞
∑

j=1

πjB
j . (24)

As another function to introduce we consider the autocovariance generating function γ(B)
given by

γ(B) = σ2
aψ(B)ψ(B−1) = σ2

aψ(B)ψ(F ) . (25)

We now consider some examples of the B notation with a stochastic process and the resulting
ψ(B) and π(B) functions. Consider

z̃t = at − θat−1 = (1− θB)at ,

then to match Equation 21 the ψj coefficients are ψ1 = −θ, ψj = 0 for j ≥ 2 and the ψ(B)
function is ψ(B) = 1− θB. To write this in the form needed for Equation 23 we have

at =
1

1− θB
z̃t = (1 + θB + θ2B2 + θ3B3 + · · · )z̃ ,

or
at = z̃t + θz̃t−1 + θ2z̃t−2 + θ3z̃t−3 + · · · .

18



Solving for z̃t we have

z̃t = −θz̃t−1 − θ2z̃t−2 − θ3z̃t−3 + · · ·+ at

Thus the πj coefficients are πj = −θj and the π(B) function via Equation 24 is

π(B) = 1 +

∞
∑

j=1

θjBj .

Multiply Equation 23 or π(B)z̃t = at by ψ(B) on both sides and use Equation 21 or z̃t =
ψ(B)at to get

ψ(B)π(B)z̃t = ψ(B)at = z̃t .

Thus ψ(B) and π(B) are inverses to each other

π(B) = ψ(B)−1 .

We not catalog some properties of linear systems like the ones described above. If our true
process follows the linear model given by Equation 21 then it has an analytical autocovariance
given by

γk = σ2
a

∞
∑

j=0

ψjψj+k . (26)

If we take k = 0 then we get γ0 or the variance of zt is given by

γ0 = σ2
a

∞
∑

j=0

ψ2
j = σ2

z .

Thus for our process to have a finite variance we must have the sum on the left-hand-side of
the above converge.

Notes on stationary and invertibility of a linear process

To show invertibility consider the model

z̃ = (1− θB)at .

Then solving for at we get at = (1− θB)−1z̃. Recalling the fact that

k
∑

j=0

θjBj =
1− θk+1Bk+1

1− θB
,

we have that

(1− θB)−1 = (1 + θB + θ2B2 + θ3B3 + · · ·+ θk−1Bk−1 + θkBk)(1− θk+1Bk+1)−1 ,

and solving for z̃t we get

z̃t = −θz̃t−1 − θ2z̃t−2 − θ3z̃t−3 − · · · − θk−1z̃t−k+1 − θkz̃t−k + at − θk+1at−k−1 . (27)

If |θ| < 1 then when k → ∞ we have θk+1at−k−1 → 0 we loose the last term and get

z̃t = −θz̃t−1 − θ2z̃t−2 − θ3z̃t−3 − · · · − θk−1z̃t−k+1 − θkz̃t−k + at .

Writing this as z̃t =
∑∞

j=1 πz̃t−j + aj implies that πj = −θj for j > 1 as before.
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Notes on the autocovariance generating function γ(B) =
∑∞

k=−∞ γkB
k

We start with the definition of γ(B) given by γ(B) =
∑∞

k=−∞ γkB
k and the fact that with

a linear process for which z̃t =
∑∞

j=0 ψjat−j with ψ0 = 1 we have an autocovariance function
of the form

γk = σ2
a

∞
∑

j=0

ψjψj+k .

When we put this expression for γk into the definition of γ(B) we get

γ(B) = σ2
a

∞
∑

k=−∞

∞
∑

j=0

ψjψj+kB
k .

Now in this inner summation, when k is negative enough the index j + k will eventually
become negative. Since ψl = 0 when l < 0, we have ψj+k = 0 when k < −j thus the sum
above becomes

γ(B) = σ2
a

∞
∑

j=0

∞
∑

k=−j

ψjψj+kB
k .

At this point we want to change the summation indices to be such that h = j + k is a new
summation variable. We change from the index pair (j, k) to the index pair (j′, h′) where

j′ = j and h′ = j + k .

When we do this then the sum becomes

γ(B) = σ2
a

∞
∑

j=0

∞
∑

h=0

ψjψhB
h−j =

∞
∑

h=0

ψhB
h

∞
∑

j=0

ψjB
−j .

The above shows that
γ(B) = σ2

aψ(B)ψ(B−1) . (28)

If we consider the stochastic model where ψ(B) = 1− θB then we have

γ(B) = σ2
aψ(B)ψ(B−1) = σ2

a(1− θB)(1 + θB−1) = σ2
a(1− θB−1 − θB + θ2)

= σ2
a(−θB−1 + (1 + θ2)− θB) .

Thus we see that the autocovariance for this model are γ±1 = −θσ2
a and γ0 = (1 + θ2)σ2

a.

In discussing the inevitability of the linear process z̃t = (1 − θB)at the book uses the fact
that

1

1− θB
= (1 + θB + θ2B2 + · · ·+ θkBk)(1− θk+1Bk+1)−1 .

We can show that this is true by multiplying by both sides by (1− θB)(1− θk+1Bk+1) to get

1− θk+1Bk+1 = (1 + θB + θ2B2 + · · ·+ θkBk)(1− θB) .

By expanding the right-hand-side of the expression we see that it equals the left-hand-side.
We write the linear system z̃t = (1 − θB)at first as at =

1
1−θB

z̃t and then using the above
fact as

at = (1 + θB + θ2B2 + · · ·+ θkBk)(1− θk+1Bk+1)−1z̃t .
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If we multiply both sides of the above by (1− θk+1Bk+1) we get

(1− θk+1Bk+1)at = (1 + θB + θ2B2 + · · ·+ θkBk)z̃t ,

So solving for z̃t in that expression we get

z̃t = −θz̃t−1 − θ2z̃t−2 − θ3z̃t−3 − · · · − θkz̃t−k + at − θk+1at−k−1 . (29)

If we let |θ| < 1 as k → ∞ we have θk+1at−k−1 → 0 and the above becomes

z̃t = −θz̃t−1 − θ2z̃t−2 − θ3z̃t−3 − · · · − θkz̃t−k + at . (30)

This is the autoregressive form e.g. Equation 22 of the linear system z̃t = (1− θB)at.

Notes on autoregressive processes of order p

We begin with the general expression that the autocorrelations that an AR(p) model must
satisfy

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p . (31)

If we write Equation 31 as φ(B)ρk = 0 with

φ(B) = 1− φ1B − φ2B
2 − · · · − φp−1B

p−1 + φpB
p ,

which we write in factored form as

φ(B) =

p
∏

i=1

(1−GiB) .

This last polynomial expression has roots G−1
j for j = 1, 2, · · · , p. Note that if we consider

as a possible solution to the difference equation φ(B)ρk = 0 the expression ρk = AjG
k
j for

some j ∈ {1, 2, · · · , p} then we have

φ(B)ρk =

[

n
∏

i=1;i 6=j

(1−GiB)

]

(1−GjB)AjG
k
j .

But since we have
(1−GjB)Gk

j = Gk
j −GjG

k−1
j = 0 ,

we see that ρk = AjG
k
j is a solution to Equation 31 and we have found one autocorrelation

function. The general solution to
∏p

i=1(1−GiB)ρk = 0 is a sum of the p expressions AjG
k
j .

That is the general solution for the autocorrelation function ρk for an AR(p) model is

ρk = A1G
k
1 + A2G

k
2 + · · ·+ ApG

k
p . (32)

The procedure to express the autocorrelation function for an AR(p) model is then as follows

• Find p roots of φ(B) = 0. Denote them as G−1
1 , G−1

2 , G−1
3 , · · · , G−1

p .

• Invert all of these numbers to get G1, G2, G3, · · · , Gp.

• Then the autocorrelation function ρk is given by

ρk = A1G
k
1 + A2G

k
2 + · · ·+ ApG

k
p .
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Notes on evaluating E[z̃tat]

Now consider the impulse response form for the stochastic sequence z̃t given by

z̃t = at +
∞
∑

j=1

ψjat−j ,

When we multiply both sides by at and take the expectation we get

E[z̃tat] = E[a2t ] = σ2
a , (33)

since E[atat−j ] = 0 for all j > 0.

Notes on the second order autoregressive process

The second-order autoregressive process is given by

z̃t = φ1z̃t−1 + φ2z̃t−2 + at .

For stationarity, we need to consider the roots of the characteristic equation

φ(B) = 1− φ1B − φ2B
2 .

The roots of φ(B) = 0 are given by the quadratic equation by

G−1
1,2 =

−(−φ1)±
√

φ2
1 + 4φ2

−2φ2
=

−φ1 ±
√

φ2
1 + 4φ2

2φ2
.

Thus from the above we see that to have real roots we must have φ2
1 + 4φ2 > 0.

Notes on the autocorrelation function for an AR(2) model

From the autocorrelation expression for an AR(2) model given by Equation 31

ρk = φ1ρk−1 + φ2ρk−2 ,

we know that ρ0 = 1 always. We can take k = 1 in the above to get an expression for ρ1
where we find

ρ1 = φ1 + φ2ρ1 ⇒ ρ1 =
φ1

1− φ2
.
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Notes on the Yule-Walker equations for an AR(2) model

The Yule-Walker equations for p = 2 are given by

ρ1 = φ1 + φ2ρ1

ρ2 = φ1ρ1 + φ2 . (34)

From the first of these we have that φ1 = ρ1 − φ2ρ1 which when we put this into the second
equation and solve for φ2 given

φ2 =
ρ2 − ρ21
1− ρ21

. (35)

Using this expression to expression φ1 in terms of ρ1 and ρ2 only gives

φ1 = ρ1 −
[

ρ1ρ2 − ρ31
1− ρ21

]

=
ρ1 − ρ1ρ2
1− ρ21

. (36)

We can also expression ρ1 and ρ2 in terms of φ1 and φ2. Using the first equation from
Equation 34 gives

ρ1 =
φ1

1− φ2
. (37)

When we put this into the second equation in Equation 34 gives

ρ2 =
φ2
1

1− φ2
+ φ2 . (38)

For an AR(2) process we can express the variance of z̃t in terms of that of at using

σ2
z =

σ2
a

1− ρ1φ1 − ρ2φ2 − · · · − ρp−1φp−1 − ρpφp
=

σ2
a

1− ρ1φ1 − ρ2φ2
.

When we include what we know of ρ1 and ρ2 in terms of φ1 and φ2 we get

σ2
z = σ2

a





1

1− φ1

(

φ1

1−φ2

)

− φ2

(

φ2 +
φ2
1

1−φ2

)



 = σ2
a

(

1− φ2

(1− φ2
2)(1− φ2)− φ2

1 − φ2φ2
1

)

= σ2
a

(

1− φ2

(1 + φ2)(1− φ2)2 − φ2
1(1 + φ2)

)

= σ2
a

(

1− φ2

1 + φ2

)[

1

(1− φ2)2 − φ2
1

]

. (39)

To compute the spectrum p(f) for an AR(2) model we find

p(f) = p(f) = 2σ2
a|ψ(e−i2πf)|2 for 0 ≤ f ≤ 1/2

=
2σ2

a

|1− φ1e−i2πf − φ2e−i4πf |2

=
2σ2

a

(1− φ1e−i2πf − φ2e−i4πf)(1− φ1ei2πf − φ2ei4πf )
.

In the Mathematica file expand denominator AR2.nb we expand the denominator in the
above expression to show that

p(f) =
2σ2

a

1 + φ2
1 + φ2

2 − 2φ1(1− φ2) cos(2πf)− 2φ2 cos(4πf)
, (40)

in agreement with the book.
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Notes on partial autocorrelation function

We define φk(j) as the jth coefficient of an AR(k) model for k ≥ 1. That is, our model AR(k)
will have

φk(1) , φk(2) , φk(3) , · · · φk(k) ,

coefficients. Recall the autocorrelation function ρj for an AR(k) model must satisfy

ρj = φk(1)ρj−1 + φk(2)ρj−2 + · · ·+ φk(k−1)ρj−k+1 + φk(k)ρj−k for j = 1, 2, · · · , k .

We now want to consider various AR(k) models for different values of k. If we form the
Yule-Walker equations for k = 1 we get the single equation

ρ1 = φ1(1) .

The Yule-Walker equations when we take k = 2 are given by
[

1 ρ1
ρ1 1

] [

φ2(1)

φ2(2)

]

=

[

ρ1
ρ2

]

.

We can use Cramer’s rule to solve for φ2(2) where we find

φ2(2) =

∣

∣

∣

∣

1 ρ1
ρ1 ρ2

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1
ρ1 1

∣

∣

∣

∣

=
ρ2 − ρ21
1− ρ21

.

The Yule-Walker equations when we take k = 3 are given by




1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1









φ3(1)

φ3(2)

φ3(3)



 =





ρ1
ρ2
ρ3



 .

Again we can use Cramer’s rule to solve for φ3(3) where we find

φ3(3) =

∣

∣

∣

∣

∣

∣

1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1 ρ2
1 ρ1 1
ρ2 ρ1 1

∣

∣

∣

∣

∣

∣

.

All of these results agree with that presented in the book.

Notes on the partial autocorrelation function

In the R script chap 3 dup table 3 1.R we duplicate the results from Table 3.1 in the the
book or the batch data set. In that script we use the pacf function to compute the partial
autocorrelation function. When that script is run we get the following results
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Partial autocorrelations of series F, by lag

1 2 3 4 5 6 7 8 9 10 11

-0.390 0.180 0.002 -0.044 -0.069 -0.121 0.020 0.005 -0.056 0.004 0.143

12 13 14 15 16 17 18

-0.009 0.092 0.167 -0.001 0.221 0.053 -0.105

These results agree with the ones in the book.

Notes on the MA models

Since for MA(q) models we can compute the autocovariance functions γk. First recall that
for a MA(q) model we have

z̃t = at − θ1at−1 − θ2at−2 − · · · − θq−1at−q+1 − θqat−q .

For notational simplicity we will write this as z̃t =
∑q

i=0 θ̃jat−i. In this expression we have

θ̃0 = 1 and θ̃i = −θi for 1 ≤ i ≤ q. In addition, we will take θ̃i = 0 for all other values of i.
Using this expression we can compute γk from its definition

γk = E[z̃tz̃t−k]

= E

[(

q
∑

i=0

θ̃iat−i

)(

q
∑

j=0

θ̃jat−k−j

)]

= E

[

q
∑

i=0

q
∑

j=0

θ̃iθ̃jat−iat−k−j

]

.

Taking the expectation inside the summation we have that E[at−iat−k−j ] = 0 unless the
subscripts are equal or t− i = t− k − j. In that case the expectation equals σ2

a. The index
condition is equivalent to j = i− k and the above becomes

γk = σ2
a

q
∑

i=0

θ̃i−kθ̃i .

In the above since θ̃i = 0 when i < 0 we have that the above can be written as

γk = σ2
a

q
∑

i=k

θ̃i−kθ̃i for k ≤ q , (41)

and γk = 0 when k > q. If we evaluate the above for some value of k we can get the
expressions in the book. Taking k = 0 we find

γ0 = σ2
a

q
∑

i=0

θ̃2i = σ2
a

(

1 + θ21 + θ22 + · · ·+ θ2q−1 + θ2q
)

.

While if we take 1 ≤ k ≤ q we have

γk = σ2
a

(

θ̃0θ̃k + θ̃1θ̃k+1 + θ̃2θ̃k+2 + · · ·+ θ̃q−k−1θ̃q−1 + θ̃q−kθ̃q

)

= σ2
a (−θk + θ1θk+1 + θ2θk+2 + · · ·+ θq−k−1θq + θq−kθq) .

These two results agree with those given in the book.
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Notes on the MA(1) models

For a MA(1) model using Equation 41 we have that

ρ1 =
−θ1
1 + θ21

.

We can write this as a quadratic equation in θ1 in terms of ρ1. Putting this equation in the
standard form for quadratic equation we get

θ21 +
1

ρ1
θ1 + 1 = 0 . (42)

The spectrum of the MA(1) model takes the from

p(f) = 2σ2
a|ψ(e−i2πf)|2 for 0 ≤ f ≤ 1/2 .

Since ψ(B) = 1− θ1B the above equals

p(f) = 2σ2
a(1− θ1e

−i2πf)(1− θ1e
i2πf)

= 2σ2
a(1 + θ21 − θ1(e

−i2πf + ei2πf ))

= 2σ2
a(1 + θ21 − 2θ1 cos(2πf)) .

Notes on the autocorrelation function and spectrum of mixed process

Given the mixed ARMA(p, q) process

z̃t = φ1z̃t−1 + φ2z̃t−2 + · · ·+ φpz̃t−p + at − θ1at−1 − θ2at−2 − · · · θqat−q ,

we can multiply by z̃t−k and take expectations to get an expression for the autocorrelation
function γk

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p + γza(k)− θ1γza(k − 1)− · · · − θqγza(k − q) (43)

where we have defined γza(k) as

γza(k) = E[z̃t−kat] . (44)

Since the expression for z̃t−k depends on the shocks in the past up to time t− k we have

γza(k) = 0 if k > 0 . (45)

Thus in Equation 43 all γza(·) expressions will vanish if the smallest argument (which is
k − q) is positive. This it the condition that k − q > 0 or k − q ≥ 1 or k ≥ q + 1. Then for
an ARMA(p,q) model the autocorrelation function satisfies

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p for k ≥ q + 1 .
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If we divide by γ0 we get

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p for k ≥ q + 1 .

Since ρ0 = 1 there will be q values of ρk i.e. ρ1, ρ2, ρ3, · · · , ρq−1, ρq that depend on θi via
Equation 43 once we have evaluated expressions for the needed γza(·).

In the special case of an ARMA(p,q) model when p = 1 and q = 1 Equation 43 gives

γk = φ1γk−1 + γza(k)− θ1γza(k − 1) .

or taking k = 0, k = 1, and k ≥ 2 we have

γ0 = φ1γ1 + σ2
a − θ1γza(−1) (46)

γ1 = φ1γ0 − θ1σ
2
a (47)

γk = φ1γk−1 ,

when we use Equation 45 and recall that γza(0) = σ2
a. The ARMA(1,1) model has a process

model that looks like
z̃t − φ1z̃t−1 = at − θ1at−1 .

If we multiply by at−1 and take expectations we get

γza(−1)− φ1σ
2
a = −θ1σ2

a ,

or solving for γza(−1) we have

γza(−1) = (φ1 − θ1)σ
2
a .

Thus putting this into Equation 46 we have

γ0 = φ1γ1 + (1− θ1(φ1 − θ1))σ
2
a (48)

γ1 = φ1γ0 − θ1σ
2
a . (49)

If we put the second equation above into the first we get

γ0 = φ2
1γ0 − φ1θ1σ

2
a + (1− θ1(φ1 − θ1))σ

2
a .

Now solving for γ0 we get

γ0 =
1− θ21 − 2φ1θ1

1− φ2
1

σ2
a .

If we put this into Equation 49 we get

γ1 =

(

φ1 + φ1θ
2
1 − 2φ2

1θ1 − θ1(1− φ2
1)

1− φ2
1

)

σ2
a =

φ1(1− φ1θ1)− θ1(1− φ1θ1)

1− φ2
1

σ2
a

=

(

(φ1 − θ1)(1− φ1θ1)

1− φ2
1

)

σ2
a .
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Problem Solutions

Problem 3.1 (the B notation)

Part (a): We have z̃t − 0.5Bz̃t = at or (1 − 0.5B)z̃t = at. Comparing this to φ(B)z̃t = at
we have φ(B) = 1− 0.5B.

Part (b): We have z̃t = at − 1.3Bat + 0.4B2at = (1 − 1.3B + 0.4B2)at. Comparing this to
z̃t = θ(B)at we have θ(B) = 1− 1.3B + 0.4B2.

Part (c): This is the combination of the two previous problems. Thus we have (1−0.5B)z̃t =
(1 − 1.3B + 0.4B2)at so comparing this to φ(B)z̃t = θ(B)at we have φ(B) = 1 − 0.5B and
θ(B) = 1− 1.3B + 0.4B2.

Problem 3.2 (various definitions in ARMA models)

For the various parts of this problem we need to recall that the ψj weights come from the
representation

z̃t = ψ(B)at =

(

1 +
∞
∑

j=1

ψjB
j

)

at .

The πj weights come from the representation

π(B)z̃t =

(

1−
∞
∑

j=1

πjB
j

)

z̃t = at .

Part (a): For the model (1− 0.5B)z̃t = at we have

z̃t =

(

1

1− 0.5B

)

at =

∞
∑

j=0

1

2k
Bkat .

Thus we see that ψ0 = 1, ψ1 =
1
2
, ψ2 =

1
4
, etc.

For the coefficients πj we have π(B) = 1 − 0.5B so we have π0 = 1, and π1 = 0.5 with all
others zero.

For the covariance generating function we have

γ(B) = σ2
aψ(B)ψ(B−1) = σ2

a

1

(1− 0.5B)

1

(1− 0.5B−1)
=

σ2
a

5
4
− 1

2
B − 1

2
B−1

.

The first four autocorrelation coefficients can be determined from a Laurent series expansion
of the covariance generating function or by recognizing that since this is an AR(1) model it
has ρk = φk

1 =
1
2k
.
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For an AR(1) model we have

σ2
z = γ0 =

σ2
a

1−
(

1
4

) =
4

3
.

Part (b): For the MA(2) model z̃t = (1− 1.3B +0.4B2)at we have θ1 = 1.3 and θ2 = −0.4.

The weights ψj are ψ0 = 1, ψ1 = −1.3 and ψ2 = +0.4 with all others zero.

To find the πj weights we write our model as

1

1− 1.3B + 0.4B2
z̃t = at .

We then need to Taylor expand the function 1
1−1.3B+0.4B2 when we do we get

1

1− 1.3B + 0.4B2
≈ 1 + 1.3B + 1.29B2 + 0.98881B4 + 0.82173B5 +O(B6) .

Which gives π0 = 1, π1 = −1.3, π2 = −1.29, π3 = 0, π4 = −0.98881 etc.

For the autocovariance generating function γ(B) we get

γ(B) = σ2
aψ(B)ψ(B−1) = σ2

a(1− 1.3B + 0.4B2)(1− 1.3B−1 + 0.4B−2)

= 0.4B−2 − 1.82B−1 + 2.85− 1.82B + 0.4B2 .

Thus γ0 = 2.85, γ1 = −1.82, and γ2 = 0.4.

For a MA(2) model we have

ρ1 =
−θ1(1− θ2)

1 + θ21 + θ22
=

−1.3(1 + 0.4)

1 + 1.32 + 0.42
= −0.6385

ρ2 =
−θ2

1 + θ21 + θ22
=

0.4

1 + 1.32 + 0.42
= 0.1403 ,

all others are zero.

The variance of z̃t for a MA(2) model is given by

σ2
z = γ0 = σ2

a(1 + θ21 + θ22) = 2.8500 .

Part (c): For the model (1− 0.5B)z̃t = (1− 1.3B + 0.4B2)at we have

ψ(B) =
1− 1.3B + 0.4B2

1− 0.5B
= 1− 0.8B ,

when we perform long division. Thus this model actually simplifies to a MA(1) model.

For πj we use

π(B) =
1

ψ(B)
=

1− 0.5B

1− 1.3B + 0.4B2
=

1

1− 0.8B
=

∞
∑

j=0

0.8jBj .
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The autocovariance generating function γ(B) is given by

γ(B) = σ2
aψ(B)ψ(B−1) = σ2

a (1− 0.8B)
(

1− 0.8B−1
)

= −0.8

B
+ 1.64− 0.8B .

Thus we see that γ0 = 1.64, γ1 = −0.8 and all other γj are zero.

To compute the first four autocorrelations we perform a Laurent expansion of γ(B), to get
γj and then evaluate ρj =

γj
γ0
. We find the only nonzero value of ρj is ρ1 = − 0.8

1.64
= 0.4878.

The variance of z̃t from the value of γ0 computed above.

Some of the algebraic steps for this problem are done in the Mathematical file chap 3 problems.nb.

Problem 3.3 (stationarity and invertibility)

Part (a): An AR(1) model with φ1 needs −1 < φ1 < +1 to be stationary. For this model
since φ1 = 0.5 this model is stable. An AR(p) model is always invertible.

Part (b): A MA(2) model is always stationary. To be invertible requires requires

θ2 + θ1 < 1

θ2 − θ1 < 1

−1 < θ2 < 1 .

Since this MA(2) model has θ1 = +1.3 and θ2 = −0.4, we see that θ2 + θ1 = 1.3 − 0.4 =
0.9 < 1, θ2 − θ1 = −1.7 < 1, and −1 < θ1 = −0.4 < +1, thus this process is invertible.

Part (c): This is an ARMA(1,2) model. To be stationary we look at the AR(1) part. From
Part (a) this model is stationary. To be invertible we look at the MA(2) part. From Part (b)
we know that it is invertible.

Part (d): This is an AR(2) model with φ1 = 1.5 and φ2 = −0.5. To be stationary requires

φ2 + φ1 < 1

φ2 − φ1 < 1

−1 < φ2 < 1 .

For this problem φ2 + φ1 = 1.5 − 0.5 = 1 which is not less than 1. Thus this model is not
stationary. All AR(p) models are invertible.

Part (e): This is an ARMA(1,1) model with φ1 = 1 and θ1 = 0.5. To be stable requires
−1 < φ1 < +1 which is not true in this case. To be invertible requires −1 < θ1 < +1 which
is true.
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Figure 5: The autocorrelation function ρk for the AR(2) process for this problem.

Part (f): This is an ARMA(1,2) model. To be stationary we look at the AR(1) part. In
that case we have φ1 = 1 which results in a non stationary model. To be invertible we look
at the MA(2) part. This requires

θ2 + θ1 < 1

θ2 − θ1 < 1

−1 < θ2 < 1 .

This model has θ1 = 1.3 and θ2 = −0.3. In that case θ1 + θ2 = 1 which is not less than 1
thus this model is not invertible.

Problem 3.6 (an AR(2) model)

Part (i): This is an AR(2) model with φ1 = 1 and φ2 = −0.5. In that case ρ1 = φ1

1−φ2
=

1
1+0.5

= 2
3

Part (ii): With ρ0 = 1 and ρ1 =
2
3
recall that the difference equation ρk satisfies is given by

ρk = φ1ρk−1 + φ2ρk−2 = ρk−1 −
1

2
ρk−2 ,

to calculate ρk for k = 2, 3, · · · , 15.

Part (iii): When we iterate the above equation with the starting values of ρ0 and ρ1 we get
the plot shown in Figure 5. From that plot given there the peak to peak length is given by
8− 0 = 8, which should be the period of the damping exponential (see below). This plot is
produced in the R code chap 3 prob 6.R.
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Part (iv): The above difference equation can be written

ρk − ρk−1 +
1

2
ρk−2 = 0 .

This has a characteristic equation given by x2 − x+ 1
2
= 0, which has roots given by

x =
1±

√

1− 4(1/2)

2
=

1± i

2
=

1

2
(1± i) =

1

2

√
2e±iπ

4 =
1√
2
e±

π
4 .

Thus there are two solution and they are ρk =
(

1√
2

)k

e±ik π
4 . The period of this complex

exponential is T = 8 with a damping factor of 1√
2
= 0.71. As a second way to look at this

problem from the section on AR(2) models we have that the solution ρk can be written as

ρk =
sgn(φ1)

kdk sin(2πf0k + F )

sin(F )
,

with d =
√
−φ2 =

√
0.5 = 0.71 as a damping factor and

cos(2πf0) =
|φ1|

2
√
−φ2

=
1

2
√
0.5

= 0.707 .

Therefore 2πf0 = 0.78 so f0 = 1.25 so T = 1
f0

= 8 same value as before.

Problem 3.7 (power spectrum)

For a AR(2) model with φ1 = 1 and φ2 = −1
2
and using Equation 40 to compute the power

spectrum g(f) we have

g(f) =
2σ2

a

1 + φ2
1 + φ2

2 − 2φ1(1− φ2) cos(2πf)− 2φ2 cos(4πf)

=
2

9
4
− 3 cos(2πf) + cos(4πf)

When we plot the above function we get the result shown in Figure 6. By looking at the
frequency where the maximum value of g(f) occurs we estimate a value of 0.1155 which gives
an estimated period of 1/0.1155 = 8.6521 close to what we estimated above. Because the
relationship between the variance of z̃t and the known variance of an AR(2) model where

ρ1 =
φ1

1−φ2
= 2

3
and ρ2 = φ2 +

φ2
1

1−φ1
= 1

6
we have

γ0 = σ2
z =

∫ 1/2

0

g(f)df =
σ2
a

1− ρ1φ1 − ρ2φ2
=

1

1− 2
3
+ 1

12

=
12

5
.

The proportion of variance for frequencies between 0.0 and 0.2 is given by
∫ 0.2

0
g(f)df

∫ 1/2

0
g(f)df

=

∫ 0.2

0
g(f)df

σ2
z

= 0.88528 .

Thus 80% of the total variance is in this frequency range. This problem is worked in the R

code chap 3 prob 7.R.
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Figure 6: The plot of g(f) as a function of f .
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Chapter 4 (Linear Nonstationary Models)

Notes on the Text

The general form of the autoregressive integrated moving average model

The ARIMA(p,d,q) model we will be considering for this chapter is given by

ϕ(B)zt = φ(B)∇dzt = θ0 + θ(B)at . (50)

We write the right-hand-side of the above as

θ(B)

[

1

θ(B)
θ0 + at

]

.

Then we define the process εt as

εt =
1

θ(B)
θ0 + at .

We would like to evaluate the series εt. Then for θ0 a constant we need to evaluate

1

θ(B)
θ0 =

1

1− θ1B − θ2B2 − · · · − θq−1Bq−1 − θqBq
θ0 .

We can do that by writing the above fraction as

1

1− θ1B − θ2B2 − · · · − θq−1Bq−1 − θqBq
θ0 =

∞
∑

k=0

(θ1B + θ2B
2 + · · ·+ θq−1B

q−1 + θqB
q)kθ0 .

Since Bθ0 = θ0 as θ0 is a constant the above evaluates to

θ0

∞
∑

k=0

(θ1 + θ2 + · · ·+ θq−1 + θq)
k =

θ0
1− θ1 − θ2 − · · · − θq−1 − θq

.

Thus with this we see that εt then becomes

εt =
θ0

1− θ1 − θ2 − · · · − θq−1 − θq
+ at .

This is a stochastic process with a nonzero mean given by ξ = θ0
1−θ1−θ2−···−θq−1−θq

and our

original dynamic equation of φ(B)∇dzt = θ0 + θ(B)at becomes φ(B)∇dzt = θ(B)εt.

If instead we define wt ≡ ∇dzt and want to consider the process wt from the above model
we have ∇dzt =

1
φ(B)

(θ0 + θ(B)at). In the same way as above we find

1

φ(B)
θ0 =

θ0
1− φ1 − φ2 − · · · − φp−1 − φp

, (51)

thus wt =
θ0

1−φ1−φ2−···−φp−1−φp
+ θ(B)

φ(B)
at and the mean of wt (since the mean of at is 0) is given

by the right-hand-side of Equation 51.
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Notes on the general expression for the ψ weights

We are looking for a way to compute ψj in the expansion of zt given by

zt = ψ(B)at = at +
∞
∑

j=1

ψjat−j . (52)

If we apply the function ϕ(B) to both sides of Equation 52 we get

ϕ(B)zt = ϕ(B)ψ(B)at .

But since ϕ(B)zt = θ(B)at we see that we must have

ϕ(B)ψ(B) = θ(B) . (53)

If we express each of the above polynomials in terms of B we get

(1− ϕ1B − ϕ2B
2 − · · · − ϕp+d−1B

p+d−1 − ϕp+dB
p+d)(1 + ψ1B + ψ2B

2 + ψ3B
3 + · · · )

= (1− θ1B − θ2B
2 − · · · − θq−1B

q−1 − θqB
q) . (54)

To compute ψj we could expand the left-hand-side of the above expression and equate powers
of B to the coefficients of the right-hand-side. An example with a ARIMA(1,1,1) model
will help clarify this procedure. Consider the case where ϕ(B) = (1 − B)(1 − φB) =
1− (1 + φ)B + φB2 and θ(B) = 1− θB. Then the above polynomial product becomes

(1− (1 + φ)B + φB2)(1 + ψ1B + ψ2B
2 + · · · ) = 1− θB .

If we expand the left-hand-side we get

1 + ψ1B + ψ2 B2 +ψ3B
3 + ψ4B

4 + ψ5B
5 + · · ·

−(1 + φ)(B + ψ1 B2 +ψ2B
3 + ψ3B

4 + ψ4B
5 + · · · )

φ( B2 +ψ1B
3 + ψ2B

4 + ψ3B
5 + · · · ) = 1− θB .

where we have aligned all of the B2 terms under one column to hopefully make grouping
coefficients of B easier. We find that the sum on the left-hand-side is given by

1 + (ψ1 − (1 + φ))B + (ψ2 − (1 + φ)ψ1 + φ)B2 + (ψ3 − (1 + φ)ψ2 + φψ1)B
3

+ (ψ3 − (1 + φ)ψ2 + φψ1)B
3 + (ψ4 − (1 + φ)ψ3 + φψ2)B

3 + · · ·
+ (ψj − (1 + φ)ψj−1 + φψj−2)B

j + · · · = 1− θB .

If we take j large enough we see that the coefficient of Bj the left-hand-side must vanish.
This means that ψj must satisfy

ψj − (1 + φ)ψj−1 + φψj−2 = 0 . (55)

This is a difference equation for ψj . We can get the first few initial conditions for ψj by
considering small values of j. For j = 0 we must have ψ0 = 1. For j = 1 we see from the
coefficient for B that we must have

ψ1 = 1 + φ− θ .
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The general solution to Equation 55 is the sum of powers of the two roots to the characteristic
equation for that equation. The characteristic for Equation 55 is

x2 − (1 + φ)x+ φ = 0 .

This has roots given by

x =
1 + φ±

√

(1 + φ)2 − 4φ

2
,

which equals 1 or φ. Thus the solution for ψj is given by

ψj = A0 + A1φ
j . (56)

To match the values at j = 0 and j = 1 we must have

A0 + A1 = 1 ,

and
A0 + A1φ = 1 + φ− θ .

When we solve these for A0 and A1 we get

A0 =
1− θ

1− φ
and A1 =

θ − φ

1− φ
.

Thus now that we know ψj we have that zt can be written as

zt =
∞
∑

j=0

ψjat−j =
∞
∑

j=0

(A0 + A1φ
j)at−j . (57)

Notes on the truncated form of the random shock model

Centered at the point k and focusing on times t > k, the solution to the general linear model
ϕ(B)zt = θ(B)at we have been considering is

zt = Ck(t− k) + Ik(t− k) , (58)

where Ck(t − k) is the complementary function and satisfies the homogeneous equation
ϕ(B)Ck(t− k) = 0 and Ik(t− k) is the particular integral that must satisfy the full equation
ϕ(B)Ik(t− k) = θ(B)at and is given explicitly by

Ik(t− k) =

{

0 t ≤ k
∑t

j=k+1ψt−jaj t > k
(59)

=

{

0 t ≤ k
at + ψ1at−1 + ψ2at−2 + · · ·+ ψt−k−2ak+2 + ψt−k−1ak+1 t > k

.

As an example of how to use the above formulas we consider the example of solving for zt in
(1−φB)(1−B)zt = (1− θB)at. We first need to find the complementary function Ck(t−k)
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that satisfies the homogeneous equation or (1 − φB)(1 − B)Ck(t − k) = 0. Based on the
roots of ϕ(B) = (1− φB)(1− B) discussed on Page 44 this is the function

Ck(t− k) = b
(k)
0 + b

(k)
1 φt−k .

From the result where we computed the coefficients of the infinite linear impulse response
function ψ(B) given by Equation 56 recall that ψj = A0 + A1φ

j, which when we put into
the expression Ik(t− k) given by Equation 59 gives

Ik(t− k) =

{

0 t ≤ k
∑t

j=k+1(A0 + A1φ
t−j)aj t > k

Thus combined these two solutions for t > k we get for zt

zt = b
(k)
0 + b

(k)
1 φt−k +

t
∑

j=k+1

(A0 + A1φ
t−j)aj . (60)

The truncated and nontruncated forms for the random shock model

If we take the “origin” k of the process zt at k = −∞ then we can take C−∞(t) = 0 so that
the solution then only has one function say I−∞(t) as

zt =
t
∑

j=−∞
ψt−jaj = ψ(B)at ≡ I−∞(t) .

Considering a finite value of k the above solution for zt must equal the general solution
anchored at k or

I−∞(t) = Ck(t− k) + Ik(t− k) .

From this we can subtract Ik(t − k) from I−∞(t) to get Ck(t − k). Using Equation 59 for
t > k + q we find

Ck(t− k) = I−∞(t)− Ik(t− k) =
t
∑

j=−∞
ψt−jaj −

t
∑

j=k+1

ψt−jaj

=
k
∑

j=−∞
ψt−jaj . (61)

The summary of these results for the general ϕ(B)zt = θ(B)at is that we can express the
solution zt in two ways. In the nontruncated form of the random shock model as

zt =
t
∑

j=−∞
ψt−jaj .

Or in the truncated from of the model when t− k > q in which we only sum the t− k shocks
from k+1, k+2, · · · , t− k and then add a complementary function Ck(t− k) to incorporate
all shocks aj that come before k + 1. That is we write zt as

zt = Ck(t− k) +
t
∑

j=k+1

ψt−jaj . (62)
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Equating these two representations gives a summation form for Ck(t − k) given by Equa-
tion 61.

We wish to apply the above decomposition into Ck(t−k) and Ik(t−k) to the ARIMA(1,1,1)
model

(1− φB)(1−B)zt = (1− θB)at ,

where via Equation 56 we have that ψj = A0 + A1φ
j. Thus using the linear system repre-

sentation given by Equation 61 we have that the infinite weighted sum of the current and
previous shocks used to compute zt is

zt =

t
∑

j=−∞
ψt−jaj =

t
∑

j=−∞
(A0 + A1φ

t−j)aj .

Then using Equation 61 we have

Ck(t− k) =

k
∑

j=−∞
(A0 + A1φ

t−j)aj = A0

k
∑

j=−∞
aj + A1

k
∑

j=−∞
φt−kaj .

which we write as Ck(t − k) = b
(k)
0 + b

(k)
1 φt−k. Using these we get the expressions for

b
(k)
0 = A0

∑k
j=−∞ aj and b

(k)
1 of

b
(k)
1 φt−k = A1

k
∑

j=−∞
φt−k+k−jaj = A1φ

t−k
k
∑

j=−∞
φk−jaj .

When we recall that the coefficients A0 and A1 are given by A0 =
1−θ
1−φ

and A1 =
θ−φ
1−φ

we get

the two expressions for b
(k)
0 and b

(k)
1 given in the book.

We now write the expression Equation 61 for Ck(t−k) in a recursive way. From the original
sum we take out of the main summation the last m terms corresponding to j given by
j = k, k − 1, k − 2, · · · , k −m+ 2, k −m+ 1. When we do this we find

Ck(t− k) = ψt−kak + ψt−k+1ak−1 + ψt−k+2ak−2 + · · ·+ ψt−k+m−2ak−m+2 + ψt−k+m−1ak−m+1

+
k−m
∑

j=−∞
ψt−jaj . (63)

To simplify this note that from Equation 61 we can evaluate Ck−m(t− k +m). We find

Ck−m(t− k +m) = Ck−m(t− (k −m)) =

k−m
∑

j=−∞
ψt−jaj .

This is the last term in Equation 63 above. Thus we have just shown

Ck(t− k) = ψt−kak + ψt−k+1ak−1 + · · ·+ ψt−k+m−2ak−m+2 + ψt−k+m−1ak−m+1

= Ck−m(t− k +m) . (64)
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This shows how Ck(t− k) changes as the origin k changes.

Using the relationship ϕ(B) = θ(B)π(B) if d ≥ 1 then since ϕ(B) = φ(B)(1−B)d, if we let
B = 1 we get that ϕ(1) = 0 and thus θ(1)π(1) = 0. Since θ(1) 6= 0 as the roots of θ(B) lie
outside the unit circle to ensure invertible. Thus we must have that π(1) = 0 or based on
the definition of π(B) that

1− π1 − π2 − π3 − · · · = 0 .

Showing that the value of πj sum to 1. Thus we can write our process zt when d ≥ 1 in the
autoregressive form as before

zt = π1zt−1 + π2zt−2 + · · ·+ at =

∞
∑

j=1

πjzt−j + at ≡ z̄t−1(π) + at .

Where we have defined z̄t−1(π). Since
∑

j πj = 1 this expression describes zt as the weighted
average of of past zt values.

To find the explicit expression for πj for the ARIMA(1,1,1) model (1−φB)(1−B)zt = (1−θ)at
note that we have

π(B) = ϕ(B)θ−1(B) =
(1− φB)(1− B)

1− θB
.

We can evaluate the coefficients of πj by performing a Taylor series expansion about B = 0
of the π(B) function or performing polynomial multiplication. As an example of the later
technique considering again our ARIMA(1,1,1) model where we had

π(B) = ϕ(B)θ−1(B) =
(1− φB)(1−B)

1− θB
=

1− (1 + φ)B + φB2

1− θB

= (1− (1 + φ)B + φB2)(1 + θB + θ2B2 + · · · )
= 1 + (−(1 + φ) + θ)B + (θ2 − (1 + φ)θ + φ)B2 + · · ·+ (θk − (1 + φ)θk−1 + φθk−2)Bk + · · · .

We write the coefficient of B2 of π(B) as

θ2 − θ + φθ + φ = θ(θ − φ)− θ + φ = θ(θ − φ)− (θ − φ) = (θ − φ)(θ − 1) .

We write the coefficient for Bk−2 after we factor out θk−2 out as

θ2 − (1 + φ)θ + φ = θ(θ − φ)− (θ − φ) = (θ − φ)(θ − 1) .

Combining these expressions gives the expressions in the book for π1, π2, πj when j ≥ 3,
namely

π1 = φ+ (1− θ) (65)

πj = (θ − φ)(1− θ)θj−2 for j ≥ 2 . (66)

Notes on integrated moving average process of order (0, 1, 1)

In this section our time series model is ∇zt = (1 − θB)at with −1 < θ < +1. We start by
writing

1− θB = λB +∇ .
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Then using this on the left-hand-side of our model we find ∇zt becomes

∇zt = (λat−1 +∇at) .
Summing both sides of this expression gives

zt = λSat−1 + at . (67)

Then using the definition of the summation operator S we get

zt = λ
t−1
∑

j=−∞
aj + at .

Thus the coefficients in the expansion of the linear response function ψ(B) are

ψ0 = 1 and ψj = λ for j ≥ 1 .

Then we get using Equation 87 to express this in terms of an offset at index k this is

zt = λ

(

Sak +

t−1
∑

j=k+1

aj

)

+ at = λSak + λ

t−1
∑

j=k+1

aj + at .

We define b
(k)
0 ≡ λSak = λ

∑k
j=−∞ aj and get for zt

zt = b
(k)
0 + λ

t−1
∑

j=k+1

aj + at . (68)

Thus we see that Ck(t− k) = b
(k)
0 (a constant) and then Ik(t− k) must be given by

Ik(t− k) = λ
t−1
∑

j=k+1

aj + at .

From the definition of b
(k)
0 we see that as the origin k changes b0 is updated using b

(k)
0 =

b
(k−1)
0 + λak.

The inverted form of the model is π(B)zt = at where π(B) must satisfy ϕ(B) = θ(B)π(B).
This gives

1−B = (1− θB)π(B) ,

or

π(B) =
1−B

1− θB
=

1− θB + θB − B

1− θB
=

1− θB − (1− θ)B

1− θB

= 1− (1− θ)

[

B

1− θB

]

= 1− (1− θ)B
∞
∑

j=0

θjBj

= 1− (1− θ)B(1 + θB + θ2B2 + θ3B3 + · · · ) .
From this expansion we see that

πj = (1− θ)θj−1 = λ(1− λ)j−1 for j ≥ 1 . (69)

Having found the coefficients πj we can write our process zt in its autoregressive form

zt = λ

∞
∑

j=1

(1− λ)j−1zt−j + at = z̄t−1(λ) + at .

Where we have defined z̄t−1 in the above expression.
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Notes on integrated moving average process of order (0,2,2)

For this example our stochastic model is given by

∇2zt = (1− θ1B − θ2B
2)at . (70)

Consider the suggested expression for the operator θ(B) = 1− θ1B − θ2B
2 or

(λ0∇+ λ1)B +∇2 .

If we put ∇ = 1− B into this and expand we get

(λ0(1− B) + λ1)B + (1− B)2 = λ0B − λ0B
2 + λ1B + 1− 2B +B2

= 1 + (−2 + λ0 + λ1)B + (1− λ0)B
2 .

Thus equating coefficients of powers of B we get two linear equations relating θ1 and θ2 in
terms of λ0 and λ1 given by

θ1 = 2− λ0 − λ1

θ2 = λ0 − 1 . (71)

When we solve these for λ0 and λ1 in terms of θ1 and θ2 we get

λ0 = θ2 + 1

λ1 = 2− (θ2 + 1)− θ1 = 1− θ1 − θ2 . (72)

Using this identity Equation 70 now becomes

∇2zt = (λ0∇+ λ1)at−1 +∇2at . (73)

Sum both sides of this expression to get

∇zt = λ0at−1 + λ1Sat−1 +∇at .

Sum both sides again to get

zt = λ0Sat−1 + λ1S
2at−1 + at . (74)

Or writing out the summation operators S and S2 we have

zt = λ0

t−1
∑

i=−∞
ai + λ1

t−1
∑

i=−∞

i
∑

h=−∞
ah + at

= λ0(at−1 + at−2 + at−3 + · · · ) + λ1

(

t−1
∑

h=−∞
ah +

t−2
∑

h=−∞
ah +

t−3
∑

h=−∞
ah + · · ·

)

+ at

= λ0(at−1 + at−2 + at−3 + · · · )
+ λ1(at−1 + at−2 + at−3 + · · ·+ at−2 + at−3 + at−4 + · · ·+ at−3 + at−4 + at−5 + · · · ) + at

= λ0(at−1 + at−2 + at−3 + · · · ) + λ1(at−1 + 2at−2 + 3at−3 + 4at−4 + · · ·+ kat−k + · · · ) + at

= at + (λ0 + λ1)at−1 + (λ0 + 2λ1)at−2 + (λ0 + 3λ1)at−3 + · · ·+ (λ0 + kλ1)at−k + · · · .
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From this expression we see that the linear system form of the the IMA(0,2,2) process zt has
ψ0 = 1 and

ψj = λ0 + jλ1 for j ≥ 1 . (75)

If we take λ1 = 0 in Equation 73 we get

∇2zt = λ0∇at−1 +∇2at ,

which we can sum both sides of to get

∇zt = λ0at−1 +∇at = (λ0B + (1− B))at = (1− (1− λ0)B)at ,

which is a (0, 1, 1) process with θ = 1− λ0. If we take θ2 = 0 in Equation 70 we get

∇2zt = (1− θ1)at ,

which is a (0, 2, 1) process.

We now write the IMA(0,2,2) in the truncated form of the random shock model. Using
Equation 74 and the notes on Page 48 we have expressed zt as Equation 89 where we have
shown that Ck(t− k) = b

(k)
0 + b

(k)
1 (t− k) if we take b

(k)
0 and b

(k)
1 given by

b
(k)
0 = (λ0 − λ1)Sak + λ1S

2ak

b
(k)
1 = λ1Sak .

Consider how we will update b
(k)
0 and b

(k)
1 when the origin if moved from k− 1 to k. We can

do this by looking at the differences b
(k)
0 − b

(k−1)
0 and b

(k)
1 − b

(k−1)
1 . We find for b

(k)
0 − b

(k−1)
0

that

b
(k)
0 − b

(k−1)
0 = (λ0 − λ1)ak + λ1

k
∑

i=−∞

i
∑

h=−∞
ah − λ1

k−1
∑

i=−∞

i
∑

h=−∞
ah

= (λ0 − λ1)ak + λ1

(

k
∑

h=−∞
ah

)

= λ0ak + λ1

k−1
∑

h=−∞
ah = λ0ak + b

(k−1)
1 .

While for b
(k)
1 − b

(k−1)
1 we find that

b
(k)
1 − b

(k−1)
1 = λ1

k
∑

h=−∞
ah − λ1

k−1
∑

h=−∞
ah = λ1ah .

Thus the update equations for b
(k)
0 and b

(k)
1 are given by

b
(k)
0 = b

(k−1)
0 + b

(k−1)
1 + λ0ak (76)

b
(k)
1 = b

(k−1)
1 + λ1ak .

We now write the IMA(0,2,2) in the inverted form model. To do that not that the function
π(B) is given by

π(B) =
1− θ1B − θ2B

2

(1− B)2
.

We can evaluate the coefficients πj by performing a Taylor series expansion of π(B) about
B = 0 in the above function.
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Notes on the generalized integrated moving average process of order (0, d, q)

Our model in this case is given by

∇dzt = (1− θ1B − θ2B
2 − · · · − θqB

q)at = θ(B)at . (77)

Using the binomial theorem to expand (1− B)d we have

(1−B)dzt =

d
∑

k=0

(

d
k

)

(−B)k1d−kzt

= zt −
(

d
1

)

Bzt +

(

d
2

)

B2zt −
(

d
3

)

B3zt + · · ·+
(

d
d− 1

)

(−B)d−1zt + (−B)dzt

= zt − dzt−1 +
d(d− 1)

2
zt−2 −

d(d− 1)(d− 2)

6
zt−3 + · · ·+ (−1)d−1zt−d+1 + (−1)dzt−d .

When we bring the zt−k for k > 0 terms to the right-hand-side in Equation 77 gives the
difference equation form presented in the book. To get the random shock form of the model
we write the MA(q) expression as

1− θ1B − θ2B
2 − · · · − θqB

q = (λd−q∇q−1 + · · ·+ λ0∇d−1 + · · ·+ λd−1)B +∇d . (78)

To evaluate the coefficients λ· in terms of θ· we expand the right-hand-side using ∇ = 1−B
and equate the coefficients of the powers of B. When we put Equation 78 into Equation 77
we get

∇dzt = (λd−q∇q−1 + · · ·+ λ0∇d−1 + · · ·+ λd−1)Bat +∇dat .

If we sum this d times we get

zt = (λd−q∇q−d−1 + · · ·+ λ0S + · · ·+ λd−1S
d)at−1 + at . (79)

We now want to write the solution for zt in the form given by Equation 58. Recall that in
this case Ck(t− k) must satisfy ∇dCk(t− k) = 0. Based on the d repeated roots of (1−B)d

we have
Ck(t− k) = b

(k)
0 + b

(k)
1 (t− k) + b

(k)
2 (t− k)2 + · · ·+ b

(k)
d−1(t− k)d−1 .

As an example of these techniques consider a IMA(0,2,3) model given by

∇2zt = (1− θ1B − θ2B
2 − θ3B

3)at .

Then we have d = 2 and q = 3 so q−1 = 2. Following the above we write the right-hand-side
of our model as

1− θ1B − θ2B
2 − θ3B

3 = (λ−1∇2 + λ0∇+ λ1)B +∇2

= (λ−1(1− B)2 + λ0(1− B) + λ1)B + (1− B)2

= λ−1(1− 2B +B2)B + λ0B − λ0B
2 + λ1B + 1− 2B +B2

= 1 + (λ−1 + λ0 + λ1 − 2)B + (−2λ−1 − λ0 + 1)B2 + λ−1B
3 .
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Thus equating coefficients of B on both sides of this expression gives

θ1 = 2− λ−1 − λ0 − λ1

θ2 = λ0 − 1 + 2λ−1

θ3 = −λ−1 .

These are the linear equations for λ−1, λ0, and λ1 which we can solve for to get θ1, θ2, and
θ3 in terms of θ1, θ2, and θ3. With the above ∇ representation for θ(B)at we have our model
written as

∇2zt =
(

λ−1∇2 + λ0∇+ λ1
)

at−1 +∇2at .

Summing once gives
∇zt = (λ−1∇+ λ0 + λ1S) at−1 +∇at .

Summing as second time gives

zt = λ−1at−1 + λ0Sat−1 + λ1S
2at−1at−1 + at .

the same as in the book. Using the expansions for Sxt and S2xt given by Equations 85
and 87 to write

zt = λ1at−1 + λ0

(

Sxk +
t−1
∑

h=k+1

ah

)

+ λ1

(

S2xk + (t− 1− k)Sxk +
t−1
∑

i=k+1

i
∑

h=k+1

ah

)

+ at

= (λ0 − λ1)Sxk + λ1S
2xk + λ1Sxk(t− k) + λ−1at−1 + λ0

t−1
∑

j=k+1

aj + λ1

t−1
∑

i=k+1

i
∑

j=k+1

aj + at ,

which is the same expression as in the book if take b
(k)
0 and b

(k)
1 as

b
(k)
0 = (λ0 − λ1)Sxk + λ1S

2xk

b
(k)
1 = λ1Sxk .

Notes on Linear Difference Equations

For the time series model (1−G1B)(1−G2B)zt = 0 and defining yt = (1−G2B)zt so that yt
satisfies (1−G1B)yt = 0 the solution for yt is given by yt = D1G

t−k
1 . From this solution we

can use the relationship between yt and zt above by iterating from t down to k to evaluate
zt. We find

zt = G2zt−1 +D1G
t−k
1

= G2(G2zt−2 +D1G
t−k−1
1 ) +D1G

t−k
1

= G2
2zt−2 +G2D1G

t−k−1
1 +D1G

t−k
1

= G3
2zt−3 +G2

2D1G
t−k−2
1 +G2D1G

t−k−1
1 +D1G

t−k
1

...

= Gt−k
2 zk +D1

t−k−1
∑

l=0

Gt−k−l
1 Gl

2 . (80)
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As a quick verification of the above we expand the summation for l = 0, 1, · · · , t − k − 1
where we find

Gt−k
1 +Gt−k−1

1 G2 +Gt−k−2
1 G2

2 + · · ·+G
t−k−(t−k−2)
1 Gt−k−2

2 +G
t−k−(t−k−1)
1 Gt−k−1

2 ,

or simplifying the exponents

Gt−k
1 +Gt−k−1

1 G2 +Gt−k−2
1 G2

2 + · · ·+G2
1G

t−k−2
2 +G1

1G
t−k−1
2 ,

which agrees with the book. Evaluating this sum the expression for zt when t > k becomes

zt = Gt−k
2 zk +D1G

t−k
1

t−k−1
∑

l=0

(

G2

G1

)l

= Gt−k
2 zk +D1G

t−k
1







(

G2

G1

)t−k

− 1

G2

G1
− 1







= Gk−1
2 zk +D1

(

Gt−k
1 −Gt−k

2

1− G2

G1

)

=

[

D1

1−G2/G1

]

Gt−k
1 +

[

zk −
D1

1−G2/G1

]

Gt−k
2

≡ A1G
t−k
1 + A2G

t−k
2 .

Note that the coefficients A1 and A2 above depends on the starting values of the process zt
at t = k. If we have equal roots then G1 = G2 = G0 and the summation expression given in
Equation 80 for zt becomes

zt = Gt−k
0 zk +D1

{

Gt−k
0 +Gt−k

0 + · · ·+Gt−k
0

}

= Gt−k
0 zk +D1

t−k−1
∑

l=0

Gt−k
0

= Gt−k
0 zk +D1G

t−k
0 (t− k) ,

which is the same expression given in the book.

Notes on the IMA(0,1,1) particular solution

For the process that satisfies zt−zt−1 = at−θat−1 we first find its linear system representation
or zt = ψ(B)at. We have

zt =

(

1− θB

1− B

)

at = (1− θB)
∞
∑

l=0

Blat =

[ ∞
∑

l=0

Bl −
∞
∑

l=0

θBl+1

]

at

=

(

1 +
∞
∑

l=1

Bl −
∞
∑

l=0

θBl+1

)

at = at +

( ∞
∑

l=0

Bl+1 −
∞
∑

l=0

θBl+1

)

at

= at +
∞
∑

l=0

(1− θ)at−l−1 = at +
∞
∑

l=1

(1− θ)at−l . (81)

From this representation of zt = ψ(B)at we see that ψ0 = 1 and ψj = 1 − θ for j ≥ 1. Now
that we have the ψj weights we can use Equation 59 to evaluate Ik(t − k) for this model.
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We find

Ik(0) = 0

Ik(1) = ak+1

Ik(2) = ak+2 + (1− θ)ak+1

Ik(3) = ak+3 + (1− θ)ak+2 − (1− θ)ak+1

...

Ik(t− k) = at + (1− θ)
t−1
∑

j=k+1

aj for t− k > 1 .

This is the expression given in the book. We can verify that for this expression when we
replace zt with Ik(t−k) in zt− zt−1 = at− θat−1 we get an identity when t−k > 1. Thus we
are considering Ik(t− k)− Ik(t− k− 1) = at − θat−1. If we take t = k+1 in that expression
we get

Ik(1)− Ik(0) = ak+1 − θak or

ak+1 = ak+1 − θak .

which is not true. If we take t > k + 1 however then we get

at + (1− θ)

t−1
∑

j=k+1

aj −
(

at−1 + (1− θ)

t−2
∑

j=k+1

aj

)

at − at−1 + (1− θ)at−1 = at − θat−1 ,

which is the right-hand-side of the desired model.

Notes on the IMA(0,1,1) process with deterministic drift

We begin with the model
φ(B)∇dzt = θ0 + θ(B)at ,

then we can write the right-hand-side as θ(B)
[

1
θ(B)

θ0 + at

]

and on Page 34 we have shown

that since θ0 is a constant we have that

1

θ(B)
θ0 =

θ0
1− θ1 − θ2 − · · · − θq−1 − θq

.

and thus if we define the variable ξ as ξ = θ0
1−θ1−θ2−···−θq−1−θq

then in the variable εt = ξ + at

the above problem is φ(B)∇dzt = θ(B)εt. As a case in point consider the IMA(0,1,1) process
with non-zero mean in terms of εt or

∇zt = (1− θ)εt .

In this εt =
θ0
1−θ

+ at so that

E[εt] =
θ0

1− θ
.
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We can “integrate” the model above by summing over t as

t
∑

j=k+1

(zj − zj−1) =

t
∑

j=k+1

(1− θB)εt .

Simplifying this we get

zt − zk =
t
∑

j=k+1

εj − θ
t
∑

j=k+1

εt−1 =
t
∑

j=k+1

εt − θ
t−1
∑

j=k

εj

= −θεk + εt +
t−1
∑

j=k+1

εj − θ
t−1
∑

j=k+1

εj = −θεk + εt + (1− θ)
t−1
∑

j=k+1

εt .

Solving for zt when we introduce λ ≡ 1− θ and b
(k)
0 ≡ zk − θεk we get the following

zt = b
(k)
0 + λ

t−1
∑

j=k+1

εj + εt . (82)

We can write the above in terms of at by recalling that εt = ξ + at and putting this into the
above. The sum we need to evaluate is

t−1
∑

j=k+1

εj = ξ(t− 1− k − 1 + 1) +

t−1
∑

j=k+1

aj = (t− k − 1)ξ +

t−1
∑

j=k+1

aj .

Thus we get for zt

zt = b
(k)
0 + λξ(t− k − 1) + ξ + λ

t−1
∑

j=k+1

aj + at . (83)

Let the “level” of our time series zt at the time t− 1 be denoted as lt−1 such that zt can be
decoupled as the level at t− 1 plus a random shock as zt = lt−1 + at. From the above we see
that lt−1 can be defined as

lt−1 ≡ b
(k)
0 + λξ(t− 1− k) + ξ + λ

t−1
∑

j=k+1

aj .

If we compute lt − lt−1 using the definition of lt−1 to see how lt is updated from one step to
the next we find lt − lt−1 = λξ + λat so in the next time step we have lt evaluated as

lt = lt−1 + λξ + λat ,

i.e. the change in level has a deterministic part λξ a stochastic part λat.

Notes on the finite summation operator

Recall that the definition of Sxt is

Sxt =
t
∑

h=−∞
xh . (84)
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We now write the expression for Sxt in terms of a “fixed part” (ending at the index k) and
the finite sum from the index k until t. We have

Sxt =
k
∑

h=−∞
xh +

t
∑

h=k+1

xh = Sxk +
t
∑

h=k+1

xh for t ≥ k + 1 . (85)

We now do the same thing for S2xt. Recalling the definition of S2xt we have

S2xt =

t
∑

i=−∞

i
∑

h=−∞
xh . (86)

By breaking the summation into two sums, the first sum over the index i from −∞ to k and
the second sum over the index i from k + 1 to t. When we do this first step we get

S2xt =

k
∑

i=−∞

i
∑

h=−∞
xh +

t
∑

i=k+1

i
∑

h=−∞
xh .

Note that the first sum above is S2xk. In the second sum we break the inner summation up
into two sums at k as

S2xt = S2xk +
t
∑

i=k+1

(

k
∑

h=−∞
xh +

i
∑

h=k+1

xh

)

.

The first inner sum or
∑k

h=−∞ xh is equal to Sxk and is independent of i. Thus we can pull
this out of the sum over i (of where there are t− k terms) to get

S2xt = S2xk + (t− k)Sxk +

t
∑

i=k+1

i
∑

h=k+1

xh . (87)

We can also write this as

S2xt =
t
∑

i=k+1

i
∑

h=k+1

xh + b
(k)
0 + b

(k)
1 (t− k) ,

where b
(k)
0 and b

(k)
1 are constants that depend on the shocks at received before and at the

time k. The book then claims that in general the infinite d-fold summation or Sdxk equals
a d-fold finite sum plus a polynomial of degree d− 1 in t of the following form

b
(k)
0 + b

(k)
1 (t− k) + b

(k)
2

(

t− k + 1
2

)

+ · · ·+ b
(k)
d−1

(

t− k + d− 2
d− 1

)

,

where b
(k)
0 , b

(k)
1 , b

(k)
2 , · · · , b(k)d−1 are constants.

Notes on application of the finite summation operator to the IMA(0,2,2) model

Consider the expression in Equation 74 which is the solution for an IMA(0,2,2) model and
repeated here for convenience

zt = λ0Sat−1 + λ1S
2at−1 + at .
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Then we can replace the infinite summation operators S and S2 in the above expression with
finite summations using the formulas defined in Equation 85 and 87 we get

zt = λ0

(

t−1
∑

h=k+1

ah + Sak

)

+ λ1

{

t−1
∑

i=k+1

i
∑

h=k+1

ah + S2ak + (t− 1− k)Sak

}

+ at .

Now we group things such that all the sums from −∞ up to k (which are constant once the
shocks at have realized) and the polynomial term are presented first. We have

zt = λ0Sak + λ1S
2ak − λ1Sak + λ1Sak(t− k) + λ0

t−1
∑

h=k+1

ah + λ1

t−1
∑

i=k+1

i
∑

h=k+1

ah + at . (88)

The truncated form of the random shock model for zt is written is

zt = Ck(t− k) + λ0

t−1
∑

h=k+1

ah + λ1

t−1
∑

i=k+1

i
∑

h=k+1

ah + at . (89)

Thus we see that Ck(t− k) can be regarded as

Ck(t− k) =
{

(λ0 − λ1)Sak + λ1S
2ak + (λ1Sak)(t− k)

}

. (90)

Notes on ARIMA models with added noise

We assume that our “measurement” noise follows a stochastic model φ1(B)bt = θ1(B)αt,
where αt is a white noise process independent of at the shocks that generate the process zt.
Assuming our “measurement” Zt is given by Zt = zt + bt we see that it satisfies the model

φ(B)∇dZt = θ(B)at + φ(B)∇bbt .

Multiply this expression by φ1(B) on both sides and use the model that bt satisfies of
φ1(B)bt = θ1(B)αt to get

φ1(B)φ(B)∇dZt = φ1(B)θ(B)at + φ(B)∇dθ1(B)αt . (91)

The first term on the left-hand-side is a polynomial in B of degree p1 + p+ d, the first term
on the right-hand-side is a polynomial in B of degree p1 + q, while the last term on the
right-hand-side is a polynomial in B of degree p+ q1 + d.

As an example of the above consider an IMA(0,1,1) model for zt with added noise so that
Zt = zt + bt. We have shown in Equation 81 that zt is given by zt = λ

∑∞
j=1 at−j + at with

λ = 1− θ. Now define the process first difference as Wt so that Wt = Zt − Zt−1 and we can
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express Wt as

Wt = λ
∞
∑

j=1

at−j + at − λ
∞
∑

j=1

at−1−j − at−1 + bt − bt−1

= λ

∞
∑

j=1

at−j + at − λ

∞
∑

j=2

at−1−(j−1) − at−1 + bt − bt−1

= λ
∞
∑

j=1

at−j + at − λ
∞
∑

j=2

at−j − at−1 + bt − bt−1

= λat−1 + at − at−1 + bt − bt−1

= {1− (1− λ)B}at + (1− B)bt (92)

Given this representation the autocovariance of Wt can be computed. For γ0 we find

γ0 = E[W 2
t ] = E[(at − (1− λ)at−1 + bt − bt−1)

2]

= σ2
a + (1− λ)2σ2

a + σ2
b + σ2

b = σ2
a(1 + (1− λ)2) + 2σ2

b . (93)

For γ1 we find

γ1 = E[WtWt−1]

= E[(at − (1− λ)at−1 + bt − bt−1)(at−1 − (1− λ)at−2 + bt−1 − bt−2)]

= E[(−(1 − λ)at−1 − bt−1)(at−1 + bt−1)] = −(1− λ)2σ2
a − σ2

b . (94)

For larger value of j we find
γj = E[WtWt−j ] = 0 .

Since Wt has its autocorrelation function zero after the first lag we know that Wt is a MA(1)
process and then that Zt can be modeled by as ∇Zt = (1 − θ̃B)ut or a IMA(0,1,1) or for
some θ̃. Because Zt is a IMA(0,1,1) it has a solution for Zt of the form given by Equation 81
or the fact that Zt must look like

Zt = Λ
∞
∑

j=1

ut−j + ut , (95)

for some unknown value of Λ and some white noise process ut with an unknown variance σ2
u.

To evaluate the constant Λ and the variance σ2
u we will evaluate the autocovariance of the

first difference of Zt above. For the functional form given in Equation 95 this first difference
is given by

(1− (1− Λ))ut ,

the same as the Equation 92 without the bt term. Thus in terms of Λ and σ2
u the autocorre-

lation of this the first difference of Zt becomes

γ0 = σ2
u(1 + (1− Λ)2) (96)

γ1 = E[(ut − (1− (1− Λ)ut−1)(ut−1 − (1− Λ)ut−2)] = −(1− Λ)σ2
u . (97)

and γj = 0 for j ≥ 2. To evaluate these the two constants Λ and σ2
u in terms of the known

values of λ, σ2
a, and σ

2
b we equate Equations 93 with 96 and Equation 94 with Equations 97

to get two equations

σ2
u{1 + (1− Λ)2} = σ2

a{1 + (1− λ)2}+ 2σ2
b (98)

σ2
u(1− Λ) = σ2

a(1− λ) + σ2
b . (99)
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It is these two equations which we have to solve for Λ and σ2
u in terms of λ, σ2

a and σ2
b . To

do this, we divide the first equation by the second equation to get

1 + (1− Λ)2

1− Λ
=
σ2
a{1 + (1− λ)2}+ 2σ2

b

σ2
a(1− λ) + σ2

b

=
1 + (1− λ)2 + 2

σ2
b

σ2
a

1− λ+
σ2
b

σ2
a

,

The left-hand-side of the above is given by

1 + 1− 2Λ + Λ2

1− Λ
=

2− 2Λ + Λ2

1− Λ
= 2 +

Λ2

1− Λ
.

Now solve for Λ2

1−Λ
by subtracting 2 on both sides. When we simplify we get

Λ2

1− Λ
=

λ2

1− λ+
σ2
b

σ2
a

. (100)

We can solve remaining expression for Λ using the quadratic equation once we are given
fixed values of λ, σ2

a, and σ2
b . Recall that we must take the solution for Λ in the range

−1 < Λ < +1 for inevitability. From Equation 100 we have

1

1− Λ
=
λ2

Λ2





1

1− λ+
σ2
b

σ2
a



 . (101)

When we divide both sides of Equation 99 by 1−Λ and use Equation 101 on the right-hand-
side of the resulting expression we get

σ2
u =





σ2
a(1− λ) + σ2

b

1− λ+
σ2
b

σ2
a





λ2

Λ2
= σ2

a

λ2

Λ2
(102)

For the numbers given in the text where λ = 0.5 for σ2
a = σ2

b then we get for the right-hand-
side of Equation 100 of 0.1666667. Solving this equation gives too roots for Λ = 0.3333 and
Λ = −0.5. For each root putting these into Equation 102 we get

σ2
u = 2.25σ2

a or σ2
u = σ2

a .

This simple numerical is given in the R file chap 4 added noise appendix.R. Since both
values of Λ are less than one in magnitude I’m not sure which solution should be considered.
Question: If anyone has a reason to prefer one solution over the other, please contact me
with your argument.

Notes on the relationship between the IMA(0,1,1) process and a random walk

Consider the IMA(0,1,1) model or ∇zt = (1−θB)at. We have shown that one representation
of the solution for zt is given by Equation 81 that is

zt =

∞
∑

j=0

ψjat−j = at + λ

∞
∑

j=1

at−j ,
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with λ = 1−θ. If we take λ = 1 then θ = 0 and the above becomes the random walk process

zt = at +

∞
∑

j=1

at−j =

∞
∑

j=0

at−j .

Thus the random walk process is an example from an IMA(0,1,1) model.

Now any IMA(0,1,1) process (not just the ones where θ = 0) can be thought of a random
walk process buried in white noise. That is, we assume that zt is random walk process and
we measure zt corrupted by noise that is as the process Zt = zt + bt, where bt is a white
noise process uncorrelated with at. Then from Page 49 earlier we have that Zt must have as
a solution

Zt = Λ

∞
∑

j=1

ut−j + ut ,

with ut another white noise process. Using Equation 100 and Equation 102 since the process
zt is a IMA(0,1,1) with λ = 1 we have that

Λ2

1− Λ
=

1

σ2
b/σ

2
a

=
σ2
a

σ2
b

and σ2
u =

σ2
a

Λ2
. (103)

The autocovariance function of the general model with added correlated noise

Assume that zt is a ARIMA(p,d,q) process φ(B)∇dzt = θ(B)at and we observe zt via the
observations Zt = zt+ bt and we know the autocovariance function of bt i.e. γj(b). We desire
to compute the autocovariance function for Wt = ∇dZt or γj(W ). Note that

Wt = ∇dZt = ∇d(zt + bt)

= ∇dzt +∇dbt = φ−1(B)θ(B)at + (1− B)dbt = wt + vt ,

where we have defined the process wt and vt in the above. As at and bt are independent we
have

γj(W ) = γj(w) + γj(v) .

And thus we need to compute γj(v). The book then claims that

γj(v) = (1−B)d(1− F )dγj(b)

= (−1)d(1− B)2dγj+d(b)

Warning: I had trouble deriving these last two results. If anyone knows how to derive them
please contact me. If, however, we assume that they are correct then we get the following
for γj(W ).

γj(W ) = γj(w) + (−1)d(1−B)2dγj+d(b) . (104)

As an example of how to use this relationship consider a IMA(0,1,1) process for which we
have wt = ∇zt = (1 − θB)at with measurement Zt = zt + bt and Wt = ∇Zt. Then for we
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have computed the autocovariance of the process wt in Equation 96 and 97, and γj(w) = 0
for j ≥ 2 if we ignore the σ2

b terms. That is

γ0(w) = σ2
a(1 + θ2)

γ1(w) = −σ2
aθ

γj(w) = 0 for j ≥ 2 .

With these we use Equation 104 to compute γj(W ). For γ0(W ) we compute

γ0(w) = σ2
a(1 + θ2) + (−1)1(1−B)2γ0+1(b)

= σ2
a(1 + θ2) + (−1)(1− B)(γ1(b)− γ0(b))

= σ2
a(1 + θ2) + (−1)(γ1(b)− γ0(b)− γ0(b) + γ−1(b))

= σ2
a(1 + θ2) + (−1)(2γ1(b)− 2γ0(b))

= σ2
a(1 + θ2) + 2(γ0(b)− γ1(b)) .

For γ1(W ) we compute

γ1(W ) = −σ2
aθ + (−1)1(1− B)2γ1+1(b)

= −σ2
aθ + (−1)(1− B)(γ2(b)− γ1(b))

= −σ2
aθ + (−1)(γ2 − γ1 − γ1 + γ0)

= −σ2
aθ + (γ2 − 2γ1 + γ0) .

Finally, for γj(W ) for j ≥ 2 we compute

γj(w) = 0 + (−1)(1− B)2γj+1(b) = (−1)(1− B)(γj+1 − γj)

= (−1)(γj+1 − γj − γj + γj+1)

= 2γj − γj−1 − γj+2 for j ≥ 2 .

If bt is a first order AR model then its process model looks like bt = bt−1 + αt and the
autocovariance function is γj(b) = σ2

bφ
j. In that case we get the results given in the book.

Problem Solutions

Problem 4.1 (the zt = ψ(B)at and π(B)zt = at representation)

We begin by summarizing what we are looking for in this problem. The ψj weights are found
from the linear time invariant system representation given by

zt = ψ(B)at =

(

1 +

∞
∑

j=1

ψjB
j

)

at .

Note that the values for ψj are the coefficients in the Taylor expansion of ψ(B) about B = 0.
The πj weights are found from the autoregressive representation

π(B)zt = at or

(

1−
∞
∑

j=1

πjB
j

)

zt = at .
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or

zt = at +

∞
∑

j=1

πjB
jat .

Note that the values of πj are the negative of the coefficients in the Taylor expression of
π(B) about B = 0.

These coefficients can be derived in a number of ways. To make my work as simple as
possible I will derive them using Mathematica. Another alternative is to recognize that all
of these models are specific subclasses of an ARIMA(1,1,1) model.

Part (a): For the model (1− B)zt = (1− 0.5B)at we have

zt =

(

1− 0.5B

1−B

)

at ,

this is an ARIMA(0,1,1) process. Thus ψ(B) = 1−0.5B
1−B

. Using Mathematica we find that

ψ(B) = 1 +
1

2

∞
∑

j=1

Bj ,

and thus ψj =
1
2
for all j ≥ 1. For the πj coefficients we have at = π(B)zt =

1−B
1−0.5B

zt. Thus

π(B) =
1−B

1− 0.5B
.

Using Mathematica we find that

π(B) = 1−
∞
∑

j=1

(

1

2

)j

Bj .

Thus πj =
(

1
2

)j
. Since this ARIMA(0,1,1) model is an ARIMA(1,1,1) model if we take φ = 0

and θ = 1
2
then using Equation 56 we get the same expression for ψj = 1 − θ = 1 − 1

2
= 1

2
.

Using Equation 65 and 66 we get π1 = 1− θ = 1
2
and πj = θ(1− θ)θj−2 = 1

2j
.

Part (b): For the model we have (1−B)zt = (1−0.2B)at which is an ARIMA(0,1,1) model.
In the same way as Part (a) above we get

ψ(B) = 1 +
4

5

∞
∑

j=1

Bj ,

and thus ψj =
4
5
. For the πj coefficients we have at = π(B)zt =

1−B
1−0.2B

zt. Thus

π(B) =
1−B

1− 0.2B
.

Using Mathematica we find that

π(B) = 1− 4

∞
∑

j=1

(

1

5

)j

Bj .
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Thus πj = 4
(

1
5

)j
.

Part (c): For the model we have (1−B)(1−0.5B)zt = at which is an ARIMA(1,1,0) model.
In the same way as Part (a) above we get

ψ(B) =
1

(1−B)(1− 0.5B)
= 1 +

∞
∑

j=1

2j+1 − 1

2j
Bj ,

and thus ψj =
2j+1−1

2j
. We will now prove this expression. We have

ψ(B) =
1

1− B

(

1

1− 1
2
B

)

=

( ∞
∑

m=0

Bm

)( ∞
∑

n=0

(

1

2
B

)n
)

=
∞
∑

j=0

(

j
∑

l=0

(

1

2

)j−l
)

Bj =
∞
∑

j=0

(

1

2

)j
(

j
∑

l=0

2l

)

Bj

=

∞
∑

j=0

(

1

2

)j (
2j+1 − 1

2− 1

)

Bj =

∞
∑

j=0

(

2j+1 − 1

2j

)

Bj ,

verifying the above expression for ψj . We can also use Equation 56 to derive this expression.
For the πj coefficients we have

π(B) = (1− B)(1− 0.5B) = 1− 3

2
B +

1

2
B2 .

Thus π1 =
3
2
and π2 = −1

2
and πj = 0 for all other j.

Part (d): This is the same type of model as in Part (c). We have

ψ(B) =
1

1−B

(

1

1− 1
5
B

)

=

( ∞
∑

m=0

Bm

)( ∞
∑

n=0

(

1

5
B

)n
)

=

∞
∑

j=0

(

j
∑

l=0

(

1

5

)j−l
)

Bj =

∞
∑

j=0

(

1

5

)j
(

j
∑

l=0

5l

)

Bj

=
∞
∑

j=0

(

1

5

)j (
5j+1 − 1

5− 1

)

Bj =
1

4

∞
∑

j=0

(

5j+1 − 1

5j

)

Bj ,

Thus we have ψj =
5j+1−1
4 5j

. As in Part (c) we see that π1 = 6
5
, π2 = −1

5
and πj = 0 for all

other j.

Part (e): Again the coefficients can be extracted by looking at the expressions in the
Mathematica file or by performing manipulations like the above. As before we can also use
Equations 65 and 66 to compute πj .

This problem is worked in the Mathematica file chap 4 problem.nb.
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Problem 4.2 (more forms for stochastic models)

Part (i): For this part we would use the ψj weights to write zt as

zt = at +
∞
∑

j=1

ψjat−j .

Part (ii): As discussed in the book the solution of the difference equation ϕ(B)zt = θ(B)at
is zt = Ck(t− k) + Ik(t− k) where Ck(t− k) satisfies ϕ(B)Ck(t− k) = 0 and Ik(t− k) given
by Equation 59. Here we want k = t−3 and thus t−k = 3 and our solution for zt is written
zt = Ct−3(3) + It−3(3).

Part (iii): Using the above computed values of πj we write zt as zt = at +
∑∞

j=1 πjzt−j .

Note that the models in Part (a) and (b) are an IMA(0,1,1) process talked about on Page 45.
The models in Part (c) and (d) are ARIMA(1,1,0) models which are a special case of
ARIMA(1,1,1) models where we take θ = 0. The model in Part (e) is an ARIMA(1,1,1)
model with θ 6= 0.

We now specify solutions to the various models presented.

Part (a): We have the random shock form of this model given by

zt = at +
1

2

∞
∑

j=1

at−j .

For this model the fact that Ck(t−k) must satisfy ϕ(B)Ck(t−k) = 0 means that Ck(t−k) =
b
(k)
0 a constant and we have that zt can be written as

zt = Ct−3(3) +

t
∑

j=t−2

ψt−2aj = b
(t−3)
0 + at + ψ1at−1 + ψ2at−2

= b
(t−3)
0 + at +

1

2
at−1 +

1

2
at−2 .

We have the autoregressive form for this model given by

zt = at +

∞
∑

j=1

(

1

2

)j

zt−j .

Part (b): Has the same solution as Part (a) above but with different values of ψj and πj .

Part (c-e): Given that we have found ψj and πj for each model in the previous problem
application of the above formulas give the various models. The only thing not specified
above are the solutions for Ct−3(3). We find

• Part (c) has Ck(t− k) = b
(k)
0 + b

(k)
1 (0.5)t−k.
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• Part (d) has Ck(t− k) = b
(k)
0 + b

(k)
1 (0.2)t−k.

• Part (e) has Ck(t− k) = b
(k)
0 + b

(k)
1 (0.2)t−k.

Problem 4.3 (given random shocks derive the series zt)

The difference equation form of the model φ(B)∇dzt = θ(B)at or ϕ(B)zt = θ(B)at is given
by

zt = ϕ1zt−1 + ϕ2zt−2 + · · ·+ ϕp+dzt−p−d − θ1at−1 − θ2at−2 − · · · − θqat−q + at . (105)

Part (a-b): The difference form for this model is almost the same for each part. For Part (a)
and (b) it is given by

zt = zt−1 + at − 0.5at−1

zt = zt−1 + at − 0.2at−1 .

Part (c-d): The difference form for this model is almost the same for each part. For Part (c)
and (d) it is

zt = 1.5zt−1 − 0.5zt−2 + at

zt = 1.2zt−1 − 0.2zt−2 + at .

Part (e): The difference form for this model is given by

zt = 1.2zt−1 − 0.2zt−2 + at − 0.5at−1 .

See the R function chap 4 prob 3.R for the implementation of this problem. When that
script is run it generates the plots shown in Figure 7.

Problem 4.4 (using the recursive form for prediction)

For this problem we want to write zt as zt = at +
∑∞

j=1 πjzt−j . For the models given in the
previous problem we have

• Part (a): zt = at +
∑∞

j=1

(

1
2

)j
zt−j

• Part (b): zt = at + 4
∑∞

j=1

(

1
5

)j
zt−j

• Part (c): zt = at +
3
2
zt−1 − 1

2
zt−2

• Part (d): zt = at +
6
5
zt−1 − 1

5
zt−2

• Part (e): θ = 0.5, φ = 0.2, π1 = φ+ (1− θ), and πj = (θ − φ)(1− θ)θj−2 for j ≥ 2.
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Figure 7: Left: Plots of zt for problem 4.3 Parts a (green) and b (red). Center: Plots of zt
for problem 4.3 Parts c (green) and d (red). Right: Plots of zt for problem 4.3 e.

For example for Part (a) we have z12 given by

z12 = a12 +

∞
∑

j=1

(

1

2

)j

z12−j = a12 +

13
∑

j=1

(

1

2

)j

z12−j .

See the R function chap 4 prob 4.R for the implementation of this problem. When that
script is run we get the following for each part:

[1] "(a): index t= 12: difference equation= 20.4474 recursive= 20.4474"

[1] "(a): index t= 13: difference equation= 19.0474 recursive= 19.0474"

[1] "(a): index t= 14: difference equation= 19.1474 recursive= 19.1474"

[1] "(b): index t= 12: difference equation= 20.5400 recursive= 20.5400"

[1] "(b): index t= 13: difference equation= 19.1400 recursive= 19.1400"

[1] "(b): index t= 14: difference equation= 18.8200 recursive= 18.8200"

[1] "(c): index t= 12: difference equation= 22.0103 recursive= 22.0103"

[1] "(c): index t= 13: difference equation= 20.7052 recursive= 20.7052"

[1] "(c): index t= 14: difference equation= 19.4526 recursive= 19.4526"

[1] "(d): index t= 12: difference equation= 20.9608 recursive= 20.9608"

[1] "(d): index t= 13: difference equation= 19.5922 recursive= 19.5922"

[1] "(d): index t= 14: difference equation= 18.7184 recursive= 18.7184"

[1] "(e): index t= 12: difference equation= 20.8714 recursive= 20.8696"

[1] "(e): index t= 13: difference equation= 19.4243 recursive= 19.4234"

[1] "(e): index t= 14: difference equation= 19.2349 recursive= 19.2344"
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In all cases the results agree.

Problem 4.6 (additive noise)

For this problem we assume that w1t = (1 − θ1B)a1t and w2t = (1 − θ2B)a2t. Then as in
the discussion on Page 49 we can show that the sum of the two moving average models is
another moving average model. As both w1t and w2t are MA(1) models thus w3t will be a
MA(1) model. We have that

w3t = (1− θ1B)w1t + (1− θ2B)w2t = w1t − θ1w1,t−1 + w2t − θ2w2,t−1 .

Lets compute autocovariance function of w3t. We find

σ2
w3

= γ0 = E[w2
3t]

= E[(w1t − θ1w1,t−1 + w2t − θ2w2,t−1)
2] = (1 + θ21)σ

2
a1
+ (1 + θ22)σ

2
a2
.

For γ1 we find

γ1 = E[w3tw3,t−1]

= E[(w1t − θ1w1,t−1 + w2t − θ2w2,t−1)(w1,t−1 − θ1w1,t−2 + w2,t−1 − θ2w2,t−2)]

= −θ1σ2
a1 − θ2σ

2
a2 .

And we have γj = 0 for all j ≥ 2. Thus w3t is a MA(1) model as claimed. Since the the
autocovariance function for a general MA(1) model zt = (1− θ3B)a3t looks like

γ0 = (1 + θ23)σ
2
a3

γ1 = −θ3σ2
a3
.

To evaluate θ3 and σa3 we need to equate

(1 + θ23)σ
2
a3

= (1 + θ21)σ
2
a1
+ (1 + θ22)σ

2
a2

−θ3σ2
a3 = −θ1σ2

a1 − θ2σ
2
a2 .

Which we need to solve for σ2
a3 and θ3 in terms of the other parameters.

Problem 4.7 (more measurement noise)

We are told that our process Zt is given by Zt = zt + bt where zt is an ARIMA(1,0,0) model
satisfying (1−φB)zt = at with bt is white noise process with variance σ2

b or an ARIMA(0,0,0)
model. Then Zt satisfies

(1− φB)Zt = (1− φB)zt + (1− φB)bt

= at + (1− φB)bt (106)

= at + bt − φbt−1 .
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Where Equation 106 is of the form of the sum of two independent moving average models
and thus can be written as θ3(B)ut for some polynomial θ3(B) and ut a white noise process.
From the results in the appendix of the book since θ1(B) = 1 and θ2(B) = 1 − φB the
polynomial θ3(B) will be a first order polynomial i.e. θ3(B) = 1 − θ3B. We can evaluate
what the value of θ3 should be by using the results of problem 4.6 where we take θ1 = 0 and
θ2 = φ here. Thus we have shown that Zt is an ARIMA(1,0,1) model.
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Chapter 5 (Forecasting)

Notes on the Text

The minimum mean square error forecasts

Using the proposed form for our prediction of zt+l given by

ẑt(l) = ψ∗
l at + ψ∗

l+1at−1 + ψ∗
l+2at−2 + · · · ,

and given how zt+l expands in terms of ψj we have that the error in our approximation to
zt+l or et(l) ≡ zt+l − ẑt(l) is given by

et(l) = at+l + ψ1at+l−1 + ψ2at+l−2 + · · ·+ ψl−1at+1 + ψlat + ψl+1at−1 + · · ·
− ψ∗

l at − ψ∗
l+1at−1 − ψ∗

l+2at−2 − · · ·
= at+l + ψ1at+l−1 + ψ2at+l−2 + · · ·+ ψl−1at+1

+ (ψl − ψ∗
l )at + (ψl+1 − ψ∗

l+1)at−1 + (ψl+2 − ψ∗
l+2)at−2 + · · · .

When we square this and take the expectation we get

E[(zt+l − ẑt(l))
2] = σ2

a(1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1 + ψ2

l ) +

∞
∑

j=0

(ψl+j − ψ∗
l+j)

2σ2
a . (107)

This later expression is minimized when we take ψ∗
l+j = ψl+j for j ≥ 0. In that case our

approximations to zt+l are obtained by using

ẑt(l) = ψlat + ψl+1at−1 + ψl+2at−2 + · · · ,

from which, using the full linear time-invariant expression for zt+l we see that

zt+l = at+l + ψ1at+l−1 + ψ2at+l−2 + · · ·+ ψl−1at+1 + ẑt(l) ≡ et(l) + ẑt(l) ,

which defines our error et(l).

Notes on calculating the ψ weights

We want to consider the polynomial relationship ϕ(B)ψ(B) = θ(B) or

(

p+d
∑

l=0

ϕlB
l

)( ∞
∑

k=0

ψkB
k

)

=

q
∑

m=0

θmB
m . (108)

The left-hand-side of the above is

p+d
∑

l=0

∞
∑

k=0

ϕlψkB
l+k .
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The summation region in the above double sum can be visualized in a two dimensional with
k as the x-axis variable (starting at 0 and running off to +∞) and l as the y-axis variable
(and between the limits 0 ≤ l ≤ p + d). Since this double sum naturally has the combined
variable l+ k we will change summation variables from (k, l) to a new set where k+ l is one
of the new variables. To do this note that when we consider the expression k + l = m for
fixed values of m in the (k, l) space these are lines that point diagonally from north-west to
south-east. For example if we take m = p + d the line k + l = p + d is the line that goes
through the two points (k, l) = (p + d, 0) and (k, l) = (0, p+ d). The line k + l = p + d+ 1
is the previous line shifted one to the right, while the line k + l = p + d − 1 is the original
line shifted one unit to the left. Thus we can break the original double summation region
up into two regions where m < p + d and m ≥ p + d. If we take as the second summation
variable l the region for m ≥ p + d then becomes

∞
∑

m=p+d

(

p+d
∑

l=0

ϕlψm−l

)

Bm .

Again using l as the second summation variable the region for m < p+ d then becomes

p+d−1
∑

m=0

(

m
∑

l=0

ϕlψm−l

)

Bm .

We have just argued that we can replace the left-hand-side of Equation 108 with the sum of
the above two terms. This gives

p+d−1
∑

m=0

(

m
∑

l=0

ϕlψm−l

)

Bm +

∞
∑

m=p+d

(

p+d
∑

l=0

ϕlψm−l

)

Bm =

q
∑

m=0

θmB
m .

Equating coefficients of B we get a relationship between the values of ϕ, ψ, and θ. Since the
first sum on the left-hand-side is a polynomial of degree p + d − 1 the highest power of B
is Bp+d−1. The highest power of B in the sum on the right-hand-side is Bq. If we consider
Bm where 0 ≤ m ≤ p+ d− 1 and assume that θm = 0 if m > q by equating powers of B we
have that

m
∑

l=0

ϕlψm−l = θm .

Recalling that ψ0 = 1 and ϕ0 = 1 when we write out the above summation and solve for ψm

in terms of θm and previous ψm’s we get

ψm = ϕ1ψm−1 + ϕ2ψm−2 + · · ·+ ϕm−1ψ1 + ϕm + θm ,

for m = 0, 1, 2, · · · , p + d − 1. If we consider the power of B large enough that is m > q
so that the right-hand-side has a zero coefficient of Bm and m > p + d − 1 so that the
summation representing the coefficient of Bm on the left-hand-side has its upper limit p+ d
(i.e. m > max(q, p+ d− 1)) then we have that ψm satisfies the difference equation

p+d
∑

l=0

ϕlψm−l = 0 ,

or solving for ψm

ψm = ϕ1ψm−1 + ϕ2ψm−2 + · · ·+ ϕp+d−1ψm−p−d+1 + ϕp+dψm−p−d , (109)

the same as in the book.
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Notes on the role of the moving average operator in fixing the initial values

From this section I found the following to be the most important takeaway. Recall that the
polynomial ϕ(B) is of degree p+d. This means that the difference equation for the eventual
forecast function ϕ(B)ẑt(l) = 0 (here B operates on l) requires p+ d points to initialize the

coefficients b
(t)
j for 0 ≤ j ≤ p+ d− 1 in its solution. To evaluate these coefficients we use the

p+ d points that end at the value ẑt(q). That is we use the points

ẑt(q) , ẑt(q − 1) , ẑt(q − 2) · · · ẑt(q − p− d) , ẑt(q − p− d+ 1) ,

with the condition that ẑt(−h) = zt−h for h = 0, 1, 2, · · · .

Notes on the lead l-forecast weights

Recall that one way we can get the l lookahead forecasts is to use

ẑt(l) =

∞
∑

j=1

πj ẑt(l − j) . (110)

In the above recall that ẑt(−j) = zt−j when j ≥ 0. The book has shown that when l = 2 we
get

ẑt(2) =

∞
∑

j=1

(π1πj + πj+1)zt−j+1 .

Based on the above, if we define π
(2)
j = π1πj + πj+1 for j ≥ 1 we can write ẑt(2) as the sum

of its own coefficients π
(2)
j times past series values or

ẑt(2) =

∞
∑

j=1

π
(2)
j zt−j+1 .

Lets consider the expression for ẑt(3). Using Equation 110, and then the expressions we have
derived for ẑt(1) and ẑt(2) we get

ẑt(3) =
∞
∑

j=1

πj ẑt(3− j)

= π1ẑt(2) + π2ẑt(1) +

∞
∑

j=3

πjzt−j+3 = π1

∞
∑

j=1

π
(2)
j zt−j+1 + π2

∞
∑

j=1

πjzt−j+1 +

∞
∑

j=1

πj+2zt−j+1

=
∞
∑

j=1

(πj+2 + π1π
(2)
j + π2πj)zt−j+1

Thus we define π
(3)
j = πj+2 + π1π

(2)
j + π2πj and have then shown that

ẑt(3) =

∞
∑

j=1

π
(3)
j zt−j+1 .
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Lets expand ẑt(4) to make sure that we fully see the pattern above. Using Equation 110,
and then the expressions we have derived for ẑt(1), ẑt(2), and ẑt(3) we get

ẑt(4) =

∞
∑

j=1

πj ẑt(4− j)

= π1ẑt(3) + π2ẑt(3) + π3ẑt(1) +
∞
∑

j=4

πjzt−j+4

=

∞
∑

j=1

(π1π
(3)
j + π2π

(2)
j + π3πj)zt−j+1 +

∞
∑

j=1

πj+3zt−j+1

=
∞
∑

j=1

(πj+3 + π1π
(3)
j + π2π

(2)
j + π3πj)zt−j+1 .

Again based on this we define

π
(4)
j = πj+3 + π1π

(3)
j + π2π

(2)
j + π3πj

= πj+3 +

3
∑

h=1

πjπ
(3−(h+1))
j πj+3 +

3
∑

h=1

πjπ
(4−h)
j ,

where we take π
(1)
j = πj . From the above expression the general form is now clear and we

see that

π
(l)
j = πj+l−1 +

l−1
∑

h=1

πhπ
(l−h)
j . (111)

We can compute some of the πj coefficients for the model ∇2zt = (1 − 0.8B + 0.5B2)at by
using the Mathematica command

Series[ (1 - B)^2/(1 - 0.9 B + 0.5 B^2), {B, 0, 10}]

and then taking the negative of the coefficients of each power of B. The above command
gives back

SeriesData[B, 0, { 1, -1.1, -0.49, 0.10899999999999999‘, 0.34309999999999996‘,

0.25428999999999996‘, 0.057311000000000056‘, -0.07556510000000001,

-0.09666408999999997, -0.04921513100000001, 0.0040384271000000055‘},

0, 11, 1]

which (when we negate them) match the numbers given in the book for πj = π
(1)
j . We

can then get π
(2)
j using Equation 111 which simplifies in this case (since l = 2 to) π

(2)
j =

π1πj + πj+1.
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Notes on forecasting an IMA(0,1,1) model

The IMA(0,1,1) model ∇zt = at − θat−1 considered here has predictions based on

ẑt(1) = zt − θat

ẑt(l) = ẑt(l − 1) = ẑt(l − 2) = · · · = ẑt(1) = zt − θat . (112)

The equation quoted in the book zt = ẑt−1(1) + at is just a statement that at is the residual
of the one step ahead prediction or at = zt − ẑt−1(1). When we use this to replace at in the
above expression for ẑt(l) we get

ẑt(l) = ẑt−1(1) + at − θat = ẑt−1(l) + λat , (113)

with λ = 1− θ. From Equation 112 we have that ẑt(l1) = ẑt(l2) for all l1 and l2 thus in the
expression used above or at = zt − ẑt−1(1) we can replace ẑt−1(1) with ẑt−1(l) (the argument
is a lower case L). In that case we have

at = zt − ẑt−1(l) ,

and thus using this in Equation 112 we get

ẑt(l) = zt − θ(zt − ẑt−1(l)) = (1− θ)zt + θẑt−1(l)

= λzt + (1− λ)ẑt−1(l) , (114)

as claimed in the book.

For any ARIMA(p,d,q) model the eventual forecast must satisfy ϕ(B)ẑt(l) = 0 where B
operates on l. This later difference equation has the general solution

ẑt(l) = b
(t)
0 f0(l) + b

(t)
1 f1(l) + · · ·+ b

(t)
p+d−2fp+d−2(l) + b

(t)
p+d−1fp+d−1(l) ,

for l > q − p+ d. In the IMA(0,1,1) case we have ϕ(B) = 1− B which has the solution

ẑt(l) = b
(t)
0 for l > q − p+ d = 0 . (115)

We sum both sides of our models difference equation ∇zt = at − θat−1 we get

t
∑

l=−∞
(zl − zl−1) = zt − z∞ =

t
∑

l=−∞
al − θ

t
∑

l=−∞
al−1

=
t−1
∑

l=−∞
al + at − θ

t−1
∑

l=−∞
al = (1− θ)

t−1
∑

l=−∞
al + at .

Taking z−∞ = 0 we have
zt = λSat−1 + at .

This is the sum of current and previous stocks and we see that ψj = λ for all j. To evaluate
ẑt(l) recall that it is the conditional expectation on knowing everything up to and including
the time t. Thus

ẑt(l) = Et[zt+l] = Et

[

λ

t+l−1
∑

j=−∞
aj + at+l

]

= λ

t
∑

j=−∞
aj = λSat ,
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since the expectation of all aj for j > t is zero. Using the fact that

ẑt+1(l) = ẑt(l + 1) + ψlat+1 , (116)

for all ARIMA(p,d,q) models for the IMA(0,1,1) model we are discussing where

φl = λ = 1− θ , (117)

we have
ẑt+1(l) = ẑt(l + 1) + λat+1 .

or given that for an IMA(0,1,1) model ẑt(l) = b
(t)
0 , a constant independent of l we get the

following
b
(t+1)
0 = b

(t)
0 + λat+1 . (118)

We can also compute the l lookahead forecasts ẑt(l) using π
(l)
j and with the sum

∞
∑

j=1

π
(l)
j zt−l+1 ,

but since the l lookahead forecasts for this model is independent of l (see Equation 115) ẑt(l)
equals ẑt(1) or

∑∞
j=1 πjzt−l+1. The values of πj were derived in Equation 69, and using these

we have

ẑt(l) = ẑt(1) = b
(t)
0 =

∞
∑

j=1

λ(1− λ)j−1zt−j+1 . (119)

Because ψl = λ for a IMA(0,1,1) model the variance of the l step lookahead forecast via

V (l) = var[et(l)] =

(

1 +

l−1
∑

j=1

ψ2
j

)

σ2
a . (120)

is given by
V (l) = (1 + (l − 1)λ2)σ2

a . (121)

Notes on forecasting an IMA(0,2,2) model

On Page 41 for this model we derived the infinite sum of random shock form for zt given by
Equation 74. That expression is used to compute ψj which is given by Equation 75. Since
we know ψj we can use Equation 116 to compute the updating relationship

ẑt+1(l) = ẑt(l + 1) + (λ0 + lλ1)at+1 . (122)

The eventual forecast function ẑt(l) must solve (1− B)2ẑt(l) = 0 which has a solution

ẑt(l) = b
(t)
0 + b

(t)
1 l for l > q − p− d = 0 . (123)

To evaluate how the coefficients b
(t)
0 and b

(t)
1 are updated when we receive another sample

use Equation 74 evaluated at the time t+ l. This is done (but not in the same notation) on

66



Page 48 and the result expanded to give Equation 88. In that expression we need to replace
t with t+ l and k with t. This then gives

zt+l = λ0Sat + λ1S
2at − λ1Sat + λ1Satl + λ0

t+l−1
∑

h=t+1

ah + λ1

t+l−1
∑

i=t+1

i
∑

h=t+1

ah + at+l .

Taking the expectation knowing everything up to and including things at time t both sum-
mations above vanish and we get

ẑt(l) = Et[zt+l] = (λ0Sat + λ1S
2at − λ1Sat) + {λ1Sat}l .

To make this match the result given in the text use Equation 87 with k = t − 1 (one unit
less than t) to get

S2at = S2at−1 + Sat−1 + at = S2at−1 + Sat , (124)

since Sat = Sat−1 + at. Using this we can transform ẑt(l) as given above as

ẑt(l) = (λ0Sat + λ1S
2at−1) + {λ1Sat}l ,

which is the same expression as in the book. To have this expression match Equation 123
we must take

b
(t)
0 = λ0Sat + λ1S

2at−1

b
(t)
1 = λ1Sat . (125)

The update equations for these coefficients are given by

b
(t)
0 − b

(t−1)
0 = λ0(Sat − Sat−1) + λ1(S

2at−1 − S2at−2)

= λ0at + λ1Sat−1 using Equation 124 for S2at−1

= λ0at + b
(t−1)
1 and

b
(t)
1 − b

(t−1)
1 = λ1at . (126)

The book then use the values of ẑt(1) and ẑt(2) obtained from the difference equation for-
mulation of this model as initial conditions for the formula for ẑt(l) given by Equation 122.
Notice that from the difference equation formulation the two initial conditions ẑt(1) and ẑt(2)
depend on the moving average parameters θ1 and θ2. Since the eventual forecast function
ẑt(l) is a line (it is linear in l) and both ẑt(1) and ẑt(2) must be on it we see that the moving
average parameters determine how the eventual forecasting function is “fitted” to the data.

We now derive the variance of the IMA(0,2,2) process. Since ψj = λ0+jλ1 from Equation 75
we then can use Equation 121 to evaluate V (l). We find

V (l) =

{

1 +

l−1
∑

j=1

ψ2
j

}

σ2
a

=

{

1 +

l−1
∑

j=1

(λ20 + 2λ1λ0j + λ21j
2)

}

σ2
a

=

{

1 + λ20(l − 1) + 2λ0λ1

l−1
∑

j=1

j + λ21

l−1
∑

j=1

j2

}

σ2
a .
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Recall that
∑N

j=1 j =
1
2
N(N +1) and

∑N
j=1 j

2 = 1
6
N(N +1)(2N +1) and the above becomes

V (l) =

{

1 + λ20(l − 1) + λ0λ1(l − 1)l +
λ21
6
(l − 1)l(2(l − 1) + 1)

}

σ2
a . (127)

which, when we simplify some, is the expression given in the book.

Notes on forecasting the (1,0,0) model

Consider the model (1−B)zt = at or

zt+l = zt+l−1 + at+l .

The eventual forecast function for this model has a solution given by ẑt(l) = b
(t)
0 for l in the

range l > q − p+ d = 0− 0 + 1 = 1. To compute ẑt(1) consider the above expression where
we have

ẑt(1) = Et[zt+1] = Et[zt + at+1] = zt .

Thus b
(t)
0 = zt and we have ẑt(l) = zt for all l ≥ 1.

Notes on stationary AR models

We assume that φ(B) is a stationary operator and z̃t = zt − µ. Then consider an AR(1)
model so p = 1 and we have (1− φB)z̃t = at. To be stationary we must have −1 < φ < +1.

The eventual forecast function for the operator 1 − φB is z̃t(l) = b
(t)
0 φ

l. This holds for
l > q − p − d = 0 − 1 − 0 = −1. Taking l = 0 we get z̃t(0) = z̃t. Then for general l the
eventual forecast function is given by

ˆ̃zt(l) = z̃tφ
l for l ≥ 0 . (128)

Notes on variance for the forecast of an (1,0,0) process

We start this derivation by first writing our AR(1) model (1− φB)z̃t = at as

z̃t = at + φz̃t−1 .

Then by recursively replacing z̃t−1 on the right-hand-side with the expression on the left-
hand-side we get

z̃t = at + φ(at−1 + φz̃t−2) = at + φat−1 + φ2z̃t−2

= at + φat−1 + φ2at−2 + φ3z̃t−3

...

= at + φat−1 + φ2at−2 + · · ·+ φl−2at−l+2 + φl−1φl−1at−l+1 + φlz̃t−l .
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Incrementing t by l in this expression gives

z̃t+l = at+l + φat+l−1 + φ2at+l−2 + · · ·+ φl−2at+2 + φl−1at+1 + φlz̃t . (129)

Since for an AR(1) model we have shown that ˆ̃zt(l) = z̃tφ
l we see that the error in the

forecast ẑt(l) at lead time l or

et(l) = z̃t+l − ˆ̃zt(l) = z̃t+l − z̃tφ
l ,

when we replace z̃t+l with Equation 129 gives the expression for et(l) in the book. The
variance V (l) then follows by squaring and taking expectations.

Notes on nonstationary autoregressive models ARIMA(p,d,0)

In this subsection we will be considering models of the form φ(B)∇dzt = at. As a specific
example consider the ARIMA(1,1,0) model (1− φB)(∇zt − µ) = at and we will derive some
of the expressions in the book. We begin by expanding the ∇ operator we get

(1− φB)(zt − zt−1 − µ) = at ,

or expanding the 1− φB operator we get

zt − zt−1 − µ = φ(zt−1 − zt−2 − µ) + at .

Replace t with t + j and to get

zt+j − zt+j−1 − µ = φ(zt+j−1 − zt+j−2 − µ) + at+j .

Take the conditional expectation of the above expression with respect to the origin t to get

ẑt(j)− ẑt(j − 1)− µ = φ(ẑt(j − 1)− ẑt(j − 2)− µ) ,

which by iterating replacing j times the difference ẑt(j−1)− ẑt(j−2)−µ on the right-hand-
side with the left-hand-side gives

ẑt(j)− ẑt(j − 1)− µ = φj(ẑt(j − j)− ẑt(j − 1− j)− µ) = φj(zt − zt−1 − µ) .

Sum this expression from j = 1 to j = l to get

ẑt(l)− ẑt(0)− µl =

l
∑

j=1

φj(zt − zt−1 − µ) ,

or performing the summation gives

ẑt(l) = zt + µl + (zt − zt−1 − µ)
φ(1− φl)

1− φ
.

If we take l → ∞ then since |φ| < 1 due to stationarity we see that φl → 0 and thus ẑt(l)
has a limiting form that is linear in l with a slope given by µ.
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Forecasting an ARIMA(1,0,1) process

We now consider forecasting for the ARIMA(1,0,1) model

(1− φB)z̃t = (1− θB)at ,

We can obtain ψj from a Taylor expansion of the function ψ(B) = 1−θB
1−φB

. We have

ψ(B) = (1− θB)

(

1

1− φB

)

= (1− θB)

( ∞
∑

n=0

φnBn

)

=

∞
∑

n=0

φnBn − θ

∞
∑

n=0

φnBn+1 =

∞
∑

n=0

φnBn − θ

∞
∑

n=1

φn−1Bn

= 1 +
∞
∑

n=1

(φ− θ)φn−1Bn ,

which shows that
ψj = (φ− θ)φj−1 for j ≥ 1 , (130)

as claimed by the book. We note that to derive the expression for πj we would need to
compute the negative coefficients in the Taylor series of the fraction 1−φB

1−θB
. Since this is

the same fractional form just considered but with φ and θ exchanged we can immediately
conclude that

πj = −(θ − φ)θj−1 for j ≥ 1 . (131)

The integrated from eventual forecasts must satisfy (1− φB)ˆ̃zt(l) = 0 which has a solution

ˆ̃zt(l) = b
(t)
0 φ

l for l > 0 ,

To evaluate how b
(t)
0 depends on θ we use the fact that we know the value for ˆ̃zt(l) when l = 1

which is given by the conditional expectation of the difference equation (with t incremented
to t + 1) or

ˆ̃zt(1) = Et[z̃t+1] = Et[φz̃t + at+1 − θat] = φz̃t − θat .

Using the above form for ˆ̃zt(l) evaluated at l = 1 this means that

ˆ̃zt(1) = b
(t)
0 φ = φz̃t − θat

= φz̃t − θ(z̃t − ˆ̃zt−1(1)) = φ

{(

1− θ

φ

)

z̃t +
θ

φ
ˆ̃zt−1(1)

}

.

Which allow us to compute an expression for b
(t)
0 . Once we know this expression we have

ˆ̃zt(l) for l ≥ 1. Specifically we find

ˆ̃zt(l) =

{(

1− θ

φ

)

z̃t +
θ

φ
ˆ̃zt−1(1)

}

φl . (132)

If φ = 1 so 1 − φB → 1 − B = ∇ we get the exponential moving average form for the
forecasts from an IMA(0,1,1) model as already expressed in Equation 114.
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Forecasts for an ARIMA(1,1,1) model

The eventual forecasts function for an ARIMA(1,1,1) model solves (1−φB)(1−B)ẑt(l) = 0
for l > q − p− d = 1− 1− 1 = −1. This difference equation has the solution

ẑt(l) = b
(t)
0 + b

(t)
1 φ

l for l > −1 .

To evaluate the constants b
(t)
0 and b

(t)
1 we need two initial conditions for the ẑt(l) function.

Using l = 0 and l = 1 and the conditional expectation of the ARIMA(1,1,1) model we have

ẑt(0) = b
(t)
0 + b

(t)
1 = zt (133)

ẑt(1) = b
(t)
0 + b

(t)
1 φ = (1 + φ)zt − φzt−1 − θat . (134)

We want to solve these for b
(t)
0 and b

(t)
1 . Do do that put b

(t)
0 From Equation 133 into Equa-

tion 134 to get
(1 + φ)zt − φzt−1 − θat = zt − b

(t)
1 + b

(t)
1 φ .

Therefore when we solve for b
(t)
1 we get

b
(t)
1 =

θat − φ(zt − zt−1)

1− φ
.

Using Equation 133 to solve for b
(t)
0 and we find

b
(t)
0 = zt − b

(t)
1 = zt −

φ

1− φ
(zt − zt−1)−

θ

1− φ
at .

Thus with b
(t)
0 and b

(t)
1 computed as above we have for ẑt(l) the following

ẑt(l) = zt +
φ

1− φ
(zt − zt−1)−

θ

1− φ
at +

(

θat − φ(zt − zt−1)

1− φ

)

φl

= zt +
1

1− φ
(φ− φφl)(zt − zt−1)−

θ

1− φ
(1− φl)at

= zt +
φ(1− φl)

1− φ
(zt − zt−1)− θ

1 − φl

1− φ
at , (135)

which is the expression in the book.

Note on correlation between forecast errors

When we consider the forecast errors at lead times l starting at the points t and t − j we
have errors given by

et(l) = zt+l − ẑt(l) = at+l + ψ1at+l−1 + ψ2at+l−2 + · · ·+ ψl−2at+2 + ψl−1at+1

et−j(l) = zt+l−j − ẑt−j(l) = at−j+l + ψ1at−j+l−1 + ψ2at−j+l−2 + · · ·+ ψl−2at−j+2 + ψl−1at−j+1 .
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Then using this we see that

E[et(l)et−j(l)] = E

[(

l−1
∑

m=0

ψmat+l−m

)(

l−1
∑

n=0

ψnat+l−j−n

)]

=

l−1
∑

n=0

l−1
∑

m=0

ψmψnE[at+l−mat+l−j−n] .

Each term in the above double sum equals zero unless the indices of a are equal and then it
equals σ2

a. This means that the only nonzero elements in the sum are where m = j+n. Since
the original sum above is a sum in the (n,m) space with the range of either n or m from
[0, l− 1] when we enforce the restriction that m = j + n we are now summing over a line in
the (n,m) space. This is the line that starts when n = 0 at m = j and slopes upwards and
two the right. This line intersects the original summation region as long as j ≤ l−1 or j < l
as claimed in the book. This line also intersect the top most boundary (where m = l − 1)
when l − 1 = j + n or n = l − j − 1. Thus the limits on the n summation are n = 0 to
n = l − j − 1 and when we take m = j + n in the above double summation we get

E[et(l)et−j(l)] = σ2
a

l−j−1
∑

n=0

ψj+nψn .

If we add j to the limits in the above summation we get

E[et(l)et−j(l)] = σ2
a

l−1
∑

n=j

ψnψn−j , (136)

the result in the book.

Notes on a general method of obtaining the integrated form

We start with the general expression the eventual forecast function ẑt(l) given by

ẑt(l) =

p+d−1
∑

i=0

b
(t)
i fi(l) +

q−p−d−l
∑

i=0

dl,iat−i for l ≤ q − p− d , (137)

but specified to a system with autoregressive integrated part ∇2zt = (1−B)2zt. In that case

p = 0, d = 2, and our two eventual forecast solution functions are f
(t)
0 = 1 and f

(t)
1 = l. The

above expression for ẑt(l) in this specific case where the models right-hand-side is a fourth
order moving average expression becomes

ẑt(l) =

1
∑

i=0

b
(t)
i fi(l) +

2−l
∑

i=0

dl,iat−i ,

The above functional form is valid when l ≤ q − p − d = 4 − 0 − 2 = 2 in this case. For
l > 2 then the solution ẑt(l) does not have any dl,i terms and is just the sum of the eventual
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forecast functions f
(t)
0 and f

(t)
1 . Then evaluating the above functional form for l = 1, 2, and

l > 2 we get

ẑt(1) = b
(t)
0 + b

(t)
1 + d10at + d11at−1 (138)

ẑt(2) = b
(t)
0 + 2b

(t)
1 + d20at (139)

ẑt(l) = b
(t)
0 + b

(t)
1 l . (140)

Using the second to last line in A.3.5.1 in general we get

ẑt(q)− ϕ1ẑt(q − 1)− · · · − ϕp+dẑt(q − p− d) = −θqat ,

or for the example we are considering here

ẑt(4)− 2ẑt(3) + ẑt(2) = +0.1at ,

When we replace ẑt(4), ẑt(3), and ẑt(2) with Equations 139 and 140 we get

b
(t)
0 + 4b

(t)
1 − 2(b

(t)
0 + 3b

(t)
1 ) + b

(t)
0 + 2b

(2)
1 + d20at = 0.1at ,

so
d20at = 0.1at ⇒ d20 = 0.1 .

Taking the third from the last line in A.3.5.1 in general gives

ẑt(q − 1)− ϕ1ẑt(q − 2)− · · · − ϕp+dẑt(q − p− d− 1) = −θq−1at − θqat−1 .

While for the expression given here this becomes

ẑt(3)− 2ẑt(2) + ẑt(1) = −0.4at + 0.1at−1 .

When we put in what we know from Equations 138, 139, and 140 we get

b
(t)
0 + 3b

(t)
1 − 2(b

(t)
0 + 2b

(t)
1 + d20at) + b

(t)
0 + b

(t)
1 + d10at + d11at−1 = −0.4at + 0.1at−1 .

Or simplifying some we get

−2d20at + d10at + d11at−1 = −0.4at + 0.1at−1 .

or using what we found for d20 we find

−0.2at + d10at + d11at−1 = −0.4at + 0.1at−1 .

This means that −0.2+d10 = −0.4 so that d10 = −0.2 and d11 = 0.1. These computed values
for d20, d10, and d11 can go back to the Equations 138, 139, and 140 to provide functional
expressions for ẑt(1), ẑt(2), and ẑt(l).
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Problem Solutions

Problem 5.1 (forecasting with various ARIMA models)

For this problem we will use the results from the text where applicable to simplify the
discussion of each of the component parts.

Part (a): Note that the model z̃t = 0.5z̃t−1 + at is an ARIMA(1,0,0) model and using it we
get the difference equation form of the forecasts by writing it as

z̃t+l = 0.5z̃t+l−1 + at+l ,

and then taking conditional expectations. For l = 1 and 2 and the above we find

ẑt(1) = 0.5z̃t

ẑt(2) = 0.5ẑt(1) = 0.52z̃t .

To forecast zt+l using the integrated form with the weights ψj we recall that in this form the
forecasts look like

ẑt(l) = ψlat + ψl+1at−1 + ψl+2at−2 + · · · . (141)

For an AR(1) model recall that the coefficients ψj are given by ψj = φj = 0.5j. Thus the
integrated form for the forecasts from this model is given by

ẑt(1) = 0.5at + 0.52at−1 + 0.53at−2 + · · ·
ẑt(2) = 0.52at + 0.53at−1 + 0.54at−2 + · · · .

To derive the weighted average form of the forecasts recall that this form looks like ẑt(l) =
∑∞

j=1 πj ẑt(l − j). In the AR(1) case considered here we have

ẑt(1) = 0.5z̃t

ẑt(2) = 0.5z̃t(1) = 0.5(0.5z̃t) = 0.52z̃t .

Part (b): Note that the model ∇zt = at−0.5at−1 is an ARIMA(0,1,1) model. The difference
equation formulation is given by writing the model as

zt+1 = zt + at+1 − 0.5at ⇒ ẑt(1) = zt − 0.5at

zt+2 = zt+1 + at+2 − 0.5at+1 ⇒ ẑt(2) = ẑt(1) = zt − 0.5at .

The integrated form for the forecasts requires the coefficients ψj for this model from the
rational function ψ(B) = 1−0.5B

1−B
at. has ψj = 1− θ = 1− 0.5 = 0.5 (see Equation 117) thus

ẑt(1) = 0.5at + 0.5at−1 + 0.5at−2 + · · ·
ẑt(2) = 0.5at + 0.5at−1 + 0.5at−2 + · · · .

Since the sums on the right-hand-side of the above expressions are the same we see that
ẑt(1) = ẑt(2). The expression for the forecast using the previous zt, we recall Equation 119
where λ = 1− θ = 0.5. Thus we have

ẑt(1) = (1− θ)zt + (1− θ)θzt−1 + (1− θ)θ2zt−2 + (1− θ)θ3zt−3 + · · · = ẑt(2) .
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In fact the above equals ẑt(l) for all l ≥ 1.

Part (c): The model (1−0.6B)∇zt = at is an ARIMA(1,1,0) model. The difference equation
formulation is derived from

zt = 1.6zt−1 − 0.6zt−2 + at . (142)

Incrementing t by l we have

ẑt(1) = 1.6zt − 0.6zt−1

ẑt(2) = 1.6ẑt(1)− 0.6zt .

To compute the integrated form for the forecast we need ψj from the Taylor expansion
of ψ(B) = 1

(1−0.6B)(1−B)
. Once we have these we use Equation 141. To get the weighted

average of previous observations formulation of the forecasts we can use the model written
as Equation 142 and take at equal to its mean value of 0. Thus we see that the difference
equation formulation for ẑt(1) and the forecast in terms of weighted average of previous
observations are the same.

Problem 5.2 (more forecasting with various ARIMA models)

We are given the time series data z91, z92, · · · z99, z100 for the ARIMA(0,1,2) model

∇zt = at − 1.1at−1 + 0.28at−2 . (143)

Part (i): From the model above we have

zt+l = zt+l−1 + at+l − 1.1at+l−1 + 0.28at+l−2 .

Thus the forecasts for various values of l are given by

ẑt(1) = zt − 1.1at + 0.28at−1

ẑt(2) = ẑt(1) + 0.28at

ẑt(l) = ẑt(l − 1) for l > 2 .

Using the numbers given for the time series we compute
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ẑ91(1) = z91 − 1.1a91 + 0.28a90 = z91 = 166 we initialize by taking a90 and a91 to be 0

a92 = z92 − ẑ91(1) = 172− 166 = 6

ẑ92(1) = z92 − 1.1a92 + 0.28a91 = 172− 1.1(6) = 165.4

a93 = z93 − ẑ92(1) = 172− 165.4 = 6.6

ẑ93(1) = z93 − 1.1a93 + 0.28a92 = 172− 1.1(6.6) + 0.28(6) = 166.42

a94 = z94 − ẑ93(1) = 169− 166.42 = 2.58

ẑ94(1) = z94 − 1.1a94 + 0.28a93 = 169− 1.1(2.58) + 0.28(6.6) = 168.01

a95 = z95 − ẑ94(1) = 164− 168.01 = −4.01

ẑ95(1) = z95 − 1.1a95 + 0.28a94 = 164− 1.1(−4.01) + 0.28(2.58) = 169.1334

a96 = z96 − ẑ95(1) = 168− 169.1334 = −1.1334

ẑ96(1) = z96 − 1.1(−1.1334) + 0.28(−4.01) = 168.1239

a97 = z97 − ẑ96(1) = 171− 168.1239 = 2.8761

ẑ97(1) = z97 − 1.1(2.8761) + 0.28(−1.1334) = 167.5189

a98 = z98 − ẑ97(1) = 167− 167.5189 = −0.5189

ẑ98(1) = z98 − 1.1(−0.5189) + 0.28(2.8761) = 168.3761

a99 = z99 − ẑ98(1) = 168− 168.3761 = −0.3761

ẑ99(1) = z99 − 1.1(−0.3761) + 0.28(−0.5189) = 168.2684

a100 = z100 − ẑ99(1) = 172− 168.2684 = 3.7316

ẑ100(1) = z100 − 1.1(3.7316) + 0.28(−0.3761) = 167.7899

ẑ100(2) = ẑ100(1) + 0.28a100 = 167.7899 + 0.28(3.7316) = 168.8347 and

ẑ100(l) = 168.8347 for all l > 2.

These numbers are also computed in the R file chap 5 prob 2.R.
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Figure 8: The lookahead predictions and the confidence interval for the predictions for
Problem 5.2.

Part (ii): To compute the confidence interval for the forecast errors we need to evaluate
σ̂(l) which is given by

σ̂(l)2 =

{

1 +

l−1
∑

j=1

ψ2
j

}

σ2
a .

We compute ψj from the Taylor series expansion on the function ψ(B) = 1−1.1B+0.28B2

1−B
.

When we compute this Taylor expansion we find ψ0 = 1, ψ1 = −0.1, and ψj = 0.18 for j ≥ 2
(see the Mathematical file chap 5 prob 2 algebra.nb). Then in that case

σ̂(l) =
{

1 + 0.12 + 0.182(l − 2)
}

σa for l ≥ 2 .

Since we are told that σ̂2
a = 1.103 the probability limits of the forecast zt+l are bounded by

zt+l(±) = ẑt(l)± uε/2

{

1 +

l−1
∑

j=1

ψ2
j

}1/2

sa . (144)

Since sa =
√

σ̂2
a =

√
1.103 = 1.0502. Here uε/2 is the deviate exceeded by a proportion of

ε/2 of the unit normal. When went 95% limit we have ε = 0.05 and uε/2 = 1.96. This can be
computed in R using the command qnorm(1 - 0.05/2) For this problem we want the 80%
probability limits and this means we take ε = 0.2 and uε/2 = 1.281552. When the above R

script is run it produces the plot shown in Figure 8.

Problem 5.3 (predicting quarterly sales)

Part (i): We are to assume that the numbers in the previous problem are monthly sales
and we want predictions on quarterly sales. I’ll assume that the quarterly sales are the sum
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of the previously four monthly sales. Then the estimate of the quarterly sales four months
ahead will be equal to

4
∑

l=1

ẑ100(l) .

In the previous problem we numerically computed these expressions. The other requested
forecasts would be given by

8
∑

l=5

ẑ100(l) ,

12
∑

l=9

ẑ100(l) ,

16
∑

l=13

ẑ100(l) .

Part (ii): Since the predicted forecasts made from t = 100 for various lookaheads l are
correlated we need to take that into account when calculating the variance of the above
sums. For example, we would have use expression like

Var

(

∑

i

aiXi

)

=
∑

i

a2iVar(Xi) + 2
∑

i

∑

j>i

aiajCov(Xi, Xj) (145)

=
∑

i

a2iVar(Xi) + 2
∑

i

∑

j>i

aiajρXi,Xj
Var(Xi)Var(Xj) , (146)

where ρX1,X2
is the correlation between the random variables Xi and Xj. Using this expres-

sion we will now compute the variance for the first quarter ahead or Var
(
∑4

l=1 ẑ100(l)
)

the
other quarters would follow a similar procedure. We find

Var

(

4
∑

l=1

ẑ100(l)

)

=

4
∑

l=1

Var(ẑ100(l)) + 2

4
∑

l=1

4
∑

m=l

Cov(ẑ100(l), ẑ100(m))

=
4
∑

l=1

(

l−1
∑

j=0

ψ2
j

)

σ2
a + 2

4
∑

l=1

4−l
∑

j=1

E[e100(l)e100(l + j)] .

we can evaluate E[e100(l)e100(l + j)] using

E[et(l)et(l + j)] = σ2
a

l−1
∑

i=0

ψiψj+i , (147)

where we take ψ0 = 1. Thus we have

Var

(

4
∑

l=1

ẑ100(l)

)

= σ2
a

4
∑

l=1

(

l−1
∑

j=0

ψ2
j

)

+ 2σ2
a

4
∑

l=1

4−l
∑

j=1

(

l−1
∑

i=0

ψiψj+i

)

.

Since we know everything on the right-hand-side of the above expression we can evaluate
it. To get the confidence interval for

∑4
l=1 ẑ100(l) we use the same type of expression as in

Equation 144.
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Problem 5.4 (computing forecasts using the t+ 1 to l + 1 updating formula)

For this problem we assume that z101 = 174, from which we compute that a101 = z101 −
ẑ100(1) = 174 − 167.7899 = 6.2101. To compute the forwards lookaheads ẑ101(l) for l =
1, 2, . . . , 11 we use

ẑt+1(l) = ẑt(l + 1) + ψlat+1 .

Using the facts that ψ1 = −0.1 and ψj = 0.18 for j ≥ 2 we find

ẑ101(1) = ẑ100(2) + ψ1(6.2101) = 168.8347− 0.1(6.2101) = 168.2137

ẑ101(2) = ẑ100(3) + ψ2(6.2101) = 168.8347 + 0.18(6.2101) = 169.9525 .

The last line above also equals ẑ101(l) for l ≥ 2.

Part (ii): As in the previous problem to compute the forecasts directly we would use

ẑ101(1) = z101 − 1.1a101 + 0.28a100 = 174− 1.1(6.2101) + 0.28(3.7316) = 168.2137

ẑ101(2) = ẑ101(1) + 0.28a101 = 168.2137 + 0.28(6.2101) = 169.9525

ẑ101(l) = ẑ101(l − 1) = 169.9525 ,

for all l ≥ 2.

Problem 5.5 (the autocorrelation of forecast errors)

Part (i): We know the forecast error et(l) can be written

et(l) = zt+l − ẑt(l) = at+l + ψ1at+l−1 + ψ2at+l−2 + ψ3at+l−3 + · · ·+ ψl−2at+2 + ψl−1at+1 .

If we tabulate this for various value of l we get

et(1) = at+1

et(2) = at+2 + ψ1at+1

et(3) = at+3 + ψ1at+2 + ψ2at+1 (148)

et(4) = at+4 + ψ1at+3 + ψ2at+2 + ψ3at+1

et(5) = at+5 + ψ1at+4 + ψ2at+3 + ψ3at+2 + ψ4at+1

et(6) = at+6 + ψ1at+5 + ψ2at+4 + ψ3at+3 + ψ4at+2 + ψ5at+1

...

et(L) = at+L + ψ1at+L−1 + ψ2at+L−2 + · · ·+ ψL−2at+2 + ψL−1at+1 . (149)

Problem 5.6 (the forecast errors considered as a vector)

Note from Equation 149 we see that the expression e =Ma for M defined as in the book is
correct. Since the vector a is of mean zero so is the vector e. Then the covariance is given
by

Σe = E[ee′] = E[Maa′M ′] =ME[aa′]M ′ ,

but E[aa′] = σ2
aI thus Σe = σ2

aMM ′.
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Problem 5.7 (a model with a constant offset)

Part (i): For the model ∇zt = 0.5 + (1− 1.0B + 0.5B2)at for prediction we write it as

zt+l = zt+l−1 + 0.5 + at+l − at+l−1 + 0.5at+l−2 .

Thus we get predictions given by

ẑt(1) = zt + 0.5− at + 0.5at−1

ẑt(2) = ẑt(1) + 0.5 + 0.5at

ẑt(l) = ẑt(l − 1) + 0.5 for l ≥ 3 .

All of these we can compute given the information in the problem.

Part (ii): To evaluate confidence intervals we need to evaluate

V (l) = σ2
a

l−1
∑

j=0

ψ2
j ,

where we get ψj from the linear systems representation or the Taylor series coefficients of
the function

ψ(B) =
0.5

1− B
+

1− 1.0B + 0.5B2

1−B
.

Note that ψ0 6= 1 in this case. Then zt = ψ(B)at is the representation of zt in integrated
form. The integrated form of the forecasts is given by

ẑt(l) = ψlat + ψl+1at−1 + ψl+2at−2 + · · · (150)
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Chapter 6 (Model Identification)

Notes on the Text

Notes in identification of some actual time series

In this section we duplicate the plots (the time series, the autocorrelation, and the partial
autocorrelation) and analysis for a number of the series presented in the book. Specifically
we consider the time series A - F which are introduced in this chapter to provide examples
to use in fitting ARIMA models to. We will follow the books example by presenting the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) for each of
the above time series. To begin with in Figure 9 we present plots (all one place) of each of
the time series we will be considering. Note that I’m using the R functions acf and pacf

to extract the autocorrelation and partial autocorrelation functions respectively. We should
note that the first value from the acf will always be 1 (which is expected and gives no
information about the series) while the first value from the pacf is the lag one result and
can be informative. It helps to keep this in mind when looking at the plots that follow.
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Figure 9: Top Left: Chemical process concentration readings (Series A). Top Right:
IBM common stock closing prices (Series B). Middle Left: Chemical process temperature
readings (Series C).Middle Right: Chemical process viscosity readings (Series D).Bottom
Left: Wolfer sunspot numbers (Series E). Bottom Right: Yields from a batch chemical
process (Series F).
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Figure 10: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for zt
from series A. Bottom: Plots of the autocorrelation and partial autocorrelation for ∇zt.

Series A: chemical process concentration readings

In Figure 9 (top left) we plot the time series zt for Series A. In Figure 10 we plot the
autocorrelation (ACF) and partial autocorrelation function (PACF) for zt from Series A.
It helps to look at the ACF and PACF graphs in rows. The first row represents the ACF
and the PACF of zt. The relatively slow decay of the ACF indicate that this series is not
stationary and might require differencing to adequately model. The spike in the PACF at lag
1 would give rise to a decaying ACF and thus we might want to consider an AR(1) model.
It is hard to see the full structure in the early lags plotted in the ACF and the decay of
the ACF could hide a significant moving average spike and thus we might want to consider
appending a MA(1) term. These together give rise to an ARIMA(1,0,1) model. The second
row of plots given in Figure 10 are the ACF and PACF of ∇zt. The significant spike at lag
1 in the ACF, with a more uniformly zero response in the PACF (or at least we don’t see
large significant spikes there), indicate that we should include a MA(1) term in the model
of ∇zt. These considerations give a IMA(0,1,1) model.
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Figure 11: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for zt
from series B. Bottom: Plots of the autocorrelation and partial autocorrelation for ∇zt.

Series B: IBM common stock prices

In Figure 9 (top right) we plot the time series zt for Series B. In Figure 11 we plot the
autocorrelation (ACF) and partial autocorrelation function (PACF) for zt from Series B.
From the slow decay of the autocorrelation function it seems like we should take the first
difference to make the series stationary. Once this is done, when we consider the second row,
we see that the remaining signal wt = ∇zt is white noise (since there are no significant values
in the ACF or PACF of ∇zt). Thus this time series would be modeled with an ARIMA(0,1,0)
model. The book suggests including a MA(1) term. If we find that the numerical value of
this parameter is θ1 ≈ 0 then these two models are effectively the same.
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Figure 12: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for
zt from series C. Center: Plots of the autocorrelation and partial autocorrelation for ∇zt.
Bottom: Plots of the autocorrelation and partial autocorrelation for ∇2zt.

Series C: chemical process temperature readings

In Figure 9 (middle left) we plot the time series zt for Series C. In Figure 12 we plot the
autocorrelation (ACF) and partial autocorrelation function (PACF) for zt from Series C.
From the ACF plot of zt it seems like we should take the at least one difference to make
the series stationary. Taking this first difference we see that again the series ∇zt does not
look stationary due to the slow decay of the ACF of ∇zt. Taking another difference we get a
stationary signal with no significant correlations. Thus this time series could be modeled as
an ARIMA(0,2,0) model. The book comes to the same conclusion where they add a MA(2)
term but then make the argument that this more general form is retained for subsequent
discussion. Another model can be obtained by looking at the ACF and PACF of ∇zt. There
we see exponential decay of the ACF and a significant spike in the PACF at lag 1. This
would support that ∇zt could be modeled by an AR(1) process.
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Figure 13: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for zt
from series D. Bottom: Plots of the autocorrelation and partial autocorrelation for ∇zt.

Series D: chemical process viscosity readings

In Figure 9 (middle right) we plot the time series zt for Series D. In Figure 13 we plot the
autocorrelation (ACF) and partial autocorrelation function (PACF) for zt from Series D.
From the ACF plot we have very slow decay indicating that zt could come from an AR(1)
model. The fact that there is one significant spike in the PACF adds support to this model.
If we take one difference to make the series more stationary, there seem to be no significant
spikes in the ACF or the PACF indicating that ∇zt is white noise. The book comes to the
same conclusion but retains a MA(1) term to demonstrate its inclusion.
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Figure 14: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for
zt from series E. Center: Plots of the autocorrelation and partial autocorrelation for ∇zt.
Bottom: Plots of the autocorrelation and partial autocorrelation for ∇2zt.

Series E: Wolfer sunspot numbers

In Figure 9 (bottom left) we plot the time series zt for Series E. In Figure 14 we plot the
autocorrelation (ACF) and partial autocorrelation function (PACF) for zt from Series E.
From the ACF and PACF plots it seems like we have a an AR model since there are two
significant values in the PACF plot. An AR(2) model can give rise to the oscillator behavior
seen in the ACF.
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Figure 15: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for
zt from series F. Center: Plots of the autocorrelation and partial autocorrelation for ∇zt.
Bottom: Plots of the autocorrelation and partial autocorrelation for ∇2zt.

Series F: yields from a batch chemical process

In Figure 9 (bottom right) we plot the time series zt for Series F. In Figure 15 we plot the
autocorrelation (ACF) and partial autocorrelation function (PACF) for zt from Series F. For
this series looking at the ACF we might observe a oscillatory behavior of the values of rk.
The PACF has at least one significant spike (at lag k = 1) but to produce an oscillator ACF
we must have two significant roots. This supports the idea that zt should be modeled with
an AR(2) model.

Estimates of the parameters in the time series A-F

In the R code dup table 6 7.R we verify the parameter estimates that the book provides in
Table 6.7.
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Initial parameter estimates for a moving average process

The autoregressive coefficients ρk and the parameters of our moving average model are related

ρk =
−θk + θ1θk+1 + θ2θk+2 + · · ·+ θq−kθq

(1 + θ21 + θ22 + · · ·+ θ2q)
. (151)

If we consider q = 1 then we have

ρ0 = − θ1
1 + θ21

,

or
ρ1θ

2
1 + θ1 + ρ1 = 0 .

This can be solved using the quadratic equation to give

θ1 =
−1 ±

√

1− 4ρ21
2ρ1

= − 1

2ρ1
±
{

1

(2ρ1)2
− 1

}1/2

(152)

From Table 6.2 we have from ∇zt for Series A that ρ1 = −0.41. When we put that value
into Equation 152 above, we get for the two signs

θ1 = 0.52150 , 1.91751 .

From these two solutions we must make sure that the value of θ1 is such that the system is
invertible which requires that −1 ≤ θ1 ≤ +1 thus we must take θ1 = 0.52150.

An approximate standard error for w̄

If our model for wt = ∇zt requires a constant mean µw value as

φ(B)(wt − µw) = θ(B)at , (153)

then since µw is a constant we have

φ(B)µw = φ(1)µw = (1− φ1 − φ2 − · · · − φp−1 − φp)µw .

Thus the above model can be written as

φ(B)wt = φ(1)µw + θ(B)at . (154)

If we want to write this as
φ(B)wt = θ0 + θ(B)at , (155)

we see that θ0 = φ(1)µw or

µw =
θ0

1− φ1 − φ2 − · · · − φp−1 − φp

. (156)

If we wish to write this model as

φ(B)wt = θ(B)(at + ξ) , (157)
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Then again as ξ is a constant we have θ(B)ξ = θ(1)ξ and comparing this last model to
Equation 153 we see that θ(1)ξ = φ(1)µ1 or

µw =
θ(1)ξ

φ(1)
=

(1− θ1 − θ2 − · · · − θq−1 − θq)ξ

1− φ1 − φ2 − · · · − φp−1 − φp
,

as claimed in the book.

Notes on model multiplicity

In the section on model multiplicity the book makes the statement

(1−HjB)(1−HjF ) = H2
j (1−H−1

j B)(1−H−1
j F ) .

We can show this by expanding the left-hand-side as

(1−HjB)(1−HjF ) = 1−Hj(B + F ) +H2
j

= H2
j (1−H−1

j (B + F ) +H−2
j )

= H2
j (1−H−1

j B)(1−H−1
j F ) ,

as claimed since BF = 1. Because of this, if we exchange Hj with H−1
j in a factor from

the moving average factorization
∏q

j=1(1 − HjB), and then compute the autocorrelation
generating function γ(B) with this new factor, this replacement we will have introduced the
total factor

(1−H−1
j B)(1−H−1

j F ) ,

rather than what we had before of

(1−HjB)(1−HjF ) .

Since these two expression only differ by a constant the two autocorrelation generation
functions only differ by a constant.

Notes on the forward and backwards IMA process of order (0,1,1)

For an IMA process of order (0, 1, 1) we have wt = (1 − θB)at with wt = ∇zt = (1 − B)zt.
Solving for at we have

at =

(

1− B

1− θB

)

zt =

(

1− θB + θB −B

1− θB

)

zt =

(

1− (1− θ)B

1− θB

)

zt (158)

= zt − (1− θ)B
{

1 + θB + θ2B2 + θ3B3 + · · ·
}

zt

= zt − (1− θ)zt−1 − θ(1− θ)zt−2 − θ2(1− θ)zt−3 − θ3(1− θ)zt−4 + · · · .

We define zlt−1 or the backwards exponentially weighted average, which takes time series
values of to the “left” of zt as

zlt−1 ≡ (1− θ)zt−1 + θ(1− θ)zt−2 + θ2(1− θ)zt−3 + · · · .
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From its definition we can recursively express zlt−1 as

zlt−1 = (1− θ)zt−1 + θ [(1− θ)zt−2 + θ(1− θ)zt−3 + · · · ] (159)

= (1− θ)zt−1 + θzlt−2 , (160)

which is the expression given in the book.

Notes on the relationship between the a’s and the e’s

The relationship between at and et can be derived by first solving for zt in (1 − B)zt =
(1− θB)at and (1−F )zt = (1− θF )et and setting the result of each expression equal. When
we do this we get

1− θB

1− B
at =

1− θF

1− F
et .

So solving for at in that expression we get

at =

(

1− θF

1− θB

)(

1− B

1− F

)

et .

Now consider one of the expressions that we find in the above

(1− θF )(1−B)

1− F
=

1− θF − B + θ

1− F
=

1− B + θ(1− F )

1− F

=
1− B

1− F
+ θ = −B + θ .

Next note that we can show the last step performed above that of 1−B
1−F

= −B by multiplying
both sides of that expression by 1−F and using the fact that BF = 1. Thus we have shown
that

at =
θ −B

1− θB
et .

In the fraction above use long division (θ −B divided by 1− θB) to write it as

θ −B

1− θB
= θ − (1− θ2)B

1− θB
.

Using this we find for at

at =

(

θ − (1− θ2)B

1− θB

)

et = θet − (1 + θ)
(1− θ)B

1− θB
et . (161)

We recall that from Equation 158 that we had

at =

(

1− (1− θ)B

1− θB

)

zt = zt −
(

(1− θ)

1− θB

)

zt .

In this later result we introduced the series zlt−1 and set the right-hand-side equal to zt−zlt−1

showing that we can write zlt in operator notation as

zlt ≡
(

1− θ

1− θB

)

zt .
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In the same way as before we now introduce elt as

elt ≡
(

1− θ

1− θB

)

et ,

and from Equation 161 we get

at = θet − (1 + θ)elt−1 . (162)

Writing elt−1 in the expanded form via Equation 159 or

elt−1 = (1− θ)(et−1 + θet−2 + θ2et−3 + θ3et−4 + · · · ) ,

we can write Equation 162 as

at = θet + (1 + θ)(1− θ)(et−1 + θet−2 + θ2et−3 + θ3et−4 + · · · ) .

It is this expression we will now use to evaluate γae(k) ≡ E[atet+k], where we find γae(k)
given by

θE[etet+k]− (1 + θ)(1− θ)(E[et−1et+k] + θE[et−2et+k] + θ2E[et−3et+k] + θ3E[et−4et+k] + · · · ) .

In the case when k < 0, only one term in the right-hand-side is non-zero and we have

γae(k) = −(1− θ2)θ|k|−1σ2 = −(1− θ2)θ−k−1σ2 .

If k = 0 we get
γae(k) = θσ2 ,

all of these expressions agree with the text.

Problem Solutions

Problem 6.1 (estimating coefficients of ARIMA models)

Depending on the type of the ARIMA model we find the coefficients in each using a dif-
ferent formula. The differences of zt taken to make the time series more stationary don’t
affect the coefficients of the AR or MA models when we estimate them. The most com-
mon models we need to be able to estimate the parameters of are: AR(1), MA(1), AR(2),
MA(2), and ARMA(1,0,1) models. To estimate these parameters we will use the values of
the autocorrelation function rk. As a summary we note that

• For an AR(1) model we estimate the only parameter φ1 in the model

wt = φ1wt−1 + at ,

by φ1 = r1.
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• For an MA(1) model
wt = at − θ1at−1 ,

to estimate the only parameter θ1 we solve

r1 = − θ1
1 + θ21

,

for the value of θ1 such that −1 < θ1 < +1.

• For a AR(2) model to estimate the two parameters φ1 and φ2 in the model

wt = φ1wt−1 + φ2wt−2 + at .

with

φ1 =
r1(1− r2)

1− r21

φ2 =
r2 − r21
1− r21

.

• For a MA(2) model to estimate the two parameters θ1 and θ2 in the model

wt = at − θ1at−1 − θ2at−2 .

we solve for θ1 and θ2 in

ρ1 =
−θ1(1− θ2)

1 + θ21 + θ22

ρ2 =
−θ2

1 + θ21 + θ22
,

such that the roots we find satisfy −1 < θ2 < 1, θ2 + θ1 < 1, and θ2 − θ1 < 1.

• For a ARIMA(1,0,1) model

wt = at + φ1wt−1 − θ1at−1 ,

to estimate the two parameters in the model φ1 and θ1 we solve

ρ1 =
(1− θ1φ1)(φ1 − θ1)

1 + θ21 − 2φ1θ1

ρ2 = ρ1φ1 ,

for φ1 and θ1 such that the roots we find satisfy −1 < φ1 < +1 and −1 < θ1 < +1.

Part (a): The model is

(1− B)(1− φ1B)zt = at with φ1 = 0.72 ,

93



Part (b): The model is

(1− B)zt = at − θ1at−1 with θ1 = 0.5215 .

Part (c): The model is

(1− φ1B)zt = (1− θ1B)at with φ1 = 0.8 and θ1 = 0.5 .

Part (d): The model is

(1− B)2zt = (1− θ1B − θ2B)at with θ1 = −1.080 and θ2 = −0.2928 .

Part (e): The model is

(1− φ1B − φ2B
2)(1−B)zt = at with φ1 = 1.3079 and φ2 = −0.40636 .

Simple R code to estimate these coefficients is given in chap 6 prob 1.R.

Problem 6.2 (including a constant term in the model)

We are told that c0 = s2w = 0.25. Since the standard error in w̄ for a ARIMA(2, d, 0) model
is given by

σ̂(w̄) = σ

{

c0(1 + r1)(1− 2r21 + r2)

n(1− r1)(1− r2)

}1/2

,

we can evaluate the above to find σ̂(w̄) = 0.16972. Thus since the sample value of µw = w̄ =
0.23 is significantly larger the the standard error we have to consider it as significant. Using
w̄ ≈ µw and Equation 156 the parameter θ0 is given by

θ0 = (1− φ1 − φ2)w̄ = (1− 1.3079 + 0.40636)(0.23) = 0.022646 .

Our model with numerical values of the parameters inserted is therefore given by

wt − 1.3079wt−1 − 0.40636wt−2 = 0.022646 + at .

Problem 6.3 (quarterly unemployment in the U.K.)

You can see the ACF and PACF given for this problem in Figure 16. From the slow decay of
the ACF and the significant spikes at lags k = 1 and k = 2 in the PACF we decide that this
time series might be generated from an AR(2) model. We find approximate coefficients for
our AR(2) model given by φ1 = 1.3767 and φ2 = −0.4803. See the R code chap 6 prob 3.R.
We also estimate that σ̂(w̄) = 0.05207046 for an AR(2) model indicating that the mean
given to estimate µw = µz = 2.56 is significant. We also find that σ̂2

a = 0.00174 and our time
series model with the estimated parameters is given by

zt = 1.376758zt−1 − 0.48038zt−2 + 0.265285 + at .
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Figure 16: Plots of the autocorrelation (left) and partial autocorrelation (right) for Prob-
lem 6.3 and approximate 95% confidence intervals. The lower 95% confidence interval of the
ACF is not displayed since it would be printed off the given axis. Both these functions start
at lag k = 1.

Problem 6.4 (Gross Domestic Product (G.D.P.) in the U.K.)

We plot the ACF and PACF for zt and ∇zt in Figure 17. From the slow decay of the ACF
and the significant value of the PACF at lag k = 1 we hypothesis that this data is given by
a ARIMA(0,1,0) model. We can consider a ARIMA(0,1,1) model to observe the estimated
value of θ1. See the R code chap 6 prob 4.R. We estimate that the standard error of the
mean of wt = ∇zt is σ̂(w̄) = 0.12019. Since the estimated mean is w̄ = 0.66 which is
significantly larger than σ̂(w̄) our mean is significant and must be included in the model.
For a MA(1) model like this one this gives θ0 = 0.66. We estimate the value of θ1 = −0.01
(which is a relatively small value and could perhaps be dropped) with σ̂2

a = 0.7930. This
gives the model

∇zt = 0.66 + at + 0.01at−1 .

Problem 6.5 (the annual price of hogs)

We plot the two autocorrelations in Figure 18 there we find that the autocorrelations of
zt decay quite slowly and are significant while the autocorrelations of ∇zt are insignificant.
This indicates a potential AR(1) model with φ1 ≈ 1. If we assume this functional form we
would estimate φ1 = 0.85 and would get the model zt = 0.85zt−1 + at.
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Figure 17: Top: Plots of the autocorrelation (left) and partial autocorrelation (right) for zt
for the gross domestic product (G.D.P.) in the U.K. Bottom: Plots of the autocorrelation
and partial autocorrelation for ∇zt for the same time series. Note that unlike plots produced
directly by R these start at lag k = 1. Note that the standard errors for ∇zt are not shown
indicating that ∇zt is insignificant.
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Figure 18: Plots of the autocorrelation for zt (left) and for ∇zt (right) for the price of hogs
time series. Note that unlike plots produced directly by R these start at lag k = 1.

96



Chapter 7 (Model Estimation)

Notes on the Text

In several of the sections below I tried to implement and then compare my numerical results
with the ones presented in the book. In most cases my numerical results match very closely.
In general, however, it is difficult for them to match exactly for a couple of reasons. One
reason is that some of the numerical procedures are iterative and the calculations should be
completed “until convergence”. For example, the book claims that often only one iteration
is needed for convergence of S(φ, θ) but that more can be performed “if needed”. Many
subsequent calculations use the output from the computation of S(φ, θ) as an input. I coded
my estimation algorithm to always perform two iterations. If the book only performed one
in various parts our numerical results would then differ. A second difficulty is that various
ARIMA models need to be represented in the approximate form

w̃t = φ−1(B)θ(B)at ≈
Q
∑

j=0

ψjat−j ,

for some integer Q such that ψj ≈ 0 when j > Q. While the value of Q certainly depends on
the ARIMA model considered I choose to take Q = 10 for all calculations (for most models
it is like Q ∈ [2, 5]). The book may have fixed the value of Q specifically for each model
considered which may make a small numerical difference in calculations. A third difficulty in
comparing the numbers in the book with the numbers from my R programs is that the book
rounded all of their output numbers to a fixed number of decimal digits. This makes it more
difficult to see if a difference between the number is significant or just due to this rounding.
There are probably other reasons for potential differences that could be discussed.

Even with the above differences, in most cases my R routines gave numbers very close to the
ones presented in the book. Thus I feel that these R codes do indeed perform the correct
calculations and give correct results. In most cases below, I the notes below I follow the flow
of the book and present the exact R output which can then be compared to the numbers
presented in the text and as already stated the match is often quite good.

Notes on the choice of the starting values for conditional calculation

In the R code chap 7 dup table 6 2.R we implement the computation of the S∗(θ) function
for an IMA(0,1,1) model. When this script is run we obtain the following values of S∗(θ) for
the sampling of θ suggested in the text.

[1] 23928.58 21594.86 20222.40 19483.30 19220.20 19363.00 19896.34 20851.14

[9] 22315.08 24470.78 27693.77
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This matches the values given in the book. These numbers were computed using the R code
cond sum of squares ARMA 01.R.

Notes on the unconditional sum of squares function S(φ, θ)

I found this section difficult to understand at first. After several readings, I think I have an
understanding of the procedure used to compute the unconditional sum of squares function
S(φ, θ) given fixed values of φ and θ. Note that computing the conditional sum of squares
function S∗(φ, θ) is easier since in that case for any unknown values for at or w̃t we assume

values for at and w̃t (typically 0) for all unspecified variables and then compute at for
t = 1, 2, . . . , n using

at = w̃t − φ1w̃t−1 − φ2w̃t−2 − · · · − φpw̃t−p + θ1at−1 + θ2at−2 + · · ·+ θqat−q . (163)

In the case of estimating the unconditional sum of squares function S(φ, θ) we need to perform
backwards and then forwards directional passes over the data. Our goal in performing these
sweeps is to compute expected values of w̃t for t’s outside of the range where we have sample
values. That is when t ≤ 0 and when t > n. Using these computed values with [at] = 0 and
Equation 163 we can compute [at] for t that require w̃t before samples are observed (t ≤ p)
and then sum

∑n
t=−Q[at]

2 to get the unconditional sum of squares. To get these unobserved
values for w̃−t for t ≥ 0 we start at the end of the observed series w̃t and using the backwards
model equation

φ(F )w̃t = θ(F )et , (164)

to estimate [et] from the end of the series to the beginning (for t = n down to t = 1). Once
we have these values of [et] with [e−t] = 0 for t ≥ 0 we can compute [wt] for negative t
indices’s. Once we have these values of [wt] we use the forward model φ(B)w̃t = θ(B)at to
compute [at] for positive t’s. The complete set of [at] gives one sweep of the algorithm.

We can compute a second sweep by starting with the last value of [at] computed in the first
sweep. We uses these values to compute w̃t beyond the last observed sample value t = n.
Using these values of w̃t we use the backwards model to compute new estimate of [et] just
as in the first sweep. In other words, these [et] then go on to compute w̃t for negative t,
these w̃t then go on to compute [at] which are summed to compute S(φ, θ). In summary, the
algorithm for computing the unconditional sum of squares objective function given values
for φ and θ is

1. Starting at the end of the time series at t = n compute [et] for t = n to t = 1 using
the backwards model equation.

2. Compute w̃t for −Q ≤ t ≤ 0 using [et] when t ≥ 1 (computed in the step above) and
[et] = 0 when t <= 0 using the backwards model equation.

3. Compute [at] from t = −Q to t = n using the forward model and the computed [w̃t]
for negative t.
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4. Compute [w̃t] for n < t < n + Q using [at] computed above when t ≤ n and [at] = 0
when t > n.

At this point we have estimates of [et], [at], and [wt] over the larger t domain of −Q ≤ t ≤
n+Q. We can keep making backwards and forwards sweeps where we update the values of
[et] and [at] (for all t) and the values of [w̃t] over all unobservable times. That is we only
need to update estimates of [w̃t] for t ≤ 0 and t > n since for other times we have observable
values of w̃t. One thing I have not mentioned is how to determine how to specify the value of
Q. The book states we want to take Q large enough so that the magnitude of the computed
extrapolated values w̃t are sufficiently small. In the R codes developed for this chapter I took
Q = 10. If this is not large enough for there to be significant decay of the value of w̃t one
would need to increase this number. We now go over the examples from the book on this
procedure in greater detail.

To begin, we consider the example of computing [at], [et], and [w̃t] for the dummy time
series given in the book of length 12 under an assumed ARIMA(1,d,1) model where we have
fixed the values φ = 0.3 and θ = 0.7. Once we have [at] it is easy to compute S(θ, φ) by
summing their squared values. Following the above procedure, we first estimate [et] moving
from the back of the series to the front. After that we estimate w̃t for negative t. Finally
using anything already computed if needed, we compute [at] moving from the front of the
series to the back. Starting by computing [et] backwards we will use

[et] = [wt]− 0.3[wt+1] + 0.7[et+1] . (165)

To compute the value of [e11] we know the value of w12 and assuming [e12] = 0. We can
continue this process down and computing [e10], [e9], · · · [e2], [e1]. Lets check a few values

[e11] = 4.3− 0.3(1.1) + 0.7(0) = 3.97

[e10] = 3.0− 0.3(4.3) + 0.7(3.97) = 4.489 .

This agrees with the numbers in the book. Now that we have [et] for 1 ≤ t ≤ 12 we will use
these values and the assumption that [e−j ] = 0 for j ≥ 0 to compute [wt] for negative t using

[wt] = [et] + 0.3[wt+1]− 0.7[et+1] .

Computing a couple of these we find

[w0] = [e0] + 0.3[w1]− 0.7[e1] = 0 + 0.3(2.0)− 0.7[e1] = 0.6− 0.7(2.34) = −1.038

[w−1] = [e−1] + 0.3[w0]− 0.7[e0] = 0 + 0.3(−1.038)− 0 = −0.3114 .

We compute these expressions all the way to [w−4]. At that point we decide that [w−4] is
“small enough”. Next we compute [aj ] for j ≥ 1 using

[at] = [wt]− 0.3[wt−1] + 0.7[at−1] .

Since we just computed the values of [w−j ] we can evaluate [a−4], [a−3], [a−2], etc using the
above. Computing a couple of these we have

[a−4] = [w−4]− 0.3(0) + 0.7[a−5] = −0.01

[a−3] = [w−3]− 0.3[w−4] + 0.7[a−4] = −0.03− 0.3(−0.01) + 0.7(−0.01) = −0.034

[a−2] = [w−2]− 0.3[w−3] + 0.7[a−3] = −0.09− 0.3(−0.03) + 0.7(−0.034) = −0.108 .
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After we have computed [at] for −4 ≤ t ≤ 12 we can evaluate S(θ, φ) using
∑12

t=−4[at]
2.

To do a second iteration of this procedure we keep [a12] = 3.99 and then calculate [wj] for
j ≥ 13 or beyond the end of the series using

[wt] = [at] + 0.3[wt−1]− 0.7[at−1] ,

using [at] = 0 for all t ≥ 12. Computing a few of these we have

[w13] = [a13] + 0.3[w12]− 0.7[a12] = 0 + 0.3(1.1)− 0.7(3.99) = −2.463

[w14] = [a14] + 0.3[w13]− 0.7[a13] = 0 + 0.3(−2.463) = −0.7389 .

We repeat this procedure until [wj] for j ≥ 13 gets “small enough”. Then with these values
of [wj] we compute [ej ] using Equation 165. After this we repeat the same procedures as
before.

We have automated this procedure for some of the common models discussed in the text. In
the R routine uncond sum of squares ARMA 01.R. When we run this function on the data
from Series B for various values of θ we get the output

[1] 23928.42 21594.85 20222.30 19483.18 19220.14 19363.00 19896.23 20850.57

[9] 22313.66 24468.27 27690.61

These numbers agree quite well with the book and effectively duplicate part of Table 7.2.
When we plot these numbers with the corresponding θ that generated them we get the result
in Figure 19. This matches the

As a second example of this procedure we consider the example of estimating the coefficients
in a mixed autoregressive moving average process namely an ARIMA(1,0,1) model. This
example is implemented in the R code chap 7 dup table 7 N 5.R that sets φ = 0.3 and
θ = 0.7 and calls the R function uncond sum of squares ARMA 11.R. This function gives the
output of 89.15847 very close to the number given in the book.

As another example of using these routines in the R code chap 7 dup fig 7 2.R we duplicate
some of the results from Fig. 7.2 from the book. Namely we tabulate values of λ0 and λ1
and the compute the value of S(λ0, λ1) for each value. We compute that the values of λ0
and λ1 that minimize S are given by

[1] "GLOBAL MIN: lambda0 = 1.080000; lambda1 = 0.010000; S= 19226.967365"

This is rather close to the values computed in the book.

As another example in the R code chap 7 dup table 7 7.R we use many of the routines
developed earlier to fit various ARIMA models for the data sets considered in the text.
When that routine is run we obtain the following output:
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Figure 19: A duplicate plot of Figure 7.1. The minimum of S(θ) is indicated with a red line
and occurs at the location θ = −0.09.

[1] "Series A: GLOBAL MIN: lambda1m = 0.00 lambda0 = 0.40; lambda1 = 0.05; S= 21.72"

[1] "Series C: GLOBAL MIN: lambda1m = 0.15 lambda0 = 1.40; lambda1 = 0.30; S= 4.25"

[1] "Series D: GLOBAL MIN: lambda1m = 0.00 lambda0 = 0.95; lambda1 = 0.00; S= 29.72"

Note that if you decide to run this routine yourself this brute force searching code can be a
very slow computation (you might have to run it overnight). One should probably modify
these routines to first perform a global search over a course grid and then follow that with a
more refined search once a good idea of the region where the minimum is located has been
found. In short there are a number of ways in which these routines could be improved but
due to time constraints was not able to implement any of them. If anyone improves these
routines please let me know.

Notes on the variance and covariance of ML estimate

In this section since I tabulated S as a function of θ I need to evaluate the two derivatives
of S with respect to θ. In the R script chap 7 dup table 7 2.R we compute the first and
second difference of S(θ) sampled at discrete points. We find S(θ̂) = 19216.79 and ∂2S

∂θ2
≈

3.949282
0.012

= 39492.82. Then in this case we find (θ− (−0.09))2 = 0.01015877 which agrees with
what we have in the book.
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Notes on nonlinear estimation

In this section of these notes I document what methods and routines were implemented
to verify my understanding of the text. In this case I choose to implement numerical
derivative calculations of xi,t ≡ −∂[at]

∂βi
for several models. For example in the R script

chap 7 dup table 7 9.R and the subsequent routines it calls, we tabulate xt for various
values of t. We find (ignoring the zero elements)

[1] "The negative derivative or x_t is given by..."

[1] -0.37878301 -0.43515544 0.05708267 0.46861813 0.65874823 -0.45416191

[7] -0.42668433 -0.21513988 -0.70848678 -0.36071098 -0.08365396 0.30749080

[13] -0.36810253 -0.25019371 -0.35882950 -0.29861840 0.18989694 -0.03205640

[19] 0.01919932 -0.17243431 0.42094552

These are similar to the results in the book in this table and the agreement gets better the
further from the beginning of the series we go. I’m not entirely sure where the difference
between the two results lie. Continuing we can use these results and implement Newton
iterations to find that θ in a MA(1) model converges (starting with θ = 0.5) as

[1] "Newton iterations (and final estimates) look like..."

[1] 0.5

[1] 0.6290351

[1] 0.6801226

[1] 0.698457

[1] 0.7051796

[1] 0.7077203

This is very close to the results given in the text. Next in the R routine chap 7 dup table 7 11.R

I implement a the similar Newton iterations to estimate θ1 and θ2 for the two parameters
of an MA(2) model. When we run that script with starting values of θ1 = 0.1 and θ2 = 0.1
we get the following where each row is an iteration and formatted for easier printing the
following

[1] "Newton iterations for theta1 and theta2 look like..."

0.1 0.1

0.1184972 0.1097862

0.1224711 0.1168564

0.1247543 0.1194209

0.1256370 0.1206219

The estimate of θ1 is relatively close to the one given in the book of θ1 = 0.1293. The estimate
of θ2 is some what worse but still close to the books value of θ2 = 0.1153. Given that in
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this section of the book θ1 and θ2 are not computed using a numerical approximation to the
derivative of the unconditional and are instead computed using the least squares algorithm
for the conditional model I’m not too concerned with the numerical differences.

Notes on Review of Normal Distribution Theory

The book makes the claim that the inverse of the matrix Σ when written in partitioned form

Σ =

[

Σ11 Σ12

Σ′
12 Σ22

]

, (166)

can be written in block form given as

Σ−1 =

[

I −Σ−1
11 Σ12

0 I

] [

Σ−1
11 0
0 (Σ22 − Σ′

12Σ
−1
11 Σ12)

−1

] [

I 0
−Σ′

12Σ
−1
11 I

]

. (167)

while various ways to show this exist it is perhaps easies to just show that the suggested
inverse of Σ just “works” by performing the multiplication ΣΣ−1 and showing that we obtain
the identity matrix. We find

ΣΣ−1 =

[

Σ11 Σ12

Σ′
12 Σ22

] [

I −Σ−1
11 Σ12

0 I

] [

Σ−1
11 0
0 (Σ22 − Σ′

12Σ
−1
11 Σ12)

−1

] [

I 0
−Σ′

12Σ
−1
11 I

]

=

[

Σ11 0
Σ′

12 −Σ′
12Σ

−1
11 Σ12 + Σ22

] [

Σ−1
11 0
0 (Σ22 − Σ′

12Σ
−1
11 Σ12)

−1

] [

I 0
−Σ′

12Σ
−1
11 I

]

=

[

I 0
Σ′

12Σ
−1
11 I

] [

I 0
−Σ′

12Σ
−1
11 I

]

=

[

I 0
0 I

]

,

showing that the proposed expression is indeed the inverse of Σ.

Notes on Review of Linear Least Squares

Note that S(β) as defined in the book is a scalar. We can use the suggested transformation
of Xβ to write S(β) as

S(β) = (w −Xβ)′(w −Xβ)

= (w −Xβ̂ −X(β − β̂))′(w −Xβ̂ −X(β − β̂))′

= (w −Xβ̂)′(w −Xβ̂)− (w −Xβ̂)′X(β − β̂)

− (β − β̂)′X ′(w −Xβ̂) + (β − β̂)X ′X(β − β̂)

= S(β̂)− 2(w −Xβ̂)′X(β − β̂) + (β − β̂)′X ′X(β − β̂)) .

Now if we consider the middle term above −2(w −Xβ̂)′X(β − β̂) we can write it as

−2(X ′w −X ′Xβ̂)′(β − β̂) , (168)
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from which we see that if (called the normal equations)

X ′Xβ̂ = X ′w , (169)

then this term will vanish. In that case we then get

S(β) = S(β̂) + (β − β̂)′X ′X(β − β̂) . (170)

This last equation states that if we take β any vector not equal to β̂ then the value of S(β)
will be larger than that of S(β̂) by an amount

(β − β̂)′X ′X(β − β̂) = ||X(β − β̂)||2 ≥ 0 .

This means that β̂ given by Equation 169 is the optimal solution. The expression Equa-
tion 168 is another way of saying that w −Xβ̂ and X(β − β̂) are orthogonal. If we take β̂
so that it satisfies Equation 169 we can express the minimal value of S(β̂) as

S(β̂) = (w −Xβ̂)′(w −Xβ̂)

= w′w − w′Xβ̂ − β̂ ′X ′w + β̂ ′X ′Xβ̂

= w′w − 2w′Xβ̂ + β̂ ′X ′Xβ̂ .

Write the middle term above as

w′Xβ̂ = (X ′w)′β̂ = (X ′Xβ̂)′β̂ = β̂ ′X ′Xβ̂ ,

using the normal relations. Thus we find

S(β̂) = w′w − 2β̂ ′X ′Xβ̂ + β̂ ′X ′Xβ̂

= w′w − β̂ ′X ′Xβ̂ , (171)

as stated in the book. We can compute the variance of our estimate of β̂ using the standard
formulas. We have

V (β̂) = cov(β̂, β̂)

= cov((X ′X)−1X ′w,w′X(X ′X)−1)

= (X ′X)−1X ′cov(w,w′)X(X ′X)−1)

= (X ′X)−1X ′(σ2I)X(X ′X)−1)

= σ2(X ′X)−1 . (172)

Notes on estimation errors on forecasts for IMA(0,1,1) process)

For the model∇zt = at−θat−1 when we sum over the values of time: t+l, t+l−1, · · · t+2, t+1,
we get

t+l
∑

k=t+1

zk − zk−1 =
t+l
∑

k=t+1

ak − θ
t+l
∑

k=t+1

ak−1

=
t+l
∑

k=t+1

ak − θ
t+l
∑

k=t+1

ak−1 =
t+l
∑

k=t+1

ak − θ
t+l−1
∑

k=t

ak

= at+l − θat + (1− θ)

t+l−1
∑

k=t+1

ak .
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While this is the right-hand-side the left-hand-side is by zt+l − zt. Thus the equation

zt+l − zt = at+l + (1− θ)(at+l−1 + at+l−2 + · · ·+ at+2 + at+1)− θat .

Thus ẑt(1|θ) is then given by taking expectations with l = 1

ẑt(1|θ) = E[zt+1] = E[zt + at+1 − θat = zt − θat .

For l > 1 we have

ẑt(l|θ) = E[zt+l] = E[zt + (1− θ)(at+l−1 + at+l−2 + · · ·+ at+2 + at+1)− θat] = ẑt(1|θ) .

Thus we expect the lead l forecast error to be

et(l|θ) = zt+l − ẑt(l|θ)
= zt + at+l + (1− θ)(at+l−1 + at+l−2 + · · ·+ at+2 + at+1)− θat − (zt − θat)

= at+l + (1− θ)(at+l−1 + at+l−2 + · · ·+ at+2 + at+1) .

From this and remembering independence of the at we can compute

V (l) ≡ Et[e
2
t (l|θ)] = σ2

a + (1− θ)2(l − 1)σ2
a .

When we take λ ≡ 1− λ we get

V (l) = σ2
a{1 + (l − 1)λ2} . (173)

This is the variance of our l-step ahead prediction given that we know the true value of θ. If
we don’t then we predict the samples ahead l using

ẑt(1|θ̂) = zt − θ̂ât

ẑt(l|θ̂) = ẑt(1|θ̂) for l ≥ 2 .

In the above we will compute ât using ât = zt− ẑt−1(1|θ̂). In this case using the approximate
value for θ we have an error given by

et(l|θ̂) = zt+l − ẑt(l|θ̂)
= zt+l − ẑt(l|θ̂)
= zt+l − (zt − θ̂ât) = zt+l − (zt − θat)− θat + θ̂ât

= et(l)− (θat + θ̂ât) . (174)

The book then makes the statement that ∇zt = (1− θB)at = (1− θ̂B)ât. The first equation
from these two is the true model which we assumes generates the time series zt. The second
equation ∇zt = (1− θ̂)ât is how we are modeling the process zt i.e. we are modeling it with
an MA(1) model with the parameter θ taken as the value θ̂. Thus we are enforcing that
∇zt = (1− θ̂B)ât for our estimates of ât. This then means that we can relate ât to the true
value of at using

ât =

(

1− θB

1− θ̂B

)

at .
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Notes on the exact likelihood functions for a MA(1) model

If q = 1 or a MA(1) model then following the notes in this section of the book we have that
the n+ q = n + 1 equations to consider are given by

a0 = a0

a1 = w1 + θa0

a2 = w2 + θa1 = w2 + θ(w1 + θa0) = w2 + θw1 + θ2a0

a3 = w3 + θa2 = w3 + θ(w2 + θw1 + θ2a0) = w3 + θw2 + θ2w1 + θ3a0
...

an =

n
∑

k=1

wkθ
n−k + θna0 .

Thus taking a′∗ =
[

a1−q a2−q · · · a−1 a0
]

the variables we must specify before the
samples of the time series start and a′ =

[

a1−q a2−q · · · a0 a1 · · · an
]

we have a =
Lwn +Xa∗. When we write out the above matrix equation we have






























a0
a1
a2
a3
...

an−3

an−2

an−1

an































=































0 0 0 0 · · · 0 0 0 0
1 0 0 0 0 0 0 0
θ 1 0 0 0 0 0 0
θ2 θ 1 0 0 0 0 0
...

. . .
...

θn−4 θn−5 θn−6 θn−7 · · · 1 0 0 0
θn−3 θn−4 θn−5 θn−6 · · · θ 1 0 0
θn−2 θn−3 θn−4 θn−5 · · · θ2 θ 1 0
θn−1 θn−2 θn−3 θn−4 · · · θ3 θ2 θ 1





























































w0

w1

w2

w3
...

wn−3

wn−2

wn−1

wn































+































1
θ
θ2

θ3

...
θn−3

θn−2

θn−1

θn































a0

(175)
Thus X is the n+ 1 dimensional column given in Equation 175 and we see that

X ′X =
n
∑

k=0

θ2k =
1− θ2(n+1)

1− θ2
, (176)

as claimed in the book.

Notes on the exact likelihood functions for a AR(1) model

For the AR(1) model we have wt−φwt−1 = at. Since we know the values of wt for 1 ≤ t ≤ n
we need to compute at for 2 ≤ t ≤ n directly from the data. Thus we can compute

S(φ) =

n
∑

t=−∞
[at|wn, φ]

2 =

1
∑

t=−∞
[at|wn, φ]

2 +

n
∑

t=2

(wt − φwt−1)
2 .

Thus we need to estimate [at|wn, φ] for t ≤ 1. To do that we must “back forecast” wt. Back
forecasts are generated by changing the forward model φ(B)[w̃t] = θ(B)[at] into

φ(F )[w̃t] = θ(B)[et] ,
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with [e−j ] = 0 for j ≥ 0 or for an AR(1) model this is

[w̃t] = φ[w̃t−1] + [et] .

For t = 0 we have
[w̃0] = φ[w̃1] = φw1

For t = −1 we have
[w̃−1] = φ[w̃0] + [e−1] = φ2w1 .

Continuing we have

[w̃j] = φ1−jw1 for j = 0,−1,−2,−3,−4, · · · .

Note that expression for [w̃j] will decay geometrically as j get more and more negative. Once
we have [w̃j] negative j we will compute [at] by using φ(B)[w̃t] = θ(B)[at] or

[at] = [w̃t]− φ[w̃t−1] .

Iterating once we have

[a1] = [w̃1]− φ[w̃0] = w1 − φw1 = (1− φ)w0 .

A second time gives

[a0] = [w̃0]− φ[w̃−1] = φw1 − φ(φ2w1) = φ(1− φ2)w1 .

A third time gives

[a−1] = [w̃−1]− φ[w̃−2] = φ2w1 − φ(φ3w1) = φ2(1− φ2)w1 .

In general, the pattern is

[aj] = [w̃j]− φ[w̃j−1] = φ1−jw1 − φ(φ1−(j−1)w1) = φ1−jw1 − φ3−jw1 = φ1−j(1− φ2)w1 ,

for j = 1, 0,−1,−2, · · · . Thus we can use this to evaluate the needed sum in S(φ) i.e. the
term

1
∑

t=−∞
[at|wt, φ]

2 =
1
∑

t=−∞
φ2−2j(1− φ2)2w2

1

= (1− φ2)2w2
1

1
∑

t=−∞
φ−2(j−1) = (1− φ2)2w2

1

∞
∑

t=0

φ2j

= (1− φ2)2w2
1

(

1

1− φ2

)

= (1− φ2)w2
1 ,

which is the result in the book.
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Notes on the exact likelihood functions for an autoregressive process

In this section the book derives a matrix recursive relationship between M
(p,0)
p+1 and M

(p,0)
p .

While the formula derived is probably a standard result in linear algebra, I found it hard
to verify it without performing some of the calculations. We have that the inner product of
w′

p+1M
(p,0)
p+1 wp+1 can be expressed in its components as

w′
p+1M

(p,0)
p+1 wp+1 =

p
∑

i=1

p
∑

j=1

m
(p)
ij wiwj + (wp+1 − φ1wp − φ2wp−1 − · · · − φp−1w2 − φpw1)

2

=

p
∑

i=1

p
∑

j=1

m
(p)
ij wiwj

+ wp+1(wp+1 − φ1wp − φ2wp−1 − · · · − φp−1w2 − φpw1)

+ wp(−φ1wp+1 + φ2
1wp + φ1φ2wp−1 + · · ·+ φ1φp−1w2 + φ1φpw1)

+ wp−1(−φ2wp+1 + φ1φ2wp + φ2
2wp−1 + · · ·+ φ2φp−1w2 + φ2φpw1)

...

+ w2(−φp−1wp+1 + φ1φp−1wp + φ2φp−2wp−1 + · · ·+ φ2
p−1w2 + φp−1φpw1)

+ w1(−φpwp+1 + φ1φpwp + φ2φpwp−1 + · · ·+ φp−1φpw2 + φ2
pw1) .

Lets write this last expression as the vector inner product of wp+1 times another vector as

w′
p+1M

(p,0)
p+1 wp+1 =

p
∑

i=1

p
∑

j=1

m
(p)
ij wiwj

+
[

w1 w2 · · · wp−1 wp wp+1

]

×



















−φpwp+1 + φ1φpwp + φ2φpwp−1 + · · ·+ φp−1φpw2 + φ2
pw1

−φp−1wp+1 + φ1φp−1wp + φ2φp−2wp−1 + · · ·+ φ2
p−1w2 + φp−1φpw1

...
−φ2wp+1 + φ1φ2wp + φ2

2wp−1 + · · ·+ φ2φp−1w2 + φ2φpw1

−φ1wp+1 + φ2
1wp + φ1φ2wp−1 + · · ·+ φ1φp−1w2 + φ1φpw1

wp+1 − φ1wp − φ2wp−1 − · · · − φp−1w2 − φpw1



















.

Lets now factor this last vector as a matrix times the vector wp+1 as



















φ2
p φpφp−1 · · · φpφ2 φpφ1 −φp

φp−1φp φ2
p−1 · · · φp−1φ2 φp−1φ1 −φp−1

...
...

. . .
...

...
...

φ2φp φ2φp−1 · · · φ2
2 φ2φ1 −φ2

φ1φp φ1φp−1 · · · φ1φ2 φ2
1 −φ1

−φp −φp−1 · · · −φ2 −φ1 +1





































w1

w2
...

wp−1

wp

wp+1



















.

This is the expression in the book for the addition to M
(p,0)
p+1 .
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Problem Solutions

Problem 7.1 (conditional sum of squares)

Part (i): We start with a0 unknown and then iterate the model at = wt − 0.5at−1 for
1 ≤ t ≤ 7. We find

a1 = w1 − 0.5a0 = 2− 0.5a0

a2 = w2 − 0.5a1 = 5− 0.5(2− 0.5a0) = 4 + 0.25a0

a3 = w3 − 0.5a2 = 0− 0.5(4 + 0.25a0) = −2− 0.125a0

a4 = w4 − 0.5a3 = 5− 0.5(−2− 0.125a0) = 6 + 0.0625a0

a5 = w5 − 0.5a4 = −1− 0.5(6 + 0.0625a0) = −4− 0.03125a0

a6 = w6 − 0.5a5 = 6− 0.5(−4− 0.03125a0) = 8 + 0.015625a0

a7 = w7 − 0.5a6 = 2− 0.5(8 + 0.015625a0) = −2− 0.0078125a0 .

Part (ii): To evaluate the conditional sum of squares we assign the value of a0 = 0 and
evaluate

7
∑

t=1

(at| − 0.5, a0 = 0)2 = S∗(−0.5|0) = 144. ,

when we sum in the R file chap 7 prob 1 N 2.R.

Problem 7.2 (the unconditional sum of squares)

Part (i): We are asked to evaluate S(−0.5|a0) =
∑7

t=0 a
2
t =

∑7
t=0(wt − xta0)

2. This is a
least squares problem on the variable a0 where we desire to pick a0 such that ŵt ≈ a0xt
where when we put all of the elements of ŵt and xt in the vectors

w =























0
2
4
−2
...
8
−2























and x =























1
0.5

−0.25
0.13
...

−0.02
0.01























,

then the classical least squares solution for a0 or â0 is given by solving x′xâ0 = x′w or

â0 =
0(1) + 2(0.5) + 4(−0.25) +−2(0.13) + · · · 8(−0.02) +−2(0.01)

12 + 0.52 + (−0.25)2 + 0.132 + · · ·+ 0.022 + 0.012
= 0.6679789 ,

the same as stated in the book.
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Part (ii): Our MA(1) model wt = ∇zt = (1− θB)at in backwards form can be written as

wt = (1− θF )et = et − θet+1 .

We can start at the end of the series and recursively computes e7, e6, e5, · · · , e1, e0 = 0, e−1 =
0, · · · . using et = wt + θet+1. We find

e7 = w7 + (−.5)(0) = 2

e6 = w6 − 0.5(2) = 6− 1 = 5

e5 = −1− 0.5(5) = −3.5

e4 = 5− 0.5(−3.5) = 6.75

e3 = 0− 0.5(6.75) = −3.375

e2 = 5− 0.5(−3.375) = 6.6875

e1 = 2− 0.5(6.6875) = −1.34375 ,

with e0 = e−1 = e−2 = · · · = 0. Now estimating w0 using w0 = e0 − θe1 = 0 −
(−0.5)(−1.34375) = 0.671875 and w−1 = e−1 − θe0 = 0. Then to estimate a0 we use
the forward equation at = wt + θat−1. Thus a0 = w0 + θa−1 = w0 since [a−1] = 0 therefore
our estimate of a0 is 0.671875. This numbers is not exactly the same as we computed earlier.
If anyone sees any errors with what I did please contact me.

Problem 7.3 (more unconditional sum of squares)

Part (i): In the previous part we found â0. Using this value we can evaluate the resid-
uals as ŵt − â0xt for 1 ≤ t ≤ 7, square them, and sum. When we do this in the R file
chap prob 1 N 2.R we get the value of 143.4051.

Part (ii): A (0, 1, 1) model is just like a MA(1) model but using the elements of wt = ∇zt.
Using Eq. A.7.4.3 which is

S(θ, a∗) = S(θ) + (a∗ − â∗)
′X ′X(a∗ − â∗) . (177)

Now in the above a∗ is any initial guess at the first q values of [at]. Note that if a∗ 6= â∗
then S(θ, â∗) > S(θ) due to the addition of the quadratic term (a∗− â∗)′X ′X(a∗− â∗). Thus
a∗ = â∗ is the minimum solution. For a MA(1) model a∗ = 0 for the conditional sum of
squares and we have

S(θ, a0 = 0) = S(θ) + â20X
′X .

From Equation 176 replacing X ′X we have that

S(θ, a0 = 0) = S(θ) + â2∗

(

1− θ2(n+1)

1− θ2

)

.

Now for large n since θ2(n+1) → 0 and we have

S(θ) = S(θ, a0 = 0)− â20
1− θ2

,

which is the result we wanted to show.
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Figure 20: A plot of the data points for Problem 7.5. Note the vary large sample value at
about the middle of the time series.

Problem 7.5 (fitting ARIMA models)

Part (i): In the R code chap 7 prob 5.R we plot the given time series and get the plot given
in Figure 20. Note the very large sample point (relative to the others) near the center of the
plot.

Part (iii): For a MA(2) process we must have certain conditions hold for the process to be
invertible. Namely we must have

θ2 + θ1 < 1

θ2 − θ1 < 1 (178)

−1 < θ2 < 1 .

For the numbers given we see that θ1+ θ2 = 2.33 which is not in the invertible region. In the
Appendix in the book there is a discussion on how estimates of the parameters must take
values in the invertible region.
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Problem 7.7 (orthogonal form)

Part (i): Note that we have

z̃t = φ1z̃t−1 + φ2z̃t−2 + at =
φ1

1− φ2

(1− φ2)z̃t−1 + φ2z̃t−2 + at

=
φ1

1− φ2
z̃t−1 + φ2

(

z̃t−2 −
φ1

1− φ2

)

+ at ,

the requested expression.
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Chapter 8 (Model Diagnostic Checking)

Notes on the Text

Notes on the nature of the correlations in the residuals

Putting the correct model into the incorrect model and solving for the residuals bt gives

bt = θ−1
0 (B)φ0(B)w̃t

= θ−1
0 (B)φ0(B)φ−1(B)θ(B)at = (θ−1

0 (B)θ(B))(φ0(B)φ−1(B))at .

Using the autocovariance generating function γ(B) given by Equation 25 we have

γ(B) = σ2
a

{

θ−1
0 (B)θ(B)φ0(B)φ−1(B)θ−1

0 (F )θ(F )φ0(F )φ
−1(F )

}

, (179)

as given in the book. As an example we might the true IMA(0,1,1) model w̃t = (1− θB)at
but be assuming the incorrect model w̃t = (1− θ0B)bt where θ0 6= θ. In this case we see that
the incorrect residual bt is given by an ARMA(1,1) model

(1− θ0B)bt = (1− θB)at .

Notes on the residuals to modify the model

If we fit a model of the form
φ0(B)∇d0zt = θ0(B)bt , (180)

and then find that the residuals bt satisfy

φ̄(B)∇d̄bt = θ̄(B)at .

In that case taking the ∇d̄ of Equation 180 we get

φ0(B)∇d0∇d̄zt = θ0(B)∇d̄bt = θ0(B)φ̄−1(B)θ̄(B)at ,

or
φ0(B)φ̄(B)∇d0∇d̄zt = θ0(B)θ̄(B)at .

This suggests a new ARIMA model to use on zt.

Problem Solutions

Problem 8.1 (the residuals)

In Figure 21 we plot the residuals (left) and the ACF (right) of these residuals. The mean
value of these residuals is plotted in green and the two standard error lines in red. It seems
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Figure 21: Left: A plot of the residuals. Right: The ACF of these residuals.

that most of the residuals are with in these limits. When we plot the ACF for these residuals
we see a significant lag at k = 1, indicating that the residuals may have an AR(1) component
that could be modeled and put back into the model of zt. This problem is worked in the R

script chap 8 prob 1.R.

Problem 8.2 (the residual ACF)

Part (i): See Figure 22 for a plot of the autocorrelation function for this problem. We see
that there are two significant autocorrelations one at lag k = 1 and the other at lag k = 2.
This could indicate adding an AR(2) model for the residuals. This would in tern be used to
modify the original MA(1) model.

Part (ii): When we compute Q = n
∑K

k=1 r
2
k(â) and then compare this to the percentile

points of a χ2(K − p− q) = χ2(9) we find

[1] "Q= 19.877400; 95% chiSqPt= 16.918978; 99% chiSqPt= 21.665994"

Thus it looks like in only 5% of the cases the Q value should be larger than 16.91. Since our
value of Q is in fact larger than that, the adequacy of the model should be questioned.

Part (iii): Following the book, we expect et to follow the model (1 − φ1B − φ2B
2)et = at.
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Figure 22: The autocorrelation function from Problem 8.2. We plot the 2 σ error bounds in
red.

Then applying the operator 1 − φ1B − φ2B
2 to the left-hand-side of our model ∇zt =

(1− 0.6B)et we have that the new model we should consider is given by

(1− φ1B − φ2B
2)∇zt = (1− 0.6B)at ,

or an ARIMA(2,1,1) model.

This problem is worked in the R script chap 8 prob 2.R.

Problem 8.3 (corrections to the incorrect model)

Part (i): We can write the expression for et in terms of the true white noise process at as

et =
1

1− 0.5B
∇zt =

(

1− 0.9B + 0.2B2

1− 0.5B

)

at .

If we note that the polynomial in the numerator above can be written as

1− 9

10
B +

1

5
B2 =

(

1− 1

2
B

)(

1− 2

5
B

)

,

we see that et is given by

et =

(

1− 2

5
B

)

at .
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Part (ii): Since we can write et as et = (1− 0.4B) at then we find the process for zt satisfies

∇zt = (1− 0.5B)et = (1− 0.5B)(1− 0.4B)at = (1− 0.9B + 0.2B2)at ,

or an true ARIMA(0,1,2) model.

Problem 8.4 (a change in φ)

From the books Chapter 7 equation 7.3.6 we have

var(φ̂) ≈ n−1(1− φ̂2) .

Now n = N − d = 326− 1 = 325 thus

var(φ̂(1) − φ̂(2)) = 325−1(1− 0.52) + 325−1(1− 0.72) = 0.003876 .

If we then consider the ratio of φ̂(1)− φ̂(2) = −0.2 to the standard error of this difference (the
square root of the above expression) we get −3.212. This indicates that the difference in the
two estimates of φ relative to their standard error is quite large and most likely a change in
parameter values has occurred.

Problem 8.5 (the variance of the mean)

Part (i): From the assumed model for z̃ we can write

z̃t =
1

1− φB
at =

∞
∑

k=0

φkBkat .

Using this the average of n values of z̃t, in terms of B, is given by

z̄ =
1

n
(z̃t + z̃t+1 + z̃t+2 + · · ·+ z̃t+n−2 + z̃t+n−1)

=
1

n

( ∞
∑

k=0

φkBk +

∞
∑

k=0

φkBk−1 +

∞
∑

k=0

φkBk−2 + · · ·+
∞
∑

k=0

φkBk−n−2 +

∞
∑

k=0

φkBk−n−1

)

at

=

(

1

n

∞
∑

k=0

φk(Bk +Bk−1 +Bk−2 + · · ·+Bk−n−2 +Bk−n−1)

)

at ,

where we have used F = B−1 in the second equality. This expression has a zero mean
(since at does) and thus var(z̄) = E[z̄2]. When we square the above expression for z̄ we
will get “direct squares” like (φkBkat)

2 and “cross terms” like (φkBkat)(φ
kBk−2at). Each of

the cross terms will have expectation zero since E[at−kat−k+2] = 0 due to the independence
of the at’s. Thus the expectation we will get is given by the n direct squares for each of
Bk , Bk−1 , Bk−2 , · · · , Bk−n−2 , Bk−n−1. Thus we get

var[z̄2] =
1

n2

∞
∑

k=0

φ2k(nσ2
a) =

σ2
a

n

∞
∑

k=0

φ2k =
σ2
a

n(1− φ2)
.
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Note that the above result is somewhat different than what the book claims. There might
be a typo in the book. If anyone sees anything wrong with what I have done (or can argue
that it is correct) please contact me.

Part (ii): Using the results from above we have

var(z̄1 − z̄2) = var(z̄1) + var(z̄2)

=
σ2
1a

n1(1− φ2)
+

σ2
2a

n2(1− φ2)
=

0.1012

85(1− 0.52)
+

0.0895

60(1− 0.52)

= 0.00357634 .

Using this we find that
z̄1 − z̄2

√

(0.00357634)
= −41.80 ,

The fact that this is so large indicates that the new procedure is giving significantly larger
yields.
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Chapter 9 (Seasonal Models)

Notes on the Text

Notes on the (0, 1, 1)× (0, 1, 1)12 airline data

Combining the seasonal (period 12) model with the time series over months (period 1) we
get

∇∇12zt = (1− θB)(1−ΘB12)at .

Replacing ∇ = 1 − B and ∇12 = 1 − B12 in the left-hand-side, expand, and expand the
right-hand-side we get

(1− B − B12 − B13)zt = (1− θB −ΘB12 + θΘB13)at . (181)

We can solve the above for zt and then replace t in that expression with t + l to get the
difference equation expression for zt+l which is best used for prediction. We get

zt+l = zt+l−1 + zt+l−12 − zt+l−13 + at+l − θat+l−1 −Θat+l−12 + θΘat+l−13 . (182)

The lead l-forecasts of zt are given by taking the conditional expectations of the right-hand-
side of Equation 182 and using the following rules

E[zt+j |everything in the past until time t] =

{

zt+j j ≤ 0
ẑt(j) j > 0

(183)

E[at+j |everything in the past until time t] =

{

at+j j ≤ 0
0 j > 0

. (184)

Where to estimate at+j when j ≤ 0 we use at+j ≡ zt+j − ẑt+j−1(1). For example, using these
rules and Equation 182 we would have for ẑt(3) (and thus l = 3)

ẑt(3) = ẑt(2) + zt−9 − zt−10 + 0− θ(0)−Θat−9 + θΘat−10

= ẑt(2) + zt−9 − zt−10 −Θ(zt−9 − ẑt−10(1)) + θΘ(zt−10 − ẑt−11(1)) ,

which can be simplified.

Notes on the ψ weights for the (0, 1, 1)× (0, 1, 1)12 model

Consider the expression (1− θB)(1−ΘB12). First recall that ∇ = 1−B and ∇12 = 1−B12

so that we can write B = 1 − ∇ and B12 = 1 − ∇12. In addition, write θ = 1 − λ and
Θ = 1− Λ so that we can write this expression as

(1− θB)(1 −ΘB12) = (1− θ(1−∇))(1−Θ(1−∇12)) = (1− θ + θ∇)(1−Θ+Θ∇12)

= (λ+ (1− θ)∇)(Λ + (1− Λ)∇12) = (∇ + λ(1−∇))(∇12 + Λ(1−∇12))

= (∇+ λB)(∇12 + ΛB12) , (185)
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the same expression as in the book (perhaps this calculation was simple enough that it not
really need to be documented).

Given the above representation we can write our (0, 1, 1)× (0, 1, 1)12 model as

∇∇12zt = (∇+ λB)(∇12 + ΛB12)at

= (∇∇12 + Λ∇B12 + λ∇12B + λΛB13)at .

In this later expression we can solve for zt by first summing with S1at ≡
∑∞

j=0 at−j and then
a second summing with S12at ≡

∑∞
j=0 at−12j to get

zt = λS1at−1 + λΛS1S12at−13 + ΛS12at−12 + at . (186)

Each of the terms above potentially introduces a part to the total coefficient ψj in the
expansion zt =

∑∞
j=0 ψjat−j . We thus need to combine each terms together to determine the

full expression for ψj . To begin consider the first term in Equation 186 which is given by

λS1at−1 = λ(at−1 + at−2 + at−3 + · · · ) .

Thus this expression gives us a contribution of λ to every value of ψj . Next consider the
second term in Equation 186 which is given by

λΛS1(S12at−13) = λΛ

(

S1

( ∞
∑

m=0

at−13−12m

))

= λΛ

( ∞
∑

m=0

at−13−12m +
∞
∑

m=0

at−14−12m +
∞
∑

m=0

at−15−12m + · · ·
)

= λΛ (at−13 + at−25 + at−37 + at−49 + · · ·
= at−14 + at−26 + at−38 + at−50 + · · ·
= at−15 + at−27 + at−39 + at−51 + · · · )

= λΛ

( ∞
∑

m=0

at−(13+m) +
∞
∑

m=0

at−(25+m) +
∞
∑

m=0

at−(37+m) + · · ·
)

.

Thus we get a single contribution of λΛ in every term ψj from j ≥ 13 “onward”, a second
contribution of λΛ from j ≥ 25 onward, a third contribution of λΛ from j ≥ 37 etc. The
third term in Equation 186 of ΛS12at−12 can we written as

ΛS12at−12 = Λ (at−12 + at−24 + at−36 + · · · ) ,

and thus gives an additional Λ factor to all ψj for j = 12, 24, 36, · · · . Combining these three
pieces we see that

ψ1 = ψ2 = · · · = ψ10 = ψ11 = λ

ψ12 = λ+ Λ

ψ13 = ψ14 = · · · = ψ22 = ψ23 = λ+ λΛ = λ(1 + Λ)

ψ24 = λ(1 + Λ) + Λ

ψ25 = ψ26 = · · · = ψ34 = ψ35 = λ+ 2λΛ = λ(1 + 2Λ)

ψ36 = λ(1 + 2Λ) + Λ ,
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and so on. If we write ψj as ψr,m where j = 12r + m with r = 0, 1, 2, · · · and m =
1, 2, 3, · · · , 11, 12 we can see that the above pattern is given by

ψj = ψr,m = λ + rλΛ+ δΛ = λ(1 + rΛ) + δΛ ,

with δ = 1 only if m = 12 and is zero otherwise.

We now derive the updating equation for ẑt(l) when a new datum arrives. Using the general
updating relationship

ẑt+1(l) = ẑt(l + 1) + ψlat+1 ,

and the specific forecast function for this (0, 1, 1)× (0, 1, 1)12 model of

ẑt(l) = ẑt(r,m) = b
(t)
0,m + rb

(t)
1 for l > 0 ,

we can use the knowledge of ψl to write this when l = (r,m) and m 6= 12 as

b
(t+1)
0,m + rb

(t+1)
1 = b

(t)
0,m+1 + rb

(t)
t + (λ+ rλΛ)at+1 ,

since δ = 0 in this case. Grouping terms by powers of r we get the expressions for updating
b
(t)
0,m and b

(t)
1 given in the book. The same type of expression holds in the case when m = 12.

For the forecasts written in terms of the previous observations

zt =
∞
∑

j=1

πjzt−j + at ,

to compute ẑt(1) we increment t above by 1 and then take the conditional expectation to get

ẑt(1) = Et

[ ∞
∑

j=1

πjzt+1−j + at+1

]

=
∞
∑

j=1

πjzt+1−j .

To get the πj weights we write our (0, 1, 1)× (0, 1, 1)12 model in the form

at = π(B)zt =
(

1− π1B − π2B
2 − π3B

3 − · · ·
)

zt =
(1− B)(1− B12)

(1− θB)(1−ΘB12)
zt .

To determine πj we could Taylor expand the rational polynomial on the right-hand-side in
terms of the variable B or write the above model as

(1− B)(1−B12) = (1− θB)(1−ΘB12)(1− π1B − π2B
2 − π3B

3 − · · · ) ,

or expanding the product of the various polynomials we have

1−B −B12 +B13 = (1− θB −ΘB12 + θΘB13)(1− π1B − π2B
2 − π3B

3 − · · · ) .

We now can multiply out the right-hand-side of the above to get

RHS = 1 −π1B −π2B
2 −π3B

3 − · · · − π12B
12 −π13B

13 −π14B
14 − · · · − πj B

j
+ · · ·

= −θB +θπ1B
2

+θπ2B
3 − · · · − θπ11B

12
+θπ12B

13
+θπ13B

14
+ · · · + θπj−1 B

j
+ · · ·

= ΘB
12

+Θπ12B
13

+Θπ13B
14

+ · · · +Θπj−12 B
j
+ · · ·

= +θΘB
13 −θΘπ1B

14 − · · · − θΘπj−13 B
j
+ · · ·
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We now equate the coefficients of the powers of B when we sum from the right-hand-side
with the expression from the left-hand-side or 1−B−B12 +B13 to derive expression for πj .
From the coefficients of B1 we get

−π1 − θ = −1 ⇒ π1 = 1− θ .

From the coefficients for Bj for 2 ≤ j ≤ 11 we get

−πj + θπj−1 = 0 ⇒ πj = θπj−1 .

Which has a solution πj = (1− θ)θj−1. From the coefficients of B12 we get

π12 = θ(1− θ)θ10 −Θ = θ11(1− θ) + 1−Θ .

From the coefficients of B13 we get

1 = −π13 + θπ12 +Θπ1 + θΘ

When we put in what we know for π12 and π1 we get

π13 = θ12(1− θ)− (1− θ)(1−Θ) .

Finally from the coefficients for Bj for j ≥ 14 we get

0 = −πj + θπj−1 +Θπj−12 − θΘπj−13 .

If we multiply by −1 and use the B notation we get

(1− θB −ΘB12 + θΘB13)πj = 0 ,

all of which match the results given in the book.

Now equation 9.2.1 using Equation 185 is

∇∇12zt = (1− θB)(1 −ΘB12)at

= (∇+ λB)(∇12 + ΛB12)at .

Treating everything as an operator and solving for at we get

at =

( ∇
∇+ λB

)( ∇12

∇12 + ΛB12

)

zt =

(

1− λB

∇+ λB

)(

1− ΛB12

∇12 + ΛB12

)

zt .

From from earlier we have that

∇+ λB = 1− B + (1− θ)B = 1− θB ,

and the same for the expression with ∇12. When we increase t by 1 we get the result for
at+1 in the book.
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Notes on using the EWMA notation

When we use the exponentially weighted moving average definitions

EWMAλ(zt) =
λ

1− θB
zt = λzt + λθzt−1 + λθ2zt−2 + · · ·

EWMAΛ(zt) =
Λ

1−ΘB12
zt = Λzt + ΛΘzt−12 + ΛΘ2zt−24 + · · · ,

Then using the expression for at+1 derived above we have

ẑt(1) = zt+1 − at+1 = zt+1 −
{

1− λB

1− θB

}{

1− ΛB12

1−ΘB12

}

zt+1

=
λB

1− θB
zt+1 +

ΛB12

1−ΘB12
− λB

1− θB

(

ΛB12

1−ΘB12

)

zt−1

= EWMAλ(zt) +
Λ

1−ΘB12

(

zt−11 −
λ

1− θB
zt−12

)

= EWMAλ(zt) + EWMAΛ(zt−11 − EWMAλ(zt−12)) . (187)

As discussed in the book if t corresponds to November and we want to predict December sales
(one month ahead) then this prediction can be decomposed as a short term EWMA (the first
EWMAλ(zt) term) which most likely will underestimate the Decembers sales number. To
correct for this we look at the discrepancy between what the previously observed December
sales was (this is the value of zt−11) and the short term prediction of that number based on
monthly samples before the previous December. The previous short term prediction is given
by the EWMAλ(zt−12) term and the discrepancy is given by zt−11 − EWMAλ(zt−12). It is
this discrepancy that we want to smooth using our long term EWMA which gives the total
correction term of

EWMAΛ(zt−11 − EWMAλ(zt−12)) .

Notes on large sample variances and covariances for the parameter estimates

For the (0, 1, 1)× (0, 1, 1)12 model we have been discussing

∇∇12zt = (1− θB)(1−ΘB12)at so at =
(1−B)(1− B12)

(1− θB)(1−ΘB12)
zt ,

thus the derivatives are given by

x1,t = −∂at
∂θ

=
(1− B)(1−B12)

(1− θB)2(1−ΘB12)
(−B)zt = − B

1− θB
at = −(1− θB)−1at−1

x2,t = −∂at
∂Θ

=
(1− B)(1−B12)

(1− θB)2(1−ΘB12)
(−B12)zt = − B12

1 −ΘB12
at = −(1−ΘB12)−1at−12 .

Recalling that the information matrix is given by

I(φ, θ) = E

[

U ′U U ′X
X ′U X ′X

]

σ−2
a . (188)
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This is the correlation between the n × (p + q) block matrix [U : X ] which has elements
defined via

uj,t ≡ − ∂at
∂φj

and xi,t ≡ −∂at
∂θi

.

For the (0, 1, 1)× (0, 1, 1)12 model we are considering here there is no U matrix since there
are no AR terms. Thus there are just the block matrix X ′X , where X in this case is of size
n× (p+ P ) = n× 2. The two columns of X are the cbind of the two column vectors

X ≡
[

−∂at
∂θ

−∂at
∂Θ

]

,

Thus the information matrix is then has four elements

I(θ,Θ) = E

[

∂at
∂θ

T ∂at
∂θ

∂at
∂θ

T ∂at
∂Θ

∂at
∂θ

T ∂at
∂Θ

∂at
∂Θ

T ∂at
∂Θ

]

.

We are assuming that the partial derivative terms like ∂at
∂θ

are column vectors. To evaluate
the information matrix we will evaluate each term separately. When we recall that E[ajak] =
σ2
aδkj the Kronecker delta we find

E

[

∂at
∂θ

T ∂at
∂θ

]

= E[xT
1 x1] = E

[ ∞
∑

j=0

∞
∑

k=0

θjθkat−j−1at−k−1

]

= σ2
a

∞
∑

k=0

θ2k =
σ2
a

1− θ2

E

[

∂at
∂θ

T ∂at
∂Θ

]

= E[xT
1 x2] = E

[ ∞
∑

j=0

∞
∑

k=0

θjΘkat−j−1at−12k−12

]

= σ2
a

∞
∑

j=0

∞
∑

k=0

θjΘδj+1,12k+12

=
∞
∑

k=0

θ12k+11Θkσ2
a = θ11σ2

a

∞
∑

k=0

(θ12Θ)k =
θ11σ2

a

1−Θθ12

E

[

∂at
∂Θ

T ∂at
∂Θ

]

= E[xT
2 x2] = E

[ ∞
∑

j=0

∞
∑

k=0

ΘjΘkat−12j−12at−12k−12

]

= σ2
a

∞
∑

j=0

Θ2j =
σ2
a

1−Θ2
.

When we put these into the information matrix I(φ, θ) we have

I(θ,Θ) = n

[

(1− θ2)−1 θ11(1− θ12Θ)−1

θ11(1− θ12Θ)−1 (1−Θ2)−1

]

If θ 6= 1 then the (1, 2) and (2, 1) elements are much smaller than the (1, 1) and (2, 2)
elements. If we take them to be 0 then we see that

V (θ,Θ) = I−1(θ,Θ) =
1

n

[

1− θ2 0
0 1−Θ2

]

. (189)

Notes on the estimation of the parameters

For the general (p, d, q)× (P,D,Q)s model written as

at = θ−1(B)Θ−1(Bs)φ(B)Φ(Bs)wt with wt = ∇d∇D
s zt ,
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Recall that the definition of θ(B) and φ(B) are (there are similar definitions for Θ(Bs) and
Φ(Bs))

θ(B) = 1− θ1B − θ2B
2 − · · · − θqB

q

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p .

Using these we find that the derivatives of at with respect to the parameters of the model
are given by

∂at
∂θi

= −θ−2(B)Θ−1(Bs)φ(B)Φ(Bs)(−Bi)wt = θ−1(B)Biat

∂at
∂Θi

= Θ−1(Bs)Bsiat

∂at
∂φj

= −θ−1(B)Θ−1(Bs)BjΦ(Bs)wt = −φ−1(B)Bj[θ−1(B)Θ−1(Bs)φ(B)Φ(Bs)]wt

= −φ−1(B)Bjat
∂at
∂Φj

= −Φ−1(Bs)Bsjat .

These expressions agree with the results in the book.

Problem Solutions

Problem 9.1 (periodicity of solutions)

We can show the requested product is true by multiplying the factors in the right-hand-side
together. The left-hand-side, or 1 − B12, has roots given by the 12th roots of unity which
are Bk = e

2πi
12

k = e
πi
6
k for k = 0, 1, 2, . . . , 10, 11. Thus we can factor the left-hand-side as

1− B12 =
11
∏

k=0

(Bk − B) .

It is the multiplication of the two terms (Bk − B) and (Bj − B) where Bk and Bj are two
roots that are complex conjugates of each other that give rise to the quadratic factors in
the book’s right-hand-side expression. We will compute these expressions in a minute. The
roots Bk when plotted in the complex plane look like spokes of a wagon wheel, the first one
starting on the x-axis and subsequent spokes at the angle of π

6
= 30◦ from each other. The

difference equation (1−B12)zt = 0 has twelve independent solutions that are related to the
roots of 1− B12 = 0. From the book, the difference equation φ(B)zt = 0 has the solution

zt = A1G
t
1 + A2G

t
2 + · · ·+ Ap−1G

t
p−1 + ApG

t
p ,

where G−1
1 , G−1

2 , · · · , G−1
p−1, G

−1
p are the roots of the polynomial

φ(B) = 1− φ1B − φ2B
2 − · · · − φp−1B

p−1 − φpB
p .
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k’s combined Bk − B or (Bk −B)(Bj − B) zt Cycles per year
0 1−B 1 constant term

1, 11 1−
√
3B +B2 cos

(

π
6
t
)

, sin
(

π
6
t
)

1
2, 10 1− B +B2 cos

(

π
3
t
)

, sin
(

π
3
t
)

2
3, 9 1 +B2 cos

(

π
2
t
)

, sin
(

π
2
t
)

3
4, 8 1 +B +B2 cos

(

2π
3
t
)

, sin
(

2π
3
t
)

4

5, 7 1 +
√
3B +B2 cos

(

5π
6
t
)

, sin
(

5π
6
t
)

5
6 1 +B (−1)t 6

Table 1: The twelve solution zt to (1− B12)zt = 0

In this case, the roots of φ(B) are the roots of 1−B12 are the Bk’s above. Thus Gk = e−
πi
6
k

for k ∈ {0, 1, . . . , 10, 11} so the solutions for zt are given by linear combinations of

zt = e−
πi
6
kt

The pair of complex conjugate roots come from the pairs of k given by

(1, 11) , (2, 10) , (3, 9) , (4, 8) , (5, 7) ,

and the real roots are for k = 0 and k = 6. If we consider the two roots for k = 1 and k = 11
and multiply the two factors we can show

(ei
π
6 − B)(ei

11π
6 − B) = 1−

√
3B +B2 .

These two roots give rise to a combined solution for zt given by when we write ei
11π
6 = e−iπ

6

as

zt = Aei
π
6
t +Be−iπ

6
t

= A
(

cos
(π

6
t
)

+ i sin
(π

6
t
))

+B
(

cos
(π

6
t
)

− i sin
(π

6
t
))

= (A+B) cos
(π

6
t
)

+ i(A−B) sin
(π

6
t
)

,

or the solution zt written in terms of two trigonometric functions. These trigonometric
functions repeat when t increases such that

π

6
(t+ P ) =

π

6
t+ 2π ,

or solving for P we have P = 12 or a period of one year. Using these ideas we can compute
the elements in Table 1. You can find the calculations for some of this problem in the
Mathematica notebook prob 9 1.nb.

Problem 9.2 (averaging to implement deseasonalizing)

Part (i): Using the hint we have that

z̄t =
1

12
(zt + zt−1 + · · ·+ zt−10 + zt−11) =

1

12
(1 +B +B2 + · · ·+B10 +B11)zt

=
1

12

(

1− B12

1−B

)

zt .
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Thus
12(1− B)z̄t = (1− B12)zt ,

or
12(z̄t − z̄t−1) = (1−B12)zt ,

the requested expression.

Part (ii): From the above expression for z̄t we can decrement t by one to get an expression
for z̄t−1. From the definition of ut we want to evaluate

ut = zt − z̄t−1 −
1

k

(

k
∑

l=1

(zt−12l − z̄t−12l−1)

)

= zt − z̄t−1 −
1

k

(

k
∑

l=1

B12l(zt − z̄t−1)

)

=

(

1−−1

k

k
∑

l=1

B12l

)

(zt − z̄t−1) .

The sum above is evaluated

k
∑

l=1

B12l =
1−B12(k+1)

1− B12
− 1 =

B12(1− B12k)

1− B12
.

Using this we have

ut =

{

1− B12

k

(1−B12k)

1− B12

}{

1− B

12

(

1−B12

1− B

)}

,

the desired expression.

Problem 9.3 (properties of a periodic model)

Part (i): Our model is

(1−B12)zt = (1 + 0.2B)(1− 0.9B12)at = (1 + 0.2B − 0.9B12 − 0.18B13)at .

If we can write zt as zt = at +
∑∞

j=1 ψjat−j then the left-hand-side of the above becomes

(1− B12)zt = at − at−12 +

∞
∑

j=1

ψjat−j −
∞
∑

j=1

ψjat−12−j

= at − at−12 +
∞
∑

j=1

ψjat−j −
∞
∑

j=13

ψj−12at−j

= at +

11
∑

j=1

ψjat−j + (ψ12 − 1)at−12 +

∞
∑

j=1

(ψj − ψj−12)at−j .
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Equating the two sides (the coefficients of the at−j terms) we get for j = 1

ψ1 = 0.2 .

Then for 2 ≤ j ≤ 11 we have ψj = 0. For j = 12 we get the equation −0.9 = ψ12 − 1 or

ψ12 = 0.1 .

For j = 13 we have −0.18 = ψ13 − ψ1 or

ψ13 = −0.18 + 0.2 = 0.02 .

For j > 13 we have 0 = ψj − ψj−12 or

ψj = ψj−12 .

There are only two nonzero values of ψj (besides ψ1) the ones at ψ12 and ψ13. From the
periodic term of 12 above we have

ψ1 = 0.2

ψ12k = 0.1 for k = 1, 2, · · ·
ψ12k+1 = 0.02 for k = 1, 2, · · ·

ψk = 0 otherwise .

Part (ii): For the forecasts written in terms of the previous observations

zt =
∞
∑

j=1

πjzt−j + at ,

to get the πj weights we write the most general (0, 0, 1)× (0, 1, 1)12 model in the form

at = π(B)zt =
(

1− π1B − π2B
2 − π3B

3 − · · ·
)

zt =
1− B12

(1− θB)(1−ΘB12)
zt .

Then to determine πj we could Taylor expand the rational polynomial on the right-hand-side
in terms of the variable B or write the above model as

1−B12 = (1− θB)(1−ΘB12)(1− π1B − π2B
2 − π3B

3 − · · · ) ,

or expanding the product of the various polynomials we have

1− B12 = (1− θB −ΘB12 + θΘB13)(1− π1B − π2B
2 − π3B

3 − · · · ) .

We now can multiply out the right-hand-side of the above to get

RHS = 1 −π1B −π2B
2 −π3B

3 − · · · − π12B
12 −π13B

13 −π14B
14 − · · · − πj B

j
+ · · ·

= −θB +θπ1B
2

+θπ2B
3 − · · · − θπ11B

12
+θπ12B

13
+θπ13B

14
+ · · · + θπj−1 B

j
+ · · ·

= ΘB
12

+Θπ12B
13

+Θπ13B
14

+ · · · +Θπj−12 B
j
+ · · ·

= +θΘB
13 −θΘπ1B

14 − · · · − θΘπj−13 B
j
+ · · ·
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We now equate the coefficients of the powers of B when we sum from the right-hand-side
with the expression from the left-hand-side or 1−B12 to derive expression for πj . From the
coefficients for Bj for 1 ≤ j ≤ 11 we get

−πj + θπj−1 = 0 ⇒ πj = θπj−1 .

Which has a solution πj = θj , since π1 = θ. From the coefficients of B12 we get

π12 = −1 − θ12 +Θ .

Finally from the coefficients for Bj for j ≥ 13 we get

0 = −πj + θπj−1 +Θπj−12 − θΘπj−13 .

If we multiply by −1 and use the B notation we get

(1− θB −ΘB12 + θΘB13)πj = 0 .

Part (iii): We use V (l) = {1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1}σ2

a to get

V (3) = {1 + ψ2
1 + ψ2

2}σ2
a = (1 + 0.22 + 0)(1.0) = 1.04

V (12) =

{

1 +
11
∑

k=1

ψ2
k

}

σ2
a = (1 + 0.22)(1.0) = 1.04 .

Part (iv): To evaluate the eventual forecast must satisfy (1 − B12)ẑt(l) = 0 for l > 13
with the B operating on l. This has the solution of ẑt(l) = ẑt(l− 12) which has solutions as
discussed in the first problem from this chapter.

Problem 9.4 (monthly oxidant averages)

See Figure 23 for a plot of the time series for zt and its autocorrelation function. From
that plot it looks like there is a periodic component of period s = 12 in this data. Thus we
consider applying the operator 1 − B12 to the time series zt. When we do this we get the
following wt time series and its autocorrelation function given in Figure 24

From this last autocorrelation function it looks like an AR(1) model will match the given
autocorrelation function.We can then use the R command to estimate an (1, 0, 0)× (0, 1, 0)12
model. The book suggested fitting a (1, 0, 0) × (0, 1, 1)12 model to this data. When we do
that using the R command arima we get the following parameter estimates

> m3

Call:

arima(x = z_t, order = c(1, 0, 0), seasonal = list(order = c(0, 1, 1), period = 12))
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Figure 23: Left: Plots of the series zt. Right: Plots of the autocorrelation function for zt.
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Figure 24: Left: Plots of the series wt = ∇12zt = (1 − B12)zt. Right: Plots of the
autocorrelation function for wt.
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Figure 25: Plots of the series zt (in black) and the seasonal ARIMA forecasts (in red) for
the next 24 months.

Coefficients:

ar1 sma1

0.519 0.2887

s.e. 0.138 0.2589

sigma^2 estimated as 0.748: log likelihood = -46.53, aic = 99.07

The seasonal moving average coefficient, estimate at 0.2887 is not significantly larger than
its standard error 0.2589. This gives some motivation for dropping that coefficient from our
model. The AR(1) coefficient above appears to be significant.

When we plot the predictions along with the original data set we get the plot in Figure 25.

This problem is worked in the R code chap 9 prob 4.R.

Problem 9.6 (quarterly deposits in a bank)

See the plots given in Figure 26. When we look at these autocorrelation plots we see that
after a first difference we seem to have an autocorrelation function that is periodic of period
4. Taking a periodic difference (using ∇4) seems to get rid of this periodicity and leaves
us with white noise. Taking another difference (using ∇) again gives white noise. Thus we
could propose the models (0, 1, 0) × (0, 1, 0)4 or (0, 0, 0) × (0, 1, 0)4. The second model is
simpler and would be preferred.
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Figure 26: Upper Left: Plots of the autocorrelation of z or rk(z). This is a nonstationary
time series. Upper Right: Plots of rk(∇z). We have a periodic component remaining after
this first difference. Lower Left: Plots of rk(∇4z). The periodic differencing appears to
have given white noise. Lower Right: Plots of rk(∇∇4z). Again we see white noise.
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