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Chapter 2 (Diagnostic methods using residuals)

Notes On The Text

Notes on the Hat matrix V

In this section of the text we derive many of the results presented and discussed in the book
pertaining to the hat matrix V . Lets begin with the decomposition of the full measurement
matrix X (where each row corresponds a feature/measurement) into two feature subset
parts (X1, X2). Beginning with the first set of features represented by X1 we can form the
projection of Y onto the subspace spanned by these features using the matrix U defined by

U ≡ X1(X
T
1 X1)

−1XT
1 .

After we have projected onto this initial subspace to utilize the information contained in
the second set of features and represented by the matrix X2 note that we don’t gain any
information from any component of X2 that lie in the space already spanned by the features
in X1. Thus the “independent information” contained in X2 is to be found in the orthogonal
projection of X2 onto X1 or the space spanned by the columns of X∗

2 defined as the reduction
of X2 by the projection of X2 onto the span of the columns of X1 or

X∗
2 = X2 − UX2 = (I − U)X2 . (1)

Thus the correct subspace onto which we will project Y onto and which provided any addi-
tional information not already found in X1 is given by

T ∗ = X∗
2 (X∗

2
T X∗

2 )−1X∗
2

T .

We can put the definition of X∗
2 from Equation 1 into the above expression to find an

alternative expression for T ∗ in terms of U and X2. Since U is symmetric we have that

T ∗ = ((I − U)X2)(X
T
2 (I − U)(I − U)X2)

−1XT
2 (I − U) .

Note that since U is idempotent (U2 = U) so is I − U because

(I − U)(I − U) = I − 2U + U2 = I − 2U + U = I − U ,

and the expression for T ∗ becomes

T ∗ = (I − U)X2(X
T
2 (I − U)X2)

−1XT
2 (I − U) , (2)

which is the books 2.1.5. This T ∗ is the projection matrix that projects onto the part of the
column space of X that is orthogonal to the column space of X1. Thus in the discussion
above what we have done is to split the features in the total data matrix X into two parts
X1 and X2 with projection matrices U to project onto the column space of X1 and T ∗ to
project onto the column space of X2 and that is orthogonal to the column span of X1. Thus
the total transformation, onto into the column space of X and denoted by V is given by the
sum of these two projections as

V = U + T ∗ . (3)



This equation expresses the decompositional view of the affect of adding additional features
to a linear regression in that the resulting total projection is the sum of individual features
projections. We now use this relationship to derive some relationships about the hat matrix
V and its elements vij

To begin we note that any symmetric and idempotent (i.e. V 2 = V ) matrix V must have

vii =
n
∑

j=1

vijvji =
n
∑

j=1

v2
ij , (4)

showing that vii > 0 since it is expressed as the sum of positive elements v2
ij . Using this and

Equation 3 which expresses that the total projection matrix, V , obtained when we add a new
variable to an existing regression is equivalent to simply adding an appropriate symmetric
idempotent projection matrix T ∗ to the current projection matrix U we see that as each new
feature is added each adds another positive diagonal element so the diagonal elements of V
are non-decreasing with respect to p the number of explanatory variables.

Consider the general result expressed by Equation 3 but for the specific case where we first
split the feature matrix X into a column of ones denoted by 1 which will be X1 and then
take the matrix X2 to be all the remaining predictors. Note that the projection onto the
column vector of all ones, 1, is given by

U = 1(1T1)−11T =
1

n
11T .

From which we find that the reduced columns X∗
2 is given by

X∗
2 = (I − U)X2 =

(

I − 1

n
11T

)

X2 .

We can simplify the second term above as

1

n
11T X2 = 1

(

1

n
1T X2

)

= 1(x̄T ) ,

where x̄ is is the mean vector and then write X∗
2 as

X∗
2 = X2 − 1x̄T = X .

We have defined X as the mean centered n × p matrix of explanatory variables. Then T ∗

the projection onto X∗
2 is given by

T ∗ = X∗
2 (X∗

2
T X∗

2 )−1X∗
2

T = X (X TX )−1X T .

Using all of this we put everything back into Equation 3 to find that

V =
1

n
11T + X (X TX )−1X T (5)

which is the books equation 2.17.



We can use this expression to derive some more results involving the diagonal elements of V .
Take ei to be a vector of all zeros except with a single one in the ith spot 1 ≤ i ≤ n. Using
this vii is expressed simply as vii = eT

i V ei and from Equation 5 we see that vii is given by

vii = eT
i V ei =

1

n
+ eT

i X (X TX )−1X Tei

=
1

n
+ (X Tei)

T (X TX )−1X T ei .

Now X T ei is another expression for the ith centered feature vector xi or the ith row of X .
Thus

vii =
1

n
+ xT

i (X TX )−1xi , (6)

which is the books equation 2.1.8. In the case of simple linear regression the matrix X is
really a vector given by

X =













x1 − x̄
x2 − x̄

...
xn − x̄













,

so X TX =
∑n

i=1(xi − x̄)2 and we get from Equation 6 that

vii =
1

n
+

(xi − x̄)2

∑n
i=1(xi − x̄)2

.

From which we see that vii > 1/n. This result holds in the multidimensional case also. Note
that in the multidimensional case X TX is positive definite, since if we have a vector v such
that v 6= 0 then

vTX TX v = (X v)T (X v) = ||X v||2 > 0 .

Since X TX is positive definite the inverse of X TX is also positive definite and so xT
i (X TX )−1xi >

0 and

vii =
1

n
+ xT

i (X TX )−1xi >
1

n
, (7)

is a lower bound on vii. An upper bound can be obtained and depends on the number of
repeated feature vectors. If several feature vectors xj all equal the same value, say xi, then
since

vij = eT
i V ej = eT

i X(XT X)−1XTej .

As we have repeated features vectors since XT ej = xj and xj = xi we have XT ej = XT ei,
thus

vij = eT
i X(XT X)−1XTei = vii .

Since V is idempotent and symmetric we know that Equation 4 holds true. If in the sum,
∑n

j=1 v2
ij we sum only over the values of j for which the rows of X are equal to the value xi

and for which vij = vii we have

vii =
n
∑

j=1

v2
ij ≥ cv2

ii ,

assuming that there are c such rows. From this inequality dividing both sides by the positive
vii we are left with vii ≤ 1/c. This expression combined with Equation 7 gives the bounds

1

n
≤ vii ≤

1

c
, (8)



which is the books equation 2.1.9. In the most common case if there are no repeated feature
vectors for xi then c = 1 and the above gives vii ≤ 1. If vii achieve this maximum value of
1 then from Equation 4 we can factor out the single term v2

ii from the sum
∑n

j=1 v2
ij on the

right-hand-side and bringing it to the left-hand-side to get the expression

n
∑

j=1;j 6=i

v2
ij = vii − v2

ii .

If vii = 1 the right-hand-side of the above vanishes and we have
∑n

j=1;j 6=i v
2
ij = 0 which means

that each term v2
ij must vanish which in tern means that vij = 0 for all j 6= i. Then from

the error-residual relationship e = (I − V )ε written in component form

ei = εi −
n
∑

j=1

vijεj = εi − viiεi = εi − εi = 0 .

Now since the ith residual ei is given by ei = yi − ŷi we conclude that ŷi = yi or that in this
case the prediction ŷi exactly equals the data yi.

Starting from the result presented in Equation 6 we will now derive an alternative expression
for vii that will show examples of what type of properties an inputs xi will need to have to
produce extreme values of vii. Since the matrix X TX is symmetric it has an eigenvector
decomposition that we can write as

X TXP = PΛ ,

where P is an orthogonal matrix with columns given by the eigenvectors of X TX and Λ is
a diagonal matrix matrix with the eigenvalues µi ≥ 0 on the diagonal. Taking the inverse of
X TX using this expression we see that

(X TX )−1 = PΛ−1P T .

Using this in the expression xT
i (X TX )−1xi we find

xT
i (X TX )−1xi = xT

i (PΛ−1P T )xi = (P T xi)
T Λ−1(P T xi) .

Note that we have

P T xi =













pT
1

pT
2
...

pT
p













xi =













pT
1 xi

pT
2 xi
...

pT
p xi













,

so the product P Txi gives the vector that has components pT
l xi for l = 1, 2, · · · , p. Then

(P T xi)
T Λ−1(P T xi) =

p
∑

l=1

(pT
l xi)

2

µl

.

If we put the µl inside of square of the above we see that vii can be written as

vii =
1

n
+

p
∑

l=1

(

pT
l xi√
µl

)2

, (9)



which is the books equation. Since pi has unit length we define θli as

cos(θli) =
pT

l xi

||pl|| ||xi||
=

pT
l xi

(xT
i xi)1/2

.

Thus using this expression for pT
l xi we find

vii =
1

n
+ (xT

i xi)
p
∑

l=1

(

cos(θli)√
µl

)2

,

which is the books equation 2.1.10. From this expression we see that one way for vii to be
large will happen if xT

i xi is large. Since xi is the mean removed ith sample this inner product
xT

i xi will be large if this sample is very far from the mean x̄. Another way for the value of vii

to be large is to have cos(θpi)
2 ≈ 1. This is equivalent to xi having a significant component

in the same direction as the eigenvector, pp, with the smallest eigenvalue µp.

The role of V in data analysis

Recall that the residual vector e is related to the true error vector ε by e = (I − V )ε. If
the true errors are distributed as ε ∼ N(0, σ2I) then using their relationship we see that
E(e) = 0 and the variance of e can be computed as

Var(e) = (I − V )Var(ε)(I − V )T

= σ2(I − V )(I − V ) = σ2(I − 2V + V 2)

= σ2(I − V ) ,

since V 2 = V and V is symmetric. This last result is useful since it states that the variance
of the observed residuals e will depend on the hat matrix V .

The use of the ordinary residuals: bias in the model

Statistics of the residuals e can be used to suggest errors in the functional specification of
the linear model. One way in which this can be seen is with the following example. If the
true linear model (the relationship that actually generates the observed (xi, yi) data) is really
given by

Y = Xβ + B + ε , (10)

that is the functional representation between X and Y contains an unmodeled bias term B.
Assume then as a modeler we make a “mistake” and assuming that the relationship between
X and Y is in fact given by

Y = Xβ + ε , (11)

then the residuals e will demonstrate this error with a bias in their expectation. The bias to
the residuals that results is stated without proof in the book but we can derive the explicit



bias representation as follows. Express the ith residual using the hat matrix with elements
vij as

ei = yi − ŷi = yi −
N
∑

j=1

vijyj

The expectation of ei is then simply

E(ei) = E(yi) −
N
∑

j=1

vijE(yj) .

Since we are told that the true model is given by Equation 10 we see that

E(yi) = βT xi + bi ,

since E(εi) = 0. Using this we have that E(ei) becomes

E(ei) = βT xi + bi −
N
∑

j=1

vij(β
Txj + bj)

= βT



xi −
N
∑

j=1

vijxj



+ bi −
N
∑

j=1

vijbj . (12)

We will now consider the expression in brackets on the right-hand-side of the above expression
and show that it is in fact zero. To do this recall that from the definition of the hat matrix
V we have

X − V X = X − X(XTX)−1XT X = 0 .

Taking the transpose of this equation and using symmetry of V gives

XT = XT V .

Lets write out this matrix equation in terms of its columns. We see that it is equivalent to

[

x1 x2 · · · xN

]

=
[

x1 x2 · · · xN

]









v11 v12 · · · v1N
...

...
...

vN1 vN2 · · · vNN









=
[

∑N
j=1 vj1xj

∑N
j=1 vj2xj · · · ∑N

j=1 vjNxj

]

.

Thus the ith column of this expression gives

xi −
N
∑

j=1

vjixj = 0 .

Since V is symmetric vij = vji so this last expression is what is needed to make the term in
brackets in Equation 12 vanish and we are left with

E(ei) = (1 − vii)bi −
N
∑

j=1;j 6=i

vijbj , (13)

when we bring the bi term out of the summation. This is the book’s equation 2.1.13.


