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Chapter 1 (The Role of Algorithms in Computing)

1.1 (Algorithms)

Exercise 1.1-1 (sorting, optimally multiply matrices, and convex hulls)

Sorting is done in all sorts of computational problems. It is especially helpful with regard
to keeping data in a understood ordering so that other algorithms can then work easily
and efficiently on the underlying sorted items. One such example of such an algorithm is
searching for a specific key in a sequence of elements. When the elements are sorted searching
can be done more efficiently.

Selecting the optimal order to multiply matrices can occur in programs/algorithms that
update their “state” through linear transformations. When this is the case, and the trans-
formations can be cashed, in other words they don’t need to be performed immediately, then
computing an optimal ordering in which to calculate the individual matrix products could
radically reduce the total computational time.

Finding the convex hull occurs in many graphics programs where the convex hull finding
algorithm needs to determine the largest “box” required to contain all the given data points.

Exercise 1.1-2 (measures of efficiency)

Other common measures of efficiency used to compare algorithms could be anything that
might be constrained in a real world setting. Examples of this are memory constraints
both disk and random access memory (RAM), the number of memory accesses, determinism
as opposed to a randomize algorithm, number of files created, number of sockets opened,
number of Internet connections established etc.

Exercise 1.1-3 (an example data structure)

A common data structure often used is a linked list. Such a data structure can easily insert
items into any location within the data structure once the desire insertion point is known. A
linked list structure cannot locate new elements or locations quickly since it must effectively
look at each element one at a time until the desired one is found.
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Exercise 1.1-4 (shortest-path v.s. traveling-salesman problems)

In the shortest-path problem the path through the network is often only one way. It is not
required to end up at the starting location, but just to end at the last destination desired.
In the traveling-salesman problem the algorithm must start and end at the same location
while visiting all other destinations en-route. This requirement that we start and end at the
same location while visiting all intermediate locations makes the problem more difficult.

Exercise 1.1-5 (when only the optimal will do)

There are relatively few situations in real life where only the optimal will do. This is because
often in formulating a physical problem into a framework for an algorithm to solve will involve
approximations and simplifications in itself. Using an approximate algorithm (assuming that
it is not too far from optimal) does not introduce errors greater than what has already been
introduced in the approximations done earlier.

There are of course cases where we want no errors in the algorithms that we use, for example
in any algorithm that involves monetary calculations.

1.2 (Algorithms as a technology)

Exercise 1.2-1

Modern day global positioning devices (GPS) that provide instructions on how to get from
place to place using road networks are a application that uses algorithms like discussed in
this book very heavily.

Exercise 1.2-2

For this exercise we want to determine the smallest value of n such that

Tmerge sort(n) = 65n lg(n) < 8n2 = Tinsertion sort(n) .

We can find such a value of n by plotting both sides of this inequality and observing where
they two curves cross. We do that in the following R code

ns = 5:80

t_merge = 65 * ns * log( ns, base=2 )

t_insert = 8 * ns^2

plot( ns, t_merge, type=’l’, col=’green’, xlab=’n’, ylab=’time’,

ylim=c(min(c(t_merge,t_insert)), max(c(t_merge,t_insert))) )

6



20 40 60 80

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

n

tim
e

merge

insertion

Figure 1: A comparison between the time to run “merge sort” and “insertion sort” on an
input of size n.

lines( ns, t_insert, col=’red’ )

grid()

legend( 10, 50000, c("merge", "insertion"), col=c("green","red"), lty=c(1,1) )

Running the above code we get Figure 1. From that figure it looks like the two curves cross
when n ≈ 45. Thus insertion sort is actually faster than merge sort when n is smaller than
this value. For values of n large we see that merge sort runs in less time than insertion sort.

Exercise 1.2-3

For this we want to determine the smallest value of n such that

100n2 < 2n .

We can do a plot like in the previous problem to determine this in the following R code

ns = 1:17

t_left = 100 * ns^2

t_right = 2^ns

plot( ns, t_left, type=’l’, col=’green’, xlab=’n’, ylab=’time’,

ylim=c(min(c(t_left,t_right)), max(c(t_left,t_right))) )

lines( ns, t_right, col=’red’ )

grid()

legend( 1, 120000, c("quadratic growth", "exponential growth"),

col=c("green","red"), lty=c(1,1) )

When we run the above code we get Figure 2. In that plot we see that after an initial section
(where n is small) the value of 2n becomes much larger than the quadratic competitor.
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Figure 2: A comparison of the growth functions 100n2 and 2n.

Problem 1.1

For each of the given functions in the first column of the given table we need to invert the
equation

106f(n) = solve time limit in seconds ,

to determine n. For many of the given functions, f(n), we can invert easily. Two that
we cannot are the functions n lg(n) and n!. For these two the following R code provides
“inverses” for them

invert_nlogn = function(y){

# "solve" for an integer x such that: x log(x) = y

#

res = uniroot( function(x){ x*log(x) - y }, c(1,y) )

return(res$root)

}

invert_nfactorial = function(y){

# "solve" for an integer x such that: x! is close to y

# i.e. x factorial "equals" y

#

x = 1

while( factorial(x) < y ){

x = x + 1

}

if( abs(factorial(x-1)-y) <= abs(factorial(x)-y) ){

return(x-1)

}else{

return(x)

}

}
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Function 1 second 1 minute 1 hour 1 day 1 month 1 year 1 century
lg(n) ∞ ∞ ∞ ∞ ∞ ∞ ∞√

n O(1012) O(1015) O(1019) O(1021) O(1024) O(1029) O(1033)
n O(106) O(107) O(109) O(1010) O(1012) O(1014) O(1016)

n lg(n) O(104) O(106) O(108) O(109) O(1011) O(1013) O(1015)
n2 O(103) O(103) O(10′4) O(105) O(106) O(107) O(108)
n3 100 400 1500 4000 10000 100000 500000
2n 20 26 32 36 41 49 56
n! 9 11 13 14 15 17 19

Table 1: The largest problem size n (approximate) that is solvable by the time in the column
heading when the time to solve a problem of size n takes f(n) microseconds. Here the value
of ∞ represents numerical overflow when trying to invert the given function.

Using these functions we can compute the largest value of n that a problem can be solved
in the given time using the following R code

# the time we can spend solving (in seconds)

solve_time = c( 1, 60, 60*60, 24*3600, 30*24*3600, 365*30*24*3600, 100*365*30*24*3600 )

solve_time_ms = solve_time / 10^(-6)

# Here we invert each function:

data = c( exp( solve_time_ms ),

solve_time_ms^2,

solve_time_ms,

sapply( solve_time_ms, invert_nlogn ),

sqrt( solve_time_ms ),

solve_time_ms^(1/3),

log( solve_time_ms, base=2 ),

sapply( solve_time_ms, invert_nfactorial ) )

If we put the numbers we get from the above R code into a table we get Table 1. Notice
that if we have a fixed time budget (i.e. we are looking at a particular column) then as we
move downwards though the rows, the size of the problem we can solve in that time drops
drastically.
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Chapter 2 (Getting Started)

2.1 (Insertion sort)

Exercise 2.1-1

Given the array
31 , 41 , 59 , 26 , 41 , 58 ,

the sequence of steps followed by insertion sort would be as follows. We first note that the
first three elements are in sorted order and that the fourth element is not. Thus our sorted
list of cards starts with the first three and we want to insert the fourth element. Note that
the fourth element goes at the first of the list thus we shift all of the first three elements to
the right by one to make space for the 26. This gives

26 , 31 , 41 , 59 , 41 , 58 .

Next we see that the fifth element (here a 41) needs to be at the third or fourth location so
we shift the 59 one to the right to get

26 , 31 , 41 , 41 , 59 , 58 .

Finally inserting the 58 into its correct position in the array gives

26 , 31 , 41 , 41 , 58 , 59 .

Exercise 2.1-2

To change the INSERTION-SORT routine to sort the numbers in decreasing order we
change the line that says

while i > 0 and A[i] > key

to

while i > 0 and A[i] < key

then we will be searching linearly though the sorted list to find the position where A[i] >= key

and that inequality signals that the value of key should go at position A[i+1].
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A B carry binary sum least significant digit in sum new carry value
0 0 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 0
1 1 0 10 0 1
0 0 1 1 1 0
1 0 1 10 0 1
0 1 1 10 0 1
1 1 1 11 1 1

Table 2: The sum of the binary digits A and B (with a possible carry bit)

Exercise 2.1-3 (linear search)

Pseudocode for this procedure is given as follows.

Linear-Search(A, ν)

1 for i← 1 to length[A]
2 if A[i] == ν
3 then return i
4 return nil

Exercise 2.1-4 (adding binary arrays)

For this problem we have two binary arrays A and B each with n bits. We want to write
pseudocode for the vector C such that C = A + B bitwise. In doing this we will let the
variable carry hold a carry bit if needed (the value of carry will be 0 or 1). We can consider
all possible binary values for A, B, carry and their sum in Table 2. Using this mapping, the
pseudocode for this procedure follows
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Binary-Add(A,B,C)

1 carry ← 0
2 for i← 1 to length[A]
3 do
4 ✄ perform the binary addition A[i] +B[i] + carry

5 if carry == 0
6 then if A[i] == 1 and B[i] == 1
7 then carry ← 1
8 else if A[i] == 0 and B[i] == 0
9 then carry ← 0
10 ✄ C[i] should get the least significant bit of the given binary addition
11 C[i]← A[i] +B[i] + carry

12 ✄ update the last element of C
13 if carry == 1
14 then C[length [A] + 1]← carry

Exercise 2.2-1

The given function is θ(n3).

Exercise 2.2-2 (selection sort)

We can better understand this algorithm is we consider moving the elements from A “to the
right” one at at time. In reality, we move each element into the left most locations of the
array so that the “left side” of the array is sorted and the “right side” of the array has the
elements that have yet to be sorted in them. When the algorithm is finished the original
array A will contain a fully sorted list. What we consider here is for pedagogical purposes.
Consider the same numerical elements found on page 10. To start we move/copy over the
smallest element from A (which is 26) as

31, 41, 59, 26, 41, 58→ 26

Here the left set of numbers represent the array A “before” and the right set of numbers
represent the array of sorted numbers we are building up. We can then imagine replacing
the 26 in A with some value that we would ignore in further passes of the algorithm (like
infinity) here we denote that element as x. Looking for the next smallest number in the
elements of A that remain we find it to be 31 which gives the algorithmic step

31, 41, 59, x, 41, 58→ 26, 31

Replacing 31 with x and finding the next smallest number to be one of the 41’s which gives
the algorithmic step

x, 41, 59, x, 41, 58→ 26, 31, 41
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Replacing that 41 with x and finding the next smallest number to be the other 41 we get
the algorithmic step

x, x, 59, x, 41, 58→ 26, 31, 41, 41

Next we find 58 to have
x, x, 59, x, x, 58→ 26, 31, 41, 41, 58

Finally we find 59 to get

x, x, 59, x, x, x→ 26, 31, 41, 41, 58, 59

On the right-hand-side we now have a sorted list obtained from the original list A.

Having done an example of how this algorithm works we now present pseudocode for its
implementation

Selection-Sort(A)

1 for i← 1 to length[A]− 1
2 do
3 ✄ Find the smallest element in the array from A[i+ 1] to A[length [A]]
4 sindex ← i
5 for j ← i+ 1 to length[A]
6 do
7 if A[j] < A[sindex ]
8 then sindex ← j
9 ✄ Swap elements A[i] and A[sindex ]
10 tmp ← A[i]
11 A[i]← A[sindex ]
12 A[sindex ]← tmp

The invariant of this code is that at each iteration of the outer loop all elements in the “left”
half of the array A[1 . . . i − 1] will be the sorted i − 1 smallest elements from A. We only
need to loop over the first n− 1 elements since if we sort this many elements the last (and
largest element) must be found at the last location of the array A[n] and the full array A is
sorted.

The best-case and worst-case performance for this algorithm are the same since the above
loops are performed regardless of what elements are needed to be exchanged. Another way
to say this is to note that we do not know a priori that one does not need to search all
elements of the subarray A[i+ 1 . . . n] and thus have to do the work regardless of the input
array.

Note that in the inner minimization loop we must search over a list of length n− i and we do
this for i starting from 1 to n− 1. Thus the time complexity of this procedure is dominated
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by this inner and outer loop. Thus we have

T (n) = C
n−1
∑

i=1

(n− i) + lower order terms

= C

n−1
∑

i=1

i+ lower order terms

= C

(

n(n− 1)

2

)

+ lower order terms = θ(n2) .

We will see better sorting routines in later parts of this book.

Exercise 2.2-3

Without any special assumptions on the input array A I would say that on average n/2
elements would need to be searched to find a given element. This can be argued by assuming
that on average 1/2 of the elements in A will be larger than v and 1/2 of the elements in
A will be smaller than v. Thus on average n/2 elements would have to be searched. The
best case for this algorithm is when the search key v is the first element of the array. The
worst case for this algorithm is when v is the last element of the array. In all cases we have
T (n) = θ(n).

Exercise 2.2-4

We could modify our algorithm to check if the input is equal to a specially chosen input
and then have the algorithm return a precomputed result. This would really require no
algorithmic work and thus the best case performance of this algorithm (on these special
cases) is extremely fast.

Exercise 2.3-1

The given array starts as
< 3 , 41 , 52 , 26 , 38 , 57 , 9 , 49>

We first break this array into two parts

< 3 , 41 , 52 , 26 > and < 38 , 57 , 9 , 49 >

Each of these arrays is then further broken up into two parts (each with only two elements)

< 3 , 41 > and < 52 , 26 > and < 38 , 57 > and < 9 , 49 >
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We would next break each pair of element into eight single element lists which we would
then have to combine with the Merge command. This results in each two element list being
sorted and we get

< 3 , 41 > and < 26 , 52 > and < 38 , 57 > and < 9 , 49 >

Next we merge these groups of two elements into two groups each with four elements to get

< 3 , 26 , 41 , 52 > and < 9 , 38 , 49 , 57 >

Finally we merge these two sorted groups of four elements into on fully sorted array to get

< 3 , 9 , 26 , 38 , 41 , 49 , 52 , 57>

Exercise 2.3-2

Recall that the procedure Merge(A, p, q, r) merges two sorted subarrays of A namely A(p, q)
and A(q + 1, r) into a single sorted list. To start the elements from A(p, q) and A(q + 1, r)
are copied into two working arrays L (for left) and R (for right). This part of the algorithm
is the same as that given in the text. Once we have our data in these two working arrays we
can proceed to copy it without using sentinels. The pseudocode for this entire procedure is
then given by
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Merge(A, p, q, r)

1 ✄ the number of elements in the left array
2 n1 ← q − p+ 1
3 ✄ the number of elements in the right array
4 n2 ← r − q
5 create arrays L[1 . . . n1] and R[1 · · ·n2]
6 for i← 1 to n1

7 do L[i]← A[p + i− 1]
8 for j ← 1 to n2

9 do R[j]← A[q + j]
10 i← 1 ✄ holds the index into L
11 j ← 1 ✄ holds the index into R
12 k ← 1 ✄ holds the index into A
13 while i ≤ n1 and j ≤ n2

14 do if L[i] ≤ R[j]
15 then A[k]← L[i]
16 i← i+ 1
17 else A[k]← R[j]
18 j ← j + 1
19 k ← k + 1
20 ✄ at this point one of L or R is now empty
21 while i ≤ n1 ✄ never executed if the left array “runs out first”
22 do
23 A[k]← L[i]
24 i← i+ 1
25 k ← k + 1
26 while j ≤ n2 ✄ never executed if the right array “runs out first”
27 do
28 A[k]← R[j]
29 j ← j + 1
30 k ← k + 1

Exercise 2.3-3

We want to show that for the given recurrence relationship that the solution is

T (n) = n lg(n) ,

when n is a power of two. Lets check this for the first power of two i.e. when n = 2 that the
proposed solution is true. In this case we have T (2) = 2 lg(2) = 2 which is correct.

Next, as needed for mathematical induction assume that T (n) = n lg(n) for n a power of
two up to some point. That is for n ∈ {21, 22, 23, . . . , 2k−1, 2k}. Then for the next power of
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two using the recurrence relationship for T we have

T (2k+1) = 2T

(

2k+1

2

)

+ 2k+1 = 2T (2k) + 2k+1

= 2(2k lg(2k)) + 2k+1 using the induction hypothesis

= k2k+1 + 2k+1 = 2k+1(k + 1) = 2k+1 lg(2k+1) .

As this last expression is T (2k+1) we are done.

Exercise 2.3-4

Some very simple pseudocode of the suggested procedure it might be

Recursive-Insertion-Sort(A, n)

1 Recursive-Insertion-Sort(A, n− 1)
2 ✄ Insert A(n) into the sorted list A[1 . . . n− 1]

This is enough to see that if T (n) represents the amount of time it takes to run this code on
an array of length n we have that

T (n) = T (n− 1) + θ(n− 1) ,

since to do the insertion of A(n) into A[1 . . . n − 1] we must process at most n elements.
Note we could use a bisection based search method to find the location where A(n) should
be placed in the array A[1 . . . n − 1] which would require lg(n) work. Once this location is
found we still need to move the elements of A “to the right” to insert it. This insertion
process will require θ(n) work.

The above difference equation is one that we can solve using methods presented later in the
text. However, since this equation is so simple there are other methods one can use to solve
for T (n). Using methods from [1] we can write it as

∆T (n) = θ(n) ,

so that “integrating” (reverse differencing in this case) both sides we get T (n) = θ(n2). This
book will present a general method for solving recurrences of this form in later chapters.

As an aside, pseudocode of the procedure Recursive-Insertion-Sort might be
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Recursive-Insertion-Sort(A, n)

1 Recursive-Insertion-Sort(A, n− 1)
2 key ← A[n]
3 i← n− 1
4 ✄ shift elements of A “to the right” to make space for A[n]
5 while i > 0 and A[i] > key

6 do
7 A[i+ 1]← A[i]
8 i← i− 1
9 A[i+ 1]← key

Exercise 2.3-5

To start this problem we will write pseudocode for iterative binary search. In that procedure
we assume that our input array A is sorted and we are given an element v to search for. In
the pseudocode below, we will take p and q to be indexes into A such that we want to search
for v from all elements between A[p] and A[q] inclusive. Our pseudocode for iterative binary
search is then given by

Iterative-Binary-Search(A, p, q, v)

1 loc ← nil

2 while q − p ≥ 0
3 do
4 m← floor((p+ q)/2)
5 if A[m] = v
6 then return m
7 if A[m] > v
8 then q ← m− 1
9 else p← m+ 1
10 return nil

Note that the worst case running time of this algorithm would happen when we have to
divide the array in two the most number of times possible that is if we had to search lg(n)
times, thus we would have T (n) = θ(lg(n)). We now present pseudocode for recursive binary
search
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Recursive-Binary-Search(A, p, q, v)

1 if p− q < 0
2 then return nil

3 m← floor((p+ q)/2)
4 if A[m] = v
5 then return m
6 if A[m] > v
7 then return Recursive-Binary-Search(A, p,m− 1, v)
8 else return Recursive-Binary-Search(A,m+ 1, q, v)

From the recursive search pseudocode we have that

T (n) = T
(n

2

)

+ θ(1) .

The solution to this recurrence relationship (to be demonstrated later) is T (n) = θ(lg(n))
the same as we got in the earlier argument.

Note that we would initially call each procedure with the arguments (A, 1, n, v).

Exercise 2.3-6

The answer to this question is no. Even if we could obtain the location of the index i in the
array A where we would need to place the element A[j] at no computational cost we still
must move all the elements of A to insert A[j] into the array A[1 . . . j]. This shuffling of
the element requires at most θ(j) work. Thus the worst case complexity of insertion sort is
not changed from θ(n2) by using binary search. While the above is a worst case complexity
argument note that in practice this change would improve the performance of insertion sort.
As there are better algorithms for sorting than insertion sort this observation is not that
useful however.

Exercise 2.3-7

To start this problem, note that exhaustive search (over all pairs of elements of S) would
require

(

n

2

)

=
n!

(n− 2)!2!
=

n(n− 1)

2
= θ(n2) ,

amount of work and thus is much more costly than the procedure we describe next.

To start, we will sort the set S dropping any duplicate elements. Using merge sort the
complexity of this action is θ(n lg(n)). To derive the remainder of our algorithm we will take
note of the following two facts. If we have two numbers a and b such that a < x

2
and b < x

2
.

Then we will have that
a + b < x .
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In the same way if we have two numbers such that a > x
2
and b > x

2
. Then we will have that

a + b > x .

Thus the point x
2
determine the location in our sorted list such that if there are two numbers

that sum to x then one of them must be smaller than x
2
and the other one must be larger

than x
2
. The argument above shows that if that was not true then the two numbers would

sum to a value that was less than x or to a value that was greater than x. Find the location
where x

2
would be placed in the sorted list of original numbers. This location splits the

sorted list into two smaller sorted lists A and B where all elements in A are less than x
2
and

all elements of B are greater than x
2
. If two elements sum to x one must come from A and

another from B. In fact if we take each value of a ∈ A and compute a “target” of b̃ = x− a
then if we find that b̃ ∈ B we are done. In the same way if we take each value of b ∈ B and
compute ã = x− b then if ã ∈ A we are done.

To turn these observations into an algorithm we do the following. For each value of a ∈ A
we compute the value x − a (there are |A| of these numbers) and for each value of b ∈ B
we compute the value x − b (there are |B| of these numbers). All of this work then costs
|A|+ |B| = θ(n).

As argued above, if we have two values a and b that sum to x then one of these numbers
(formed from x − a or x − b) that we just computed must also be in the original set S. If
see if this is true we form a new list of length 2n consisting of the original set S and all of
the numbers we just computed. We then sort this list which costs

θ(2n lg(2n)) = θ(2n(lg(n) + lg(2)) = θ(n lg(n)) ,

work. We can then walk this sorted list looking for any adjacent duplicate elements. If we
find any, we have that there must be two elements that sum to x. The total complexity of
this procedure is θ(n lg(n) + n) = θ(n lg(n)).

Problem 2-1: (Insertion sort on small arrays in merge sort)

In this problem we break our initial list of n elements into n
k
smaller lists each of length k.

Part (a): We start by sorting each of the n
k
lists using insertion sort. As insertion sort

requires θ(k2) work and we have n
k
lists to sort the total amount of work required is

(n

k

)

θ(k2) = θ(nk) .

Part (b): One way (not optimal) to merge these n
k
smaller lists into one complete list would

be the following. As each n
k
lists are sorted (say in ascending order) we first select the single

smallest value from the set of the first n
k
values in each smaller list. This can be done in n

k

work (as we scan a single value in each of the smaller arrays) and then copy the smallest of
these to our output array. We now compare another n

k
values, find the smallest, and copy
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its value to our output array. This needs to be done θ(n) times (once for each element in
the original array) and each minimization requires θ

(

n
k

)

work giving

θ

(

n2

k

)

,

work under this algorithm.

A better algorithm would be to perform merges of adjacent pairs of smaller sublists. The
first step of this algorithm will merge pairs of lists (each of size k) and produce sorted lists
of size 2k. The merge requires θ(2k) work and there are n

2k
pairs to merge giving a total

amount of work in the first step of

θ
(

2k
( n

2k

))

= θ(n) .

Merging these smaller lists of size 2k with n
4k

pairs gives a total amount of work of

θ
(

2(2k)
( n

4k

))

= θ(n) ,

again. Continuing this argument a third time we again get θ(n) amount of work. Thus at
each step we need to perform θ(n) amount of work. We have to perform lg

(

n
k

)

of these steps
to get the final sorted list of length n. Thus the total work under this algorithm is

θ
(

n lg
(n

k

))

.

Part (c): The combined algorithm then must do an amount of work given by

θ
(

nk + n lg
(n

k

))

.

Recall that directly applying merge sort on a list of length n takes θ(n lg(n)). Thus we want
to pick k such that

θ
(

nk + n lg
(n

k

))

∼ θ(n lg(n)) .

To get a understanding of what k might need to be we can try to “divide” by n on both
sides to get

θ
(

k + lg
(n

k

))

∼ θ(lg n)) .

In the above expression to leading order we must take

k = θ(lg(n)) .

Part (d): In practice we could run timing tests to see how large k could be to have insertion
sort be faster than merge sort.

Problem 2-2: (Correctness of bubblesort)

Part (a): We also need to prove that the elements of A′ are the same as the elements of A
i.e. that the elements of A′ are a permutation of the elements of A.
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Part (b): Let the loop invariant for the inner loop be the following. At the beginning and
end of the inner loop we will have A[j] to be the smallest element from all those that come
after it. That is A[j] = min{A[i] : j ≤ i ≤ n}. We need to show that this loop invariant is
satisfied at the start of the loop and is true at the end of the loop.

At the start of the loop j = n = length[A] and so A[j] is trivially the minimum of the set
with only one element {A[n]}.

For a general index value j, if there was an element of A[i] smaller than A[j] for j < i ≤ n
then it would have been exchanged at some point in the loop and would have to come before
A[j]. At the completion of this loop we will have the smallest value at location j and the
loop invariant holds.

Part (c): Let the loop invariant for the outer loop be the following. At index i the elements
in A[1 . . . i− 1] are the smallest elements from A and are in sorted order.

Before the first iteration we have i = 1 and the loop invariant trivially holds.

Consider iteration i of the outer loop. Then from the loop invariant on the previous outer
loop iteration we have that A[1 . . . i − 1] holds the sorted smallest i − 1 elements from A.
From the loop invariant for the inner loop when it ends we have that A[i] is the smallest
value from the remaining elements of A. It stands to reason that A[1 . . . i] is the sorted
smallest i elements from A and the loop invariant is true at the end of the outer loop.

Part (d): To determine the worst-case running time for bubblesort note that the code that
is executed inside the two nested loops takes θ(1) time. The innermost loop has this code
executed n − (i + 1) + 1 = n − i times for each value of i in the outer most loop. The
outermost loop runs for i = 1 to i = n. Thus the total work done is

n
∑

i=1

θ(n− i) =

n
∑

i=1

θ(i) = θ(n2) .

This is the same worst-case running time for insertion sort.

Problem 2-3: (Correctness of Horner’s rule)

Part (a): The while loop in the given pseudocode will execute θ(n) times and thus this
algorithm has θ(n) running time.

Part (b): To evaluate a polynomial at x we will compute

P (x) =

n
∑

k=0

akx
k ,

directly. This means that as a “subroutine” we need to compute the terms akx
k. We do this

in the following pseudocode
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Naive-Polynomial-Evaluation(a, x)

1 ✄ the polynomial coefficients are held in the array a such that a0 = a[1], a1 = a[2] etc.
2 y ← 0
3 k ← 0
4 while k ≤ n
5 do
6 ✄ Compute the term akx

k

7 i← 1
8 term ← a[k]
9 while i ≤ k
10 do
11 ✄ multiply by x
12 term ← term ×x
13 i← i+ 1
14 y = y + term

15 k ← k + 1
16 return y

The innermost while loop takes θ(1) work and is executed θ(k) times. The outermost loop
then takes

T (n) = θ

(

n
∑

k=0

k

)

= θ

(

n(n+ 1)

2

)

= θ(n2) .

This is “worse” than the procedure for Horner’s rule.

Part (c-d): To show that the given expression for y is a loop invariant we must show that
it is true before the loop starts and after the loop ends. At the start of the loop i = n and
the value of the proposed loop invariant y is zero by the convention of a summation with no
terms (since the upper limit of the sum is −1). Assuming the loop invariant is true at the
top of the loop we can write it as

y =

n−(i+1)
∑

k=0

ak+i+1x
k = ai+1 + ai+2x+ ai+3x

2 + · · ·+ an−1x
n−i−2 + anx

n−i−1 .

Using this we see that the value of y at the end of the loop is given by

y ← ai + xy

= ai + ai+1x+ ai+2x
2 + ai+3x

3 + · · ·+ an−1x
n−i−1 + anx

n−i

=

n−i
∑

k=0

ak+i+1x
k ,

which shows that the loop invariant holds at the end of the loop. Thus at the top of the last
iteration of the loop we have i = 0 where y is given by

y =
n−1
∑

k=0

ak+1x
k ,
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so that at the end of the while loop we have y given by

y = a0 +
n−1
∑

k=0

ak+1x
k+1 =

n
∑

k=0

akx
k ,

the value of the polynomial at x.

Problem 2-4: (Inversions)

Part (a): Given the list < 2, 3, 8, 6, 1 > we find that the inversions in it are

(1, 5) , (2, 5) , (3, 4) , (3, 5) , (4, 5) .

Recall that inversions are specified by the indices rather than the array values.

Part (b): The list with the most inversions is < n, n− 1, n− 2, · · · , 3, 2, 1 >. This list has

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n−1
∑

k=1

k =
n
∑

k=1

k − n

=
n(n + 1)

2
− n =

n

2
(n+ 1− 2)

=
n(n− 1)

2
= θ(n2) .

Part (c): Every inversion must be “undone” by a step in the insertion sort inner while loop
and thus we expect that the running time of insertion sort to be proportional to the number
of inversions.

Part (d): Following the hint given in the book we will attempt to implement a divide-and-
conquer merge sort type algorithm to count the number of inversion in an input array. If we
take the merge sort algorithm as a starting point then when after splitting the array A into
two parts we see that the number of inversion in the original array A will be the number of
inversions found in the left-half plus the number of inversions found in the right-half plus
the number of inversions involving elements in the left and right halves.

In each of the recursive calls lets assume that our algorithm returns the number of inversions
in the left and right subarrays. We then have to implement a merge like procedure that
counts the number of inversions between the two left and right arrays. The big leap to
understanding this problem is to notice that if the left and right subarrays are returned
sorted (along with the number of inversions each subarray contained) we can easily count
the number of “cross inversions” when we merge the two arrays.

Assume that we have two sorted arrays L (for “left”) and R (for “right”) and we will merge
these two into an output sorted array as in merge sort. In that procedure if we are placing
an element of L into the output array then this element is smaller than all other elements
in L and is also smaller than all other elements in R. Thus this operation does not reveal
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an inversion between elements in L and R. On the other hand, if we place an element from
R into the output array then this element must be smaller than all the remaining unplaced
elements in the L array.

If there arem remaining elements in L we have “found”m cross inversions. As we continually
place elements from L and R onto the output array each time we place one from R we add
m to the number of cross inversions found. At this point the pseudocode for this procedure
can be written as

Count-Inversions-N-Sort(A, p, r)

1 ✄ Returns the number of inversions and A sorted between the two indices p and r
2 if p ≥ r
3 then return 0
4 q ← floor((p+ r)/2)
5 inversions ← Count-Inversions-N-Sort(A, p, q)
6 inversions ← inversions +Count-Inversions-N-Sort(A, q + 1, r)
7 inversions ← inversions +Count-Inversions-N-Merge(A, p, q, r)
8 return inversions

Next we need the following pseudocode (borrowing form the procedure Merge above).
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Count-Inversions-N-Merge(A, p, q, r)

1 ✄ the number of elements in the left array
2 n1 ← q − p+ 1
3 ✄ the number of elements in the right array
4 n2 ← r − q
5 create arrays L[1 . . . n1] and R[1 · · ·n2]
6 for i← 1 to n1

7 do L[i]← A[p + i− 1]
8 for j ← 1 to n2

9 do R[j]← A[q + j]
10 i← 1 ✄ holds the index into L
11 j ← 1 ✄ holds the index into R
12 k ← 1 ✄ holds the index into A
13 inversions ← 0
14 while i ≤ n1 and j ≤ n2

15 do if L[i] ≤ R[j]
16 then A[k]← L[i]
17 i← i+ 1
18 else A[k]← R[j]
19 j ← j + 1
20 ✄ Add in the inversion count
21 inversions ← inversions +(n1 − i+ 1)
22 k ← k + 1
23 ✄ at this point one of L or R is now empty
24 while i ≤ n1 ✄ never executed if the left array “runs out first”
25 do
26 A[k]← L[i]
27 i← i+ 1
28 k ← k + 1
29 while j ≤ n2 ✄ never executed if the right array “runs out first”
30 do
31 A[k]← R[j]
32 j ← j + 1
33 k ← k + 1
34 return inversions

From the above code we see that the running time of this algorithm on an input of size n
can be written as

T (n) = 2T
(n

2

)

+ θ(n) .

This has the solution T (n) = n lg(n) as we were to show.

I should also mention that this algorithm, to report the number of inversions in an array with
this complexity, is given as an example of using the “divide-and-conquer” algorithm design
paradigm, and was presented in two lectures in Tim Roughgarden’s Coursera algorithms
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class1. One of the requirements of that class was to implement this algorithm. You can find
source code for a python implementation of that algorithm linked to the web site for these
notes.

1https://www.coursera.org/course/algo

27



Chapter 28 (Matrix Operations)

28.1 (Properties of Matrices)

Exercise 28.1-1 (elementary properties of transposes)

These two facts are a simple consequences of the definition of a transpose: the (i, j)th
element in MT is the (j, i)th element in M . For A +B we have that the (i, j)th element in
(A+B)T is the (j, i)th element in A+B, which is the sum of the (j, i)th elements in A and
B individually, which is also the sum of the (i, j)th elements in AT and BT individually. So
we have that the (i, j)th element in (A+B)T is the same as the sum of the (i, j)th element
from AT and BT . Since A and B are symmetric we have that

(A+B)T = AT +BT = A+B

and the matrix A+ B is symmetric. The proof for the difference of A and B is done in the
same way.

Exercise 28.1-2 (transpose of a product)

To prove that (AB)T = BTAT we begin by looking at the components of the product AB.
For simplicity assume A and B are n by n. Then the (i, j)th entry of AB is given by

(AB)i,j =
n
∑

k=1

Ai,kBk,j .

Then the transpose of AB has components given by

((AB)T )i,j = (AB)j,i =

n
∑

k=1

Aj,kBk,i .

Note that the components of A in the above can be expressed in term of A’s transpose since
Aj,k = (AT )k,j. The same can be said for B and when this substitution is done we have

((AB)T )i,j = (AB)j,i =
n
∑

k=1

(AT )j,k(B
T )i,k =

n
∑

k=1

(BT )i,k(A
T )j,k .

Where in the first summation we have replace Aj,k with (AT )k,j (similarly for B) and in the
second summation we just placed the term BT before the term involving AT . The above can
be recognized as the (i, j)th element of the product BTAT as expected.

Using the fact that (AB)T = BTAT (proven above), and that (AT )T = A, for the product
ATA we have that

(ATA)T = (A)T (AT )T = ATA .

thus since ATA when transposed equals itself we have that it is a symmetric matrix as
requested.
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Exercise 28.1-3 (uniqueness of a matrix inverse)

If we assume (to reach a contradiction) that both B and C are inverses of A then we must
have that

AB = I and BA = I

AC = I and CA = I ,

Multiplying the equation AB = I on the left by C gives CAB = C. Using the fact that
CA = I, the above simplifies to B = C, showing that the inverse of a matrix must be unique.

Exercise 28.1-4 (triangular matrices)

We will prove that the product of two lower triangular matrices is lower triangular by in-
duction. We begin with n = 2 for which we have

[

l11 0
l21 l22

] [

m11 0
m21 m22

]

=

[

l11m11 0
l21m11 + l22m21 l22m22

]

which is lower triangular. Assume the product of two lower triangular matrices of size n̂ ≤ n
is also lower triangular and consider two lower triangular matrices of size n+ 1. Performing
a “bordered” block partitioning of the two lower triangular matrices we have that

Ln+1 =

[

Ln 0
lT ln+1,n+1

]

and Mn+1 =

[

Mn 0
mT mn+1,n+1

]

where the single subscripts denote the order of the matrices. With bordered block decom-
position of our two individual matrices we have a product given by

Ln+1Mn+1 =

[

LnMn 0
lTMn + ln+1,n+1m

T ln+1,n+1mn1,n+1

]

.

Since by the induction hypotheses the product LnMn is lower triangular we see that our
product Ln+1Mn+1 is lower triangular.

The fact that the determinant of a triangular matrix is equal to the product of the diagonal
elements, can easily be proved by induction. Lets assume without loss of generality that
our system is lower triangular (upper triangular systems are transposes of lower triangular
systems) and let n = 1 then |G| = g11 trivially. Now assume that for a triangular system
of size n × n that the determinant is given by the product of its n diagonal elements and
consider a matrix G̃ of size (n + 1) × (n + 1) partitioned into a leading matrix G11 of size
n× n.

G =

[

G11 0
hT gn+1,n+1

]

.

Now by expanding the determinant of G along its last column we see that

|G| = gn+1,n+1|G11| = gn+1,n+1

n
∏

i=1

gii =

n+1
∏

i=1

gii ,
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proving by induction that the determinant of a triangular matrix is equal to the product of
its diagonal elements.

We will prove that the inverse of a lower triangular matrix L (if it exists) is lower triangular
by induction. We assume that we are given an L that is non-singular and lower triangular.
We want to prove that L−1 is lower triangular. We will do this by using induction on n the
dimension of L. For n = 1 L is a scalar and L−1 is also a scalar. Trivially both are lower
triangular. Now assume that if L is non-singular and lower triangular of size n × n, then
L−1 has the same property. Let L be a matrix of size (n + 1)× (n + 1) and partition L as
follows

L =

[

L11 0
L21 L22

]

.

Where L11 and L22 are both lower triangular matrices of sizes less than n × n, so that we
can apply the induction hypothesis. Let M = L−1 and partition M con formally i.e.

M =

[

M11 M12

M21 M22

]

.

We want to show that M12 must be zero. Now since ML = I by multiplying the matrices
above out we obtain

LM =

[

L11 0
L21 L22

] [

M11 M12

M21 M22

]

=

[

L11M11 L11M12

L21M11 + L22M21 L21M12 + L22M22

]

=

[

I 0
0 I

]

Equating block components gives

L11M11 = I

L11M12 = 0

L21M11 + L22M21 = 0

L21M12 + L22M22 = I .

By the induction hypothesis both L11 and L22 are invertible. Thus the equation L11M11 = I
gives M11 = L−1

11 , and the equation L11M12 = 0 gives M12 = 0. With these two conditions
the equation L21M12 +L22M22 = I becomes L22M22 = I. Since L22 is invertible we compute
that M22 = L−1

22 . As both L11 and L22 are lower triangular of size less than n × n by the
induction hypothesis their inverse are lower triangular and we see that M itself is then lower
triangular since

M =

[

L−1
11 0

M21 L−1
22

]

.

Thus by the principle of induction we have shown that the inverse of a lower triangular
matrix is lower triangular.

Exercise 28.1-5 (permutation matrices)

From the definition of a permutation matrix (a matrix with only a single one in each
row/column and all other elements zero) the product PA can be computed by recognizing

30



that each row of P when multiplied into A will select a single row of A and thus produces a
permutation of the rows of A. In the same way the product AP will produce a permutation
of the columns of A. If we have two permutation matrices P1 and P2, then P1 acting on P2

will result in a permutation of the rows of P2. This result is a further permutation matrix,
since it is the combined result of two permutations, that from P2 and then that from P1. If
P is a permutation, then it represents a permutation of the rows of the identity matrix. The
matrix P̂ representing the permutation which reorders the rows of P back into the identity
matrix would be the inverse of P and from this argument we see that P is invertible and has
an inverse that is another permutation matrix. The fact that P−1 = P T can be recognized
by considering the product of P with P T . When row i of P is multiplied by any column of
P T not equal to i the result will be zero since the location of the one in each vector won’t
agree in the location of their index. However, when row i of P is multiplied by column i the
result will be one. Thus we see by looking at the components of PP T that PP T = I and
P T is the inverse of P .

Exercise 28.1-6 (Gauss transformations)

Lets assume (without loss of generality) that j > i, then we will let M be the elementary
matrix (of type 1) that produces A′ from A i.e. it adds row i to j and the sum replaces row
j. Then since AB = I multiplying this system by M on the left we obtain (since MA = A′)
that A′B = M . From this we see that by multiplying this expression above by M−1 on
the left we obtain A′BM−1 = I, showing that the inverse of A′ is BM−1. Now the matrix
M is like the identity by with an additional one at position (j, i) rather than a zero there.
Specifically we have

M =























1
1

. . .

1
1

1
. . .

1























.

Where the one in the above matrix is at location (j, i). In this case the inverse of M is then
easy to compute; it is the identity matrix with a minus one at position (j, i), specifically we
have

M−1 =























1
1

. . .

1
1

−1 . . .

1























.

Now multiplying B by this matrix on the left will operate on the columns of B, thus B′ =
BM−1 is the same matrix as B but with the jth and the negative of the ith column added
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together and placed in column j. That is we are subtracting the ith column from the jth
column and placing it in column j.

Exercise 28.1-7 (the realness of A−1)

Lets begin by assuming that every entry of A is real and then show that every entry of A−1

is real. The easiest way to see that all entries of A−1 must be real is to recall the adjoint
theorem from linear algebra. The adjoint theorem gives the inverse of a matrix in terms of
the adjoint of that matrix. Specifically, the adjoint theorem states that

A−1 =
1

det(A)
CT ,

where C is the matrix of cofactors of A. This cofactor matrix C is the matrix such that its
(i, j) element is given by the cofactor of the element aij or

Ci,j = (−1)i+jdet(A[ij]) .

Where A[ij] is the ijth minor of the matrix A, i.e. the submatrix that is produced from
A by deleting its ith row and its jth column. Because the determinants of the minors of
A only involve additions and multiplications, if A has only real elements then all cofactors
and determinants of A must be real. By the adjoint theorem above, A−1 can have only real
elements. The other direction, where we argue that if A−1 has only real elements then A
must have only real elements can be seen by applying the above arguments to the matrix
A−1.

Exercise 28.1-8 (symmetry of the inverse)

Let A be symmetric and invertible. Then by the definition of the inverse, A−1 satisfies
AA−1 = I. Now taking the transpose of both sides and remembering that the transpose of a
product is the product of the transposes but in the opposite order we have (A−1)TAT = IT

which simplifies to (A−1)TA = I, since both A and I are symmetric. By multiplying both
sides on the left by A−1 we have that

(A−1)T = A−1

showing that A−1 is symmetric.

That the product BABT is symmetric is just an exercise in taking transposes. We have

(BABT )T = (BT )TATBT = BABT ,

and this product of matrices is symmetric.
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Exercise 28.1-9 (full column rank)

Lets assume that A has full column rank and that Ax = 0. Note that Ax = 0 is equivalent
to the statement that a linear combination of the columns of A sums to zero. Specifically if
vi represents the ith column of A then Ax = 0 is equivalent to

n
∑

i=1

xivi = 0 .

Since A is full column rank its columns are linearly independent (this is the definition of full
column rank). Because of this fact, the only way these columns can sum to zero is if x = 0
and we have proven one direction. Now lets assume that Ax = 0 implies that x = 0. This
statement is equivalent to the fact that the columns of A are linearly independent which
again implies that A is of full column rank.

Exercise 28.1-10 (rank inequalities)

To show this we will first show that

rank(AB) ≤ rank(A) .

and then use this result to show that

rank(AB) ≤ rank(B) .

When these two results are combined the rank of the product AB must be less than the
smaller of the two rank(A) and rank(B) giving the requested inequality of

rank(AB) ≤ min(rank(A), rank(B)) .

To show that rank(AB) ≤ rank(A), we first note that every vector in the column space of
AB is in the column space of A. This is true since AB is the action of the matrix A on every
column of the matrix B, and the action of a matrix (A) on a vector is a linear superposition
of the columns of that matrix (A). Thus the number of linearly independent columns of the
product matrix AB cannot be greater than that of the number of linear independent columns
in the multiplying matrix (A) and we recognize the desired result of

rank(AB) ≤ rank(A) .

To show the second inequality rank(AB) ≤ rank(B), we apply the expression proved above
on the matrix (AB)T . Since this matrix equals BTAT we have that

rank((AB)T ) = rank(BTAT ) ≤ rank(BT ) = rank(B) .

But since rank((AB)T ) = rank(AB) replacing the first term in the above gives

rank(AB) ≤ rank(B) ,
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showing the second of the desired inequalities. If A or B is invertible, it must be square

and its rank is equal to its number of columns (equivalently the number of rows). With out
loss of generality assume that A is invertible. By the arguments above when we multiply B,
the dimension of the column space of AB cannot change from the dimension of the column
space of B. Thus we have that

rank(AB) = rank(B) .

The same argument applied to (AB)T (as outlined in the inequality proof above) can be
used to show that if B is invertible that

rank(AB) = rank(A) .

Exercise 28.1-11 (the determinant of the Vandermonde matrix)

Following the hint given, we will multiply column i by −x0 and add it to column i + 1 for
i = n − 1, n − 2, · · · , 1. This action will not change the value of the determinant but will
make it simpler to evaluate as we will soon see. We begin by first multiplying column n− 1
by −x0 and adding to column n. We find that

det(V (x0, x1, x2, · · · , xn−3, xn−2, xn−1)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 x2
0 · · · xn−2

0 xn−1
0

1 x1 x2
1 · · · xn−2

1 xn−1
1

1 x2 x2
2 · · · xn−2

2 xn−1
2

...
...

...
...

...
1 xn−1 x2

n−1 · · · xn−2
n−1 xn−1

n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 x2
0 · · · xn−2

0 0
1 x1 x2

1 · · · xn−2
1 (x1 − x0)x

n−2
1

1 x2 x2
2 · · · xn−2

2 (x2 − x0)x
n−2
2

...
...

...
...

...
1 xn−1 x2

n−1 · · · xn−2
n−1 (xn−1 − x0)x

n−2
n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Where we see that this action has introduced a zero in the (1, n) position. Continuing, we
now multiply column n − 2 by −x0 and add it to column n − 1. We find that the above
determinant now becomes

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 x2
0 · · · 0 0

1 x1 x2
1 · · · (x1 − x0)x

n−3
1 (x1 − x0)x

n−2
1

1 x2 x2
2 · · · (x2 − x0)x

n−3
2 (x2 − x0)x

n−2
2

...
...

...
...

...
1 xn−1 x2

n−1 · · · (xn−1 − x0)x
n−3
n−1 (xn−1 − x0)x

n−2
n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Where we see that this action has introduced another zero this time at the (1, n−1) position.
Continuing in this manner we will obtain the following determinant where the first row has
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only one non-zero element
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 · · · 0 0
1 x1 − x0 (x1 − x0)x1 (x1 − x0)x

2
1 · · · (x1 − x0)x

n−3
1 (x1 − x0)x

n−2
1

1 x2 − x0 (x2 − x0)x2 (x2 − x0)x
2
2 · · · (x2 − x0)x

n−3
2 (x2 − x0)x

n−2
2

...
...

...
...

...
...

1 xn−1 − x0 (xn−1 − x0)xn−1 (xn−1 − x0)x
2
n−1 · · · (xn−1 − x0)x

n−3
n−1 (xn−1 − x0)x

n−2
n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We can expand this determinant about the first row easily since there is only a single nonzero
element in this row. After this reduction we see that we can factor x1 − x0 from the first
row of our reduced matrix, factor x2 − x0 from the second row, x3 − x0 from the third row,
and so on til we get to the n−1th row of our reduced matrix where we will factor xn−1−x0.
This gives us

det(V (x0, x1, x2, · · · , xn−2, xn−1)) =

n−1
∏

i=1

(xi − x0)×

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 · · · xn−3

1 xn−2
1

1 x2 x2
2 · · · xn−3

2 xn−2
2

...
...

...
...

...
1 xn−1 x2

n−1 · · · xn−3
n−1 xn−2

n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that the remaining determinant is of size (n− 1)× (n− 1) and is of exactly the same
form as the previous determinant. Thus using the same manipulations performed earlier we
see that

det(V ) =
n−1
∏

i=1

(xi − x0)× det(V (x1, x2, · · · , xn−1))

=

n−1
∏

i=1

(xi − x0)×
n−1
∏

j=2

(xj − x1)× det(V (x2, x3, · · · , xn−1))

=

n−1
∏

i=1

(xi − x0)×
n−1
∏

j=2

(xj − x1)×
n−1
∏

k=3

(xk − x2)det(V (x3, · · · , xn−1))

=
n−1
∏

i=1

(xi − x0)×
n−1
∏

j=2

(xj − x1)×
n−1
∏

k=3

(xk − x2) · · ·
n−1
∏

l=n−2

(xl − xn−3)× (xn−1 − xn−2) .

As a bit of shorthand notation the above can be written as

det(V (x0, x1, · · · , xn−2, xn−1)) =
∏

0≤j<k≤n−1

(xk − xj) ,

as claimed in the book.

28.2 (Strassen’s algorithm for matrix multiplication)

Exercise 28.2-6 (multiplying complex numbers)

We are given a, b, c, and d and we desire to compute the complex product

(a+ ib)(c + id) = (ac− bd) + i(ad+ bc) ,
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using only three real multiplications. To perform this computation define the some interme-
diate variables t1, t2, and t3 in terms of our inputs as

t1 = ad

t2 = bc

t3 = (a+ b)(c− d) ,

which involve only three real multiplications. Note that the product obtained by computing
t3 is algebraically equivalent to

t3 = (a+ b)(c− d) = ac− ad+ bc− bd = (ac− bd) + (−ad + bc) ,

where we have grouped specific terms to help direct the manipulations we will perform below.
Note also that the sums t1 + t2 and t3 + t1 − t2 are given by

t1 + t2 = ad + bc

t3 + t1 − t2 = ac− bd .

so that our full complex product can be written in terms of these sums as

(a + ib)(c+ id) = (t3 + t1 − t2) + i(t1 + t2) .

28.3 (Solving systems of linear equations)

Exercise 28.3-1 (an example of forward substitution)

Our problem is to solve




1 0 0
4 1 0
−6 5 1









x1

x2

x3



 =





3
14
−7



 ,

which upon performing forward substitution gives

x1 = 3

x2 = 14− 4x1 = 14− 12 = 2

x3 = −7 + 6x1 − 5x2 = −7 + 18− 10 = 1 .

28.5 (Symmetric PD matrices and LS approximations)

Exercise 28.5-1 (diagonal elements of positive-definite matrices)

Since A is positive definite we must have for all non-zero x’s the condition xTAx > 0. Let
x = ei, a vector of all zeros but with a one in the i-th spot. Then xTAx = eTi Aei = aii > 0,
proving that the diagonal elements of a positive definite matrix must be positive.
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Chapter 31 (Number-Theoretic Algorithms)

31.1 (Elementary number-theoretic notations)

Exercise 31.1-1

Following the hint, given a sequence of increasing primes p1, p2, · · · , pk we can form another
prime p by computing “the product plus one” or p = p1p2 · · ·pk + 1. Note that this new
number p is prime since none of p1, p2, · · · , pk divide it. If one did then it would also have to
divide the number p − p1p2 · · ·pk = 1 which is impossible. Thus the newly formed number
is prime and as we can repeat this procedure an infinite number of times there must be an
infinite number of primes.

Exercise 31.1-2

If a|b then we have that there exists an integer k1 such that b = k1a. Since b|c we have that
there exists an integer k2 such that c = k2b. Using the first of these two relationships into
the second we have

c = k2b = k2(k1a) = k1k2a ,

showing that a|c.

Exercise 31.1-3

Assume that gcd(k, p) = d 6= 1. Then d|k and d|p. Since p is prime if d|p then d = 1 or
d = p. As we assumed that d 6= 1 we must have d = p. The fact that d|k means that |d| ≤ |k|
or |p| ≤ |k|. This last fact is a contraction to the problem assumption that k < p. Thus the
assumption that d 6= 1 must be false.

Exercise 31.1-4

Since gcd(a, n) = 1 then by Theorem 31.2 there must exist integers x and y such that
1 = ax+ ny. If we multiply this equation by b we get

b = abx+ nbx .

Note that the right-hand-side of the above is divisible by n since it is a linear combination
of two things (the terms abx and nbx) both of which are divisible by n. We know that abx is
divisible by n since ab is and nbx is divisible by n since n is a factor. Since the right-hand-side
equals b this shows that b is divisible by n.
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Exercise 31.1-5

Using Equation 4 we can write
(

p

k

)

=
p

k

(

p− 1

k − 1

)

,

which since the right-hand-side is a multiple of p shows that p divides
(

p
k

)

or p|
(

p
k

)

. Next
note that using the binomial theorem we can write (a+ b)p as

(a + b)p = ap + bp +

p−1
∑

k=1

(

p

k

)

akbp−k .

Since p divides
(

p
k

)

it divides the summation on the right-hand-side of the above equation.
Thus the remainder of (a+ b)p and ap + bp when dividing by p is the same or

(a+ b)p = ap + bp (mod p) .

Exercise 31.1-6

Now the definition of the “mod” operators is that

x mod b = x−
⌊x

b

⌋

b (1)

x mod a = x−
⌊x

a

⌋

a .

Since a|b there exists an integer k such that b = ka. Thus Equation 1 becomes

x mod b = x−
⌊x

b

⌋

ka . (2)

Thus taking the “mod” a operator to both sides of Equation 2 we get

(x mod b) mod a = x mod a ,

as we were to show. Next if we assume that x ≡ y (mod b) then taking the “mod” a operator
to both sides of this expression and using the just derived result we get

(x mod b) mod a = (y mod b) mod a or x mod a = y mod a ,

as we were to show.

Exercise 31.1-8

Recall that Theorem 31.2 states that that gcd(a, b) is the smallest positive element of the set
{ax + by : x, y ∈ Z}. Since this set definition of the greatest common divisor is symmetric
in a and b we see that

gcd(a, b) = gcd(b, a) .
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and because x and y are arbitrary integers that

gcd(a, b) = gcd(−a, b) = gcd(|a|, |b|) .

We also have that gcd(a, 0) is the smallest element in the set {ax : x ∈ Z} which would be
when x = ±1 such that the product of ax is positive or |a|. Next we have that gcd(a, ka) is
the smallest element of the set {ax+ kay : x, y ∈ Z} = {a(x+ ky) : x, y ∈ Z}. This smallest
element would be when x+ ky = ±1 in order that a(x+ ky) = |a|.

Exercise 31.1-9

Let d = gcd(a, gcd(b, c)) i.e. the left-hand-side of the equation we wish to show. Then d|a
and d| gcd(b, c). This second statement d| gcd(b, c) means that d|b and d|c. Since d divides
a and b by the above this means that d| gcd(a, b). Thus d is a number that gcd(a, b) and c.
Lets show that d is the largest number that divides both gcd(a, b) and c. Then if so we have
that d = gcd(gcd(a, b), c) and we have shown the desired equivalence. To show this assume
that there is another integer d′ such that d′ > d that divides gcd(a, b) and c. This means
that d′|a and d′|b, and d′|c so that d′| gcd(b, c). Thus since d′ divides a and gcd(b, c) it must
be smaller than or equal to the greatest common divisor of a and gcd(b, c) or

d′ ≤ d = gcd(a, gcd(b, c)) ,

giving a contradiction to the initial assumption that d′ > d. Thus means d must be the
largest integer already and so d = gcd(gcd(a, b), c).

31.2 (Greatest common divisor)

Notes on Euclid’s algorithm

Recall that a mod b = a −
⌊

a
b

⌋

b i.e. a mod b is the remainder when a is divided by b. This
is the common understanding when a > b. We now ask what does this mean if a < b? In
that case we would have

⌊

a
b

⌋

= 0 since the fraction a
b
< 1 and the above formula would give

a mod b = a when a < b . (3)

To numerical examples of this are

5 mod 10 = 5

2 mod 5 = 2 .

The point of these comments is to give some understanding to Euclid’s algorithm for finding
the greatest common divisor when the inputs are EUCLID(a, b) where a < b then in this
case the first recursive call performed is

EUCLID(a, b) = EUCLID(b, a mod b) = EUCLID(b, a) .
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From the above we see that now all recursive calls to EUCLID will have the first argument
larger than the second argument. In python, the greatest common divisor is available in the
fractions module i.e.

import fractions

print fractions.gcd(30,21) # the example from the book gives 3

At the time of writing the source code of this function shows that its in fact using Euclid’s
algorithm for its implementation.

Exercise 31.2-1

Let d = gcd(a, b) then d must have a prime factorization in terms of the same primes as a
and b namely

d = pg11 pg22 · · ·pgrr .

Since d is a divisor of a and b we must have d|a and d|b which means that

pgii |a and pgii |b ,

for i = 1, 2, · · · , r. This in tern means that

pgii |peii and pgii |pfii .

Thus we have that
gi ≤ ei and gi ≤ fi .

For d to be as large as possible (since it is the greatest common divisor the powers gi must
be as large as possible such that the above two relations hold or

gi = min(ei, fi) ,

as we were to show.

Exercise 31.2-2

See the output in Table 3 where we follow the output format given in this section of the
notes where as we move down the table we are moving in increasing stack depth. From that
output we see that gcd(899, 493) = 29 and that 29 = 899(−6) + 493(11).

Exercise 31.2-3

One way to see that these two expressions are equal is to use one step of EUCLID’s algorithm
to evaluate both of them and see that after the first step both of these algorithms are
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stack level a b ⌊a/b⌋ d x y
0 899 493 1 29 -6 11
1 493 406 1 29 5 -6
2 406 87 4 29 -1 5
3 87 58 1 29 1 -1
4 58 29 2 29 0 1
5 29 0 - 29 1 0

Table 3: The recursive calls resulting from executing EXTENDED-EUCLID(899,493)

computing the same thing. For example, EUCLID to compute gcd(a, n) would first call
(assuming n 6= 0)

EUCLID(n, a mod n) .

The first step of EUCLID’s algorithm on the second expression gcd(a+ kn, n) would call

EUCLID(n, (a+ kn) mod n) .

Since (a+ kn) mod n = a mod n we have that the two expressions will evaluate to the same
number and are therefore the same. If n = 0 the we can see that both sides are equal.

Exercise 31.2-4

One way to do this would be the following in python

def iterative_euclid(a,b):

while b != 0 :

a, b = b, a % b # swap in place

return a

Here we have assigned b to a and a mod b to b in one step using pythons tuple assignment.

Exercise 31.2-5

For the Fibonacci sequence defined as F0 = 0, F1 = 1, and

Fk = Fk−1 + Fk−2 for k ≥ 2 ,

Then it can be shown that Fk+1 ∼ φk+1
√
5

for large k where φ is the “golden ratio” defined as

φ =
1 +
√
5

2
= 1.61803 .
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From Lame’s theorem in the book we have less than k recursive calls in EUCLID(a, b) when
Fk+1 > b or using the approximation above for Fk+1 when

φk+1

√
5

> b .

Solving the above for k gives

k > logφ(b) + logφ(
√
5)− 1 .

Note that we can evaluate the constants in the above using

logφ(
√
5) =

ln(
√
5)

ln(φ)
= 1.67 ,

Thus we conclude that k > logφ(b) + 0.67. Thus we have shown that the invocation
EUCLID(a, b) makes at most 1 + logφ(b) recursive calls.

Exercise 31.2-7

One can show that the function returns the same answer independent of the order of the
arguments by induction. It is easiest to see how to write

gcd(a0, a1, a2, · · · , an) = a0x0 + a1x1 + a2x2 + · · ·+ anxn ,

by looking at an example. Consider

gcd(a0, a1, a2, a3) = gcd(a0, gcd(a1, a2, a3)) = gcd(a0, gcd(a1, gcd(a2, a3))) .

We can now use Theorem 31.2 to write gcd(a2, a3) as a2x2+ a3x3 for two integers x2 and x3.
This would give

gcd(a0, a1, a2, a3) = gcd(a0, gcd(a1, a2x2 + a3x3)) .

We can again use use Theorem 31.2 to write gcd(a1, a2x2 + a3x3) as

x1a1 + y1(a2x2 + a3x3) = x1a1 + y1x2a2 + y1x3a3 .

for two integers x1 and y1. Thus we have shown that

gcd(a0, a1, a2, a3) = gcd(a0, x1a1 + y1x2a2 + y1x3a3) .

One more application of Theorem 31.2 gives

gcd(a0, a1, a2, a3) = x0a0 + y2(x1a1 + y1x2a2 + y1x3a3)

= x0a0 + y2x1a1 + y1y2x2a2 + y1y2x3a3 .

As each coefficient in front of ai is the product of integers it itself is an integer. This gives the
desired representation when n = 3. In general, we use the definition of the greatest common
divisor for n > 1 to “nest” gcd function calls until we get a function call with only two
arguments gcd(an−1, an). We can then use Theorem 31.2 to write this as an−1xn−1 + anxn

for two integers xn−1 and xn. We can then “unnest” the gcd function calls each time using
Theorem 31.2 to get the desired result.
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+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 4: The group operation table for the (Z4,+4) group

∗5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 5: The group operation table for the (Z∗
5 , ∗5) group

Exercise 31.2-8 (the least common multiple)

We can first compute the greatest common divisor of the given n integers

d = gcd(a1, a2, . . . , an) .

This can be done using the recursive definition of the gcd for more than two arguments given
in a previous problem. Then since d is a divisor of each of ai it is a factor of each of them
(by definition). Once we have this number then the least common multiple is given by

lcm(a1, a2, . . . , an) = d
(a1
d

)(a2
d

)

· · ·
(an
d

)

.

In the right-hand-side of the above expression by grouping d with a given term in parenthesis
we have that d

(

ai
d

)

= ai and thus the above number is a multiple of ai for each i.

Exercise 31.3-1

The group (Z4,+4) has the elements {0, 1, 2, 3} with the addition operation “modulo four”.
The group operation table for this group is given in Table 4. The group (Z∗

5 , ∗5) is the
multiplication group of order n. The elements of that group are the elements of Z5 that are
relatively prime to five i.e.

Z∗
5 = {[a]5 ∈ Z5 : gcd(a, 5) = 1} .

The elements in Z∗
5 are then {1, 2, 3, 4}. The group operation table is given in Table 5. To

show that these two groups are isomorphic to each other we are looking for a mapping Σ(·)
from Z+

4 = {0, 1, 2, 3} to the set Z∗
5 = {1, 2, 3, 4} such that Σ(a)Σ(b) = Σ(c) mod 5. Its clear

that Σ(0) = 1 (i.e. the addition identity should map to the multiplication identity). To get
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1 2 4 3
1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4

Table 6: The table that results when we take the group operation table for (Z4,+4) and
transform each element under the Σ(·) mapping.

the rest of the mapping for Σ lets try Σ(1) = 2 and see what we can conclude if that is true.
We have

Σ(0) = 1

Σ(1) = 2

Σ(2) = Σ(1 + 1) = Σ(1)2 mod 5 = 22 mod 5 = 4 mod 5 = 4

Σ(3) = Σ(1 + 1 + 1) = Σ(1)3 mod 5 = 23 mod 5 = 8 mod 5 = 3

Σ(4 mod 4) = Σ(0) = 1 .

Thus we have found a one-to-one mapping that takes the elements and operation from
(Z4,+4) to (Z∗

5 , ∗5). If we then take the elements of Table 4 and use the above mapping on
each element we get Table 6. Notice that this table is really just Table 5 but with some rows
and columns interchanged.

Exercise 31.3-2

For this problem we want to prove that a nonempty closed subset of a finite group is a
subgroup. To do that we need to show the following

• Closure: We are told that the subset is closed therefore we have the closure property
needed for a group immediately.

• Identity: As the subset S ′ is nonempty it must have at least one element. Denote this
this element as a. If a = e then S ′ has the identity element and we are done. Even if
a 6= e then as a|S

′| = e (by Corollary 31.19 from the book) then since S ′ is closed the
subset must have the identity element as a member in this case as well.

• Associativity: The associativity of the elements of the subset S ′ follow from that of
the associativity of the elements in the original group S.

• Inverses: Let a ∈ S ′. Then as we know that e ∈ S ′ we claim that the inverse of a
must also be in S ′. We can see that using the fact that a|S

′| = e or a|S
′|−1a = e. This

later expression means that a|S
′|−1 is an inverse of the element a. As S ′ is closed the

element a|S
′|−1 must be a member of S ′ so the set S ′ has all its elements inverses.
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Exercise 31.3-3

If p is prime and e a positive integer then from the definition of the function φ we have

φ(pe) = pe
∏

p′|pe

(

1− 1

p′

)

,

where the product is over all primes p′ that divide pe. The only prime that does divide pe is
p itself so the above becomes

φ(pe) = pe
(

1− 1

p

)

= pe−1(p− 1) .

Exercise 31.3-4

To show this we will use Theorem 31.6 from the text “if both gcd(a, p) = 1 and gcd(b, p) = 1
then gcd(ab, p) = 1“. To use this note that since a ∈ Z∗

n and x ∈ Z∗
n they are both relatively

prime to n and thus gcd(a, n) = 1 and gcd(x, n) = 1. Then using Theorem 31.6 we have
that the product ax is relatively prime to n and thus is an element of Z∗

n. Thus the given
function f maps each elements of Z∗

n to another element of Z∗
n and results in a permutation

of Z∗
n.

Exercise 31.3-5

Since the group Z9 has the nine elements {0, 1, 2, 3, 4, 5, 6, 7, 8} then by Lagrange’s theorem
the number of elements in any subgroup of it must be a divisor of nine. That means that
the subgroups must have 1, 3, or 9 elements. The subgroup with only one element is the
subgroup with only the identity or {0}. The subgroup with nine elements is the original
group again. The subgroup with three elements can be obtained by using 3 as a generator
and is the subgroup {0, 3, 6}.

Now the group Z∗
13 is the set of elements that are relatively prime to 13. Since 13 is a prime

number the set Z∗
13 is then given by

Z∗
13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Since this set has twelve elements by Lagrange’s theorem any subset of it must have 1, 2, 3,
4, 6, or 12 elements itself. The subset with only one element is the set {1} and the subset
with 12 elements is the original set Z∗

13 again.

The other subsets can be generated by taking various elements of Z∗
13 to be a genera-

tor and then generating the subset from that element. We do that in the python code
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chap 31 prob 3 5.py. Running that code we find that all the subsets of Z∗
13 are

< 1 > = {1}
< 2 > =< 6 >=< 7 >=< 11 >= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}= Z∗

13

< 3 > =< 9 >= {1, 3, 9}
< 4 > =< 10 >= {1, 3, 4, 9, 10, 12}
< 5 > =< 8 >= {1, 5, 8, 12}
< 12 > = {1, 12} .

Exercise 31.4-1

WWX: Proof from here down.

For this exercise we will follow the steps in the pseudo-code Modular-Linear-Equation-Solver
“by hand”, to find the solutions (if they exist). To start we note that we have

a = 35

b = 10

n = 50 .

Then we let
d = gcd(a, n) = gcd(35, 50) = 5 .

Now we know that we can write d as

d = gcd(35, 50) = 5 = 35x′ + 50y′ .

If x′ = −7 then y′ = 5. Next we ask if d|b or 5|10 which is yes. Thus we compute

x0 = −7
(

10

5

)

= −14 .

Then for i = 0, 1, 2, 3, 4 we compute

xi = x0 + i
(n

d

)

= −14 + i

(

50

5

)

= −14 + 10i .

We find for these values of i that

−14 ,−4 , 6 , 16 , 26 .

Note that we could add d = 5 as many times as possible to make these numbers positive if
desired. If we run the code in modula-linear-equation-solver we get
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Exercise 31.4-2

Assume by way of contradiction that x 6= y mod n but that

ax = ay mod n .

Then since x 6= y mod n we have x = y+ z with n not a factor of z or n ∤ z or 2 mod n 6= 0.
Now if x = y + z and we multiply by a we get

ax = ay + az ,

and we consider this modulo n we get

ax mod n = ay mod n+ az mod n .

Now as ax mod n = ay mod n we have 0 = az mod n. But a 6= 0 and gcd(a, n) = 1 therefore
we must have z mod n = 0 but that is a contradiction to the statement above. Thus

ax = ay mod n⇒ x = y ,

when gcd(a, n) = 1.

We want to show ax = ay mod n when x 6= y when gcd(a, n) > 1. Let z = 2, a = 2, and
n = 4. Then x = y + z = y + 2. And 2x = 2y mod 4 is true with x = 2 and y = 0 and
x 6= y mod 4.

Problem 31.1 (The binary gcd algorithm)

Part (a): The statement

gcd(a, b) = 2gcd

(

a

2
,
b

2

)

,

follows from Corollary 31.4 from the book which states that for all integers a′ and b′ and any
nonnegative integer n that

gcd(a′n, b′n) = ngcd(a′, b′) .

When we take n = 2, a′ = a
2
, and b′ = b

2
we have the desired result.

Part (b): For this part we assume that a is odd and b is even. Then from Theorem 31.2 in
the book we have that gcd(a, b) is the smallest positive element of the set {ax + by} for all
x and y from Z. This is the same as the smallest positive element of the set

{

ax+

(

b

2

)

y′
}

with y′ = 2y. The above is equal to gcd
(

a, b
2

)

.

Part (c): We will first show that if a > b then

gcd(a, b) = gcd(a− b, b) .
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To show this, recall that the left-hand-side is the smallest positive integer in the set {ax+by}
while the right-hand-side is the smallest postive integer in the set {(a− b)x′ + by′} = {ax′ +
b(y′ − x′)} which are the same number.

For this part we assume that a and b are both odd and that a > b. In that case a− b is the
difference of two odd numbers and so is an even number. From Part (a) we then have that

gcd(a, b) = gcd(a− b, b) = gcd

(

a− b

2
, b

)

.

If b > a the situation is the same

gcd(a, b) = gcd(b− a, a) = gcd

(

b− a

2
, a

)

.

We can then use the fact that gcd(a′, b′) = gcd(−a′, b′) to reverse the sign of the b−a
2

expres-
sion.
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Appendix C (Counting and Probability)

Appendix C.1 (Counting)

a lower bound on the binomial coefficients (book notes page 1097)

The proof of the lower bound on the binomial coefficients given in the book, requires that

n− 1

k − 1
≥ n

k
,

for 1 ≤ k ≤ n. We can show this expression is true, by starting with it and seeing if we can
convert it using reversible transformations to another expression known to be true. If this
can be done, since each transformation is reversible, the original expression must also be
true. For this expression we can demonstrate it is true by using some simple manipulations.
We have

n− 1

k − 1
≥ n

k
k(n− 1) ≥ n(k − 1)

kn− k ≥ nk − n

−k ≥ −n
n ≥ k

Which is known to be true. Using the same manipulations we can show show that

n− 2

k − 2
≥ n

k
.

This inductive process can continue, subtracting one each time from the numerator and
denominator. As a check we can verify the correctness of the final inequality which is given
by

n− k + 1

1
≥ n

k
.

Using the same approach as above

n− k + 1

1
≥ n

k
kn− k2 + k ≥ n

n(k − 1)− k(k − 1) ≥ 0

(k − 1)(n− k) ≥ 0
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and the last equation is true. Given this sequence of results we can derive the lower bounds
on the binomial coefficients as

(

n
k

)

=
n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 1

=
(n

k

)

(

n− 1

k − 1

)

· · ·
(

n− k + 1

1

)

≥
(n

k

)(n

k

)

· · ·
(n

k

)

=
(n

k

)k

a upper bound on the binomial coefficients (book notes page 1097)

We have from the definition of the binomial coefficients that
(

n
k

)

=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · ·2 1

≤ nk

k!

≤ eknk

kk

≤
(en

k

)k

.

Where in the above we have used the k! ≥
(

k
e

)k
(obtained from Stirling’s approximation),

in the form
1

k!
≤
( e

k

)k

to simplify the expression nk

k!
in the above.
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the binomial coefficients and the entropy function (book notes page 1097)

If we assign k = λn, then we have the following
(

n
λn

)

≤ nn

(λn)λn(n− λn)n−λn

=
nn

(λn)λn((1− λ)n)(1−λ)n

=

(

n

(λn)λ((1− λ)n)1−λ

)n

=

(

1

λλ(1− λ)1−λ

)n

=

(

(

1

λ

)λ(
1

1− λ

)1−λ
)n

≡ 2nH(λ) ,

where the introduction of the expression H(λ) above requires that

nH(λ) = n lg(

(

1

λ

)λ(
1

1− λ

)1−λ

)

or
H(λ) = −λ lg(λ)− (1− λ) lg(1− λ) .

This is the (binary) entropy function. We note before continuing that since λ = n/k the
above bound can also be written as

(

n
k

)

≤ 2nH(n
k
) .

Exercise C.1-1 (counting substrings)

Assuming k < n, then the first substring occupies the locations 1, 2, . . . , k, the second sub-
string occupies the locations 2, 3, . . . , k + 1, and so on. The last possible substring would
occupy the locations n− k + 1, n− k, . . . , n. Thus we have in total

n− k + 1

substrings of size k in a string of size n.

To calculate how many substrings of size k a string of size n has, we from the above formula
that we have n size one substrings (k = 1), n − 1 size two substrings (k = 2), n − 2 size
three substrings, etc. Continuing this pattern the total number of substrings is the sum of
all these numbers given by

n
∑

k=1

(n− k + 1) =
n
∑

l=1

l =
n(n + 1)

2
.
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Exercise C.1-2 (counting Boolean functions)

Each Boolean function is defined by how it maps its inputs to outputs. For an n-input,
1-output Boolean function we have a total of 2n possible inputs, to which we can assign
a TRUE or a FALSE output. Thus for each possible unique input specification we have 2
possible output specifications. So we have for the number of possible inputs (counting the
number of possible outputs for each input)

2 ∗ 2 · · ·2 ∗ 2 .

With one factor of 2 for each of the possible input specification. Since there are 2n possible
input specifications, this gives a total of

22
n

,

possible Boolean functions with n-input variables and 1-output variable.

For a n-input m-output we have 2m possible choices for each possible output, so using the
same logic as before we have

(2m)2
n

= 2m2n ,

possible n-input m-output Boolean functions.

Exercise C.1-3 (counting professors)

Let the number of such ways our professors can sit be denoted by Nt, with t for “table”. Then
for each one of these seatings we can generate all permutations of n objects in the following
way. First consider a specific table ordering of professors say abcd. Then all the other
equivalent table orderings are given by circularly shifting the given ordering i.e. producing
bcda, cdab, dabc. This circular shifts produce n different. Since by performing this operation
on each of the Nt table orderings we get all possible permutations of which there are n!, so
in equation form we have that nNt must equal n!, which when we solve for Nt gives

Nt =
n!

n
= (n− 1)! .

Exercise C.1-4 (an even sum from distinct subsets of size three)

Our set is given by S = 1, 2, . . . , 100 and we want three distinct numbers that sum to an
even number. The total number of distinct size 3 subsets (independent of the order of the

elements in the subset) drawn from S is given by

(

100
3

)

. Half of these will sum to an even

number and the other half will sum to an odd number. Thus the total number is given by

1

2

(

100
3

)

= 80850 .
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Another way to obtain this same number is to recognize that to have an even sum I must
pick either three even numbers or one even number and two odd numbers. Since these two
outcomes are mutually exclusive using the rule of sum the total number of ways to pick a
even summable subset is the sum of the number of ways to select each of the previous sets.
This number is

(

50
3

)

+

(

50
1

)(

50
2

)

,

where the first combination is the number of ways to select three even numbers and the
second combination product is the number of ways to select a single odd number and then
two even numbers. One can check that the sum above reduces to 80850 also.

Exercise C.1-5 (factoring a fraction from the binomial coefficients)

Using the definition of the binomial coefficient, we have the following

(

n
k

)

=
n!

k!(n− k)!
=

n(n− 1)!

k(k − 1)!(n− 1− (k − 1))!
=

n

k

(

n− 1
k − 1

)

. (4)

Exercise C.1-6 (factoring another fraction from the binomial coefficients)

Using the definition of the binomial coefficient, we have the following

(

n
k

)

=
n!

(n− k)!k!
=

n(n− 1)!

(n− k)(n− k − 1)!k!
=

n

n− k

(

n− 1
k

)

.

Exercise C.1-7 (choosing k subsets from n by drawing subsets of size k − 1)

Considering the group of n objects with one object specified as distinguished or “special”.
Then the number of ways to select k objects from n can be decomposed into two distinct
occurrences. The times when this “special” object is selected in the subset of size k and the
times when its not. When it is not selected in the subset of size k we are specifying our k

subset elements from the n − 1 remaining elements giving

(

n− 1
k

)

total subsets in this

case. When it is selected into the subset of size k we have to select k−1 other elements from

the n−1 remaining elements, giving

(

n− 1
k − 1

)

additional subsets in this case. Summing the

counts from these two occurrences we have that factorization can be written as the following

(

n
k

)

=

(

n− 1
k

)

+

(

n− 1
k − 1

)

.
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Exercise C.1-8 (Pascal’s triangle)

We have (evaluating our binomial coefficients as we place them in the table)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Note that the top row only has one element

(

0
0

)

≡ 1. The second row has two elements
(

1
0

)

= 1, and

(

1
1

)

= 1. Subsequent rows are obtained by beginning and ending with a

one and summing the values of the two binomial coefficients in the row above.

Exercise C.1-9 (sum of the integers up to n)

Expressing each side of this expression, we have that the left hand side is given by

n
∑

i=1

i =
n(n+ 1)

2

while the right hand side is given by
(

n + 1
2

)

=
n(n + 1)

2

since the two sides are equal we have the proven identity.

Exercise C.1-10 (maximum of

(

n
k

)

as a function of k)

Because the binomial coefficients satisfy
(

n
k

)

=

(

n
n− k

)

for 0 ≤ k ≤ n

as a function of k the values of the binomial coefficients repeat once k ≥ n
2
. A specific

example of this can be seen in the Pascal triangle construction in Exercise C.1-8. If we can

show that

(

n
k

)

is an increasing function of k, the k value that will maximize the binomial

coefficient will be the one corresponding to k ≈ n
2
. If n is even this maximum will occur the

value floor(n
2
) while if n is odd this maximum will be found at floor(n

2
) and ceiling(n

2
).
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All one has to do is show that

(

n
k

)

is an increasing function of k, which means proving

the following chain of reasoning is reversible
(

n
k + 1

)

>

(

n
k

)

n!

(k + 1)!(n− k − 1)!
>

n!

(n− k)!k!

(n− k)!

(n− k − 1)!
>

(k + 1)!

k!

n− k > k + 1

n > 2k + 1

k <
n− 1

2

which says that

(

n
k

)

is increasing as a function of k as long as k < n−1
2
, which equals the

floor and ceiling expressions above if n is odd or even respectively.

Exercise C.1-11 (a product upper bounds on binomial coefficients)

We want to show that for any n ≥ 0, j ≥ 0, k ≥ 0 and j + k ≤ n that
(

n
j + k

)

≤
(

n
j

)(

n− j
k

)

.

To show this using an algebraic proof, we will evaluate the left hand side of this expression,
convert it into the right hand side multiplied by a correction factor and then show that the
correction factor is less than one. To begin we have

(

n
j + k

)

=
n!

(j + k)!(n− j − k)!

=
n!

j!(n− j)!

j!(n− j)!

(j + k)!(n− j − k)!

=

(

n
j

)

(n− j)!

k!(n− j − k)!

j!k!

(j + k)!

=

(

n
j

)(

n− j
k

)

(j(j − 1)(j − 2) · · ·2 1)(k(k − 1) · · ·2 1)
(j + k)(j + k − 1)(j + k − 2) · · ·21

Note that the top and bottom of the factor multiplying the terms

(

n
j

)(

n− j
k

)

both

have j + k elements in their product. With out loss of generality we will assume that j ≤ k.
The product above can be written as

(j(j − 1)(j − 2) · · ·2 1)(k(k − 1) · · ·2 1)
(j + k)(j + k − 1)(j + k − 2) · · ·21 =

j!k!

(k + j)(k + j − 1) · · · (k + 1)k!

=
j(j − 1)(j − 2) · · ·21

(j + k)(j + k − 1)(j + k − 2) · · · (k + 2)(k + 1)
< 1 ,
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since for every factor in the numerator, we can find a term in the denominator that is larger
than it, for example the ratio of the first product in the numerator and denominator above
satisfy

j

j + k
< 1 .

As the combined correction factor (with all these ratios) is less than one, we have shown the
inequality we started with.

As a combinatorial proof, the number of ways to select j + k items from a set of n will
be smaller than if we first select j items from n, and for each of those sets select k items
from n− j. That the former is a larger number can be seen by the following example where
equality does not hold. Consider the case n = 4, k = 3, and j = 1, then

(

4
4

)

= 1 <

(

4
1

)(

3
3

)

= 4 .

There the number of ways to select 4 items from 4 is only one which is smaller than if we are
allowed to select 1 of the 4 items first (of which there are four ways) and then combine this
with the number of ways to select three remaining elements (of which there is only one).

Exercise C.1-12 (a algebraic upper bound on the binomial coefficients)

We desire to prove by induction that
(

n
k

)

≤ nn

kk(n− k)n−k
.

Assuming that 00 = 1, we can show that k = 0 satisfies this easily since it reduces to 1 ≤ 1.
However, to begin with a more realistic case, to anchor our induction proof to, we start with

k = 1. This value gives

(

n
1

)

= n for the left hand side of this expression, while the right

hand-side evaluates to
nn

(n− 1)n−1
.

This can be simplified as follows

nn

(n− 1)n−1
= n

(

nn−1

(n− 1)n−1

)

= n

(

n

n− 1

)n−1

= n

(

1

1− 1
n

)n−1

Now since we assume that n > 1, the expression 1− 1
n
is bounded by

0 < 1− 1

n
< 1

56



and more specifically

1 <
1

1− 1
n

.

Taking positive powers of this expression (i.e. to the n−1 power) can only increase its value
and we have that

n < n

(

1

1− 1
n

)n−1

which provides the anchoring point from which to begin mathematical induction. Having
shown that this inequality is true for k = 1 we next proceed to assume it is true for k̂ < k
and show that it is true for k̂ < k + 1. To do this consider the following

(

n
k + 1

)

=
n!

(n− k − 1)!(k + 1)!

=
n!

(n− k)!k!

(

n− k

k + 1

)

=

(

n
k

)(

n− k

k + 1

)

≤ nn

kk(n− k)n−k

(

n− k

k + 1

)

=
nn

kk(k + 1)(n− k)n−k−1
.

Here on the last step we have used the induction hypothesis. Our induction proof will be
finished if we can show that the last expression above is less than the following

nn

(k + 1)k+1(n− k − 1)n−k−1
.

Towards this end we will show this by assuming that it is true and then through reversible
transformations reduce this expression to one that is known to be true. Since all transfor-
mation are reversible the original inequality must be true. So to begin we assume that

nn

kk(k + 1)(n− k)n−k−1
≤ nn

(k + 1)k+1(n− k − 1)n−k−1

(k + 1)k

kk
≤ (n− k)n−k−1

(n− k − 1)n−k−1

(

1 +
1

k

)k

≤
(

1 +
1

n− k − 1

)n−k−1

From the above if we define the function f(x) as

f(x) =

(

1 +
1

x

)x

The above expression becomes the following functional relationship, which if we can prove
is true, will complete the inductive proof

f(k) ≤ f(n− k − 1) .
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Figure 3: Graphical plot showing the monotonicity of f(x) required for the inductive proof
in Exercise C.1-12.

Further assuming that f has a monotone inverse (to be discussed below) then we can apply
the inverse to this expression to obtain the region of validity for this inequality as

k ≤ n− k − 1

or k ≤ n−1
2
. For all the statements above to be valid (and our induction proof to be complete)

all one must do now is to show that f(x) has an inverse or equivalently that f(x) is monotonic
over its domain. This could be done with derivatives but rather than that Figure 3 shows a
plot of f(x) showing its monotonic behavior.

Note also from the symmetry relationship possessed by the binomial coefficients, i.e,
(

n
k

)

=

(

n
n− k

)

we can extend our result above to all 0 ≤ k ≤ n.

Exercise C.1-13 (Stirling’s approximate for some binomial coefficients)

We desire to show that
(

2n
n

)

=
22n√
πn

(1 +O(1/n))

using Stirling’s approximation. From the definition of the binomial coefficients we know that
(

2n
n

)

=
(2n)!

n!n!
.

Now Stirling’s approximation gives an estimate of n!. Its expression is

n! =
√
2πn

(n

e

)n
(

1 + θ(
1

n
)

)

.
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Therefore substituting 2n for n we have an approximation to (2n)! given by

(2n)! =
√
4πn

(

2n

e

)2n(

1 + θ(
1

n
)

)

.

We also need an expression for (n!)2, which is given by

(n!)2 = 2πn
(n

e

)2n
(

1 + θ(
1

n
)

)2

= 2πn
(n

e

)2n
(

1 + θ(
1

n
)

)

.

Thus we have that

(

2n
n

)

=

√
4πn

(

2n
e

)2n (
1 + θ( 1

n
)
)

2πn
(

n
e

)2n (
1 + θ( 1

n
)
)

=
1√
πn

(

2n

n

)2n 1 + θ( 1
n
)

1 + θ( 1
n
)

=
22n√
πn

(

1 + θ(
1

n
)

)(

1 + θ(
1

n
)

)

=
22n√
πn

(

1 + θ(
1

n
)

)

.

As was to be shown. In deriving this result we have made repeated use of the algebra of
order symbols.

Exercise C.1-14 (the maximum of the entropy function H(λ))

The entropy function is given by

H(λ) = −λ lg(λ)− (1− λ) lg(1− λ) .

Remembering the definition of lg(·) in terms of the natural logarithm ln(·) as

lg(x) =
ln(x)

ln(2)

we have that the derivative of the lg(·) function is given by

lg(x)

dx
=

1

x ln(2)
.

Using this expression we can take the derivative of the binary entropy function giving

H ′(λ) = − lg(λ)− λ

λ ln(2)
+ lg(1− λ) +

(1− λ)

(1− λ) ln(2)

= − lg(λ) + lg(1− λ) .
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When we set this equal to zero looking for an extrema we have that

− lg(λ) + lg(1− λ) = 0

which has as its solution λ = 1
2
. We can check that this point is truly a maximum and not

a minimum by computing the second derivative of H(λ). We have that

H ′′(λ) = − 1

λ ln(2)
− 1

(1− λ) ln(2)
,

which is negative when λ = 1
2
implying a maximum. We also have that

H(
1

2
) =

1

2
+

1

2
= 1 .

Exercise C.1-15 (moment summing of binomial coefficients)

Consider the binomial expansion learned in high school

(x+ y)n =
n
∑

k=0

(

n
k

)

xkyn−k .

Taking the derivative of this expression with respect to x gives the following

n(x+ y)n−1 =

n
∑

k=0

(

n
k

)

kxk−1yn−k ,

evaluating at x = y = 1, then gives

n2n−1 =

n
∑

k=0

(

n
k

)

k ,

as was desired to be shown.

Appendix C.2 (Probability)

Exercise C.2-1 (Boole’s inequality)

We begin by decomposing the countable union of sets Ai i.e.

A1 ∪ A2 ∪A3 . . . ,

into a countable union of disjoint sets Cj. Define these disjoint sets as

C1 = A1

C2 = A2\A1

C3 = A3\(A1 ∪A2)

C4 = A4\(A1 ∪A2 ∪A3)
...

Cj = Aj\(A1 ∪A2 ∪ A3 ∪ · · · ∪ Aj−1)
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Then by construction
A1 ∪ A2 ∪ A3 · · · = C1 ∪ C2 ∪ C3 · · · ,

and the Cj’s are disjoint, so that we have

Pr(A1 ∪A2 ∪A3 ∪ · · · ) = Pr(C1 ∪ C2 ∪ C3 ∪ · · · ) =
∑

j

Pr(Cj) .

Since Pr(Cj) ≤ Pr(Aj), for each j, this sum is bounded above by

∑

j

Pr(Aj) ,

and Boole’s inequality is proven.

Exercise C.2-2 (more head for professor Rosencrantz)

For this problem we can explicitly enumerate our sample space and then count the number
of occurrences where professor Rosencrantz obtains more heads than professor Guildenstern.
Denoting the a triplet of outcomes from the one coin flip by Rosencrantz and the two coin
flips by Guildenstern as (R,G1, G2), we see that the total sample space for this experiment
is given by

(H,H,H) (H,H, T ) (H, T,H) (H, T, T )
(T,H,H) (T,H, T ) (T, T,H) (T, T, T )

From which the only outcome where professor Rosencrantz obtains more heads than professor
Guildenstern is the sample (H, T, T ). Since this occurs once from eights possible outcomes,
Rosencrantz has a 1/8 probability of winning.

Exercise C.2-3 (drawing three ordered cards)

There are 10 · 9 · 8 = 720 possible ways to draw three cards from ten when the order of the
drawn cards matters. To help motivate how to calculate then number of sorted three card
draws possible, we’ll focus how the number of ordered draws depends on the numerical value
of the first card drawn. For instance, if a ten or a nine is drawn as a first card there are no
possible ways to draw two other cards and have the total set ordered. If an eight is drawn
as the first card, then it is possible to draw a nine for the second and a ten for the third
producing the ordered set (8, 9, 10). Thus if an eight is the first card drawn there is one
possible sorted hand. If a seven is the first card drawn then we can have second and third
draws consisting of (8, 9), (8, 10), or a (9, 10) and have an ordered set of three cards. Once
the seven is drawn we now are looking for the number of ways to draw two sorted cards from
{8, 9, 10}. So if an seven is drawn we have three possible sorted hands. Continuing, if a six
is drawn as the first card we have possible second and third draws of: (7, 8), (7, 9), (7, 10),
(8, 9), (8, 10), or (9, 10) to produce an ordered set. Again we are looking for a way to draw
two sorted cards from a list (this time {7, 8, 9, 10}).
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After we draw the first card an important subcalculation is to compute the number of ways
to draw two sorted cards from a list. Assuming we have n ordered items in our list, then
we have n ways to draw the first element and n− 1 ways to draw the second element giving
n(n−1) ways to draw two elements. In this pair of elements one ordering result in a correctly
sorted list (the other will not). Thus half of the above are incorrectly ordered what remains
are

N2(n) =
n(n− 1)

2

The number of total ways to draw three sorted cards can now be found. If we first draw an
eight we have two cards from which to draw the two remaining ordered cards in N2(2) ways.
If we instead first drew a seven we have three cards from which to draw the two remaining
ordered cards in N2(3) ways. If instead we first drew a six then we have four cards from
which to draw two ordered cards in N2(4) ways. Continuing, if we first draw a one, we have
nine cards from which to draw two ordered cards in N2(9) ways. Since each of these options
is mutually exclusive the total number of ways to draw three ordered cards is given by

N2(3) +N2(4) +N2(5) + · · ·+N2(9) =

9
∑

n=2

N2(n) =

9
∑

n=2

n(n− 1)

2
= 120 .

Finally with this number we can calculate the probability of drawing three ordered cards as

120

720
=

1

6
.

Exercise C.2-4 (simulating a biased coin)

Following the hint, since a < b, the quotient a/b is less than one. If we express this number
in binary we will have an (possibly infinite) sequence of zeros and ones. The method to
determine whether to return a biased “heads” (with probability a/b) or a biased “tails”
(with probability (b−a)/b) is best explained with an example. To get a somewhat interesting
binary number, lets assume an example where a = 76 and b = 100, then our ratio a/b is 0.76.
In binary that has a representation given by (see the Mathematica file exercise C 2 4.nb)

0.76 = 0.11000010100011110112

We then begin flipping our unbiased coin. To a “head” result we will associate a one and to
a tail result we shall associate a zero. As long as the outcome of the flipped coin matches
the sequence of ones and zeros in the binary expansion of a/b, we continue flipping. At the
point where the flips of our unbiased coins diverges from the binary sequence of a/b we stop.
If the divergence produces a sequence that is less than the ratio a/b we return this result by
returning a biased “head” result. If the divergence produces a sequence that is greater than

the ratio a/b we return this result by returning a biased “tail” result. Thus we have used
our fair coin to determine where a sequence of flips “falls” relative to the ratio of a/b.

The expected number of coin flips to determine our biased result will be the expected number
of flips required until the flips from the unbiased coin don’t match the sequence of zeros and
ones in the binary expansion of the ratio a/b. If we assume that a success is when our
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unbiased coin flip does not match the digit in the binary expansion of a/b. The for each
flip a success can occur with probability p = 1/2 and a failure can occur with probability
q = 1−p = 1/2, we have that the number of flips n needed before a “success” is a geometric
random variable with parameter p = 1/2. This is that

P{N = n} = qn−1p .

So that the expected number of flips required for a success is then the expectation of the
geometric random variable and is given by

E[N ] =
1

p
= 2 ,

which is certainly O(1).

Exercise C.2-5 (closure of conditional probabilities)

Using the definition of conditional probability given in this section we have that

P{A|B} = P{A ∩B}
P{B} ,

so that the requested sum is then given by

P{A|B}+ P{Ā|B} =
P{A ∩ B}
P{B} +

P{Ā ∩B}
P{B}

=
P{A ∩ B}+ P{Ā ∩B}

P{B}

Now since the events A ∩ B and Ā ∩ B are mutually exclusive the above equals

P{(A ∩ B) ∪ (Ā ∩B)}
P{B} =

P{(A ∪ Ā) ∩B}
P{B} =

P{B}
P{B} = 1 .

Exercise C.2-6 (conditioning on a chain of events)

This result follows for the two set case P{A∩B} = P{A|B}P{B} by grouping the sequence
of Ai’s in the appropriate manner. For example by grouping the intersection as

A1 ∩A2 ∩ · · · ∩An−1 ∩An = (A1 ∩ A2 ∩ · · · ∩ An−1) ∩ An

we can apply the two set result to obtain

P{A1 ∩ A2 ∩ · · · ∩ An−1 ∩ An} = P{An|A1 ∩A2 ∩ · · · ∩ An−1}P{A1 ∩ A2 ∩ · · · ∩ An−1} .

Continuing now to peal An−1 from the set A1∩A2∩· · ·∩An−1 we have the second probability
above equal to

P{A1 ∩A2 ∩ · · · ∩An−2 ∩An−1} = P{An−1|A1 ∩A2 ∩ · · · ∩An−2}P{A1 ∩A2 ∩ · · · ∩An−2} .
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Continuing to peal off terms from the back we eventually obtain the requested expression
i.e.

P{A1 ∩ A2 ∩ · · · ∩ An−1 ∩ An} = P{An|A1 ∩A2 ∩ · · · ∩ An−1}
× P{An−1|A1 ∩ A2 ∩ · · · ∩ An−2}
× P{An−2|A1 ∩ A2 ∩ · · · ∩ An−3}
...

× P{A3|A1 ∩ A2}
× P{A2|A1}
× P{A1} .

Exercise C.2-7 (pairwise independence does not imply independence)

Note: As requested by the problem I was not able to find a set of events that are pairwise
independent but such that no subset k > 2 of them are mutually independent. Instead I
found a set of events that are all pairwise independent but that are not mutually independent.
If you know of a solution to the former problem please contact me.

Consider the situation where we have n distinct people in a room. Let Ai,j be the event
that person i and j have the same birthday. We will show that any two of these events are
pairwise independent but the totality of events Ai,j are not mutually independent. That is
we desire to show that the two events Ai,j and Ar,s are independent but the totality of all
(

n
2

)

events are not independent. Now we have that

P (Ai,j) = P (Ar,s) =
1

365
,

since for the specification of either one persons birthday the probability that the other person
will have that birthday is 1/365. Now we have that

P (Ai,j ∩ Ar,s) = P (Ai,j|Ar,s)P (Ar,s) =

(

1

365

)(

1

365

)

=
1

3652
.

This is because P (Ai,j|Ar,s) = P (Ai,j) i.e. the fact that persons r and s have the same
birthday has no effect on whether the persons i and j have the same birthday. This is true
even if one of the people in the pairs (i, j) and (r, s) is the same. When we consider the
intersection of all the sets Ai,j, the situation changes. This is because the event ∩(i,j)Ai,j

(where the intersection is over all pairs (i, j)) is the event that every pair of people have the
same birthday, i.e. that everyone considered has the same birthday. This will happen with
probability

(

1

365

)n−1

,
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while if the events Ai,j were independent the required probability would be

∏

(i,j)

P (Ai,j) =

(

1

365

)





n
2





=

(

1

365

)

n(n−1)
2

.

Since

(

n
2

)

6= n− 1, these two results are not equal and the totality of events Ai,j are not

independent.

Exercise C.2-8 (conditional but not independence)

Consider the situation where we have to coins. The first coin C1 is biased and has probability
p of landing heads when flipped where p > 1/2. The second coin C2 is fair and has probability
of landing heads 1/2. For our experiment one of the two coins will be selected (uniformly and
at random) and presented to two people who will each flip this coin. We will assume that
the coin that is selected is not known. Let H1 be the event that the first flip lands heads,
and let H2 be the event that the second flip lands heads. We can show that the events H1

and H2 are not independent by computing P (H1), P (H2), and P (H1, H2) by conditioning
on the coin selected. We have for P (H1)

P (H1) = P (H1|C1)P (C1) + P (H1|C2)P (C2)

= p
1

2
+

1

2

1

2

=
1

2
(p+

1

2
) ,

Here C1 is the event that we select the first (biased) coin while C2 is the event we select the
second (unbiased) coin. In the same way we find that

P (H2) =
1

2
(p+

1

2
) ,

while P (H1, H2) is given by

P (H1, H2) = P (H1, H2|C1)P (C1) + P (H1, H2|C2)P (C2)

= p2
1

2
+

1

4

1

2

=
1

2
(p2 +

1

4
) .

The events H1 and H2 will only be independent if P (H1)P (H2) = P (H1, H2) or

1

4

(

p+
1

2

)2

=
1

2
(p2 +

1

4
) .

or simplifying this result equality only holds if p = 1/2 which we are assuming is not true.
Now let event E denote the event that we are told that the coin selected and flipped by both
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parties is the fair one, i.e. that event C2 happens. Then we have

P (H1|E) =
1

2
and P (H2|E) =

1

2

P (H1, H2|E) =
1

4
.

Since in this case we do have P (H1, H2|E) = P (H1|E)P (H2|E) we have the required condi-
tional independence. Intuitively, this result makes sense because once we know that the coin
flipped is fair we expect the result of each flip to be independent.

Exercise C.2-9 (the Monte-Hall problem)

Once we have selected a curtain we are two possible situations we might find ourself in. The
first situation A, is where we have selected the curtain with the prize behind it or situation
B where we have not selected the curtain with the prize behind it. The initial probability
of event A is 1/3 and that of event B is 2/3. We will calculate our probability of winning
under the two choices of actions. The first is that we choose not to switch curtains after the
emcee opens a curtain that does not cover the prize. The probability that we win, assuming
the “no change” strategy, can be computed by conditioning on the events A and B above as

P (W ) = P (W |A)P (A) + P (W |B)P (B) .

Under event A and the fact that we don’t switch curtains we have P (W |A) = 1 and
P (W |B) = 0, so we see that P (W ) = 1/3 as would be expected. If we now assume that
we follow the second strategy where by we switch curtains after the emcee revels a curtain
behind which the prize does not sit. In that case P (W |A) = 0 and P (W |B) = 1, since in
this strategy we switch curtains. The the total probability we will is given by

P (W ) = 0 + 1 · 2
3
=

2

3
,

since this is greater than the probability we would win under the strategy were we don’t

switch this is the action we should take.

Exercise C.2-10 (a prison delima)

I will argue thatX has obtained some information from the guard. Before asking his question
the probability of event X (X is set free) is P (X) = 1/3. If prisoner X is told that Y (or Z
in fact) is to be executed, then to determine what this implies about the event X we need
to compute P (X|¬Y ). Where X , Y , and Z are the events that prisoner X , Y , or Z is to be
set free respectively. Now from Bayes’ rule

P (X|¬Y ) =
P (¬Y |X)P (X)

P (¬Y )
.
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We have that P (¬Y ) is given by

P (¬Y ) = P (¬Y |X)P (X) + P (¬Y |Y )P (Y ) + P (¬Y |Z)P (Z) =
1

3
+ 0 +

1

3
=

2

3
.

So the above probability then becomes

P (X|¬Y ) =
1(1/3)

2/3
=

1

2
>

1

3
.

Thus the probability that prisoner X will be set free has increased and prisoner X has
learned from his question.

proof of the cumulative summation formula for E[X ] (book notes page 1109)

We have from the definition of the expectation that

E[X ] =

∞
∑

i=0

iP{X = i} .

expressing this in terms of the the complement of the cumulative distribution function
P{X ≥ i} gives E[X ] equal to

∞
∑

i=0

i(P{X ≥ i} − P{X ≥ i+ 1}) .

Using the theory of difference equations we write the difference in probabilities above in
terms of the ∆ operator defined on a discrete function f(i) as

∆g(i) ≡ g(i+ 1)− g(i) ,

giving

E[X ] = −
∞
∑

i=0

i∆iP{X ≥ i} .

No using the discrete version of integration by parts (demonstrated here for two discrete
functions f and g) we have

∞
∑

i=0

f(i)∆g(i) = f(i)g(i)|∞i=1 −
∞
∑

i=1

∆f(i)g(i) ,

gives for E[X ] the following

E[X ] = − iP{X ≥ i}|∞i=1 +

∞
∑

i=1

P{X ≥ i}

=

∞
∑

i=1

P{X ≥ i} .
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1 2 3 4 5 6
1 (2,1) (3,2) (4,3) (5,4) (6,5) (7,6)
2 (2,2) (4,2) (5,3) (6,4) (7,5) (8,6)
3 (4,3) (5,3) (6,3) (7,4) (8,5) (9,6)
4 (5,4) (6,4) (7,4) (8,4) (9,5) (10,6)
5 (6,5) (7,5) (8,5) (9,5) (10,5) (11,6)
6 (7,6) (8,6) (9,6) (10,6) (11,6) (12,6)

Table 7: The possible values for the sum (the first number) and the maximum (the second
number) observed when two die are rolled.

which is the desired sum. To see this another way we can explicitly write out the summation
given above and cancel terms as in

E[X ] =

∞
∑

i=0

i(P{X ≥ i} − P{X ≥ i+ 1})

= 0 + P{X ≥ 1} − P{X ≥ 2}
+ 2P{X ≥ 2} − 2P{X ≥ 3}
+ 3P{X ≥ 3} − 3P{X ≥ 4}+ . . .

= P{X ≥ 1}+ P{X ≥ 2}+ P{X ≥ 3}+ . . . ,

verifying what was claimed above.

Appendix C.3 (Discrete random variables)

Exercise C.3-1 (expectation of the sum and maximum of two die)

We will begin by computing all possible sums and maximum that can be obtained when we
roll two die. These numbers are computed in table 7, where the row corresponds to the first
die and the column corresponds to the second die. Since each roll pairing has a probability
of 1/36 of happening we see that the expectation of the sum S is given by

E[S] = 2

(

1

36

)

+ 3

(

2

36

)

+ 4

(

3

36

)

+ 5

(

4

36

)

+ 6

(

5

36

)

+ 7

(

6

36

)

+ 8

(

5

36

)

+ 9

(

4

36

)

+ 10

(

3

36

)

+ 11

(

2

36

)

+ 12

(

1

36

)

= 6.8056 .

While the expectation of the maximum M is given by a similar expression

E[M ] = 1

(

1

36

)

+ 2

(

3

36

)

+ 3

(

5

36

)

+ 4

(

7

36

)

+ 5

(

9

36

)

+ 6

(

11

36

)

= 4.4722 .
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Exercise C.3-2 (expectation of the index of the max and min of a random array)

Since the array elements are assumed random the maximum can be at any of the n indices
with probability 1/n. Thus if we define X to be the random variable representing the location
of the maximum of our array we see that the expectation of X is given by

E[X ] = 1

(

1

n

)

+ 2

(

1

n

)

+ · · ·+ n

(

1

n

)

=
1

n

n
∑

k=1

k =
1

n

(

n(n + 1)

2

)

=
n+ 1

2
.

The same is true for the expected location of the minimum.

Exercise C.3-3 (expected cost of playing a carnival game)

Define X to be the random variable denoting the payback from one play of the carnival
game. Then the payback depends on the possible outcomes after the player has guessed a
number. Let E0 be the event that the player’s number does not appear on any die, E1 the
event that the player’s number appears on only one of the three die, E2 the event that the
player’s number appears on only two of the die, and finally E3 the event that the player’s
number appears on all three of the die. The the expected payback is given by

E[X ] = −P (E0) + P (E1) + 2P (E2) + 3P (E3) .

We now compute the probability of each of the events above. We have

P (E0) =

(

5

6

)3

= 0.5787

P (E1) = 3

(

1

6

)(

5

6

)2

= 0.3472

P (E2) = 3
1

6
· 1
6
· 5
6
= 0.0694

P (E3) =
1

63
= 0.0046 .

Where the first equation expresses the fact that each individual die will not match the
player’s selected die with probability of 5/6, so the three die will not match the given die
with probability (5/6)3. The other probabilities are similar. Using these to compute the
expected payoff using the above formula gives

E[X ] = − 17

216
= −0.0787 .

To verify that these numbers are correct in the Matlab file exercise C 3 3.m, a Monte-Carlo
simulation is developed verifying these values. This function can be run with the command
exercise C 3 3(100000).
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Exercise C.3-4 (bounds on the expectation of a maximum)

We have for E[max(X, Y )] computed using the joint density of X and Y that

E[max(X, Y )] =
∑

x

∑

y

max(x, y)P{X = x, Y = y}

≤
∑

x

∑

y

(x+ y)P{X = x, Y = y} ,

since X and Y are non-negative. Then using the linearity of the above we have

E[max(X, Y )] ≤
∑

x

∑

y

xP{X = x, Y = y}+
∑

x

∑

y

yP{X = x, Y = y}

=
∑

x

xP{X = x} +
∑

y

yP{Y = y}

= E[X ] + E[Y ] ,

which is what we were to show.

Exercise C.3-5 (functions of independent variables are independent)

By the independence of X and Y we know that

P{X = x, Y = y} = P{X = x}P{Y = y} .

But by definition of the random variable X has a realization equal to x then the random
variable f(X) will have a realization equal to f(x). The same statement hold for the random
variable g(Y ) which will have a realization of g(y). Thus the above expression is equal to
(almost notationally)

P{f(X) = f(x), g(Y ) = g(y)} = P{f(X) = f(x)}P{g(Y ) = g(y)}

Defining the random variable F by F = f(X) (an instance of this random variable f) and
the random variable G = g(Y ) (similarly and instance of this random variable g) the above
shows that

P{F = f,G = g} = P{F = f}P{G = g}
or

P{f(X) = f, g(Y ) = g} = P{f(X) = f}P{g(Y ) = g} ,
showing that f(X) and g(Y ) are independent as requested.

Exercise C.3-6 (Markov’s inequality)

To prove that

P{X ≥ t} ≤ E[X ]

t
,
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is equivalent to proving that
E[X ] ≥ tP{X ≥ t} .

To prove this first consider the expression for E[X ] broken at t i.e.

E[X ] =
∑

x

xP{X = x}

=
∑

x<t

xP{X = x} +
∑

x≥t

xP{X = x} .

But since X is non-negative we can drop the expression
∑

x<t xP{X = x} from the above
and obtain a lower bound. Specifically we have

E[X ] ≥
∑

x≥t

xP{X = x}

≥ t
∑

x≥t

P{X = x}

= tP{X ≥ t} ,

or the desired result.

Exercise C.3-7 (if X(s) ≥ X ′(s) then P{X ≥ t} ≥ P{X ′ ≥ t})

Lets begin by defining two sets At and Bt as follows

At = {s ∈ S : X(s) ≥ t}
Bt = {s ∈ S : X ′(s) ≥ t} .

Then lets consider an element s̃ ∈ Bt. Since s̃ is in Bt we know that X ′(s̃) > t. From the
assumption on X and X ′ we know that X(s̃) ≥ X ′(s̃) ≥ t, and s̃ must also be in At. Thus
the set Bt is a subset of the set At. We therefore have that

P{X ≥ t} =
∑

s∈At

P{s} ≥
∑

s∈Bt

P{s} = P{X ′ ≥ t} ,

and the desired result is obtained.

Exercise C.3-8 (E[X2] > E[X ]2)

From the calculation of the variance of the random variable X we have that

Var(X) = E[(X − E[X ])2] > 0 ,

since the square in the expectation is always a positive number. Expanding this square we
find that

E[X2]− E[X ]2 > 0 .
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Which shows on solving for E[X2] that

E[X2] > E[X ]2 ,

or that the expectation of the square of the random variable is larger than the square of
the expectation. This make sense because if X where to take on both positive and negative
values in computing E[X ]2 the expectation would be decreased by X taking on instances of
both signs. The expression E[X2] would have no such difficulty since X2 is aways positive
regardless of the sign of X .

Exercise C.3-9 (the variance for binary random variables)

Since X takes on only value in {0, 1}, lets assume that

P{X = 0} = 1− p

P{X = 1} = p .

Then the expectation of X is given by E[X ] = 0(1 − p) + 1p = p. Further the expectation
of X2 is given by E[X2] = 0(1− p) + 1p = p. Thus the variance of X is given by

Var(X) = E[X2]− E[X ]2

= p− p2 = p(1− p)

= E[X ](1−E[X ])

= E[X ]E[1−X ] .

Where the transformation 1 − E[X ] = E[1 − X ] is possible because of the linearity of the
expectation.

Exercise C.3-10 (the variance for aX)

From the suggested equation we have that

Var(aX) = E[(aX)2]− E[aX ]2

= E[a2X2]− a2E[X ]2

= a2(E[X2]− E[X ]2)

= a2Var(X) ,

by using the linearity property of the expectation.

Appendix C.4 (The geometric and binomial distributions)

an example with the geometric distribution (book notes page 1112)

All the possible outcomes for the sum on two die are given in table 7. There one sees that the
sum of a 7 occurs along the right facing diagonal (elements (6, 1), (5, 5), (4, 3), (3, 4), (2, 5), (1, 6)),
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while the sum of 11 occurs for the elements (6, 5), (5, 6). The the probability we roll a 7 or
an 11 is given by

p =
6

36
+

2

36
=

8

36
=

2

9
.

if we take this as the probability of success then the remaining results from the book follow.

Exercise C.4-1 (the closure property for the geometric distribution)

The geometric distribution gives the probability our first success occurs at trail numbered k
when each trial has p as a probability of success. It has a distribution function given by

P{X = k} = p(1− p)k−1 = pqk−1 .

Where we have defined q = 1 − p. If we sum this probability distribution for all possible
location of the first success we obtain

∞
∑

k=1

p(1− p)k−1 =
p

q

∞
∑

k=1

qk

=
p

q

( ∞
∑

k=0

qk − 1

)

=
p

q

(

1

1− q
− 1

)

=
p

q

(

1

p
− 1

)

=
p

q

(

1− p

p

)

= 1 ,

as we were to show.

Exercise C.4-2 (average number of times to obtain three heads and tails)

Let one trial consist of flipping six coins. Then we consider a success when we have obtained
three head and three tails. Thus since there are 26 possible outcomes of six flips when the

flips are ordered there are then

(

6
3

)

the probability of “success” (p) for this experiment

is given by

p =

(

6
3

)

26
=

20

64
= 0.3125 .

Since the number of trials needed to obtain a success is a geometric distribution we have
that the average number of times we must perform this experiment is given by the average
for a geometric distribution with probability of success p or

1

p
=

1

0.3125
= 3.2 .
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Exercise C.4-3 (an equality with the binomial distribution)

Using the definition of b(k;n, p) we have that

b(k;n, p) =

(

n
k

)

pk(1− p)n−k .

Since

(

n
k

)

=

(

n
n− k

)

the above can be written as

b(k;n, p) =

(

n
n− k

)

(1− p)n−kpk .

Defining q = 1− p we see the right hand side of the above is equal to
(

n
n− k

)

qn−k(1− q)k = b(n− k;n, q) ,

and the desired result is shown.

Exercise C.4-4 (the maximum of the binomial coefficient)

From the discussion in the text the binomial coefficient has a maximum at the integer k
that lies in the range np− q < k < (n+ 1)p. To evaluate the approximate maximum of the
binomial coefficient we will evaluate it at k = np which is certainly between the two limits
np−q and (n+1)p. Our binomial coefficient evaluated at its approximate maximum k = np
is given by

b(np;n, p) =

(

n
np

)

pnp(1− p)n−np

=
n!

(n− np)!(np)!
pnp(1− p)nq

=
n!

(nq)!(np)!
pnpqnq .

where we have introduced q = 1− p into the above to simplify the notation. Using Stirling’s
approximation for n! given by

n! =
√
2πn

(n

e

)n
(

1 + θ(
1

n
)

)

,

we can simplify the factorial expression above (and dropping the order symbols θ) we have

n!

(nq)!(np)!
≈
√
2πn

(n

e

)n

× 1√
2πnq

(

e

nq

)nq

× 1√
2πnp

(

e

np

)np

=
1√
2π

(

n

(nq)(np)

)1/2
nn

(nq)nq(np)np

=
1√
2π

(

1

nqp

)1/2(
1

qqpp

)n

.
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upon multiplying the above by pnpqnq we find that

b(np;n, p) ≈
(

1

2πnpq

)1/2

,

as we were to show.

Exercise C.4-5 (the limiting probability of no successes)

The probability of no successes in a sequence of n Bernoulli trials with (probability of success
p = 1/n) is given by b(0;n, 1/n). This is equal to

b(0;n, 1/n) =

(

n
0

)(

1

n

)0(

1− 1

n

)n

=

(

1− 1

n

)n

Remembering a famous limit from calculus

lim
x→+∞

(

1 +
x

n

)n

= ex ,

we see that for large n the probability b(0;n, 1/n) is approximately e−1. The probability of
at least one success is given by b(1;n, 1/n). This is equal to

b(1;n, 1/n) =

(

n
1

)(

1

n

)1(

1− 1

n

)n−1

= n

(

1

n

)(

1− 1

n

)n−1

=

(

1− 1

n

)n−1

=
1

(

1− 1
n

)

(

1− 1

n

)n

→
(

1− 1

n

)n

as n→ +∞ .

Using the limiting argument above we have this probability equal to e−1 as n goes to infinity.

Exercise C.4-6 (the probability of obtaining the same number of heads)

For a total of 2n flips we have 22n = 4n possible sequences of heads and tails in 2n flips.
Let the first n of these correspond to the flips of professor Rosencrantz and the remaining
n corresponds to those of professor Guildenstern. Following the hint in the book, we will
call a success for professor Rosencrantz when his flip lands heads and a success for professor
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Guildenstern when his flip lands tails. Then both professors will obtain the same number
of heads if say professor Rosencrantz has k successes while professor Guildenstern has n− k
successes. Thus the number of sequences (from our 4n) that have the same number of heads
for both professors is an equivalent problem to selecting k + (n − k) = n total locations
from among 2n possible and declaring these to be the locations of the successes for both
professors. This means that if a success is placed before the n+1th flip it is considered to be
a success for professor Rosencrantz and denotes a head (the remaining flips for Rosencrantz
are then all tails). If a success falls after the nth flip it is considered to be a success for
professor Guildenstern and is considered to be a tail (the remaining flips for Guildenstern
are considered to be all heads). The number of sequences with n total successes is given by
(

2n
n

)

and so the probability of obtaining the same number of heads is given by

(

2n
n

)

4n
,

as claimed. Using the result from Exercise C.1-13 which derives the approximate

(

2n
n

)

=
4n√
πn

(

1 +O(
1

n
)

)

.

we can simplify the probability of obtaining the same number of heads and find that is is
approximately equal to

1√
πn

(

1 +O(
1

n
)

)

.

Another way to approach this problem is to explicitly sum the probability that professor
Rosencrantz has k successes while professor Guildenstern has n−k successes. The probability
that both these events happen (since they are independent) is given by the product of the
appropriate binomial distribution i.e.

b(k;n, 1/2)b(n− k;n, 1/2) .

So the total probability of that the two professors get the same number of heads is given by
the sum of that probability for all possible k’s (k = 0 to k = n) or

n
∑

k=0

b(k;n, 1/2)b(n− k;n, 1/2) .

This expression simplifies in the obvious ways

n
∑

k=0

b(k;n, 1/2)b(n− k;n, 1/2) =
n
∑

k=0

b(k;n, 1/2)2

=
n
∑

k=0

(

n
k

)2(
1

2

)2n

=
1

4n

n
∑

k=0

(

n
k

)2

.
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In the above we have used the symmetry of the binomial distribution with respect to k and
n− k, i.e. b(k;n, 1/2) = b(n− k;n, 1/2), which a special case of the result shown in Exercise
C.4-3 above. Equating these two results we have a nice combinatorial identity

n
∑

k=0

(

n
k

)2

=

(

2n
n

)

,

as claimed.

Exercise C.4-7 (the entropy bound on the binomial distribution)

From the binomial bound derived in Appendix C.1 (also see the notes above that go with
that section) we have that

(

n
k

)

≤ 2nH(n
k
) .

Using this expression we can immediately bound b(k;n, 1/2) as

b(k;n, 1/2) =

(

n
k

)(

1

2

)k (
1

2

)n−k

=

(

n
k

)(

1

2

)n

≤ 2nH(n
k
)

(

1

2

)n

= 2nH(n
k
)−n ,

which is the desired upper bound on b(k;n, 1/2).

Exercise C.4-8 (sums of Bernoulli random variables with different values of p)

Since X is a random variable representing the total number of success in n Bernoulli trials
(with each trial having pi as its probability of success) we can explicitly express X as the
sum of n indicator random variables Ii as

X =

n
∑

i=1

Ii .

Here where Ii is one if the ith Bernoulli trial is a success and zero otherwise. Then since
the definition of P{X < k} means the sum of the probability that X takes the values
0, 1, . . . , k − 1 or

P{X < k} =
k−1
∑

i=0

P{X = i} ,

the probability we are attempting to bound is given in terms of “equality” probabilities i.e.
expressions like P{X = i}. Now for the random variable X to be exactly i means that only
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i of the Bernoulli trials were a success (no more and no less) and the remaining trials were a
failure. Thus if we select a subset of size i from the n total Bernoulli random variables, the
above probability is expressed as the sum over all such subsets of size i i.e.

P{X = i} =
∑

pl1pl2 · · · pli(1− pli+1
)(1− pli+2

) · · · (1− pln) . (5)

Here the sum is over all possible subsets of size i from n and the indices li select which of
the i Bernoulli indicator variables from n were successful. Now since pi ≤ p it follows that
1− pi ≥ 1− p and thus using these for each factor in the product we have that the term in
the sum above is bounded as

pl1pl2 · · · pli(1− pli+1
)(1− pli+2

) · · · (1− pln) ≤ pi(1− p)n−i , (6)

Since there are

(

n
i

)

total terms in the sum above we see that

P{X = i} ≤
(

n
i

)

pi(1− p)n−i = b(i;n, p) .

Thus using this we have just shown that

P{X < k} =
k−1
∑

i=0

P{X = i} ≤
k−1
∑

i=0

b(i;n, p) ,

which is the desired result.

Exercise C.4-9 (a lower bound on our success)

We can work this exercise in much the same way as the previous exercise C.4-8. Here we
can still write P{X = i} in the form as given by Equation 5. Rather than use a single value
of p such that p ≥ pi for all i we now have several p′i where p′i ≥ pi and thus Equation 6 in
this case becomes

pl1pl2 · · · pli(1− pli+1
)(1− pli+2

) · · · (1− pln) ≤ p′l1p
′
l2
· · · p′li(1− p′li+1

)(1− p′li+2
) · · · (1− p′ln) .

Thus

P{X = i} =
∑

pl1pl2 · · · pli(1− pli+1
)(1− pli+2

) · · · (1− pln)

≤
∑

p′l1p
′
l2 · · · p′li(1− p′li+1

)(1− p′li+2
) · · · (1− p′ln) = P{X ′ = i} .

The cumulative probabilities now follow. We have

P{X ′ ≥ k} =
n
∑

i=k

P{X ′ = i} ≥
n
∑

i=k

P{X = i} = P{X ≥ k} ,

which is the desired result.
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Appendix C.5 (The tails of the binomial distribution)

Exercise C.5-1 (flip n tails or obtain fewer than n heads)

We know that the probability of obtaining n tails when flipping a fair coin is given by

Pn tails in n flips =

(

1

2

)n

.

This is to be compared to the probability of flipping fewer than n heads when we flip our
fair coin 4n times or

Pless than n heads in 4n flips =

n−1
∑

i=0

b(i; 4n, 1/2) .

When I first saw this problem I thought it would have a definitive answer (i.e. the first
expression is always less than the second expression). Unfortunately after working in for a
bit I think the answer depends on the value of n. After making an attempt to solve it in
various ways I decided to compute each of the above numerically and see which one is larger.
In the R code exercise C 5 1.R we compute the two probabilities above and denote which
one is larger. I find

n P_n_tails_in_n P_less_than_n_heads_in_4n first_gt_second

1 15 3.051758e-05 2.111852e-05 TRUE

2 16 1.525879e-05 1.218229e-05 TRUE

3 17 7.629395e-06 7.037078e-06 TRUE

4 18 3.814697e-06 4.070015e-06 FALSE

5 19 1.907349e-06 2.356621e-06 FALSE

6 20 9.536743e-07 1.365935e-06 FALSE

Based on the above I should attempt to prove

Pn tails in n flips > Pless than n heads in 4n flips ,

when n ≤ 17 and

Pn tails in n flips < Pless than n heads in 4n flips ,

when n ≥ 18. This means that we need to show

(

1

2

)n

<

n−1
∑

i=0

b(i; 4n, 1/2) .

for n ≥ 18. While this seemed simple enough I was unable to find a way to prove this (even
for large n). If anyone sees a way to do this please contact me.
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Exercise C.5-2 (bounds on the right tail of the binomial distribution)

We begin by proving Corollary C.6 which claims that given a sequence of n Bernoulli trials
each with probability p of success that

P{X > k} =
n
∑

i=k+1

b(i;n, p) <
(n− k)p

k − np
b(k;n, p) .

To prove this lets first consider the ratio b(i+ 1;n, p)/b(i;n, p) which is given by

b(i+ 1;n, p)

b(i;n, p)
=

(

n
i+ 1

)

pi+1(1− p)n−i−1

(

n
i

)

pi(1− p)n−i

=

(

n− i

i+ 1

)

p

1− p
.

Thus (since we assume that i is taken between k and n i.e. that k < i < n) we have

b(i+ 1;n, p)

b(i;n, p)
≤
(

n− k

k + 1

)(

p

1− p

)

.

Defining x to be the above expression we see that x < 1 through the following arguments

x <

(

n− np

np+ 1

)(

p

1− p

)

=
n(1− p)p

(np + 1)(1− p)
=

np

np+ 1

<
np

np + 1
<

np

np
= 1 .

Now using the ratio above and the definition of x we have that b(i + 1;n, p) is bounded by
b(i;n, p) as

b(i+ 1;n, p) < xb(i;n, p) .

In the same way, b(i+ 2;n, p) is bounded by b(i;n, p) as

b(i+ 2;n, p) < xb(i + 1;n, p) < x2b(i;n, p) .

Continuing this iteration scheme for i+ 3, i+ 4, · · · we see that the probability X > k (the
right tail probability) is bounded above by

n
∑

i=k+1

b(i;n, p) < xb(k;n, p) + x2b(k;n, p) + · · ·+ xnb(k;n, p) .

This can be further manipulated (by summing to infinity) as follows
n
∑

i=k+1

b(i;n, p) < b(k;n, p)

n
∑

i=1

xi

< b(k;n, p)
∞
∑

i=1

xi

= b(k;n, p)

(

x

1− x

)

.
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Remembering the definition of x we can compute that

x

1− x
=

(n− k)p

1− p+ k − np
,

which is itself less than (n−k)p
k−np

so we can finally conclude that

∞
∑

i=k+1

b(i;n, p) ≤ (n− k)p

k − np
b(k;n, p) ,

as we were asked to show.

We next prove Corollary C.7 which is the statement that given a sequence of n Bernoulli
trials each with probability p of being a success and a specific number of success k in the
right tail of our distribution (np+n

2
< k < n) that the probability of obtaining more than k

success is less than one half the probability of obtaining more than k − 1 success. This is
really a statement that as we require having more and more successes from our n Bernoulli
trials the probabilities decrease geometrically (with rate 1/2). We will begin by showing that
the coefficient of b(k;n, p) in Corollary C.6 is less than one. We have since np+n

2
< k < n

that
(

n− k

k − np

)

p <

(

n− np+n
2

np+n
2
− np

)

p = p < 1 .

Thus from Corollary C.6 we have that

P{X > k} =
n
∑

i=k+1

b(i;n, p) < b(k;n, p) ,

or equivalently that
b(k;n, p)

∑n
i=k+1 b(i;n, p)

> 1 .

Now consider the ratio of P{X > k} to P{X > k − 1}
P{X > k}

P{X > k − 1} =

∑n
i=k+1 b(i;n, p)
∑n

i=k b(i;n, p)

=

∑n
i=k+1 b(i;n, p)

b(k;n, p) +
∑n

i=k+1 b(i;n, p)

=
1

1 + b(k;n,p)
∑

n

i=k+1 b(i;n,p)

<
1

1 + 1
=

1

2
,

and the desired result is proven.

Exercise C.5-3 (upper bounds on a geometric sum)

Let a > 0 be given, and define p = a
a+1

< 1, then

q = 1− p = 1− a

a+ 1
=

1

a + 1
.
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Now consider the pq product found in the binomial coefficient b(i;n, p) =

(

n
i

)

piqn−i, i.e.

piqn−i. With the definition given above for p and q we have

piqn−i =

(

a

a+ 1

)i(
1

a + 1

)n−i

=
ai

(a+ 1)n
.

From this we see that ai = (a+ 1)npiqn−i and thus our desired sum is given by

k−1
∑

i=0

(

n
i

)

ai = (a+ 1)n
k−1
∑

i=0

(

n
i

)

piqn−i .

Which can be seen as the left tail of the binomial distribution for which we have developed
bounds for in the text. Specifically if X is a binomial random variable (with parameters
(n, p)) then using the bounds that

P{X < k} =
k−1
∑

i=0

b(i;n, p) <
kq

np− k
b(k;n, p) ,

the above becomes

k−1
∑

i=0

b(i;n,
a

a+ 1
) ≤

k
(

1
a+1

)

n
(

a
a+1

)

− k
b(k;n,

a

a+ 1
)

=
k

na− k(a + 1)
b(k;n,

a

a + 1
) .

Which gives in summary (including the factor (a + 1)n) then that

k−1
∑

i=0

(

n
i

)

ai ≤ (a+ 1)n
k

na− k(a+ 1)
b(k;n,

a

a+ 1
) ,

as we were requested to show.

Exercise C.5-4 (an upper bound on a geometric like sum)

Consider the sum we are asked to study

k−1
∑

i=0

piqn−i .

Since 1 ≤
(

n
i

)

for i = 0, 1, 2, · · · , n the above sum is less than or equal to

k−1
∑

i=0

(

n
i

)

piqn−i =
k−1
∑

i=0

b(i;n, p) ,
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which by Theorem C.4 is bounded above by

(

kq

np− k

)

b(k;n, p) .

From Lemma C.1 we can further bound the individual binomial coefficient b(k;n, p) as

b(k;n, p) ≤
(np

k

)k
(

nq

n− k

)n−k

.

Thus incorporating each of these bounds we have that

k−1
∑

i=0

piqn−i <

(

kq

np− k

)

(np

k

)k
(

nq

n− k

)n−k

,

as we were requested to show.

Exercise C.5-5 (bounds on the number of failures)

We begin by defining the random variable Y to be the number of failures in n Bernoulli
trials where the probability of success for each trial is pi. Then in terms of X (the number
of successes in these n Bernoulli trials) we have that Y = n−X , since each success is not a
failure and vice versa. This expression simply states that if you know the number of success
(failures) in a sequence of n Bernoulli trials it is easy to calculate the number of failures
(successes). Taking the expectation of this expression and remembering that we defined µ
as µ = E[X ], we see that E[Y ] = n − E[X ] = n − µ. Now applying Theorem C.8 to the
random variable Y we have that

P{Y − E[Y ] ≥ r} ≤
(

E[Y ]e

r

)r

.

Writing the above expression in terms of X and µ we have

P{(n−X)− (n− µ) ≥ r} ≤
(

(n− µ)e

r

)r

.

or

P{µ−X ≥ r} ≤
(

(n− µ)e

r

)r

,

the desired result.

To show the second identity, we will apply Corollary C.9 to the random variable Y , but
in this case the probability of success for each Bernoulli trial is a constant p. Thus the
probability of failure in each Bernoulli trial is also a constant q = 1 − p. We thus obtain
(since E[Y ] = nq)

P{Y − nq ≥ r} ≤
(nqe

r

)r

.
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Again using the fact that Y = n−X to write the above expression in terms of X we find

P{n−X − nq ≥ r} ≤
(nqe

r

)r

,

or
P{n(1− q)−X ≥ r} ≤

(nqe

r

)r

,

or
P{np−X ≥ r} ≤

(nqe

r

)r

,

the desired result.

Exercise C.5-6 (an exponential bound on the right tail)

Note: I was not able to prove the inequality

pie
αqi + qie

−αpi ≤ eα
2/2 ,

as suggested in the text. If anyone has such a proof please contact me.

Using the notation in the text we have that (by using Markov’s inequality)

P{X − µ ≥ r} ≤ E[eα(X−µ)]e−αr .

Since X is the number of success in n independent Bernoulli trials X =
∑n

i=1Xi the expec-
tation of the exponential can be written as the product of the individual indicator random
variables Xi as

E[eα(X−µ)] =

n
∏

i=1

E[eα(Xi−pi)] .

The explicit expectation of each term in the product is easily computed using the definition
of expectation and gives

E[eα(Xi−pi)] = pie
αqi + qie

−αpi .

If we now assume that pie
αqi + qie

−αpi ≤ eα
2/2, then the product expectation can be written

as

E[eα(X−µ)] ≤
n
∏

i=1

eα
2/2 = enα

2/2 .

so that we can bound P{X − µ ≥ r} as

P{X − µ ≥ r} ≤ enα
2/2e−αr = e−(αr−nα2/2) .

To compute the tightest possible upper bound on this probability we can minimize the
right hand side of this expression with respect to α. This is equivalent to maximizing the
expression αr − nα2/2 with respect to α. Taking the α derivative of this expression and
setting it equal to zero gives

r − nα = 0 ,
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which has α = r/n as its solution. The second derivative of αr − nα2/2 with respect to
α begin negative imply that this value of α corresponds to a maximum. The value of this
quadratic at this maximal α is given by

r

n
r − n

2

r2

n2
=

r2

2n
.

This result intern implies that we have an upper bound on P{X − µ ≥ r} given by

P{X − µ ≥ r} ≤ e−
r
2

2n ,

as we were required to show.

Exercise C.5-7 (minimizing the upper bound in Markov’s inequality)

The equation C.45 is given by

P{X − µ ≥ r} ≤ exp(µeα − αr) .

If we consider the right-hand side of this expression to be an function of α, we can find the
α that minimizes this function by taking the first derivative and setting it equal to zero. We
find that the first derivative is given by

d

dα
exp(µeα − αr) = exp(µeα − αr) (µeα − r) .

Which when we set this equal to zero and solve for α gives

α = ln(
r

µ
) .

We can check that this point is indeed a minimum of our right-hand side by computing the
sign of the second derivative at that point. The second derivative is given by

d2

dα2
exp(µeα − αr) = exp(µeα − αr)(µeα − r)2 + exp(µeα − αr)(µeα)

= exp(µeα − αr)(µ2e2α − 2µreα + r2 + µeα)

= exp(µeα − αr)(µ2e2α − (2r − 1)µeα + r2) .

Evaluating this expression at α = ln(r/µ) (and ignoring the exponential factor which does
not affect the sign of the second derivative) gives

µ2

(

r2

µ2

)

− (2r − 1)r + r2 = r2 − 2r2 + r + r2 = r > 0 .

Proving that for α = ln(r/µ) the expression exp(µeα − αr) is a minimum.
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Problem C-1 (Balls and bins)

Part (a): We have b choices for the location of the first ball, b choices for the location of
the second ball, b choices for the location of the third ball and so on down to b choices for
the n-th ball. Since the balls are distinguishable each of these placements represent different
configurations. Thus the total number of possible configurations in this case is bn.

Part (b): Following the hint, since we have a total of n distinguishable balls and b bins
we can imagine the requested problem as equivalent to that of counting the number of
configurations of n balls and b− 1 sticks. The b− 1 sticks represents the internal bin edges
and the linear ordering of the balls between sticks represents the ball ordering within the
bin. Now to count this number we note that we can order n+ b− 1 distinguishable objects
in (n+ b− 1)! ways, but since the b− 1 sticks are indistinguishable we need to divide by the
number of unique orderings of b− 1 objects giving a total count of

(n + b− 1)!

(b− 1)!
.

Part (c): If the balls in each bin are in fact identical in the same manner in which we
needed to divide (n + b− 1)! by the number of unique orderings of distinguishable internal
sticks (b− 1)! we need to divide the result above by the number of unique orderings of these
n balls or n!. This gives

(n+ b− 1)!

(b− 1)!n!
=

(

n+ b− 1
n

)

.

Part (d): We assume in this part that we have more bins than balls or b > n. If we assume
for the moment that the balls are not identical then we have b choices for the location of the
first ball, b − 1 choices for the location of the second ball, b − 2 choices for the location of
the third ball and so on down to b− n + 1 choices for the n-th ball. This gives

b(b− 1)(b− 2) · · · (b− n+ 2)(b− n+ 1) =
b!

(b− n)!
,

Ways to place n unique balls. Since the balls are in fact identical this number over counts
the total possible by n!. So we have

b!

(b− n)!n!
=

(

b
n

)

,

placements of identical balls where no more than one ball can go in any given bin.

Part (e): We assume in this part that we have more balls than bins or n > b. Consider all
of our n indistinguishable balls lined up in a row and note that our problem is equivalent
to that of counting the number of ways we can select b − 1 “spaces” (which will represent
the b− 1 internal bin boundaries) from all n− 1 possible spaces in our linear ordering of the
balls. The number of ways to select b− 1 things from a set of n− 1 is given by

(

n− 1
b− 1

)

,

or the claimed number.
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