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Chapter 2 (Experiments, Sample Spaces, and Probabil-

ity)

Problem Solutions

Problem 5 (lemmas of probability distributions)

Part (d): This results is known as Boole’s inequality. We begin by decomposing the
countable union of events Ai

A1 ∪ A2 ∪ A3 . . .

into a countable union of disjoint events Cj. Define these disjoint events as

C1 = A1

C2 = A2\A1

C3 = A3\(A1 ∪ A2)

C4 = A4\(A1 ∪ A2 ∪ A3)
...

Cj = Aj\(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Aj−1)

Then by construction
A1 ∪ A2 ∪ A3 · · · = C1 ∪ C2 ∪ C3 · · · ,

and the Cj’s are disjoint events, so that we have (by part (a) of this problem)

Pr(A1 ∪ A2 ∪ A3 ∪ · · ·) = Pr(C1 ∪ C2 ∪ C3 ∪ · · ·) =
∑

j

Pr(Cj) .

Since Pr(Cj) ≤ Pr(Aj) (by part (c) of this problem), for each j, this sum is bounded above
by

∑

j

Pr(Aj) ,

and Boole’s inequality is proven.

Problem 6 (the probability that at least one will fail)

Let p denote the probability of failing so that from the given problem we have that p = 0.01.
Then the probability that at least one component fails is

n
∑

k=1

(

n
k

)

pk(1 − p)n−k = 1 − (1 − p)n = 1 − 0.99n ,

or the complement of the probability that all components are functional.



Problem 7 (a secretary with letters)

Let E1, E2, E3, E4, and E5 be the events that letter 1, 2, 3, 4 and 5 are placed in their correct

envelope. Then we are asked about the probability that no letter is placed in its correct
envelope or complement of the probability of the event

E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 .

Thus our probability is given by

1 − P (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) .

To evaluate P (E1 ∪E2 ∪E3 ∪E4 ∪E5) we will use the inclusion/exclusion identity which in
this case is given by

P (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =

5
∑

i=1

P (Ei) −
∑

i<j

P (EiEj) +
∑

i<j<k

P (EiEjEk)

−
∑

i<j<k<l

P (EiEjEkEl) + P (E1E2E3E4E5) .

Now each of these joint events is easy to evaluate since they do not depend on the specific
values for their indices. Specifically, each the joint events can be evaluated by conditioning
on earlier events. For example, for two events we can condition as follows P (EiEj) =
P (Ei|Ej)P (Ej). Using rules like this we compute

P (Ei) =
1

5

P (EiEj) =
1

5
· 1

4
=

1

20

P (EiEjEk) =
1

5
· 1

4
· 1

3
=

1

60

P (EiEjEkEl) =
1

5
· 1

4
· 1

3
· 1

2
=

1

120

P (E1E2E3E4E5) =
1

5
· 1

4
· 1

3
· 1

2
· 1 =

1

120
.

In addition, since each term in the summations above is a constant (independent of its
indices) we can compute the common value and multiply by the number of terms in each

sum. Specifically the terms with p events have

(

5
p

)

terms in their summations. With

these results we can evaluate the probability of the above union. We find that

P (∪5
i=1Ei) =

(

5
1

)

1

5
−
(

5
2

)

1

20
+

(

5
3

)

1

60
−
(

5
4

)

1

120
+

(

5
5

)

1

120

= 1 − 1

2
+

1

6
− 1

24
+

1

120
.

so that our desire probability of no matches is given by

1 − P (∪5
i=1Ei) =

1

2
− 1

6
+

1

24
− 1

120
=

11

30
≈ 0.3667 .



Problem 9 (chaining intersections)

This result follows for the two set case P{A∩B} = P{A|B}P{B} by grouping the sequence
of Ai’s in the appropriate manner. For example by grouping the intersection as

A1 ∩ A2 ∩ · · · ∩ Ak−1 ∩ Ak = (A1 ∩ A2 ∩ · · · ∩ Ak−1) ∩ Ak

we can apply the two set result to obtain

P{A1 ∩ A2 ∩ · · · ∩ Ak−1 ∩ Ak} = P{Ak|A1 ∩ A2 ∩ · · · ∩ Ak−1}P{A1 ∩ A2 ∩ · · · ∩ Ak−1} .

Continuing now to peal Ak−1 from the set A1∩A2∩· · ·∩Ak−1 we have the second probability
above equal to

P{A1 ∩ A2 ∩ · · · ∩ Ak−2 ∩ Ak−1} = P{Ak−1|A1 ∩ A2 ∩ · · · ∩ Ak−2}P{A1 ∩ A2 ∩ · · · ∩ Ak−2} .

Continuing to peal off terms from the back we eventually obtain the requested expression
i.e.

P{A1 ∩ A2 ∩ · · · ∩ Ak−1 ∩ Ak} = P{Ak|A1 ∩ A2 ∩ · · · ∩ Ak−1}
× P{Ak−1|A1 ∩ A2 ∩ · · · ∩ Ak−2}
× P{Ak−2|A1 ∩ A2 ∩ · · · ∩ Ak−3}
...

× P{A3|A1 ∩ A2}
× P{A2|A1}
× P{A1} .

If some subset of the intersection has zero probability. Then to show that the entire inter-
section will have zero probability condition on the intersection that has zero probability. For
example, assuming that P{∩j

i=1Ai} = 0, then grouping the entire intersection as follows

∩k
i=1Ai =

(

∩j
i=1Ai

)

∩
(

∩k
i=j+1Ai

)

We can condition the probability of the entire intersection on the zero intersection set ∩j
i=1Ai

as follows
P{∩k

i=1Ai} = P{∩k
i=j+1Ai| ∩j

i=1 Ai}P{∩k
i=j+1Ai} .

This equals zero because P{∩k
i=j+1Ai} = 0.

Problem 10 (gambling with a fair coin)

Let F denote the event that the gambler is observing results from a fair coin. Also let O1,
O2, and O3 denote the three observations made during our experiment. We will assume that
before any observations are made the probability that we have selected the fair coin is 1/2.



Part (a): We desire to compute P (F |O1) or the probability we are looking at a fair coin
given the first observation. This can be computed using Bayes’ theorem. We have

P (F |O1) =
P (O1|F )P (F )

P (O1|F )P (F ) + P (O1|F c)P (F c)

=
1
2

(

1
2

)

1
2

(

1
2

)

+ 1
(

1
2

) =
1

3
.

Part (b): With the second observation and using the “posteriori’s become priors” during a
recursive update we now have

P (F |O2, O1) =
P (O2|F, O1)P (F |O1)

P (O2|F, O1)P (F |O1) + P (O2|F c, O1)P (F c|O1)

=
1
2

(

1
3

)

1
2

(

1
3

)

+ 1
(

2
3

) =
1

5
.

Part (c): In this case because the two-headed coin cannot land tails we can immediately
conclude that we have selected the fair coin. This result can also be obtained using Bayes’
theorem as we have in the other two parts of this problem. Specifically we have

P (F |O3, O2, O1) =
P (O3|F, O2, O1)P (F |O2, O1)

P (O3|F, O2, O1)P (F |O2, O1) + P (O3|F c, O2, O1)P (F c|O2, O1)

=
1
2

(

1
5

)

1
2

(

1
5

)

+ 0
= 1 .

Verifying what we know must be true.

Problem 11 (three different machines)

Let A, B, and C be the events that our items are produced by machine A, B, and C
respectively. Then we are told that P (A) = 0.2, P (B) = 0.3, and P (C) = 0.5. Let D be the
event that the selected item is defective. Then in the problem formulation we are told that
P (D|A) = 0.04, P (D|B) = 0.03, and P (D|C) = 0.01.

Part (a): We are asked to compute P (A|D), P (B|D), and P (C|D). Using Bayes’ rule we
find that

P (D) = P (D|A)P (A) + P (D|B)P (B) + P (D|C)P (C)

= (0.04)(0.2) + (0.03)(0.3) + (0.01)(0.5) = 0.022 .

P (A|D) =
P (D|A)P (A)

P (D)
=

(0.04)(0.2)

0.022
= 0.363 .

In the same way we find that P (B|D) = 0.409 and P (C|D) = 0.227. Thus the machine from
which this defective item most likely came from is B.



Problem 12 (three coins in a box)

Let C1, C2, C3 be the event that the first, second, and third coin is chosen and flipped.
Here “first” means the coin is two-headed, “second” means that the coin in two-tailed, and
“third” means that the coin is fair. Then let H be the event that the flipped coin showed
heads. Then we would like to evaluate P (C1|H). Using Bayes’ rule we have

P (C1|H) =
P (H|C1)P (C1)

P (H)
.

We compute P (H) first. We find conditioning on the the coin selected that

P (H) =
3
∑

i=1

P (H|Ci)P (Ci) =
1

3

3
∑

i=1

P (H|Ci)

=
1

3

(

1 + 0 +
1

2

)

=
1

2
.

Then P (C1|H) is given by

P (C1|H) =
1(1/3)

(1/2)
=

2

3
.

Problem 15 (sums of binomial coefficients)

For both of these problems we recall the binomial theorem which is

(x + y)n =

n
∑

k=0

(

n
k

)

xkyn−k .

Then for the first result if we let x = 1 and y = 1 then x+y = 2 and the sum above becomes

2n =

n
∑

k=0

(

n
k

)

,

which is the first identity. To prove the second identity if we let x = −1 and y = 1 then
x + y = 0 and the sum above then becomes

0 =

n
∑

k=0

(

n
k

)

(−1)k ,

which is the second identity.

Problem 16 (choosing r from x + 1 by drawing subsets of size r − 1)

Part (a): To show that
(

x + 1
r

)

=

(

x
r

)

+

(

x
r − 1

)

,



we consider the left hand side of this expression which represents the number of ways we can
choose a subset of size r from x + 1 objects. Consider this group of x + 1 objects with one
object specified as distinguished or “special”. Then the number of ways to select r objects
from x + 1 can be decomposed into two mutually distinct occurrences. The times when this
“special” object is selected in the subset of size r and the times when its not. When it is not

selected in the subset of size r we are specifying our r subset elements from the x remaining

elements giving

(

x
r

)

total subsets in this case. When it is selected into the subset of size

r we have to select r − 1 other elements from the x remaining elements, giving

(

x
r − 1

)

additional subsets in this case. Summing the counts from these two occurrences we have

that

(

x + 1
r

)

can be written as the following

(

x + 1
r

)

=

(

x
r

)

+

(

x
r − 1

)

.

We now present an analytic proof of the above. Considering the right hand side of our
original expression, we have

(

x
r

)

+

(

x
r − 1

)

=
x!

(x − r)!r!
+

x!

(x − r + 1)!(r − 1)!

=
(x + 1)!

(x − r)!r!(x + 1)
+

(x + 1)!

(x − r + 1)!(r − 1)!(x + 1)

=
(x + 1)!

(x + 1 − r)!r!

(

x + 1 − r

x + 1

)

+
(x + 1)!

(x − r + 1)!r!

(

r

x + 1

)

=
(x + 1)!

(x − r + 1)!r!

(

x + 1 − r

x + 1
+

r

x + 1

)

=

(

x + 1
r

)

,

and the result is proven.

Part (b): To show the given sum consider the identity given above which can be written
(with the variable r replaced with k)

(

x
k − 1

)

=

(

x + 1
k

)

−
(

x
k

)

.

Summing this expression for x = k − 1 to x = r + k − 1 we see that

r+k−1
∑

x=k−1

(

x
k − 1

)

=

((

k
k

)

−
(

k − 1
k

))

+

((

k + 1
k

)

−
(

k
k

))

+ · · ·

+

((

r + k − 1
k

)

−
(

r + k − 2
k

))

+

((

r + k
k

)

−
(

r + k − 1
k

))

= −
(

k − 1
k

)

+

(

r + k
k

)

=

(

r + k
k

)



where we have used the convention that

(

k − 1
k

)

= 0.



Chapter 3 (Random variables and distribution functions)

Problem Solutions

Problem 11 (the probability density function for Y = aX + b)

We begin by computing the cumulative distribution function of the random variable Y as

FY (y) = P{Y ≤ y}
= P{aX + b ≤ y}

= P{X ≤ y − b

a
}

= FX(
y − b

a
) .

Taking the derivative to obtain the distribution function for Y we find that

fY (y) =
dFY

dy
= F ′

X(
y − b

a
)
1

a
=

1

a
fX(

y − b

a
) .

Problem 12 (the probability density function for Y = X2)

Assume that X is distributed with a density function fX(x). Define the random variable
Y = X2, then this problem asks to find the distribution function for Y . We can calculate
this by first calculating the cumulative distribution function for Y , i.e.

FY (a) = Pr{Y ≤ a}
= Pr{X2 ≤ a}
= Pr{−√

a ≤ X ≤ +
√

a}

=

∫

√
a

−√
a

fX(ξ)dξ .

Thus the distribution function for Y is given by the derivative of the above expression. This
derivative can be computed as follows

fY (a) =
dFY

da
= fX(

√
a)

d(
√

a)

da
− fX(−√

a)
d(−√

a)

da

= fX(
√

a)
1

2
√

a
+ fX(−√

a)
1

2
√

a

=
fX(

√
a) + fX(−√

a)

2
√

a
.



Problem 13 (some univariate distribution function from the joint)

We are given that X1 and X2 are jointly distributed with a distribution function fX1,X2(x1, x2)
and we first desire to compute the univariate distribution for the sum of X1 and X2. To
find this lets consider the cumulative distribution function for the random variable X1 +X2,
specifically we have (defining Z = X1 + X2)

FZ(a) = Pr{Z ≤ a}
= Pr{X1 + X2 ≤ a}

=

∫ +∞

x1=−∞

∫ a−x1

x2=−∞
fX1,X2(x1, x2) dx2 dx1 .

This integral can be derived by assuming that a is positive and drawing the line x1 +x2 = a,
in the (X1, X2) plane. The desired probability is the “area” beneath this line. Once this
integral is evaluated (its evaluation depends on the specific functional form of fX1,X2(x1, x2))
the density function for fZ(a) is given by taking the derivative of the above cumulative
density function

fZ(a) =
dFz(a)

da
.

Problem 17 (the probability integral transformation)

Part (a): If Y = F (X) then the distribution function of Y is given by

FY (a) = P{Y ≤ a}
= P{F (X) ≤ a}
= P{X ≤ F−1(a)}
= F (F−1(a)) = a .

Thus fY (a) = dFY

da
= 1, showing that Y is a uniform random variable.



Chapter 4 (Some special univariate distributions)

Notes on sections in the text

Notes on the hypergeometric distribution

When X is given by a hypergeometric distribution it has a p.d.f. given by

f(x|A, B, n) =

(

A
x

)(

B
n − x

)

(

A + B
n

) , (1)

which represents the probability of getting x type A objects from a total of A + B objects,
when we draw n objects. Note that the range of the values possible for the random variable
X is determined by the values of A, B, and n. Since we only have A total objects of type
A the largest X value can be is min(A, n). At the same time we have B objects of type B
and if we happen to draw all of them we will have used up B of our total n draws on B
objects. Thus the remaining n−B object that we draw must all be objects of type A. Thus
the minimum value of our random variable X must be larger than max(0, n − B). In total
then we have bounds on X when X is a hypergeometric random variable with parameters
A, B, and n of the form

min(0, n − B) ≤ X ≤ max(A, n) . (2)

Notes on the Gamma distribution

The book makes the claim (but provides no proof) that when X1, . . . , Xn are random samples
from a normal distribution with mean µ and variance σ2, and when

X̄ =
1

n

n
∑

i=1

Xi and S2 =
1

σ2

n
∑

i=1

(Xi − X̄)2 ,

then S2 has a χ2 distribution with n − 1 degrees of freedom. A relatively simple proof of
this fact can be found in Appendix A (chi-squared distribution) of [4].

Notes on the t-distribution

If Xi are normal random variables with mean µ and variance σ2 then X̄ = 1
n

∑n
i=1 Xi has a

mean µ and a variance σ2

n
. Thus the variable n1/2(X̄−µ)

σ
is standard normal. We are also told

in the section on the gamma distribution that the normalized sample standard deviation or

S2 =
1

σ2

n
∑

i=1

(xi − x̄)2 ,



is χ2 with n− 1 degrees of freedom. Then to compute a t distributed random variable using
the “normal over a χ2 rule we can construct

n1/2(X̄−µ)
σ

(S2/(n − 1))1/2
=

n1/2(X̄ − µ)

σ
[

1
σ2(n−1)

∑n
i=1(Xi − X̄)2

]1/2
=

n1/2(X̄ − µ)
[

1
(n−1)

∑n
i=1(Xi − X̄)2

]1/2
,

is a t distributed random variable with n − 1 degrees of freedom as stated in the books
equation 3.

If we take X = τ 1/2(Y − µ) where X is a t distributed random variable with a p.d.f. given
by

gX(x) =
Γ
(

α+1
2

)

(απ)1/2Γ(α/2)

(

1 +
x2

α

)−(α+1
2 )

.

Then from X we can compute Y to get Y = X
τ1/2 + µ and the p.d.f. of Y would be given by

gY (y) = gX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
Γ
(

α+1
2

)

(απ)1/2Γ(α/2)

(

1 +
τ(y − µ)2

α

)−(α+1
2 )

τ 1/2 ,

which is the p.d.f. given by the books equation 5.

Notes on the F -distribution

Since S2
X = 1

σ2

∑m
i=1(Xi−X̄)2 is χ2 with m−1 degrees of freedom and S2

Y = 1
σ2

∑n
i=1(Yi−Ȳ )2

is χ2 with m − 1 degrees of freedom the ratio

S2
X/(m − 1)

S2
Y /(n − 1)

=
1

m−1

∑m
i=1(Xi − X̄)2

1
n−1

∑n
i=1(Yi − Ȳ )2

,

is the ratio of two χ2 random variables divided by their degrees of freedom and therefore is
given by a F -distribution with parameters m − 1 and n − 1.

Exercise Solutions

Exercise 1 (properties of a Bernoulli random variable)

We find
E(X) = 1p + 0(1 − p) = p ,

and
E(X2) = 12p + 02(1 − p) = p .

Thus
Var(X) = E(X2) − E(X)2 = p − p2 = p(1 − p) = pq .

The characteristic function ζ(t) is given by

ζ(t) = E(eitX) = peit1 + qeit0 = peit + q .



Exercise 2 (some properties of the binomial random variable)

For a binomial random variable we find its expectation given by E(X)

E(X) =

n
∑

x=0

x

(

n
x

)

pxqn−x

=

n
∑

x=1

x
n!

x!(n − x)!
pxqn−x =

n
∑

x=1

n!

(x − 1)!(n − x)!
pxqn−x

= n

n
∑

x=1

(n − 1)!

(x − 1)!((n − 1) − (x − 1))!
px−1q(n−1)−(x−1)

= np
n
∑

x=1

(

n − 1
x − 1

)

px−1q(n−1)−(x−1)

= np
n−1
∑

x=0

(

n − 1
x

)

pxq(n−1)−x

= np · 1 = np .

Next we need to evaluate E(X2). We find

E(X2) =

n
∑

x=0

x2

(

n
x

)

pxqn−x

=

n
∑

x=1

x
n(n − 1)!

(x − 1)!(n − x)!
px−1+1q(n−1)−(x−1)

= np

n
∑

x=1

(x − 1 + 1)

(

n − 1
x − 1

)

px−1q(n−1)−(x−1)

= np

n
∑

x=1

(x − 1)

(

n − 1
x − 1

)

px−1q(n−1)−(x−1) + np

n
∑

x=1

(

n − 1
x − 1

)

px−1q(n−1)−(x−1)

= np

n
∑

x=2

(x − 1)

(

n − 1
x − 1

)

px−1q(n−1)−(x−1) + np

n−1
∑

x=0

(

n − 1
x

)

pxq(n−1)−x

= np
n
∑

x=2

(n − 1)(n − 2)!

(x − 2)!((n − 1) − (x − 1))!
px−2+1q(n−2)−(x−2) + np

= n(n − 1)p2
n
∑

x=2

(

n − 2
x − 2

)

px−2q(n−2)−(x−2) + np

= n(n − 1)p2
n−2
∑

x=0

(

n − 2
x

)

pxq(n−2)−x + np

= n(n − 1)p2 + np .

Thus the variance of a binomial random variable is given by combining these two results as

Var(X) = E(X2) − E(X)2 = n(n − 1)p2 + np − n2p2

= np(1 − p) = npq . (3)



To show that the characteristic function for a binomial random variable is given by ζ(t) =
(peit + q)n, it suffices to observe that a binomial random variable can be written as the sum
of n independent Bernoulli random variables. Because of this the characteristic function
for a binomial random variable is the product of n Bernoulli random variables characteristic
functions. From Exercise 1 above, the characteristic function for a Bernoulli random variable
is given by peit + q. Thus the characteristic function for our binomial random variable is
given by this to the nth power or

ζ(t) = (peit + q)n . (4)

Another way to derive this result is to compute it directly. We have

ζ(t) = E[eitX ] =
n
∑

x=0

(

n
x

)

eitxpxqn−x

=
n
∑

x=0

(

n
x

)

(eitp)xqn−x

= (peit + q)n ,

using the binomial expression.

Exercise 3 (summing binomial random variables)

If each Xi is a binomial random variable with parameters p and ni then it can be represented
as the sum of ni Bernoulli random variables as

Xi = V1 + V2 + · · · + Vni
.

With this decomposition, the sum X1 + X2 + · · ·Xk can then be written as a larger sum

V1 + V2 + · · ·Vn1 + Vn1+1 + · · ·+ Vn1+n2 + · · · + Vn1+n2+···+nk−1+1 + · · ·+ Vn1+n2+···+nk−1+nk
,

or the sum of n1 +n2 + · · ·+nk Bernoulli random variables each with the same probability of
success p. Thus we recognize this sum as another binomial random variable with parameters
n1 + n2 + · · ·+ nk and p as claimed.

Alternatively, as the Xi random variables are independent the characteristic function for
their sum is given by the product of the characteristic function for each individual random
variable Xi. Thus we have

ζX1+X2+···+Xk
(t) =

k
∏

i=1

(peit + q)ni = (peit + q)
Pk

i=1 ni ,

which we see is the characteristic function for a binomial random variable with parameters
∑k

i=1 ni and p as claimed.



Exercise 4 (the limit of the binomial p.d.f is a Poisson p.d.f)

Lets begin by writing the density of a binomial random variable f(x|n, p) as

f(x|n, p) =
n!

(n − x)!x!
px(1 − p)n−x

=
1

x!

n · (n − 1) · (n − 2) · · ·3 · 2 · 1
(n − x)(n − x − 1)(n − x − 2) · · ·3 · 2 · 1px(1 − p)n−x .

To let n → ∞ and p → 0 in such a way that np → λ we will take p = λ
n
. Then f(x|n, p)

becomes

f(x|n, p) =
1

x!

n · (n − 1) · (n − 2) · · ·3 · 2 · 1
(n − x)(n − x − 1)(n − x − 2) · · ·3 · 2 · 1

λx

nx

(

1 − λ

n

)n−x

=
1

x!

n · (n − 1) · (n − 2) · · ·3 · 2 · 1
(n − x)(n − x − 1)(n − x − 2) · · ·3 · 2 · 1

λx

nx

(n − λ)n−x

nn−x

=
λx

x!

n · (n − 1) · (n − 2) · · ·3 · 2 · 1
(n − x)(n − x − 1)(n − x − 2) · · ·3 · 2 · 1

λx

nx

(n − λ)n

nn
(n − λ)−x

=
λx

x!

n · (n − 1) · (n − 2) · · ·3 · 2 · 1
(n − λ)(n − λ)(n − λ) · · · (n − λ)(n − x)(n − x − 1)(n − x − 2) · · ·3 · 2 · 1

×
(

1 − λ

n

)n

. (5)

Note that the factorial fraction above can be written (after canceling some terms) as the
product

n

n − λ
· n − 1

n − λ
· n − 2

n − λ
· · · n − x + 2

n − λ
· n − x + 1

n − λ
,

or dividing by n on the “top and bottom” we get

1

1 − λ
n

· 1 − 1
n

1 − λ
n

· 1 − 2
n

1 − λ
n

· · · 1 − x−2
n

1 − λ
n

· 1 − x−1
n

1 − λ
n

.

Each of the factors in this product goes to 1
1
→ 1 as n → ∞. Also recall that right-most

factor in Equation 5 has the following limit

(

1 − λ

n

)n

→ e−λ ,

as n → ∞. Using both of these results we have that

f(x|n, p) =
n!

(n − x)!x!
px(1 − p)n−x → 1

x!
λxe−λ = g(x|λ) , (6)

with λ = np as we were to show.



Exercise 5 (properties of a Poisson random variable)

If X is a Poisson random variable then from the definition of expectation we have that

E[Xn] =

∞
∑

i=0

ine−λλi

i!
= e−λ

∞
∑

i=0

inλn

i!
e−λ =

∞
∑

i=1

inλi

i!
,

since (assuming n 6= 0) when i = 0 the first term vanishes. Continuing our calculation we
can cancel a factor of i and find that

E[Xn] = e−λ

∞
∑

i=1

in−1λi

(i − 1)!
= e−λ

∞
∑

i=0

(i + 1)n−1λi+1

i!

= λ

∞
∑

i=0

(i + 1)n−1e−λλi

i!
.

Now this sum can be recognized as the expectation of the variable (X +1)n−1 so we see that

E[Xn] = λE[(X + 1)n−1] . (7)

From the result we have

E[X] = λE[1] = λ and E[X2] = λE[X + 1] = λ(λ + 1) .

Thus the variance of X is given by

Var[X] = E[X2] − E[X]2 = λ .

We find the characteristic function for a Poisson random variable given by

ζ(t) = E[eitX ] =

∞
∑

x=0

eitx e−λλx

x!

= e−λ
∞
∑

x=0

(eitλ)x

x!
= e−λeλeit

= exp{λ(eit − 1)} . (8)

Above we explicitly calculated E(X) and Var(X) but we can also use the above characteristic
function to derive them. For example, we find

E(X) =
1

i

∂ζ(t)

∂t

∣

∣

∣

∣

t=0

=
1

i
exp{λ(eit − 1)}λieit

∣

∣

t=0

= λeit exp{λ(eit − 1)}
∣

∣

t=0
= λ ,

for E(X) and

E(X2) =
1

i2
∂2ζ(t)

∂t2

∣

∣

∣

∣

t=0

=
1

i

∂

∂t

(

λeit exp{λ(eit − 1)}
)

∣

∣

∣

∣

t=0

=
1

i

[

iλeit exp{λ(eit − 1)} + λeit(λieit) exp{λ(eit − 1)}
]∣

∣

t=0

= λeit exp{λ(eit − 1)} + λ2e2it exp{λ(eit − 1)}
∣

∣

t=0

= λ + λ2 ,

for E(X2) the same two results as before.



Exercise 6 (the sums of Poisson random variables)

We will prove this result in the case of two Poisson random variables X and Y (with means
λ1 and λ2) and then just state mathematical induction to derive the requested result in the
case of a sum of a finite number of random variables Poisson variables. To begin we note
that we can evaluate the distribution of X + Y by computing the characteristic function of
X + Y . Since X and Y are both Poisson random variables the characteristic functions of
X + Y is given by

φX+Y (u) = φX(u)φY (u)

= eλ1(eiu−1)eλ2(eiu−1)

= e(λ1+λ2)(eiu−1) .

From the direct connection between characteristic functions to and probability density func-
tions we see that the random variable X + Y is a Poisson random variable with parameter
λ1 + λ2, the sum of the Poisson parameters of the random variables X and Y .

Exercise 7 (the distribution of X given X + Y )

Rather than work with X1 and X2 we will consider Poisson random variables denoted by X
and Y . Then this problem asks for the conditional distribution of X given X + Y . Define
the random variable Z by Z = X + Y . Then from Bayes’ rule we find that

p(X|Z) =
p(Z|X)p(X)

p(Z)
.

We will evaluate each expression in tern. Now p(X) is the probability density function of a

Poisson random variable with parameter λ1 so p(X = x) =
e−λ1λx

1

x!
. From problem 6 in this

chapter we have that P (Z = n) = e−(λ1+λ2)(λ1+λ2)n

n!
. Finally to evaluate p(Z = n|X = x) we

recognize that this is equivalent to p(Y = n − x), which we can evaluate easily. We have
that

p(Z = n|X = x) = p(Y = n − x) =
e−λ2λn−x

2

(n − x)!
.

Putting all of these pieces together we find that

p(X = x|Z = n) =

(

e−λ2λn−x
2

(n − x)!

)(

e−λ1λx
1

x!

)(

n!

e−(λ1+λ2)(λ1 + λ2)n

)

=

(

n!

x!(n − x)!

)

λx
1λ

n−x
2

(λ1 + λ2)n

=

(

n
x

)(

λ1

λ1 + λ2

)x(
λ2

λ1 + λ2

)n−x

.

Defining p = λ1

λ1+λ2
and q = 1 − p = λ2

λ1+λ2
our density above becomes

p(X = x|Z = n) =

(

n
x

)

px(1 − p)n−x ,

or in words p(X = x|Z = n) is a Binomial random variable with parameters (n, λ1

λ1+λ2
).



Exercise 8 (an alternative representation for the negative binomial distribution)

Using the definition of

(

a
x

)

given by

(

a
x

)

=

∏x−1
i=0 (a − i)

x!
, (9)

we see that we can write

(

r + x − 1
x

)

that appears in the expression for the p.f. of a

negative binomial random variable as

(

r + x − 1
x

)

=
1

x!

x−1
∏

i=0

(r − x − 1 − i)

=
1

x!
(r − x − 1)(r − x − 2) · · · (r − x − 1 − (x − 2))(r − x − 1 − (x − 1))

=
1

x!
(r − x − 1)(r − x − 2) · · · (r + 1)r .

While we can also consider the expression

(

−r
x

)

presented in this problem. Here we see

that it is equal to

(

−r
x

)

=
1

x!

x−1
∏

i=0

(−r − i)

=
1

x!
(−1)xr(r + 1)(r + 2) · · · (r + x − 2)(r + x − 1) .

Thus the suggested p.f. of

(

−r
x

)

pr(−q)x given by

(

−r
x

)

pr(−q)x =
1

x!
r(r + 1)(r + 2) · · · (r + x − 2)(r + x − 1) =

(

r + x − 1
x

)

prqx ,

the same as the expression for the p.f. for a negative binomial random variable proving the
equivalence.

Exercise 9 (the characteristic function for the negative binomial distribution)

We can evaluate this using

ζ(t) = E(eitX) =
∞
∑

x=0

(

r + x − 1
x

)

prqxeitx ,

or by using the result from Exercise 8 we can write this as

ζ(t) = E(eitX) = pr
∞
∑

x=0

(

−r
x

)

(−qeit)x .



This later sum is the Taylor expansion of the expression (1 − qeit)−r see [1]. Thus we find

ζ(t) =
pr

(1 − qeit)r
. (10)

To calculate E(X) we have

E(X) =
1

i

∂

∂t

(

pr

(1 − qeit)r

)∣

∣

∣

∣

t=0

=
1

i
pr(−r)(1 − qeit)−r−1(−qieit)

∣

∣

t=0

= rprqeit(1 − qeit)−r−1
∣

∣

t=0

=
rprq

(1 − q)r+1
=

rprq

pr+1
=

rq

p
.

For E(X2) we have

E(X2) =
1

i2
∂2

∂t2

(

pr

(1 − qeit)r

)∣

∣

∣

∣

t=0

=
1

i

∂

∂t

(

rprqeit(1 − qeit)−r−1
)∣

∣

t=0

=
rprq

i

[

ieit(1 − qeit)−r−1 + eit(−r − 1)(−qieit)(1 − qeit)−r−2
]∣

∣

t=0

= rprq

[

1

(1 − q)r+1
+

(r + 1)q

(1 − q)r+2

]

= rprq

[

p

pr+2
+

(r + 1)q

pr+2

]

=
rq

p2
(p + rq + q)

=
rq(1 + rq)

p2
. (11)

Thus the variance for a negative binomial random variable is given by

Var(X) = E(X2) − E(X)2

=
rq(1 + rq)

p2
− r2q2

p2
=

rq

p2
. (12)

Exercise 10 (summing negative binomial random variables)

We can use the fact that a random variable that is defined as the sum of independent random
variables has a characteristic function that is the product of the individual characteristic
functions. Since the characteristic function of each Xi is given by

ζXi
(t) =

(

p

1 − qeit

)ri

,

The characteristic function of the the sum
∑k

i=1 Xi is given by

ζX1+X2+···+Xk
(t) =

(

p

1 − qeit

)

Pk
i=1 ri

,



which is the characteristic function of a negative binomial random with parameters
∑k

i=1 ri

and p as we were to show.

Exercise 11 (the limiting p.d.f of a negative binomial is Poisson)

If we want r → ∞ and q → 0 in such a way that rq → λ, then one way this can be guaranteed
to happen is to define q in terms of r as q = λ

r
. Thus in this case we see that as r → ∞ then

q → 0. Now consider f(x|r, p) =

(

r + x − 1
x

)

prqx the probability density for the negative

binomial random variable. For q defined as above we have

f(x|r, p) =

(

r + x − 1
x

)

pr

(

λ

r

)x

=
(r + x − 1)(r + x − 2)(r + x − 3) · · · (r + 2)(r + 1)r(r − 1)(r − 2) · · ·3 · 2 · 1

x!(r − 1)(r − 2)(r − 3) · · ·3 · 2 · 1 pr λx

rx

=
λx

x!

[

(r + x − 1)(r + x − 2)(r + x − 3) · · · (r + 2)(r + 1)r

r · r · r · · · r · r · r

]

(1 − q)r

=
λx

x!

[

r + x − 1

r
· r + x − 2

r
· r + x − 3

r
· · · r + 2

r
· r + 1

r

](

1 − λ

r

)r

.

As r → ∞ each factor in the brackets goes to +1 and using the fact that

(

1 +
λ

n

)n

→ eλ ,

we see that our density f(x|r, p) has the limit given limit

f(x|r, p) → e−λλx

x!
,

as we were to show.

Exercise 12 (Xi has a negative binomial p.d.f)

Warning: I was not able to solve this problem. What follows are some notes on a few things
that I tried and where I got stuck. If anyone sees anything wrong with these notes or knows
of a different way to work this problem please email me.

Note that if Y is a Poisson random variable with a mean r ln(1/p) then it has a form like

P{Y = n} =
e−r ln(1/p)(r ln(1/p))n

n!
=

pr(−r ln(p))n

n!
.

From the given description of the problem we can compute some values for P{Z = z} for
some simple values of z, and then verify that the values computed equal the same thing that



one gets from the p.d.f of a negative binomial distribution

(

−r
n

)

pr(−q)n. For example,

P{Z = 0} = P{Y = 0} = pr ,

which does equal

(

−r
0

)

pr(−q)0. Another simple probability to calculate is P{Z = 1}
where we find

P{Z = 1} = P{Y = 1, X1 = 1} = P{Y = 1}P{X1 = 1} = pr(−r ln(p))
1

ln(1/p)
q = rprq ,

which again does equal

(

−r
1

)

pr(−q)1 because

(

−r
1

)

=

∏0
i=0(−r − i)

0!
=

−r

1
= −r ,

and so
(

−r
1

)

pr(−q)1 = rprq ,

We could evaluate P{Z = 2} in the same way as

P{Z = 2} = P{Y = 1, X1 = 2} + P{Y = 2, X1 = 1, X2 = 1} ,

but we stop here.

This discussion motivated attempting to evaluate P{Z = k} by conditioning on the value of
X1. We have

P

{

Y
∑

i=1

Xi = k

}

=

k
∑

j=1

P

{

Y
∑

i=1

Xi = k|x1 = j

}

P {X1 = j}

=

k
∑

j=1

P

{

Y
∑

i=1

Xi = k|x1 = j

}

1

ln(1/p)

qj

j

=
1

ln(1/p)

k
∑

j=1

qj

j
P

{

Y
∑

i=1

Xi = k|X1 = j

}

=
1

ln(1/p)

k
∑

j=1

qj

j
P

{

Y
∑

i=2

Xi = k − j|X1 = j

}

=
1

ln(1/p)

k
∑

j=1

qj

j
P

{

Y −1
∑

i=1

Xi = k − j

}

.

Thus if we define the function f(n, k) as f(n, k) = P {∑n
i=1 Xi = k}, we have a recursive

relationship for f(n, k) given by

f(n, k) =
1

ln(1/p)

k
∑

j=1

qj

j
f(n − 1, k − j) .



This later summation looks like a convolution type sum and maybe there are identities for it.
One might be able to solve this equation directly or show by substitution that one solution

for f(n, k) is

(

−k
n

)

pk(−q)n, which would solve the given problem. When I put in the

expression

(

−k
n

)

pk(−q)n into the right-hand-side of the above we obtain

(−q)n−1pk

ln(1/p)

k
∑

j=1

qjp−j

j

(

−(k − j)
n − 1

)

.

Consider just the sum

k
∑

j=1

pjq−j

j

(

−(k − j)
n − 1

)

=

k
∑

j=1

(

p

q

)j ( −(k − j)
n − 1

)

.

Now if we let r = p
q

and define a function F (r) as

F (r) =

k
∑

j=1

rj

j

(

−(n − j)
n − 1

)

,

the derivative of this expression with respect to r is

F ′(r) =

k
∑

j=1

rj−1

(

−(n − j)
n − 1

)

=

k
∑

j=1

rj−1

(

−(n − 1 − (j − 1))
n − 1

)

=

k−1
∑

j=0

rj

(

−(n − 1 − j)
n − 1

)

This is were I stopped. I was not able to perform the summation of this sum and show the
equivalence. Again, if anyone knows of a way to complete this problem or an alternative
method please email me.

Exercise 13 (statistical properties of a hypergeometric random variable)

If X is a hypergeometric random variable then X has a p.d.f. given by Equation 1 and
the valid range of values for X given by Equation 2 and zero otherwise. Then using this
expression for the p.d.f of X we can compute E(X). We find

E(X) =
∑

X

xf(x|A, B, n) =
1

(

A + B
n

)

∑

X′

x

(

A
x

)(

B
n − x

)

,

where the X ′ notation in the sum means that we don’t include the point x = 0 in the above
sum since it does not affect the expectation any. To simplify this remaining sum recall that

(

A
x

)

=
A

x

(

A − 1
x − 1

)

,

so that

x

(

A
x

)

= A

(

A − 1
x − 1

)

.



Thus the expression for the expectation of X can be written as

E(X) =
A

(

A + B
n

)

∑

X′

(

A − 1
x − 1

)(

B
(n − 1) − (x − 1)

)

,

Note that we can “add back in” the value of x = 0 if we allow the value x = 0 in the
summation limits by shifting the indexes “up by one” as

∑

X′

(

A − 1
x − 1

)(

B
(n − 1) − (x − 1)

)

=
∑

X′′

(

A − 1
x

)(

B
n − 1 − x

)

.

To simplify this remaining sum we recall Vandermonde’s identity given by

r
∑

k=0

(

m
k

)(

n
r − k

)

=

(

m + n
r

)

. (13)

From this we see that the combinatorial sum in E(X) can be simplified to give

(

A + B − 1
n − 1

)

and the expression we subsequently get for E(X) is the following

E(X) =
A

(

A + B
n

)

(

A + B − 1
n − 1

)

= A · (A + B − 1)!

(n − 1)!(A + B − 1 − n + 1)!
· n!(A + B − n)!

(A + B)!

=
An

A + B
, (14)

as we were to show. Next we evaluate E(X2). Using the same manipulations as above we
compute

E(X2) =
1

(

A + B
n

)

∑

x2

(

A
x

)(

B
n − x

)

=
A

(

A + B
n

)

∑

x

(

A − 1
x − 1

)(

B
n − x

)

=
A

(

A + B
n

)

[

∑

(x − 1)

(

A − 1
x − 1

)(

B
n − x

)

+
∑

(

A − 1
x − 1

)(

B
n − x

)]

=
A

(

A + B
n

)

[

(A − 1)
∑

(

A − 2
x − 2

)(

B
n − x

)

+

(

A + B − 1
n − 1

)]

=
A(A − 1)
(

A + B
n

)

∑

(

A − 2
x

)(

B
n − 2 − x

)

+
An

A + B



=
A(A − 1)
(

A + B
n

)

(

A + B − 2
n − 2

)

+
An

A + B

= A(A − 1) · n!(A + B − n)!

(A + B)!
· (A + B − 2)!

(n − 2)!(A + B − 2 − (n − 2))!
+

An

A + B

=
A(A − 1)n(n − 1)

(A + B)(A + B − 1)
+

An

A + B
.

We can now compute Var(X) since we have E(X2) and E(X). We find

Var(X) = E(X2) − E(X)2

=
A(A − 1)n(n − 1)

(A + B)(A + B − 1)
+

An

A + B
− A2n2

(A + B)2

=
nAB

(A + B)2
· A + B − n

A + B − 1
, (15)

when we simplify. This is the result we wanted tho show.

Exercise 15 (the characteristic function of a normal random variable)

For a p.d.f given by f(x|µ, σ2) = (2πσ2)−1/2 exp
{

− (x−µ)2

2σ2

}

, we will try to evaluate ζ(t)

directly. We have

ζ(t) = E(eitX) =
1

(2π)1/2σ

∫ ∞

−∞
eitxe−

(x−µ)2

2σ2 dx .

The argument of the exponential in the above expression is given by

− 1

2σ2

[

x2 − 2µx + µ2 − 2iσ2tx
]

= − 1

2σ2

[

x2 − 2(µ + iσ2t)x + µ2
]

= − 1

2σ2

[

x2 − 2(µ + iσ2t)x + (µ + iσ2t)2 − (µ + iσ2t)2 + µ2
]

= − 1

2σ2
(x − (µ + iσ2t))2 +

(µ + iσ2t)2

2σ2
− µ2

2σ2

= − 1

2σ2
(x − (µ + iσ2t))2 +

µ2 + 2µσ2ti − σ4t2 − µ2

2σ2

= − 1

2σ2
(x − (µ + iσ2t))2 +

2µσ2ti − σ4t2

2σ2
.

Thus the integral expression we seek to evaluate looks like

ζ(t) =
1

(2π)1/2σ
exp

{

itµ − σ2t2

2

}
∫ ∞

−∞
e−

1
2σ2 (x−(µ+iσ2t))2dx .

To evaluate this let v = x − (µ + iσ2t) so that dx = dv and the integral above becomes
∫ ∞

−∞
e−

1
2σ2 v2

dv = (2π)1/2σ .



Thus the characteristic function for a Gaussian random variable is given by

ζ(t) = exp

{

itµ − σ2t2

2

}

, (16)

as we were to show. We can use this result to compute the expectation of X as follows

E(X) =
1

i

∂ζ(t)

∂t

∣

∣

∣

∣

t=0

=
1

i
exp

{

itµ − t2σ2

2

}

(iµ − tσ2)

∣

∣

∣

∣

t=0
= µ .

The value of E(X2) can be computed in the same way

E(X2) =
1

i2
∂2ζ(t)

∂t2

∣

∣

∣

∣

t=0

=
1

i2
∂

∂t

(

(iµ − tσ2) exp

{

itµ − t2σ2

2

})∣

∣

∣

∣

t=0

=
1

i2

[

−σ2 exp

{

itµ − t2σ2

2

}

+ (iµ − tσ2)(iµ − tσ2) exp

{

itµ − t2σ2

2

}]∣

∣

∣

∣

t=0

= −
[

−σ2 + (iµ)2
]

= σ2 + µ2 .

Using this we can compute the variance of X. We find

Var(X) = E(X2) − E(X)2 = σ2 ,

as we were to show.

Exercise 16 (the distribution of
∑k

i=1 aiXi + b)

Lets first derive the p.d.f of the random variable aiXi when Xi is a normal random variable
with a mean given by µi and a variance given by σ2

i . To do this let Yi = aiXi then we find
that the expression for gY (y) is given by

gY (y) = gX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
1

|ai|
1√
2πσi

exp

{

−1

2

(yi/ai − µi)
2

σ2
i

}

=
1√

2π|ai|σi

exp

{

−1

2

(yi − aiµi)
2

a2
i σ

2
i

}

,

which is the p.d.f of a normal random variable with a mean given by aiµi and a variance
given by a2

i σ
2
i . This random variable has a characteristic function given by

ζYi
(t) = exp

{

itµiai −
t2a2

i σ
2
i

2

}

,



so the sum of k independent random variables has a characteristic function that is the
product of these individual characteristic functions as

ζY1+Y2+···+Yk
(t) = exp

{

it

k
∑

i=1

µiai −
t2

2

k
∑

i=1

a2
i σ

2
i

}

,

which is the characteristic function of a Gaussian random variable with a mean
∑k

i=1 µiai and

a variance
∑k

i=1 a2
i σ

2
i . Lets now define the random variables L and Z to be Z =

∑k
i=1 aiXi

and L = Z + b. From the discussion above we know that Z is a Gaussian random variable
with a mean given by

∑k
i=1 µiai and a variance

∑k
i=1 a2

i σ
2
i . To finish this problem we want

to know what the distribution of L is. Consider the distribution function for L. We have

FL(l) = Pr{Z + b < l} = Pr{Z < l − b} = FZ(l − b) ,

so fL(l) (the p.d.f. of the random variable L is given by) is obtained by taking the derivative
of FZ(l − b) with respect to l where we find

fL(l) = F ′
Z(l − b) = fZ(l − b) =

1

(2π)1/2

√

∑k
i=1 a2

i σ
2
i

exp

{

−1

2

(l − b −∑k
i=1 aiµi)

2

∑k
i=1 a2

i σ
2
i

}

.

This later expression is a Gaussian density with mean b +
∑k

i=1 aiµi and variance
∑k

i=1 a2
i σ

2
i

as we were to show.

Exercise 17 (X1 + X2 and X1 − X2 are independent)

Let Y1 = X1 +X2 and Y2 = X1 −X2 so to work this problem we want to show independence

of the two random variables Y1 and Y2. Introduce the vectors X =

[

X1

X2

]

and Y =

[

Y1

Y2

]

and the matrix A =

[

1 1
1 −1

]

, so that the vector Y in terms of the vector X is given by

Y =

[

Y1

Y2

]

= AX. As X1 and X2 are independent random draws from the same normal

distribution their covariance matrix ΣX is given by ΣX =

[

σ2 0
0 σ2

]

. Because Y is a linear

transformation of X the covariance matrix for the vector Y is thus given by

ΣY = AΣXAT =

[

1 1
1 −1

] [

σ2 0
0 σ2

] [

1 1
1 −1

]

= σ2

[

1 1
1 −1

] [

1 1
1 −1

]

= σ2

[

2 0
0 2

]

= 2σ2I .

From this expression we see that the determinant of ΣY is given by |ΣY | = (2σ2)2. The

mean of the vector Y is given by

[

2µ
0

]

where µ is the mean value of Xi. Given this mean



vector and covariance matrix the p.d.f. of the vector random variable Y then takes the form
given by

gY(y) =
1

(2π)|ΣY |1/2
exp

{

−1

2

(

y −
[

2µ
0

])T

(2σ2I)−1

(

y −
[

2µ
0

])

}

.

The inner product in the argument to the exponential simplifies
(

y −
[

2µ
0

])T

(2σ2I)−1

(

y −
[

2µ
0

])

=
1

2σ2

[

(y1 − 2µ)2 + y2
2

]

,

so gY(y) becomes

gY(y) =
1√

2π
√

2σ2
exp

{

−1

2

(y1 − 2µ)2

2σ2

}

· 1√
2π

√
2σ2

exp

{

−1

2

y2
2

2σ2

}

.

Since the random variable Y1 has a mean of 2µ and a variance of 2σ2 and the random variable
Y2 has a mean of 0 and a variance of 2σ2 the above show the joint distribution of (Y1, Y2) is
the product of two marginal densities showing the independence of Y1 and Y2.

Exercise 18 (the gamma function at 1/2 and other miscellanea)

The second part of this problem is to evaluate Γ(1/2). This expression is defined as

Γ(1/2) =

∫ ∞

0

x−1/2e−xdx .

Since the argument of the exponential is the square of the term x1/2 this observation might
motivate the substitution y =

√
x. Following the hint let y =

√
2x, so that

dy =
1√
2x

dx .

So that with this substitution Γ(1/2) becomes

Γ(1/2) =

∫ ∞

0

√
2 dy e−y2/2 =

√
2

∫ ∞

0

e−y2/2dy .

Now from the normalization of the standard Gaussian we know that
∫ ∞

−∞

1√
2π

exp{−y2

2
}dy = 1 ,

which easily transforms (by integrating only over the positive real numbers) into

2

∫ ∞

0

1√
2π

exp{−y2

2
}dy = 1 .

Finally manipulating this into the specific integral required to evaluate Γ(1/2) we find that

√
2

∫ ∞

0

exp{−y2

2
}dy =

√
π ,

which shows that Γ(1/2) =
√

π as requested.



Exercise 19 (properties of gamma random variables)

If X is given by a gamma distribution then it has a p.d.f given by

f(x|α, β) =
βα

Γ(α)
xα−1e−βx . (17)

The characteristic function for a gamma random variable is then given by

ζ(t) = E(eitX) =

∫ ∞

x=0

βα

Γ(α)
xα−1eitxe−βxdx

=
βα

Γ(α)

∫ ∞

x=0

xα−1e−(β−it)xdx .

To evaluate this integral let v = (β − it)x so that x = v
β−it

and dv = (β − it)dx and we get

ζ(t) =
βα

Γ(α)

1

(β − it)α−1

∫ ∞

v=0

vα−1e−v dv

β − it
.

If we recall the definition of the Gamma function

Γ(α) ≡
∫ ∞

v=0

vα−1e−vdv , (18)

we see that the above integral becomes

ζ(t) =
βα

Γ(α)

Γ(α)

(β − it)α
=

(

β

β − it

)α

=

(

1 − it

β

)−α

, (19)

as requested. Using this expression we could compute E(X) and E(X2) via derivatives.
Alternatively we could compute these expectations directly as follows

E(X) =

∫ ∞

x=0

βα

Γ(α)
xαe−βxdx =

βα

Γ(α)

∫ ∞

v=0

vα

βα
e−v dv

β

=
1

βΓ(α)

∫ ∞

v=0

vαe−vdv =
Γ(α + 1)

βΓ(α)
=

α

β
, (20)

when we make the substitution v = βx. Next we find E(X2) given by

E(X2) =

∫ ∞

x=0

βα

Γ(α)
xα+1e−βxdx =

βα

Γ(α)

1

βα+1

1

β

∫ ∞

v=0

vα+1e−vdv

=
1

β2Γ(α)
Γ(α + 2) =

(α + 1)α

β2
. (21)

Thus the variance is given by

Var(X) =
(α + 1)α

β2
− α2

β2
=

α

β2
, (22)

as we were to show.



Exercise 20 (when Xi is a gamma random variable what is c(X1 + X2 + · · ·Xk) )

If the independent variables Xi have a gamma distribution with parameters αi and β we
want to show that

c(X1 + X2 + · · ·+ Xk) ,

has a gamma distribution with parameters α1 +α2 + · · ·+αk and β/c. To do this note that if
the random variable Xi are independent gamma distributed with parameters αi and β then
the random variable Yi defined by Yi ≡ cXi has a p.d.f given by

fY (y) = fX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
βαi

Γ(αi)

(y

c

)αi−1

e−βy/c

(

1

c

)

=
(β/c)αi

Γ(αi)
yαi−1e−(β/c)y ,

which is a gamma p.d.f. with parameters αi and β/c. Thus using Equation 19 the charac-
teristic function for this random variable Yi is given by

ζYi
(t) =

(

1 − it

(β/c)

)−αi

.

Since we want the random variable that is the sum of these Yi the characteristic function for
this sum is the product of these individual characteristic functions. Thus

ζY1+Y2+···+Yk
(t) = ζc(X1+X2+···+Xk)(t) =

(

1 − it

(β/c)

)−
Pk

i=1 αi

,

which is the characteristic function for a gamma random variable with parameters
∑k

i=1 αi

and β/c as we were to show.

Exercise 21 (the p.d.f. of the distribution
∑k

i=1 X2
i when Xi is Gaussian)

For this problem lets define the random variable Z =
∑k

i=1 X2
i and attempt to compute the

distribution function for the random variable Z. We have

FZ(z) = Pr {Z ≤ z} = Pr

{

k
∑

i=1

X2
i ≤ z

}

=

∫

Pk
i=1 x2

i ≤z

p(x1, x2, · · · , xk)dx

=

∫

Pk
i=1 x2

i ≤z

k
∏

i=1

p(xi)dx

=

∫

Pk
i=1 x2

i ≤z

k
∏

i=1

1√
2π

exp

{

−1

2
x2

i

}

dx

=

∫

Pk
i=1 x2

i ≤z

1

(2π)k/2
exp

{

−1

2

k
∑

i=1

x2
i

}

dx .



To evaluate this last integral we will change from Cartesian coordinates to polar coordinates.
To do this we recognize that the above integral is an integral over all points x ∈ R

k such
that xT x < 1. Let r2 =

∑k
i=1 x2

i and we get that our differential of volume dx, written in
terms of spherical coordinates is given by

dx = kCkr
k−1dr , (23)

where Ck is the volume of the unit k-sphere and is given by

Ck =
π

k
2

Γ(k
2

+ 1)
. (24)

We require this general expression for dx since we are working with x ∈ R
k but we can easily

verify its correctness by computing dx in lower dimensions say k = 2 (the disk) and k = 3
(the sphere). We find

dx = 3r2C3dr = 3r2

(

4π

3

)

dr = 4πr2dr when k = 3 and

dx = 2rC2dr = 2πrdr when k = 2 .

Using the above general expression for dx in polar we find that

FZ(z) =
1

(2π)k/2

∫

√
z

r=0

e−
1
2
r2

kCkr
k−1dr =

kCk

(2π)k/2

∫

√
z

r=0

rk−1e−
1
2
r2

dr .

As there is no way to evaluate this last integral explicitly we will take the derivative of Fz(z)
to get the p.d.f for Z. We find

fZ(z) = F ′
Z(z) =

kCk

(2π)k/2
z

k−1
2 e−

1
2
z

(

1

2
z−1/2

)

=
k

2
k
2
+1Γ(k

2
+ 1)

z
k
2
−1e−

1
2
z ,

when we use Equation 24 for Ck. Since Γ(k
2

+ 1) = k
2
Γ(k

2
) the above p.d.f. simplifies to

fZ(z) =
1

2
k
2 Γ(k

2
)
z

k
2
−1e−

1
2
z ,

which is the p.d.f. of a χ2 random variable with k degrees of freedom as we were to show.

Exercise 22 (when Xi are exponential R.V.s then min(Xi) is exponential)

To solve this problem we will use the fact that the random variable that is the minimization
of several random variables can be computed by taking minimizations of pairs of random
variables. For example if Z = min(X1, X2, X3, X4) then the value for Z can be computed as

Z = min(min(min(X1, X2), X3), X4) .
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Figure 1: The integration region Ω : {min(X1, X2) ≤ z}, in the (X1, X2) plane. Here z = 1
for demonstration.

Thus if we can show that the distribution of the random variable Z = min(X1, X2) when X1

and X2 are independent exponential random variables with parameters β1 and β2 respectively
is another exponential random variable with parameters β1+β2, then by the nesting property
above the distribution of the minimization of k such exponential random variables is another
exponential random variable with parameter

∑k
i=1 βi. Thus for the remainder of this problem

we show that the distribution of Z = min(X1, X2) is exponential with a parameter β1 + β2.
Consider the distribution function for the random variable Z. We have that

FZ(z) = Pr{min(X1, X2) ≤ z} =

∫

Ω:{min(X1,X2)≤z}
pX1(x1)pX2(x2)dx1dx2 .

To compute this integral we need to integrate the above expression over the domain shown
in Figure 1. This integration region can be represented mathematically as the following two
integrals (be careful not to count the region in the lower left corner twice)

FZ(z) =

∫ z

x1=0

∫ ∞

x2=0

pX1(x1)pX2(x2)dx2dx1 +

∫ z

x2=0

∫ ∞

x1=z

pX1(x1)pX2(x2)dx1dx2 .

When we put in the expressions for the exponential distributions we get.

FZ(z) = β1β2

∫ z

x1=0

e−β1x1

∫ ∞

x2=0

e−β2x2dx2dx1 + β1β2

∫ z

x2=0

e−β2x2

∫ ∞

x1=z

e−β1x1dx1dx2 .

Plots of the integration region are performed in the Matlab file chap 4 prob 22.m. We will
evaluate the first integral. We find that

β1β2

∫ z

x1=0

e−β1x1

∫ ∞

x2=0

e−β2x2dx2dx1 = β1β2

∫ z

x1=0

e−β1x1

(

e−β2x2

−β2

∣

∣

∣

∣

∞

x2=0

dx1

= β1

∫ z

x1=0

e−β1x1dx1 = 1 − e−β1z .

Next we evaluate the second integral. We have

β1β2

∫ z

x2=0

e−β2x2

∫ ∞

x1=z

e−β1x1dx1dx2 = β1β2

∫ z

x2=0

e−β2x2

(

e−β1x1

−β1

∣

∣

∣

∣

∞

x1=z

dx2



= β2e
−β1z

∫ z

x2=0

e−β2x2dx2

= e−β1z
(

1 − e−β2x2
)

.

when we combine these two integrals (by adding we find)

FZ(z) = 1 − e−(β1+β2)z ,

this is the distribution function for an exponential random variable with a parameter β1 +β2

as we were to show.

Exercise 23 (the distribution of the first differences)

For this problem we are told that Xi is given by an exponential distribution and thus has a
p.d.f. given by βe−βx and Yi are the order statistics of n draws of the random variables Xi

for i = 1, 2, · · · , n. Introduce the random variables Zi defined as

Z1 = nY1

Z2 = (n − 1)(Y2 − Y1)

Z3 = (n − 2)(Y3 − Y2)
...

Zn−1 = 2(Yn−1 − Yn−2)

Zn = (Yn − Yn−1) .

Then to get the p.d.f. of the vector Z defined in this way we recall that

gZ1,Z2,···,Zn(z1, z2, · · · , zn) = fY1,Y2,···,Yn(y1, y2, · · · , yn)

∣

∣

∣

∣

∂Y

∂Z

∣

∣

∣

∣

.

From the above specified relationship between Y and Z we have

∂Z

∂Y
=























n 0
−(n − 1) n − 1 0

0 −(n − 2) n − 2

0 −(n − 3)
. . .
. . . 3 0

−2 2 0
0 −1 1























. (25)

Thus the determinant of the above matrix is given by
∣

∣

∣

∣

∂Z

∂Y

∣

∣

∣

∣

= n(n − 1)(n − 2)(n − 3) · · ·321 = n! ,

so
∣

∣

∣

∣

∂Y

∂Z

∣

∣

∣

∣

=
1

n!
.



Then as we know the distribution of the order statistics as

fY1,Y2,···,Yn(y1(z), y2(z), · · · , yn(z)) = n!f(y1)f(y2) · · ·f(yn)

= n!
n
∏

i=1

βe−βyi = n!βne−β
Pn

i=1 yi .

Now we will compute
∑n

i=1 yi in terms of the elements zi. Consider the following inner
product expression for

∑n
i=1 zi

[

1 1 · · · 1
]











z1

z2
...
zn











=
[

1 1 · · · 1
]























n 0
−(n − 1) n − 1 0

0 −(n − 2) n − 2

0 −(n − 3)
. . .
. . . 3 0

−2 2 0
0 −1 1























×











y1

y2
...

yn











=
[

1 1 · · · 1
]











y1

y2
...
yn











,

when we use the relationship between zi and yi and compute the product of the vector
[

1 1 · · · 1
]

with the lower diagonal matrix given by Equation 25. Thus from this result
we see that

∑n
i=1 zi =

∑n
i=1 yi, thus we find that our p.d.f. of Z is given by

gZ1,Z2,···,Zn(z1, z2, · · · , zn) = n!βne−β
Pn

i=1 zi
1

n!
= βne−β

Pn
i=1 zi ,

or the p.d.f. of a set of n independent exponential random variables which is the same as
the joint distribution of X1, X2, · · ·Xn and what we were to show.

Exercise 24 (from the conditional and marginal get the other marginal)

We are told the conditional p.d.f. for the random variables X given Y is a Poisson ran-
dom variable and the marginal p.d.f. for the variable Y is a gamma random variable with
parameters α and β. Thus they are expressed as

P (X = x|Y = y) =
e−yyx

x!

P (Y = y) =
βα

Γ(α)
yα−1e−βy .

We can evaluate the marginal distribution of X or P (X = x) by conditioning on the value
of Y as follows

P (X = x) =

∫

P (X = x|Y = y)P (Y = y)dy



=

∫ ∞

0

e−yyx

x!

βα

Γ(α)
yα−1e−βydy

=
βα

x!Γ(α)

∫ ∞

0

yx+α−1e−(1+β)ydy .

To evaluate this integral let v = (1 + β)y so that dv = (1 + β)dy and dy = dv
1+β

and our
integral becomes

P (X = x) =
βα

x!Γ(α)

∫ ∞

v=0

vx+α−1

(1 + β)x+α−1
e−v dv

1 + β

=
βα

x!Γ(α)(1 + β)x+α

∫ ∞

0

vx+α−1e−vdv

=
βαΓ(x + α)

x!Γ(α)(1 + β)x+α
.

If this expression is to equal a negative binomial random variable with parameters r and p
it must have a form given by

(

r + x − 1
x

)

prqx .

To write the above in this form note that since Γ(n) = (n− 1)! when n is an positive integer
the ratio of gamma functions in the above expression

Γ(x + α)

x!Γ(α)
=

(x + α − 1)!

x!(α − 1)!
=

(

x + α − 1
x

)

.

Thus using this we have P (X = x) given by

P (X = x) =

(

x + α − 1
x

)

βα

(1 + β)x+α
.

To make this match the negative binomial expression we can take r = α and p = β
1+β

), so

that q = 1 − p = 1
1+β

, and showing the desired equivalence.

Exercise 25 (the normalization of the beta p.d.f.)

For this problem we want to show that

Γ(α)Γ(β) = Γ(α + β)

∫ 1

0

xα−1(1 − x)β−1dx , (26)

where the Gamma function is defined by

Γ(α) =

∫ ∞

0

vα−1e−vdv . (27)

With this definition we see that the product of Γ(α) and Γ(β) can be written as a double
integral as

Γ(α)Γ(β) =

∫ ∞

r=0

∫ ∞

s=0

sα−1rβ−1e−(r+s)dsdr .



Lets change the integration variables from s and r to u and v defined by u = r and v = s
r
.

The inverse transformation for this is r = u and s = rv = uv. The differential change in
volume then transforms as

dsdr =

∣

∣

∣

∣

d(r, s)

d(u, v)

∣

∣

∣

∣

dvdu =

∣

∣

∣

∣

∂r
∂u

∂r
∂v

∂s
∂u

∂s
∂v

∣

∣

∣

∣

dvdu =

∣

∣

∣

∣

1 0
v u

∣

∣

∣

∣

dvdu = u dvdu .

Using this change of coordinates we get that the product of Γ(α)Γ(β) is given by

Γ(α)Γ(β) =

∫ ∞

u=0

∫ ∞

v=0

uα−1vα−1uβ−1e−u(1+v)udvdu

=

∫ ∞

u=0

∫ ∞

v=0

uα+β−1vα−1e−(1+v)udvdu

=

∫ ∞

v=0

vα−1

∫ ∞

u=0

uα+β−1e−(1+v)ududv .

Lets evaluate the inner integral over u. To do this let ξ = (1 + v)u so that dξ = (1 + v)du
and we have

Γ(α)Γ(β) =

∫ ∞

v=0

vα−1

∫ ∞

ξ=0

ξα+β−1

(1 + v)α+β−1
e−ξ

(

dξ

1 + v

)

dv

=

∫ ∞

v=0

vα−1

(1 + v)α+β

∫ ∞

ξ=0

ξα+β−1e−ξdξdv

= Γ(α + β)

∫ ∞

v=0

vα−1

(1 + v)α+β
dv .

Next in the remaining integral let u = 1
1+v

so that v = 1
u
− 1 = 1−u

u
and du = − 1

(1+v)2
dv =

−u2dv and the above becomes

Γ(α)Γ(β) = Γ(α + β)

∫ 0

u=1

(

1 − u

u

)α−1

uα+β

(

−du

u2

)

= Γ(α + β)

∫ 1

u=0

(1 − u)α−1uα+β−(α−1)−2du

= Γ(α + β)

∫ 1

u=0

(1 − u)α−1uβ−1du ,

as we were to show.

Exercise 26 (statistics of the beta distribution)

To begin we attempt to evaluate E(Xm(1−X)n), when X is given by a beta random variable.
We find that recalling the normalization of the beta function that

E(Xm(1 − X)n) =

∫

xm(1 − x)n Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1dx

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

xm+α−1(1 − x)n+β−1dx



=
Γ(α + β)

Γ(α)Γ(β)
· Γ(m + α)Γ(n + β)

Γ(m + n + α + β)

=
Γ(m + α)

Γ(α)
· Γ(n + β)

Γ(β)
· Γ(α + β)

Γ(m + n + α + β)
. (28)

Now note that we can simplify some of these ratios of gamma functions as follows

Γ(m + α)

Γ(α)
=

(m − 1 + α)Γ(m − 1 + α)

Γ(α)

=
(m − 1 + α)(m − 2 + α)Γ(m − 2 + α)

Γ(α)

=
(m − 1 + α)(m − 2 + α) · · · (m − (m − 1) + α)(m − m + α)Γ(α)

Γ(α)

= (m − 1 + α)(m − 2 + α) · · · (2 + α)(1 + α)α

=

m
∏

k=1

(m − k + α) .

In the same way
Γ(n + β)

Γ(β)
=

n
∏

k=1

(n − k + β) .

and
Γ(m + n + α + β)

Γ(α + β)
=

m+n
∏

k=1

(m + n − k + α + β) .

Using these expressions we find that E(Xm(1 − X)n) is given by

E(Xm(1 − X)n) =

∏m
i=1(m − i + α)

∏n
j=1(n − j + β)

∏m+n
k=1 (m + n − k + α + β)

. (29)

Lets now evaluate this expression for some special values of m and n. If m = 1 and n = 0
then we find that

E(X) =
α

α + β
, (30)

If m = 2 and n = 0 then we find that

E(X2) =
(α + 1)α

(α + β + 1)(α + β)
, (31)

so that the variance of a beta distributed random variable is given by

Var(X) =
(α + 1)α

(α + β + 1)(α + β)
− α2

(α + β)2

=
αβ

(α + β)2(α + β + 1)
. (32)



Exercise 27 (show that X1/(X1 + X2) and X1 + X2 are independent)

For this problem we are told that X1 has a gamma distribution with parameters α1 and
β, while X2 also has a gamma distribution with parameters α2 and β. Introduce the two
random variables R and S defined by

R =
X1

X1 + X2

S = X1 + X2 ,

Since X1 and X2 are independent the joint p.d.f over X1, X2 is the product of the two
marginals. Thus

p(X1,X2)(x1, x2) = pX1(x1)pX2(x2) =
βα1

Γ(α1)
xα1−1

1 e−βx1 · βα2

Γ(α2)
xα2−1

2 e−βx2 .

Lets transform the p.d.f. over the vector (X1, X2) into a p.d.f over the vector (R, S). The
change of variables formula requires that

p(R,S)(r, s) = p(X1,X2)(x1(r, s), x2(r, s))

∣

∣

∣

∣

∂(X1, X2)

∂(R, S)

∣

∣

∣

∣

To evaluate this lets begin by computing ∂(R,S)
∂(X1,X2)

. We have

∂(R, S)

∂(X1, X2)
=

[ ∂R
∂X1

∂R
∂X2

∂S
∂X1

∂S
∂X2

]

=

[

1
X1+X2

− X1

(X1+X2)2
− X1

(X1+X2)2

1 1

]

.

Thus we find the determinant of the above expression or
∣

∣

∣

∂(R,S)
∂(X1,X2)

∣

∣

∣
given by

∣

∣

∣

∣

∂(R, S)

∂(X1, X2)

∣

∣

∣

∣

=
1

(X1 + X2)
− X1

(X1 + X2)2
+

X1

(X1 + X2)2
=

1

X1 + X2
,

so the inverse of this expression or
∣

∣

∣

∂(X1,X2)
∂(R,S)

∣

∣

∣
is given by

∣

∣

∣

∣

∂(X1, X2)

∂(R, S)

∣

∣

∣

∣

= X1 + X2 = S .

Next we solve for X1 and X2 in terms of R and S. We find

X1 = RS

X2 = S − X1 = S − RS ,

Thus using these sub-results into the expression for p(R,S)(r, s) we find

p(R,S)(r, s) =
βα1

Γ(α1)
(rs)α1−1e−βrs · βα2

Γ(α2)
(s − rs)α2−1e−β(s−rs) s

=
βα1+α2

Γ(α1)Γ(α2)
e−βssα1+α2−1rα1−1(1 − r)α2−1 ,



Note that if we write this expression as a product with two factors

p(R,S)(r, s) =

(

Γ(α1 + α2)

Γ(α1)Γ(α2)
rα1−1(1 − r)α2−1

)(

βα1+α2

Γ(α1 + α2)
e−βssα1+α2−1

)

we see that it is the product of two densities, one over fR(r) and one over fS(s). The

density over R or fR(r) = Γ(α1+α2)
Γ(α1)Γ(α2)

rα1−1(1 − r)α2−1, is the density of a beta distributed

random variable with parameters α1 and α2, while the second density over S or fS(s) =
βα1+α2

Γ(α1+α2)
e−βssα1+α2−1, is the density of a gamma distribution with parameters α1 +α2 and β.

Exercise 28 (statistics of the uniform distribution)

The uniform distribution has a characteristic function that can be computed directly

ζ(t) = E(eitX) =

∫ β

α

eitx 1

β − α
dx

=
1

β − α

(

eitβ − eitα

it

)

.

We could compute E(X) using the characteristic function ζ(t) for a uniform random variable.
Beginning this calculation we have

E(X) =
1

i

∂ζ(t)

∂t

∣

∣

∣

∣

t=0

=
1

i

1

β − α

[

1

it
(iβeitβ − iαeitα) − 1

it2
(eitβ − eitα)

]∣

∣

∣

∣

t=0

= − 1

β − α

[

t(iβeitβ − iαeitα) − (eitβ − eitα)

t2

]∣

∣

∣

∣

t=0

.

To evaluate this expression requires the use of L’Hopital’s rule, and seems a somewhat
complicated route to compute E(X). The evaluation of E(X2) would probably be even
more work when computed from the characteristic function. For this distribution, it is much
easier to compute the expectations directly. We have

E(X) =

∫ β

α

x
1

β − α
dx =

1

β − α

x2

2

∣

∣

∣

∣

β

α

=
1

2
(α + β) .

In the same way we find E(X2) to be given by

E(X2) =

∫ β

α

x2 1

β − α
dx =

1

β − α

(

β3 − α3

3

)

=
(β − α)(β2 + αβ + α2)

3(β − α)
=

1

3
(β2 + αβ + α2) .

Using these two results we thus have that the variance of a uniform random variable is

Var(X) = E(X2) − E(X)2

=
1

3
(β2 + αβ + α2) − 1

4
(α2 + β2 + 2αβ)

=
(β − α)2

12
.



Exercise 29 (the joint distribution of the min and the max)

To evaluate the density f(y, z) we recognize that this expression means that after n draws of
the variables Xi the max is the value z and the minimum is the value y. Since each of these
draws is an independent uniform random variable, unconditionally each Xi has a density
given by 1

β−α
. Now since once the maximum value of z and the minimum value of y are

specified all the other n − 2 draws must have values that fall between y and z. This later
event happens with a probability of z−y

β−α
. So for all n draws we would have a probability

density proportional to

(z − y)n−2

(β − α)n−2
· 1

(β − α)2
=

(z − y)n−2

(β − α)n
.

The above expression does not account for the fact that the draws that result from the
maximum value z (say) can occur on any of the n draws, while once the maximum is
specified the value minimum, z, can occur in any of the n− 1 draws. Multiplying the above
function by these two factors then gives

f(y, z) =
n(n − 1)(z − y)n−2

(β − α)n
,

as requested.

Exercise 30 (moments of the univariate Pareto distribution)

Since the p.d.f for a univariate Pareto distribution is given by

f(x|x0, α) =
αxα

0

xα+1
, (33)

when x > x0 and is 0 otherwise. Note that E(Xk) will only exist the following integral
∫ ∞

x0

xk

xα+1
dx =

∫ ∞

x0

xk−α−1dx ,

converges. The convergence of this later integral requires k − α − 1 < −1 or

k < α .

We can compute various statistics for this distribution. We find

E(X) =

∫ ∞

x0

x
αxα

0

xα+1
dx =

∫ ∞

x0

αxα
0

xα
dx = αxα

0

(

x−α+1

−α + 1

∣

∣

∣

∣

∞

x0

= αxα
0

(

0 +
x−α+1

0

α − 1

)

=
αx0

α − 1
. (34)

Next assuming α > 2 we compute E(X2). We find that

E(X2) =

∫ ∞

x0

αxα
0

xα−1
dx = αxα

0

(

x−α+1+1

−α + 2

∣

∣

∣

∣

∞

x0

= αxα
0

(

0 +
x−α+2

0

α − 2

)

=
αx2

0

α − 2
. (35)



Thus from these two expressions we can compute the variance of X and find

Var(X) = E(X2) − E(X)2 =
αx2

0

α − 2
− α2x2

0

(α − 1)2

=
αx2

0

(α − 1)2(α − 2)
, (36)

as we were to show.

Exercise 31 (the log(X/x0) transformation of a Pareto random variable)

Introduce the random variable Y defined as Y = log(X/x0) = log(X) − log(x0), and X is a
Pareto distributed random variable. Then the p.d.f. of Y is given by the standard formula
for transforming random variables

gY (y) = gX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

,

and thus we need to be able to evaluate
∣

∣

∣

dx
dy

∣

∣

∣
. Using the above transformation we see that

X = x0e
Y and find derivatives of this transformation given by

dy

dx
=

1

x
and

dx

dy
= x0e

y .

Using this result and the p.d.f of a Pareto distribution we find gY (y) given by

gY (y) = gX(x(y))|x0e
y|

=
αxα

0

xα+1
0 e(α+1)y

x0e
y = αe−αy ,

which is the p.d.f. of an exponential random variable as we were to show.

Exercise 32 (showing that the ratio X/(Y/n)1/2 is a t random variable)

For this problem we are told that X is a random variable distributed as a standard normal
and Y is a random variable distributed as a χ2 random variable with n degrees of freedom.
Lets begin by attempting to determine the distribution function for the random variable V
defined as

V =
X

(

Y
n

)1/2
.

From the definition of the distribution function and the p.d.f.’s of the random variables X
and Y we find

FV (v) = Pr

{

n1/2X

Y 1/2
≤ v

}



= Pr

{

X ≤ Y 1/2

n1/2
v

}

=

∫ ∞

y=0

∫ v

n1/2
y1/2

x=−∞
pX,Y (x, y)dxdy

=

∫ ∞

y=0

∫ v

n1/2
y1/2

x=−∞

1√
2π

e−
x2

2
y

n
2
−1

Γ(n/2)2n/2
e−y/2dxdy

=
1

Γ(n/2)π1/22n/2+1/2

∫ ∞

y=0

y
n
2
−1e−y/2

∫ v

n1/2
y1/2

x=−∞
e−

x2

2 dxdy .

We can determine the distribution of the random variable V if we have its p.d.f. Since we
cannot evaluate the x integral in the above in closed form, lets take the derivative with
respect to v and see if we can evaluate the resulting integral for fV (v) = F ′

V (v). We find

fV (v) =
1

Γ(n/2)π1/22n/2+1/2

∫ ∞

y=0

y
n
2
−1e−y/2e−

yv2

2n

(

y1/2

n1/2

)

dy

=
1

Γ(n/2)π1/22n/2+1/2n1/2

∫ ∞

y=0

y
n
2
−1 exp

{

−1

2

(

1 +
v2

n

)

y

}

dy .

To evaluate this let s = 1
2

(

1 + v2

n

)

y so that ds = 1
2

(

1 + v2

n

)

dy and y = 2s

1+ v2

n

to get

fV (v) =
1

Γ(n/2)π1/22n/2+1/2n1/2

∫ ∞

s=0

2n/2−1/2sn/2−1/2

(

1 + v2

n

)
1
2
(n−1)

e−s 2ds
(

1 + v2

n

)

=
1

Γ(n/2)π1/22n/2+1/2n1/2

1
(

1 + v2

n

)
1
2
(n+1)

∫ ∞

s=0

s
n
2
+ 1

2
−1e−sds

=
Γ(n

2
+ 1

2
)

Γ(n/2)π1/22n/2+1/2n1/2

1
(

1 + v2

n

)
1
2
(n+1)

,

which is the p.d.f of a t random variable with n degrees of freedom as we were to show.

Exercise 33 (statistics of t distributed random variables)

When X has a t distribution with α degrees of freedom it has a p.d.f. that looks like

f(x|α) =
Γ((α + 1)/2)

(απ)1/2Γ(α/2)

(

1 +
x2

α

)−(α+1
2 )

.

Then from this expression the k moment E(Xk) will exist if the following integral
∫ ∞

x=−∞

xk

(

1 + x2

α

)
α+1

2

dx ,

converges. This later integral converges if the limiting form of xk

“

1+ x2

α

”

α+1
2

as x goes to infinity

or
xk

xα+1
= xk−α−1 ,



has an exponent on x that is smaller than −1, i.e. the function 1
xα−1−k must be smaller than

1/x or
1

xα−1−k
<

1

x
.

This translates to k − α − 1 < −1 or k < α.

The expectation of X or E(X) is given by

E(X) =
Γ((α + 1)/2)

(απ)1/2Γ(α/2)

∫ ∞

−∞
x

(

1 +
x2

α

)−(α+1
2 )

dx = 0 ,

since this is the integral of an odd function x over a symmetric range.

Next we compute E(X2). We find the expression for E(X2) is proportional to the following
integral

E(X2) ∝
∫ ∞

−∞
x2

(

1 +
x2

α

)−(α+1
2 )

dx = 2

∫ ∞

0

x2

(

1 +
x2

α

)−(α+1
2 )

dx .

To evaluate this integral lets change variables to y such that

y =
x2/α

1 + x2/α
= 1 − 1

1 + x2/α
, (37)

so that with this definition the common expression 1 + x2

α
in terms of the variable y is given

by

1 +
x2

α
=

1

1 − y
.

Solving for x2 in the above transformation we find

x2 = α
y

1 − y
so x =

√
α

√

y

1 − y
.

Finally the differential dy in terms of dx using Equation 37 is

dy =
2

(1 + x2/α)2

(x

α

)

dx .

So dx written in terms of only the variable y is given by

dx =
α

2

1

x

(

1 +
x2

α

)2

dy =

√
α

2

1√
y

1

(1 − y)3/2
dy .

Using these expressions we find that E(X2) proportional to

E(X2) ∝ 2

∫ 1

y=0

(

α
y

1 − y

)
α+1

2
√

α

2

1√
y

1

(1 − y)3/2
dy

= α3/2

∫ 1

y=0

√
y(1 − y)

α
2
−2dy

= α3/2

∫ 1

y=0

y3/2−1(1 − y)
α
2
−1−1dy

=
α3/2Γ(3/2)Γ(α

2
− 1)

Γ(α/2 + 1/2)
.



Putting back in the proportionality constant we see that E(X2) is given by

E(X2) =
Γ((α + 1)/2)

(απ)1/2Γ(α/2)
· α3/2Γ(3/2)Γ(α

2
− 1)

Γ(α/2 + 1/2)
,

or using the fact that Γ(α/2) = (α/2− 1)Γ(α/2− 1) and Γ(3/2) = 1/2Γ(1/2) =
√

π
2

we have

E(X2) =
α

2
(

α
2
− 1
) =

α

α − 2
. (38)

Thus since E(X) = 0 for a t-distributed random variable the expression for E(X2) also
equals the variance.

Exercise 34 (the P.D.F. of the ratio of normals is a Cauchy distribution)

As stated in the problem, let X1 and X2 be distributed as standard normal random variables
(i.e. they have mean 0 and variance 1). Then we want the distribution of the variable
X1/X2. To this end define the random variables U and V as U = X1/X2 and V = X2. The
distribution function of U is then what we are after. From the definition of U and V in terms
of X1 and X2 we see that X1 = UV and X2 = V . To solve this problem we will derive the
joint distribution function for U and V and then marginalize out V giving the distribution
function for U , alone. Now from Theorem 2 − 4 on page 45 of Schaum’s probability and
statistics outline the distribution of the joint random variable (U, V ), in term of the joint
random variable (X1, X2) is given by

g(u, v) = f(x1, x2)

∣

∣

∣

∣

∂(x1, x2)

∂(u, v)

∣

∣

∣

∣

.

Now
∣

∣

∣

∣

∂(x1, x2)

∂(u, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

v u
0 1

∣

∣

∣

∣

= |v| ,

so that
g(u, v) = f(x1, x2)|v| = p(x1) p(x2)|x2| ,

as f(x1, x2) = p(x1)p(x2) since X1 and X2 are assumed independent. Now using the fact
that the distribution of X1 and X2 are standard normals we get

g(u, v) =
1

2π
exp(−1

2
(u v)2) exp(−1

2
v2) |v| .

Marginalizing out the variable V we get

g(u) =

∫ ∞

−∞
g(u, v)dv =

1

π

∫ ∞

0

v e−
1
2
(1+u2)v2

dv .

To evaluate this integral let η =
√

1+u2

2
v, and after performing the integration we then find

that

g(u) =
1

π

(

1

1 + u2

)

.

Which is the distribution function for a Cauchy random variable.



Exercise 35 (a geometric example with the Cauchy distribution)

From the geometry of the problem we note that tan(θ) = y
1

= y. Here θ is a uniform random
variable with a domain of

(

−π
2
, +π

2

)

and we have a p.d.f. given by gΘ(θ) = 1
π
. To transform

this p.d.f from the random variable θ to the random variable y recall

gY (y) = gΘ(θ)

∣

∣

∣

∣

∂θ

∂y

∣

∣

∣

∣

.

From the form y = tan(θ) we have dy
dθ

= sec2(θ), so dθ
dy

= 1
sec2(θ)

. With this and using the

identity sec2(θ) = 1 + tan2(θ), we see that the p.d.f gY (y) becomes

gY (y) =
gΘ(θ)

1 + tan2(θ)
=

1

π

(

1

1 + y2

)

,

which is a Cauchy distribution.

Exercise 36 (the ratio X/α
Y/β

has an F -distribution)

Let X be a χ2 random variable with α degrees of freedom, and Y be a χ2 random variable
with β degrees of freedom, then we claim that the expression

X/α

Y/β
, (39)

is a F distributed random variable with parameters α and β. To show this introduce the
random variable V = X/α

Y/β
and lets attempt to derive its distribution function. We have

FV (l) = Pr{V < l} = Pr{X <
α

β
Y l}

=

∫ ∞

y=0

∫ α
β

yl

x=0

pY (y)pX(x)dxdy

=

∫ ∞

y=0

∫ α
β

yl

x=0

(

1
2

)β/2

Γ(β/2)
y

β
2
−1e−

1
2
y

(

1
2

)α/2

Γ(α/2)
x

α
2
−1e−

1
2
xdxdy

=

(

1

2

)
α+β

2 1

Γ(β/2)Γ(α/2)

∫ ∞

y=0

y
β
2
−1e−

1
2
y

∫ α
β

yl

x=0

x
α
2
−1e−

1
2
xdxdy .

Since we cannot evaluate the inner integral in closed form we will take the derivative of FV (l)
with respect to l and derive the probability density function fV (l). We find

fV (l) = F ′
V (l) =

(

1

2

)
α+β

2 1

Γ(α/2)Γ(β/2)

∫ ∞

y=0

y
β
2
−1e−

1
2
y

(

α

β

)
α
2
−1

y
α
2
−1l

α
2
−1e−

1
2

α
β

yl · α

β
y · dy

=

(

1

2

)
α+β

2 l
α
2
−1

Γ(α/2)Γ(β/2)

(

α

β

)
α
2
∫ ∞

y=0

y
α
2
+ β

2
−1e−

1
2(1+ α

β
l)ydy .



To evaluate this integral let v = 1
2

(

1 + α
β
l
)

y, then dv = 1
2

(

1 + α
β
l
)

dy, and we get

fV (l) =

(

1

2

)
α+β

2 l
α
2
−1

Γ(α/2)Γ(β/2)

(

α

β

)α
2 1
(

1
2

(

1 + α
β
l
))

α+β
2

∫ ∞

v=0

v
α
2
+ β

2
−1e−vdv

=
Γ(α+β

2
)αα/2ββ/2

Γ(α/2)Γ(β/2)
· lα/2−1

(β + αl)
α+β

2

,

or an F distribution with α and β degrees of freedom.

Exercise 37 (transformation of F distributed random variables)

Part (a): Consider the transformation y = 1
x
, then

dy

dx
= − 1

x2
so

dx

dy
= −x2 .

Thus

gY (y) = gX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= gX(x(y))
∣

∣−x(y)2
∣

∣

=
1

y2

Γ(α+β
2

)αα/2ββ/2

Γ(α/2)Γ(β/2)

y−α/2+1

(β + α/y)
α+β

2

=
Γ(α+β

2
)αα/2ββ/2

Γ(α/2)Γ(β/2)

yβ/2−1

(α + βy)
α+β

2

,

which is an F distribution with parameters β and α as we were to show.

Part (b): Next consider the transformation y = x2, then

dy

dx
= 2x so

dx

dy
=

1

2x
=

1

2
√

y
.

So the p.d.f of y is given by

gY (y) = gX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
1

2
√

y
gX(x(y))

=
1

2
√

y

Γ((α + 1)/2)

(απ)1/2Γ(α/2)

(

1 +
y

α

)−(α+1
2 )

=
Γ((α + 1)/2)αα/2

(απ)1/2Γ(α/2)

y−1/2

(α + y)
α+1

2

,

which is an F distribution with parameters 1 and α degrees of freedom as we were to show.



Exercise 38 (transformation of beta distributed random variables)

Consider the variable Y defined in terms of X by

y =
αx

β + αx
. (40)

Then we have the derivative of y with respect to x given by

dy

dx
=

α

β + αx
− α2x

(β + αx)2
=

αβ

(β + αx)2
,

and
dx

dy
=

(β + αx)2

αβ
.

From Equation 40 we have that x in terms of y is given by

x =

(

β

α

)

y

1 − y
. (41)

Then since X is distributed as an F random variable with parameters α and β its density
function looks like

gX(x) =
Γ(α

2
+ β

2
)

Γ(α/2)Γ(β/2)
αα/2ββ/2 xα/2−1

(β + αx)(α+β)/2
. (42)

When X is given by Equation 41 we see that the term in the denominator above looks like

β + αx = β

(

1

1 − y

)

,

so
xα/2−1

(β + αx)(α+β)/2
=

β−β/2−1

αα/2−1

yα/2−1

(1 − y)−β/2−1
.

In addition, the derivative is given by

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
1

αβ

(

β + β
y

1 − y

)2

=
β

α

(

1

1 − y

)2

.

Thus when we put everything together we get

gY (y) = gX(x(y))

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
Γ(α/2 + β/2)

Γ(α/2)Γ(β/2)
αα/2ββ/2β−β/2−1

αα−1

yα/2−1

(1 − y)−β/2−1

β

α

1

(1 − y)2

=
Γ(α/2 + β/2)

Γ(α/2)Γ(β/2)
y

α
2
−1(1 − y)

β
2
−1 ,

which is a beta distribution with parameters α
2

and β
2

as we were to show.



Exercise 39 (expectations of F distributed random variables)

To have E(Xk) converge when X is given by a F distribution with parameters α and β given
by Equation 42 requires that the integral of an expression like

xkxα/2−1

(β + αx)
α+β

2

∼ xk−β/2−1 ,

converge. This requires that as a function of x is has an exponent less than −1, which means
that k − β

2
− 1 < −1 or solving for β that

β > 2k . (43)

Next we compute the expectations E(X) and E(X2) using the functional form for the p.d.f.
of an F distributed random variable with parameters α and β given by Equation 42. For
E(X) we have

E(X) =
Γ(α+β

2
)αα/2ββ/2

Γ(α/2)Γ(β/2)

∫ ∞

x=0

xα/2

(β + αx)(α+β)/2
dx

=
Γ(α+β

2
)αα/2ββ/2

Γ(α/2)Γ(β/2)

(

α−1−α/2β1−β/2Γ(1 + α/2)Γ(−1 + β/2)

Γ(α/2 + β/2)

)

=

(

β

α

)

Γ(1 + α/2)

Γ(α/2)

Γ(−1 + β/2)

Γ(β/2)

=

(

β

α

)

(α/2) Γ(α/2)

Γ(α/2)

Γ(−1 + β/2)

(β/2 − 1) Γ(β/2 − 1)

=
β

2

1

(β/2 − 1)
=

β

β − 2
.

Note that by Equation 43 to have the expectation integral converge requires that β > 2. For
E(X2) we have

E(X2) =
Γ(α+β

2
)αα/2ββ/2

Γ(α/2)Γ(β/2)

∫ ∞

x=0

xα/2+1

(β + αx)(α+β)/2
dx

=
Γ(α+β

2
)αα/2ββ/2

Γ(α/2)Γ(β/2)

(

α−2−α/2β2−β/2Γ(2 + α/2)Γ(−2 + β/2)

Γ((α + β)/2)

)

=
β2

α2

(1 + α/2)(α/2)Γ(α/2)

Γ(α/2)
· Γ(−2 + β/2)

(−1 + β/2)(−2 + β/2)Γ(−2 + β/2)

=
β2(α + 2)

α(β − 2)(β − 4)
.

Again note that by Equation 43 to have the squared expectation of X integral converge
requires that β > 4. To compute the variance we use the standard formula involving E(X2)
and E(X) of

Var(X) = E(X2) − E(X)2 =
2β2(α + β − 2)

α(β − 4)(β − 2)2
,

when we use the above expressions. The needed integrations for this problem can be found
in the Mathematica notebook chap 4 prob 39.nb.



Chapter 5 (Some special multivariate distributions)

Notes on the text

Notes on the Dirichlet distribution

Given the result that for a Dirichlet distribution the expectation of powers of the random
variables is simple to compute using

E(Xr1
1 · · ·Xrk

k ) =
Γ(
∑k

i=1 αi)
∏k

i=1 Γ(αi)
·
∏k

i=1 Γ(αi + ri)

Γ[
∑k

i=1(αi + ri)]
, (44)

we can compute the simplest statistics for components of the Dirichlet distribution. To
simply the notation in the following we define α0 =

∑k
i=1 αk. Then we can compute some

simple statistics of the components of X when X is distributed with a Dirichlet distribution.
For example to evaluate E(Xi) we have ri = 1 and rj = 0 for all j 6= i. Then we find that

E(Xi) =
Γ(α0)Γ(αi + 1)

∏k
j=1;j 6=i Γ(αj)

∏k
j=1 Γ(αj)Γ(α0 + 1)

=
Γ(α0)

Γ(α0 + 1)
· Γ(αi + 1)

Γ(αi)
.

Since Γ(x + 1) = xΓ(x) the above becomes

E(Xi) =
αi

α0

, (45)

which is equation 6 in this section. To compute Var(Xi) we need to compute E(X2
i ). Using

the same technique as to compute E(Xi) we have

E(X2
i ) =

Γ(α0)
∏k

j=1 Γ(αj)
·
∏k

j=1;j 6=i Γ(αj) · Γ(αi + 2)

Γ(α0 + 2)

=
Γ(α0)

(α0 + 1)α0Γ(α0)
· Γ(αi + 2)

Γ(αi)
=

αi(αi + 1)

α0(α0 + 1)
. (46)

Using this we can compute Var(Xi) as

Var(Xi) = E(X2
i ) − E(Xi)

2 =
αi(αi + 1)

α0(α0 + 1)
− α2

i

α2
0

=
αi(α0 − αi)

α2
0(α0 + 1)

, (47)

which is the result quoted in the book. The final result we will derive is Cov(Xi, Xj) to
compute this we need E(XiXj). We find

E(XiXj) =
Γ(α0)

∏k
l=1;l 6=i,j Γ(αl)Γ(αi + 1)Γ(αj + 1)
∏k

l=1 Γ(αl)Γ(α0 + 2)

=
1

α0(α0 + 1)
· Γ(αi + 1)

Γ(αi)
· Γ(αj + 1)

Γ(αj)

=
αiαj

α0(α0 + 1)
. (48)



Thus we find

Cov(Xi, Xj) = E(XiXj) − E(Xi)E(Xj) =
αiαj

α0(α0 + 1)
− αiαj

α2
0

= − αiαj

α2
0(α0 + 1)

, (49)

the same as claimed in the book.

Notes on the multivariate t distribution

Recall that if we know the p.d.f of the vector (y, z) but want the p.d.f of the vector (x, z) it
is given by

gX,Z(x, z) = gY,Z(y, z)

∣

∣

∣

∣

∂(y, z)

∂(x, z)

∣

∣

∣

∣

.

To use this we need to compute

∂(y, z)

∂(x, z)
=

















∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xk

∂y1

∂z
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xk

∂y2

∂z
...

...
∂yk

∂x1

∂yk

∂x2
· · · ∂yk

∂xk

∂yk

∂z
∂z
∂x1

∂z
∂x2

· · · ∂z
∂xk

∂z
∂z

















.

Since Yi =
(

Z
n

)1/2
(Xi − µ) we see that

∂Yi

∂xj

=

{

0 i 6= j
(

z
n

)1/2
i = j

∂Yi

∂z
=

1

2

1√
n

z−1/2(Xi − µi) ∀ i

∂z

∂xi
= 0 ∀ i

∂z

∂z
= 1 .

Putting these expressions into ∂(y,z)
∂(x,z)

we have

∂(y, z)

∂(x, z)
=

















(

z
n

)1/2
0 · · · 0 1

2
1√
n
z−1/2(X1 − µ1)

0
(

z
n

)1/2 · · · 0 1
2

1√
n
z−1/2(X2 − µ2)

...
...

0 0 · · ·
(

z
n

)1/2 1
2

1√
n
z−1/2(Xk − µk)

0 0 · · · 0 1

















.

From this expression we see that the determinant of this expression is given by
(

z
n

)k/2
, as

claimed in the book. Thus when we put in the known p.d.f for gY,Z(y, z) we have

gX,Z(x, z) = gY,Z(y, z)
(z

n

)k/2



= (2π)−k/2|T |1/2 exp

{

−1

2

( z

n

)

(x − µ)′T (x − µ)

}

×
[

2n/2Γ
(n

2

)]−1

z(n/2)−1e−z/2
( z

n

)k/2

=
|T |1/2

(2πn)k/22n/2Γ (n/2)
exp

{

−1

2

( z

n

)

(x − µ)′T (x − µ)

}

. (50)

or the books equation 6. Since we ultimately want the p.d.f of X by itself we need to integrate
Z out of gX,Z(x, z). To do this we will use the following integration identity

∫ ∞

0

z(n+k−2)/2e−Qzdz = Γ

(

n + k

2

)

Q−(n+k)/2 . (51)

To prove this equation let ξ = Qz so that that z = ξ
Q

and dξ = Qdz and the left-hand-side
of Equation 51 to get

∫ ∞

0

ξ(n+k−2)/2

Q(n+k−2)/2
e−ξ

(

dξ

Q

)

=
1

Q(n+k)/2

∫ ∞

0

ξ(n+k)/2−1e−ξdξ = Γ

(

n + k

2

)

Q−(n+k)/2 ,

which is the desired expression. Thus using this integral and the books notation for the
constant c′ we can compute gX(x|n, µ, T ) as

gX(x|n, µ, T ) =

∫ ∞

0

gX,Z(x, z)dz

= c′
∫ ∞

0

z(n+k−2)/2e−
1
2
(1+ 1

n
(x−µ)′T (x−µ))zdz

= c′Γ

(

n + k

2

)[

1 +
1

n
(x − µ)′T (x − µ)

]−(n+k
2 )

,

the same expression as in the book. In summary then, the p.d.f of a k-dimensional multi-
variate t-distribution with n degrees of freedom, a location vector µ, and a precision matrix
T is given by

gX(x|n, µ, T ) =
Γ
(

n+k
2

)

|T |1/2

Γ
(

n
2

)

(nπ)k/2

[

1 +
1

n
(x − µ)′T (x − µ)

]−(n+k
2 )

. (52)

Notes on the bilateral bivariate Pareto distribution

Since the computed marginal distributions for X1 and X2 derived in Exercise 23 and ex-
pressed by Equations 98 and 99 are univariate Pareto distribution we can use the expecta-
tion for a univariate Pareto distribution given by Equation 34 to derive the expectation of
the marginals of the bivariate Pareto. As such, since r2 − X1 is a univariate Pareto from
Equation 34 we have that

E(r2 − X1) =
α(r2 − r1)

α − 1
,

or since r1 is a constant in the expectation this becomes

r2 − E(X1) =
α(r2 − r1)

α − 1
,



so solving for E(X1) we find

E(X1) = r2 −
α(r2 − r1)

α − 1
=

αr1 − r2

α − 1
. (53)

Using the expression E(X2) for a univariate Pareto distribution given by Equation 35 on
the variable r2 − X1 means in this case that

E((r2 − X1)
2) =

α(r2 − r1)
2

α − 2
.

Expanding the quadratic expression on the left-hand-side of the above gives

r2
2 − 2r2E(X1) + E(X2

1 ) =
α(r2 − r1)

2

α − 2
.

Putting in the known value of E(X1) given by Equation 53 above gives the following expres-
sion for E(X2

1 ).

r2
2 − 2r2

(

αr1 − r2

α − 1

)

+ E(X2
1 ) =

α(r2 − r1)
2

α − 2
.

When we solve this expression for E(X2
1 ) we get

E(X2
1 ) =

α(α − 1)r2
1 − 2αr1r2 + 2r2

2

(α − 1)(α − 2)
. (54)

From which we can get that Var(X1) is given by

Var(X1) = E(X2
1 ) − E(X1)

2 =
α(r2 − r1)

2

(α − 1)2(α − 2)
. (55)

Next we will perform the same manipulations as above but for the marginal distribution of
X2. Since from Exercise 23 and using Equation 34 we have that

E(X2 − r1) =
α(r2 − r1)

α − 1
.

or since r1 is a constant we can solve for E(X2) to get

E(X2) = r1 +
α(r2 − r1)

α − 1
=

αr2 − r1

α − 1
. (56)

Using E(X2) for a univariate Pareto distribution given by Equation 35 means in this case
that

E((X2 − r1)
2) = E(X2

2 ) − 2r1E(X2) + r2
1 =

α(r2 − r1)
2

α − 2
.

Putting in the known value of E(X2) given by Equation 56 gives the following expression we
must solve for E(X2

2 ).

E(X2
2 ) − 2r1

(

αr2 − r1

α − 1

)

+ r2
1 =

α(r2 − r1)
2

α − 2
.



We can solve this for E(X2
2 ) to get

E(X2
2 ) =

α(α − 1)r2
1 − 2αr1r2 + 2r2

1

(α − 1)(α − 2)
, (57)

and then use this value to get Var(X2), where we find

Var(X2) = E(X2
2 ) − E(X2)

2 =
α(r2 − r1)

2

(α − 1)2(α − 2)
. (58)

Some of the algebra for these problems is worked in the Mathematica notebook
bilateral Pareto Derivations.nb.

Exercise Solutions

Exercise 1 (independent Poisson random variables that sum to n)

For this problem we are asked to evaluate P (X|∑k
i=1 xi = n). To evaluate this recall the

definition of conditional probability

P (X|
k
∑

i=1

xi = n) =
P (X,

∑k
i=1 xi = n)

P (
∑k

i=1 xi = n)
.

Since each component of the vector X is an independent Poisson random variable we can
compute the expression P (X,

∑k
i=1 xi = n) in terms of products of the densities of the

components xi as
(

k−1
∏

i=1

(

e−λiλxi
i

xi!

)

)





e−λkλ
n−Pk−1

j=1 xj

k

(n −∑k−1
j=1 xj)!



 .

If we introduce the non-random variable xk defined in terms of the earlier variables xi for
1 ≤ i ≤ k − 1 as xk ≡ n −∑k−1

j=1 xj , the above simplifies to

P (X,
k
∑

i=1

xi = n) =
k
∏

i=1

e−λiλxi
i

xi!
.

Next we need to evaluate P (
∑k

i=1 xi = n). This is greatly simplified if we recall that the sum

of independent individual Poisson random variables with parameters λi is another Poisson
random variable with parameter

∑k
i=1 λi. Thus

P (

k
∑

i=1

xi = n) =
e−

Pk
i=1 λi (

∑k
i=1 λi)

n

n!
.

Using these two results we find

P (X|
k
∑

i=1

xi = n) =

(

k
∏

i=1

e−λiλxi
i

xi!

)

· n!

e−
Pk

i=1 λi (
∑k

i=1 λi)n

=
n!

x1!x2! · · ·xk!

(

∏k
i=1 λxi

i

(
∑k

i=1 λi)n

)

.



Since n =
∑k

i=1 xi we can write

(
k
∑

j=1

λj)
n = (

k
∑

j=1

λj)
Pk

i=1 xi =
k
∏

i=1

(
k
∑

j=1

λj)
xi .

Thus using this P (X|∑k
i=1 xi = n) becomes

P (X|
k
∑

i=1

xi = n) =
n!

x1!x2! · · ·xk!

(

∏k
i=1 λxi

i
∏k

i=1(
∑k

j=1 λj)xi

)

=
n!

x1!x2! · · ·xk!

k
∏

i=1

(

λi

(
∑k

j=1 λj)

)xi

,

which is the P.D.F. of a multinomial distribution with probability pi given by

pi =
λi

(
∑k

j=1 λj)
,

as we were to show.

Exercise 2 (the characteristic function for a multinomial distribution)

The characteristic of an n-dimensional random variable X = (X1, X2, · · · , Xk)
′ is a complex

valued function of defined at each point t = (t1, t2, · · · , tk)′ given by

ζ(t) = E
(

eit′X
)

. (59)

In this case this becomes

ζ(t) =
n
∑

x1=0

n
∑

x2=0

· · ·
n
∑

xk=0

n!

x1!x2! · · ·xk!
px1

1 px2
2 · · · pxk

k eit′X

=

n
∑

x1=0

n
∑

x2=0

· · ·
n
∑

xk=0

n!

x1!x2! · · ·xk!
(p1e

it1)x1(p2e
it2)x2 · · · (eitkpk)

xk .

Using the multinomial formula this becomes

ζ(t) =

(

k
∑

j=1

pje
itj

)n

, (60)

as we were to show.

To compute E(X) lets consider E(Xi) the componentwise expectation for i = 1, 2, · · · , p
then

E(Xi) =
∑

(x1,···xi,···,xk)

xi

(

n
x1 , x2 , · · · , xk

)

px1
1 px2

2 · · · pxk
k .



We can simplify in this case the coefficient in the above expression as follows

xi

(

n
x1 , x2 · · ·xk

)

= xi
n!

x1! · xi! · · ·xk!

=
n(n − 1)!

x1! · · · (xi − 1)! · · ·xk!

= n
(n − 1)!

x1! · · · (xi − 1)! · · ·xk!
.

Writing pxi
i = pip

xi−1
i we can express E(Xi) as

E(Xi) = npi

∑

X

(

n − 1
x1 , · · · , xi − 1 , · · · , xk

)

px1
1 · · · pxi−1

2 · · · pxk
k .

Where the sum is over the vectors X = (x1, · · ·xi − 1, · · · , xk)
′ such that

x1 + x2 + · · ·+ xi − 1 + · · · + xk = n − 1 .

To simplify this, simply rename the xi − 1 variable something like x̃i and we now have sum

E(Xi) = npi

∑

X

(

n − 1
x1 , · · · , x̃i , · · · , xk

)

px1
1 · · · px̃i

2 · · · pxk
k .

The sum above evaluates to one and we get

E(Xi) = npi . (61)

In vector form this, equation is E(X) = np. We can also argue the correctness of this
expression by defining an event Ei to have occurred when we increment our ith counting
random variable Xi from Xi to Xi + 1. Then the event Ei happens with probability pi

and does not happen with probability 1 − pi. When dealing with the event Ei by itself,
the variable Xi, representing the number of events Ei that happen in n trials is a binomial

random variable, and has the known expectation expression given by Equation 61.

In computing the variance recall that Var(Xi) = E(X2
i )−E(Xi)

2 = E(X2
i )− (npi)

2, thus to
evaluate Var(Xi) we need to be able to evaluate E(X2

i ). This later expectation is given by

E(X2
i ) =

∑

|x|=n

x2
i

(

n
x1 , x2 , · · ·xi , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · · pxk

k

In this sum we have used the notation |x| = n to mean the vector of elements of x must have
components that sum to n or

x1 + x2 + · · · + xk = n . (62)

Note that in the above we can separate this sum out into two parts. The first where xi = 0
and the second where xi 6= 0 as

E(X2
i ) =

∑

|x|=n;xi=0

x2
i

(

n
x1 , x2 , · · ·xi , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · ·pxk

k

+
∑

|x|=n;xi 6=0

x2
i

(

n
x1 , x2 , · · ·xi , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · ·pxk

k ,



But this first sum is zero by definition leaving just the second sum. In this second sum
consider the leading coefficient. Since xi 6= 0 we have

x2
i

(

n
x1 , x2 , · · ·xi , · · ·xk

)

= x2
i

n!

x1!x2! · · ·xi! · · ·xk!

= nxi
(n − 1)!

x1!x2! · · · (xi − 1)! · · ·xk!
,

so our expectation expression becomes

E(X2
i ) = n

∑

|x|=n;xi 6=0

xi

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · · pxk

k .

Lets write the variable xi as xi − 1 + 1 and then split the above single sum into two sums as

E(X2
i ) = n

∑

|x|=n;xi 6=0

(xi − 1)

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · ·pxk

k (63)

+ n
∑

|x|=n;xi 6=0

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · ·pxk

k . (64)

For this first sum we can use the same trick as before in that we can break this sum up into
two pieces, in this case sums when xi = 1 and sums when xi 6= 1. Since all the terms have a
coefficient xi − 1 we see that when we perform this decomposition the sum over the points
where xi = 1 has each term vanish and we can write E(X2

i ) as

E(X2
i ) = n

∑

|x|=n;xi 6={0,1}
(xi − 1)

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

px1
1 px2

2 · · ·pxi
i · · · pxk

k

+ n
∑

|x|=n;xi 6=0

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · · pxk

k .

The coefficient of the expression in the first sum (since xi 6= 1) can be written as

(xi − 1)

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

= (xi − 1)
(n − 1)!

x1!x2! · · · (xi − 1)! · · ·xk!

= (n − 1)
(n − 2)!

x1!x2! · · · (xi − 2)! · · ·xk!
,

and we get for E(X2
i ) the following

E(X2
i ) = n(n − 1)

∑

|x|=n;xi 6={0,1}

(

n − 2
x1 , x2 , · · · (xi − 2) , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · ·pxk

k (65)

+ n
∑

|x|=n;xi 6=0

(

n − 1
x1 , x2 , · · · (xi − 1) , · · ·xk

)

px1
1 px2

2 · · · pxi
i · · · pxk

k . (66)

We’ll now show how to evaluate these two remaining sums. For the second sum given by 66
above recognize that the constraint that |x| = n and xi 6= 0 means that none of the other



values of xj (j 6= i) can equal n, since if they did the sum constraint would require xi = 0,
which is forbidden. Thus the range of the other variables become 0 ≤ xj ≤ n − 1, for j 6= i.
Next in writing constraint |x| = n from Equation 62 requires

x1 + x2 + · · ·+ (xi − 1) + · · · + xk = n − 1 .

If we introduce a variable x̃i = xi − 1, this constraint becomes

x1 + x2 + · · ·+ x̃i + · · ·+ xk = n − 1 .

where x̃i (since xi 6= 0) now takes the range 0 ≤ x̃i ≤ n − 1 as all the others. Thus we end
with the sum

n
∑

|x̃|=n−1

(

n − 1
x1 , x2 , · · · x̃i , · · ·xk

)

px1
1 px2

2 · · · px̃i+1
i · · · pxk

k ,

or

npi

∑

|x̃|=n−1

(

n − 1
x1 , x2 , · · · x̃i , · · ·xk

)

px1
1 px2

2 · · · px̃i
i · · · pxk

k = npi ,

Since the final remaining sum is evaluated as (p1 + p2 + · · ·+ pk)
n−1 = 1 by the multinomial

theorem. We can do this same trick with the first term given by 65 above. In this case the
same logic show that since xi 6= 0 we can introduce x̃i = xi − 1 and obtain the constraint

x1 + x2 + · · ·+ x̃i + · · ·+ xk = n − 1 .

where all variables are restricted to the domain [0, n− 1]. Since xi 6= 1 also this means that
x̃i 6= 0 and thus xj 6= n − 1 so the above constraint requires that

x1 + x2 + · · ·+ (x̃i − 1) + · · · + xk = n − 2 .

or
x1 + x2 + · · ·+ x̂i + · · ·+ xk = n − 2 .

where x̂i = x̃i − 1 and all variables above constraint are now in the domain [0, n − 2]. Thus
our first sum becomes

n(n − 1)
∑

|x̂|=n−2

(

n − 2
x1 , x2 , · · · x̂i , · · ·xk

)

px1
1 px2

2 · · · px̂i+2
i · · · pxk

k = n(n − 1)p2
i ,

since after we factor our p2
i the sum above simplifies to (p1 + p2 + · · · + pk)

n−2 = 1n−2 = 1
by the multinomial theorem. Combining these two expressions we finally arrive at

Var(Xi) = E(X2
i ) − E(Xi)

2 = n(n − 1)p2
i + npi − n2p2

i = npi(1 − pi) , (67)

as we were to show.

As the final part of this problem we will compute Cov(Xi, Xj). From its definition we
can show that Cov(Xi, Xj) = E(XiXj) − E(Xi)E(Xj) so that given what we have already
computed we need to now compute E(XiXj) to evaluate this. This second expectation
becomes

E(XiXj) =
∑

|x|=n

xixj

(

n
x1 , x2 , · · · , xi , · · · , xj , · · ·xk

)

px1
1 · · ·pxi

i · · · pxj

j · · · pxk
k .



In this last sum we can restrict the values of xi and xj such that they are greater than or
equal to one. We can write the multinomial coefficient in the above as

xixj

(

n
x1 , x2 , · · · , xi , · · · , xj , · · ·xk

)

= n(n−1)

(

n − 2
x1 , x2 , · · · , (xi − 1) , · · · , (xj − 1) , · · ·xk

)

.

As we have done before by introducing the variables x̃i = xi − 1 and x̃j = xj − 1 we find
E(XiXj) is given by

E(XiXj) = n(n − 1)
∑

|x̃|=n−2

(

n − 2
x1 , x2 , · · · , x̃i , · · · , x̃j , · · ·xk

)

px1
1 · · · px̃i+1

i · · · px̃j+1
j · · · pxk

k

= = n(n − 1)pipj .

Using this expectation we can derive the value of Cov(Xi, Xj) as

Cov(Xi, Xj) = n(n − 1)pipj − n2pipj = −npipj , (68)

as we were to show. Note that since from the expression for the covariance derived above is
valid for i 6= j if we sum across the ith row we have that

n
∑

j=1;j 6=i

Cov(Xi, Xj) = −
n
∑

j=1;j 6=i

npipj = −npi(1 − pi) .

when we add this to Equation 67 we see that the row sum of the ith row for each i is zero.
Thus since a non-zero combination of the columns of this matrix sums to the zero vector I
would claim that the covariance matrix is singular.

Exercise 3 (adding independent multinomial variables with the same p vector)

Recall that the sum of independent random variables has a characteristic function that is
the product of the characteristic functions for the individual random variables we have that

ζX1+···+Xr(t) =
r
∏

i=1

ζXi
(t) ,

where in this case we have ζXi
(t) given by Equation 60, with n = ni. Using this expression

we have

ζX1+···+Xr(t) =

r
∏

i=1

(

k
∑

j=1

pje
itj

)ni

=

(

k
∑

j=1

pje
itj

)

Pr
i=1 ni

,

which is the characteristic function of a multinomial distribution with parameters
∑r

i=1 ni

and the same probability vector p as all of the component multinomial random variables Xi.



Exercise 4 (the normalization of the Dirichlet distribution)

We will begin by attempting to transform the p.d.f of X ∈ Rk−1 into one for Y ∈ Rk−1. To
do this we will use the general transformation between p.d.f’s given by

gY(y) = gX(x(y))

∣

∣

∣

∣

∂x

∂y

∣

∣

∣

∣

.

Note that for the given “direct” transformation between xi and yi we can derive the inverse
transformation as

x1 = y1

x2 = (1 − x1)y2 = (1 − y1)y2

x3 = (1 − x1 − x2)y3 = (1 − y1 − (1 − y1)y2)y3 = (1 − y1)(1 − y2)y3 = y3

2
∏

j=1

(1 − yj)

x4 = (1 − y1)(1 − y2)(1 − y3)y4 = y4

3
∏

j=1

(1 − yj)

...

xk−1 = (1 − y1)(1 − y2)(1 − y3) · · · (1 − yk−2)yk−1 = yk−1

k−2
∏

j=1

(1 − yj) .

Thus we find ∂x
∂y

a (k − 1) × (k − 1) lower diagonal matrix given by

















1 0 0 · · · 0
−y2 1 − y1 0 · · · 0

−(1 − y2)y3 −(1 − y1)y3 (1 − y1)(1 − y2) · · · 0
...

...

−
(

∏k−2
j=2(1 − yj)

)

yk−1 −
(

∏k−2
j=1;j 6=2(1 − yj)

)

yk−1 −
(

∏k−2
j=1;j 6=3(1 − yj)

)

yk−1 · · · ∏k−2
j=1(1 − yj)

















.

The determinant of this matrix is the product of the elements on the diagonal and we find

∣

∣

∣

∣

∂x

∂y

∣

∣

∣

∣

= 1 · (1 − y1) · (1 − y1)(1 − y2) · (1 − y1)(1 − y2)(1 − y3) · · ·
k−2
∏

j=1

(1 − yj)

= (1 − y1)
k−2(1 − y2)

k−3(1 − y3)
k−4 · · · (1 − yk−3)

2(1 − yk−2)
1

=
k−1
∏

j=1

(1 − yj)
k−j−1 . (69)

Thus with this change of variables the integrand of I =
∏k

i=1 xαi−1
i our integral becomes

I = yα1−1
1 · (1 − y1)

α2−1yα2−1
2 · (1 − y1)

α3−1(1 − y2)
α3−1yα3−1

3 · · ·

×
(

yk−1

k−2
∏

j=1

(1 − yj)

)αk−1−1

xαk−1
k

∣

∣

∣

∣

∂x

∂y

∣

∣

∣

∣

dy , (70)



Note that in the above expression we can write the variable xk in terms of the variables y as

xk = 1 − x1 − x2 − x3 − · · · − xk−2 − xk−1

= 1 − y1 − (1 − y1)y2 − (1 − y1)(1 − y2)y3 − · · ·
− (1 − y1)(1 − y2) · · · (1 − yk−3)yk−2 − (1 − y1)(1 − y2) · · · (1 − yk−2)yk−1

=

k−1
∏

j=1

(1 − yj) . (71)

Thus using Equations 69 and 71 in Equation 70 the integrand I above becomes

I = yα1−1
1 · (1 − y1)

α2−1yα2−1
2 · (1 − y1)

α3−1(1 − y2)
α3−1yα3−1

3 · · ·
(

yk−1

k−2
∏

j=1

(1 − yj)

)αk−1−1

×
(

k−1
∏

j=1

(1 − yj)

)αk−1

×
k−1
∏

j=1

(1 − yj)
k−j−1

= yα1−1
1 yα2−1

2 yα3−1
3 · · · yαk−1−1

k−1

× (1 − y1)
Pk

i=2 αi−1(1 − y2)
Pk

i=3 αi−1(1 − y3)
Pk

i=4 αi−1 · · · (1 − yk−2)
αk−1+αk−1(1 − yk−1)

αk−1 .

Note that in the product above we have a natural pairing of the factors yαi−1
i and (1 −

yi)
Pk

j=i+1 αj−1 for each value of i in 1 ≤ i ≤ k − 1. Thus is the multidimensional integral we
are attempting to evaluate decouples into the product of k − 1 univariate integrals we have
to evaluate k − 1 of the following integrals

∫ 1

yi=0

yαi−1
i (1 − yi)

Pk
j=i+1 αj−1dyi .

To do this recall the definition of the Beta function B(a, b) given by

B(a, b) ≡
∫ 1

0

xa−1(1 − x)b−1dx =
Γ(a)Γ(b)

Γ(a + b)
.

Then we see that the integral above is given by

Γ(αi)Γ
(

∑k
j=i+1 αj

)

Γ
(

∑k
j=i αj

) .

With the evaluation of these sub integrals the integral of the entire multidimensional integral
thus becomes the product of k − 1 of these results or

k−1
∏

i=1

Γ(αi)Γ
(

∑k
j=i+1 αj

)

Γ
(

∑k
j=i αj

) =

(

k−1
∏

i=1

Γ(αi)

)





k−1
∏

i=1

Γ
(

∑k
j=i+1 αj

)

Γ
(

∑k
j=i αj

)



 .

This second factor above is like a “telescoping series” in that if we write it out we see that
a great many terms cancel as follows

Γ
(

∑k
j=2 αj

)

Γ
(

∑k
j=1 αj

) ·
Γ
(

∑k
j=3 αj

)

Γ
(

∑k
j=2 αj

) ·
Γ
(

∑k
j=4 αj

)

Γ
(

∑k
j=3 αj

) · · ·
Γ
(

∑k
j=k αj

)

Γ
(

∑k
j=k−1 αj

) =
Γ (αk)

Γ
(

∑k
j=1 αj

) .



In summary then we finally find that

∫

· · ·
∫

S

(

k
∏

i=1

xαi−1
i

)

dx1 · · · dxk−1 =

∏k
i=1 Γ (αi)

Γ
(

∑k
j=1 αj

) ,

as we were to show.

Warning: I’m not exactly sure how to show that the multidimensional integral above
decouples into k − 1 univariate integrals. Perhaps this would be revealed if one considers a
point case where we have a small value for k, say k = 2. One could then generalize the small
value of k procedure to the case of arbitrary k. I have not had time to look into this in more
detail. If anyone knows how to show this please contact me.

Exercise 5 (the ratio of Xi to the sum of Xi)

Part (a): We are told that Xi are independent random variables with a gamma distribution
with parameters αi and the same value for β. Lets define Yi in terms of Xi as

Yi =
Xi

X1 + X2 + · · ·+ Xn
for i = 1, 2, · · · , n .

Note that it looks like we have n random variables for Y but if we introduce the random
variable Z defined as

Z =

n
∑

i=1

Xi ,

then given (X1, X2, · · · , Xn)′ we can determine all of the variables (Y1, Y2, · · · , Yn, Z)′. In ad-
dition, given (Y1, Y2, · · · , Yn−1, Z)′ (note no Yn variable) we can uniquely determine (X1, X2, · · · , Xn)′.
Thus we will use the p.d.f. of the vector X to derive the p.d.f of the vector (Y1, Y2, · · · , Yn−1, Z)′.
We can then integrate out the random variable Z to determine the p.d.f of (Y1, Y2, · · · , Yn−1)

′.

Since Xi’s are independent Gamma random variables we have that

gX(x) =

n
∏

i=1

βαi

Γ(αi)
xαi−1

i e−βxi .

If we define α0 =
∑n

i=1 αi, the p.d.f above becomes

gX(x) =
βα0

∏n
i=1 Γ(αi)

(

e−β
Pn

i=1 xi

)

n
∏

i=1

xαi−1
i .

We will next transform this p.d.f to one over (Y1, Y2, · · · , Yn−1)
′ by using

f(Y,Z)(y, z) = fX(x(y, z))

∣

∣

∣

∣

∂x

∂(y, z)

∣

∣

∣

∣

.



To evaluate the Jacobian of the above transformation we need the explicit transformation
from (y, z) to x. We have

Xi = ZYi for i = 1, 2, · · · , n − 1

Xn = Z −
n−1
∑

i=1

Xi = Z − Z

n−1
∑

i=1

Yi = Z

(

1 −
n−1
∑

i=1

Yi

)

.

Thus we see that

∂Xi

∂Yj

=

{

0 i 6= j
Z i = j

∂Xi

∂Z
= Yi for i = 1, 2, · · · , n − 1

∂Xn

∂Yj
= −ZYj

∂Xn

∂Z
= 1 −

n−1
∑

i=1

Yi .

Thus we find

∂x

∂(y, z)
=



















Z 0 0 · · · 0 Y1

0 Z 0 · · · 0 Y2

0 0 Z · · · 0 Y3
...

. . .
...

...
0 0 0 · · · Z Yn−1

−ZY1 −ZY2 · · · · · · −ZYn−1 1 −∑n−1
i=1 Yi



















.

We need to estimate the determinant of this expression, which seems complicated at least
I don’t see a way to evaluate it that will result in an a-priori simple expression. Note: if
anyone sees a way to evaluate this determinant simply please let me know. To get around
this problem lets see if the expression for ∂(y,z)

∂x
is any simpler. Maybe it is easier to take the

derivative of that expression. To evaluate that derivative note that

∂Yi

∂Xj
=

∂

∂Xj

(

Xj

Z

)

=

{

1
Z

j = i
0 j 6= i

∂Z

∂Xj
= 1 for j = 1, 2, · · · , n

Thus in this case we have

∂(y, z)

∂x
=



















1/Z 0 0 · · · 0 0
0 1/Z 0 · · · 0 0
0 0 1/Z · · · 0 0
...

. . .
...

...
0 0 0 · · · 1/Z 0
1 1 · · · · · · 1 1



















.



This matrix has a simple derivative, since it is lower triangular and is given by
(

1
Z

)n−1
. Thus

the determinant we need
∣

∣

∣

∂x
∂(y,z)

∣

∣

∣
is the reciprocal of this value or Zn−1. Using this derivation

we finally find our density function f(Y,Z)(y, z) is given by

f(Y,Z)(y, z) =
βα

∏n
i=1 Γ(αi)

(

e−βz
)

(

n−1
∏

i=1

(ZYi)
αi−1

)

Zαn−1

(

1 −
n−1
∑

i=1

Yi

)αn−1

Zn−1

=
βα0Zα0−1e−βz

∏n
i=1 Γ(αi)

(

n−1
∏

i=1

Y αi−1
i

)(

1 −
n−1
∑

i=1

Yi

)αn−1

.

Next lets integrate out Z to derive the desired p.d.f of just (Y1, Y2, · · · , Yn−1)
′. The expression

we have to integrate is given by
∫ ∞

0

zα0−1e−βzdz = β−α0Γ(α0) ,

when to evaluate this we make the substitution v = βz. Thus we find

gY(y) =
Γ(α0)

∏n
i=1 Γ(αi)

(

n−1
∏

i=1

Y αi−1
i

)(

1 −
n−1
∑

i=1

Yi

)αn−1

,

which is the p.d.f of a Dirichlet random variable as we were to show.

Part (b): Warning: I don’t see that this part is any different than Part a except in that
here we are only considering the first r elements of X. It seems like even in this case the
arguments above will still hold. If someone sees where I am wrong please contact me.

Exercise 6 (order statistics of a uniform random variable are Dirichlet)

One can show [3] that the joint distribution function for the order statistics Y = (Y(1), Y(2), · · · , Y(n))
′

when each yi is drawn from a p.d.f given by f(yi) is given by

fY(1),Y(2),···,Y(n)
(y1, y2, · · · , yn) = n!f(y1)f(y2) · · · f(yn) for y1 < y2 < · · · < yn . (72)

Then given the transformation from yi to zi for i = 1, 2, · · · , n lets derive the density function
of gZ(z), where Z = (Z1, Z2, · · · , Zn)

′. We have that

gZ(z) = gY(y(z))

∣

∣

∣

∣

∂y

∂z

∣

∣

∣

∣

.

Thus to use this formula we need to compute ∂y

∂z
. From the given expressions we see that

∂z

∂y
=















1 0
−1 1 0

0 −1 1
. . .

. . .
. . .

. . . 0
0 −1 1















,



which is a matrix that has +1 on its diagonal and −1 on its subdiagonal. The determinate
of this matrix is 1n = 1. In addition, since the yi are originally drawn from a uniform
distribution where the component densities in Equation 72 are given by f(y) = 1 we find
that

gZ(z) = n! ,

Note that this is a Dirichlet process with α = 1, since a Dirichlet process over the expanded
set of points (Z1, Z2, · · · , Zn, Zn+1) (this last point is a dummy point equal to Zn+1 = 1 −
∑n

i=1 Zn) when α = 1 is given by

gZ(z) =
Γ(α1 + α2 + · · ·+ αn + αn+1)

Γ(α1)Γ(α2) · · ·Γ(αn)Γ(αn+1)
zα1−1
1 zα2−1

2 · · · zαn−1
n z

αn+1−1
n+1 =

Γ(n + 1)

1n+1
= n! ,

as claimed.

Exercise 7 (what is the mean and covariance of a multidimensional Gaussian)

These two expressions can be derived in a number of ways. One way is by direct integration.
For example

E(X) =

∫

(2π)−k/2|Σ|−1/2x exp

{

−1

2
(x − µ)′Σ−1(x − µ)

}

dx

= (2π)−k/2|Σ|−1/2

∫

(x − µ + µ) exp

{

−1

2
(x − µ)′Σ−1(x − µ)

}

dx

= (2π)−k/2|Σ|−1/2

∫

(x − µ) exp

{

−1

2
(x − µ)′Σ−1(x − µ)

}

dx

+ µ(2π)−k/2|Σ|−1/2

∫

exp

{

−1

2
(x − µ)′Σ−1(x − µ)

}

dx

= 0 + µ = µ .

Where the line above last is because of symmetry. An another way to derive this result
is to recall that the mean and the covariance can be obtained by evaluating derivatives of
the characteristic function at the vector point 0. Since the characteristic function for a
multidimensional Gaussian random variable can we written as

ζ(t) = exp

{

it′µ − 1

2
t′Σt

}

. (73)

Since to expectations in terms of the characteristic function can be computed as

E

(

n
∏

j=1

x
rj

j

)

=
1

ir1+r2+···+rn

[

∂r1+r2+···+rnζ(t)

∂r1t1∂r2t2 · · ·∂rntn

]∣

∣

∣

∣

t=0

(74)

We begin by computing E(Xj) using this method. We find

E(Xj) =
1

i

∂ζ(t)

∂tj

∣

∣

∣

∣

t=0

.



Since

∂ζ(t)

∂tj
= exp

{

it′µ − 1

2
t′Σt

}(

iµj −
1

2
e′jΣt − 1

2
t′Σej

)

= exp

{

it′µ − 1

2
t′Σt

}

(iµj − t′Σej) .

Evaluating this at t = 0 gives E(Xj) = µj. Next to compute Cov(Xi, Xj) we need to compute
E(XiXj). We find

E(XiXj) =
1

i2

[

∂2ζ(t)

∂ti∂tj

]∣

∣

∣

∣

t=0

= − ∂

∂tj

[

eit′µ− 1
2
t′Σt (iµi − t′Σei)

]

∣

∣

∣

∣

t=0

= −
[

eit′µ− 1
2
t′Σt(iµj − t′Σej)(iµi − t′Σei) + eit′µ− 1

2
t′Σt(−ejΣei)

]∣

∣

∣

t=0

= − [iµj(iµi) − ejΣei]

= µiµj + eiΣej .

In the above any i subscript is an index and not the imaginary unit. Now the ijth component
of Σ is given by E(XiXj) − E(Xi)E(Xj) which can be computed via

Σij = µiµj + eiΣej − µiµj = eiΣej ,

or the ijth element of the matrix Σ as we were to show.

Exercise 8 (the marginal of a multivariate Gaussian is also Gaussian)

To show that the vector Xr = (X1, · · · , Xr)
′ has a multidimensional normal distribution

we use the fact that if X has a multidimensional normal distribution then AX also has a
multinomial normal distribution. To use this theorem we pick A so that it selects only the
first r components of X. We can do this we take A given by

A =
[

Ir×r 0r×(k−r)

]

,

or an r×r dimensional identity matrix “prepended” to a r×(k−r) dimensional zero matrix.
Then we see that AX is given by

AX =
[

Ir×r 0r×(k−r)

]























X1

X2
...

Xr

Xr+1
...

Xk























=











X1

X2
...

Xr











,



The random variable AX will have a covariance matrix given by AΣA′ which in this case
will look like

[

I 0
]

[

Σ11 Σ12

Σ21 Σ22

] [

I
0

]

= Σ11 .

where Σ11 is r × r and is composed of the first r rows and the first r columns of the matrix
Σ as claimed.

Exercise 9 (relationships between block components of T and Σ)

We have the matrices Σ and Σ−1 = T partitioned as

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

Σ−1 = T =

[

T11 T12

T21 T22

]

. (75)

Since we know by definition that Σ−1Σ = I or
[

T11 T12

T21 T22

] [

Σ11 Σ12

Σ21 Σ22

]

=

[

Ik1 0
0 Ik2

]

. (76)

Next we consider the (1, 2) element of the product in the left-hand-side expand the left-
hand-side of this product in terms of the blocks above we find

T11Σ12 + T12Σ22 = 0 .

Multiplying this equation by T−1
11 on the left and Σ−1

22 on the right to get

Σ12Σ
−1
22 + T−1

11 T12 = 0 ,

T−1
11 T12 = −Σ12Σ

−1
22 . (77)

Next consider the (1, 1) component of the product in Equation 76 where we have

T11Σ11 + T12Σ21 = Ik1 .

Multiplying this equation by T−1
11 on the left to get

Σ11 + T−1
11 T12T21 = T−1

11 ,

From Equation 77 we can replace T−1
11 T12 in the above with −Σ12Σ

−1
22 and get

T−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 , (78)

which we were to show. Finally, we will consider Σ−1
22 by looking at the (2, 2) element in

Equation 76 where we find
T21Σ12 + T22Σ22 = Ik2 .

Multiplying this equation by Σ−1
11 on the left we get

Σ−1
22 = T22 + T21Σ12Σ

−1
22 .

From Equation 77 we get that

Σ−1
22 = T22 − T21T

−1
11 T12 , (79)

another heavily used expression.



Exercise 10 (uncorrelated Gaussian random variables are independent)

The fact that the correlation between Xi and Xj is zero means that

E[(Xi − X̄i)(Xj − X̄j)
′] = 0 ,

or that
Σij = 0 ,

for i 6= j. Thus the p.d.f for the vector (X1, X2, · · · , Xk)
′ is a multidimensional Gaussian

that has a diagonal matrix for is covariance or

Σ = diag(σ2
1 , σ

2
2, · · · , σ2

k) .

With this representation the p.d.f for this vector of random variables has a term in the
exponential that looks like

(X − µ)′Σ−1(X − µ) =
k
∑

i=1

(Xi − µi)

σ2
i

.

While the determinant of Σ has an expression given by |Σ| =
∏k

i=1 σ2
i . With these simplifi-

cations the p.d.f of these random variables looks like

gX(x) =
1

(2π)k/2

1
(

∏k
i=1 σ2

i

)1/2
exp

{

−1

2

k
∑

i=1

(Xi − µi)
2

σ2
i

}

,

or splitting this into individual factors gives

gX(x) =
k
∏

i=1

1

(2π)1/2σi

exp

{

−1

2

(Xi − µi)
2

σ2
i

}

.

This shows that the joint distribution is written in terms of k products of the marginal
distributions and therefore the elements of X are independent.

Exercise 11 (transformations of independent Gaussian variables are independent)

Since Xi are independent normal random variables each with a variance given by σ2. When
considered as a vector (X1, X2, · · · , Xk)

′ these are vectors from a multivariate Gaussian dis-
tribution with a covariance matrix given by Σ = σ2I. The transformed random variables
will have a mean given by Aµ and a covariance matrix given by

AΣA′ = Aσ2IA′ = σ2AA′ = σ2I .

Since this is a diagonal matrix, using the results from Exercise 10 in this chapter the elements
of Yi are independent and they all have the same variances of σ2.



Exercise 12 (the random variable (X − µ)′Σ−1(X − µ) has a χ2)

We want to show that when X is given by a k dimensional multivariate Gaussian random
variable with a mean µ and a covariance matrix Σ that the random variable

(X − µ)′Σ−1(X − µ) ,

has a χ2 with k degrees of freedom. To see this recall that if we can show that the above
expression is the sum of the squares of k independent N(0, 1) Gaussian random variables will
have a χ2 distribution. If we can show that the above expression is of this form we are done.
To show this, compute the Cholesky decomposition of the covariance matrix Σ as Σ = GGT

and then introduce the random variable Y defined by

Y = G−1(X − µ) .

Since Y is a linear combination of the vector X it is a Gaussian random vector. In addition,
the vector Y has a mean of zero and a covariance given by

Cov(Y ) = G−1Cov(X)G−T = G−1ΣG−T = G−1GGT G−T = I .

For Gaussian random variables the fact that the elements of Y are uncorrelated means that
they are independent. Thus the product Y ′Y =

∑k
i=1 Y 2

i will have a χ2 distribution with k
degrees of freedom. Note that also

Y ′Y = (X − µ)′G−TG−1(X − µ) = (X − µ)′(GGT )−1(X − µ)

= (X − µ)′Σ−1(X − µ) .

Thus the expression (X − µ)′Σ−1(X − µ) is also distributed as a χ2 random variable with k
degrees of freedom.

Exercise 13 (the distribution of heights)

If we let X be the random variable representing the husbands height and Y be the random
variable representing the wife’s height. Then we are told that the joint distribution of (X, Y )
is given by

pX,Y (x, y) =
1

2πσxσy

√

1 − ρ2

× exp

{

− 1

2ρ(1 − ρ)

[

(

x − µx

σx

)2

+

(

y − µy

σy

)2

− 2ρ(x − µx)(y − µy)

σxσy

]}

.

We want to determine if a couple is selected at random what is the probability the husbands
height is greater than the wife’s. This is given by

P{X > Y } =

∫

ΩX>Y

pX,Y (x, y)dxdy

=

∫ +∞

y=−∞

∫ ∞

x=y

pX,Y (x, y)dxdy ,



this would be an expression involving the cumulative distribution function of the standard
normal.

If we want to know the probability that given wife’s height is y what is the probability that
the husbands height is greater than y. Thus we want the event P{X > Y |Y = y}. From
the expression for PX,Y (x, y) it can be shown [3], that the conditional distribution p{X|Y }
is given by

p{X|Y } = N
(

µx + ρ
σx

σy

(y − µy), σ
2
x(1 − ρ2)

)

.

Thus the probability requested is

∫ ∞

x=y

p{X = x|Y = y}dx =
1√

2π
√

σ2
x(1 − ρ2)

×
∫ ∞

x=y

exp

{

− 1

2σ2
x(1 − ρ2)

[

x −
(

µx + ρ
σx

σy

(y − µy)

)]2
}

,

which again could be written in terms of the cumulative distribution function for the standard
normal.

Exercise 14 (expectations of powers of the determinant)

We would like to evaluate E(|V |r) when V is given by a Wishart random variable. From the
p.d.f for a Wishart random variable we find

E(|V |r) =

∫

|V |rf(V |n, Σ)dV

= c(n, k)|Σ|−n/2

∫

|V |r|V |(n−k−1)/2 exp{−1

2
tr(Σ−1V )}dV

= c(n, k)|Σ|−n/2

∫

|V |(n+2r−k−1)/2 exp{−1

2
tr(Σ−1V )}dV (80)

where

c(n, k) =

[

2
nk
2 π

k(k−1)
4

k
∏

j=1

Γ

(

n + 1 − j

2

)

]−1

(81)

Since we know that the Wishart p.d.f is appropriately normalized we can use the definition
of c(n, k) above to evaluate integrals like

∫

S

|V |n−k−1
2 exp

{

−1

2
tr(Σ−1V )

}

dV = c(n, k)−1|Σ|n/2 . (82)

Thus to evaluate Equation 80 we can use Equation 82 with n replace with n + 2r. Doing
this we find

E(|V |r) = c(n, k)|Σ|−n/2c(n + 2r, k)−1|Σ|n+2r
2 .



This simplifies and we find

E(|V |r) =
c(n, k)

c(n + 2r, k)
|Σ|r =

(

2
(n+2r)k

2 π
k(k−1)

4

∏k
j=1 Γ

(

n+2r+1−j
2

)

2
(n)k

2 π
k(k−1)

4

∏k
j=1 Γ

(

n+1−j
2

)

)

|Σ|r

= 2rk

(

k
∏

j=1

Γ
(

n+2r+1−j
2

)

Γ
(

n+1−j
2

)

)

|Σ|r ,

which is the result we wanted to show.

Exercise 15 (some expectations involving a Wishart distribution)

Part (a): We want to show that E(V ) = nΣ. To show this recall that when V is distributed
as a Wishart distribution then V has the representation given by

V =
n
∑

i=1

XiX
′
i . (83)

Thus taking the expectation of this we find

E(V ) =
n
∑

i=1

E(XiX
′
i) =

n
∑

i=1

Σ = nΣ ,

since Xi come from a multivariate normal with a mean of 0 and a covariance matrix of Σ,
we can conclude that E(XiX

′
i) = Σ.

Part (b): Since V has a Wishart distribution it has a representation like in Equation 83 so
if we look at AV A′ we see that

AV A′ =
n
∑

i=1

AXiX
′
iA

′ =
n
∑

i=1

(AXi)(AXi)
′ . (84)

Since Xi is drawn from a multivariate normal with a mean of 0 and a covariance matrix
of Σ, then AXi are drawn from a multivariate normal random variable with mean 0 and a
covariance of AΣA′. Thus as AΣA′ has the form given in Equation 84, we see that AV A′

has a Wishart distribution with n degrees of freedom and a parameter matrix AΣA′.

Part (c): We will partition V and Σ as in Equation 75 with V11 of size k1 × k1, V12 of size
k1 × k2 and similarly for the others. Now to show that V11 has a Wishart distribution let

A =
[

Ik1×k1 0k1×(k−k1)

]

.

Then we have that

AV A′ =
[

I 0
]

[

V11 V12

V21 V22

] [

I
0

]

=
[

I 0
]

[

V11

V21

]

= V11 .



Thus as AV A′ is given by a Wishart distribution so must be V11. Another way to see this
result is to recall that V is given by Equation 83 so that the submatrix V11 can be given by
a similar sum over the vectors containing only the first k1 elements of Xi. Since the first k1

elements of Xi is a Gaussian random vector with mean 0 and covariance Σ11 then the matrix
V11 (since it is the sum of n outer products each of which is given by a Gaussian random
variable) is a Wishart random variable with n degrees of freedom and with a parametric
matrix Σ11.

Exercise 16 (summing Wishart random variables

Since each Vi are Wishart random variables with ni degrees of freedom and the same param-
eter matrix Σ, then Vi has a representation given by Equation 83 but with n replaced by ni.
Thus we see that in this case the V we are given has the representation

V =

r
∑

i=1

Vi =

r
∑

i=1

nj
∑

j=1

XjX
′
j ,

this later sum is the outer product of n1 + n2 + · · ·+ nr terms like XjX
′
j, where each Xj is a

multidimensional Gaussian random variable with mean 0 and covariance Σ. Since this is the
definition of a Wishart random variable with

∑r
i=1 ni degrees of freedom and a parameter

matrix Σ.

Exercise 17 (deriving the characteristic function for a Wishart random variable)

Equation 6 in Section 5.5 is given by Equation 82 with c(n, k) given by Equation 81. Now
the characteristic function for a Wishart distribution is defined as

ζ(t) = E

[

exp

(

i
k
∑

β=1

β
∑

α=1

tαβVαβ

)]

(85)

We next introduce the T matrix (denoted by the t matrix in the book and not to be confused
with the precision matrix Σ−1 in terms of the elements tij , introduced above in the expression
for the characteristic function, given by

T =











2t11 t12 · · · t1k

t12 2t22 · · · t2k
...

...
t1k t2k · · · 2tkk











(86)

Then the product of the T matrix and the V matrix has an ijth component given by

(TV )ij =
k
∑

l=1

TilVlj ,



Thus when i = j we have

(TV )ii =

k
∑

l=1

TilVli ,

so the trace of the product TV is given by

k
∑

i=1

(TV )ii =

k
∑

i=1

k
∑

l=1

TilVli

=
k
∑

i=1

TiiVii +
l
∑

i=1

k
∑

l=1;l 6=i

TilVli .

Since the iith element of the matrix has a diagonal element of 2tii and since V and T are
symmetric we can write the above as

k
∑

i=1

2tiiVii + 2
k
∑

i=1

i−1
∑

l=1

tilVil .

Recalling now the expression in Equation 85 we see that we can write this expression as

ζ(t) = E

[

exp

(

i
1

2
tr(TV )

)]

. (87)

Using the definition of the p.d.f. of V to evaluate the above expectation we see that ζ(t) is
given by

ζ(t) = c(n, k)|Σ|−n/2

∫

S

|V |n−k−1
2 exp

{

−1

2
tr(Σ−1V ) +

i

2
tr(TV )

}

dV

= c(n, k)|Σ|−n/2

∫

S

|V |n−k−1
2 exp

{

−1

2
tr([Σ−1 − iT ]V )

}

dV .

Using Equation 82 this integral becomes

c(n, k)|Σ|−n/2c(n, k)−1|(Σ−1 − iT )−1|n/2 =
|Σ−1|n/2

|Σ−1 − iT |n/2
=

( |Σ−1|
|Σ−1 − iT |

)n/2

,

as we were to show.

Exercise 18 (the k-dimensional t distribution)

We want to evaluate E[X] for the multidimensional t distribution. Since Xi = µi +
(

n
z

)1/2
Yi

we have that

E[X] = E[µ +
(n

z

)1/2

Y ] = µ + E

[

(n

z

)1/2

Y

]

.

Now since Z and Y are independent we can evaluate this later expectation as

E

[

(n

z

)1/2

Y

]

=

∫

(n

z

)1/2

gZ(z)dz ·
∫

Y gY(y)dy .



The second integral above is zero thus E[X] = µ as we were to show.

We next want to compute E[(x − µ)(x − µ)′] for the multidimensional t distribution. Since

Xi − µi = Yi

(

n
z

)1/2
the above is equivalent to E

[(

n
z

)

Y Y ′]. Since Z and Y are independent
this expectation can be computed as

E
[(n

z

)

Y Y ′
]

=

∫ ∫

(n

z

)

Y Y ′gY(y)gZ(z)dydz

= n

∫

z−1gZ(z)dz ·
∫

Y Y ′gY (y)dy .

We will next evaluate each integral. First we find
∫

z−1gZ(z)dz =
[

2n/2Γ(n/2)
]−1
∫

z−1z(n
2 )−1e−z/2dz

=
[

2n/2Γ(n/2)
]−1
∫

z
n
2
−2e−z/2dz .

Let ξ = z
2

so that z = 2ξ and dξ = dz
2

and the above becomes

[

2n/2Γ(n/2)
]−1
∫

(2ξ)
n
2
−2e−ξ2dξ = 2−n/22n/2−2Γ(n/2)−1

∫

ξ
n
2
−1−1e−ξdξ

= 2−1Γ(n/2)−1Γ(
n

2
− 1) .

Now recall that Γ(x + 1) = xΓ(x) so that Γ(n
2
) =

(

n
2
− 1
)

Γ
(

n
2
− 1
)

and the above becomes

2−1Γ(n
2
− 1)

(

n
2
− 1
)

Γ
(

n
2
− 1
) =

1

n − 2
.

Thus we have that

E
[(n

z

)

Y Y ′
]

=
n

n − 2

∫

Y Y ′gY(y)dy .

From the properties of the multidimensional normal distribution we have that
∫

Y Y ′gY(y)dy = T−1 .

Thus we conclude that when X has a multidimensional t distribution with parameters n, µ,
and T that

Cov(X) =
n

n − 2
T−1 , (88)

as we were to show.

Exercise 19 (the marginal of a t distribution)

If X is a k-dimensional multidimensional t distribution with parameters n, µ, and T if we

partition X as X =

[

X1

X2

]

and T as T =

[

T11 T12

T21 T22

]

we want to evaluate

fX1(x1) =

∫

fX(x)dx2 .



To do this recall that the density of X or fX(x) can be written as

fX(x) =

∫

gX,Z(x, z)dz =

∫

Z

g(x|z)g(z)dz .

We want to evaluate the marginal distribution of X1 thus we want to evaluate

fX1(x1) =

∫

X2

fX(x)dx2 =

∫

X2

f(X1,X2)(x1,x2)dx2

=

∫

X2

∫

Z

g((x1,x2)|z)g(z)dzdx2 . (89)

Note that g((x1,x2)|z) is a multivariate Gaussian and since Xi = Yi

(

Z
n

)−1/2
+ µi the mean

vector for the random variable (x1,x2)|z is µ and the covariance matrix for this random
variable (or T−1

X|Z is related to the covariance matrix for Y or T−1 as

T−1
X|Z =

( z

n

)−1/2

T−1 .

Thus the precision matrices are related as

TX|Z =
( z

n

)

T . (90)

Next changing the order of integration in Equation 89 we have

fX1(x1) =

∫

Z

[∫

X2

g((x1,x2)|z)dx2

]

g(z)dz .

Now from the discussion in Section 5.4 this inner integral is a k1 multidimensional Gaussian
random variable which has a mean µ1 and a covariance matrix Σ11 given by the (1, 1)
component of the block partition covariance of

T−1
X|Z =

[

Σ11 Σ12

Σ21 Σ22

]

.

Here Σ11 is k1 × k1, Σ12 is k1 × k2, Σ21 is k2 × k1, and Σ22 is k2 × k2. Then the integral
expression above becomes

∫

X2

g((x1,x2)|z)dx2 =
1

(2π)k1/2|Σ11|1/2
exp

{

−1

2
(x1 − µ1)

′Σ−1
11 (x1 − µ1)

}

.

Now we want to use the results from Section 5.4 to express Σ−1
11 in terms of the partitioned

elements of the precision matrix TX|Z =

[

T̃11 T̃12

T̃21 T̃22

]

. Where T̃ij has the same dimensions as

the matrices Σij above. Note also that T̃ij are the block elements of the precision matrix T for
the density g((x1,x2)|z). To directly use the books result is a bit confusing since in Section 5.4
the book marginalizes out the variable x1 while in this problem we are marginalizing out x2.
Thus we replace 1 ↔ 2 using equation 14 from Section 5.4 we have

Σ−1
11 = T̃11 − T̃12T̃

−1
22 T̃21 .



Using Equation 90 to replace the block elements of T̃ij with the block elements of T which
are Tij (without any tildes) we have

Σ−1
11 =

z

n
(T11 − T12T

−1
22 T21) .

Note that since Σ−1
11 is of size k1 × k1 the determinant of this is given by

|Σ−1
11 | =

1

|Σ11|
=
( z

n

)k1

|T11 − T12T
−1
22 T21| .

When we put in gZ(z) the density of a χ2 random variable with n degrees of freedom we
have fX1(x1) given by

∫

Z

[

1

(2π)k1/2|Σ11|1/2
exp

{

−1

2
(x1 − µ1)

′Σ−1
11 (x1 − µ1)

}]

[

2n/2Γ(n/2)
]−1

z
n
2
−1e−

z
2 dz

=
(2π)−k1/2|T11 − T12T

−1
22 T21|

2n/2Γ(n/2)nk1/2

×
∫

Z

z
n+k1

2
−1 exp

{

−1

2

[

1 +
1

n
(x1 − µ1)

′(T11 − T12T
−1
22 T21)(x1 − µ1)

]

z

}

dz

=
(2π)−k1/2|T11 − T12T

−1
22 T21|

2n/2Γ(n/2)nk1/2
Γ(

n + k1

2
)

×
[

1 +
1

n
(x1 − µ1)

′(T11 − T12T
−1
22 T21)(x1 − µ1)

]−(n+k1
2 )(1

2

)−(n+k1
2 )

.

The leading coefficient of this p.d.f above is given by

Γ
(

n+k1

2

)

2n/22
k1
2

(2π)k1/22n/2Γ(n/2)nk1/2
=

Γ(n+k1

2
)

Γ(n/2)(nπ)k1/2
.

Thus we finally end with

fX1(x) =
Γ
(

n+k1

2

)

|T11 − T12T
−1
22 T21|1/2

Γ
(

n
2

)

(nπ)k1/2

×
[

1 +
1

n
(x1 − µ1)

′(T11 − T12T
−1
22 T21)(x1 − µ1)

]−(n+k1
2 )

, (91)

This shows that the marginal distribution of X1 is a k1-dimensional multivariate t distribution
with n degrees of freedom with a location vector µ1 and a precision matrix of T11−T12T

−1
22 T21

as we were to show.

Exercise 20 (the conditional distribution of a multivariate t)

For this problem we want to derive the p.d.f of fX1(X1|X2 = x2). We can do this by recalling
that the conditional distribution is defined as

fX1(X1|X2 = x2) =
fX1,X2(x1, x2)

fX2(x2)
.



We know from Problem 19 and Equation 91, above that fX2(x2) is a k2-dimensional multi-
dimensional t-distribution with n degrees of freedom, a location vector µ2, and a precision
matrix given by T22 − T21T

−1
11 T12. Note the subscripts here are permuted from those in

Equation 91 which is for fX1(x1) while here we need fX2(x2). Thus this density looks like

fX2(x2) =
Γ(n+k2

2
)|T22 − T21T

−1
11 T12|1/2

Γ(n
2
)(nπ)k2/2

×
[

1 +
1

n
(x2 − µ2)

′(T22 − T21T
−1
11 T12)(x2 − µ2)

]−(n+k2
2 )

,

Note that one can show that the precision matrix in the above expression can be written as

T22 − T21T
−1
11 T12 = Σ−1

22 ,

see Exercise 9 on Page 65 above. While the joint density fX1,X2(x1, x2) looks like

fX1,X2(x1, x2) =
Γ(n+k

2
)|T |1/2

Γ(n
2
)(nπ)k/2

[

1 +
1

n
(x − µ)′T (x − µ)

]−(n+k
2 )

.

Writing the quadratic form (x−µ)′T (x−µ) in the above expression as in Section 5.4 where
it was found that this inner product could be expressed as

(x − µ)′T (x − µ) = (x1 − ν1)
′(Σ11 − Σ12Σ

−1
22 Σ21)

−1(x1 − ν1) + (x2 − µ2)
′Σ−1

22 (x2 − µ2)

= (x1 − ν1)
′T11(x1 − ν1) + (x2 − µ2)

′Σ−1
22 (x2 − µ2) ,

where ν is the conditional mean of the density fX1|X2(x1|x2) and is given by

ν1 = µ1 + Σ12Σ
−1
22 (x2 − µ2) = µ1 − T−1

11 T12(x2 − µ2) . (92)

Thus putting everything together we have the conditional distribution given by

fX1(x1|X2 = x2) =
Γ(n+k

2
)|T |1/2

Γ(n
2
)(nπ)k/2

· Γ(n
2
)(nπ)k2/2

Γ(n+k2

2
)|Σ−1

22 |1/2

×
[

1 + 1
n
(x2 − µ2)

′Σ−1
22 (x2 − µ2) + 1

n
(x1 − ν1)T11(x1 − ν1)

]−(n+k
2 )

[

1 + 1
n
(x2 − µ2)′Σ

−1
22 (x2 − µ2)

]−(n+k2
2 )

.

To simply notation a bit lets define Q1 and Q2 such that

Q1 = (x1 − ν1)
′T11(x1 − ν1)

Q2 = (x2 − µ2)
′Σ−1

22 (x2 − µ2) ,

and recall that by equation 24 in section 5.4 we can write |T | as

|T | = |Σ−1| = |Σ−1
22 ||(Σ11 − Σ12Σ

−1
22 Σ21)

−1| = |Σ−1
22 ||T11| .

Using these expression and by factoring the expression

1 +
1

n
Q2 +

1

n
Q1 =

[

1 +
1

n
Q2

] [

1 +
1
n
Q1

1 + 1
n
Q2

]

,



we can write the above expression for fX1(x1|X2 = x2) as

fX1(x1|X2 = x2) =
Γ(n+k

2
)|T11|1/2

Γ(n+k2

2
)(nπ)k1/2

×
[

1 +
1

n
Q2

]−(n+k
2 ) [

1 +
1
n
Q1

1 + 1
n
Q2

]−(n+k
2 ) [

1 +
1

n
Q2

](n+k2
2 )

.

Combining the first and the third factors in brackets above we have

fX1(x1|X2 = x2) =
Γ(n+k

2
)|T11|1/2

Γ(n+k2

2
)(nπ)k1/2

[

1 +
1

n
Q2

]− k1
2
[

1 +
1
n
Q1

1 + 1
n
Q2

]−(n+k
2 )

. (93)

Now consider just the right most expression in brackets above and note that we can write
the negative of the power as

n + k

2
=

(n + k2) + k1

2
.

Thus we need the degrees of freedom of this marginal multivariate t-distribution to be n+k2

not n. With this in mind we get

[

1 +
1

n + k2

(x1 − ν1)
′

[

n+k2

n
T11

1 + 1
n
Q2

]

(x1 − ν1)

]−
“

(n+k2)+k1
2

”

or
[

1 +
1

n + k2
(x1 − ν1)

′
[

(n + k2)T11

n + Q2

]

(x1 − ν1)

]−
“

(n+k2)+k1
2

”

.

Thus recalling the definition of Q2 and Σ−1
22 from Equation 91 we have that the location

vector of the above expression is given by ν1 or Equation 92. The new precision matrix is
given by

n + k2

n + Q2
T11 =

n + k2

n + (x2 − µ2)′Σ
−1
22 (x2 − µ2)

T11

=
n + k2

n + (x2 − µ2)′(T22 − T21T
−1
11 T12)(x2 − µ2)

T11 . (94)

Thus we could have a multidimensional t distribution with n + k2 degrees of freedom, a
location vector ν1, and a precision matrix given by Equation 94. Then if this is the correct
distribution for fX1(x1|X2 = x2) then the leading coefficient would need to be given by

Γ
(

n+k2+k1

2

)

∣

∣

∣

n+k2

n+Q2
T11

∣

∣

∣

Γ
(

n+k2

2

)

((n + k2)π)k1/2
.

Since T11 is of size k1 × k1 this equals

Γ
(

n+k
2

)

∣

∣

∣

n+k2

n+Q2

∣

∣

∣

k1/2

|T11|1/2

Γ
(

n+k2

2

)

(n + k2)k1/2 πk1/2
=

Γ
(

n+k
2

)

|T11|1/2

Γ
(

n+k2

2

)

(nπ)k1/2(1 + 1
n
Q2)k1/2

,

which is exactly the same as the coefficient in Equation 93 proving the desired result.



Exercise 21 (the distribution of (X − µ)′T (X − µ)/k)

For this problem we assume that X is a multidimensional t distribution and want to derive
the distribution of the expression

1

k
(X − µ)′T (X − µ)

By equation 1 of section 5.6 we have that X is given in terms of two variables Y and a Z as

Xi − µi = Yi

(

Z

n

)−1/2

for i = 1, 2, . . . k . (95)

with Y given by a multidimensional normal with zero mean and a precision matrix T and
Z given by a χ2 distribution with n degrees of freedom. In addition, the random variables
Y and Z are independent. Thus in terms of Y and Z the above inner product is given by

1

k
(X − µ)′T (X − µ) =

1

k

(

Z

n

)−1

Y ′TY =
(Y ′TY/k)

(Z/n)
.

Thus we need to determine the p.d.f of this expression. From the discussion in the book
when X is a χ2 random variable with α degrees of freedom and Y is a χ2 random variable
with β degrees of freedom the variable

(X/α)

(Y/β)
,

is a F random variable with degrees of freedom α and β. From this since Z is a χ2 random
variable with n degrees of freedom this ratio is given by an F distribution with degrees of
freedom k and n if we can show that Y ′TY is a χ2 random variable with k degrees of freedom.
Fortunately, in Exercise 36 in Chapter 4 shows that that Y ′TY is a χ2 random variable with
k degrees of freedom and the requested result is shown.

Exercise 22 (the distribution of AX when X is a multidimensional t)

If X is a k-dimensional multivariate random variable with n degrees of freedom, a location
vector µ and a precision matrix T then it is related to a k-dimensional Gaussian random
variable Y with a mean 0 and a precision matrix T and a χ2 random variable Z with n
degrees of freedom as

X − µ = Y
( n

Z

)1/2

=
Y

(

Z
n

)1/2
. (96)

Then the U vector defined as AX is related to AY by multiplying Equation 96 by A on the
left we have

U − Aµ = AY
( n

Z

)1/2

(97)

Thus in this expression we see that as AY and Z are still independent and AY is a m-
dimensional random variable with mean 0 and covariance Σ given by

Σ = AT−1A′ .



Since we assume the product matrix on the right-hand-side of the above is nonsingular the
precision matrix of AY is given by (AT−1A′)−1. Finally, using Equation 97 we have that U
is a m-dimensional t-distribution with a location vector Aµ, a precision matrix (AT−1A′)−1,
and n degrees of freedom as we were to show.

Exercise 23 (if the joint is a bilateral Pareto so is the marginal)

We are told that the joint p.d.f of X1 and X2 is given by a bilateral bivariate Pareto distri-
bution

f(x1, x2|r1, r2, α) =
α(α + 1)(r2 − r1)

α

(x2 − x1)α+2
,

where x1 < r1 and x2 > r2. Then the marginal distribution of x1 is given by integrating out
x2. Thus we find

fX1(x1|r1, r2, α) =

∫ ∞

x2=r2

f(x1, x2|r1, r2, α)dx2

=

∫ ∞

x2=r2

α(α + 1)(r2 − r1)
α

(x2 − x1)α+2
dx2

=
α(α + 1)(r2 − r1)

α(x2 − x1)
−(α+2)+1

(−(α + 2) + 1)

∣

∣

∣

∣

∞

r2

= α(r2 − r1)
α

[

1

(r2 − x1)α+1

]

, (98)

which is a univariate Pareto distribution over r2 − X1 with parameters x0 ≡ r2 − r1 and α.

The marginal distribution of x2 is given by the integrating out x1. Thus we find

fX2(x2|r1, r2, α) =

∫ r1

x1=−∞

α(α + 1)(r2 − r1)
α

(x2 − x1)α+2
dx1

= −α(α + 1)(r2 − r1)
α(x2 − x1)

−α−1

(−α − 1)

∣

∣

∣

∣

r1

−∞

= α(r2 − r1)
α

[

1

(x2 − r1)α+1

]

, (99)

which is a univariate Pareto distribution over X2 − r1 with parameters x0 ≡ r2 − r1 and α.

Exercise 24 (the expectation of (X2 − X1)
2)

Part (a): We are told that the joint distribution of X1 and X2 is a bilateral bivariate Pareto
distribution

f(x1, x2|r1, r2, α) =
α(α + 1)(r2 − r1)

α

(x2 − x1)α+2
,



where x1 < r1 and x2 > r2. Then we want to evaluate

E[(X2 − X1)
2] =

∫ r1

x1=−∞

∫ ∞

x2=r2

(x2 − x1)
2f(x1, x2|r1, r2, α)dx2dx1

=

∫ r1

x1=−∞

∫ ∞

x2=r2

α(α + 1)(r2 − r1)
α

(x2 − x1)α
dx2dx1

= α(α + 1)(r2 − r1)
α

∫ r1

x1=−∞

(x2 − a1)
−α+1

(−α + 1)

∣

∣

∣

∣

∞

x2=r2

dx1

=
α(α + 1)(r2 − r1)

α

(−α + 1)

∫ r1

x1=−∞

[

0 − 1

(r2 − x1)α−1

]

dx1

=
α(α + 1)(r2 − r1)

α

α − 1

∫ r1

x1=−∞

dx1

(r2 − x1)α−1

=
α(α + 1)(r2 − r1)

α

α − 1

(

−(r2 − x1)
−α+1+1

−α + 2

∣

∣

∣

∣

r1

x1=−∞

=
α(α + 1)(r2 − r1)

α

(α − 1)(α − 2)

(

1

(r2 − r1)α−2

)

=
α(α + 1)(r2 − r1)

2

(α − 1)(α − 2)
,

as we were to show.

Part (b): To begin consider E(X1X2) when X1 and X2 are given by a bivariate Pareto
distribution. We find

E(X1X2) =

∫ r1

x1=−∞

∫ +∞

x2=r2

x1x2
α(α + 1)(r2 − r1)

α

(x2 − x1)α
dx2dx1 (100)

= α(α + 1)(r2 − r1)
α

∫ r1

x1=−∞
x1

∫ ∞

x2=r1

(x2 − x1 + x1)
1

(x2 − x1)α
dx2dx1 .

This last integral could be split into two parts and each part integrated by hand or integrated
using a computer algebra program like Maple or Mathematica designed to help perform these
types of manipulations. However, it may in fact be easier to answer this questions using the
results from Part (a) above. For example, we have that

E((X2 − X1)
2) = E(X2

2 ) − 2E(X1X2) + E(X2
1 ) =

α(α + 1)(r2 − r1)
2

(α − 1)(α − 2)
.

We can use Equations 54 and 57 to evaluate E(X2
i ) for i = 1, 2 and then solve for E(X1X2).

Doing this we find

E(X1X2) =
r2
1 − αr1r2 + r2

2

2 − α
. (101)

Next recall that the correlation between X1 and X2 that we are attempting to evaluate can
be written in terms of expressions we have evaluated as

Cor(X1, X2) =
Cov(X1, X2)

√

Var(X1)Var(X2)
=

E(X1X2) − E(X1)E(X2)
√

Var(X1)Var(X2)
.



When we put all of these expressions together we find this expression equals

Cor(X1, X2) = − 1

α
, (102)

as we were to show. Some of the algebra for these problems is worked in the Mathematica
notebook bilateral Pareto Derivations.nb.

Exercise 25 (the limiting behavior of the joint bilateral Pareto)

Warning: I was not able to solve this problem. What follows are some simple notes on the
joint bilateral Pareto distribution when we attempt to take the limit of α → ∞. If anyone
has any suggestions as to how to do this problem please email me.

We are told that the joint distribution of X1 and X2 is a bilateral bivariate Pareto distribution

f(x1, x2|r1, r2, α) =
α(α + 1)(r2 − r1)

α

(x2 − x1)α+2
.

Since for this distribution we have the two facts

x1 < r1 (103)

x2 > r2 , (104)

by Equation 104 we have that
x2 − x1 > r2 − x1 ,

and by Equation 103 we have that the right-hand-side of the above inequality is bounded
below as

r2 − x1 > r2 − r1 .

Combining these two inequalities we have

x2 − x1 > r2 − r1 so
r2 − r1

x2 − x1
< 1 .

Now note that the limit as α → ∞ of

α(α + 1)(r2 − r1)
α

(x2 − x1)α+2
,

is a limit of the type ∞
∞ and we will need L’Hopital’s rule to evaluate it. Writing this limit

in the form

lim
α→∞

α(α + 1)

(x2 − x1)2

(

r2 − r1

x2 − x1

)α

.

This is of type ∞ · 0. We need to take the limit of an expression like

1

(x2 − x1)2
lim

α→∞

α2 + α

ξα
,



with ξ = x2−x1

r2−r1
> 1. To use L’Hopital’s rule we need to be able to evaluate ξα

dα
. To do this

let y = ξα then we see that
ln(y) = α ln(ξ) ,

so that taking the derivative of this expression w.r.t. α gives

1

y

dy

dα
= ln(ξ) .

Now solving for dy
dα

we have that

dy

dα
= y ln(ξ) = ln(ξ)ξα .

Thus we find our limit becomes

1

(x2 − x1)2
lim

α→∞

2α + 1

ln(ξ)ξα
,

which is still of type ∞
∞ . Another application of L’Hopital’s rule and the limit of this p.d.f is

zero.



Chapter 7 (Utility)

Problem 13 (optimal ordering)

Assume the order is placed for α quarts of drink. Then assuming the demand is for x quarts
the profit function will be

Profit(x; α) =

{

mx − c(α − x) x < α
mα x > α

(105)

The the expected profit is given by

E[Profit(x; α)] =

∫ α

0

(mx − c(α − x)f(x)dx +

∫ ∞

α

mαf(x)dx (106)

=

∫ α

0

(mxf(x)dx − cα

∫ α

0

f(x)dx + c

∫ α

0

xf(x)dx + mα

∫ ∞

α

f(x)dx(107)

so

dE[Profit(x; α)]

dα
= mαf(x)− c

∫ α

0

f(x)dx− cαf(x) + cαf(x) + m

∫ ∞

α

f(x)dx + mα(−f(x))

(108)
Written in terms of the cumulative distribution function F (x) one has

dE[Profit(x; α)]

dα
= −cF (α) + m(1 − F (α)) (109)

Setting this expression to zero and solving for F (α) gives

F (α) =
m

c + m
(110)



Chapter 8 (decision problems)

Problem 1 (three possible outcomes and three decisions)

In this problem we have four possible outcomes from our experiment w1,w2,w3, and w4 and
three possible decisions. For each decision we compute the expected loss (also called the risk)
associated with that decision. From the given table of losses we compute for our specified
probability mass function P and an arbitrary decision d

ρ(P, d) =

4
∑

i=1

L(wi, d)P (wi) (111)

Here P (wi) is the prior probability distribution on the experimental outcomes wi. Inserting
the given probability mass function for our experimental outcomes we obtain

ρ(P, d) =
1

8
L(w1, d) +

3

8
L(w2, d) +

1

4
L(w3, d) +

1

4
L(w4, d) (112)

Now for each of the three decisions we can evaluate this expression. For example for d = d1

we obtain

ρ(P, d = d1) =
1

8
· 0 +

3

8
· 1 +

1

4
· 3 +

1

4
· 1 =

15

8
≈ 1.875 (113)

The risk for the other decision d2 and d3 is computed in the same way. We obtain

ρ(P, d = d2) =
7

4
≈ 1.75 (114)

ρ(P, d = d3) =
9

8
≈ 1.125 (115)

Our final decision is selected by choosing the decision which provides the smallest risk. From
the above we see this is decision d = d3 with associated risk 9

8
.

Problem 2 (two possible outcomes and three decisions)

In this problem we have two experimental outcomes w1 and w2 and three possible decisions
d1, d2, and d3. The loss function is as specified. Since we have only two possible outcomes
we can parametrize the probability of each as by ξ = Pr(W = w1) with associated 1 − ξ =
Pr(W = w2). Then the expected loss associated with each outcome is given by

ρ(ξ, d) =

2
∑

i=1

L(wi, d)P (wi) = ξL(w1, d) + (1 − ξ)L(w2, d) . (116)

So for each of the three possible decisions we have that the risk is given by

ρ(ξ, d = d1) = ξ · 0 + (1 − ξ) · 8 = 8(1 − ξ) (117)

ρ(ξ, d = d2) = ξ · 10 + (1 − ξ) · 0 = 10ξ (118)

ρ(ξ, d = d3) = ξ · 4 + (1 − ξ) · 3 = ξ + 3 (119)



Now we will have d3 as the Bayes optimal decision against the distribution W if and only if

ξ + 3 < 10ξ (120)

giving ξ > 1
3
. In addition, we must have

ξ + 3 < 8(1 − ξ) (121)

giving ξ < 5
9
. In combination the two conditions give

1

3
≤ ξ ≤ 5

9
(122)

and we have the requested expression.

Problem 3 (continuous outcomes and decisions)

In this case, the experimental outcome is a continuous variable and the possible decisions
are also continuous. Thus the expected loss or risk in this case is given by

ρ(P, d) =

∫

Ωw

L(w, d)dP (w) =

∫ 1

0

L(w, d) · 2wdw . (123)

Using the given loss we obtain

ρ(P, d) = 200

∫ 1

0

(w − d)2wdw (124)

= 200

∫ 1

0

(w2 − 2wd + d2)wdw (125)

= 200

∫ 1

0

(w3 − 2w2d + wd2)dw (126)

= 200

(

w4

4
− 2

3
w3d +

d2w2

2

)

∣

∣

∣

1

0
(127)

= 200

(

1

4
− 2

3
d +

d2

2

)

(128)

The Bayes optimal decision is the one that minimizes the risk ρ(P, d) with respect to d.
Since d can be any any value in the real line we find this minimum by taking the derivative
of the above expression. Taking this derivative and setting equal to zero gives

dρ

d(d)
= 200

(

−2

3
+ d

)

= 0 (129)

giving

d =
2

3
(130)

in which case the Bayes risk is given by

ρ(P, d =
2

3
) = 200

(

1

4
− 2

3

2

3
+

1

2

4

9

)

=
50

9
(131)



Problem 4 (the Bayes’ decision under different loss functions)

A new loss function L0(w, d) will yield the same Bayes decision boundary as L(w, d) if it is
related by

L0(w, d) = aL(w, d) + λ(w) (132)

as discussed on Page 125 of the book. In the discrete case given here we can compute L0

on an individual experimental outcome level. For instance, for the loss function L(w, d)
and L0 we can see if the two are related by a relation like that given in Eq. 132 easily
by considering the mapped zero cost L(w, d) element. For instance the elements L(w1, d1),
L(w2, d2), L(w3, d3), and L(w4, d3). By doing this procedure we obtain

w = w2 λ(w1) = +4 a = 1
w = w2 λ(w2) = −1 a = 1
w = w3 λ(w2) = −3 a = 1
w = w4 λ(w4) = −1 a = 1

Since L0 and L are related as discussed in the text they will yield equivalent Bayes’ decision
boundaries.

Problem 5 (a convex combination of probability distributions)

By the convexity of the Bayesian risk ρ∗(P ) with respect to the probability distribution P
we have that

ρ∗(αP1 + (1 − α)P2) ≥ αρ∗(P1) + (1 − α)ρ∗(P2) . (133)

As discussed on page 126 of the book. If we can show that

ρ∗(αP1 + (1 − α)P2, d
∗) < αρ∗(P1, d

∗) + (1 − α)ρ∗(P2, d
∗) . (134)

we have the desired equality. To show this inequality we assume that it is not true and derive
a contradiction. In that direction, assume that there exists a d′ 6= d∗ such that

ρ(P, d′) ≤ ρ(P, d∗) (135)

i.e. d∗ is not the Bayes’ decision against P = αP1 + (1 − α)P2. Then from the definition of
the risk function we have

αρ(P1, d
′) + (1 − α)ρ(P2, d

′) < αρ(P1, d
∗) + (1 − α)ρ(P2, d

∗) (136)

or
α(ρ(P1, d

′) − ρ(P1, d
∗)) + (1 − α)(ρ(P2, d

′) − ρ(P2, d
∗)) < 0 (137)

Since α and 1 − α are both positive at least one of

ρ(P1, d
′) − ρ(P1, d

∗) (138)

or
ρ(P2, d

′) − ρ(P2, d
∗) (139)

must be negative. This is a contradiction to the fact that d∗ is the Bayes’ decision against
both P1 and P2 and as such each of Eq. 138 and 139 must be positive.



Problem 6 (an incorrect probabilistic specification)

Mathematically this reduces to the following. Compute the difference in the Bayes’ risk
under the experimental PDF given by ξA(w) v.s. that of PDF ξB(w) or

ρ∗
A − ρ∗

B (140)

Which is the additional risk that A will occur due to A’s incorrect belief about the experi-
mental distribution of W . In problem 3 (above) we calculated ρ∗

A to be 50
9
, and it remains

to calculate the Bayes’ risk for the PDF ξB(w). As in problem 3 we have for a decision d

ρB(P, d) = 100

∫ 1

0

(w − d)23w2dw (141)

= 300

∫ 1

0

(w4 − 2w3d + d2w2)dw (142)

= 300

(

w5

5
− 2

4
w4d +

d2w3

3

)

∣

∣

∣

1

0
(143)

= 300

(

1

5
− 1

2
d +

d2

3

)

(144)

The Bayes optimal decision is the one that minimizes the risk ρB(P, d) with respect to d.
Since d can be any any value in the real line we find this minimum by taking the derivative
of the above expression. Taking this derivative and setting equal to zero gives

dρB

d(d)
= −1

2
+

2

3
d = 0 (145)

giving

d =
3

4
(146)

in which case the Bayes risk is given by

ρB(P, d =
3

4
) =

15

4
(147)

so the additional risk incurred by assuming the wrong PDF is given by

ρ∗
A − ρ∗

B =
50

9
− 15

4
=

65

36
(148)

Problem 7 (a non-unique Bayes’ decision)

Computing the risk for each of the 5 available decisions we have (using the definition that
ξ = P (w = w1)) we get

ρ(P, d1) = ξ · 0 + (1 − ξ) · 4 = −4ξ + 4 (149)

ρ(P, d2) = ξ · 4 + (1 − ξ) · 5 = ξ + 5 (150)

ρ(P, d3) = ξ · 2 + (1 − ξ) · 0 = 2ξ (151)

ρ(P, d4) = ξ · 1 + (1 − ξ) · 1 = 1 (152)

ρ(P, d5) = ξ · 5 + (1 − ξ) · 0 = 5ξ (153)
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Figure 2: Bayes’ risks (for each possible decision d) versus ξ = P (w = w1) for Problem 7.

Each of the above risks as a function of ξ is shown in figure 2. From this figure one can
see that the Bayesian decision is unique except at locations where the lowest of two decision
functions are equal. From the figure we can see that this occurs at two locations for ξ: ≈ 0.5
and ≈ 0.75. The specific risks that intersect are

ρ(ξ, d3) = ρ(ξ, d4) or 2ξ = 1 ⇒ ξ =
1

2
(154)

ρ(ξ, d1) = ρ(ξ, d4) or − 4ξ + 4 = 1 ⇒ ξ =
3

4
(155)

Which are the exact values read from the graph. Thus for the two distributions

P (w = w1) =
1

2
and P (w = w2) =

1

2
(156)

P (w = w1) =
3

4
and P (w = w2) =

1

4
(157)

The Bayes’ decision is not unique.

Problem 8 (all possible Bayes’ decisions)

The definition of Bayes risk for the decision d is given by

ρ(P, d) =

∫

Ω

L(w, d)P (w)dw = ξL(w = w1, d) + (1 − ξ)L(w = w2, d) (158)



For each of the given decisions available and the loss specified we have

ρ(P, d1) = ξ · 1 + (1 − ξ) · 10 = 10 − 9ξ (159)

ρ(P, d2) = ξ · 6 + (1 − ξ) · 1 = 5ξ + 1 (160)

ρ(P, d3) = ξ · 0 + (1 − ξ) · 13 = 13 − 13ξ (161)

ρ(P, d4) = ξ · 2 + (1 − ξ) · 8 = 8 − 6ξ (162)

ρ(P, d5) = ξ · 7 + (1 − ξ) · 0 = 7ξ (163)

ρ(P, d6) = ξ · 3 + (1 − ξ) · 5 = 5 − 2ξ (164)

ρ(P, d7) = ξ · 4 + (1 − ξ) · 4 = 4 (165)

Where we have defined ξ = P (w = w1). Each respective loss functions is plotted in figure 3.
For each value of ξ the Bayes’ decision is to select the risk that is smallest. For each value
of ξ this is easily read from the graph. The decision is not unique when two decisions have
the same Bayes’ risk i.e. ρ(P, di) = ρ(P, dj). From the figure above we see that this when
the following risks are equal

ρ(ξ, d5) = ρ(ξ, d2) or 7ξ = 5ξ + 1 ⇒ ξ =
1

2
≈ 0.5 (166)

ρ(ξ, d2) = ρ(ξ, d6) or 5ξ + 1 = 5 − 2ξ ⇒ ξ =
4

7
≈ 0.57 (167)

ρ(ξ, d6) = ρ(ξ, d1) or 5 − 2ξ = 10 − 9ξ ⇒ ξ =
5

7
≈ 0.71 (168)

ρ(ξ, d1) = ρ(ξ, d3) or 10 − 9ξ = 13 − 13ξ ⇒ ξ =
3

4
≈ 0.75 (169)

Problem 9 (a problem with no Bayes’ decision)

From the definition of the Bayes’ risk ρ, for decision d, we have

ρ(P, d) =
∑

w∈Ω

L(w, d)P (w) (170)

For the decision d = d∗ this evaluates to

ρ(P, d = d∗) =
∑

w∈Ω

L(w, d = d∗)P (w) =
1

2

∑

w∈Ω

P (w) =
1

2
. (171)

For the decision d = d1 we have a Bayes’ risk of

ρ(P, d = d1) =
∑

w∈Ω

L(w, d = d1)P (w) =
∑

w∈Ω \{w1}
L(w, d = d1)P (w) . (172)

The above can be simplified to

1
∑

w∈Ω \{w1}
P (w) = 1(

∑

w∈Ω

P (w) − P (w1)) = 1 − P (w1) , (173)
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Figure 3: Bayes’ risks (for each possible decision d) versus ξ = P (w = w1) for Problem 8.

since
∑

w∈Ω P (w) = 1 by the normalization condition. By similar reasoning for the decision
d2 we have

ρ(P, d = d2) = 1 − P (w1) − P (w2) . (174)

Thus in general, we have for the Bayes’ risk for decision dn is

ρ(P, d = dn) = 1 −
n
∑

i=1

P (wi) . (175)

Note that from the above expression we see that the Bayes’ risk decreases as n increases or

ρ(P, d = dn+1) < ρ(P, d = dn) (176)

and its limiting value is given by

lim
n→∞

ρ(P, d = dn) = 0 . (177)

Thus d∗ cannot be a Bayes’ decision since

ρ(P, d = d∗) =
1

2
> ρ(P, d = dn) (178)

for some n large enough by equation 177.



Problem 11 (the Bayes’ decision from a measurement)

We begin by assuming that there exists a loss function L(w, d) relating the loss received when
the experimental outcome is w and the decision made is d. In this problem we have two
decisions d1 and d2 two a-priori unknown experimental outcomes w1 and w2. The Bayesian
formulation of this problem instructs us to compute the expected loss (also called risk) for
each possible decision d and select the decision upon which the risk is smallest. The expected
loss for making decision d after receiving measurement z is given by

ρ(d|z) =

2
∑

i=1

L(wi, d)p(x, wi) =

2
∑

i=1

L(wi, d)p(x|wi)P (wi) . (179)

So in the two decisions case we select action d1 if

ρ(d1|z) < ρ(d2|z) (180)

or expanding the above summation gives

L(w1, d1)P (w1)p(x|w1) + L(w2, d1)P (w2)p(x|w2) < (181)

L(w1, d2)P (w1)p(x|w1) + L(w2, d2)P (w2)p(x|w2) (182)

Now dividing by the likelihood of class w1 (p(x|w1)) and defined P (wi) = Pi and Lij =
L(wi, dj) we obtain

L11P1 + L21P2
p(x|w2)

p(x|w1)
< L12P1 + L22P2

p(x|w2)

p(x|w1)
(183)

Solving for the likelihood ratio
p(x|w2)

p(x|w1)

we obtain the decision region to pick decision d1 if

p(x|w2)

p(x|w1)
(L21P2 − L22P2) < (L12P1 − L11P1) (184)

Assuming L21 > L22 which means that it is more costly to make a mistake (the true experi-
mental result is from class 2 while the decision is made assuming the result is from class 1).
We can solve for the likelihood ratio giving

p(x|w2)

p(x|w1)
<

(L12 − L11)P1

(L21 − L22)P2

(185)

The expression encapsulated in Eq. 185 is valid for any likelihood distribution (we have not
explicitly required any probabilistic form up to this point) and thus any binary decision
problem can be started based on this equation.

Because decision problems involving optimal boundaries for two, one-dimensional Gaussian
variables are so common we will derive the decision boundaries in generality and then specify
to the specific parameters given in this problem. In the general problem we assume that



the conditional densities for the measured variable z are given by Normal distributions with
means µi and σi in a most general form as

p(z|w1) = N (z; µ1, σ
2
1) (186)

p(z|w2) = N (z; µ2, σ
2
2) . (187)

Specifically this has the following functional form

p(z|wi) =
1√
2πσi

e
− 1

2

(z−µi)
2

σ2
i . (188)

To continue our derivation specific for this problem we now assume that the given mea-
surement random variable Z is Gaussian distributed. With this assumption we obtain the
likelihood ratio of

p(x|w2)

p(x|w1)
=

σ1

σ2

exp

{

−1

2

[

(z − µ2)
2

σ2
2

− (z − µ1)
2

σ2
1

]}

(189)

so Eq. 185 for setting the Bayesian decision boundary becomes

−1

2

(

(x − µ2)
2

σ2
2

− (x − µ1)
2

σ2
1

)

< log(
σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2

) (190)

or
(

(x − µ2)
2

σ2
2

− (x − µ1)
2

σ2
1

)

> −2 log(
σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2
) . (191)

Now expanding out each quadratic and grouping terms with the same powers of x we obtain
(

1

σ2
2

− 1

σ2
1

)

x2 − 2

(

µ2

σ2
2

− µ1

σ2
1

)

x +
µ2

2

σ2
2

− µ2
1

σ2
1

> −2 log(
σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2

) (192)

For the special case when σ2 = σ1 is given below. Without loss of generality we can assume
that σ2 > σ1 (if this is not true; switch the definition of the classes). This allows us to
determine the sign of the coefficient of x2. We easily conclude that

1

σ2
2

− 1

σ2
1

< 0 .

We can divide by the difference above giving a more pure quadratic equation

x2 − 2

µ2

σ2
2
− µ1

σ2
1

1
σ2
2
− 1

σ2
1

x +

µ2
2

σ2
2
− µ2

1

σ2
1

1
σ2
2
− 1

σ2
1

< − 2
(

1
σ2
2
− 1

σ2
1

) log(
σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2
) . (193)

Multiplying by σ2
1σ

2
2 on the top and bottom of each fraction gives

x2 + 2

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

)

x +

(

µ2
1σ

2
2 − µ2

2σ
2
1

σ2
2 − σ2

1

)

<
2σ2

1σ
2
2

(σ2
2 − σ2

1)
log(

σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2

) . (194)

To complete the square of the above equation add the square of one half of the coefficient of
the x term to both sides or

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

)2

(195)



This gives

(

x +

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

))2

+

(

µ2
1σ

2
2 − µ2

2σ
2
1

σ2
2 − σ2

1

)

< (196)

2σ2
1σ

2
2

(σ2
2 − σ2

1)
log(

σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2
) +

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

)2

. (197)

or

(

x +

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

))2

< (198)

2σ2
1σ

2
2

(σ2
2 − σ2

1)
log(

σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2
) +

(

µ2
1σ

2
2 − µ2

2σ
2
1

σ2
2 − σ2

1

)

+

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

)2

. (199)

To simplify notation we will define R and M both functions of (µ1, σ1, µ2, σ2, P1, P2, L) as

R =
2σ2

1σ
2
2

(σ2
2 − σ2

1)
log(

σ2

σ1

(L12 − L11)

(L21 − L22)

P1

P2

) +

(

µ2
1σ

2
2 − µ2

2σ
2
1

σ2
2 − σ2

1

)

+

(

µ2σ
2
1 − µ1σ

2
2

σ2
2 − σ2

1

)2

(200)

M =
µ2σ

2
1 − µ1σ

2
2

σ2
2 − σ2

1

(201)

Thus our decision boundary becomes: decide d1 when

(x + M)2 < R (202)

or
−
√
R−M < x < +

√
R−M (203)

One would make the decision d2 if this result did not hold.

We now consider a few special cases of the above general relationship.

Equal variances: σ1 = σ2 = σ

In this case equation 192 simplifies and becomes

−2

(

µ2 − µ1

σ2

)

x +
µ2

2 − µ2
1

σ2
> −2 log(

(L12 − L11)

(L21 − L22)

P1

P2
) (204)

or

−2 (µ2 − µ1)

(

x − µ2 + µ1

2

)

> −2σ2 log(
(L12 − L11)

(L21 − L22)

P1

P2

) (205)

or

(µ2 − µ1)

(

x − µ2 + µ1

2

)

< σ2 log(
(L12 − L11)

(L21 − L22)

P1

P2
) (206)

To simplify further we must assume something about the sign of µ2 − µ1.



Equal means: µ1 = µ2 = µ

Then Eq. 192 gives
(

1

σ2
2

− 1

σ2
1

)

x2 > −2 log
σ2

σ1

(L12 − L11)

(L21 − L22)
(207)

FINISH!!!



Chapter 9 (Conjugate Prior Distributions)

Problem 23 (number of samples required for a given confidence)

We know that pX(x) is given as N(µ, 4) and lets assume a mean for our prior of µ0. Then
from the information given the prior is expressed as p(µ) N(µ0, 9). From the class notes
after n samples have been received from a PDF pX(x) and Bayesian learning is performed
then the posteriori distribution of µ is given by

p(µ|D) = N(µn, σ
2
n) (208)

with

µn = (
nσ2

0

nσ2
0 + σ2

)µ̂n + (
σ2

nσ2
0 + σ2

)µ0 (209)

σ2
n =

σ2
0σ

2

nσ2
0 + σ2

(210)

Here µ̂n = 1
n

∑

i xi is the sample mean. This is also equation number 34 and 35 on page 94
in [2]. In this problem σ2

0 = 9, σ2 = 4, so the above simplifies to

µn = (
9n

9n + 4
)µ̂n + (

4

9n + 4
)µ0 (211)

σ2
n =

9 ∗ 4

9n + 4
=

36

9n + 4
(212)

A 95 percent confidence interval will lie between 1.96 standard deviations of the mean µn.
If we desire this interval to be of length 1 (or smaller) then we must have

(µn + 1.96 ∗ σn) − (µn − 1.96 ∗ σn) = 2 ∗ 1.96 ∗ σn = 1 (213)

Written in terms of the number of samples this is

σ2
n =

36

9n + 4
= (

1

2 ∗ 1.96
)2 (214)

Solving this for n gives n ≈ 61.02. Since n must be an integer one should take n ≥ 62.
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