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Chapter 5 (Introduction to Feature Selection and Ex-

traction)

Problem Solutions

Problem 2 (the divergence and statistically independent features)

Consider the divergence dij defined by

dij =

∫

x

(p(x|ωi) − p(x|ωj)) ln

(

p(x|ωi)

p(x|ωj)

)

dx . (1)

Then if the features are statistically independent in each class we have

p(x|ωi) =
d
∏

k=1

p(xk|ωi) .

Thus the logarithmic term above becomes

ln

(

p(x|ωi)

p(x|ωj)

)

dx = ln

(

d
∏

k=1

p(xk|ωi)

p(xk|ωj)

)

=
d
∑

k=1

ln

(

p(xk|ωi)

p(xk|ωj)

)

.

Then we get for dij is

dij =
d
∑

k=1

∫

x

(p(x|ωi) − p(x|ωj)) ln

(

p(xk|ωi)

p(xk|ωj)

)

dx .

Since the logarithmic term only depends on xk (and not the other k’s) we can integrate out
them by performing the

∫

x
integration for all variables but xk. This then gives

dij =

d
∑

k=1

∫

xk

(p(xk|ωi) − p(xk|ωj)) ln

(

p(xk|ωi)

p(xk|ωj)

)

dxk ,

which is the sum of d scalar divergences each one over a different variable.



Chapter 6 (Interclass Distance Measures In Feature Se-

lection and Extraction)

Notes On The Text

Notes On Discriminant Analsis: The Criterion J3(W )

We want to evaluate
∂

∂W
trace{(W T S1W )−1(W T S2W )}

The algebraic procedure for computing derivatives like ∂
∂W

trace{F (W )} where F (·) is a
matrix function of a matrix argument is discussed on Page 14. The basic procedure is the
following. We consider the matrix derivative as several scalar derivative (one derivative for
each component wkl of W ). We pass the derivative of wkl though the trace operation and

take the scalar derivative of various matrix expressions i.e. ∂F (W )
∂wkl

. Taking these derivatives

is easier if we introduce the matrix V (k, l) which is a matrix of all zeros except for a single
one at the location (k, l). This is a helpful matrix to have since

∂

∂wkl

W = V (k, l) .

Once we have computed the derivative of the argument of the trace F (W ) with respect to
wkl we need to write it in the form

∂F (W )

∂wkl

=
∑

i

gi(W )V (k, l)hi(W ) .

We can then take the trace of the above expression and use the permutability of matrices in
the argument of the trace to write

trace

{

∂F (W )

∂wkl

}

= trace

{

∑

i

gi(W )V (k, l)hi(W )

}

=
∑

i

trace {gi(W )V (k, l)hi(W )}

=
∑

i

trace {hi(W )gi(W )V (k, l)} . (2)

Finally we use the property of the trace to conclude that for any n × n matrix M
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or a matrix with the kth column of M in the lth column. Since the only nonzero column is
the lth, to take the trace of this matrix, we need to find what the element of the lth row in
that column is. From the above we see that this element is mlk. Thus we have just argued
that

trace {MV (k, l)} = M(l, k) .

When we reassemble all elements, from this result, to compute the full matrix derivative of
trace{MW} we see that

∂

∂W
trace {MW} = MT .

Back to Equation 2 we can use the above to get the full matrix derivative

∂

∂W
trace{F (W )} =

∑

i

(hi(W )gi(W ))T . (3)

For this problem we now implement this procedure.

To begin we evaluate the wkl derivative of (W TS1W )−1(W TS2W ). From the product rule
we have

∂

∂wkl

[

(W T S1W )−1(W T S2W )
]

=

[

∂

∂wkl

(W T S1W )−1

]

(W T S2W )+(W TS1W )−1

[

∂

∂wkl

(W T S2W )

]

.

To evaluate the wkl derivative of (W TS1W )−1 recall that if F (W ) = G−1(W ) then

∂F (W )

∂wkl

= −G−1(W )
∂G(W )

∂wkl

G−1(W ) . (4)

Thus we get
∂(W T S1W )−1

∂wkl

= −(W T S1W )−1∂(W T S1W )

∂wkl

(W T S1W )−1 .

Thus we need to evaluate the derivative of W TS1W (a similar needed derivative is of
W T S2W ). We get

∂(W T S1W )

∂wkl

= V T (k, l)S1W + W T S1V (k, l) .

Combining these results we get

∂

∂wkl

(W T S1W )−1(W T S2W ) = −(W T S1W )−1
[

V T (k, l)S1W + W T S1V (k, l)
]

(W TS1W )−1(W TS2W )

+ (W TS1W )−1
[

V T (k, l)S2W + W TS2V (k, l)
]

.

Then for each term (there are four of them) once we take the trace we can write each one
as gi(W )V (k, l)hi(W ) for functions gi(·) and hi(·) for i = 1, 2, 3, 4 by using

trace(W T ) = trace(W ) ,

if needed. We will need to use that identity for the first and third terms. We get

g1(W ) = −(W T S2W )(W TS1W )−1W T S1 , and h1(W ) = (W TS1W )−1

g2(W ) = −(W T S1W )−1W T S1 , and h2(W ) = (W TS1W )−1(W TS2W )

g3(W ) = W T S2 , and h3(W ) = (W T S1W )−1

g4(W ) = (W T S1W )−1W T S2 , and h4(W ) = I .



Once we have done this we use Equation 3 (but without the transpose yet) to get

(

∂

∂W
trace

{

(W TS1W )−1(W TS2W )
}

)T

= −(W T S1W )−1(W T S2W )(W TS1W )−1W T S1

− (W TS1W )−1(W TS2W )(W TS1W )−1W T S1

+ (W T S1W )−1W T S2

+ (W T S1W )−1W T S2 .

Thus taking the transpose of both sides we finally find

∂

∂W
trace

{

(W T S1W )−1(W T S2W )
}

= −2S1W (W TS1W )−1(W TS2W )(W TS1W )−1

+ 2S2W (W T S1W )−1 ,

as we were to show.



Chapter 7 (Probabilistic Separability Measures in Fea-

ture Selection)

Notes On The Text

Notes on Probabalistic Distance Measures: the divergence for Gaussians

When the conditional densities are Gaussian we have

p(x|ωi) ∼ N(µi, Σi)

p(x|ωj) ∼ N(µj , Σj) .

Then to compute the divergence dij given by

dij =

∫ ∞

−∞

(p(x|ωi) − p(x|ωj)) ln

(

p(x|ωi)

p(x|ωj)

)

dx , (5)

we first need to compute the log term ln
(

p(x|ωi)
p(x|ωj)

)

, where we find

ln

(

p(x|ωi)

p(x|ωj)

)

= −
1

2

[

(x − µi)
T Σ−1

i (x − µi) − (x − µj)
T Σ−1

j (x − µj)
]

+
1

2
ln

(

|Σj|

|Σi|

)

.

When we expand the quadratics above we get

ln

(

p(x|ωi)

p(x|ωj)

)

= −
1

2

[

xT Σ−1
i x − xT Σ−1

j x − 2µT
i Σ−1

i x + 2µT
j Σ−1

j x
]

−
1

2

[

µT
i Σ−1

i µi − µT
j Σ−1

j µj

]

+
1

2
ln

(

|Σj|

|Σi|

)

.

Only the first four terms depend on x while the remaining terms are independent of x and
can be represented by a constant C. Because the densities p(x|·) are normalized we note
that

∫ ∞

−∞

(p(x|ωi) − p(x|ωj))Cdx = C(1 − 1) = 0 ,

and these terms do not affect the divergence. Thus we only need to worry about how to
integrate the first four terms. To do these lets first consider the integral of these terms
against p(x|ωi) (integrating against p(x|ωj) will be similar). To do these integral we will use
Equation 30 from Appendix D to evaluate the integral of the terms like xT Σ−1x, against
p(x|ωi). When we do that we find the integral of the log ratio term expressed above is given
by (multiplied by −1/2)

−2

∫ ∞

−∞

ln

(

p(x|ωi)

p(x|ωj)

)

p(x|ωi)dx = µT
i Σ−1

i µi + trace(ΣiΣ
−1
i ) − µT

i Σ−1
j µi − trace(ΣiΣ

−1
j )

− 2µT
i Σ−1

i µi + 2µT
j Σ−1

j µi

= −µT
i Σ−1

i µi − µT
i Σ−1

j µi + 2µT
j Σ−1

j µi

+ trace(I) − trace(ΣiΣ
−1
j ) .



In the same way the integral of the log ratio term against p(x|ωj) is given by

2

∫ ∞

−∞

ln

(

p(x|ωi)

p(x|ωj)

)

p(x|ωj)dx = −µT
j Σ−1

i µj − trace(ΣjΣ
−1
i ) + µT

j Σ−1
j µj + trace(ΣjΣ

−1
j )

+ 2µT
i Σ−1

i µj − 2µT
j Σ−1

j µj

= −µT
j Σ−1

j µj − µT
j Σ−1

i µj + 2µT
i Σ−1

i µj

+ trace(I) − trace(ΣjΣ
−1
i ) .

If we take −1 of the first and second expression and add them together we get two types of
terms. Terms involving the trace operation and terms that don’t depend on the trace. The
trace terms add to give

trace terms = −trace(I) + trace(ΣiΣ
−1
j ) − trace(I) + trace(ΣjΣ

−1
i )

= −2trace(I) + trace(ΣiΣ
−1
j ) + trace(ΣjΣ

−1
i ) .

The non-trace terms add together to give

non-trace terms = µT
i Σ−1

i µi + µT
i Σ−1

j µi − 2µT
j Σ−1

j µi

+ µT
j Σ−1

j µj + µT
j Σ−1

i µj − 2µT
i Σ−1

i µj

= µT
i (Σ−1

i µi + Σ−1
j µi − 2Σ−1

j µj − 2Σ−1
i µj) + µT

j (Σ−1
i µj + Σ−1

j µj)

= µT
i ((Σ−1

i + Σ−1
j )µi − 2(Σ−1

i + Σ−1
j )µj) + µT

j (Σ−1
i + Σ−1

j )µj

= µT
i (Σ−1

i + Σ−1
j )(µi − µj) − µT

i (Σ−1
i + Σ−1

j )µj + µT
j (Σ−1

i + Σ−1
j )µj

= µT
i (Σ−1

i + Σ−1
j )(µi − µj) − (µT

i − µT
j )(Σ−1

i + Σ−1
j )µj

= (µi − µj)
T (Σ−1

i + Σ−1
j )µi − (µi − µj)

T (Σ−1
i + Σ−1

j )µj

= (µi − µj)(Σ
−1
i + Σ−1

j )(µi − µj) .

In total when we divide by 2 and add together the trace and the non-trace expressions we
get

dij =
1

2
(µi − µj)(Σ

−1
i + Σ−1

j )(µi − µj) +
1

2
trace(ΣiΣ

−1
j + ΣjΣ

−1
i − 2I) , (6)

for the expression for the divergence between two Gaussians.



Chapter 8 (Feature Extraction Methods based on Prob-

abilistic Separability Measures)

Notes On The Text

The Chernoff Probabilistic Distance Measure

To begin, recall that our linearly transformed vectors x are obtained from our raw input
vectors y via the linear mapping x = W ty. Now as JC(W ) is a scalar we can take the
trace of its expression and use the properties of the trace operator to simplify some resulting
expressions. Taking this trace, the Chernoff separability measure can be transformed as

JC(W ) =
1

2
s(1 − s)tr

{

(µ2 − µ1)
tW
[

(1 − s)W tΣ1W + sW tΣ2W
]−1

W t(µ2 − µ1)
}

(7)

+
1

2
ln |(1 − s)W tΣ1W + sW tΣ2W |

−
1 − s

2
ln |W tΣ1W | −

s

2
ln |W tΣ2W | .

To simplify the notation we will define the matrix L as

L ≡
[

(1 − s)W tΣ1W + sW tΣ2W
]−1

.

Since we can cyclically permute the arguments of a trace we have that the first term in
Equation 7 can be written as

tr
{

(µ2 − µ1)
tWLW t(µ2 − µ1)

}

= tr
{

W t(µ2 − µ1)(µ2 − µ1)
tWL

}

.

As in the book lets also define the matrix M as M ≡ (µ2 − µ1)(µ2 − µ1)
t. When we do

these two steps we have the books equation 21. To evaluate the value of W at which we will
maximize the value of JC(W ) we need to compute the first derivative of the scalar JC(W )
with respect to the matrix W . To compute this lets take the derivative of each term one at
a time. To take the derivative of the first term using the results from Page 14 onward where
we evaluate the derivative of a trace with respect to a matrix. We first take the derivative
of W tMWL with respect to the element wkl. Using the product rule we find

∂(W tMWL)

∂wkl

= V t(k, l)MWL + W tMV (k, l)L + W tMW
∂L

∂wkl

= V t(k, l)MWL + W tMV (k, l)L

− W tMW

× L
{

(1 − s)V t(k, l)Σ1W + (1 − s)W tΣ1V (k, l) + sV t(k, l)Σ2W + sW tΣ2V (k, l)
}

L .

Defining dkl as dkl ≡
∂ tr(W tMWL)

∂wkl
then dkl is given by taking the trace of the above expression.

After taking this trace we cyclically permute the L matrix in the second and third trace to
find

dkl = tr(V t(k, l)MWL) + tr(LW tMV (k, l))

− tr
[

LW tMWL
{

(1 − s)V t(k, l)Σ1W + (1 − s)W tΣ1V (k, l) + sV t(k, l)Σ2W + sW tΣ2V (k, l)
}]

.



We can now use the two facts that traces are invariant to transposes and to cyclic permuta-
tions of their arguments followed by the trace element selection lemmas given by Equations 28
and 29 to simplify the above expression. The first two terms transform as

tr(V t(k, l)MWL) + tr(LW tMV (k, l)) = (MWL)kl + (LW tM)lk

= (MWL)kl + (M tWLt)kl . (8)

The last term in dkl (temporally denoted Lkl) transforms as

Lkl = −(1 − s)tr(LW tMWLV t(k, l)Σ1W ) − (1 − s)tr(LW tMWLW tΣ1V (k, l))

− s tr(LW tMWLV t(k, l)Σ2W ) − s tr(LW tMWLW tΣ2V (k, l))

= −(1 − s)tr(V t(k, l)Σ1WLW tMWL) − (1 − s)(LW tMWLW tΣ1)lk

− s tr(V t(k, l)Σ2WLW tMWL) − s(LW tMWLW tΣ2)lk

= −(1 − s)(Σ1WLW tMWL)kl − (1 − s)(Σt
1WLtW tM tWLt)kl

− s(Σ2WLW tMWL)kl − s(Σt
2WLtW tM tW )kl .

Now Σ1 and Σ2 are covariance matrices and so are symmetric. Because of this L is symmetric
also and M is symmetric by its definition. Thus using the symmetry of the matrices involved
Lkl becomes

Lkl = −2(1 − s)(Σ1WLW tMWL)kl − 2s(Σ2WLW tMWL)kl .

Including the first two terms given by Equation 8 we have

∂tr (W tMWL)

∂wkl

= 2(MWL)kl − 2(1 − s)(Σ1WLW tMWL)kl − 2s(Σ2WLW tMWL)kl .

So the matrix derivative then becomes (which is obtained by removing the index notation of
wkl above)

∂tr (W tMWL)

∂W
= 2MWL − 2(1 − s)Σ1WLW tMWL − 2sΣ2WLW tMWL

= 2MWL − 2((1 − s)Σ1W + sΣ2W )LW tMWL .

Next we need to take the derivatives with respect to W of the expressions

ln |(1 − s)W tΣ1W + sW tΣ2W | , ln |W tΣ1W | , and ln |W tΣ2W | .

Since we can write

(1 − s)W tΣ1W + sW tΣ2W = W t((1 − s)Σ1 + sΣ2)W ,

all of these expressions have similar derivatives. Taking the derivative of ln |W tΣ2W | to see
that these equal we have

∂ ln |W tΣ2W |

∂W
=

1

|W tΣ2W |

∂ |W tΣ2W |

∂W

=
1

|W tΣ2W |
|W tΣ2W |

{

Σ2W (W tΣ2W )−1 + Σ2
tW [(W tΣ2W )−1]t

}

= 2Σ2W (W tΣ2W )−1 .



All the other derivatives are similar. For example

∂ ln |(1 − s)W tΣ1W + sW tΣ2W |

∂W
= 2((1 − s)Σ1 + sΣ2)W (W t((1 − s)Σ1 + sΣ2)W )−1

= 2((1 − s)Σ1W + sΣ2W )((1 − s)W tΣ1W + sW tΣ2W )−1

= 2((1 − s)Σ1W + sΣ2W )L .

Thus combining everything we finally find that our first derivative of JC(W ) is given by

∂JC(W )

∂W
= s(1 − s)

{

MWL − ((1 − s)Σ1W + sΣ2W )LW tMWL
}

+ ((1 − s)Σ1W + sΣ2W )L

− (1 − s)Σ1W (W tΣ1W )−1 − sΣ2W (W tΣ2W )−1 ,

which is the books equation 23. To find the maximum of JC(W ) we set J ′
C(W ) equal to

zero to derive an equation for W which would then need to be solved for W . Assuming L is
non-singular we can premultiply by L−1 and divide by s(1− s) to get the following equation
equivalent to J ′

C(W ) = 0

MW − [(1 − s)Σ1W + sΣ2W ]LW tMW +
1

s(1 − s)
[(1 − s)Σ1W + sΣ2W ] (9)

−
1

s
Σ1W (W tΣ1W )−1[(1 − s)W tΣ1W + sW tΣ2W ] (10)

−
1

1 − s
Σ2W (W tΣ2W )−1[(1 − s)W tΣ1W + sW tΣ2W ] = 0 . (11)

Note that in the above the last two terms can be expanded and written as

−
1

s
Σ1W [(1 − s)I + s(W tΣ1W )−1W tΣ2W ] −

1

1 − s
Σ2W [(1 − s)(W tΣ2W )−1W tΣ1W + sI] ,

which once done gives the books equation 24. We can further combine these terms with
1

s(1−s)
[(1 − s)Σ1W + sΣ2W ] the third term on line 9 above to get

Σ1W + Σ2W − Σ1W (W tΣ1W )−1W tΣ2W − Σ2W (W tΣ2W )−1W tΣ1W

= Σ1W [I − (W tΣ1W )−1W tΣ2W ] + Σ2W [I − (W tΣ2W )−1W tΣ1W ] ,

which gives the books equation 25 repeated here for convenience

MW − [(1 − s)Σ1W + sΣ2W ]LW tMW

+ Σ1W [I − (W tΣ1W )−1W tΣ2W ] + Σ2W [I − (W tΣ2W )−1W tΣ1W ] = 0 (12)

In the special case where both Gaussians have the same covariance matrix then Σ1 = Σ2 = Σ
and the last two terms in Equation 12 vanish so that Equation 12 becomes

MW − ΣW (W tΣW )−1W tMW = 0 , (13)

which is the books equation 28. Performing an eigenvector-eigenvalue decomposition of
(W tΣW )−1W tMW to write this matrix as UΛU−1 we have

MW − ΣWUΛU−1 = 0 ,



or
Σ−1MWU − WUΛ = 0 . (14)

Now since we don’t explicitly know the value W we don’t explicitly know the values of Λ or
U and they are effectively functions of the matrix W . We will see below how to compute
these matrices. On grouping some terms together we find

Σ−1M(WU) = (WU)Λ .

Since Λ is a diagonal matrix containing the eigenvalues of (W tΣW )−1W tMW , multiplication
on the right by this matrix Λ is equivalent to multiplying each column of the matrix WU
by the corresponding eigenvalue. Comparing each side of this equation column by column
we see that the columns of WU must be the eigenvectors of the matrix Σ−1M . From this
we can compute the eigenvectors of Σ−1M and place them as columns of the matrix say V .
Then since V = WU for some as yet unknown U , W would be given by W = V U−1. The
point to note now is that in fact the multiplication of V by an invertible matrix U−1 does
not in fact change the value of JC and it can be ignored. The fact that multiplication by
U−1 on the left does not change the value of JC can be seen by first considering JC(W ) with
equal covariance matrices. We find

JC(W ) =
1

2
s(1 − s)tr

{

W tMW (W tΣW )−1
}

+
1

2
ln |W tΣW | −

1 − s

2
ln |W tΣW | −

s

2
ln |W tΣW |

=
1

2
s(1 − s)tr

{

W tMW (W tΣW )−1
}

.

If we consider JC(WU−1) we find

JC(WU−1) =
1

2
s(1 − s)tr

{

U−tW tMWU−1(U−tW tΣWU−1)−1
}

=
1

2
s(1 − s)tr

{

U−tW tMWU−1U(W tΣW )−1U t
}

=
1

2
s(1 − s)tr

{

U tU−tW tMW (W tΣW )−1
}

= JC(W ) .

Since the value of U−1 does not matter we can effectively ignore this matrix (take U = I).
Then the matrix W has columns that are simply the eigenvectors of Σ−1M . When we use
the decomposition (W tΣW )−1W tMW = UΛU−1 in the above expression for JC(W ) we find

JC(W ) =
1

2
s(1 − s)tr

{

W tMW (W tΣW )−1
}

=
1

2
s(1 − s)tr

{

UΛU−1
}

=
1

2
s(1 − s)tr

{

U−1UΛ
}

=
1

2
s(1 − s)tr {Λ} .

Since M is of rank one the product Σ−1M will also be of rank one and only have one non-
zero eigenvalue. Thus the matrix W will thus in fact be only a column vector and not a
matrix. To find its value we could explicitly compute the non-zero eigenvector of Σ−1M , but
an easier method it to write Equation 14 when W is a column vector say v1 as

Σ−1(µ2 − µ1)(µ2 − µ1)
tv1 = λv1 .



Since (µ2 − µ1)
tv1 is an inner product and is therefore a scalar we can factor it out to get

(

(µ2 − µ1)
tv1

)

Σ−1(µ2 − µ1) = λv1 .

Comparing vectors (and the corresponding multiplying scalars) on each side of this expression
we see that

v1 = Σ−1(µ2 − µ1) (15)

λ = (µ2 − µ1)
tv1 = (µ2 − µ1)

tΣ−1(µ2 − µ1) .

Equation 15 is the optimal Chernoff feature transformation

x = vt
1y = (µ2 − µ1)

tΣ−1y , (16)

for the case when the covariance matrices of the two densities are equal.



Chapter 9 (Feature Extraction based on the Karhunen-

Loeve Expansion)

Problem Solutions

Problem 6 (a constrained optimization problem)

We want to find the extrema of f =
∏d

i=1 σi for 0 ≤ σi ≤ 1 subject to the constraint that
∑d

i=1 σi = 1. Maximizing f is equivalent to maximizing log(f) or
∑d

i=1 log(σi), since log(·)
is a monotone increasing function. Since this is a constrained optimization problem we will
use the method of Lagrange multipliers to find its solution. We first form the Lagrangian

L({σi}; λ) =
d
∑

i=1

log(σi) − λ

(

d
∑

i=1

σi − 1

)

,

and then look for stationary points with respect to ({σi}, λ). We have

∂L

∂σi

=
1

σi

− λ = 0 (17)

∂L

∂λ
=

d
∑

i=1

σi − 1 = 0 . (18)

Using Equation 17 we have σi = 1
λ
, which when we put into Equation 17 gives

d

λ
− 1 = 0 or λ = d .

From this we then have that

σi =
1

d
.

Technically the optimization procedure we did above is valid for unconstrained problems
where there are no restrictions on the values of σi or λ. In this problem since 0 ≤ σi ≤ 1 the
solution we obtain above is only valid if the solution we obtain also satisfies these constraints.
In this case it does and we have in fact found a global minimum.



Differentiation of Scalar Functions of a Matrix Variable

Notes On The Text

The Derivative of the Trace Operator: Example 3: J(w) = tr(W tMW )

From earlier in this appendix we have that the wkl derivative of W tMW is given by

∂(W tMW )

∂wkl

= V t(k, l)MW + W tMV (k, l) . (19)

I found it difficult to directly use the results from the text as there seems no easy way to
write this right-hand-side in the required stated form of

∂F (W )

∂wkl

=
∑

i

gi(W )V (k, l)hi(W ) , (20)

due to the V t(k, l) term on the right-hand-side of Equation 19. Writing ∂F (W )
∂wkl

exactly as
Equation 20, however, does not seem to be the correct requirement, since what we really
need is to be able to write ∂J(W )

∂wkl
as

∂J(W )

∂wkl

= tr

(

∑

i

gi(W )V (k, l)hi(W )

)

. (21)

Note that that J(W ) is the argument of the derivative and the trace operation in Equation 21
which is not present in Equation 20. For the example of J(W ) = tr(W tMW ) given here,
this can be done using some properties of the trace operator as follows

∂J(W )

∂wkl

=
∂ tr(W tMW )

∂wkl

= tr

(

∂(W tMW )

∂wkl

)

= tr(V t(k, l)MW ) + tr(W tMV (k, l))

= tr(W tM tV (k, l)) + tr(W tMV (k, l))

= tr(M tV (k, l)W t) + tr(MV (k, l)W t)

= tr
(

M tV (k, l)W t + MV (k, l)W t
)

,

which is in the form needed by Equation 21. In this situation we have

g1(W ) = M t

h1(W ) = W t

g2(W ) = M

h2(W ) = W t ,

so that

f1(W ) = h1(W )g1(W ) = W tM t

f2(W ) = h2(W )g2(W ) = W tM .



Then from our theorem that

∂J

∂W
=

(

∑

i

fi(W )

)t

=

(

∑

i

hi(W )gi(W )

)t

, (22)

in this case gives

∂tr(W tMW )

∂W
=

(

W tM t + W tM
)t

= MW + M tW

= (M + M t)W , (23)

which is the expression given in the book.

Using the above logic we can also derive derivative results for similar expressions. For
example a slight variation on the above derivative would be the evaluation of

∂tr(WMW t)

∂W
.

Here our objective function J(·) is given by J(W ) ≡ tr(WMW t). Note the different location
of the transpose operation “t” between these two examples. The first example above was
computing the derivative of the “inner product” form W tMW , while this example is to
compute the derivative of the “outer product” form WMW t.

Following the steps above from earlier in this appendix we have that the wkl derivative of
the expression WMW t is given by

∂(WMW t)

∂wkl

= V (k, l)MW t + WMV (k, l)t .

From this we have

∂ tr(WMW t)

∂wkl

= tr

(

∂(WMW t)

∂wkl

)

= tr(V (k, l)MW t) + tr(WMV (k, l)t)

= tr(W tV (k, l)M) + tr(V (k, l)M tW t)

= tr(W tV (k, l)M) + tr(W tV (k, l)M t) .

This is in the form needed by Equation 21. In this situation we have

g1(W ) = W t

h1(W ) = M

g2(W ) = W t

h2(W ) = M t ,

so that

f1(W ) = h1(W )g1(W ) = MW t

f2(W ) = h2(W )g2(W ) = M tW t .



Using these and applying our theorem given by Equation 22 we have that

∂tr(WMW t)

∂W
=

(

MW t + M tW t
)t

= WM t + WM

= W (M + M t) . (24)

Note that this expression is not simply the transpose of Equation 23 if W is not symmetric.

The Derivative of the Trace Operator: Example 4: J(W ) = tr((W tMW )−1)

From example 2 in this appendix we have that

∂ ((W tΣW )−1)

∂wkl

= −(W tΣW )−1V t(k, l)ΣW (W tΣW )−1−(W tΣW )−1W tΣV (k, l)(W tΣW )−1 .

So the derivative of the trace of this expression denoted as D so that

D ≡
∂ tr((W tΣW )−1)

∂wkl

,

then becomes

D = −tr((W tΣW )−1V t(k, l)ΣW (W tΣW )−1) − tr((W tΣW )−1W tΣV (k, l)(W tΣW )−1)

= −tr((W tΣW )−1W tΣtV (k, l)(W tΣW )−1) − tr((W tΣW )−1W tΣV (k, l)(W tΣW )−1)

= −tr((W tΣtW )−2W tΣtV (k, l)) − tr((W tΣW )−2W tΣV (k, l)) .

So matching terms with Equation 21 we have in this case that

g1(W ) = −(W tΣtW )−2W tΣt

h1(W ) = I

g2(W ) = −(W tΣtW )−2W tΣ

h2(W ) = I ,

so that

f1(W ) = h1(W )g1(W ) = −(W tΣtW )−2W tΣt

f2(W ) = h2(W )g2(W ) = −(W tΣtW )−2W tΣ .

Thus our theorem given by Equation 22 we have that

∂J(W )

∂W
= −

(

(W tΣtW )−2W tΣt + (W tΣtW )−2W tΣ
)t

= −ΣW (W tΣtW )−2 − ΣtW (W tΣtW )−2 ,

which is the negative of the result given in the book but I believe is correct.



The Derivative of the Determinant

From the notes in this section it is clear that when J(W ) = |F (W )| with F (W ) a matrix
valued function of a matrix W that the derivative with respect to the element wkl is given
by

∂J(W )

∂wkl

=

r
∑

i=1

r
∑

j=1

F ∗
ij

∂Fij(W )

∂wkl

. (25)

From the definition of the adjoint matrix, F ∗(W ), the (j, j)th element of the matrix product
F ∗(W ) ∂F

∂wkl
is given by

r
∑

n=1

F ∗
nj

∂Fnj(W )

∂wkl

. (26)

Note that in the way that F ∗ is defined, the sum over n is done with respect to the first index
of the matrix F ∗(W ). This is a somewhat different ordering that what might be expected
for the (j, j)th element arising from traditional matrix indexing. The trace of the matrix

product F ∗(W )∂F (W )
∂wkl

is given by summing over j in Equation 26, which by using Equation 25
gives

∂J(W )

∂wkl

=

r
∑

j=1

r
∑

n=1

F ∗
nj

∂Fnj(W )

∂wkl

= tr

[

F ∗(W )
∂F (W )

∂wkl

]

.

Since F ∗(W ) = |F (W )|F−1(W ), this can be written as

∂J(W )

∂wkl

= |F (W )|tr

[

F−1(W )
∂F (W )

∂wkl

]

. (27)

Thus the problem of differentiating the determinant has been reduced to that of finding the
trace of a matrix function.

The Derivative of the Determinant Operator: Example 5: J(w) = |W tMW |

Then for this example we have

F−1(W ) = (W tMW )−1 and

∂F (W )

∂wkl

= V t(k, l)MW + W tMV (k, l) ,

so that the product F−1(W )∂F (W )
∂wkl

becomes simply

F−1(W )
∂F (W )

∂wkl

= F−1(W )V t(k, l)MW + F−1(W )W tMV (k, l) ,

so distributing the trace operation the trace of this expression is given by

tr

(

F−1(W )
∂F (W )

∂wkl

)

= tr(F−1(W )V t(k, l)MW ) + tr(F−1(W )W tMV (k, l)) .



To further evaluate this expression we recall the result that if we take the trace of a matrix
product of the form AV (k, l) then we get the (l, k)th element of A. This is the trace

element selection lemma or equation 17 in the book’s appendix and is given by

tr(AV (k, l)) = Alk , (28)

note the order of the subscripts in this last expression. Some of the terms in the above

expression for tr
(

F−1(W )∂F (W )
∂wkl

)

are directly of this form. The others will be transformed

into this form. By taking a transpose and then cyclically permuting the matrices in the first
trace expression followed by using Equation 28 on the second trace expression, we find

tr

(

F−1(W )
∂F (W )

∂wkl

)

= tr(W tM tV (k, l)F−t(W )) + (F−1(W )W tM)lk

= tr(F−t(W )W tM tV (k, l)) + (F−1(W )W tM)lk

= (F−t(W )W tM t)lk + (F−1(W )W tM)lk

= (F−t(W )W tM t + F−1(W )W tM)lk .

Based on observing these manipulations we can use properties of the trace operator to derive
the following alternative form to the above lemma (here the matrix V is on the left of A)

tr(V t(k, l)A) = tr(AtV (k, l))

= (At)lk

= Akl , (29)

using this form, with V t(k, l) on the left of A (if we can recognize it when it appears) can

save us some algebraic manipulations. Since we ultimately want ∂J(W )
∂wkl

using Equation 27
we have

∂J(W )

∂wkl

= |W tMW |(F−t(W )W tM t + F−1(W )W tM)lk .

So computing ∂J(W )
∂W

, where the denominator now is a matrix we need to take the transpose
of the right-hand-side to get the subscripts to be correct. We find

∂J(W )

∂W
= |W tMW |(MWF−1(W ) + M tWF−t(W ))

= |W tMW |
(

MW (W tMW )−1 + M tW [(W tMW )−1]t
)

,

the same as the expression given in the book.

The Derivative of the Determinant Operator: Example 6: J(w) = |(W tMW )−1|

When J(W ) = |(W tMW )−1| we have F (W ) = (W tΣW )−1 and we first need to evaluate
∂F (W )
∂wkl

. From earlier we have

∂F (W )

∂wkl

= −[W tΣW ]−1(V t(k, l)ΣW + W tΣV (k, l))[W tΣW ]−1 ,



so the required trace expression from Equation 27 becomes

tr

(

F−1(W )
∂F (W )

∂wkl

)

= −tr(V t(k, l)ΣWF (W )) − tr(W tΣV (k, l)F (W ))

= −tr(F t(W )W tΣtV (k, l)) − tr(F (W )W tΣV (k, l)) .

Using the trace element selection lemma Equation 28 we have

tr

(

F−1(W )
∂F (W )

∂wkl

)

= −(F t(W )W tΣt)lk − (F (W )W tΣ)lk .

so that ∂J(W )
∂wkl

is given by Equation 27 as

∂J(W )

∂wkl

= −|F (W )|(F t(W )W tΣt + F (W )W tΣ)lk .

To get ∂J(W )
∂W

where the denominator is a matrix so the entire expression is a matrix using
the component derivatives computed above we need to transpose the above right-hand-side
matrix to get

∂J(W )

∂W
= −|F (W )|(ΣWF (W ) + ΣtWF (W )t)

= −|[W tΣW ]−1|
(

ΣW (W tΣW )−1 + ΣtW [(W tΣW )−1]t
)

,

which is the result given in the book.



Hints from Probability and Statistics

Moments of a Quadratic Form

Suppose x is a l × 1 random vector with E[x] = µ and Cov(x) = Σ and let A be a l × l
symmetric matrix not dependent on x then the quadratic expectation E[xT Ax] is given by

E[xT Ax] = µT Aµ + trace(ΣA) . (30)
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