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Chapter 2 (Matrix Analysis):

Basic Ideas from Linear Algebra

P 2.1.1 (existence of a p rank factorization of A)

Assume A is mxn and of rank r. The using elementary elimination matrices we can reduce
A to its row reduced echelon form R, given by E1A = R or A = E−1

1 R = E2R. In this
reduction E2 is mxm and R is mxn. Because R has n− r zero rows we can block decompose
it as follows

R =

[

R̂r×n

0m−r×n

]

where we have listed the dimensions of the the block matrices next to them. Now R̂ is of
rank r. In addition, block decomposing E2 as

E2 =
[

Êm×r Ẽm×m−r

]

.

Now since E2 is of rank m the first r columns of E2 is a matrix of rank r. This block
decomposition gives for A the expression

A =
[

Ê Ẽ
]

[

R̂

0

]

= ÊR̂

This gives the decomposition of A into Ê of size mxr and R̂ of size rxn each of rank r, thus
proving the decomposition.
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P 2.1.2 (the matrix product rule)

This result is basically a consequence of the definition of matrix multiplication. For example
the ij-th element of the produce A(α)B(α) is given by

r
∑

k=1

aik(α)bkj(α)

where aik(α) is the ik-th element of A and bkj(α) is the kj-th element of B. From this we
then have that

d

dα

r
∑

k=1

aik(α)bkj(α) =

r
∑

k=1

daik(α)

dα
bkj(α) +

r
∑

k=1

aik(α)
dbkj(α)

dα

Which we recognize as the ij-th element of dA
dα

B plus the ij-th element of AdB
dα

proving the
desired theorem.

P 2.1.3 (matrix inverse differentiation)

To show this consider the derivative of the expression

A(α)A(α)−1 = I

with respect to α.
d

dα
(A(α)A(α)−1) = 0

Using the result of P 2.1.3 we have that

dA(α)

dα
A(α)−1 + A(α)

dA(α)−1

dα
= 0

and solving for dA(α)−1

dα
we have that

dA(α)−1

dα
= −A(α)−1dA(α)−1

dα
A(α)−1

the desired result.

P 2.1.4 (the gradient of the matrix inner product)

We desire the gradient of the function

φ(x) =
1

2
xT Ax − xT b .



The i-th component of the gradient is given by

∂φ

∂xi

=
∂

∂xi

(

1

2
xT Ax − xT b

)

=
1

2
eT

i Ax +
1

2
xT Aei − eT

i b

where ei is the i-th elementary basis function for R
n, i.e. it has a 1 in the i-th position and

zeros everywhere else. Now since

(eT
i Ax)T = xT AT eT

i = eT
i Ax ,

the above becomes

∂φ

∂xi

=
1

2
eT

i Ax +
1

2
eT

i AT x − eT
i b = eT

i

(

1

2
(A + AT )x − b

)

.

Since multiplying by eT
i on the left selects the i-th row from the expression to its right we

see that the full gradient expression is given by

∇φ =
1

2
(A + AT )x − b ,

as requested in the text. Note that this expression can also be proved easily by writing each
term in components.

P 2.1.5 (solutions to rank one updates of A)

If x solves (A + uvT )x = b, by the Sherman-Morrison-Woodberry formula (equation 2.1.4 in
the book), with U and V vectors with n components we have x given by

x = (A−1
− A−1u(I + vT A−1u)−1vT A−1)b

= A−1b − A−1u(I + vT A−1u)−1vT A−1b .

Since u and v are vectors the expression vT A−1u is a scalar and the I is also a scalar namely
the number 1. Multiplying the above by A on the left the linear system that x must satify

Ax = b − u(1 + vT A−1u)−1vT A−1b .

In this expression, both vT A−1u and vTA−1b are scalars, thus by factoring out the only vector
u the above is equivalent to

Ax = b −

(

vT A−1b

(1 + vTA−1u)

)

u .

Therfore x is the solution to a modified system given by Ax = b + αu with α given by

α = −

(

vT A−1b

1 + vT A−1u

)

.


