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Introduction

This book represents an excellent choice for a student interested in learning about probability
models. Similar to the book [3], but somewhat more elementary, this book is very well written
and explains the most common applications of probability. The problems are quite enjoyable.
This is an excellent choice for someone looking to extend their probability knowledge. These
notes were written to help clarify my understanding of the material. It is hoped that others
find these notes helpful. Please write me if you find any errors.
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Chapter 1: Sample Spaces

Exercise Solutions

Exercise 1 (sample spaces)

Part (a): The sample space for this experiment are pairs of integers (i, j) where the value
of i is the result of the first die and j is the result of the second die. When we toss to die we
get for the sample space

(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (1, 6)

(2, 1) , (2, 2) , (2, 3) , (2, 4) , (2, 5) , (2, 6)

(3, 1) , (3, 2) , (3, 3) , (3, 4) , (3, 5) , (3, 6)

(4, 1) , (4, 2) , (4, 3) , (4, 4) , (4, 5) , (4, 6)

(5, 1) , (5, 2) , (5, 3) , (5, 4) , (5, 5) , (5, 6)

(6, 1) , (6, 2) , (6, 3) , (6, 4) , (6, 5) , (6, 6) .

Thus there are 36 possible outcomes in the sample space.

Part (b): The outcomes in the event E are given by

E = (1, 2) , (1, 4) , (1, 6)

(2, 1) , (2, 2) , (2, 3) , (2, 4) , (2, 5) , (2, 6)

(3, 2) , (3, 4) , (3, 6)

(4, 1) , (4, 2) , (4, 3) , (4, 4) , (4, 5) , (4, 6)

(5, 2) , (5, 4) , (5, 6)

(6, 1) , (6, 2) , (6, 3) , (6, 4) , (6, 5) , (6, 6) .

The outcomes in event F are given by

F = (1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (1, 6)

(2, 1) , (2, 3) , (2, 5)

(3, 1) , (3, 2) , (3, 3) , (3, 4) , (3, 5) , (3, 6)

(4, 1) , (4, 3) , (4, 5)

(5, 1) , (5, 2) , (5, 3) , (5, 4) , (5, 5) , (5, 6)

(6, 1) , (6, 3) , (6, 5) .

The outcomes in the event E ∩ F are

E ∩ F = (1, 2) , (1, 4) , (1, 6)

(2, 1) , (2, 3) , (2, 5)

(3, 2) , (3, 4) , (3, 6)

(4, 1) , (4, 3) , (4, 5)

(5, 2) , (5, 4) , (5, 6)

(6, 1) , (6, 3) , (6, 5) .



These are the outcomes that have at one even and one odd number on at least one roll. The
event E ∪ F are all die rolls that have an even number or an odd number on at least one
roll. This is all die rolls and thus is the entire sample space. The event Ec is given by

Ec = (1, 1) , (1, 3) , (1, 5)

(3, 1) , (3, 3) , (3, 5)

(5, 1) , (5, 3) , (5, 5) ,

and is the event that no even number shows on either die roll. The event Ec ∩F = Ec since
Ec is a subset of the event F . The event Ec ∪ F = F again because Ec is a subset of F .

Exercise 2 (three events)

Part (a): This is the event E ∪ F ∪G.

Part (b): This is the event (E ∪ F ∪G)c = Ec ∩ F c ∩Gc by deMorgon’s law.

Part (c): This is the event (E ∩ F c ∩Gc) ∪ (Ec ∩ F ∩Gc) ∪ (Ec ∩ F c ∩G).

Part (d): This is the event

(E ∩ F c ∩Gc) ∪ (Ec ∩ F ∩Gc) ∪ (Ec ∩ F c ∩G) ∪ (Ec ∩ F c ∩Gc) .

Exercise 3 (proving deMorgon’s law)

We want to prove
(A ∪B)c = Ac ∩ Bc . (1)

We can prove this by showing that an element of the set on the left-hand-side is an element
of the right-hand-side and vice versa. If x is an element of the left-hand-side then it is not
in the set A∪B. Thus it is not in A or in B. Thus it is in Ac ∩Bc. Similar arguments work
to show the opposite direction.

Exercise 4 (indicator functions)

Part (a): The function IEIF is one if and only if when an even from E and F has occurred.
This is the definition of E ∩ F .

Part (b): Two mutually exclusive events E and F means that if the event E occurs the
event F cannot occur and vice versa. The function IE + IF has the value of 1 if event E
or F occurs. This is the definition of the set E ∪ F . Since the events E and F cannot
simultaneously occur both IE and IF cannot be one at the same time. Thus IE + IF is the
indicator function for E ∪ F .



Part (c): The function 1− IE is one when the event E does not occur and is zero when the
event E occurs. This is the definition of IEc.

Part (d): The indicator function of E ∪F is 1 minus the indicator function for (E ∪F )c or

IE∪F = 1− I(E∪F )c .

By deMorgon’s law we have
(E ∪ F )c = Ec ∩ F c ,

thus the indicator function for the event (E ∪ F )c is the product of the indicator functions
for Ec and F c thus we have

IE∪F = 1− IEcIF c = 1− (1− IE)(1− IF ) .

We can multiply the product above to get

IE∪F = IE + IF − IEIF .



Chapter 2: Probability

Notes on the Text

Notes on the proof of the general inclusion-exclusion formula

By considering the union of the n+1 events as the union of n events with a single additional
event En+1 and then using the two set inclusion-exclusion formula we get

P
(

∪n+1
i=1 Ei

)

= P (∪n
i=1Ei) + P (En+1)− P (∪n

i=1(Ei ∩ En+1)) . (2)

The induction hypothesis applied to the two terms that have the union of n events. We find
that the first term in the right-hand-side in Equation 2 is given by

P (∪n
i=1Ei) =

n
∑

i=1

P (Ei) (3)

−
n
∑

i1<i2

P (Ei1 ∩ Ei2) (4)

+
n
∑

i1<i2<i3

P (Ei1 ∩ Ei2 ∩ Ei3) (5)

−
n
∑

i1<i2<i3<i4

P (Ei1 ∩ Ei2 ∩ Ei3 ∩ Ei4) + (6)

...

+ (−1)n−1P (E1 ∩ E2 ∩ · · · ∩ En) . (7)

The third term in Equation 2 is given by

P (∪n
i=1(Ei ∩ En+1)) =

n
∑

i1

P (Ei1 ∩ En+1) (8)

−
n
∑

i1<i2

P (Ei1 ∩ Ei2 ∩ En+1) (9)

+

n
∑

i1<i2<i3

P (Ei1 ∩ Ei2 ∩ Ei3 ∩ En+1) (10)

...

+ (−1)n−2
n
∑

i1<i2<···<in−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Ein−1 ∩ En+1) (11)

+ (−1)n−1P (E1 ∩ E2 ∩ · · · ∩ En ∩ En+1) . (12)

We then add together the right-hand-side of these two expressions (as specified via Equa-
tion 2) in a specific way that will proves the general induction step. We first add part 3 with



P (En+1) to get
∑n+1

i=1 P (Ei), then add parts 4 and the negative of 8 to get

−
n+1
∑

i1<i2

P (Ei1 ∩ Ei2) .

Now add parts 5 and the negative of 9 to get

n+1
∑

i1<i2<i3

P (Ei1 ∩ Ei2 ∩ Ei3) .

We keep going in this way until we get to the end, where we add parts 7 and the negative
of 11 to get all intersections with n events. That is

(−1)n−1P (E1 ∩ E2 ∩ · · · ∩ En) + (−1)n−1
n
∑

i1<i2<···<in−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Ein−1 ∩ En+1)

= (−1)n−1
n+1
∑

i1<i2<···<in

P (Ei1 ∩ Ei2 ∩ · · · ∩ Ein−1 ∩ Ein) .

We then take the negative last part as

(−1)n+1P (E1 ∩ E2 ∩ · · · ∩ En ∩ En+1) .

When we add all of these pieces together we get

P
(

∪n+1
i=1 Ei

)

=

n+1
∑

i=1

P (Ei)

−
n+1
∑

i1<i2

P (Ei1 ∩ Ei2)

+
n+1
∑

i1<i2<i3

P (Ei1 ∩ Ei2 ∩ Ei3)

...

− (−1)n
n+1
∑

i1<i2<···<in−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Ein−1 ∩ Ein)

+ (−1)n+1P (E1 ∩ E2 ∩ · · · ∩ En ∩ En+1) .

which shows the induction step.



Exercise Solutions

Exercise 1 (some hands of cards)

Part (a):

P (Two Aces) =

(

4
2

)(

52− 4
3

)

(

52
5

) = 0.03993 .

Part (b):

P (Two Aces and Three Kings) =

(

4
2

)(

4
3

)

(

52
5

) = 9.235 · 10−6 .

Exercise 2

Part (a):

P (E) =

(

4
2

)(

13
2

)(

13
2

)

(

52
4

) = 0.13484 .

Here

(

4
2

)

are the ways we can choose two suits to use for the suits and

(

13
2

)

selects

the cards to use in each of these suits.

Part (b):

P (E) =

(

13
2

)(

52− 13
2

)

(

52
4

) = 0.21349 .

Exercise 3

Part (a): Since each ball is replaced on each draw we can get any of the numbers between
1 and n on each draw. Thus the sample space is ordered n-tuples where each number is in
the range between 1 and n. This set has nn elements in it.



Part (b): To have each ball drawn once we can do this in n! ways, thus our probability is

n!

nn
.

Part (c): Since n! ∼
(

n
e

)n √
2πn we can simplify the above probability as

n!

nn
∼

√
2πn

en
.

Exercise 5

Part (a):

P (E) =

(

5
2

)(

15
2

)

(

20
4

) = 0.2167 .

Part (b): The probability to get a single red ball in this case is p = 5
20

= 1
4
. To get two red

balls (only) from the four draws will happen with probability

(

4
2

)(

1

4

)2(
3

4

)2

= 0.2109 .

Exercise 6

Let Er, Eb, and Ew be the event that the three drawn balls are red, blue, and white respec-
tively. Then the even we want to compute the probability of E = Er ∪ Eb ∪Ew. Since each
of these events is mutually exclusive we can compute P (E) from

P (E) = P (Er) + P (Eb) + P (Ew)

=

(

4
3

)

(

15
3

) +

(

5
3

)

(

15
3

) +

(

6
3

)

(

15
3

) = 0.0747 .

Exercise 7

Part (a): Let G1 be the event that the first drawn ball is green and G2 be the event that
the second drawn ball is green. Then the event we want to calculate the probability of is



G1G2. To compute this we have

P (G1G2) = P (G2|G1)P (G1) =

(

1

5

)(

2

6

)

=
1

15
= 0.0666 .

Part (b): To have no green balls at the end of our experiment means we must have picked
a green ball twice in our three draws. This is the event E given by

E = G1G2G
c
3 ∪Gc

1G2G3 ∪G1G
c
2G3 .

Here G3 is the event we draw a green ball on our third draw and G1 and G2 were defined
earlier. Each of these events in the union is mutually exclusive and we can evaluate them by
conditioning on the sequence of events. Thus we have

P (E) = P (G1G2G
c
3) + P (Gc

1G2G3) + P (G1G
c
2G3)

= P (Gc
3|G2G1)P (G2|G1)P (G1) + P (G3|Gc

1G2)P (G2|Gc
1)P (Gc

1) + P (G3|G1G
c
2)P (Gc

2|G1)P (G1)

= 1

(

1

5

)(

2

6

)

+
1

5

(

2

6

)(

4

6

)

+
1

5

(

4

5

)(

2

6

)

= 0.16444 .

Exercise 8 (picking colored balls)

Part (a): We have

P (ER) =

(

2
2

)(

8− 2
2

)

(

8
4

) = 0.21429

P (ER ∩ EY ) =

(

2
2

)(

2
2

)

(

8
4

) = 0.014286 .

Part (b): The probability of the event E of interest is 1− P (A) where A is the event that
there is a ball of every different color. Thus we compute

P (E) = 1−

(

2
1

)(

2
1

)(

2
1

)(

2
1

)

(

8
4

) = 0.77143 .

Exercise 9 (the probability of unions of sets)

Part (a): If A, B, and C are mutually exclusive then

P (A ∪B ∪ C) = P (A) + P (B) + P (C) = 0.1 + 0.2 + 0.3 = 0.6 .



Part (b): If A, B, and C are independent then the probability of intersecting events is
easy to compute. For example, P (A∩B) = P (A)P (B) and we compute using the inclusion-
exclusion identity that

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩ B ∩ C)

= P (A) + P (B) + P (C)− P (A)P (B)− P (A)P (C)− P (B)P (C) + P (A)P (B)P (C)

= 0.6− 0.02− 0.03− 0.06 + 0.006 = 0.496 .

Part (c): In this case we are given the values of the needed intersections so again using the
inclusion-exclusion identity we have

P (A ∪B ∪ C) = 0.6− 0.04− 0.05− 0.08 + 0.01 = 0.44 .

Exercise 10 (right-handed and blue eyed people)

We are told that P (A) = 0.9, P (B) = 0.6, P (C) = 0.4 and P (B|C) = 0.7.

Part (a): The event we want is B ∩C. We can compute this from what we know. We have

P (B ∩ C) = P (B|C)P (C) = 0.7(0.4) = 0.28 .

Part (b): The event we want is A ∩ B ∩ C. We have (using independence)

P (A ∩ B ∩ C) = P (B ∩ C)P (A) = 0.28(0.9) = 0.252 .

Part (c): The event we want is A ∪B ∪ C. We have

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩ B ∩ C)

= P (A) + P (B) + P (C)− P (A)P (B)− P (A)P (C)− P (B ∩ C) + P (A ∩ B ∩ C)

= 0.9 + 0.6 + 0.4− 0.9(0.6)− 0.9(0.4)− 0.28 + 0.252 = 0.972 .

Exercise 11

Part (a): We will use Bayes’ rule

P (F |E) =
P (E|F )P (F )

P (E)
.

Now P (E|F ) = 5
8
and P (F ) = 4

9
. We can evaluate P (E) as

P (E) = P (E|F )P (F ) + P (E|F c)P (F c) =
5

8

(

4

9

)

+
4

8

(

5

9

)

=
5

9
.

Using this we find P (F |E) =
5
8(

4
9)

5
9

= 1
2
.

Part (b): Since P (F |E) = 1
2
6= P (F ) = 4

9
these two events are not independent.



Exercise 12 (the chain rule of probability)

Since P (E ∩ F ) = P (E|F )P (F ) via the definition of conditional probability. We can apply
this relationship twice to E ∩ F ∩G to get

P (E ∩ F ∩G) = P (E|F ∩G)P (F ∩G) = P (E|F ∩G)P (F |G)P (G) .

Exercise 13 (the mixed up mail problem)

From the book the probability of a complete mismatch is

1− P (Ac) = 1− 1 +
1

2!
− 1

3!
+ · · ·+ (−1)N

N !
.

When N = 2 we get

1− P (Ac) =
1

2
.

When N = 4 we get

1− P (Ac) = 1− 1 +
1

2!
− 1

3!
+

1

4!
=

3

8
= 0.375 .

When N = 6 we get

1− P (Ac) = 1− 1 +
1

2!
− 1

3!
+

1

4!
− 1

5!
+

1

6!
= 0.3680556 .

As N increases 1− P (Ac) limits to 1− e−1. Since the sum is an alternating series the error
in stopping the summation at the term N is smaller than the last neglected term. That is

|P (Ac)− e−1| ≤ 1

(N + 1)!
.

We then need to pick a value of N to have this smaller than 10−3. Putting various values of
N into the above formula we find for N = 6 gives

|P (Ac)− e−1| ≤ 1

7!
= 2 · 10−4 ,

and thus the summation accurate to three decimals.

Exercise 14 (3 die in a box)

Let A be the event that the fair die is thrown, B the even the die that always returns a 6 is
thrown, and C the event that the die that only returns 1 or 6 is thrown. Let E be the event



that a 6 shows when the chosen die is thrown. We want to calculate P (A|E). From Bayes’
rule we have

P (A|E) =
P (E|A)P (A)

P (E|A)P (A) + P (E|B)P (B) + P (E|C)P (C)

=

(

1
6

) (

1
3

)

(

1
6

) (

1
3

)

+ (1)
(

1
3

)

+
(

1
2

) (

1
3

) =
1

10
,

when we evaluate.

Exercise 15 (coins in a box)

Let E be the event the box picked has at least one dime, then the box picked needs to be
the box B or C. Let A, B, C be the events that we initially draw from the boxes A, B, and
C respectively. Let Q be the event that the coin drawn in a quarter. With these definitions
we want to compute P (B∪C|Q). Since B and C are mutually independent we can compute
them with by adding. Thus

P (B ∪ C|Q) = P (B|Q) + P (C|Q) .

Each of the events on the right-hand-side can be computed using Bayes’ rule as

P (B ∪ C|Q) =
P (Q|B)P (B)

P (Q)
+

P (Q|C)P (C)

P (Q)
.

We first compute P (Q) using

P (Q) = P (Q|A)P (A) + P (Q|B)P (B) + P (Q|C)P (C)

= 1

(

1

3

)

+
1

3

(

1

3

)

+
1

2

(

1

3

)

=
11

18
.

Thus we find

P (B ∪ C|Q) =
1
3

(

1
3

)

11
18

+
1
2

(

1
3

)

11
18

=
5

11
= 0.4545 .

Exercise 16 (two cards from a deck)

Part (a): Let A be the event at least one card in the hand is an ace. Let B be the event
that both cards in the hand are aces. Then since B ⊂ A we have

P (B|A) = P (B ∩ A)

P (A)
=

P (B)

P (A)
=





4
2









52
2









4
2









52
2





+





4
1









52− 4
1









52
2





=
6

198
= 0.0303 .



Part (a): Let A be the event one card is the ace of spades and the other card is unknown
(arbitrary). Let B be the event that one card is the ace of spades and the other card is an
ace also. Again since B ⊂ A we have

P (B|A) = P (B ∩A)

P (A)
=

P (B)

P (A)
=





3
1









52
2









51
1









52
2





=
3

51
= 0.050882 .

Exercise 17 (a stopping bus)

Part (a): Each passenger has a 1/3 chance of of getting off at each stop (assuming that the
passenger must get off at one of the stops). The probability that k people get off at the first
stop is then

(

n
k

)(

1

3

)k (
2

3

)n−k

.

Part (b): Let E be the event that the day is Sunday. Let O be the event that no one gets
off at the first stop. We want to compute P (E|O). By Bayes’ rule we have

P (E|O) =
P (O|E)P (E)

P (O)
=

P (O|E)P (E)

P (O|E)P (E) + P (O|Ec)P (Ec)

=

(

2
0

)

(

1
3

)0 (2
3

)2−0 (1
7

)

(

2
0

)

(

1
3

)0 (2
3

)2−0 (1
7

)

+

(

4
0

)

(

1
3

)0 (2
3

)4−0 (6
7

)

= 0.027273 .

Exercise 18 (fatal diseases)

Let D be the even we have the disease, and T be the even that our test comes back positive.
Then from the problem we have that P (D) = 10−5, P (T |D) = 0.9, and P (T c|Dc) = 0.99.

Part (a): We want to compute P (T ). We have

P (T ) = P (T |D)P (D) + P (T |Dc)P (Dc) = 0.9(10−5) + (1− 0.99)(1− 10−5) = 0.01 .

Part (b): We want to compute P (D|T ). We have

P (D|T ) = P (T |D)P (D)

P (T )
=

0.9(10−5)

0.01
= 9 · 10−4 .



Exercise 19 (more fatal diseases)

In this case we are to assume that P (T c|Dc) = 1− δ then as in Exercise 18 we get

P (D|T ) = 0.9(10−5)

0.9(10−5) + δ(1− 10−5)
.

We want to have P (D|T ) ≥ 1
2
. This means that we have to have

9 · 10−6 ≥ 9

2
· 10−6 +

δ

2
(1− 10−5) ,

or solving for δ we get

δ ≤ 9 · 10−6

1− 10−5
= 9 · 10−6 .

Note that this is different than the answer in the back of the book. If anyone sees anything
wrong with what I have done (or agrees with me) please contact me.

Exercise 20 (answering correctly by guessing)

Here f(p) is the probability a student marked a correct answer by guessing. From the stated
example, this is the expression for P (H2|E) or

f(p) ≡ P (H2|E) =
1− p

mp + 1− p
. (13)

From this we calculate

f ′(p) = − 1

mp + 1− p
− (1− p)(m− 1)

(mp+ 1− p)2
=

2p−m

(mp + 1− p)2
,

when we simplify. Now since p ≤ 1 we have 2p ≤ 2 and so 2p − m ≤ 2 − m. This last
expression (or 2−m) is less than 0 since m ≥ 2 (we must have at least 2 answers to a given
question). Thus f ′(p) < 0 and f(p) is a strictly monotone decreasing function as we were to
show.

Exercise 21 (independent events?)

We have

P (E) =

(

4
2

)

(

5
3

) =
3

5
,



since

(

4
2

)

is the number of ways to draw a set of three numbers (from the digits 1− 5) of

which the digit 1 is one of the numbers. By similar logic we have P (F ) = P (E). The event
E ∩ F is given by

P (E ∩ F ) =

(

3
1

)

(

5
3

) =
3

10
.

To be independent we must have P (E)P (F ) = P (E ∩F ). The left-hand-side of this expres-

sion is
(

3
5

)2
which is not equal to P (E ∩ F ). Thus the two events are not independent.

Exercise 22 (independent events?)

There are 9 primes between 1 and 30 which are 2, 3, 5, 7, 11, 13, 17, 19, 23. Thus

P (X is prime) =
9

30
=

3

10
.

At the same time we compute

P (16 ≤ X ≤ 30) =
15

30
=

1

2
,

and

P ((X is prime) ∩ (16 ≤ X ≤ 30)) =
3

30
=

1

10
,

since there are only three primes in the range 16 – 30. The product of the probability of
the two events X is prime and 16 ≤ X ≤ 30 is 3

10
· 1
2
= 3

20
. Since this is not equal to the

probability of the intersection of these two events we conclude that the two events are not
independent.

Exercise 23 (Al and Bob flip)

Part (a): On each round three things can happen: Al can win the game A, Bob can win
the game B, or the game can continue C. Lets compute the probability of each of these
events. We find

P (A) ≡ P (Al wins)

= P (Al gets 2 heads and Bob gets 1 or 0 heads) + P (Al gets 1 head and Bob gets 0 heads)

= P (A2 ∩B1) + P (A2 ∩ B0) + P (A1 ∩ B0)

= P (A2)P (B1) + P (A2)P (B0) + P (A1)P (B0)

=
1

4

[

(

3
1

)(

1

2

)3
]

+
1

4

[

(

3
0

)(

1

2

)3
]

+
1

2

[

(

3
0

)(

1

2

)3
]

=
3

16
= 0.1875 .



Part (b): Here we find

P (C) = P (A0 ∩ B0) + P (A1 ∩ B1) + P (A2 ∩B2)

= P (A0)P (B0) + P (A1)P (B1) + P (A2)P (B2)

=

(

1

2

)2(
1

2

)3

+

(

2
1

)(

1

2

)2(
3
1

)(

1

2

)3

+

(

1

2

)2(
3
2

)(

1

2

)3

=
5

16
= 0.3125 .

From these two event we can compute P (B). We find

P (B) = 1− P (A)− P (C) = 1− 3

16
− 5

16
=

1

2
.

Part (c): This must be a sequence of CCA and thus has a probability of

5

16
· 5

16
· 3

16
= 0.0183 .

Part (d): This must be one of the sequences A, CA, CCA, CCCA, CCCCA etc. Thus
the probability this happens is given by

P (event) =
3

16
+

3

16
· 5

16
+

3

16
·
(

5

16

)2

+
3

16
·
(

5

16

)3

+ · · ·

=
3

16

∞
∑

k=0

(

5

16

)k

=
3

16

(

1
11
16

)

=
3

11
= 0.2727 .

Another way to solve this problem is to recognize that Al wins if the event A happens before
the event B. From the book this happens with the probability

P (even) =
P (A)

P (A) + P (B)
=

3
16

3
16

+ 1
2

=
3

11
,

the same answer.

Exercise 24 (rolling a 6 last)

Part (a): P (E) = 2
6
= 1

3
and P (F ) = 1

6
. From the book the probability that the event E

happens before the event F is

P (E)

P (E) + P (F )
=

1
3
3
6

=
2

3
.

Part (b): Let E(1) the the event that E happens on the first roll, F (1) the even that F
happens on the first roll, and G(1) that neither E or F happens on the first roll. Let W be



the event in question. Then conditioning on the first event we have

P (W ) = P (W |E(1))P (E(1)) + P (W |F (1))P (F (1)) + P (W |G(1))P (G(1))

= 1

(

1

3

)

+ P (W |F (1))

(

1

6

)

+ P (W )

(

1− 1

3
− 1

6

)

.

We need to evaluate P (W |F (1)). In one method we can evaluate this by conditioning on the
outcome of the second event. Thus we have

P (W |F (1)) = P (W |F (1), E(2))P (E(2)) + P (W |F (1), F (2))P (F (2)) + P (W |F (1), G(2))P (G(2))

=
1

3
+ 0 + P (W |F (1), G(2))

(

1− 1

3
− 1

6

)

.

Since P (W |F (1), G(2)) = P (W |F (1)) we can solve for P (W |F (1)) to find

P (W |F (1)) =
2

3
.

As another way to evaluate this probability is to note that it is the probability that we get
one event E before one event F which was computed in the first part of this problem and
we have P (W |F (1)) = 2

3
. Using this result we have that

P (W ) =
1

3
+

1

6
· 2
3
+ P (W )

(

1

2

)

,

which solving for P (W ) gives P (W ) = 8
9
= 0.88888.

Exercise 25 (team A and B)

From the problem statement we have p = P (A) = 0.6 and q = P (B) = 0.4.

Part (a): This is like the problem of the points where we want the probability we will win
k = 3 times before our opponent wins n = 3 times. Thus in this case n = k where k = 3.
Then from the book with N = k + n− 1 = 2k − 1 we have

P (Ek,k) =

2k−1
∑

i=k

(

2k − 1
i

)

piq2k−1−i . (14)

With k = 3 and the numbers for this problem we have

P (E3,3) =
5
∑

i=3

(

5
i

)

0.6i0.42k−1−i = 0.68255 .

Part (b): If each team has won one game for A to win we need A to win 2 games before
B wins two games. Again we have the problem of the points where n = k = 2. Using
Equation 14 we get

P (E2,2) =

3
∑

i=2

(

3
i

)

0.6i0.43−i = 0.64799 .



Part (c): If each team has won two games for A to win we need A to win 1 more game
before B wins 1 more game. This happens with probability P (A) = 0.6. Another way to
get this same answer is to again say that this is the problem of the points where n = k = 1.
Using Equation 14 we get

P (E1,1) =

1
∑

i=1

(

1
i

)

0.6i0.41−i = 0.6 ,

the same answer.

Exercise 26 (the problem of the points)

Part (a): Wemust win k times before our opponent wins n times. Let ek,n be this probability
and condition on whether we win or loose the first game. In words this recursion is easier to
understand. We have

P (We win k before our opponent wins n) = pP (We win k − 1 before our opponent wins n)

+ qP (We win k before our opponent wins n− 1) .

In symbols this is
ek,n = pek−1,n + qek,n−1 . (15)

Part (b): We want to solve the above recursion relationship with the given boundary
conditions e0,n = 1 and ek,0 = 0. Let k = 1 in Equation 19 to get

e1,n = pe0,n + qe1,n−1 = p + qe1,n−1 . (16)

To solve for e1,n in the above note that e1,1 = p, and we will let n = 2 and n = 3 and then
derive a general expression from the pattern we see. For n = 2 we have

e1,2 = p+ qe1,1 = p(1 + q) .

Let n = 3 in Equation 16 to get

e1,3 = p+ qe1,2 = p+ qp(1 + q) = p(1 + q + q2) .

In general, the solution to e1,n looks like

e1,n = p(1 + q + q2 + · · · qn−1) = p
1− qn

1− q
for n ≥ 1 . (17)

If we let k = 2 in Equation 19 we get a linear difference equation for e2,n. We could solve
this difference equations using techniques like in [1] but since we are only asked to compute
e2,3 we will just do it by iteration. Using Equation 19 repeatedly we have

e2,3 = pe1,3 + qe2,2

= p(pe0,3 + qe1,2) + q(pe1,2 + qe2,1)

= p(p+ q(pe0,2 + qe1,1)) + q(p(pe0,2 + qe1,1) + q(pe1,1 + qe2,0))

= p2 + p2q + pq2e1,1 + p2q + pq2e1,1 + pq2e1,1

= p2 + 2p2q + 3pq2(pe0,1 + qe1,0)

= p2 + 2p2q + 3p2q2 .



If we let q = 1− p two write the above only in terms of p to get

p2 + 2p2q + 3p2q2 = p2 + 2p2(1− p) + 3p2(1− 2p+ p2) = 6p2 − 8p3 + 3p4 .

Recall that eq 2.32 from the book is

P (Ek,n) =

N
∑

i=k

(

N
i

)

piqN−i , (18)

with N = k+n−1. Lets check our result for e2,3 against this expression. Since e2,3 ≡ P (E2,3)
we have k = 2, n = 3 and N = 2 + 3− 1 = 4 so P (E2,3) via Equation 18 is given by

P (E2,3) =
4
∑

i=2

(

4
i

)

piq4−i

=

(

4
2

)

p2q2 +

(

4
3

)

p3q1 +

(

4
4

)

p4

= 6p2q2 + 4p3q + p4 .

If we let q = 1− p in the above we get

P (E2,3) = 6p2(1− 2p+ p2) + 4p3(1− p) + p4 = 6p2 − 8p3 + 3p4 ,

the same as before.

Exercise 27 (gamblers ruin)

Part (a): Let fa,k be this probability that Ann goes broke when she starts with $a dollars
( Bob starts with $N − a dollars) playing at most k games and condition on whether Ann
wins or looses the first game. In words this recursion is easier to understand. We have

P (Ann goes broke with $a in k games) = pP (Ann goes broke with $(a+ 1) in k − 1 games)

+ qP (Ann goes broke with $(a− 1) in k − 1 games) .

In symbols this is
fa,k = pfa+1,k−1 + qfa−1,k−1 . (19)

Part (b): We have

f2,3 = pf3,2 + qf1,2 = p(0) + q(pf2,1 + qf0,1) = qp(0) + q2 = q2 .

Part (c): Since f2,3 is the probability that Ann will go broke with $2 and Bob has $3. In
this case Ann will go broke if she looses twice, which happens with the probability q2 the
same as above.
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Figure 1: The waiting game (for three total flips).

Exercises 28-32 (simulations)

Please see the R files chap 2 ex 28.R—chap 2 ex 32.R, where we perform these simulations.

For exercise 29 in Figure 1 we plot the relative frequency of each experimental outcomes for
the waiting game as stated.

When we run chap 2 ex 30.R we get

[1] "nSims= 10 fraction with three or more of the same BDs= 0.000000"

[1] "nSims= 50 fraction with three or more of the same BDs= 0.040000"

[1] "nSims= 100 fraction with three or more of the same BDs= 0.010000"

[1] "nSims= 500 fraction with three or more of the same BDs= 0.022000"

[1] "nSims= 1000 fraction with three or more of the same BDs= 0.009000"

[1] "nSims= 5000 fraction with three or more of the same BDs= 0.014200"

[1] "nSims= 10000 fraction with three or more of the same BDs= 0.015700"

For exercise 31 in Figure 2 we plot the relative frequency of each experimental outcomes for
the waiting game as stated.
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Figure 2: The frequency of the various outcomes in the mixed-up mail problem for 10, 100,
1000 random simulations.

For exercise 32 we are trying to determine the area of the ellipse given by

x2 + κ2y2 = 1 or x2 +
y2
(

1
κ2

) = 1 .

From this second form of the equation we can see that the “domain” of the area of this
ellipse is −1 ≤ x ≤ +1 (when y ≈ 0) and − 1

κ
≤ y ≤ + 1

κ
(when x ≈ 0), thus has κ gets

smaller (closer to 0) the ranges of valid y expand greatly. Thus our ellipse gets “long an
skinny”. In that case, one would expect that a great number of random draws would need to
be performed to estimate the true area π

κ
accurately. To do this we simulate uniform random

variables x and y according to the above distributions and then compute whether or not

x2 + κ2y2 ≤ 1 .

If this inequality is true then we have a point in the object and we increment a variable Nobj.
We do this procedure Nbox times. We expect that if we do this procedure enough times that
the fraction of times the point falls in the object is related to its area via

Nobj

Nbox
∼ Aobj

Abox
.

Solving for Aobj and using what we know for Abox we would get

Aobj =

(

Nobj

Nbox

)

Abox =

(

Nobj

Nbox

)(

4

κ

)

.

Using this information we can implement the R code chap 2 ex 31.R. When we run that
code we get



1000 5000 10000 50000 1e+06

1 0.019605551 0.004326676 0.006495860 0.0041738873 0.0001377179

0.9 0.001780197 0.004326676 0.003440085 0.0029770421 0.0003503489

0.75 0.032597271 0.011970790 0.004963296 0.0011991836 0.0006185864

0.5 0.017059071 0.002034845 0.009164986 0.0002569863 0.0002497630

0.25 0.011966113 0.001525549 0.003440085 0.0025696054 0.0005523779

0.1 0.024957834 0.018336988 0.001525549 0.0007106757 0.0002340680

This is a matrix showing the relative error in the Monte-Carlo approximation to the area
(for different values of κ in each row) and then the number of random draws used to estimate
the approximation (with more samples as we move to the right). In general, for smaller κ
the area is harder to compute using this method.
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Figure 3: A schematic of the integration region used to prove E[X ] =
∫∞
0

P{X > a}da.

Chapter 3: Distributions and Expectations of RVs

Notes on the Text

Notes on proving E[X ] =
∫∞
0

P{X > a}da

Note that we can write the integral
∫∞
0

P{X > a}da in terms of the density function for X
as

∫ ∞

0

P{X > a}da =

∫ ∞

a=0

(
∫ ∞

x=a

f(x)dx

)

da .

Next we want to change the order of integration in the integral on the right-hand-side of
this expression. In Figure 3 we represent the current order of integration as the horizontal
gray30 stripe. What is meant by this statement is that the double integral on the right-
hand-side above can be viewed as specifying a value for a on the A-axis and then integrating
horizontally along the X-axis over the domain [a,+∞). To change the order of integration
we need to instead consider the differential of area given by the vertical gray60 stripe in
Figure 3. In this ordering, we first specify a value for x on the X-axis and then integrating
vertically along the A-axis over the domain [0, a]. Symbolically this procedure is given by

∫ ∞

x=0

∫ x

a=0

f(x)dadx .



This can be written as
∫ ∞

x=0

(
∫ x

a=0

da

)

f(x)dx =

∫ ∞

x=0

xf(x)dx = E[X ] ,

as we were to show.

Notes on Example 3.17 a Cauchy random variable

When θ is a uniform random variable over the domain [−π
2
,+π

2
] and X is defined as X =

tan(θ) then we can derive the distribution function for X following the book

P{X ≤ b} = P{tan(θ) ≤ b} = P{−π

2
< θ ≤ arctan(b)} .

Then since θ is a uniform random variable the above probability is equal to the length of the
interval in θ divided by the length of the total possible range of θ. This is as in the books
Example 3.7 where P{X ∈ I} = Length(I)

β−α
. Thus

P{−π

2
< θ ≤ arctan(b)} =

arctan(b)− (−π
2
)

π
=

arctan(b) + π
2

π
.

I believe that the book has a sign error in that it states −π
2
rather than +π

2
. The density

function is then the derivative of the distribution function or

fX(b) =
d

db
FX(b) =

1

π(1 + b2)
,

which is the Cauchy distribution.

Notes on Example 3.21 the modified geometric RV

We evaluate

P{X ≥ n} = p
∞
∑

k=n

qk

= p

( ∞
∑

k=0

qk −
n−1
∑

k=0

qk

)

= p

(

1

1− q
− 1− qn

1− q

)

= p

(

qn

1− q

)

,

the expression given in the book.



Exercise Solutions

Exercise 1 (a random variable)

We find
µX = 0.3(0) + 0.2(1) + 0.4(3) + 0.1(6) = 2 .

and
E[X2] = 0.3(02) + 0.2(12) + 0.4(32) + 0.1(62) = 7.4 .

Then
σ2
X = E[X2]− µ2

X = 7.4− 22 = 3.4 ,

so σX =
√
3.4 = 1.84. The distribution function for this random variable is given by

FX(x) =























0 x ≤ 0
0.3 0 < x ≤ 1
0.5 1 < x ≤ 3
0.9 3 < x ≤ 6
1.0 6 < x

Exercise 2 (flipping fair coins)

Part (a):
(

5
2

)(

1

2

)2(
1

2

)3

=
5

24
= 0.3125 .

Part (b):
(

4
1

)(

1

2

)1(
1

2

)3
1

2
=

4

25
= 0.125 .

Exercise 3 (10 balls in an urn)

The range of the variable X is 1 ≤ X ≤ 8. We now compute the probability density of this
random variable. To begin we have

PX{X = 8} =

(

1
1

)(

2
2

)

(

10
3

) = 0.0083 .



since we have to exactly pick the set 8, 9, 10 in order to get the smallest number to be 8.
Next we have

PX{X = 7} =

(

1
1

)(

3
2

)

(

10
3

) = 0.025 ,

since in this case we have to pick the number 7 in the set which we can do in

(

1
1

)

ways.

After we pick this 7 we then need to pick two other numbers from the set 8, 9, 10 which we

can do in

(

3
2

)

ways. Next we have

PX{X = 6} =

(

1
1

)(

4
2

)

(

10
3

) = 0.05 ,

since in this case we have to pick the number 6 in the set which we can do in

(

1
1

)

ways.

After we pick this 6 we then need to pick two other numbers from the set 7, 8, 9, 10 which

we can do in

(

4
2

)

ways. The remaining probabilities are computed using the same logic.

We find

PX{X = 5} =

(

1
1

)(

5
2

)

(

10
3

) = 0.0833

PX{X = 4} =

(

1
1

)(

6
2

)

(

10
3

) = 0.125

PX{X = 3} =

(

1
1

)(

7
2

)

(

10
3

) = 0.175

PX{X = 2} =

(

1
1

)(

8
2

)

(

10
3

) = 0.233

PX{X = 1} =

(

1
1

)(

9
2

)

(

10
3

) = 0.3 .

These calculations are done in the R file prob 3.R.



Exercise 4 (ending with white balls)

Let X be the random variable that indicates the number of white balls in urn I after the two
draws and exchanges take place. The range of the random variable X is 0 ≤ X ≤ 2. We can
compute the probability of each value of X by conditioning on what color balls we draw at
each stage. Let D1 and D2 be the two draws which can be of the colors W for white and R
for red. Then we have

P{X = 0} = P{X = 0|D1 = W,D2 = W}P (D1 = W,D2 = W )

+ P{X = 0|D1 = W,D2 = R}P (D1 = W,D2 = R)

+ P{X = 0|D1 = R,D2 = W}P (D1 = R,D2 = W )

+ P{X = 0|D1 = R,D2 = R}P (D1 = R,D2 = R)

= 0 + 1

(

1

3

)(

1

4

)

+ 0 + 0 =
1

12
.

Next we compute P{X = 1}, where we find

P{X = 1} = P{X = 1|D1 = W,D2 = W}P (D1 = W,D2 = W )

+ P{X = 1|D1 = W,D2 = R}P (D1 = W,D2 = R)

+ P{X = 1|D1 = R,D2 = W}P (D1 = R,D2 = W )

+ P{X = 1|D1 = R,D2 = R}P (D1 = R,D2 = R)

= 1

(

1

3

)(

3

4

)

+ 0 + 0 + 1

(

2

3

)(

2

4

)

=
7

12
.

Next we compute P{X = 2}, where we find

P{X = 2} = P{X = 2|D1 = W,D2 = W}P (D1 = W,D2 = W )

+ P{X = 2|D1 = W,D2 = R}P (D1 = W,D2 = R)

+ P{X = 2|D1 = R,D2 = W}P (D1 = R,D2 = W )

+ P{X = 2|D1 = R,D2 = R}P (D1 = R,D2 = R)

= 0 + 0 + 1

(

2

3

)(

2

4

)

=
1

3
.

Note that these three numbers add to 1 as they must.

Exercise 5 (playing a game with dice)

Part (a): Let X the the random variable representing the total amount won. If we first roll
a 1, 2, 3, 4, 5 we get 0. If we first roll a 6 and then roll one of 1, 2, 3, 4, 5 on our second roll we
get 10. If we roll two 6s then we get 10 + 30 = 40. Thus the probabilities for each of these



events is given by

P{X = 0} =
5

6

P{X = 10} =
1

6

(

5

6

)

=
5

36

P{X = 40} =

(

1

6

)2

=
1

36
.

Part (b): The fair value for this game is its expectation. We find

E[X ] = 0

(

5

6

)

+ 10

(

5

36

)

+ 40

(

1

36

)

= 2.5 .

Exercise 8 (flipping heads)

Part (a):

(

6
3

)

p3q3.

Part (b): p3q3.

Part (c): In this case we need two heads in the first four flips and we don’t care what the

outcome of the last flip is. Thus we have

((

4
2

)

p2q2
)

p.

Exercise 9 (a continuous random variable)

Part (a): We must have
∫ 1

0
f(x)dx = 1 or

c

∫ 1

0

x(1− x)dx = c

∫ 1

0

(x− x2)dx

= c

(

x2

2
− x3

3

∣

∣

∣

∣

1

0

=
c

6
.

Thus c = 6.

Part (a): We compute

µX =

∫ 1

0

x(6x(1 − x))dx = 6

∫ 1

0

(x2 − x3)dx

= 6

(

x3

3
− x4

4

∣

∣

∣

∣

1

0

=
1

2
,



when we simplify. We compute

E[X2] =

∫ 1

0

x2(6x(1− x))dx = 6

∫ 1

0

(x3 − x4)dx

= 6

(

x4

4
− x5

5

∣

∣

∣

∣

1

0

=
3

10
,

when we simplify. With these two values we can thus compute

σ2
X = E[X2]− µ2

X =
3

10
=

1

4
=

1

20
,

so σX =
√
0.05.

Exercise 10 (the law of the unconscious statistician)

E[Xn] =

∫ 1

0

xn(1)dx =
xn+1

n+ 1

∣

∣

∣

∣

1

0

=
1

n+ 1
.

Var(Xn) = E[X2n]−E[Xn]2

=

∫ 1

0

x2n(1)dx− 1

(n+ 1)2
=

x2n+1

2n+ 1

∣

∣

∣

∣

1

0

− 1

(n+ 1)2

=
x2n+1

2n+ 1
− 1

(n+ 1)2
=

n2

(2n+ 1)(n+ 1)2
,

when we simplify.

Exercise 11 (battery life)

The density and distribution function for an exponential random variable is given by fX(x) =
λe−λx and FX(x) = 1− e−λx.

Part (a): To have us fail in the first year is the event {X ≤ 1} which has probability

FX(1) = 1− e−1/3 = 0.28346 .

Part (b): This is

P{1 < X < 2} = FX(2)− FX(1) = 1− e−2/3 − (1− e−1/3) = 0.2031 .

Part (c): Because of the memoryless property of the exponential distribution the fact that
the batter is still working after one year does not matter in the calculation of the requested
probability. Thus this probability is the same as that in Part (a) of this problem or 0.28346.



Exercise 12 (scaling random variables)

We have

P{Y ≤ a} = P{X ≤ a

c
} =

∫ a/c

−∞
fX(x)dx .

Let y = cx so that dy = cdx and we get
∫ a

−∞
fX

(y

c

) dy

c
=

1

c

∫ a

−∞
fX

(y

c

)

dy .

Thus

fY (a) =
d

da
P{Y ≤ a} =

1

c
fX

(y

c

)

,

as we were to show.

Exercise 13 (scaling a gamma RV)

A gamma RV with parameters (λ, n) has a density function given by

fX(x) =
1

Γ(n)
(λx)n−1λe−λx .

If Y = cX then via a previous exercise we have

fY (y) =
1

c
fX

(y

c

)

=
1

cΓ(n)

(

λ

c
y

)n−1

λe−λ/cy =
1

Γ(n)

(

λ

c
y

)n−1(
λ

c

)

e−λ/cy ,

which is a gamma RV with parameters (λ/c, n).

Exercise 14

Part (a): We find

P{Y ≤ 4} = P{X2 ≤ 4} = P{−2 ≤ X ≤ +2}
= P{0 ≤ X ≤ 2} since f(x) is zero when x < 0

=

∫ 2

0

2xe−x2

dx = − e−x2
∣

∣

∣

2

0
= −(e−4 − 1) = 1− e−4 = 0.9816 .

Part (b): We find

FY (a) = P{Y ≤ a} = P{X2 ≤ a} = P{−a1/2 ≤ X ≤ a1/2}

= P{0 ≤ X ≤ a1/2} =

∫ a1/2

0

2xe−x2

dx = − e−x2
∣

∣

∣

a1/2

0
= 1− e−a .

Thus fY (a) = e−a.



Exercise 15 (a discrete RV)

From the discussion in the book the discrete density function for this RV is given by

P{X = 0} = 0.3 , P{X = 1} = 0.2 , P{X = 3} = 0.4 , P{X = 6} = 0.1 ,

which is the same density as exercise 1.

Exercise 16 (a geometric RV is like an exponential RV)

When X is a geometric RV with parameter p then pX(k) = qk−1p for k = 1, 2, 3, · · · . Let n
be a large positive integer and let Y ≡ X

n
then we have

FY (a) = P{Y ≤ a} = P{X ≤ na}

=

⌊na⌋
∑

k=1

qk−1p = p

⌊na⌋−1
∑

k=0

qk = p

(

1− q⌊na⌋

1− q

)

= 1− q⌊na⌋ = 1− (1− p)⌊na⌋ .

Let p = λ
n
i.e. define λ with this expression. Then the above is

1−
(

1− λ

n

)⌊na⌋
.

The limit of this expression as n → ∞ is

(

1− λ

n

)⌊na⌋
→ (e−λ)a = e−λa .

Thus
P{Y ≤ a} ≈ 1− e−λa for a > 0 ,

as we were to show.

Exercise 18 (simulating a negative binomial random variable)

In exercise 29 on Page 20 denoted “the waiting game” we implemented code to simulate
random draws from a negative binomial distribution. We can use that to compare the
relative frequencies obtained via simulation with the exact probability density function for a
negative binomial random variable. Recall that a negative binomial random variable S can
be thought of as the number of trials to obtain r ≥ 1 successes and has a probability mass

function given by pS(k) =

(

k − 1
r − 1

)

prqk−r.



Chapter 4: Joint Distributions of Random Variables

Notes on the Text

Notes on Example 4.3

Some more steps in this calculation give

E[πR2] =

∫ 2π

0

∫ 1

0

(πr2)
1

π
dA =

∫ 2π

0

∫ 1

0

r3drdθ .

Notes on Example 4.7

Recall that when θ is measured in radian that the area of a sector of a circle of radius r is
given by

ASector =

(

θ

2π

)

πr2 =
θ

2
r2 .

Then we find that
1
2
θr2

π
=

θr2

2π
.

Notes on Example 4.15 (φX(t) for a Gamma distribution)

Following the book we have

φX(t) =
λr

Γ(r)

∫ ∞

0

e−(λ−t)xxr−1dx .

Let v = (λ− t)x so that dv = (λ− t)dx and the above becomes

φX(t) =
λr

Γ(r)

∫ ∞

0

e−v vr−1

(λ− t)r−1

dv

(λ− t)

=
λr

Γ(r)
· 1

(λ− t)r

∫ ∞

0

vr−1e−vdv =
λr

(λ− t)r
.

Note that we must have λ − t > 0 so that the integral limit when x = +∞ corresponds to
v = +∞. This means that we must have t < λ.



Notes on Example 4.24

Note that |X̄n−µ|
µ

is the relative error in X̄n’s approximation to µ. If we want this approxi-

mation to be with in a 1% relative error this means that we want to bound

P

{ |X̄n − µ|
µ

≥ 0.01

}

. (20)

Chebyshev’s inequality applied to the sample mean is

P{|X̄n − µ| ≥ δ} ≤ σ2

nδ2
.

To match the desired relative error bound above we take δ = 0.01µ to get

P{|X̄n − µ| ≥ 0.01µ} ≤ σ2

n(0.01µ)2
.

Since we are told that σ = 0.1µ the right-hand-side of the above becomes

σ2

n(0.01µ)2
=

0.12

n(0.01)2
=

100

n
,

when we simplify. Thus if we take n ≥ 1000 then we will have the right-hand-side less than
1
10
.

Notes on Example 4.25

Recall from section 3.5 in the book that when Y = αX + β we have

P{Y ≤ c} = FX

(

c− β

α

)

,

so the density function for Y is given by

fY (c) =
d

dc
P{Y ≤ c} =

d

dc
FX

(

c− β

α

)

=
1

α
fX

(

c− β

α

)

.

In this case where X̄n = 1
n
Sn and Sn has a Cauchy density

fn(s) =
n

π

(

1

n2 + s2

)

,

we then have α = 1
n
and β = 0 thus

fXn(x) = nfn

(

x
1
n

)

= nfn(nx) =
n2

π2

(

1

n2 + n2x2

)

,

as stated in the book.



Notes on the Central Limit Theorem

For Zn given as in the book we can show

Zn ≡ X̄n − µ
(

σ√
n

) =

√
n

σ
(X̄n − µ) =

√
n

σ

(

1

n

n
∑

i=1

Xi −
1

n

n
∑

i=1

µ

)

=
1√
nσ

n
∑

i=1

(Xi − µ) =
1√
n

n
∑

i=1

Xi − µ

σ
. (21)

Notes on Example 4.28

Now X̄n = 1
n
(X1 +X2 +X3 + · · ·+Xn) so

Var(X̄n) =
1

n2

n
∑

i=1

Var(X1) =
1

n
Var(X1) =

1

n

( µ

10

)2

.

Thus to introduce the standardized RV for X̄n into Equation 20 we would have

P

{

|Zn| ≥
0.01µ
1√
n

(

µ
10

)

}

≤ 0.1 ,

or

P{|Zn| ≥
√
n

10
} ≤ 0.1 , (22)

the equation in the book.

Notes on the Proof of the Central Limit Theorem

There were a few steps in this proof that I found it hard to follow without writing down a
few of the steps. I was able to follow the arguments that showed that

φn(t) = 1 +
t2

2n
+

(

t√
n

)3

r

(

t√
n

)

= 1 +
t2

2n

(

1 +
2t√
n
r

(

t√
n

))

≡ 1 +
t2

2n
(1 + ǫ(t, n)) ,

where we have defined ǫ(t, n) = 2t√
n
r
(

t√
n

)

. Note that as n → +∞ we have that r
(

t√
n

)

→
r(0) a finite value and thus ǫ(t, n) → 0 as n → +∞.

log(φn(t)) = n log

(

1 +
t2

2n
(1 + ǫ(t, n))

)



For large n with log(1 + u) ≈ u as u → 0 we have that log(φn(t)) goes to

n

(

t2

2n

)

=
t2

2
.

Therefore
lim
n→∞

φn(t) = et
2/2 ,

as claimed.

Exercise Solutions

Exercise 1 (examples with a discrete joint distribution)

Part (a): The marginal distributions fX(x), is defined as fX(x) =
∑

y fX,Y (x, y) (a similar
expression holds for fY (y)) so we find

fX(0) = 0.1 + 0.1 + 0.3 = 0.5

fX(1) = 0 + 0.2 + 0 = 0.2

fX(2) = 0.1 + 0.2 + 0 = 0.3 .

and

fY (0) = 0.1 + 0 + 0.1 = 0.2

fY (1) = 0.1 + 0.2 + 0.2 = 0.5

fY (2) = 0.3 + 0 + 0 = 0.3 .

Part (b): The expectations of X and Y are given by

E[X ] =
∑

x

xfX(x) = 0(0.5) + 1(0.2) + 2(0.3) = 0.8

E[Y ] =
∑

y

yfX(y) = 0(0.2) + 1(0.5) + 2(0.3) = 1.1 .

Part (c): Now the variables X and Y can take on values from the set {0, 1, 2}, so that the
random variable Z = X − Y can take on values between the “endpoints” 0 − 2 = −2 and
2− 0 = 2. That is values from the set {−2,−1, 0,+1,+2}. The probability of each of these
points is given by

fZ(−2) = fX,Y (0, 2) = 0.3

fZ(−1) = fX,Y (0, 1) + fX,Y (1, 2) = 0.1 + 0.0 = 0.1

fZ(0) = fX,Y (0, 0) + fX,Y (1, 1) + fX,Y (2, 2) = 0.1 + 0.2 + 0 = 0.3

fZ(+1) = fX,Y (0, 1) + fX,Y (2, 1) = 0 + 0.2 = 0.2

fZ(+2) = fX,Y (2, 0) = 0.1 .



Part (d): The expectation of Z computed directly is given by

E[Z] = −2(0.3) + (−1)(0.1) + 0(0.3) + 1(0.2) + 2(0.1) = −0.6− 0.1 + 0.2 + 0.2 = −0.3 .

While using linearity we have the expectation of Z given by

E[Z] = E[X ]−E[Y ] = 0.8− 1.1 = −0.3 ,

the same result.

Exercise 2 (a continuous joint density)

Part (a): We find the marginal distribution f(x) given by

f(x) =

∫

f(x, y)dy =

∫ ∞

0

x2ye−xydy

= x2

∫ ∞

0

ye−xydy = x2

[

ye−xy

(−x)

∣

∣

∣

∣

∞

0

+
1

x

∫ ∞

0

e−xydy

]

=
x2

x

∫ ∞

0

e−xydy = x
1

(−x)
e−xy

∣

∣

∣

∣

∞

0

= −1(0− 1) = 1 ,

a uniform distribution. The marginal distribution for Y in the same way is given by

f(y) =

∫

f(x, y)dx =

∫ 2

1

x2ye−xydx

= y

∫ 2

1

x2e−xydx = y

∫ 2y

y

v2

y2
e−v dv

y
=

1

y2

∫ 2y

y

v2e−vdv ,

where we have used the substitution v = xy (so that dv = ydx). Integrating this last
expression we get

f(y) =
e−2y

y2
(−2− 4y − 4y2) +

e−y

y2
(2 + 2y + y2)) ,

for the density of Y .

Part (b): We find our two expectations given by

E[X ] =

∫ 2

1

xf(x)dx =
3

2
and

E[Y ] =

∫ ∞

0

yf(y)dx = ln(4) .

Part (c): Using the definition of the covariance we can derive Cov(X, Y ) = E[XY ] −



E[X ]E[Y ]. To use this we first need to compute E[XY ]. We find

E[XY ] =

∫

xyf(x, y)dxdy =

∫

x3y2e−xydxdy

=

∫ 2

x=1

x3

∫ ∞

y=0

y2e−xydydx

=

∫ 2

x=1

x3

(

2

x3

)

dx =

∫ 2

x=1

2dx = 2 .

Using Part (b) above we then see that

Cov(X, Y ) = 2− 3

2
(2 ln(2)) = 2− 3 ln(2) .

The algebra for this problem is worked in the Mathematica file chap 4 prob 2.nb.

Exercise 3 (the distribution function for the maximum of n uniform RVs)

Part (a): We find

P{M < x} = P{x1 < x , x2 < x , x3 < x , · · · , xn < x}

=
n
∏

i=1

P{xi < x} =
n
∏

i=1

x = xn ,

since max(x1, x2, · · · , xn) < x if and only if all the individual xi are less than or equal to x.

Part (b): We next find that the density function for M is given by

fM(x) =
d

dx
P{M ≤ x} = nxn−1 ,

so that we obtain

E[M ] =

∫ 1

0

xnxn−1dx = n

∫ 1

0

xndx =
nxn+1

n+ 1

∣

∣

∣

∣

1

0

=
n

n+ 1
,

for the expected value of the maximum of n independent uniform random variables.



Exercise 4 (the probability we land in a circle of radius a)

Part (a): We have

P{R ≤ a} =

∫

Ω={R≤a}
f(x, y)dxdy

=

∫

Ω={
√

x2+y2≤a}
f(x, y)dxdy

=

∫

Ω={
√

x2+y2≤a}

(

1√
2π

e−
x2

2

)(

1√
2π

e−
y2

2

)

dxdy

=
1

2π

∫ a

r=0

∫ 2π

θ=0

e−r2/2rdrdθ =

∫

r=0

ae−r2/2rdr .

To evaluate this let v = r2

2
so that dv = rdr to get the above integral is equal to

∫ a2/2

0

e−vdv = 1− e−a2/2 .

Part (b): We then find the density function for R given by

fR(a) =
d

da
P{R ≤ a} = −e−a2/2(−a) = ae−a2/2 .

Exercise 5 (an unbalanced coin)

Let X1 be the number of flips needed to get the first head, X2 the number of additional flips
needed to get the second head X2, and X3 the number of flips needed to get the third head.
Then N is given by X1 +X2 +X3 and

E[N ] = E[X1] + E[X2] + E[X3] .

Each Xi is a geometric RV with p = 1
4
, thus E[Xi] =

1
p
= 4. Thus E[N ] = 3E[X1] = 12. As

each Xi is independent we have

Var(N) =

3
∑

i=1

Var(Xi) =

3
∑

i=1

(

q

p2

)

=
3
(

3
4

)

(

1
4

)2 = 36 .

Exercise 6

Part (a): We have

E[IA] = P (A) =
|{2, 4, 6, 8}|

9
=

4

9

E[IB] = P (B) =
|{3, 6, 9}|

9
=

3

9
=

1

3
.



Note that E[I2A] = E[IA] and the same for E[I2B]. Thus

Var(IA) = E[I2A]− E[IA]
2 =

4

9
− 16

81
=

20

81
,

and

Var(IB) = E[I2B]−E[IB]
2 =

1

3
− 1

9
=

2

9
.

Now we have

Cov(IA, IB) = E[IAIB]−E[IA]E[IB] = P (A ∩ B)− P (A)P (B)

=
|{6}|
9

− 1

3
· 4
9
=

1

9
− 4

27
= − 1

27
.

Part (b): Since Cov(IA, IB) = − 1
27

when we repeat this experiment n times we would find

Cov(X, Y ) = nCov(IA, IB) = − n

27
.

Exercise 7 (counting birthdays)

Following the hint in the book the number of distinct birthdays X can be computed from
Xi using X =

∑365
i=1Xi. Thus the expectation of X is given by

E[X ] =

365
∑

i=1

E[Xi] = 365E[X1] .

Now

E[Xi] = P{Xi = 1} = P{At least one of the N people has day i as their birthday}
= 1− P{None of the N people has day i as their birthday}

= 1−
(

1− 1

365

)N

.

Using this we have

E[X ] = 365

(

1−
(

1− 1

365

)N
)

.

If we let p = 1
365

and q = 1− p we get

E[X ] = 365(1− qN) =
1− qN

p
.

Note: I was not sure how to compute Var(X). If anyone has any idea on how to compute
this please contact me.



Exercise 8 (Sam and Sarah shopping)

We are told that Sam’s shopping time is TSam ∼ U [10, 20] and Sarah’s shopping time is
TSarah ∼ U [15, 25]. Then we want to evaluate P{TSam ≤ TSarah}. We find

P{TSam ≤ TSarah} =

∫∫

TSam≤TSarah

p(tSam, tSarah)dtSamdtSarah

=

∫ 20

tSam=10

∫ 25

tSarah=max(15,tSam)

1

10
· 1

10
dtSarahdtSam

=

∫ 15

tSam=10

∫ 25

tSarah=15

1

100
dtSarahdtSam +

∫ 20

tSam=15

∫ 25

tSarah=tSam

1

100
dtSarahdtSam

=
1

100
(10)(5) +

∫ 20

tSam=15

1

100
(25− tSam)dtSam

=
1

2
− 1

100

(25− tSam)
2

2

∣

∣

∣

∣

20

15

=
7

8
.

Exercise 9 (some probabilities)

Part (a): We have

P{Y ≤ X} =

∫∫

Y≤X

1pX,Y (x, y)dxdy =

∫ 1

x=0

∫ 1

y=0

1(2y)dydx

=

∫ 1

x=0

y2
∣

∣

x

0
dx =

∫ 1

x=0

x2dx =
x3

3

∣

∣

∣

∣

1

0

=
1

3
.

Part (b): Let Z = X + Y then as X and Y are mutually independent we have

fZ(z) =

∫

fX(z − y)fY (y)dy =

∫

fY (z − x)fX(x)dx .

Using the second expression above and the domain of X we have

fZ(z) =

∫ 1

x=0

fY (z − x)dx .

Let v = z − x so that dv = −dx and fZ(z) becomes

fZ(z) =

∫ z−1

z

fY (v)(−dv) =

∫ z

z−1

fY (v)dv .

Now since 0 < X < 1 and 0 < Y < 1 we must have that 0 < Z < 2 as the domain of the
RV Z. Note that if 0 < z < 1 then z − 1 < 0 and the integrand fY (v) in the above integral
is zero on this domain of v. Thus

fZ(z) =

∫ z

0

fY (v)dv =

∫ z

0

2vdv = v2
∣

∣

z

0
= z2 for 0 < z < 1 .



If 1 < z < 2 by similar logic then the density function fZ(z) becomes

fZ(z) =

∫ 1

z−1

fY (v)dv =

∫ 1

z−1

2vdv = v2
∣

∣

1

z−1
= 1− (z − 1)2 = 2z − z2 for 1 < z < 2 .

Exercise 10

Part (a): By the geometrical interpretation of probability (i.e. the area of the given triangle)
we have fX,Y (x, y) =

1
2
(4)(1) = 2 for (x, y) in the region given i.e. 1 ≤ x ≤ 4 and 0 ≤ y ≤

1− 1
4
x.

Part (b): We have

fX(x) =

∫

fX,Y (x, y)dy =

∫ 1− 1
4
x

0

2dy = 2

(

1− 1

4
x

)

,

for 1 ≤ x ≤ 4. Next we have

fY (y) =

∫

fX,Y (x, y)dx =

∫ 4(1−x)

0

2dx = 8(1− y) ,

for 0 ≤ y ≤ 1.

Part (c): As fX(x)fY (y) 6= fX,Y (x, y) these random variables are not independent.

Exercise 11

Part (a): Because X and Y are independent we have that

P{X + Y ≥ 1} =

∫∫

X+Y≥1

fX(x)fY (y)dxdy

=

∫ 1

x=0

∫ ∞

y=1−x

e−ydydx =

∫ 1

x=0

−
(

e−y
∣

∣

∞
1−x

=

∫ 1

x=0

−(0− ex−1)dx =

∫ 1

x=0

ex−1dx = ex−1
∣

∣

1

0
= 1− e−1 = 0.6321 .

Part (b): Again because X and Y are independent we have that

E[Y 2eX ] =

∫∫

y2exfX(x)fY (y)dxdy

=

∫ 1

0

∫ ∞

0

y2exe−ydydx =

∫ ∞

0

y2e−ydy

∫ 1

0

exdx

= (e− 1)

∫ ∞

0

y2e−ydy = 2(e− 1) = 3.43656 .

Note this result is different than in the back of the book. If anyone sees anything wrong
with what I have done (or agrees with me) please let me know.



Exercise 12 (hitting a circular target)

Part (a): When the density of hits is uniform over the target the average point received for
a hit is proportional to the fraction of the area each region occupies. The total target has
an area given by π33 = 9π. The area of the one point region is

A1 = 9π − 4π = 5π .

The area of the four point region is given by

A4 = 4π − π = 3π .

The area of the ten point region is given by A10 = π. Thus the probabilities of the one, four,
and ten point region are given by

5

9
,

1

3
,

1

9
.

Thus the expected point value is given by

E[P ] =
5

9
(1) +

1

3
(4) +

1

9
(10) = 3 .

Part (b): Lets first normalize the given density. We need to find c such that

c

∫∫

(9− x2 − y2)dxdy = 1 ,

or

c

∫∫

(9− r2)rdrdθ = 1 or 2πc

∫ 3

0

(9r − r3)dr = 1 ,

or when we perform the radial integration we get

81π

2
c = 1 .

Thus c = 2
81π

. We now can compute the average points

E[P ] =

∫∫

A10

10c(9− x2 − y2)dxdy+

∫∫

A4

4c(9− x2 − y2)dxdy+

∫∫

A1

1c(9− x2 − y2)dxdy .

The angular integrations all integrate to 2π and thus we get

E[P ]

2πc
= 10

∫ 1

0

(9− r2)rdr + 4

∫ 2

1

(9− r2)rdr +

∫ 3

2

(9− r2)rdr =
351

4
.

Solving for E[P ] we get E[P ] = 13
3
= 4.3333.



Exercise 13 (the distribution of the sum of three uniform random variables)

Note in this problem I will find the density function for 1
3
(X1 +X2 +X3) which is a variant

of what the book asked. Modifying this to exactly match the question in the book should
be relatively easy.

If X is a uniform random variable over (−1,+1) then it has a p.d.f. given by

pX(x) =

{

1
2

−1 ≤ x ≤ 1
0 otherwise

,

while the random variable Y = X
3
is another uniform random variable with a p.d.f. given by

pY (y) =

{

3
2

−1
3
≤ x ≤ 1

3

0 otherwise
.

Since the three random variables X/3, Y/3, and Z/3 are independent the characteristic
function of the sum of them is the product of the characteristic function of each one of them.
For a uniform random variable over the domain (α, β) on can show that the characteristic
function φ(t) is given by

φ(t) =

∫ β

α

1

β − α
eitxdx =

eitβ − eitα

it(β − α)
,

note this is a slightly different than the normal definition of the Fourier transform [2], which
has e−itx as the exponential argument. Thus for each of the random variables X/3, Y/3, and
Z/3 the characteristic function since β = 1

3
and α = −1

3
looks like

φ(t) =
3(eit(1/3) − e−it(1/3))

2it
.

Thus the sum of two uniform random variables like X/3 and Y/3 has a characteristic function
given by

φ2(t) = − 9

4t2
(eit(2/3) − 2 + e−it(2/3)) ,

and adding in a third random variable say Z/3 to the sum of the previous two will give a
characteristic function that looks like

φ3(t) = −27

8i

(

eit

t3
− 3eit(1/3)

t3
+

3e−it(1/3)

t3
− e−it

t3

)

.

Given the characteristic function of a random variable to compute its probability density
function from it we need to evaluate the inverse Fourier transform of this function. That is
we need to evaluate

pW (w) =
1

2π

∫ ∞

−∞
φ(t)3e−itwdt .

Note that this later integral is equivalent to 1
2π

∫∞
−∞ φ(t)3e+itwdt (the standard definition of

the inverse Fourier transform) since φ(t)3 is an even function. To evaluate this integral then



it will be helpful to convert the complex exponentials in φ(t)3 into trigonometric functions
by writing φ(t)3 as

φ(t)3 =
27

4

(

3 sin
(

t
3

)

t3
− sin(t)

t3

)

. (23)

Thus to solve this problem we need to be able to compute the inverse Fourier transform of
two expressions like

sin(αt)

t3
.

To do that we will write it as a product with two factors as

sin(αt)

t3
=

sin(αt)

t
· 1
t2

.

This is helpful since we (might) now recognize as the product of two functions each of which
we know the Fourier transform of. For example one can show [2] that if we define the step
function h1(w) as

h1(w) ≡
{

1
2

|w| < α
0 |w| > α

,

then the Fourier transform of this step function h1(w) is the first function in the product

above or sin(αt)
t

. Notationally, we can write this as

F
[{

1
2

|w| < α
0 |w| > α

]

=
sin(αt)

t
.

In the same way if we define the ramp function h2(w) as

h2(w) = −w u(w) ,

where u(w) is the unit step function

u(w) =

{

0 w < 0
1 w > 0

,

then the Fourier transform of h2(w) is given by 1
t2
. Notationally in this case we then have

F [−wu(w)] =
1

t2
.

Since the inverse of a function that is the product of two functions for which we know the
individual inverse Fourier transform of is the convolution integral of the two inverse Fourier
transforms we have that

F−1

[

sin(αt)

t3

]

=

∫ ∞

−∞
h1(x)h2(w − x)dx ,

the other ordering of the integrands

∫ ∞

−∞
h1(w − x)h2(x)dx ,
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Figure 4: Left: The initial function h2(x) (a ramp function). Right: The ramp function
flipped or h2(−x).
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Figure 5: Left: The function h2(x), flipped and shifted by w = 3/4 to the right or
h2(−(x − w)). Right: The flipped and shifted function plotted together with h1(x) al-
lowing visualizations of function overlap as w is varied.

can be shown to be an equivalent representation. To evaluate the above convolution integral
and finally obtain the p.d.f for the sum of three uniform random variables we might as well
select a formulation that is simple to evaluate. I’ll pick the first formulation since it is easy to
flip and shift to the ramp function h2(·) distribution to produce h2(w− x). Now since h2(x)
looks like the plot given in Figure 4 (left) we see that h2(−x) then looks like Figure 4 (right).
Inserting a right shift by the value w we have h2(−(x− w)) = h2(w − x), and this function
looks like that shown in Figure 5 (left). The shifted factor h2(w − x) and our step function
h1(x) are plotted together in Figure 5 (right). These considerations give a functional form
for the p.d.f of gα(w) given by

gα(w) =







0 w < −α
∫ w

−α
1
2
(x− w)dx −α < w < +α

∫ +α

−α
1
2
(x− w)dx w > α

=







0 w < −α
−1

4
(α + w)2 −α < w < +α
−αw w > α

,



when we evaluate each of the integrals. Using this and Equation 23 we see that

F−1[φ3(t)] =
27

4
(3g1/3(w)− g1(w))

= −81

4







0 w < −1
3

1
4
(1
3
+ w)2 −1

3
< w < +1

3
1
3
w w > 1

3

+
27

4







0 w < −1
1
4
(1 + w)2 −1 < w < +1

w w > 1

=























0 w < −1
27
16
(1 + w)2 −1 < w < −1

3

−9
8
(−1 + 3w2) −1

3
< w < +1

3
27
16
(−1 + w)2 1

3
< w < 1

0 w > 1

,

which is equivalent to what we were to show.

Exercise 14 (some moment generating functions)

Part (a): We find

φX(t) = E[eXt] =
1

3
e−t +

1

3
+

1

3
et .

Part (a): We find

E[X ] =
1

3
(−1) +

1

3
(0) +

1

3
(+1) = 0 ,

and

E[X2] =
1

3
(1) +

1

3
(0) +

1

3
(1) =

2

3
.

To use the moment-generating function we use

E[Xn] =
dn

dtn
φX(t)

∣

∣

∣

∣

t=0

(24)

For the moment generating function calculated above using this we get

E[X ] =
d

dt
φX(t)

∣

∣

∣

∣

t=0

=

(

−1

3
e−t +

1

3
et
∣

∣

∣

∣

t=0

= 0 ,

and

E[X2] =
d2

dt2
φX(t)

∣

∣

∣

∣

t=0

=

(

1

3
e−t +

1

3
et
∣

∣

∣

∣

t=0

=
2

3
,

the same as before.

Exercise 15 (more moment generating functions)

We need
d

dt
φX(t) =

2et

3− t
+

2et + 1

(3− t)2
=

(8− 2t)et + 1

(3− t)2
,



and
d2

dt2
φX(t) = −2(1 + et(17− 8t+ t2))

(−3 + t)3
.

Thus

E[X ] =
d

dt
φX(t)

∣

∣

∣

∣

t=0

= 1

E[X2] =
d2

dt2
φX(t)

∣

∣

∣

∣

t=0

=
4

3
.

With these two we compute

Var(X) = E[X2]− E[X ]2 =
1

3
.

Exercise 16 (estimating probabilities)

Part (a): Recall that Chebyshev’s inequality for the sample mean X̄n is given by

P{|X̄n − µ| ≥ δ} ≤ σ2

nδ2
,

if δ = 1, n = 100, µ = 50, and σ = 5 we get

P{|X̄n − 50| ≥ 1} ≤ 25

n
=

1

4
.

This is equivalent to

P{X̄n ≤ 49 or X̄n ≥ 51} ≤ 1

4
.

or

1− P{X̄n ≤ 49 or X̄n ≥ 51} ≥ 3

4
.

or

P{49 ≤ X̄n ≤ 51} ≥ 3

4
.

This gives the value c = 3
4
.

Part (b): We have

P{49 ≤ X̄n ≤ 51} = P

{

49− 50
5√
n

≤ X̄n − µ
σ√
n

≤ 51− 50
5√
n

}

= Φ

(

51− 50

5/10

)

− Φ

(

49− 50

5/10

)

= 0.954 .



Exercise 17

Since for the random variable X we have µ = np = 100(1/2) = 50 and σ =
√
npq =

√

50(1/2) = 5 when we convert to a standard normal RV we find

P{X > 55} = P{X ≥ 45.5} since X is integer values i.e. the ”continuity correction”

= 1− P{X < 45.5} = 1− P

{

X − 50

5
<

45.5− 50

5

}

= 1− Φ

(

45.5− 50

5

)

= 0.816 .

Exercise 18

We can calculate that the probability of rolling a sum of a 7 using two dice is given by 1
6
.

Then X is a binomial RV with parameters n = 100 and p = 1
6
. Thus

µ = np = 83.33

σ =
√
npq = 8.33 .

Exercise 19

Part (a): We have that

E[X1] = −a

(

1

8

)

+ 0

(

3

4

)

+ a

(

1

8

)

= 0

E[X2
1 ] = a2

(

1

8

)

+ 02
(

3

4

)

+ a2
(

1

8

)

=
1

4
a2 .

Thus

Var(X1) = E[X2
1 ] =

1

4
a2 = 1 ⇒ a = 2 .

With this value of a we have

P{|X1| ≥ 2} =
1

8
+

1

8
=

1

4
,

and Chebyshev’s inequality is sharp, i.e. it holds with equality.

Part (b): We can see that E[X2] = 0 and can compute

E[X2
2 ] =

∫ b

−b

x2

(

1

2b

)

dx =
1

2b

(

x3

2

∣

∣

∣

∣

b

−b

=
1

6b
(2b3) =

b2

3
.

For Var(X2) = 1 we must have b =
√
3 = 1.73. Then

P{|X2| ≥ 2} = 0 ,



since X2 can only be as large as
√
3 < 2.

Part (c): We can see that E[X3] = 0 and can compute

E[X2
3 ] = 0.005c2 + 0.005c2 = 0.01c2 .

To have Var(X3) = 1 we need c2

100
= 1 or c = 10. With this we find

P{|X3| ≥ 2} = 0.01 .

Part (d): We can see that E[X3] = 0 and can compute directly

P{|X4| ≥ 2} = 2Φ(−2) = 2(1− Φ(2)) = 2(1− 0.97725) = 0.0455 .

Exercise 20

Part (a): We can compute using integration by parts that

P{Z > t} =

∫ ∞

t

1√
2π

e−
x2

2 dx

=
1√
2π

∫ ∞

t

x−1xe−
x2

2 dx using

∫

udv = uv −
∫

vdu

=
1√
2π

x−1(−e−
x2

2 )
∣

∣

∣

∞

t
− 1√

2π

∫ ∞

t

(−x−2)(−e−
x2

2 )dx

=
1√
2π

(

0 +
1

t
e−

t2

2

)

− 1√
2π

∫ ∞

t

x−2e−
x2

2 dx

=
1√
2πt

e−
t2

2 − 1√
2π

∫ ∞

t

x−2e−
x2

2 dx ,

which is the desired expression.

Part (b): From the above expression we see that

R(t) ≡ (2π)−1/2

∫ ∞

t

x−2e−
x2

2 dx .

Now R(t) > 0 since the function integrated is nonnegative. Next note that on the region of
integration the following chain of inequalities hold true

x > t so
1

x
<

1

t
so

1

x2
<

1

t2
.

In addition, from x > t we have that 1 < x
t
. Thus

1

x2
<

1

t2
(1) <

x

t3
.



When we up this inequality into the expression for R(t) we get

R(t) =
1√
2π

∫ ∞

t

x−2e−
x2

2 dx <
1√
2πt3

∫ ∞

t

xe−
x2

2 dx

=
1√
2πt3

(

−e−
x2

2

∣

∣

∣

∞

t
=

1√
2πt3

e−
t2

2 .

Part (c): We find

P{Z > 3.5} ≈ (2π)−1/2(3.5)−1e−
3.52

2 = 2.493 · 10−4 .

Part (d): We find

P{Z > 6} ≈ (2π)−1/26−1e−
62

2 = 1.01 · 10−9 .

The error correction to this value is

0 < R(t) < (2π)−1/26−3e−
62

2 = 2.8 · 10−11 .



Chapter 5: Conditional Expectation

Notes on the Text

Notes on Example 5.2 (the expected value for second roll)

The expected value for the second roll is

1

6
(1 + 2 + 3 + 4 + 5 + 6) =

1

6
(21) =

7

2
= 3.5 .

Notes on Example 5.7

For

fX,Y (x, y) =
1

10y
0 < x < y < 10 ,

to compute fX(x) we “integrate out” the variable y from the joint density function fX,Y (x, y).
We find

fX(x) =

∫

fX,Y (x, y)dy =

∫ 10

x

dy

10y
.

Notes on Example 5.8 (using iterated expectations)

To evaluate

E[X ] =

∫ 10

0

− x

10
ln
( x

10

)

dx = − 1

10

∫ 10

0

x log
( x

10

)

dx ,

we let v = x
10

so dv = dx
10

get

−
∫ 1

0

10v ln(v)dv .

To integrate this we will use

∫

x ln(x)dx =
x2

4
(2 ln(x)− 1) + c . (25)

To verify the above integral identity we start by evaluating
∫

ln(x)dx, where we use the
integration by parts formula

∫

udv = uv −
∫

vdu with u = ln(x) and dv = dx to get

∫

ln(x)dx = x ln(x)−
∫

x

(

1

x

)

dx = x ln(x)− x+ c . (26)



Now in the integral of interest given by Equation 25 we will again use integration by parts
with u = x and dv = ln(x)dx and result in Equation 26 to get

∫

x ln(x)dx = x(x ln(x)− x)−
∫

1(x ln(x)− x)dx

= x2 ln(x)− x2 −
∫

x ln(x)dx+
x2

2
+ c .

Solving for
∫

x ln(x)dx in the previous expression we find

∫

x ln(x)dx =
1

2

(

x2 ln(x)− x2

2

)

+ c =
x2

4
(2 ln(x)− 1) + c , (27)

which is the expression we were trying to prove. Using this integral we find

E[X ] = −10

(

v2

4
(2 ln(v)− 1)

∣

∣

∣

∣

1

0

= −10

(

1

4
(−1)− 0

)

=
5

2
,

the same as before.

Exercise Solutions

Exercise 1

Part (a): X and Y alone are geometric random variables with probability of success p = 1
6
.

From the table in the back of the book we have that the expectation of a geometric RV is
given by E[X ] = E[Y ] = 1

p
= 6.

Part (b): To compute E[X|Y = 1] we note that since the event {Y = 1} is true means that
the first roll must be a five. Once this five has been rolled we will then have to try to roll a
six, which happens on average after 1

p
= 6 rolls. Thus

E[X|Y = 1] = 1 + 6 = 7 .

Note that X and Y are not independent since E[X|Y = 1] 6= E[X ].

Exercise 2

We are told that P{C = c} = 4ce−4

c!
and P{T = t} = 2te−2

t!
for c ≥ 0 and t ≥ 0.

Part (a): Since C and T are independent we have

P{C = 4, T = 0} = P{C = 4}P{T = 0} =

(

44e−4

4!

)(

20e−2

0!

)

= 0.02644 .



Part (b): Using P (A|B) = P (A∩B)
P (B)

we compute

P{C = 4|C + T = 4} =
P{C = 4, C + T = 4}

P{C + T = 4}

=
P{C = 4, T = 0}

P{C = 4, T = 0}+ P{C = 3, T = 1}+ P{C = 2, T = 2} + P{C = 1, T = 3}+ P{C = 4, T = 0}
= 0.19753 .

We find

E[C|C + T = 4] =
4
∑

c=0

cP{C = c|C + T = 4}

=
4
∑

c=0

c
P{C = c, T = 4− c}

P{C + T = 4}

=
1

P{C + T = 4}

4
∑

c=0

cP{C = c, T = 4− c} = 2.667 .

From the book as X and Y are Poisson RV then pX|Z(k|n) is a binomial RV with parameters
p = λ

λ+µ
and n. In this problem p = 4

4+2
= 2

3
and n = 4. Thus

P{C = 4} =

(

4
4

)

p4q0 = p4 =

(

2

3

)4

.

The expectation of C conditioned on C + T = 4 is then np = 4
(

2
3

)

= 2.6667.

Exercise 3

Part (a): We are told that pY (y) = e−y and pX|Y (x|y) = 1
y
e−

1
y
x since in this case E[X|Y =

y] = y as expected. Now

E[X ] = E[E[X|Y ]] = E[Y ] = +1 .

Part (b): We have

fX,Y (x, y) = fX|Y (x|y)fY (y) =
1

y
e−

1
y
xe−y =

1

y
e−(

x
y
+y) .

Exercise 4

Part (a): We are told Y ∼ e−y and X|Y = y ∼ U [y, 3y] so that

E[X|Y = y] =
3y + y

2
= 2y ,



since the conditional distribution is uniform. Using the “law of iterated expectation” or
E[X ] = E[E[X|Y ]] we have

E[X ] = E[2Y ] = 2E[Y ] = 2 .

Part (b): We find

E[X2|Y = y] =

∫ 3y

x=y

x2

(

1

2y

)

dx =
1

2y

(

x3

3

∣

∣

∣

∣

3y

y

=
1

6y
(27y3 − y3) =

1

6
26y2 =

13

3
y2 .

Since E[X2] = E[E[X2|Y ]] we have

E[X2] =
13

3
E[Y 2] =

13

3

(

Var(Y ) + E[Y ]2
)

=
13

3
(1 + 12) =

26

3
.

Then

Var(X) =
26

3
− 4 =

26

3
− 12

3
=

14

3
= 4.6667 .

The back of the book has the value 8.6667 which I think is a typo. If anyone agrees or
disagrees with me please contact me.

Exercise 5

Part (a): We are told Y ∼ U [0, 1] and X|Y = y ∼ U [Y, 1]. We want to compute E[X ].
Note that E[X|Y ] = 1+Y

2
thus

E[X ] = E[E[X|Y ]] =
1

2
+

1

2
E[Y ] =

1

2
+

1

2

(

1

2

)

=
3

4
.

Part (b): We need to compute E[Y ] and we find E[Y ] = 1
2
. As we are told the two boys

should split the money according to the fractions

3/4

3/4 + 1/2
=

3

5
and

1/2

3/4 + 1/2
=

2

5
,

for Tom and Huck respectively. Thus Tom should get 3
5
(10) = 6 and Huck should get

2
5
(10) = 4.

Exercise 6

Part (a):

fY (y) =

∫ y

0

fX,Y (x, y)dx =

∫ y

0

e−y

y
dx = e−y for 0 < y < +∞ .



Part (b): We have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

e−y

ye−y
=

1

y
for 0 < x < y ,

or a uniform density.

Part (c): We have

E[X2|Y ] =

∫

x2fX|Y (x|y)dx =

∫ y

0

x2

(

1

y

)

dx =
1

y2

(

x3

3

∣

∣

∣

∣

y

0

=
1

3y
y3 =

y2

3
.

Exercise 7

We are told that P{N = k} =

(

10
k

)

0.7k0.310−k for 0 ≤ k ≤ 10 is the distribution of users

of computers in one class period. Then for each ith student that has used the computer we
will require Xi storage where Xi ∼ U [0, 10]. Thus the total storage used/required is

S =

N
∑

i=1

Xi ,

with N ∼ binomial(10, 0.7). To evaluate E[S] we will use the “law of iterated expectation”
or E[S] = E[E[S|N ]] we find

E[S] = E[E[S|N ]] = E[N(5)] = 5E[N ] = 5(10)(0.7) = 35 .

In the same way we have

E[S2] = E[E[S2|N ]] = E



E





(

N
∑

i=1

Xi

)2
∣

∣

∣

∣

∣

∣

N







 .

Note that the sum squared can be written as
(

N
∑

i=1

Xi

)2

=

N
∑

i=1

X2
i + 2

N−1
∑

i=1

N
∑

j=i+1

XiXj .

To use this expression to evaluate the inner expectation E[·|N ] we recall

E[X2
i ] = Var(Xi) + E[Xi]

2 =
102

12
+ 52 = 33.33 ,

and E[XiXj] = E[Xi]E[Xj ] = 52 = 25 by independence. With these two facts we find that

E





(

N
∑

i=1

Xi

)2
∣

∣

∣

∣

∣

∣

N



 = N(33.33) + 2

(

N
2

)

25

= 33.33N +
2N(N − 1)

2
(25)

= 33.33N + 25N(N − 1) = 25N2 + 8.33N .



Now to compute the expectation of this we recall that

E[N2] = Var(N) + E[N ]2 = npq + (np)2 = 10(0.7)(0.3) + (102)(0.7)2 = 51.1 ,

and then find
E[S2] = 25(51.1) + 8.33(10)(0.7) = 1335.81 ,

thus we get for the variance

Var(S) = E[S2]−E[S]2 = 1335.81− 352 = 110.81 .

Exercise 8

Part (a): We are told that Y ∼ U [0, 2] and X|Y ∼ ye−yx and thus in this case then

fX,Y (x, y) = fX|Y (x|y)fY (y) = ye−yx

(

1

2

)

.

Part (b): We find

P{X > 5|Y = y} =

∫ ∞

x=5

ye−yxdx =
ye−yx

(−y)

∣

∣

∣

∣

∞

5

= −
(

e−yx
∣

∣

∞
x=5

= −(e−∞ − e−5y) = e−5y for 0 < y < 2 .

Part (c): We find

P{X > 5} =

∫ 2

y=0

P{X > 5|Y = y}
(

1

2

)

dy

=
1

2

∫ 2

y=0

e−5ydy =
1

2

(

−1

5
e−5y

∣

∣

∣

∣

2

0

= − 1

10
(e−10 − 1) =

1

10
(1− e−10) .

Exercise 9

Part (a): We want to evaluate Cov(X, Y ). From the discussion in the book E[X ] = 0,
E[Y ] = β, Var(X) = 1, and Var(Y ) = β. Using these facts when needed we find

Cov(X, Y ) = E[(X − E[X ])(Y − E[Y ])]

= E[(X − 0)(Y − β)] = E[X(Y − β)]

= E[XY ]− βE[X ] = E[XY ]

= E[E[XY |X ]] = E[XE[Y |X ]]

= E[X(αX + β)] = αE[X2] + βE[X ] = α .

Part (b): With the above value for Cov(X, Y ) we compute

ρ =
Cov(X, Y )

√

Var(X)Var(Y )
=

α√
α2 + σ2

.



Exercise 10

Part (a): We have

fX|Y (X|Y = y) =
fX,Y (x, y)

fY (y)

=

1
2πσ

exp
{

− (y−αx−β)2

2σ2 − x2

2

}

1√
2π

√
α2+σ2 exp

{

− (y−β)2

2(α2+σ2)

}

=
1√

2π
√

σ
α2+σ2

exp

{

−
(

x− α
α2+σ2 (y − β)

)2

2
(

σ2

α2+σ2

)

}

,

with some algebra. Thus X|Y = y is a normal random variable with mean α
α2+σ2 (y−β) and

a variance σ2

α2+σ2 .



Chapter 6: Markov Chains

Notes On The Text

Examples of Markov Chains in Standard Form (Examples 6.24-6.25)

For the waiting game we have a one-step transition matrix of P =

[

q p
0 1

]

, from which we

see that state 0 is transient and state 1 is absorbing. In standard form, writing the absorbing
states first P becomes

P =

[

1 0
p q

]

.

If we partition into blocks as

[

I 0
R Q

]

we see that R = p and Q = q as claimed in the book.

For the gamblers ruin problem with a total fortune of N = 3 we have a one-step transition
matrix in the natural state ordering (0, 1, 2, 3) of

P =









1 0 0 0
q 0 p 0
0 q 0 p
0 0 0 1









,

so we see that the states 0 and 3 are absorbing the and states 1 and 2 are transient. Writ-
ing this in standard form where we write the absorbing states before the transient states
(specifically in the order given by 0, 3, 1, 2) we have a one-step transition matrix given by

P =









1 0 0 0
0 1 p 0
q 0 0 p
0 p q 0









.

When we write this in a partitioned form as

[

I 0
R Q

]

we see that R =

[

q 0
0 p

]

and

Q =

[

0 p
q 0

]

. We can then invert the matrix I −Q =

[

1 −p
−q 1

]

to get the result in the

book.



Notes on the proof that |Ei[(Ij(s)− aj)(Ij(t)− aj)]| ≤ C(rt−s + rt)

With the steady-state decomposition of pij(t) given by pij(t) = aj+eij(t) such that |eij(t)| ≤
brt we have from the definition of m(s, t) that

m(s, t) = pjj(t− s)pij(s)− ajpij(t)− ajpij(s) + a2j

= (aj + ejj(t− s)) (aj + eij(s))− aj (aj + eij(t))− aj (aj + eij(s)) + a2j

= a2j + ajeij(s) + ajejj(t− s) + ejj(t− s)eij(s)

− a2j − ajeij(t)− a2j − ajeij(s) + a2j
= aj(ejj(t− s)− eij(t)) + ejj(t− s)eij(s) ,

which is the books result. Using the fact that our error term is geometrically bounded as
|eij(t)| ≤ brt and |aj| ≤ 1 using the triangle inequality we see that

|m(s, t)| ≤ |ejj(t− s)|+ |eij(t)|+ |ejj(t− s)||eij(s)|
≤ brt−s + brt + b2rt

= brt−s + (b+ b2)rt

≤ (b+ b2)rt−s + (b+ b2)rt = (b+ b2)(rt−s + rt) ,

the inequality stated in Lemma 6.8.

In the section following Lemmas 6.8 entitled “the completion proof of Theorem 6.8” the
argument about replacing t with infinity is a bit difficult to follow. A better argument is by
writing out the summation as

t
∑

s=1

rt−s = rt−1 + rt−2 + · · · r + 1 =

t−1
∑

k=0

rk ≤
∞
∑

k=0

rk .

Examples computing the mean recurrence and sojourn times (Example 6.32)

For the vending machine model our Markov chain has a one-step transition probability matrix
P given by

P =

[

1− δ δ
γ 1− γ

]

.

Now to evaluate E0[T1] recall that this is the expected number of steps to get to state 1 given
that we start in state 0. Since there are only two states in this Markov chain this number
of steps must equal the number of steps taken where when we don’t change state i.e. the
sojourn time in state 0 or E0[T0] = E[S0]. This we know equals

1

1− p00
=

1

1− (1− δ)
=

1

δ
.

In the same way

E1[T0] = E[S1] =
1

1− p11
=

1

γ
.



An alternative way to calculate these expressions is to solve (I − P )M = U −D, for M . To
do this we first compute I − P to get

I − P =

[

δ −δ
−γ γ

]

,

and next compute U −D to get

U −D =

[

1 1
1 1

]

−
[

R00 0
0 R00

]

=

[

1 1
1 1

]

−
[

1 + δ/γ 0
0 1 + γ/δ

]

=

[

−δ/γ 1
1 −γ/δ

]

.

Then the matrix equation (I − P )M = U −D becomes
[

δ −δ
−γ γ

] [

0 R01

R10 0

]

=

[

−δ/γ 1
1 −γ/δ

]

.

Multiplying the matrices together we have
[

−δR10 δR01

γR10 −γR01

]

=

[

−δ/γ 1
1 −γ/δ

]

,

from which we see that a solution is R10 = 1/γ and R01 = 1/δ as given in the book.

The inventory model has a one-step transition probability matrix of

P =





0 p q
p q 0
0 p q



 ,

with a steady-state distribution π =
[

p
2

1
2

q
2

]

. We compute I − P and find

I − P =





1 −p −q
−p 1− q 0
0 −p 1− q



 =





1 −p −q
−p p 0
0 −p p



 ,

and

U −D =





1 1 1
1 1 1
1 1 1



−





2
p

0 0

0 2 0
0 0 2

q





=





1− 2
p

1 1

1 −1 1
1 1 1− 2

q



 ,

So that the matrix system we need to solve to find the mean recurrence and sojourn times
is (I − P )M = U −D becomes





1 −p −q
−p p 0
0 −p p









0 T01 T02

T10 0 T12

T20 T21 0



 =





1− 2
p

1 1

1 −1 1
1 1 1− 2

q



 .



Multiplying the two matrices on the left hand side we obtain





−pT10 − qT20 T01 − qT21 T02 − pT12

pT10 −pT01 −pT02 + pT12

−pT10 + pT20 pT21 −pT12



 =





1− 2
p

1 1

1 −1 1
1 1 1− 2

q



 .

The equation for the (2, 1)st component gives pT10 = 1 or T10 = 1
p
. The equation for the

(2, 2) component gives −pT01 = −1 or T01 =
1
p
. The equation for the (3, 2) component gives

pT21 = 1 or T21 =
1
p
. The equation for the (3, 3) component gives

T12 = −1

p
+

2

pq
=

p + 1

pq
.

The equation for the (1, 3) component using what we found for T12 above

T02 = pT12 + 1 =
p+ 1

q
+ 1 =

2

q
.

Finally, the equation for the (3, 1) component gives

−pT10 + pT20 = 1 ,

or

T20 =
1

p
+ T10 =

2

p
.

In summary then we have

R =





2
p

1
p

2
q

1
p

2 p+1
pq

2
p

1
p

2
q



 .

Exercise Solutions

Exercise 1 (the number of flips to get to state n)

In this experiment Tn is the count of the number of trials until we get n heads. This is the
definition of a negative-binomial random variable and Tn is distributed as such.

Exercise 2 (vending machine breakdowns)

Part (a): For the machine to be in good working order on all days between Monday and
Thursday means that we must transition from state 0 to state 0 three times. The probability
this happens is given by

(1− δ)3 = 0.83 = 0.512 .
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Figure 6: The transition diagram for Exercise 4.

Part (b): For the machine to be in working order on Thursday can be computed by summing
the probabilities over all possible paths that start with a working machine on Monday and
end with a working machine on Thursday. By enumeration, we have four possible transitions
that start with the state of our vending machine working on Monday and end with it working
on Thursday. The four transitions are

0 → 0 → 0 → 0 with probability (1− δ)3

0 → 1 → 0 → 0 with probability δγ(1− δ)

0 → 0 → 1 → 0 with probability δ(1− γ)γ

0 → 1 → 1 → 0 with probability (1− δ)δγ

Adding up these probabilities we find that the probability requested is given by 0.8180.
These to calculations are done in the MATLAB file chap 6 prob 2.m.

Exercise 3 (successive runs)

Given that you have two successive wins, one more will allow you to win the game. This
event happens with probability p. If you loose (which happens with probability 1− p) your
number of successive wins is set back to zero and you have four remaining rounds in which
to win the game. You can do this in two ways, either winning the first three games directly
or loosing the first game and winning the remaining three. The former event has probability
of p3 while the later event has probability qp3. Thus the total probability one wins this game
is given by

p+ q(p3 + qp3) = 0.5591 .

This simple calculation is done in the MATLAB script chap 6 prob 3.m.

Exercise 4 (more successive runs)

Part (a): Let our states for this Markov chain be denoted 0, 1, 2, 3, 4 with our system in
state i if we have won i consecutive games. A transition diagram for this system is given as
in Figure 6.
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Figure 7: The transition diagram for Exercise 5.

Part (b): Given that we have won three consecutive rounds we can win our entire game
and have a total of four consecutive wins if we win the next game, which happens with
probability p. If we don’t win the next game we transition to the state 0 and have four more
attempts to get to state 4. We must flip heads in each of the four remaining rounds to end
up in the state 4 at the end of these trials. This will happen with probability p4. Thus the
total probability we win is given by

p+ q(p4) = 0.5002 .

This simple calculation is done in the MATLAB script chap 6 prob 4.m.

Exercise 5 (bold play to 7 dollars)

Part (a): Let i denote the amount of money that the player currently has at the end of
the given timestep. We will assume that the rules for this game are the same as that for the
bold play example from the book. That is, we bet as much as possible at any given round as
long as the winnings would put us under (or equal too) our target of seven dollars. In this
case the transition diagram for this Markov chain looks like that in Figure 7.

Part (b): We desire to calculate the probability we will arrive in state 7 in six or fewer
rounds of play. To solve this problem we enumerate all possible paths from 1 to 7 that have
less than six legs. In this case there are only two possible paths. Their probabilities are

1 → 2 → 4 → 7 with probability p3

1 → 2 → 4 → 1 → 2 → 4 → 7 with probability (p2q)p3 = p5q .

Thus the probability we reach our goal in six or fewer plays is given by

p3 + p5q .

Part (c): To calculate the probability we get to 7 in an infinite number of plays note from
Figure 7 that we can never get to the states 3, 5 or 6 from the state 1 under the bold play
policy rules. While we can get to state 7 under and infinite number of plays if we cycle
through the states 1 → 2 → 4 → 1 before jumping on a path to state 7 from state 4. Thus
the probability we can get to state 7 under an infinite number of plays is

p3 + p2q(p3) + (p2q)2(p3) + (p2q)3(p3) + · · · ,
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Figure 8: The transition diagram for Exercise 6. That the pattern continues indefinitely to
the right.

where each factor (p2q)k represents the probability we cycle k times before getting on a path
that takes us directly (in three steps) to state 7. When we sum this infinite series we find it
equals

p3
∞
∑

k=0

(p2q)k =
p3

1− p2q
.

Exercise 6 (repeated play with two fair coins)

On any given toss we can obtain 0, 1, or 2 heads with probabilities q2, 2pq, and p2 respectively.
A transition diagram for this process is given in Figure 8. The transition matrix for this
process pij is given as

P =











q2 2pq p2

0 q2 2pq p2

0 0 q2 2pq p2

. . .











,

which we recognized as a matrix with q2 on its diagonal, 2pq on its upper diagonal and p2

on its upper-upper diagonal.

Exercise 7 (some example of Markov chains)

Part (a): We desire to calculate the joint probability of X and Y i.e. P (X, Y ) when X
and Y can take two values: 0 for working and 1 for not working. Given that the state of the
machine on Monday is working we can compute P (X, Y ) as P (Y |X)P (X) to find

P (X = 0, Y = 0) = P (Y = 0|X = 0)P (X = 0) = (1− δ)(1− δ)

P (X = 0, Y = 1) = P (Y = 1|X = 0)P (X = 0) = δ(1− δ)

P (X = 1, Y = 0) = P (Y = 0|X = 1)P (X = 1) = γδ

P (X = 1, Y = 1) = P (Y = 1|X = 1)P (X = 1) = (1− γ)δ .



One can check that this is indeed a valid probability mass function by verifying that
∑

X,Y P (X, Y ) =
1.

Part (b): The marginal mass functions P (X) and P (Y ) are given by P (X) =
∑

y P (X, Y =
y) and P (Y ) =

∑

x P (X = x, Y ). Using these definitions we find

P (X = 0) =
∑

y

P (X = 0, Y = y) = 1− 2δ + δ2 + δ − δ2 = 1− δ

P (X = 1) =
∑

y

P (X = 1, Y = y) = δ

P (Y = 0) = (1− δ)2 + γδ

P (Y = 1) = δ − δ2 + δ − γδ = 2δ − δ2 − γδ .

To be independent would require that P (X, Y ) = P (X)P (Y ). That this is not true can be
seen by taking X = 0 and Y = 0. We then see that

P (X = 0, Y = 0) = (1− δ)2 ,

while from above
P (X = 0)P (Y = 0) = (1− δ)

(

(1− δ)2 + γδ
)

,

which are not equal, showing X and Y are not independent. Nor are they identically dis-
tributed since in general P (X = 0) = 1− δ 6= P (Y = 0) = (1− δ)2 + γδ.

Exercise 8 (the vending machine example continued)

Part (a): To show that {X(n)} is not a Markov chain it suffices to show that

P{X(2) = 0|X(1) = 0, X(0) = 1} 6= P{X(2) = 0|X(1) = 0} .

Here I have chosen to start the chain at time 0. The left hand side of the above from the
problem statement is q01 = 1

2
, while the right hand side can be obtained by marginalizing

out X(0) or

P{X(2) = 0|X(1) = 0} = P{X(2) = 0|X(1) = 0, X(0) = 0}P{X(0) = 0}
+ P{X(2) = 0|X(1) = 0, X(0) = 1}P{X(0) = 1}
= q00P{X(0) = 0}+ q01P{X(0) = 1}

=
3

4
P{X(0) = 0}+ 1

2
(1− P{X(0) = 0})

=
1

2
+

1

4
P{X(0) = 0} 6= q01 =

1

2
,

unless P{X(0) = 1} = 0 which is a very special initial condition for our system to start in.
For example, taking P{X(0) = 1} = 1 (meaning that with certainty our system starts in the
working state) the above right hand side would not equal q01 and {X(n)} is not a Markov
chain.
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Figure 9: The transition diagram for Exercise 8.

Part (b): Our enlarged state space consists of the ordered pairs (0, 0), (1, 0), (0, 1), and
(1, 1) and has a transition diagram given by Figure 9. The fact that this is a Markov chain
can be seen by the given definition of the transitions probabilities associated with the process
{X(n)}. For example since P{X(n+ 1) = 0|X(n− 1) = j,X(n) = k} is equivalent to

P{(X(n+ 1), X(n)) = (0, k)|(X(n), X(n− 1)) = (k, j)} = qjk ,

and
P{(X(n+ 1), X(n)) = (1, k)|(X(n), X(n− 1)) = (k, j)} = 1− qjk .

The state defined by the ordered pair (X(n+ 1), X(n)) depends only on the previous value
of this vector.

Part (c): If our machine is working on Monday and Tuesday in terms of the enlarged space
we are in the state (0, 0). The question as to whether our machine will be working on Thurs-
day means that on Thursday it will be in the state (0, 0) or (0, 1) after two transitions. These
two transitions are from the state indexed by (Monday,Tuesday), to (Tuesday,Wednesday),
to (Wednesday,Thursday). Thus to find our probability we sum all possible paths in our
enlarged state space that move from the current state of (0, 0) to a final state of either (0, 0)
or (1, 0) in two steps. We have only two such paths given by

(0, 0) → (0, 0) → (0, 0) with probability q200
(0, 0) → (0, 1) → (1, 0) with probability (1− q00)q01 .

Thus the total probability is

q200 + (1− q00)q01 =

(

3

4

)2

+

(

1

4

)(

1

2

)

=
11

16
.

Exercise 9 (bold play v.s. timid play)

Part (a): For bold play we calculated in the book the probability of winning in six or fewer
rounds to be

B6(p) = p3 + p3q ,
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Figure 10: A plot of the ratio B6(p)/T6(p) as a function of the probability of winning each
trail p.

while for timid play we found this same thing given by

T6(p) = p4(1 + 3pq) .

So we see that the desired ratio

B6(p)

T6(p)
=

1 + q

p(1 + 3pq)
.

For value of p between 0 and 1 this ratio is plotted in Figure 10

Part (b): In Figure 10, we see that this ratio is always larger than zero. The sim-
ple calculations for and the plot for this problem are performed in the MATLAB script
chap 6 prob 9.m.

Exercise 10 (the genetic chain example)

From the genetic chain example we calculated transition probabilities pij given by

pij =

(

2i
j

)(

2N − 2i
N − j

)

(

2N
N

) .

for 0 ≤ i ≤ N and max(0, N−2(N − i)) ≤ j ≤ min(2i, N) where the states i and j represent
the number of normal genes. The lower limit of j is obtained by recognizing that if we take
as many bad genes as possible we will obtain the smallest number of good genes.

When N = 3 we compute

(

2N
N

)

=

(

6
3

)

= 20 and we can compute each pij in tern to
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Figure 11: The transition diagram for Exercise 10.

get the one step transition probability matrix given by

P =









1 0 0 0
1
5

3
5

1
5

0
0 1

5
3
5

1
5

0 0 0 1









and a transition diagram given by Figure 11. The simple calculations for this problem are
performed in the MATLAB script chap 6 prob 10.m.

Exercise 11 (the inventory model example)

With an inventory cap of S = 2 and a restocking value of s = −1 our possible states are
2, 1, 0,−1 and our daily demand is for 0 or 1 item. Then with p the probability we have a
demand for an item (and q the complement probability) our transition diagram looks like
that in Figure 12.

This Markov chain has a transition diagram given by (with the states ordered as 2, 1, 0, and
−1) as

P =









q p 0 0
0 q p 0
0 0 q p
q p 0 0









.

Exercise 12 (simulating the inventory example)

Using the starting value of x0 = 3, an inventory cap S = 3, a restocking threshold of s = 0, a
stochastic demand D(n) we can simulate our inventory example using the following recursion
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Figure 12: The transition diagram for Exercise 11.

formula

X(n+ 1) =

{

X(n)−D(n+ 1) if X(n) > s
S −D(n+ 1) if X(n) ≤ s

=

{

X(n)−D(n+ 1) if X(n) > 0
3−D(n+ 1) if X(n) ≤ 0

,

for n ≥ 0. The stochastic demandD(n) can be simulated using the random numbers supplied
for this problem to obtain the following five demands:

1 , 1 , 1 , 2 , 2 .

Using these demands and the above recurrence relation we can compute the value of the
next state for each of the five days. The logic to do this is coded up in the MATLAB
script chap 6 prob 12.m. When this script is run we obtain the sequence of states X(n) for
0 ≤ n ≤ 5 given by:

3 , 2 , 1 , 0 , 1 , −1 .

Exercise 13 (example stochastic matrices)

Recall that a Markov chain is irreducible if every state communicates with every other state.
Two states communicate if i → j and also j → i.

The Matrix P1: For P1 we have a transition diagram given by Figure 13. We have two
classes of states {1, 3} and {2} both of which are ergodic. The class consisting of {1, 3}
is periodic with period 2, while the class {2} is not periodic. The standard form for the
transition matrix consists of of grouping states by classes such that the ergodic classes come
before the transient classes. Thus for P1 we have

P1 =





1 0 0
0 1

2
1
2

0 3
4

1
4



 .
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Figure 13: The transition diagram for Exercise 13 under transition matrix P1.
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Figure 14: The transition diagram for Exercise 13 under transition matrix P2.

The Matrix P2: For P2 we have a transition diagram given by Figure 14. The irreducible
Markov chains in this example are P2 only. For P2 our matrix is irreducible and the only
class is {1, 2, 3} which is ergodic and periodic with period 2. For P2 since it is irreducible
the form given is already in standard form.

The Matrix P3: For our matrix P3 our the classes of states are given by {1, 2, 3}, {4}, and
{5}. The class {1, 2, 3} and {4} are transient, while the state/class {5} is absorbing. The
standard form for the transition matrix consists of of grouping states by classes such that the
ergodic classes come before the transient classes. For P3 we will list our states as 5, 4, 1, 2, 3
to get

P3 =













1 0 0 0 0
1
2

0 0 0 1
2

1
8

0 1
2

1
4

1
8

0 0 1
3

1
3

1
3

0 0 1
4

1
4

1
2













.

The Matrix P4: For the matrix P4 the classes of states are given by {1, 5} and {2, 3, 4}.
Then both classes are ergodic. The class {1, 5} is periodic with period 1 while the class
{2, 3, 4} is periodic with period 2. The standard form for the transition matrix consists of
of grouping states by classes such that the ergodic classes come before the transient classes.
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Figure 15: The transition diagram for the transition matrix P3.

1 2 3 4 51
2

1
2

1
2

1
2

1
8

3
4

1
8

3
4

1
4

1
2

1
2

Figure 16: The transition diagram for the transition matrix P4.
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Figure 17: The transition diagram for Exercise 14.

For P4 we will list our states in the order 1, 5, 2, 3, 4 to get

P4 =













1
2

1
2

0 0 0
1
2

1
2

0 0 0
0 0 1

2
0 1

2

0 0 3
4

1
8

1
8

0 0 1
4

0 3
4













.

Exercise 14 (flipping a fair coin)

We begin by defining a Markov chain where the state represents the number of consecutive
heads. Thus for this problem the possible states are 0, 1, 2, 3 and the transition diagram for
this process looks like that in Figure 17 (where p is the probability we obtain a head on a
single flip of the coin).

This Markov chain has a one-step transition probability matrix given by (with the order of
the states 0, 1, 2, 3)

P =









q p 0 0
q 0 p 0
q 0 0 p
0 0 0 1









.

Now the state 3 is absorbing and the states {0, 1, 2} are transient. So to write the transition
probability in standard form we reorder the states such that the absorbing states are first.
That is, we take the ordering of the states to be 3, 0, 1, 2 to get

P =









1 0 0 0
0 q p 0
0 q 0 p
p q 0 0









.

It is this matrix that will answer questions regarding the expected number of times a given
state will be visited and the expected number of total steps taken until an absorbing state
is reached. To determine these answers we need to partition the above matrix into the block



matrix

[

I 0
R Q

]

, from which we see that R =





0
0
p



, and Q =





q p 0
q 0 p
q 0 0



.

Part (a): The number of expected tails we will obtain before we get three heads is the
expected number of times we will visit state 0, since each time we visit that state will have
had to have flipped a tail to land there. In general the expected number of times we visit a
state j starting at a state i is given by the “(i, j) component” of the matrix N = (I −Q)−1.
Computing this inverse we find

(I −Q)−1 =





1− q −p 0
−q 1 −p
−q 0 1





−1

=





p −p 0
−(1 − p) 1 −p
−(1 − p) 0 1





−1

=
1

p3





1 p p2

1− p2 p p2

1− p p(1− p) p2



 .

This matrix inverse is done in the Mathematica file chap 6 prob 14.nb. The expected of
times we visit state 0 starting from state 0 is the (1, 1) component of the matrix (I −Q)−1.
We find

E0[V0] =
1

p3
= 8 ,

when we assume a fair coin p = 1/2.

Part (b): The number of flips we expect to make would be the expected number total
number of flips taken starting in state 0 to get to the state 3. This is given by the sum of
the elements in the first row of (I −Q)−1 or

1

p3
(1 + p + p2) = 8(1 +

1

2
+

1

4
) = 14 .

Part (c): If the first flip comes up heads we have now moved to state 1 and we desire to
evaluate E1[V0] or the expected number of visits to state 0 given that we start in state 1.
From the matrix (I −Q)−1 this it the (2, 1) element or

1− p2

p3
=

1

p3
− 1

p
= 8− 2 = 6 .

which is smaller than the result from Part (a) as expected since starting in state 1 we are
one step closer to our goal of being in state 3.

Part (d): As in Part (a) this is E1[W ] or the sum of the second row of the (I−Q)−1 matrix.
We find

1

p3
(1− p2 + p+ p2) = 8(1 +

1

2
) = 12 ,

smaller than in Part (b) as expected.



Exercise 15 (standard form for the genetic chain)

Part (a): In Exercise 10 (above) we computed the one-step transition matrix and the
transition diagram for this Markov chain. This chain is not irreducible since states i = 0
and i = 3 are absorbing. In addition, the states {1, 2} form a transient class. Because the
class {1, 2} is transient eventually the descendants end in states i = 0 or i = 3 i.e. will have
all normal or abnormal genes.

Part (b): In standard form we write the ergodic classes (in this case these are absorbing)
before the transient classes. For this example we choose to list the states in the order 0, 3, 1, 2
and find our one step transition probability in that case given by

P =









1 0 0 0
0 1 0 0
1
5

0 3
5

1
5

0 1
5

1
5

3
5









.

Block partitioning this matrix as

[

I 0
R Q

]

we find R = 1
5
I and Q = 1

5

[

3 1
1 3

]

so that

N = (I −Q)−1 = 5
3

[

2 1
1 2

]

.

Exercise 16 (the probability we end with various gene configurations)

Part (a): We desire to calculate the probability we end in state i = 3 (all normal subgenes)
given that we start in state i = 2 (we have two normal subgenes). The solution to this is an
appropriate element of the matrix NR. Computing the matrix NR we find

NR = (I −Q)−1R =
1

3

[

2 1
1 2

]

.

The rows of NR are indexed by the initial states 1, 2 and the columns of NR are indexed by
the final states 0, 3 we see that the probability we desire is the component (2, 2) (one based)
of the matrix NR or the value 2

3
.

Part (b): The expected number of generations before we end in any absorbing state given
we start in state i is given by summing the appropriate row in the (I −Q)−1 matrix. Since
we are told we start in the state i = 2 we want to sum the second row of N . When we do
that we find

E2[W ] =
5

3
(1 + 2) = 5 .

Exercise 17 (standard form for bold play)

Part (a): The single step transition diagram for bold play is shown in Figure 6.6 in the
book. There we see that the states 0 and 5 are absorbing and the states 1, 2, 3, and 4 are



transient. Thus if we order our states as 0, 5, 1, 2, 3, 4 we have a standard form one-step
transition matrix P of the form

P =

















1 0 0 0 0 0
0 1 0 0 0 0
q 0 0 p 0 0
q 0 0 0 0 p
0 p q 0 0 0
0 p 0 0 q 0

















.

For P in standard form we look for a block decomposition given by

[

I 0
R Q

]

, from which

we see that for the matrix P above we have R =









q 0
q 0
0 p
0 p









, and Q =









0 p 0 0
0 0 0 p
q 0 0 0
0 0 q 0









.

Part (b): Using the above Q we find

Q2 =









0 p 0 0
0 0 0 p
q 0 0 0
0 0 q 0

















0 p 0 0
0 0 0 p
q 0 0 0
0 0 q 0









=









0 0 0 p2

0 0 pq 0
0 pq 0 0
q2 0 0 0









,

and that

Q3 = QQ2 =









0 p 0 0
0 0 0 p
q 0 0 0
0 0 q 0

















0 0 0 p2

0 0 pq 0
0 pq 0 0
q2 0 0 0









=









0 0 p2q 0
pq2 0 0 0
0 0 0 qp2

0 q2p 0 0









,

and finally

Q4 = QQ3 =









0 p 0 0
0 0 0 p
q 0 0 0
0 0 q 0

















0 0 p2q 0
pq2 0 0 0
0 0 0 qp2

0 q2p 0 0









=









p2q2 0 0 0
0 p2q2 0 0
0 0 q2p2 0
0 0 0 p2q2









= p2q2I .

One way to compute the expression (I −Q)−1 is to use its power series as

(I −Q)−1 = I +Q−Q2 +Q3 −Q4 + · · · .

To do this we need to be able to compute powers of the matrix Q. If we write every integer
n as n = 4m+ p with 0 ≤ p ≤ 3 we see that

Q4m+p = (Q4)mQp = (p2q2I)mQp = p2mq2mQp .

So the inverse (I −Q)−1 can be written as four terms

(I −Q)−1 =
∞
∑

m=0

Q4m +Q
∞
∑

m=0

Q4m + Q2
∞
∑

m=0

Q4m +Q3
∞
∑

m=0

Q4m .



The first summation above represents terms all with p = 0 (all powers of Q’s are multiples
of 4) the second summation above represents all terms with p = 1 (all powers of Q can be
expressed as 4m+ 1) etc. We then see that

(I −Q)−1 = (I +Q+Q2 +Q3)
∞
∑

m=0

Q4m

= (I +Q+Q2 +Q3)
∞
∑

m=0

(p2q2)m

= (I +Q+Q2 +Q3)

(

1

1− p2q2

)

=
1

1− p2q2









1 p p2q p2

pq2 1 pq p
q pq 1 qp2

q2 q2p q 1









.

Part (c): The expected length of the game is the number of steps taken until an absorbing
state is reached. Since we start in state 1, to compute this we sum the first row of the
(I −Q)−1 matrix to find

1 + p+ p2q + p2

1− p2q2
. (28)

Part (d): The probability of getting to state 5 starting in state 1 is given by the (1, 2)th
element of the (I −Q)−1R matrix. Computing this matrix we find

(I −Q)−1R =
1

1− p2q2









1 p p2q p2

pq2 1 pq p
q pq 1 qp2

q2 q2p q 1

















q 0
q 0
0 p
0 p









=
1

1− p2q2









q + qp p3q + p3

pq3 + q p2q + p2

q2 + pq2 p+ qp3

q3 + q3p pq + p









.

So the (1, 2)th element of the above matrix is given by

p3(1 + q)

1− p2q2
. (29)

This is the same result as obtained using path analysis in Example 6.8 from the book.

Part (e): When we evaluate Part (c) and (d) for the various probabilities of winning p
considered in Table 6.3 from the book

0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

0.0149 0.0490 0.1133 0.2143 0.3533 0.5227

1.3140 1.5507 1.8319 2.1429 2.4579 2.7397

These agree quite well with the simulation results in Table 6.3. They are calculated in the
MATLAB script chap 6 prob 17.m.



Exercise 18 (standard form for the gamblers ruin problem)

Part (a): For the gamblers ruin example we have a transition diagram given in Figure 6.3
of the book. From there we see that the states 0 and N are absorbing while all others are
transient. When N = 5 writing the states in the order 0, 5, 1, 2, 3, 4, we have a standard
form transition matrix P given by

P =

















1 0 0 0 0 0
0 1 0 0 0 0
q 0 0 p 0 0
0 0 q 0 p 0
0 0 0 q 0 p
0 p 0 0 q 0

















.

Partitioning this as

[

I 0
R Q

]

we have R =









q 0
0 0
0 0
0 p









and Q =









0 p 0 0
q 0 p 0
0 q 0 p
0 0 q 0









.

Part (b): When p = 3/10 and p = 7/10 we can explicitly compute (I −Q)−1. This is done
in the Mathematica file chap 6 prob 18.nb.

Part (c): The win probability, starting in any given state, can be determined by the elements
of (I −Q)−1R. This matrix is of dimension 4× 2. The state 1 corresponds to the first row
of this matrix. The final state 5 corresponds to the the second column of this matrix. We
calculate the win probabilities when p = 3/10 and p = 7/10 to be

0.0195 and 0.5798 .

The average game duration starting in the state 1 is given by the sum of the first row of the
matrix (I −Q)−1. We find that under p = 3/10 and p = 7/10 these sums are given by

2.255 and 4.747 .

In the gamblers ruin simulation results we find when p = 3/10 a win frequency of 0.017 and
an expected game length of 2.21, while when p = 7/10 we find a win frequency of 0.582 and
an expected game length of 4.81. Both agree quite well with the analytic results presented
above.

Exercise 19 (winning with bold or timid play)

Part (a): The probability we win under bold play in the gamblers ruin problem is calculated
in Exercise 17 Equation 29. For timid play following the same procedure as in Exercise 17, if
we draw a Markov chain for this strategy we can follow the same methods there and compute
T (p), the probability we win under timid play. However, if we recognize that under the timid



play policy the game is equivalent to the gamblers ruin game where we in fact calculated
T (p) for p = 3/10 and p = 7/10 in Exercise 18. Using both these results we calculate

B(0.3)

T (0.3)
=

0.049

0.0195
= 2.512 and

B(0.7)

T (0.7)
=

0.5227

0.5798
= 0.901 .

Part (b): The simulations in Examples 6.2 and 6.5 in the book give ratios of these proba-
bilities as

B̂(0.3)

T̂ (0.3)
=

0.042

0.017
= 2.4706 and

B̂(0.7)

T̂ (0.7)
=

0.483

0.582
= 0.8299 ,

which are quite close to the results calculated above.

Part (c): In Exercise 9 we looked for the probability we win in six or fewer rounds while
in the above we allow an infinite number of rounds. We found earlier that B6(p) ≥ T6(p)
for all p, while the calculation above found that when p = 0.7, B(p) < T (p). There is no
contradiction since in the latter expression we are considering an infinite number of plays.
Thus with a small probability of winning each round p bold play is to be preferred while
with large p timid play is the better policy.

Exercise 20 (maximal profit from our vending machine)

The vending machine repair model has a one-step transition probability matrix P of

P =

[

1− δ δ
γ 1− γ

]

,

which since this Markov chain is regular has a unique stationary vector of

[ γ
δ+γ

δ
δ+γ

]

.

This stationary distribution determines the long term time average of the probability we are
in the given state, so our expected average profit under the description given here is

Profit[γ, δ] = 200

(

γ

δ + γ

)

−
(

10

1− γ

)(

δ

δ + γ

)

.

It is this expression we desire to maximize with respect to γ. Taking the γ derivative and
setting the result equal to zero we find

Profit[γ, δ]

dγ
=

200

δ + γ
− 200γ

(δ + γ)2
− 10

(1− γ)2

(

δ

δ + γ

)

+
10δ

(1− γ)(δ + γ)2
= 0 .

Taking a breakdown rate of δ = 0.2 we can use the MATLAB function fsolve to find the
solution to the above equation. We find a solution given by γ = 0.8 and gives an optimal
profit of 20. This calculation is done in the MATLAB script chap 6 prob 20.m.



Exercise 21 (the machine maintenance model)

Part (a): The one-step transition matrix for this example is given by

P =





1− δ δ(1− ǫ) δǫ
0 1− φ φ
γρ (1− γ)ρ 1− ρ



 =





4
5

3
50

7
50

0 2
5

3
5

8
25

2
25

3
5



 ,

when we put in the given numbers.

Part (b): The stationary distribution α is the unique row vector, α, such that αP = α and
has a sum of components equal to one. Writing the steady state conditions as

α(P − I) = 0

α





1
1
1



 = 1 .

Taking the transpose of each equation gives

(P T − I)αT = 0
[

1 1 1
]

αT = 1 .

If we denote α as the row vector given by (a, b, c) the system above becomes in terms of the
components a, b, c becomes the following









−δ 0 γρ
δ(1− ǫ) −φ (1− γ)ρ

δǫ φ −ρ
1 1 1













a
b
c



 =









0
0
0
1









.

Solving this system using Gaussian elimination or something equivalent gives





a
b
c



 =
1

217





120
22
75



 =





0.5530
0.1014
0.3456



 .

These calculations are done in the MATLAB file chap 6 prob 21 N 22.m.

Part (c): Recalling what the given state definitions mean for this problem we have that the
ratio of the number of days the machine is in good working order relative to that of when
its it poor working order to be

a

b
=

0.5530

0.1014
= 5.454 ,

while the number of days the machine is in good working order relative to the number of
days the machine is broken to be

a

c
=

0.5530

0.3456
= 1.600 .



Exercise 22 (additional information on the machine maintenance chain)

Part (a): The expected number of days between breakdowns is the expected amount of
time our system spends in states 0 (working and in good condition) or 1 (working in poor
condition) before returning to state 2 (out of order). This is the mean recurrence time for
state 2 and is given by

1

c
=

1

0.3456
= 2.89 .

Part (b-d): This is the expected number of steps that will be taken (starting in state 0)
until we reach state 2 and is given by the (1, 3) component of the R matrix i.e. the value
R02. So to answer questions like this we need to compute the entries of the matrix R by
solving the matrix equation (I − P )M = U −D, for the matrix M which is related to R by
M = R−D. We begin by computing I − P to find

I − P =





1/5 −3/50 −7/50
0 3/5 −3/5

−8/25 −2/25 2/5



 .

We next compute the matrix U −D is given by

U −D =





−97/120 1 1
1 −195/22 1
1 1 −142/75



 .

Recall that U is a matrix of all ones and D is a diagonal matrix with the mean recurrence
time for state i for the element Dii.

To find the matrix M we must explicitly look for a matrix that has zero diagonal elements.
Thus we must solve




1/5 −3/50 −7/50
0 3/5 −3/5

−8/25 −2/25 2/5









0 T01 T02

T10 0 T12

T20 T21 0



 =





−97/120 1 1
1 −195/22 1
1 1 −142/75



 .

Multiplying the two matrices on the left hand side we obtain




− 3
50
T10 − 7

50
T20

1
5
T01 − 7

50
T21

1
5
T02 − 3

50
T12

3
5
T10 − 3

5
T20 −3

5
T21

3
5
T12

− 2
25
T10 +

2
5
T20 − 8

25
T01 +

2
5
T21 − 8

25
T02 − 2

25
T12



 =





−97/120 1 1
1 −195/22 1
1 1 −142/75



 .

Solving the easy equations first we see that by equating the (2, 2) component on both sides
gives T21 = 5

3

(

195
22

)

= 14.77. The equation from the (2, 3) component gives T12 = 5
3
(1) =

1.666. The (1, 2) component then gives

T01 = 5

(

1 +
7

50
T21

)

= 15.3409 .

The (1, 3) component gives

T02 = 5

(

1 +
3

50
T12

)

= 5.50 .
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Figure 18: The transition diagram for Exercise 23.

Finally, the (1, 1) and (2, 1) equations must be considered together since they are more
coupled to find T10 and T20. Solving this system we find

T10 = 5.2083 and T20 = 3.5417 ,

and the matrix M becomes

M =





0 15.3409 5.5000
5.2083 0 1.6667
3.5417 14.7727 0



 .

so that R = M +D then becomes

R =





1.8083 15.3409 5.5000
5.2083 9.8636 1.6667
3.5417 14.7727 2.8933



 .

Using the R matrix we see that if we are in good working order (in state 0) the number of
expected days until we enter state 2 (broken down) is R02 = 5.5. If we are in poor working
condition (in state 1) the number of days until we enter state 0 (working again) is given by
R10 = 5.208. Finally, if we are not working (in state 2) the expected number of days until
we are working again is given by R20 = 3.54.

These calculations are performed in the MATLAB script chap 6 prob 21 N 22.m.

Exercise 23 (a given Markov chain)

Part (a): The transition diagram for the given P can be seen in Figure 18. For a Markov
chain to be regular means it is irreducible and aperiodic. This chain is aperiodic because
every path is not a multiple of an integer period and this chain is irreducible since every
state communicates with every other state.

Part (b): The stationary distribution is the unique row vector π = (a, b, c) that satisfies



πP = π and satisfies a+ b+ c = 1. Considering πP = π we have in equation form
(

1

3

)

b = a

(

1

2

)

a + c = b

(

1

2

)

a+

(

2

3

)

b = c .

The first equation gives b = 3a. The second equation gives

c = b− 1

2
a =

5

2
a .

The third equation becomes

b =
3

2

(

c− 1

2
a

)

= 3a .

Then the constraint that a+ b+ c = 1 in terms of the variable a becomes

a+ 3a+
5

2
a = 1 ⇒ a =

2

13
.

Then b and c are given by

b = 3

(

2

13

)

=
6

13

c =
5

2

(

2

13

)

=
5

13
.

Thus our stationary distribution is

π =
[

2
13

6
13

5
13

]

.

Part (c): The recurrence for state i is the number of steps taken before we return to state
i. I would guess that state 2 has the shortest mean recurrence time since with probability
one we end up there if we land in state 3. That is many paths seem to lead to state 2. I
would expect state 1 to have the longest mean recurrence time since since we can only get
there from state 2 and only then with a probability of 1/3. Thus few paths go to state 1.
From the stationary distribution found above we calculate the mean recurrence times to be

[

R11 R22 R33

]

=
[

1/a 1/b 1/c
]

=
[

13/2 13/6 13/5
]

=
[

6.5 2.16 2.6
]

,

which verifies our hypothesis on which states have the longest/shortest recurrence times.

Exercise 24 (where to place our goal)

I would expect that the state with the largest mean recurrence time would take the longest
time to visit and if the goal where placed there result in the smallest expect payoff. From
Exercise 23 above I would expect that that placing our goal at state 3 which has a mean



recurrence time of 2.6 v.s. state 2 which has a mean recurrence time of 2.16, would yield the
highest long run profit.

To check this we compute the mean first entrance times i.e. the elements of the matrix Rij =
Ei[Tj ], by solving for the matrix M (which is related to R) in the system (I−P )M = U−D.
In the MATLAB script chap 6 prob 24.m we compute

I − P =





1 −1/2 −1/2
−1/3 1 −2/3
0 −1 1



 ,

and

U −D =





−11/2 1 1
1 −7/6 1
1 1 −8/5



 .

So that the equation (I − P )M = U −D then becomes




1 −1/2 −1/2
−1/3 1 −2/3
0 −1 1









0 T12 T13

T21 0 T23

T31 T32 0



 =





−11/2 1 1
1 −7/6 1
1 1 −8/5



 .

Multiplying the two matrices on the left hand side we obtain




−1
2
T21 − 1

2
T31 T12 − 1

2
T32 T13 − 1

2
T23

T21 − 2
3
T31 −1

3
T12 − 2

3
T32 −1

3
T13 + T23

−T21 + T31 T32 −T23



 =





−11/2 1 1
1 −7/6 1
1 1 −8/5



 .

From this we see that the equation for the (3, 2) component gives T32 = 1. The equation for
the (3, 3) component gives T23 =

8
5
. The (2, 2) equation gives

T12 = −3

(

−7

6
+

2

3
T23

)

=
3

10
.

The (2, 3) equation is

T13 = −3 (1− T23) =
9

5
.

We need to now solve for T21 and T31 together since they are more tightly coupled than
the previously considered components of T . Using the equations given by the (1, 1) and the
(2, 1) components we find

T21 = 5 and T31 = 6 .

Using all of these results we find that our matrix M is given by

M =





0 3/10 9/5
5 0 8/5
6 1 0



 ,

and the matrix R is given by

R =





13/2 3/10 9/5
5 13/6 8/5
6 1 13/5



 .

From which we see starting in state 1 on average it takes 3/10 to first get to state 2 and 9/5
amount of time to get to state 3. A goal at state 3 would yield a better long term profit.



Exercise 25 (the weak form of the law of large numbers)

Part (a): For the repeated independent trials chain the one-step probability matrix P does
not depend on on the current state i and its (i, j)th element Pij is equal to πj . Thus the
matrix P has constant rows, where each row is equal to the steady-state transition probability
π.

To be regular a Markov chain must be aperiodic and irreducible. This Markov chain is
obviously aperiodic since we can get from any state i to any other state j in one jump and
it is irreducible since every state communicates with every other. This is assuming πj 6= 0
for all j.

The stationary distribution is the unique row vector α such that αP = α and has components
that sum to one. If we hypothesis that α = π, we can verify that this is true by considering
the jth component element of the product αP . We find

(αP )j =

n
∑

k=1

αkPkj =

n
∑

k=1

πkπj = πj

n
∑

k=1

πk = πj .

So we see that πP = π, showing that the stationary distribution α is the same as the state
transition distribution π.

Part (b): At a heuristic level the weak form of the law of large numbers states that if we
perform an experiment n times and count the number of times that a given outcome occurs,
no the ratio of this number to n should approach the probability of this outcome as n goes
to infinity. Theorem 6.8 is of the same flavor as this law in that the expression

Aj(n) =
1

n

n
∑

t=1

Ij(t) ,

counts the number of times we visit state j and Theorem 6.8 states that this limit as n → ∞
this is equal to the jth component of the stationary distribution πj i.e. the long term
proportion of time we find our chain in the state j.

Exercise 26 (simulating the genetic chain)

To do this problem we will draw samples from the Markov chain for the genetic chain using
the MATLAB function, mc sample.m, found in Kevin Murphy’s Bayes’ Net toolbox. This
function generates samples from a Markov chain given an initial probability distribution π0

over the states and a one-step probability transition matrix P .

Part (a): To explore the probability that a decedent will have all normal subgenes we will
generate M Markov chains of N timesteps each and then use the weak form of the law of
large numbers to estimate the probability we end in the third state by computing

P̂2{Game ends at 3} =
#{X(N) = 3}

M
.
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Figure 19: The probability density function of the number of timesteps until we reach an
absorbing state for Exercise 26.

Here the notation “#” means to count the number of times the marker is found to be in
state 3 on the last timestep.

In exercise 16 starting in state i = 2 we found that the exact probability our decedent gene
will eventually have all normal subgenes (end in state i = 3) is given by

P2{ Game ends at 3 } =
2

3
.

The approximate value obtained via. Monte Carlo simulation with 10000 chains is 0.66818
and is quite close to the exact value.

Part (b): To compute the distribution of the number of generations before a descendant has
either all normal (X(N) = 3) or all abnormal (X(N) = 0) subgenes we perform the following.
For each sample we will compute the first index i∗ such that X(i∗) = 3 or X(i∗) = 0. This
index is one larger than the number of timesteps we must take to get to a terminal state.
The average of these values of i∗ − 1 gives the desired statistic to compare with the result in
Exercise 16. The individual samples provide information on the distribution of timesteps.

From Exercise 16 the expected number of generations before a descendant has either all
normal or all abnormal subgenes is given by

E2[W ] =
∑

j∈T
n2j = 5 .

The approximate value we obtain when we average all the Monte Carlo chains is 4.9893.
The standard deviation of these samples is given by 4.428. The probability density of the
number of timesteps until we reach an absorbing state is shown in Figure 19.

These calculations are done in the MATLAB file chap 6 prob 26.m.



Chapter 7: The Poisson Process

Exercise Solutions

Exercise 1 (some electronic components)

Part (a): An exponential distribution with mean 1000 hours is given by

pT (t) =
1

1000
e−

1
1000

t for t ≥ 0 ,

and is zero otherwise. Then the probability that a component will fail during the time period
(900, 1000) is given by

P{900 < T < 1000} =

∫ 1000

900

pT (t)dt = FT (1000)− FT (900) ,

where FT (·) is the cumulative distribution function for an exponential random variable and
is given by

FT (t) = P{T < t} = 1− e−
1

1000
t .

Using this we find that

P{900 < T < 1000} = (1− e−1)− (1− e−0.9) = e−0.9 − e−1 = 0.0386 .

Part (b): By the memoryless property of the exponential random variable the fact that the
component is functioning after 900 hours of service makes no difference to the probability
that the component will fail at any given time t∗. Mathematically this is expressed as

P{T < 1000|T > 900} = P{T < 100} = FT (100) = 1− e−0.1 = 0.0951 .

Exercise 2 (a serially connected machine)

If we introduce A and B as exponential random variables denoting the lifetime of the com-
ponents A and B then the lifetime of the two component machine with A and B in serial
is given by the random variable C where C = min(A,B). From the discussion in the book
if both A and B are exponentially distributed with failure rates α and β, then the random
variable C is exponentially distributed with a failure rate given by α+ β. Since we are told
that α = 0.01 for this problem this expression is given by 0.01 + β. To have a probability
that our serial machine lasts at least 50 hours requires that

P{C ≥ 50} = 0.5 ,

or
1− P{C ≤ 50} = 0.5 ,



or finally
FC(50) = 0.5 ,

where FC(·) is the cumulative distribution function for the random variable C. Since this is
given by

1− e−50(0.01+β) = 0.5 ,

we can solve for β in the above. When we do this we find that

β =
ln(2)

50
− 0.01 = 0.003862 .

Which gives a mean of 1/β = 258.87 hours. A value of β smaller than this will increase the
chances that the machine is operating after 50 hours.

Exercise 3 (serial lifetime of two exponential components)

The lifetime of he communications satellite will be distributed as the random variable rep-
resenting the minimum of the random variables representing the lifetimes of the two com-
ponents A and B. Since A and B are exponentially distributed with failure rates λ = 2
(per year) and µ = 1 (per year) the random variable representing the minimum of these two
variables is an exponential random variable with failure rate given by λ+ µ = 3 (per year).

Part (a): The probability that the satellite will fail within the first year is given by the
cumulative distribution function of the minimum of A and B. Defining C = min(A,B) we
have that

FC(c) = 1− e−(λ+µ)c ,

so that our desired probability is

FC(1) = 1− e−3 = 0.9502 .

Part (b): Let IA be an indicator random variable denoting if system component A failed
first i.e. IA = 1 if A ≤ B and IA = 0 if A > B. Then we want to compute P{C ≤ 1, IA =
1}. From Lemma 7.1 in the book the random variable C and IA are independent so this
probability becomes

P{C ≤ 1, IA = 1} = P{C ≤ 1}P{IA = 1} =
(

1− e−3
)

(

2

1 + 2

)

= 0.63348 .

where we have used the result from Lemma 7.1 where

P{IA = 1} = E[IA] =
µ

µ+ λ
=

2

3
.



Exercise 4 (a memoryless discrete random variable)

Part (a): A geometric random variable with parameter p is defined as one that has P{X =
k} = qk−1p, for k = 1, 2, · · · . From which we see that

P{X > k} = 1− P{X ≤ k}

= 1−
k
∑

i=1

P{X = i}

= 1−
k
∑

i=1

pqi−1

= 1− p
k−1
∑

i=0

qi

= 1− p

(

qi

q − 1

∣

∣

∣

∣

k

0

= 1− (1− qk) = qk .

Part (b): Now consider the requirement that the random variable X has no memory i.e.

P{X > k +m|X > m} = P{X > k} .

which using the definition of conditional probabilities is equivalent to

P{X > k +m}
P{X > m} = P{X > k} ,

Or multiplying across by the denominator we have

P{X > k +m} = P{X > k}P{X > m} .

Defining the reliability function R(k) = P{X > k} for k ≥ 0, we see that R(·) satisfies

R(k +m) = R(k)R(m) with R(0) = 1 .

Following the steps found in this chapter of the book the unique solution to this functional
equation is given by R(mk) = R(m)k, where m is an integer. Taking m = 1 for convenience
since our function R is defined only at the integers, we have R(k) = R(1)k. Defining q = R(1)
and remembering the definition of the reliability function R our solution is then

P{X > k} = qk .

Thus the random variable X must be a geometric random variable as claimed. Note that this
is slightly different than the problem formulation suggested in the book in that all greater
than or equal signs are replaced with strictly greater than signs this is more consistent with
the continuous case.



Exercise 5 (set descriptions of a Poisson process)

Part (a): For this part of the problem we will evaluate the expression

max{k : Sk ≤ t} .

From the discussion in the book the following two sets are equivalent

{Sn ≤ t} and {N(t) ≥ n} .

Now if we take k to be the largest integer such that Sk ≤ t while Sk+1 > t, we see from the
equivalent two sets above, this means that N(t) ≥ k while N(t) < k + 1. This information
together with the fact thatN(t) is integer valued imply thatN(t) must equal k, i.e. N(t) = k.
These results imply that

max{k : Sk ≤ t} = N(t) ,

as we were to show.

Part (b): For this part of the problem we will evaluate the expression

min{t : N(t) ≥ n} .

As in Part (a) of this problem the following two sets are equivalent

{Sn ≤ t} and {N(t) ≥ n} .

Now if t is the smallest value of t such that N(t) ≥ n, then this means that

N(t− ǫ) < n and N(t) ≥ n ∀ǫ > 0 .

From the equivalent two sets above this means that

Sn > t− ǫ ∀ǫ > 0 and Sn ≤ t ,

or the statement equivalent to this is Sn = t. This implies that min{t : N(t) ≥ n} = Sn.

Exercise 6 (a telephone switchboard)

The information that on average that one call comes every ten minutes is equivalent to
stating that the rate of the Poisson process is given by solving λ(10) = 1, which gives that
λ = 1

10
. The units of which are reciprocal minutes.

Part (a): For this part of the problem we desire to calculate

P{N(10) = 0, N(15)−N(10) = 1} .

By the independent increments property of a Poisson process is given by

P{N(10) = 0}P{N(15)−N(10) = 1} ,



and by the shift-invariant property of a Poisson process (meaning that only the amount of
time elapsed between 15 and 10 seconds is what matters) is equal to

P{N(10) = 0}P{N(5) = 1} = e−1

(

1

2
e−1/2

)

= 0.1115 .

Part (b): The fourth call will happen at a time given by T4 =
∑4

i=1Xi where Xi are
independent exponential random variables all with failure rate λ = 1

10
= 0.1. With this the

expected time of the fourth call will be

E[T4] =
4
∑

i=1

E[Xi] =
4
∑

i=1

1

λ
=

4
∑

i=1

10 = 40 .

Part (c): We desire to compute P{N(20) − N(10) ≥ 2}, which by the shift-invariant
property of the Poisson process is equal to P{N(20− 10) ≥ 2} = P{N(10) ≥ 2}. Now since
all probabilities must add to one we have

1 = P{N(10) = 0}+ P{N(10) = 1}+ P{N(10) ≥ 2} ,

so we find that

P{N(10) ≥ 2} = 1− P{N(10) = 0} − P{N(10) = 1}
= 1− e−1 − e−1 = 1− 2e−1 = 0.2642 .

Part (d): Given that n calls have happened by time t their location within the interval
(0, t) are given by n independent independent uniform (over (0, t)) random variables. Thus
the probability this only call occurred during the last 1/3 of the time interval is given by
1/3.

Part (e): By the independent increments property of the Poisson process, the fact that one
call arrived in the time interval 0 < t < 15 has no affect on what will happen in the next
five minutes. Thus

P{N(20)−N(15) ≥ 1|N(15)−N(0) = 1} = P{N(20)−N(15) ≥ 1}
= P{N(5) ≥ 1}
= 1− P{N(5) = 0}
= 1− e−0.1(5) = 1− e−0.5 = 0.3934 .

Exercise 7 (play till we get struck by lightning)

Sam will be able to play his game if no lightning strikes during the time interval (0, s). This
will happen with probability

P{N(s) = 0} = e−λs .



Since for this problem λ = 3 (per hour) this expression then becomes

P{N(s) = 0} = e−3s .

Since the times s provided are given in minutes they must be converted to fractions of an
hour. For the s’s given we have in fractions of an hour the following

2/60 , 10/60 , 20/60

or
1/30 , 1/6 , 1/3 .

This gives probabilities of

e−1/10 = 0.905 , e−1/2 = 0.606 , e−1 = 0.3678 .

Exercise 8 (surviving two lighting strikes)

In this case Sam can survive at most one lighting strike. Thus the probability that he can
finish his game is now given by

P{N(s) = 0}+ P{N(s) = 1} = e−λs + λse−λs = e−3s(1 + 3s) .

Where we have used the value of λ = 3. Using the values of s given in Problem 7 above (in
terms of fractions of an hour) we find these three probabilities to be

e−1/10

(

1 +
1

10

)

= 0.995

e−1/2

(

1 +
1

2

)

= 0.909

e−1 (1 + 1) = 2e−1 = 0.735

Exercise 9 (the covariance of a Poisson process)

Let {N(t), t ≥ 0} be a Poisson process with rate λ. Then we desire to calculate Cov(N(t), N(s))
which we do by manipulating the expression we desire such that we introduce “increment
variables”. We begin by assuming that t ≥ s. We find

Cov(N(t), N(s)) = Cov(N(t)−N(s) +N(s), N(s))

= Cov(N(t)−N(s), N(s)) + Cov(N(s), N(s)) .

But by the independent increments property of the Poisson process, the random variables
N(t)−N(s) and N(s) are independent, so

Cov(N(t)−N(s), N(s)) = 0 .



In addition we have from the definition of covariance that Cov(N(s), N(s)) = Var(N(s)),
which for a Poisson process is given by λs. Combining these results we find that

Cov(N(t), N(s)) = λs .

In the case when s ≥ t then all of the above manipulations still hold but with t and s
switched. Considering this we find that

Cov(N(t), N(s)) = λmin(s, t) .

Exercise 10 (the conditional distribution of N(s) given N(t) = n)

We are told that {N(t), t ≥ 0} is a Poisson distribution (with rate λ) and we are asked to
find

P{N(s) = m|N(t) = n} .
We are assuming here that both t ≥ s and n ≥ m. We will do this by using the definitions of
conditional probability and properties of the Poisson process. The desired probability above
is equal to (introducing “increment variables”)

P{N(t)−N(s) = n−m,N(s) = m|N(t) = n} .
Which by the definition of conditional probability is equal to

P{N(t)−N(s) = n−m,N(s) = m}
P{N(t) = n} .

By the independent increments properties of the Poisson process the above is equal to

P{N(t)−N(s) = n−m}P{N(s) = m}
P{N(t) = n} .

Finally using the stationary increments property of a Poisson process on the first term in
the numerator of the above fraction, we can simplify the increment variable in the above to
give

P{N(t− s) = n−m}P{N(s) = m}
P{N(t) = n} .

Since we can compute each of these probabilities for a Poisson process we find that the above
equals

P{N(s) = m|N(t) = n} =

(

e−λ(t−s)(λ(t−s))n−m

(n−m)!

)(

e−λs(λs)m

m!

)

(

e−λt(λt)n

n!

)

=
n!

m!(n−m)!

(λ(t− s))n−m(λs)m

(λt)n

=

(

n
m

)

(t− s)n−msm

tn

=

(

n
m

)

(t− s)n−msm

tn−m tm

=

(

n
m

)

(

1− s

t

)n−m (s

t

)m

.



Which we recognize as a binomial random variables with parameters n and p = s
t
as claimed.

Exercise 11 (waiting for the bus)

Part (a): Assuming that the number of people that arrive to wait for a bus is a Poisson
random variable, the probability that there are n people waiting at the bus stop at time t is
given by the standard expression for a Poisson process i.e.

P{N(t) = n} =
e−λt(λt)n

n!
,

which has an expected number of people at time t is given by λt. This is the desired
expression for E[N |T = t].

Part (b): The probability distribution for E[N |T ] is obtained from that from the distribu-
tion of the random variable T . This latter distribution is uniform, so the distribution of the
random variable E[N |T ] will also be uniform (since it is just a multiple of T ). If we denote
the random variable E[N |T ] as X we have

PX(x) =

{

1/λ 0 < x < λ
0 otherwise

,

or a uniform distribution over the range (0, λ).

Part (c): The expectation of N can be computed by conditioning on the random variable
T . We have

E[N ] = E[E[N |T ]] = E[λT ] = λE[T ] =
λ

2
.

Since we know T to be a uniform random variable over (0, 1).

Part (d): To compute the probability that there be no people at the bus stop when the bus
arrives, we can compute this probability by conditioning on the time when the bus arrives.
If the bus arrives at time t, then the probability that no people are there is given by (using
the expression from Part (a) above)

P{N(t) = 0|T = t} = e−λt .

Thus the total probability desired is given by integrating this expression against the distri-
bution function for T (which is uniform over (0, 1)). We find

P{N = 0} =

∫ 1

0

P{N(t) = 0|T = t}dt

=

∫ 1

0

e−λtdt =
e−λt

(−λ)

∣

∣

∣

∣

1

0

=
1− e−λ

λ
.



Chapter 8: Continuous-Time Stochastic Processes

Notes On The Text

Proving that N(t) ≡ N0(τ(t)) is a nonhomogenous Poisson process (page 219)

With the definition of τ given by

τ =

∫ t

0

λ(s)ds ,

we define the stochastic process N(t) by N(t) ≡ N0(τ(t)). Lets now compute the expression
P{N(t+ h)−N(t) = 1}. We find that

P{N(t+ h)−N(t) = 1} = P{N0(τ(t+ h))−N0(τ(t)) = 1}
≈ P{N0(τ(t) + λ(t)h + o(h))−N0(τ(t)) = 1}
≈ 1(λ(t)h+ o(h)) + o(h)

= λ(t)h+ o(h) .

which follows from the third property of Poisson processes (here applied to the Poisson
process N0(t) which has a failure rate of λ = 1). The expression P{N(t + h) − N(t) > 1}
can be evaluated in the same way and shown to be o(h).



Chapter 8: Continuous-Time Stochastic Processes

Exercise Solutions

Exercise 1 (the sum of two Poisson processes)

We will first prove that the sum of two Poisson random variables is a Poisson random variable.
Let X and Y be Poisson random variables with parameters λ1 and λ2 respectively. We can
evaluate the distribution of X +Y by computing the characteristic function of X +Y . Since
X and Y are independent Poisson random variables the characteristic functions of X + Y is
given by

φX+Y (u) = φX(u)φY (u)

= eλ1(eiu−1)eλ2(eiu−1)

= e(λ1+λ2)(eiu−1) .

From the direct connection between characteristic functions to and probability density func-
tions we see that the random variable X + Y is a Poisson random variable with parameter
λ1 + λ2, the sum of the Poisson parameters of the random variables X and Y .

Now for the problem at hand, since N1(t) and N2(t) are both Poisson random variables with
parameters λ1t and λ2t respectively, from the above discussion the random variable N(t)
defined by N1(t)+N2(t) is a Poisson random variable with parameter λ1t+λ2t and thus has
a probability of the event N(t) = j given by

P{N(t) = j} =
e−(λ1t+λ2t)(λ1t+ λ2t)

j

j!
=

e−(λ1+λ2)t((λ1 + λ2)t)
j

j!
,

showing that N(t) is a Poisson process with rate λ1 + λ2.

Exercise 2 (Mark and Twain proofreading)

Part (a): We are told from the problem statement that X(t) is a Poisson process repre-
senting with rate 10 (per hour) the number of mistakes Mark finds after searching for t time
(in hours) and Y (t) is a Poisson process with rate 15 (per hour) representing the number
of mistakes that Twain finds after searching for a time t (in hours). The by Problem 1 the
total number of mistakes found together is given by X(t) + Y (t) is a Poisson process with
rate given by 10 + 15 = 25 (per hour). In one hour, the probability that we find twenty
errors is given by

P{X(1) + Y (1) = 20} =
e−252520

20!
= 0.0519 .

Using the Matlab or Octave command poisspdf.



Part (b): We are told that X(t) + Y (t) = 20 and we want to compute

P{X(t) = k|X(t) + Y (t) = 20} ,
which we can do from the definition of conditional probability. We find that

P{X(t) = k|X(t) + Y (t) = 20} =
P{X(t) = k,X(t) + Y (t) = 20}

P{X(t) + Y (t) = 20}

=
P{X(t) = k, Y (t) = 20− k}

P{X(t) + Y (t) = 20}

=
P{X(t) = k}P{Y (t) = 20− k}

P{X(t) + Y (t) = 20}

=

(

e−10t (10t)k

k!

)(

e−15t (15t)(20−k)

(20− k)!

)

(

20!

e−25t (25t)20

)

=
20!

k!(20− k)!

(10t)k (15t)(20−k)

(25t)20

=

(

20
k

)(

10

25

)k (
15

25

)20−k

,

or a binomial distribution with parameter p = 2
5
and n = 20. Which has an expectation

given by np = 20
(

2
5

)

= 8.

Exercise 3 (defective segments of tape)

WARNING: For some reason I get a different answer than the back of the book
for this problem. I anyone finds anything wrong with my logic below please let
me know.

Part (a): In Example 8.2 from this book we have a probability of a defect begin present in
a length of tape ∆t given by p = λ∆t = (0.001)1 = 0.001 and we have 100

1
= 100 intervals of

length ∆t. Letting N be the number of defects found in the entire length of tape, for this
part of the problem we want to calculate

P{N ≤ 2} = P{N = 0}+ P{N = 1}+ P{N = 2}

=

(

100
0

)

p0(1− p)100 +

(

100
1

)

p1(1− p)99 +

(

100
2

)

p2(1− p)98

= 0.99985 .

Part (b): Using the Poisson approximation to the binomial we can approximate each bino-
mial distribution with a Poisson distribution with a parameter λ = pn = 0.001 · 100 = 0.1
and the probability above becomes

P{N ≤ 2} = P{N = 0}+ P{N = 1}+ P{N = 2}

= e−λ + λe−λ +
λ2

2
e−λ

= 0.99716 .



See the Matlab or Octave function chap 8 ex 3.m for these calculations.

Exercise 4 (a discrete time counting process)

The discrete process B(n) counts the number of times that the random events occurring at
time t = 1, 2, · · · , n occur. We assume that our discrete random process is shift-invariant
meaning that the probability of k events occurring in an interval of length j, and beginning at
index i, i.e. P{N(i+j−1)−N(i) = k} is the same for any starting position i. Mathematically
this is represented as

P{N(i+ j − 1)−N(i) = k} = P{N(j) = k} for 0 ≤ k ≤ j ,

We can (and will) define N(0) to be zero for consistency. Also we assume that our process
has independent increments meaning that if we are given a sequence of integers

0 ≤ i1 < i2 < · · · < in ≤ n

the random variable Xk denoting the number of events that occur in the kth interval

Xk = B(ik+1)−B(ik) for 0 ≤ Xk ≤ ik+1 − ik + 1 ,

are independent. This problem asks us to determine the distribution of the random variables
B(n). That is we desire to compute the value of P{B(n) = k}. This do by introducing
independent increments by recognizing that our desired probability can be written as follows,

P{B(n) = k} = P

{

n−1
∑

l=0

(B(l + 1)− B(l)) = k

}

,

here we have defined B(0) = 0. Note that each increment random variable, defined as
B(l + 1)− B(l) is independent by the independent increments property and from the shift
invariant each of these random variables is characterized by only one number. Specifically,
by the shift invariant property we see that for all l’s we have

P{B(l + 1)− B(l) = i} = P{B(1) = i} ,

and since B(1) can take only only two values (either zero or one) we have the constraint
that 0 ≤ i ≤ 1. Defining p ≡ P{B(1) = 1} and Xl = P{B(l + 1) − B(l)} we see that our
problem of evaluating P{B(n) = k} is equivalent to that of evaluating

P

{

n−1
∑

l=0

Xl = k

}

,

where the random variables Xi are independent Bernoulli trials each with a probability of
success given by p. Thus the random variable B(n) is a binomial random variable with
parameters (n, p) as claimed.



Exercise 5 (passing vehicles)

Part (a): From the discussion in the book the number of trucks on the road counted after
some initial time is a Poisson process with rate pλ = 0.2(1) = 0.2 (per minute). Let X(t) be
this random process. Then we are asked to compute

P{X(t) > 2} = 1− P{X(t) = 0} − P{X(t) = 1}
= 1− e−λpt − e−λpt

= 1− 2e−λpt .

When t = 5 (minutes) the above becomes

P{X(t) > 2} = 1− 2e−0.2(5) = 0.2642 .

Part (b): For an arbitrary t, in this part of the problem we are asked to compute E[N(t)|X(t) =
2], where N(t) is the Poisson process representing the total number of vehicles that pass af-
ter some time t (we can let t = 5 to evaluate the specific expressions). Now to evaluate
the above expectation we introduce a variable we know to be independent of X(t), namely
N(t)−X(t). This unexpected independence property of X(t) and N(t)−X(t) is discussed
in the book. We find that

E[N(t)|X(t) = 2] = E[N(t)−X(t) +X(t)|X(t) = 2]

= E[N(t)−X(t)|X(t) = 2] + E[X(t)|X(t) = 2]

= E[N(t)−X(t)] + 2 .

Where the last step is possible because the random variables N(t) − X(t) and X(t) are
independent. Now the random variable N(t)−X(t) is a Poisson process with rate (1−p)λ =
0.8(1) = 0.8 and thus has an expectation given by (1 − p)λt = 0.8t. When t = 5 we find
that the above expression becomes

E[N(t)|X(t) = 2] = (0.8) · 5 + 2 = 6 .

Part (c): If ten vehicles have passed the probability that two are vans is given by evaluating
a binomial distribution. We find

(

10
2

)

(0.2)2(1− 0.2)8 = 0.3019 .

Exercise 6 (print jobs)

Part (a): Let X(t) be the random variable denoting a count of the number of jobs that go
to the printer. Then X(t) is a Poisson process with rate pλ = 1

5
(3) = 3

5
(per minute). Then

the probability that X(t) = 0 is given by

P{X(5) = 0} = e−
3
5
(5) = e−3 = 0.04978 .



Part (b): For an arbitrary t, in this part of the problem we are asked to compute E[N(t)|X(t) =
4], where N(t) is the Poisson process representing the total number of print jobs that arrive
a the computer center after some time t (we can let t = 5 to evaluate the specific expression
desired for this part of the problem). Now to evaluate the above expectation we intro-
duce a variable we know to be independent of X(t), namely N(t)−X(t). This unexpected
independence property of X(t) and N(t)−X(t) is discussed in the book. We find that

E[N(t)|X(t) = 4] = E[N(t)−X(t) +X(t)|X(t) = 4]

= E[N(t)−X(t)|X(t) = 4] + E[X(t)|X(t) = 4]

= E[N(t)−X(t)] + 4 .

Where the last step is possible because the random variables N(t) − X(t) and X(t) are
independent. Now the random variable N(t)−X(t) is a Poisson process with rate (1−p)λ =
(1− 1

5
)(3) = 12

5
(per minute). The expectation of this random variable at time t = 5 is given

by (1− p)λt = 12
5
· 5 = 12. Thus when t = 5 we find that the above expression becomes

E[N(5)|X(5) = 4] = 12 + 4 = 16 .

Problem 7 (A will take every other one)

Part (a): If we consider the sequence of inter arrival times T1, T2, · · · , Ti, etc, for the original
Poisson process we know that the random variables Ti are exponential distributed with rate
λ. Now if we denote the interarrival times for the worker A as T̂i, since worker A takes every
other arriving event we see that the interarrival times are related to the interarrival times
for the original Poisson Ti process as

T̂1 = T1

T̂2 = T2 + T3

T̂3 = T4 + T5

...

T̂i = Ti + Ti+1 .

Now since both Ti and Ti+1 are exponential random variables the distribution of the random
variable T̂i is given by a gamma random variable with n = 2. That is the density function
of T̂i for i ≥ 2 is given by

pT̂i
(t) =

(λt)2−1λe−λt

Γ(2)
=

(λt)1λe−λt

1!
= λ2te−λt .

Part (b): Since the inter arrival times are not exponentially distributed NA(t) is not a
Poisson process.



Problem 8 (the expectation and variance of a compound Poisson process)

We can represent the amount of money paid out by our insurance company after t time in
weeks as

X(t) =

N(t)
∑

i=1

Yi ,

with Yi exponentially distributed with mean 2000 and N(t) a Poisson process with rate λ = 5
(per week) and time measured in weeks t = 4 (weeks). This type of process is defined as a
compound Poisson process and is discussed in the textbook. There it is shown that

E[X(4)] = µE[N(t)] = µ(λt) ,

where µ is the mean of the random variables Yi. In this problem we have µ = 2000, λ = 5
(per week), and t = 4 (weeks) giving

E[X(4)] = 2000 · 5 · 4 = 40000 .

It is also shown that
Var[X(t)] = λtσ2 + λtµ2 ,

where σ is the standard deviation of the random variables Yi. For exponential random
variables we have that

σ2 = µ2 = 4 · 106 .
So that we see that

Var(X(t)) = 5(4)(4 · 106) + 5(4)(4 · 106) = 1.6 · 108 .

Problem 9 (events from one Poisson process before an event from another)

Part (a): We know that the times between the arrival events (the interarrival times) in any
Poisson process are exponentially distributed. By the memoryless property of the exponential
distribution the absolute value of time does not matter since the arrival of events from t
onward follow the same exponential distribution. From this discussion, starting at a time t
the probability a man enters before a women after this time is the same as the probability
that the next interarrival time for the men’s Poisson process is less than the next interarrival
time for the womens’s Poisson process. If we let M be an exponential random variable
with rate α representing the next interarrival time of the men and W be an exponential
random variable with rate β representing the next interarrival time of the women. Then the
probability we desire to compute is P{M < W}. From the discussion in the book we know
that

P{M < W} =
α

α + β
.

While the complementary result P{M > W} (i.e. that a woman enters first) is given by

P{M > W} = 1− α

α + β
=

β

α + β
, .



This result is also shown in [3]. After either a man or a woman arrives by the memoryless
property of the exponential distribution we are back to the same situation as earlier. That
is the probability that a man enters the store next is given by α

α+β
and that a women enters

the store next is given by β
α+β

. This argument continues to hold true as more people enter
the store.

Now if we consider the arrival of the first women after time t a success, the desired probability
distribution forX , the number of men who enter the store before the first women, is equivalent
to the probability distribution of the number of failure in a sequence of independent Bernoulli
trials (each having a probability of success given by β

α+β
). This is a modified geometric

distribution and we have a probability mass function given by

P{X = k} =

(

β

α + β

)k
β

α + β
for k = 0, 1, · · · ,∞ .

Part (b): From the discussion in Part (a) of this problem and again considering the arrival of
a women to be a “success” we are looking for the probability distribution for S, the number
of Bernoulli trials required to obtain r successes. This prescription describes a negative
binomial random variable and we see that

P{S = k} =

(

k − 1
r − 1

)(

α

α + β

)k−r (
β

α + β

)r

for k = r, r + 1, · · · ,∞ .

Which is the desired result.

Problem 10 (a nonhomogenous Poisson process)

For a nonhomogenous Poisson process with intensity function λ(t) the number of events that
occur between the times t + s and s are given by a Poisson process with a mean

∫ t+s

0

λ(τ)dτ −
∫ s

0

λ(τ)dτ =

∫ t

s

λ(τ)dτ .

That is, the probability we have k events between the times s and t + s is given by

P{N(t+ s)−N(s) = k} =
1

k!

(

e−
∫ t
s
λ(τ)dτ

(
∫ t

s

λ(τ)dτ

)k
)

.

Part (a): In this case, using the numbers and formula for λ(τ) from the book, and re-
membering that t = 0 corresponds to 10 A.M. so that 1 P.M corresponds to t = 3 we find
that

∫ t

s

λ(τ)dτ =

∫ 3.75

3.5

20(4− τ)dτ

=

(−20(4− τ)2

2

∣

∣

∣

∣

3.75

3.5

= 10(0.52)− 10(0.252) = 1.875 .



With this expression we can evaluate the desired probability. We find

P{N(1.75)−N(1.5) ≥ 2} = 1− P{N(1.75)−N(1.5) = 0}
− P{N(1.75)−N(1.5) = 1}
= 1− e−1.875 − 1.875e−1.875 = 0.5591 .

See the Matlab or Octave file chap 8 prob 10.m for these calculations.

Part (b): In this case, we find that

∫ t

s

λ(τ)dτ =

∫ 40

3.75

20(4− τ)dτ

=

(−20(4− τ)2

2

∣

∣

∣

∣

4

3.75

= 10(0.252) = 0.625 .

With this expression we can evaluate the desired probability. We find

P{N(1.75)−N(1.5) ≥ 2} = 1− P{N(1.75)−N(1.5) = 0}
− P{N(1.75)−N(1.5) = 1}
= 1− e−0.625 − 0.625e−0.625 = 0.1302 .

Again see the file chap 8 prob 10.m for these calculations.

Problem 12 (the expected number of events in nonhomogenous Poisson process)

From the discussion in the book for a nonhomogenous Poisson process with an intensity
function λ(s) the average number of events that occur in an interval of time say t to t+ r is
given by

∫ t+r

t

λ(s)ds .

From the given intensity function we can explicitly evaluate this integral giving

∫ t+r

t

λ(s)ds =

∫ t+r

t

3s2ds = (t+ r)3 − t3 .

Part (a): For the interval of time (0, 1] we have t = 0 and r = 1 so the average number of
events in this interval is given by 13 − 03 = 1.

Part (b): For the interval of time (1, 2] we have t = 1 and r = 1 so the average number
of events in this interval is given by 23 − 13 = 7, quite a few more events than in Part (a)
showing the relevance of nonhomogenous Poisson process to modeling situations where the
number of events increases (or decreases) in time.
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Figure 20: Examples of long service times relative to the arrival rate. Left: Here the mean
arrival time is 1/λ = 2 and the service times are drawn from a uniform distribution with
limits ul = 20 and ur = 40. Right: Here the mean time between arrivals is taken to be
1/λ = 0.2 shorter than before. Note that significantly more customers build up. All number
are in the same time units.

Part (c): For the first event to happen after time t means that our nonhomogenous Poisson
process must have no events up until time t. Thus the event {T > t} is equivalent to the
event {N(t) = 0} where N(·) is our nonhomogenous Poisson process. We then have

P{T > t} = P{N(t) = 0}

=

(

∫ t

0
λ(s)ds

)0

0!
e−

∫ t
0
λ(s)ds

= e−
∫ t
0 λ(s)ds = e−t3 ,

as claimed. To compute the density function for T recall that the cumulative distribution
function for T is given by P{T < t} = 1 − P{T > t} = 1− e−t3 , so taking the derivative of
the cumulative density function to get the distribution function gives

fT (t) = 3t2e−t3 .

Problem 13 (simulating a general single-server queuing system)

Rather than perform this task by hand it seems more instructive to program a computer
to do so. In the Matlab file chap 8 prob 13.m one can find a function that will simu-
late a single-server queuing system for arbitrary input λ (actually the input parameter is
lmean or the average number of events that occur in one time unit) and bounds on the uni-
form random variable representing the service times given by ul and ur. The driver script
chap 8 prob 13 Script.m demonstrates a variety of behaviors obtained by varying these
inputs.

A key fact in simulating a single-server queue is that given a standard uniform random
variable U (drawn uniformly between [0, 1]) a second uniform random variable X drawn
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Figure 21: Examples of very short service times relative to the arrival rate. Left: Here
the mean arrival time is given by 1/λ = 2 and the service times are drawn from a uniform
distribution with limits ul = 0.1 and ur = 0.5. Right: Here the mean arrival time is given by
1/λ = 0.1 and the service times are drawn from a uniform distribution with limits ul = 0.05
and ur = 0.075. All times are in the same units.

from between ul and ur can be obtained as

X = ul + (ur − ul)U ,

and an exponential random variable with rate λ (mean 1/λ) is given by

Y = −1

λ
log(U) .

Running the above MATLAB script produces various sample paths for several parameter
settings for λ , ul, and ur. For example, consider the case where there is a relatively long
service time relative to the arrival rate λ so that customers build up. Two such examples
are shown in Figure 20 (left) and (right).

An alternative case is where we have very short service times, relative to the arrival rate. Two
examples of sample paths according to this process are given in Figure 21 (left) and (right).

Problem 14 (simulating a M/M/1 queuing system)

As in Problem 13 of this chapter rather than perform the requested task by hand it seems
more instructive to program a computer to do so. In the Matlab file chap 8 prob 14.m one
can find a function that will simulate a M/M/1 queuing system for arbitrary arrival rate λ
and service rate µ. Actually the input parameters are lmean, or the average number of events
that occur in one second (= 1/λ) and smean, or the average number of customers that can
be serviced occur in one second (= 1/µ). A driver script called chap 8 prob 14 Script.m

demonstrates a variety of behaviors obtained by varying these two inputs.

Note: I’ll have to say that programming the logic required to implement a general M/M/1
queue is not as straightforward as one might think. One finds it is relatively easy to explain



how to simulate a M/M/1 queue by just thinking about how the events arrive and are
processed, but somehow it is more difficult to program this logic into a computer!



Chapter 9: Birth and Death Processes

Notes On The Text

The derivation of Kolmogorov’s forward equation

The Chapman-Kolmogorov equation is

Pij(t+ h) =

∞
∑

k=0

Pik(t)Pkj(h) . (30)

But for a small amount of time h we have

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− λih− µih+ o(h)
∑

j 6=i,i±1

Pij(h) = o(h) .

Using these results we can expand the summation in the Chapman-Kolmogorov equation
above by explicitly considering the term with k = j − 1 (representing a birth in state j − 1
into the state j), the term with k = j + 1 (representing a death in state j + 1 into the state
j), the term with k = j (representing no transition), and all other terms with k 6= j, j ± 1
(representing transitions to these further away states). When we do this we get

Pij(t + h) = Pi,j−1(t)Pj−1,j(h) + Pi,j(t)Pj,j(h) + Pi,j+1(t)Pj+1,j(h) +
∑

k 6=j,j±1

Pik(t)Pkj(h)

= Pi,j−1(t)(λj−1h+ o(h)) + Pi,j(t)(1− λjh− µjh+ o(h)) + Pi,j+1(t)(µj+1h+ o(h)) + o(h) .

Converting this into the expression for the forward difference in the definition of the derivative
we obtain

Pij(t+ h)− Pij(t)

h
= λj−1Pi,j−1(t)− λjPi,j(t)− µjPi,j(t) + µj+1Pi,j+1(t) +

o(h)

h

On taking h → 0 we obtain

dPij(t)

dt
= λj−1Pi,j−1(t)− (λj + µj)Pi,j(t)− µj+1Pi,j+1(t) ,

which is Kolmogorov’s forward equation.

Exercise Solutions

Exercise 1 (the logistic process)

Part (a): The described continuous-time stochastic process {X(t) : t ≥ 0} can be modeled
as a birth-death process with a birth rate given by λn = α(N − n) and death rate given by



µn = βn. The transition from state n to state n + 1 happens with a probability of λn

λn+µn
,

while the transition from state n to state n− 1 happens with a probability of µn

λn+µn
.

Part (b): For a birth-death processes, the sojourn time B, or the time spent in state n
before transitioning to either state n−1 or n+1 is given by an exponential random variable
with a rate of λn + µn. Because of this the random variable B has a distribution function,
F , given by

F (b) = 1− e−(λn+µn)b .

So we have the desired probability given by

P{B ≥ 1|X(0) = n} = 1− F (1) = e−(λn+µn) .

For the given expressions for λn and µn we find

λn + µn = α(N − n) + βn =
1

5
(5− n) +

1

4
n =

25− n

20
.

So that when n = 2 we compute P{B ≥ 1|X(0) = 2} = 0.31663, while when n = 4 we
compute P{B ≥ 1|X(0) = 2} = 0.34993.

Exercise 2 (a linear growth model-with immigration)

If we have the possibility that our population can increase its size due to immigration (at a
rate θ) our birth-rate rate in the standard linear growth model would be modified to

λn =

{

nλ+ θ n < N
nλ n ≥ N

,

with a death rate µn = nµ, as before.

Exercise 3 (a machine repair model-part 1)

In this machine-repair models we will take the stochastic process X(t) to represent the
number of broken machines at time t. If we assume that we have M total machines (M = 4)
and s total servicemen (s = 2), then this machine repair model can be considered a birth-
death process with a birth rate given by

λn = (M − n)λ for n ≤ M ,

and a death-rate given by

µn =

{

nµ n ≤ s
sµ n > s

.

With the parameters of this problem M = 4, s = 2, λ = 1, and µ = 2 the specifications of
the above equation become

λn = 4− n for 0 ≤ n ≤ 4

µn =

{

2n 0 ≤ n ≤ 2
4 2 < n ≤ 4

.
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Figure 22: Left: An example trajectory generated according to the given machine repair
model.

We can simulate a birth-death process with these rates using the method discussed in this
chapter. To do this we remember that the sojourn times are generated using an exponential
random variable who’s rate is given by λn + µn and we have a transition from the state n to
the state n + 1 (representing one more broken machine) with a probability of λn

λn+µn
and a

transition from the state n to the state n−1 (representing machine repaired and put back in
service) with a probability µn

λn+µn
. Obviously, from the state n = 0 (no machines broken) we

can only go to the state 1. We can numerically enforce this boundary condition by setting

µn =

{

2n+ ǫ 0 ≤ n ≤ 2
4 2 < n ≤ 4

,

where ǫ is small number specified such that an exponential random variable with a rate,
ǫ, could (numerically) be sampled from but would have almost zero chance of resulting
in an event. A simulation as requested for this problem is done in the MATLAB script
prob 9 prob 3.m. When this script is run it produces an example sample path from the
process X(t). One such example trajectory is shown in Figure 22.

Exercise 4 (a machine repair model-part 2)

We are told that at 11:00 A.M. our random variable X (the number of machines broken) is
given by X = 2. Then by the memoryless property of the exponential random variables that
make up the “births” and “deaths” associated with this machine repair model, the fact that
we have two broken machines makes no difference on T , the random variable representing
the sojourn time from this state. When X = 2 the sojourn time is given by an exponential
RV with rate λ2 + µ2 = 2 + 4 = 6. If F (t) is the cumulative distribution function for such a
RV we have

P{T ≥ 0.25} = 1− F (0.25) = e−6(0.25) = 0.2231 .

Part (b):



Warning: I could not get the same result as in the back of the book for this part
of the problem. If anyone sees an error in the logic presented here please let me
know.

We are asked to compute the probability that the two broken machines will be repaired
before another one breaks. Since we assume that each machine is currently being worked
on by a repairman the repair time, Ri, for each machine i = 1, 2 is an exponential random
variable with a rate of 2. While the time till the next breakdown, Bi, is an exponential
random variable with a rate 1. Now since there are two independent machines that could
breakdown, the time to any breakdown, B, is an exponential RV with a rate 2. Thus we
want to evaluate the probability of the combined event R1 ≤ B and R2 ≤ B. By the
independence of these two component events this joint probability is equal to the product of
the two individual probabilities. From previous work on the probability that one exponential
random variable will be less than, or happen before another one, we see that this join event
has a probability of

(

2

2 + 2

)(

2

2 + 2

)

=
4

16
= 0.25 .

Exercise 5 (matrix representation of birth-death processes)

Given the matrix A, we can compute the ith component of q′(t) by performing the desired
multiplication q(t)A. This multiplication (in terms of the components of A) is given by

q′i(s) =

N
∑

j=0

qj(s)Aji .

If i = 0 this becomes

q′0(s) = q0(s)A00 + q1(s)A10

= −λ0q0(s) + µ1q1(s) .

If i 6= 0, N this becomes

q′i(s) = qi−1(s)Ai−1,i + qi(s)Ai,i + qi+1(s)Ai+1,i

= qi−1(s)λi−1 − (λi + µi)qi(s) + qi+1(s)µi+1 .

Finally, if i = N this becomes

q′N(s) = λN−1qN−1(s)− µNqN(s) .

Exercise 6 (a pure birth process-part 1)

Part (a): From the definition of expectation and qi(t) we have

E[X(t)] =

∞
∑

i=0

iP{X(t) = i} =

∞
∑

i=0

iqi(t) ,



which is the expected value of qi(t). For a pure birth process qi(t) is a negative-binomial
distribution with parameters r = n and p = e−λt. Thus its expected value is r

p
. With the

parameters above we obtain an expected value of

n

e−λt
= neλt .

Part (b): We are told that X(0) is only known in terms of a probability distribution and
we desire to calculate, E[X(t)], the expectation of our Yule process (a pure birth process).
Following the hint of conditioning on X(0) we have

E[X(t)] =

∞
∑

n=0

E[X(t)|X(0) = n]P{X(0) = n} .

From the previous part of this problem we know that a Yule-process has E[X(t)|X(0) =
n] = neλt, so the above becomes

E[X(t)] =

∞
∑

n=0

neλtP{X(0) = n} = eλtE[X(0)] .

Part (c): If we define φ(t) = E[X(t)], then from the previous part of this problem φ(t) =
eλtE[X(0)], so taking the time derivative we find

φ′(t) = λeλtE[X(0)] = λφ(t) ,

as expected.

Exercise 7 (a pure birth process-part 2)

Part (a): From the discussions in the book, if the population is of size N at time t an
expressions for X(t) can be written as

X(t) = Y1(t) + Y2(t) + · · ·+ YN(t) ,

where Yi(t) are geometric random variables (RV) representing the number of trials that the
ith population member needs to perform to get their first success. That is, they are geometric
RVs with parameter of success e−λt.

Part (b): To compute Var(X(t)) we may use the conditional variance formula by condi-
tioning on N , the initial size of the population. The conditional variance formula is given
by

Var[X ] = E[Var(X|N)] + Var(E[X|N ]) .

Now in the first term Var(X|N) is the variance of the sum ofN (fixed) independent geometric

random variables and so has a variance given by N
(

1−p
p2

)

. The expectation of this is then

E[N ]
(

1−p
p2

)

. In the second term the expression E[X|N ] is the expectation of the sum of N



independent geometric RV and so has an expectation of N
p
. The variance of this expression

is 1
p2
Var(N). Thus

Var(X(t)) =

(

1− p

p2

)

E[N ] +
1

p2
Var(N) .

Since in the Yule-process Yi(t) is a geometric RV with a parameter p equal to e−λt, the above
expression becomes

Var(X(t)) =
(1− e−λt)E[N ] + Var(N)

e−2λt
= eλt(eλt − 1)E[N ] + e2λtVar(N) .

Exercise 8 (the Kolmogorov backward equations)

The Chapman-Kolmogorov equation to consider is

Pij(h+ t) =
∞
∑

k=0

Pik(h)Pkj(t) .

For a small amount of time, h, we have order expansions for the nearest-neighbor probabilities
given by

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pii(h) = 1− λih− µih+ o(h)
∑

j 6=i,i±1

Pij(h) = o(h) .

Using these results we can expand the summation in the Chapman-Kolmogorov equation
above by explicitly considering the terms Pik(h) for k = i and k = i± 1, to get

Pij(h + t) = Pi,i−1(h)Pi−1,j(t) + Pii(t)Pij(t) + Pi,i+1(h)Pi+1,j(t) +
∑

k 6=i,i±1

Pik(h)Pkj(t)

= (µih+ o(h))Pi−1,j(t) + (1− λih− µih + o(h))Pij(t) + (λih + o(h))Pi+1,j(t) + o(h)

= Pi+1,j(t)λih+ Pi−1,j(t)µih+ Pij(t)(1− λi − µi)h+ o(h) .

Part (b): Subtracting Pij(t) and dividing by h to obtain the expression for the forward
difference in the definition of the derivative we obtain

Pij(t + h)− Pij(t)

h
= λiPi+1,j(t) + µiPi−1,j(t)− (λi + µi)Pij(t) +

o(h)

h
.

On taking the limit h → 0 we obtain

dPij(t)

dt
= λiPi+1,j(t)− (λi + µi)Pij(t)− µiPi−1,j(t) ,

which is Kolmogorov’s backward equation.



Part (c): Given a matrix P (t) defined as

P (t) =























P0,0 · · · P0,j · · · P0,N

P1,0
... P1,N

Pi−1,j

Pi,j−1 Pij Pi,j+1

Pi+1,j

PN−1,0
... PN−1,N

PN,0 PN,N























,

the product AP (t) where A is given in problem 5 an (i, j)th element 0 ≤ i ≤ N and
0 ≤ j ≤ N given by

µiPi−1,j(t)− (µi + λi)Pii(t) + λiPi+1,j(t) .

Setting this equal to
dPij(t)

dt
is Kolmogorov’s backwards equation. While the product P (t)A

has an (i, j)th component given by

λj−1Pi,j−1(t)− (µj + λj)Pij(t) + µj+1Pi,j+1(t) ,

which when set equal to
dPij(t)

dt
is equal to Kolmogorov’s backwards equation.



Chapter 10: Steady-State Probabilities

Exercise Solutions

Exercise 1 (the balance equations)

Part (a): The balance equations for pj the steady-state probabilities are given by

0 = λj−1pj−1 − (λj + µj)pj + µj+1pj+1 , (31)

for j = 1, 2, · · · , N . At the left endpoint, j = 1, we define λ−1 = 0 and µ0 = 0, while at
the right endpoint, j = N , we define λN = 0, and µN+1 = 0. With the definition of the
row vector p, given in this problem and the definition of the matrix A, one can see that the
component equations in the product pA = 0 are equivalent to the above equation.

Part (b): Recall that the time dependent probabilities qj(t), defined as qj(t) = P{X(t) = j},
satisfy the dynamic equation

dqj(t)

dt
= λj−1qj−1(t)− (λj + µj)qj(t) + µj+1qj+1(t) .

From this we see that if we define the row vector q(t) to have components, qj(t), the above

equation can be written in matrix form as dq(t)
dt

= q(t)A. If initially we have q(0) = p where

p is the steady-state row vector such that pA = 0, evaluating dq
dt

at t = 0 gives

dq(0)

dt
= q(0)A = pA = 0 .

Thus initially, our differential equation indicates a zero change from its initial value q(0) i.e.
it stays constant at q(t) = p for all time.

Exercise 2 (an example M/M/1 queuing system)

The exact solutions to the time dependent probabilities qj(t) = P{X(t) = j} for a M/M/1
queue where the two possible states for j are j = 0, 1 is derived in this chapter. They were
found to be

q0(t) =
µ

λ+ µ
+ C0e

−(λ+µ)t and q1(t) =
λ

λ+ µ
− C0e

−(λ+µ)t ,

with C0 a constant determined by the initial probability distribution for X(0).

Part (a): If X(0) = 0, we have q0(0) = 1 while q1(0) = 0, since when X(0) = 0 the
probability we have no customers at t = 0 is 1 (since that is what we are told), while the



probability we have one customer is 0 (since this is the opposite of what we are told). Using
the second condition, q1(0) = 0, to evaluate C0, we find that

C0 =
λ

λ+ µ
,

so that the functions q0(t) and q1(t) become

q0(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t and q1(t) =

λ

λ+ µ
(1− e−(λ+µ)t) .

From these we find that P{X(1) = 0} = q0(1) is given by

µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ) = 0.8426 .

and P{X(10) = 0} = q0(10) is given by

µ

λ+ µ
+

λ

λ+ µ
e−10(λ+µ) = 0.602695 .

Part (b): If we are told that X(0) = 1 we have q0(0) = 0 while q1(0) = 1. Using the first
expression, q0(0) = 0, we find that

C0 = − µ

λ+ µ
.

So that the functions q0(t) and q1(t) then become

q0(t) =
µ

λ+ µ
(1− e−(λ+µ)t) and q1(t) =

λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t

Using these we find that P{X(1) = 0} = q0(1) is given by

µ

λ+ µ
(1− e−(λ+µ)) =

0.3

0.5
(1− e−0.5) = 0.23608 .

and P{X(10) = 0} = q0(10) is given by

µ

λ+ µ
(1− e−(λ+µ)10) =

0.3

0.5
(1− e−5) = 0.59595 .

These simple calculations are done in the MATLAB file chap 10 calculations.m.

Part (c): In both case above, the limiting probabilities should be

p0 ≡ lim
t→∞

P{X(t) = 0} =
µ

λ+ µ
=

0.3

0.5
= 0.59999

p1 ≡ lim
t→∞

P{X(t) = 1} =
λ

λ+ µ
=

0.2

0.5
= 0.40000 ,

which are exact. The probabilities P{X(10) = 0} calculated in the two parts above (since
t = 10 is a relatively large time) are very close to the steady-state probability p0.



Exercise 3 (the approach to steady-state)

The steady-state probability for the state with no customers is given by p0 = µ
µ+λ

, while

the time dependent expression for this same event {X(t) = 0} in this case (by considering
Problem 2 Part (a)) is given by

q0(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t .

For this to be within 10% of the steady-state probability, p0, we desire
∣

∣

∣

∣

∣

q0(t)− µ
λ+µ

µ
λ+µ

∣

∣

∣

∣

∣

=
λ

µ
e−(λ+µ)t ≤ 0.1 .

Since we know that q0(t) >
µ

λ+µ
, the absolute values in the first expression are not strictly

needed. On solving for t in the above we find

t ≥
(

1

λ+ µ

)

log(
10λ

µ
) = 3.794240 ,

when we put in the values of λ = 0.2 and µ = 0.3. This simple calculation is done in the
MATLAB file chap 10 calculations.m.

Exercise 4 (the average approach to steady-state)

In the same way as in Problem 3 we have

P{X(t) = 0} = q0(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t ,

and the steady-state time-average will still be µ
λ+µ

. Since we can explicitly compute the time

average of q0(t) for any T as

I(T ) ≡ 1

T

∫ T

0

P{X(t) = 0}dt = µ

λ+ µ
+

1

T

(

λ

µ+ λ

)(

− 1

λ + µ
e−(λ+µ)t

∣

∣

∣

∣

T

0

=
µ

λ+ µ
+

1

T

(

λ

(µ+ λ)2

)

(1− e−(λ+µ)T ) .

To be within 10% of the steady-state probability would require a value of T such that the
integral above, I(T ), satisfies

∣

∣

∣

∣

∣

I(T )− µ
λ+µ

µ
λ+µ

∣

∣

∣

∣

∣

≤ 0.1 .

The absolute value in the above expression is not strictly needed since I(T ) > µ
λ+µ

. The
above simplifies to

1

T

(

λ

µ

)(

1

µ+ λ

)

(1− e−(λ+µ)T ) ≤ 0.1 .



To find a value of T that satisfies this expression we can take the approximation that
e−(λ+µ)T ) ≈ 0, when T is relatively large, and solve the resulting inequality for T . When we
do this we find

T ≥ 10λ

µ(µ+ λ)
= 13.333333 .

This simple calculation is done in the MATLAB file chap 10 calculations.m.

Exercise 5 (an M/M/1 queue with capacity N = 2)

From Example 10.2 when N = 2, λ0 = λ1 = λ > 0, and µ0 = µ1 = µ > 0 the matrix A is
given by

A =





−λ0 λ0 0
µ1 −(λ1 + µ1) λ1

0 µ2 −µ2



 =





−λ λ 0
µ −(λ+ µ) λ
0 µ −µ



 .

Part (a): The characteristic polynomial for this matrix is given by M(x) = det(xI − A),
which in this case is

∣

∣

∣

∣

∣

∣

x+ λ −λ 0
−µ x+ λ+ µ −λ
0 −µ x+ µ

∣

∣

∣

∣

∣

∣

= 0 .

Expanding this determinant about the first row gives

(x+ λ)((x+ λ+ µ)(x+ µ)− µλ) + λ(−µ(x+ µ)) = 0 .

Expanding this and simplifying we finally obtain the equation

x3 + 2(µ+ λ)x2 + (µ2 + µλ+ λ2)x = 0 .

From the above, x = 0 is one solution, while the remaining quadratic has its solutions given
by

x =
−2(µ+ λ)±

√

4(µ+ λ)2 − 4(µ2 + µλ+ λ2)

2

= −(µ+ λ)±
√

µλ ,

the desired roots. Considering the root −µ − λ +
√
µλ, we know from the “inequality of

arithmetic and geometric means” given by

√

µλ ≤ 1

2
(µ+ λ) ,

that the root we are considering has an upper bound of

−µ − λ+
√

µλ ≤ −µ− λ+
1

2
(µ+ λ) = −1

2
(µ+ λ) < 0 ,

showing that the second root is explicitly negative as requested.



Exercise 6 (the linear growth model with immigration)

The linear growth model with immigration and no population limit had birth and death
rates given by

λn =

{

nλ+ θ n < N
nλ n ≥ N

nλ + θ forn ≥ 0

µn = nµ for n ≥ 1 ,

so that the ratios

ρn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, (32)

become

ρn =
θ(λ + θ)(2λ+ θ) · · · ((n− 1)λ+ θ)

µ(2µ)(3µ) · · · (nµ) for n < N .

and

ρn =
θ(λ+ θ)(2λ+ θ) · · · ((N − 1)λ+ θ)(Nλ) · · ·nλ

µ(2µ)(3µ) · · · (nµ) for n ≥ N .

We now want show that
∑∞

n=1 ρn converges. As suggested in the book we can apply the
ratio test. The ratio test states that if

lim
n→∞

ρn+1

ρn
< 1 ,

the above series converges. For the expression for ρn given here we have the ratio of ρn+1/ρn
of

ρn+1

ρn
=

(

θ(λ+ θ)(2λ+ θ) · · · ((N − 1)λ+ θ)(Nλ) · · · (n+ 1)λ

µ(2µ)(3µ) · · · (nµ)((n+ 1)µ)

)(

µ(2µ)(3µ) · · · (nµ)
θ(λ+ θ)(2λ+ θ) · · · ((N − 1)λ+ θ

=
nλ + θ

(n + 1)µ
.

when n ≥ N . This expression has a limit as n → ∞ of

lim
n→∞

ρn+1

ρn
=

λ

µ
,

which will be less than one if λ < µ.

Exercise 7 (the backwards recursion formula for pj)

Part (a): Writing our steady-state probability balance equation in the “backwards” form

λj−1pj−1 = (λj + µj)pj − µj+1pj+1 for j = N,N − 1, · · ·

with the convention that µN+1 = 0 and λN = 0. Taking j = N the above requires

λN−1pN−1 = (0 + µN)pN − 0 = µNpN .



Second, taking j = N − 1 we obtain

λN−2pN−2 = (λN−1 + µN−1)pN−1 − µNpN

= (λN−1 + µN−1)pN−1 − λN−1pN−1 = µN−1pN−1 ,

where we have used the relationship µNpN = λN−1pN−1 found when we took j = N . Con-
tinuing in this way we obtain

λN−k−1pN−k−1 = µN−kpN−k for k = 0, 1, 2, · · ·N − 1 .

Solving for pN−k−1 in terms of pN−k using the above we have

pN−k−1 =

(

µN−k

λN−k−1

)

pN−k for k = 0, 1, 2, · · ·N − 1 .

Iterating this expression by taking k = 0, 1, 2, · · · we find

pN−1 =

(

µN

λN−1

)

pN

pN−2 =

(

µN−1

λN−2

)

pN−1 =

(

µN−1

λN−2

)(

µN

λN−1

)

pN

pN−3 =

(

µN−2

λN−3

)

pN−2 =

(

µN−2

λN−3

)(

µN−1

λN−2

)(

µN

λN−1

)

pN

...

pN−k =

(

µN

λN−1

)(

µN−1

λN−2

)

· · ·
(

µN−k+1

λN−k

)

pN for k = 1, 2, · · · , N − 1 .

Converting the index N − k into j we find

pj =
µNµN−1 · · ·µj+2µj+1

λN−1λN−2 · · ·λj+1λj
pN for j = 0, 1, · · · , N − 1 , (33)

as our desired expression.

Part (b): To find the normilization expression for pN we require that
∑N

j=0 pj = 1 or
separating out the term pN equivalently

pN +
N−1
∑

j=0

pj = 1 .

But since we have an expression for pj in terms of pN where j = 0, · · ·N − 1 we find that
the above becomes

pN + pN

N−1
∑

j=0

(

µNµN−1 · · ·µj+2µj+1

λN−1λN−2 · · ·λj+1λj

)

= 1 .

Solving for pN in the above we obtain

pN =

(

1 +

N−1
∑

j=0

(

µNµN−1 · · ·µj+2µj+1

λN−1λN−2 · · ·λj+1λj

)

)−1

,

as the required normalization condition.



Exercise 8 (terminating end conditions)

We are told that

(λ0, µ0) = (0, 0) , (λ1, µ1) = (1, 1) , (λ2, µ2) = (0, 0) .

Part (a): The balance equation for every possible state j = 0, 1, 2 are given by Equation 31.
When we take j = 0 we have

0 = 0− 0 + 1p1 ⇒ p1 = 0 .

When j = 1 we have
0 = 0− (λ1 + µ1)p1 + 0 ⇒ p1 = 0 .

When j = 2 we have
0 = λ1p1 − 0 + 0 ⇒ p1 = 0 .

Part (b): From the above any three values for p0, p1, and p2 that sum to one and have
p1 = 0 will satisfy the balance equations. One such system is (p, 0, 1− p) showing an infinite
number of solutions is possible, and the steady-state probabilities are not unique.

Exercise 9 (the birth-death ratios for the machine-repair model)

In steady-state from the balance equations, one obtains a solution for pn of

pn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

p0 = ρnp0 .

Now for the machine-repair model we have a birth-rate given by

λn = (M − n)λ for n ≤ M ,

and a death-rate given by

µn =

{

nµ n ≤ s
sµ n > s

.

We begin by computing pn for n ≤ s < M and find

ρn =
(Mλ)((M − 1)λ)((M − 2)λ) · · · (M − (n− 1))λ

µ(2µ)(3µ) · · · (nµ)

=
M(M − 1)(M − 2) · · · (M − (n− 1))λn

n!µn

=

(

M(M − 1)(M − 2) · · · (M − (n− 1))

n!

)(

λ

µ

)n

for n ≤ s .

In the cases where s < n ≤ M we have

ρn =
(Mλ)((M − 1)λ)((M − 2)λ) · · · (M − (n− 1))λ

µ(2µ)(3µ) · · · (sµ) · (sµ) · · · (sµ) ,



Where in the denominator after the product µ(2µ)(3µ) · · · (nµ) we have n − s terms of the
type sµ. Simplifying this expression some we obtain

ρn =
M(M − 1)(M − 2) · · · (M − (n− 1))λn

s!µssn−sµn−s

=
M(M − 1)(M − 2) · · · (M − (n− 1))

s!sn−s

(

λ

µ

)n

s < n ≤ M ,

which are the two desired results.

Exercise 10 (a gasoline station)

This problem can be modeled as an M/M/1 queuing problem where the “customers” are
the arriving cars which we are told come at a rate of 20 cars per hour. Customers pull in
if there are two or fewer cars already. This means that there are three locations where cars
can be serviced so N = 3. Finally, the vehicles depart after they are serviced which happens
at a rate of µ = 1

(5/60)
= 12 cars per hour. With these values we have ρ = λ

µ
= 20

12
= 5

3
, and

our steady-state probabilities pn are given by

pn = ρnp0 for n = 0, 1, · · · , N , (34)

with p0 given by

p0 =

(

1 +

N
∑

n=1

ρn

)−1

=

(

1− ρN+1

1− ρ

)−1

. (35)

When ρ = 5/3 and N = 3 we find that p0 = 0.0993 so that

p0 = 0.0993 , p1 = 0.1654 , p2 = 0.2757 , p3 = 0.4596 .

Part (a): If we define X(t) to be our time dependent random variable denoting the number
of cars in the station at time t we see that the valid values for X(t) are 0, 1, 2, 3. In
steady-state, the single attendant will be busy if X(t) = 1 or X(t) = 2, or X(t) = 3. Thus
in steady-state the proportion of time that the attendant is busy is p1 + p2 + p3. From the
above this equals 0.900735.

Part (b): In steady-state, the proportion of time customers enter the station is the propor-
tion of time that X(t) 6= 3 and is given by 1− p3 = 0.540441.

Part (c): If the service time is twice as fast the rate µ now becomes 2µ. With this the
proportion of time customers enter the station 1 − p3 now becomes 0.813711. The average
number of customers that enter the station in Part (b) above is given by λ(1− p3) ≈ 10.808,
where as the average number of customers that enter the station now under the new faster
service is λ(1− p3) ≈ 16.274. The gain in customers is around 5.46 more. The calculations
for this problem are performed in the MATLAB script chap 10 prob 10.m. This script
calls the MATLAB function mm1 queue cap N.m which computes the steady-state probability
distribution of a M/M/1 queue with capacity N i.e. it implements Equations 34 and 35.



Exercise 11 (a printing shop)

This problem can be formulated as a machine-repair model with M = 4 machines (printing
presses) and s = 2 servicemen (repairmen). The breakdown rate for the machines is λ = 1/10
machines per hour, while the repair rate is 1/8 machines per hour. Thus ρ = λ

µ
= 4

5
, while

the ρn is given by Equations 10.35 and 10.36 in the book. These equations are imple-
mented in the MATLAB function machine repair model.m. Thus function is called from
the MATLAB script chap 10 prob 11.m to produce the steady-state probability distribution
pn corresponding to the described machine repair model.

Part (a): The average number of machines not in use is the average of the number of
machines broken and can be computed via

∑M
n=0 npn with pn the steady-state probabilities.

When the above script is run we find that this average is given by 2.02670. We also compute
the coefficient of loss for the machines and find it to be 0.11201.

Part (b): If we define X(t) to be our time dependent random variable denoting the number
of broken printers we see that both repairmen will be busy ifX(t) = 2, X(t) = 3, orX(t) = 4,
so the proportion of time both repairmen are busy is given by p2 + p3 + p4. When we run
the above script we find that this number is 0.6596. We also compute the coefficient of loss
for the repairmen and find 0.21068.

Exercise 12 (dividing the work up)

If we assume that each repairman has exclusive responsibility for two presses then the
machine-repair model in Problem 11 becomes two machine-repair models with M = 2, s = 1,
and λ and µ as before. In this case for each repairman we compute

p0 = 0.2577 , p1 = 0.4124 , p2 = 0.3299 ,

so that the proportion of time each repairman is busy is p1 + p2 = 0.74226 with a co-
efficient of loss for the repairmen of CRepairman = 0.25773. Thus the repairmen are bus-
ier but the coefficient of loss for the repairmen is slightly larger. This problem is imple-
mented in the MATLAB script chap 10 prob 12.m which again calls the MATLAB function
machine repair model.m.

Exercise 13 (finding space for all customers)

We are told that ρ = λ/8 and N = 2 so that the normalizing value for p0 in a M/M/1 queue
is given by Equation 35 is

p0 =

(

1− ρ3

1− ρ

)−1

.

With this computed we have steady-state probabilities pn = ρnp0 for n = 0, 1, 2, · · · .



Part (a): To have a 50% chance of joining the queue we require that p0 + p1 ≥ 0.5 or

1− ρ

1− ρ3
(1 + ρ) ≥ 0.5 ,

because in that case at least 50% of the time there are at most one person in line. Since we
can factor 1− ρ3 as 1− ρ3 = (1− ρ)(1 + ρ+ ρ2) we see that the above gives

1 + ρ ≥ 1

2
+

1

2
ρ+

ρ2

2
.

or
ρ2 − ρ− 1 ≤ 0 . (36)

Solving this quadratic for ρ we find that two values of ρ make this quadratic equal to zero.
These values of ρ are given by

ρ = −0.6180 , ρ = 1.6180 .

Since a test value of ρ say ρ = 0 between these two values makes the inequality in Equation 36,
true, the region between these two roots is the valid one above. Then any arrival rate λ such
that ρ is less than or equal to 1.6180 will result in the chance that the average customer will
have greater than a 50% chance of being served. The value of λ corresponding to this upper
limit is λ = 8(1.6180) = 12.9443.

Part (b): To get served immediately we must have no customers already in line. That will
happen with probability p0 = 0.1910. This problem is implemented in the MATLAB script
chap 10 prob 13.m

Exercise 14 (bottling plants)

As the problem statement is not exactly a machine-repair model, to calculate the steady-
state probabilities, we have to explicitly solve the balance equations. To do this we begin by
first computing ρn from Equation 32, repeated here for convenience

ρn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

n = 1, 2, 3, · · ·

From the description given above we have that λn = 2(3− n), for n ≥ 3 and

µn = 3 for n < 3

µn = 4 for n = 3 .

So that computing ρn we find

ρ1 =
λ0

µ1
=

6

3
= 2

ρ2 =
λ0λ1

µ1µ2
=

6 · 4
3 · 3 =

8

3

ρ3 =
λ0λ1λ2

µ1µ2µ3
=

6 · 4 · 2
3 · 3 · 4 =

4

3
.



Then the normalization required is to compute p0 given by

p0 =

(

1 +

3
∑

n=1

ρn

)−1

=

(

1 + 2 +
8

3
+

4

3

)−1

= 0.142857 .

So that pn = ρnp0 gives

p0 = 0.1429 , p1 = 0.2857 , p2 = 0.3810 , p3 = 0.1905 ,

as the steady-state probabilities of our system. This problem is worked in the MATLAB
script prob 10 prob 14.m.

Part (b): The average number of machines that are broken is given by
∑3

n=0 npn. Com-
puting this sum using the steady-state probablites found above we obtain 1.619048. The
average rate at which machines breakdown in steady-state is given by

3
∑

n=0

λnpn =
2
∑

n=0

λnpn = 2.761905 .

Exercise 15 (a discouraged arrival model)

We are told that µ = 1 is the departure rate from our queue and the a-priori arrival rate
is λ customers per minute. In addition, if we have n customers already in line then the
probability the entering customr joins the queue is given by 1

n+1
.

Part (a): Given that we are in state n we move to state n + 1 with a rate of λ
(

1
n

)

. This
is because arrivals according to a Poisson process at a rate λ which are then “filtered” by a
Bernoulli process (i.e. allowed to be counted with a probability p) is a Poisson process with
a rate λp. Thus our birth-rate and death-rates are given by

λn = λ

(

1

n+ 1

)

for n ≥ 0

µn = 1 .

Part (b): The average number of customers in the system is given by
∑∞

n=0 pn, where pn
are the steady-state solutions to the balance equations. To solve them we first compute the
ratios ρn given by

ρn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

= λn (1)

(

1

2

)(

1

3

)

· · ·
(

1

n

)

=
λn

n!
.

The normilization constant p0 is next given by

p0 =

(

1 +
∞
∑

n=1

ρn

)−1

=

(

1 +
∞
∑

n=1

λn

n!

)−1

= e−λ .



Then the steady-state probabilities are given by

pn = ρnp0 = e−λλ
n

n!
.

With these expressions the average number of customers in the system is given by

∞
∑

n=0

npn =
∞
∑

n=0

n
λne−λ

n!
=

∞
∑

n=1

n
λne−λ

n!
= e−λ

∞
∑

n=1

λn

(n− 1)!

= e−λ
∞
∑

n=0

λn+1

n!
= λe−λeλ = λ .



Chapter 11: General Queuing Systems

Notes On The Text

The derivation of the average arrival rate λa for a M/M/1 queue

The average arrival rate (Formula 11.4) is given by λa =
∑∞

n=0 λnpn. For a M/M/1 queue
with capacity N , the arrival rate as a function of n is given by λn = λ for n < N and λn = 0
for n ≥ N , since when n = N no customers can arrive as there is no space for them to
occupy. With these, the above becomes

λa =

N−1
∑

n=0

λpn =
λ(1− ρ)

1− ρN+1

N−1
∑

n=0

ρn ,

Using the result that pn = ρn(1−ρ)
1−ρN+1 for a steady-state M/M/1 queue with capacity N . Using

the summation identity
∑N−1

n=0 ρn = 1−ρN

1−ρ
we see that λa is equal to

λa =
λ(1− ρN )

1− ρN+1
.

Now the probability our entire system is occupied is given by pN = ρN (1−ρ)
1−ρN+1 giving that the

probability complement of pN is given by

1− pN =
1− ρN+1 − ρN (1− ρ)

1− ρN+1
=

1− ρN

1− ρN+1
.

Thus using this we see the expression for λa above becomes

λa = λ(1− pN) ,

as claimed. This can be seen more intuitively if we notice that people will be added to
the queue as long as the queue is not full i.e. has less than N people in the queue. The
probability there is space for at least one more person is the probability complement of
pN . Thus people arrive at a rate λ but are then filtered with a Bernoulli process that only
accepts new arrivals events with a probability 1−pN so the total arrival rate from these two
combined processes is λ(1− pN ), the same as before.



The derivation of the steady-state probabilities pn for M/M/s queues

To normalize the steady-state probabilities pn’s for a M/M/s queue requires computing

1

p0
= 1 +

∞
∑

n=1

ρn

= 1 +

s−1
∑

n=1

αs

s!
+

∞
∑

n=s

αs

s!
ρn−s

= es−1(α) +
αs

s!

∞
∑

n=s

ρn−s ,

where we have put in the previously derived expressions for ρn for a M/M/s queue and
also introduced the definition of em(x), the truncated exponential series. Continuing the
evaluation of the second summation above we find

1

p0
= es−1(α) +

αs

s!

∞
∑

n=0

ρn = es−1(α) +
αs

s!

(

1

1− ρ

)

,

as the normalization condition required for pn. As a special case of the above if we take
s = 1 we find that

p0 =

(

e0(α) +
α

1− ρ

)−1

=

(

1 +
α

1− ρ

)−1

.

Since α = λ
µ
and when s = 1 we have ρ = λ

sµ
= λ

µ
= α, we see that the above is equal to

p0 =

(

1− ρ+ α

1− ρ

)−1

= 1− ρ ,

as claimed in the book, and which was derived when we considered the M/M/1 queue in an
earlier chapter.

The algebraic manipulations required to derive M/M/s the queue waiting times
P{TQ > t}

Given the expression derived in the book for P{TQ > t} as

P{TQ > t} = pse
−µst

∞
∑

n=s

{

n−s
∑

k=0

(µst)k

k!

}

ρn−s ,

we begin by noticing that we can start the outer summation at n = 0 by shifting the n index
in the summation up by s i.e. P{TQ > t} becomes

P{TQ > t} = pse
−µst

∞
∑

n=0

{

n
∑

k=0

(µst)k

k!

}

ρn . (37)
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Figure 23: Left: The order of the (n, k) terms visited in the summation 37, when we sum in
n first and then k second. Right: The order of the (n, k) terms visited in the summation 38,
when we sum in k first and then in n second.

Next we interchange the order of summation by noting that in the above summation we are
summing in the order given in Figure 23 (left), that is we sum by first setting the value of
n and summing in k. Observe that the sum presented above can also be done by summing
along k first and then n second as shown in Figure 23 (right). In that figure, “N” represents
the “infinity” required when one sums fully in n before incrementing k. Changing the given
summation in this way we have P{TQ > t} given as

P{TQ > t} = pse
−µst

∞
∑

k=0

{ ∞
∑

n=k

(µst)k

k!

}

ρn (38)

= pse
−µst

∞
∑

k=0

(µst)k

k!

( ∞
∑

n=k

ρn

)

.

Since this inner sum can be transformed as

∞
∑

n=k

ρn =

∞
∑

n=0

ρn+k = ρk
∞
∑

n=0

ρn =
ρk

1− ρ
,

the above becomes

P{TQ > t} =
pse

−µst

1− ρ

∞
∑

k=0

(µstρ)k

k!
.

As the expression in parenthesis becomes µstρ = µst
(

λ
sµ

)

= λt, we have

P{TQ > t} =
pse

−µst

1− ρ
eλt =

pse
−(µs−λ)t

1− ρ
.

If we take t = 0 then the probability we will have to wait in this M/M/s queue at all is
given by

P{TQ > 0} =
ps

1− ρ
≡ C(s, α) ,

where we have defined the function C(s, α), known as Erlang’s loss function.
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Figure 24: Left: A plot of A(t) and D(t) for the simulation in Exercise 1. Right: A plot of
L(t) = A(t)−D(t) for the simulation in Exercise 1.

Exercise Solutions

Note: Most of the results below match exactly the exercise solutions found in the back of
the book. However, in some of the problems below I could not match these results exactly
and couldn’t find any errors in my proposed reasoning. If anyone see any errors with what
I have done below please let me know and I’ll correct them as quickly as possible.

Exercise 1 (the functions A(t) and D(t)

Part (a): Given A(t) the number of arrivals by time t and D(t) the number of departures
by time t, the number of customers present at time t, denoted L(t), is given by L(t) =
A(t)−D(t). Simulating both A(t) and D(t) one can immediately find L(t) by subtraction.
See Figure 24 (left) for a plot of A(t) and D(t) and Figure 24 (right) for a plot of L(t).

Part (b): The requested expressions are defined in terms of the functions above A(t), D(t),
and L(t) as

L(20) =
1

20

∫ 20

0

L(t)dt

W (20) =
S(20)

A(20)
=

1

A(20)

∫ 20

0

L(t)dt

λa(20) =
A(20)

20
.

Here S(20) is the total time spent by all customers during the time (0, 20]. Note that
we observe before computing these expressions from our simulation that the expression
λa(20)W (20) equals

A(20)

20
· 1

A(20)

∫ 20

0

L(t)dt =
1

20

∫ 20

0

L(t)dt = L(20) ,



as requested. A simulation for this problem is implemented in the MATLAB script chap 11 prob 1.m.
When we run this simulation with the parameters from Chapter 8 of ul = 5 and ur = 10, we
find L(20) = 1.36, W (20) = 6.805, and λa(20) = 0.2.

These numbers are slightly different than those found in the book.

Exercise 2 (deriving L for a M/M/1 queue with capacity N)

From the discussion in the text, to determine the average number of customers in our system
L, we needed to calculate the sum

∑N
n=0 nρ

n. Following the book we have

N
∑

n=0

nρn = ρ
d

dρ

N
∑

n=0

ρn = ρ
d

dρ

{

1− ρN+1

1− ρ

}

= ρ

[

1− ρN+1

(1− ρ)2
− (N + 1)ρN

1− ρ

]

=
ρ

(1− ρ)2
[

1− ρN+1 − (N + 1)ρN(1− ρ)
]

=
ρ

(1− ρ)2
[

1− (N + 1)ρN +NρN+1
]

.

Since the average number of customers in our entire system L (consisting of the queue plus
the person being served) needs to be multiplied by 1−ρ

1−ρN+1 to give

L =

(

1− ρ

1− ρN+1

) ∞
∑

n=0

nρn .

Using the above summation we see get

L =
ρ

(1− ρ)(1− ρN+1)

[

1− (N + 1)ρN +NρN+1
]

, (39)

the requested expression.

Exercise 3 (the average number of customers being served in a M/M/1 queue)

Since L is defined as the expected number of customers in the entire system and LQ is the
same thing but for the queue only (not considering the person at the server) we see that
the average number of customers being serviced is L−LQ which for the M/M/1 queue with
capacity N is given by

L− LQ =
λa

µ
=

λ

µ
(1− pN) = ρ(1 − pN) ,

following the discussion in the book. Since we know an analytic expression for pN under this
queuing system given by

pN =
ρN(1− ρ)

1− ρN+1
,



we can calculate 1− pN = 1−ρN

1−ρN+1 , to find the utilization of the server given by

L− LQ =
ρ(1− ρN )

1− ρN+1
.

If ρ is very small we see that we have

L− LQ =
ρ(1− ρN)

1− ρN+1
∼ ρ ,

and when ρ is very large we have

L− LQ =
ρ(1 − ρN )

1− ρN+1
=

ρN+1(ρ−N − 1)

ρN+1(ρ−(N+1) − 1)
∼ 1− ρ−N ,

the required expressions.

Exercise 4 (library copy machines)

This description fits the model of a M/M/1 queue with infinite capacity (but we expect
that on average a much smaller capacity will be utilized). Since the mean service time is 3

minutes (1/20 of an hour) the service rate is µ =
(

1
20

)−1
= 20 customers an hour.

Part (a): If we assume Poisson arrivals at a rate of λ and desire to have an average of L = 3
customers in the system, then from the results on M/M/1 queues of this type we have that
in steady-state L is related to the arrival rate λ and the service rate µ by

L =
λ

µ− λ
.

Solving this for the arrival rate λ we find that

λ =
Lµ

(1 + L)
=

3(20)

4
= 15 ,

arriving customers per hour. Note that this is the maximum rate, any arrival rate less than
this will produce smaller values of L.

Part (b): With the rates given above the utilization factor for this system is ρ = λ
µ
= 15

20
= 3

4
.

The average waiting time in the queue is then

WQ =
ρ

(1− ρ)µ
=

(3/4)

(1/4)(20)
=

3

20
= 0.15 ,

of an hour or 9 minutes.

Part (c): If L = 6 then the values of λ, ρ, and WQ all change. In this case they become
λ = 17.142857, ρ = 0.857143, and WQ = 0.3 hours or 18 minutes. The simple calculations
for this problem can be found in the MATLAB script chap 11 prob 4.m.



Exercise 5 (barber shop queuing)

Part (a): We can consider this a M/M/1 queue with N = 2 space for people to wait for
service and we are told that our pure arrival rate is λ = 6, while our departure rate is
independent of state given by µ = 3 (both are in units of people per hour). If there is no one
present, n = 0, and λ0 = 6. In the other cases by recalling the result that a Poisson process
with rate λ that is “filtered” by a Bernoulli process with probability p is another Poisson
process with rate pλ, when n > 0 we have

λ1 = 0.5(6) = 3 and λ2 = 0.5(6) = 3 .

Here n is the “state” and represents the number of people in the barbershop 0 ≤ n ≤ N+s =
3.

Part (b): We will solve the steady-state balance equations exactly since we have exact
knowledge of the transition rates λn and µn for all n. Following the results found earlier the
unique limiting normalized probability distribution {pn} is given by

pn = ρnp0 =

(

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

)

p0 .

with

p0 =

(

1 +

∞
∑

n=1

ρn

)−1

.

Then we compute

ρ1 =
λ0

µ1
=

6

3
= 2

ρ2 =
λ0λ1

µ1µ2

= 2

(

3

3

)

= 2

ρ3 =
λ0λ1λ2

µ1µ2µ3
= 2 .

so that p0 =
(

1 +
∑3

n=1 2
)−1

= 1
7
. Thus we find

p0 =
1

7
p1 =

2

7
p2 =

2

7
p3 =

2

7
.

Part (c): The average number of customers in the shop at any moment L is given by

L =

3
∑

n=0

npn =
2

7
+

4

7
+

6

7
=

12

7
= 1.7143 .

Part (d): The barber will receive $10 for every customer served. The service rate µn is a
function of the state n, which in steady-state occurs with probability pn. The average service
rate µa is

µa =
3
∑

n=1

µnpn = 3

(

2

7

)

+ 3

(

2

7

)

+ 3

(

2

7

)

=
18

7
= 2.5714 .



Then the steady-state long term profit is given by P = 10µa = 25.7143 per hour.

Part (e): We are asked the average waiting time W . Using Little’s law we know L = λaW ,
so W = L

λa
. Calculating λa as

λa =

2
∑

n=0

λnpn = 6

(

1

7

)

+ 3

(

2

7

)

+ 3

(

2

7

)

=
18

7
= 2.5714 ,

and using L calculated above we get that W = 0.667 of an hour or 40 minuets.

Exercise 6 (some averages for the gas station queue)

From the earlier problem the average number of cars at the station is denoted L. Since this
example is a M/M/1 queue with capacity N = 3 (the total number of spots in the system)
and a utilization factor of ρ = λ

µ
= 20

12
= 5

3
, we see that L is given by Equation 39. Using the

values above we find that L = 2.095588.

To answer the question as to how long each car spends at the station is to determine W ,
which can be obtained by using Little’s law as W = L

λa
, if we have λa, or using the results

from this chapter we have that the expression for W for a M/M/1 queue is given by

W =
L

(1− pN )λ
=

(

1− ρN+1

1− ρN

)(

L

λ

)

= 0.1938 ,

hours or 11.63 minutes.

These two expressions, L and W , for a M/M/1 queue are calculated in the MATLAB
functions L MM1 queue.m and W MM1 queue.m. These are called in the MATLAB script
chap 11 prob 6.m.

Exercise 7 (the steady-state average birth rate equals the average death rate)

We desire to show that the average birth rate λa =
∑∞

n=0 λnpn equals the average death rate
µn =

∑∞
n=0 µnpn. Since we know that the balance equations have a solution pn given by

pn = ρnp0 =

(

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

)

p0 ,



we can write the expression for λa as follows

λa =

∞
∑

n=0

λnpn =

∞
∑

n=0

λnρnp0

= p0

∞
∑

n=0

λn

(

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

)

= p0

∞
∑

n=0

µn+1

(

λ0λ1 · · ·λn−1λn

µ1µ2 · · ·µnµn+1

)

=

∞
∑

n=0

µn+1ρn+1p0 =

∞
∑

n=0

µn+1pn+1 =

∞
∑

n=1

µnpn ,

or the desired expression.

Exercise 8 (the car-wash-and-vacuum facility)

Part (a): The equations governing the steady-state probabilities for each of the states 0, 1,
and 2 can be found by using the heuristic that the rate leaving a state must equal the rate
of entering and give the following

λp0 = 12p2

4p1 = λp0

12p2 = 4p1 .

As in the book we find that p0 in terms of λ is given by

p0 =

(

1 +
λ

µ1
+

λ

µ2

)−1

=

(

1 +
λ

4
+

λ

12

)−1

=

(

1 +
λ

3

)−1

. (40)

so that the other probabilities are given (in terms of λ) solving the steady-state equations
above as

p1 =
λ

4

(

1 +
λ

3

)−1

p2 =
1

3
p1 =

λ

12

(

1 +
λ

3

)−1

.

Part (b): The average gross return to the customer who owns the facility would be Dλa or

Dλ(1− p1 − p2) = Dλp0 = Dλ

(

1 +
λ

4
+

λ

12

)−1

,

since if the system is in state 1 (someone is washing) or if the system is in state 2 (someone
is vacuuming) the service station is blocked and the arrival rate λ needs to be reduced
appropriately. That is it is only open for customers if it is in state 0.



Part (c): The probability an arriving customer will find the system free is given by Equa-
tion 40, which can be simplified as

p0 =
3

λ

(

1 +
3

λ

)−1

.

If λ is large this becomes p0 ≈ 3
λ
, while the amount the business earns is Dλp0 ≈ 3D per

hour.

Exercise 9 (the enlarged car-wash-and-vacuum facility)

Part (a): This is an example of a two stage queue where the first stage is the the washing
station and the second stage is the vacuuming station. We are told that the processing rate
of the washing station is µ1 = 4 cars/hour and that the processing rate of the vacuuming
station is µ2 = 12 cars/hour, while the car arrival rate λ is unknown (as of yet). Then the
steady-state equations for this of two station queue become

12p01 = λp00 (41)

4p10 + 12pb1 = (12 + λ)p10 (42)

λp00 + 12p11 = 4p10 (43)

λp01 = 16p11 (44)

4p11 = 12pb1 (45)

p00 + p10 + p01 + p11 + pb1 = 1 , (46)

which are obtained by balancing the rate of leaving a state with the rate of entering a state.
We can solve this system of equations by writing every probability in terms of p00 and then
using the normalization Equation 46 to derive an equation involving λ only. This latter
equation can then be solved for λ. Using Equation 41 we have p01 in terms of p00 given by

p01 =
λ

12
p00 .

Using Equation 44 to express p11 in terms of p00 we have

p11 =
λ

16
p01 =

λ2

12(16)
p00 .

Using Equation 45 to express pb1 in terms of p00 we have

pb1 =
1

3
p11 =

λ2

3(12)(16)
p00 .

Using Equation 42 to express p10 in terms of p00 we have

p10 =
12

8 + λ
pb1 =

λ2

3(16)(8 + λ)
p00 .



Using all of these expressions in Equation 46 we find

p00 =

(

1 +
λ2

3(16)(8 + λ)
+

λ

12
+

λ2

12(16)
+

λ2

3(12)(16)

)−1

. (47)

With this expression we can compute all probabilities above as functions of λ.

Part (b): If each customer pays $D to use the facility then the average return is given by
λ(p00 + p01)D, since a customer can only enter the facility if the washing station is free i.e.
the system is in the state 0, 0 or 0, 1. From the above this is

λ

(

p00 +
λ

12
p00

)

D = λ

(

1 +
λ

12

)

p00D ,

with p00 a function of λ given by Equation 47.

Part (c): If λ is large, an arriving customer will be able to enter the facility a proportion
of time given by

p00 + p01 = p00 +
λ

12
p00 =

(

1 +
λ

12

)

p00 =
1 + λ

12

1 + λ
12

+ λ2

3(16)(8+λ)
+ λ2

9(16)

.

If λ is large, the above becomes

p00 + p01 ≈
λ/12

λ2/9(16)
=

12

λ
.

This is different than the book’s result, but I don’t see an error in my logic.

Using this result we calculate that the business earns

λD(p00 + p01) = 12D ,

dollars per hour, a significant increase over the 3D earned by the single station queue in
Exercise 8.

Exercise 10 (verifying Jackson’s solution for pm,n)

We want to show that Jackson’s solution pm,n = (1 − ρ1)ρ
m
1 (1 − ρ2)ρ

n
2 , with ρ1 = λ

µ1
and

ρ2 =
λ
µ2

for the steady-state probabilities of two queues linked in series satisfies the steady-
state balance equation given by

λpm−1,n + µ1pm+1,n−1 + µ2pm,n+1 = (λ+ µ1 + µ2)pm,n .

we have the left hand side LHS of the balance equation given by

LHS = λ(1− ρ1)ρ
m−1
1 (1− ρ2)ρ

n
2 + µ1(1− ρ1)ρ

m+1
1 (1− ρ2)ρ

n−1
2 + µ2(1− ρ1)ρ

m
1 (1− ρ2)ρ

n+1
2

= (1− ρ1)(1− ρ2)

(

µ1ρ
m
1 ρ

n
2 + λρm1

(

λ

µ2

)−1

ρn2 +
µ2λ

µ2
ρm1 ρ

n
2

)

= (1− ρ1)(1− ρ2)ρ
m
1 ρ

n
2 (µ1 + µ2 + λ) = (µ1 + µ2 + λ)pm,n ,

as claimed.



Exercise 11 (the motor vehicle licensing agency)

From the example in the book we assume that the arrival rate is λ = 7 people per hour,
the rate of the processing clerk is µ1 = 8 applications per hour, and the rate of the cashier
is µ2 = 21 customers per hour. Thus the two utilization factors ρ1 and ρ2 are given by
ρ1 =

λ
µ1

= 7
8
and ρ2 =

λ
µ2

= 7
21

= 1
3
.

Part (a): This is the probability we are in the state p0,0 under steady-state operation can
be calculated using Jackson’s theorem from

pm,n = (1− ρ1)ρ
m
1 (1− ρ2)ρ

n
2 for m ≥ 0 and n ≥ 0 .

Thus we have

p0,0 = (1− ρ1)(1− ρ2) =
1

12
= 0.08333 .

Part (b): This is the probability p1,0 and in steady-state is given by

p1,0 = (1− ρ1)ρ1(1− ρ2) =

(

1− 7

8

)(

7

8

)(

1− 1

3

)

= 0.0729 .

This is different than the answer in the back of the book, but I can’t find an error in my
assumptions.

Part (c): The average time a given customer spends in the system is given by

W =
L

λ
=

1

λ

(

ρ1
1− ρ1

+
ρ2

1− ρ2

)

=
1/µ1

1− λ/µ1
+

1/µ2

1− λ/µ2
.

If this expression is to be at most 1/2 hour we require that the minimum acceptable value
of µ1 satisfy

1/µ1

1− λ/µ1

+
1/µ2

1− λ/µ2

=
1

2
.

With the values of λ and µ2 given above we find that the minimum value for µ1 must satisfy

1/µ1

1− λ/µ1
= 0.428571 ,

on solving for µ1 we find that µ1 = 9.333333 customers per hour.

These simple calculations are done in the MATLAB script chap 11 prob 11.m.

Exercise 12 (now waiting to vacuum)

Part (a): The states for this system can still be taken as in the example for the extended
car wash facility in the book but with the removal of the state (b, 1). This is because a



(0, 0) (1, 0) (1, 1)

(0, 1)

λ µ2

µ1µ2 λ

µ1

Figure 25: The steady-state transition diagram for Exercise 12. Note that the link from state
(1, 1) to (0, 1) represents a car leaving if the vacuum facility is occupied after this customer
finishes their car wash.

customer who finishes washing their car will leave if the vacuum station is occupied. Thus
the state transition diagram becomes that seen in the Figure 25.

Expressing the heuristic that the rate entering equals the rate leaving gives the equations
for the steady-state probabilities shown in Table 1. Coupled with these we also have the
normalization condition

p00 + p10 + p01 + p11 = 1 .

With the numbers given here µ1 = 4, µ2 = 2, and λ = 3 cars per hour the above equations
become

2p01 = 3p00

3p00 + 2p11 = 4p10

4p11 + 4p10 = 2p01 + 3p11

3p01 = 2p11 + 4p11

We can solve this system for every probability in terms of p00 and then using the normal-
ization condition to solve for p00. We find that p00 = 0.228, and that the others are given
by

p10 = 0.257

p01 = 0.342 (48)

p11 = 0.171 .

Part (b): The average rate at which customers enter the facility is

λa = λp00 + λp01 = 1.71 ,

cars per hour.

Part (c): The average number of customers in the facility is given by

L = 0p00 + 1p10 + 1p01 + 2p11 = 0.257 + 0.342 + 2(0.1714) = 0.94 .



state rate entering = rate leaving

(0, 0) µ2p01 = λp00
(1, 0) λp00 + µ2p11 = µ1p10
(0, 1) µ1p11 + µ1p10 = µ2p01 + λp01
(1, 1) λp01 = µ2p11 + µ1p11

Table 1: The steady-state equations for Exercise 12

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 2) (1, 2)

λ

µBµAµB

λ

µB µA

λ

µB

Figure 26: The steady-state transition diagram for Exercise 13.

Part (d): Using Little’s law, the average amount of time an entering customer spends in
the facility is

W =
L

λa

=
0.94

1.71
= 0.549 ,

hours or 32.9 minutes.

Exercise 13 (one space at station B)

As suggested, let the state of the system be denoted by (m,n) if there are m customers at
station A and n customers at station B. From the given description, the ranges of these two
variables are m = 0, 1 and n = 0, 1, 2. We draw a steady-state transition diagram for these
states in Figure 26. Using the idea that in steady-state the rate of entry must equal the rate
of departure we can write down the steady-state equations for pm,n. This is done in Table 2.

Part (b): Using the numbers given of λ = 3, µA = 4, and µB = 2 customers per hour we



state rate entering = rate leaving

(0, 0) µBp01 = λp00
(0, 1) µAp10 + µBp02 = µBp01 + λp01
(1, 0) µBp11 + λp00 = µAp10
(1, 1) λp01 + µBp12 = µBp11 + µAp11
(0, 2) µAp11 = µBp02 + λp02
(1, 2) λp02 = µBp12

Table 2: The steady-state equations for Exercise 13

find our steady-state equations become

2p01 = 3p00

4p10 + 2p02 = 2p01 + 3p01 = 5p01

2p11 + 3p00 = 4p10

3p01 + 2p12 = 2p11 + 4p11 = 6p11

4p11 = 2p02 + 3p02 = 5p02

3p02 = 2p12 .

with the normalization condition that

p00 + p01 + p02 + p10 + p11 + p12 = 1 .

As a matrix, this system is given by




















−3 2 0 0 0 0
0 −5 2 4 0 0
3 0 0 −4 2 0
0 3 0 0 −6 2
0 0 −5 0 4 0
0 0 3 0 0 −2
1 1 1 1 1 1





































p00
p01
p02
p10
p11
p12

















=





















0
0
0
0
0
0
1





















.

Solving this with MATLAB we find

p00 = 0.1311 , p01 = 0.1967 , p02 = 0.1311 , p10 = 0.1803 , p11 = 0.1639 , p12 = 0.1967 .

The average number of customers in the system is the computed as

L = 0p00 + 1p01 + 2p02 + 1p10 + 2p11 + 3p12 = 1.5574 .

This problem is worked in the MATLAB script chap 11 prob 13.m.

Exercise 14 (the waiting time of J. Doe)

Part (a): From the expression in the book the average queue time WQ for this type of queue
is given by

WQ = W − 1

µ
=

ρ

(1− ρ)µ
= 0.75 ,



of an hour or 45 minutes and

LQ = λWQ =
ρ2

1− ρ
= 2.25 ,

customers.

Part (b): Since now we know that there are two customers ahead of J. Doe, the time he will
have to wait is the sum of two exponentially distributed service times (the time required to
service both customers). The distribution of the sum of n identically distributed exponential
random variables is a Gamma random variable. If we denote T the random denoting how
long J. Doe has to wait for service and FT (t;λ, r) the cumulative distribution function for a
Gamma random variable with parameters (λ = 4, r = 2) we have

P{T > t} = 1− FT (t;λ, r) = 1− 0.593994 = 0.406006 ,

when we take t = 1/2. This problem is worked in the MATLAB script chap 11 prob 14.m.

Exercise 15 (analytic expressions for the statistics in a M/M/2 queue))

If we define E to be the event that a customer must queue, for a M/M/s queue we have an
Erlang’s loss function C(s, α) given by here

P{E} = C(s, α) =
αs

s!(1− ρ)
p0

=
αs

s!(1− ρ)

(

es−1(α) +
αs

s!(1− ρ)

)−1

,

where α is called the traffic intensity defined by α = λ
µ
, ρ is called the utilization factor,

defined by ρ = λ
sµ

= α
s
, and es(α) is the truncated exponential series defined by es(x) =

∑s
n=0

xn

n!
.

Part (a): When s = 2 we have e2−1(α) = e1(α) = 1 + α so the above becomes

P{E} = C(2, α) =
α2

2(1− ρ)

(

1 + α +
α2

2(1− ρ)

)−1

=
α2

2 + α
.

Part (b): Again from the book we have that for a M/M/s queues that WQ the average
wait time in the queue only is given by

WQ =
1

sµ− λ
C(s, α) .

When s = 2 and using the above this becomes

WQ =
1

2µ− λ

(

α2

2 + α

)

=
1

µ

(

1

2− λ/µ

)(

α2

2 + α

)

=
α2

µ(2− α)(2 + α)
,



as expected.

Part (c): Since the expression for WQ for a M/M/2 queue was computed in Part (b) the
steady-state total waiting time W is (since the average waiting time once we get to the server
is 1

µ
)

W = WQ +
1

µ
=

1

µ

(

α2

(2− α)(2 + α)

)

+
1

µ

=
1

µ

(

4

4− α2

)

=
1

µ

(

1

1− α2/4

)

.

Since ρ = λ
sµ

= α
s
= α

2
, when we have s = 2 servers, the above becomes

W =
1

µ

(

1

1− ρ2

)

.

Part (d): The probability that the system is empty is given by

p0 =

(

e1(α) +
α2

2(1− ρ)

)−1

=

(

1 + α +
α2

2(1− ρ)

)−1

=

(

(1 + 2ρ)(1− ρ) + 2ρ2

1− ρ

)−1

=

(

1 + ρ

1− ρ

)−1

=
1− ρ

1 + ρ
.

Exercise 16 (evaluating statistics for the M/M/2 queue)

Since with the given numbers we have

ρ =
λ

sµ
=

18

2(10)
=

9

10
and

α =
λ

µ
=

18

10
=

9

5
,

we have that the requested queue statistics are given by

Part (a): p0 =
1−ρ
1+ρ

= 0.052632.

Part (b): The probability the customer must queue is given by C(2, α) = 0.852632.

Part (c): We have $WQ = 0.500000 hours or 30 minuets.

Part (d): We have WQ = 0.426316 of an hour or 25.57 minutes.

Part (e): We have LQ = WQλ = 7.673684



Part (f): We have W = 1
µ
+WQ = 0.526316 of an hour or 31.57 minutes.

Part (g): We have L = Wλ = 9.473684.

Part (h): If we define F to be the event that the customers queue time is greater than t
we have

P{F} = P{TQ > 0}e−(sµ−λ)t

= C(2, α)e−(2µ−λ)(1) = 0.115391 ,

where we have used the fact that t = 1 hour.

All of these simple calculations are done in the MATLAB script chap 11 prob 16.m.

Exercise 17 (comparing two servers against one server twice as fast)

Part (a): As suggested, we will compute the ratio $W
(1)
Q /W

(2)
Q . Using the formula in the

book that $WQ = 1
sµ−λ

we find

$W
(1)
Q

$W
(2)
Q

=

(

1
(1)2µ−λ

)

(

1
(2)µ−λ

) = 1 ,

Thus $W
(1)
Q = $W

(2)
Q i.e. the expected waiting time (given that a customer has to wait) is

the same if we have two serves or one server who works twice as fast.

Part (b): We have

W
(1)
Q =

L

λ
− 1

2µ
=

(

ρ

1− ρ

)

1

λ
− 1

2µ

W
(2)
Q =

1

µ

α2
2

(2− α2)(2 + α2)
=

1

µ

α2
1

(1− α1)(1 + α1)
=

1

µ

ρ2

(1− ρ)(1 + ρ)
.

Working on W
(1)
Q with some algebra we can write it as 1

µ

(

1+ρ
2(1−ρ)

)

, so that

W
(1)
Q

W
(2)
Q

=
1 + ρ

2(1− ρ)

(

(1− ρ)(1 + ρ)

ρ2

)

=
1

2

(

1

ρ
+ 1

)2

.

Since we are told that ρ = λ
µ
< 1

2
we know that 1

ρ
> 2 and the above gives

W
(1)
Q

W
(2)
Q

>
1

2
(2 + 1)2 =

9

2
.

Thus we see that W
(1)
Q > W

(2)
Q , and the queue wait under the one server model is more than

in the two server model.



Part (c): We have

W (1) =
L

λ
=

1

2µ− λ
=

1

µ

(

1

2− ρ

)

W (2) =
1

µ

(

1

1− ρ2

)

.

So that the ratio is given by
W (1)

W (2)
=

1− ρ2

2− ρ
.

It is not clear what the magnitude of the expression on the right hand side is. Since we know
that ρ < 1

2
we can take ρ = 1

3
and evaluate it. When we do this we find the right hand side

of the above given by 8
15

< 1. So in this case W (1) < W (2). Lets see if this holds in general.
That is we try to show

1− ρ2

2− ρ
< 1 . (49)

This expression is equivalent to ρ2 − ρ+ 1 > 0. Considering the two roots of this quadratic
equation we find

ρ =
1±

√

1− 4(1)

2
=

1± i
√
3

2
,

since these are complex this quadratic does not change signs over the real numbers. Thus
evaluating at any point will determine the sign of this expression. Since we have already
done this for ρ = 1/3 and found that ρ2 − ρ + 1 > 0 we see that this quadratic is always
positive (equivalently Equation 49 is true) and we can conclude that

W (1)

W (2)
< 1 or W (1) < W (2) .

Thus in summary, given that you have to wait the two queues are identical, the wait in the
two queue is longer than in the one server case, while the total system time is smaller in the
one server case.

Exercise 18 (the library copy machines)

For the two machine situation we have that the average waiting time at the reading room
copier is

W1Q = W1 −
1

µ
=

1

5
− 1

20
= 0.15 ,

hours or 9 minutes and L1Q = W1Qλ1 = 2.25. For the reserve room copier we have

W2Q = W2 −
1

µ
=

1

15
− 1

20
= 0.016667 ,

hours or 1 minute and L2Q = W2Qλ2 = 0.083, for the individual waiting times for the two
machines. When they are placed at a central location we have λ1+λ2 = 20 and ρ = λ

2µ
= 1

2
.

So that

WQ = W − 1

µ
=

1

15
− 1

20
= 0.0166 ,



of an hour or 1 minute. While LQ = 0.3333.

Thus from this analysis, the combined system is better in that it has a smaller WQ and a
reduced LQ. The simple calculations for this problem are performed in the the MATLAB
script chap 11 prob 18.m.

Exercise 19 (the reciprocal of Erlang’s C function

Erlang’s C function is given by

C(s, α) =
αs

s!(1− ρ)
p0 =

αs

s!(1− ρ)

(

es−1(α) +
αs

s!(1− ρ)

)−1

,

so the reciprocal of this expression is

C(s, α)−1 =
s!(1− ρ)

αs

(

es−1(α) +
αs

s!(1− ρ)

)

= 1 +
s!(1− ρ)

αs
es−1(α) .

Now to relate ρ to α recall that α = λ
µ
and ρ = λ

sµ
= α

s
, so using this we have

C(s, α)−1 = 1 +
s!(1− α/s)

αs
es−1(α)

= 1 +
(s− 1)!(s− α)

αs
es−1(α) ,

as requested.

Exercise 20 (limits of the traffic intensity α)

From Exercise 19 if 0 < α < s and α → s− we see that C(s, α)−1 → 1− so C(s, α) → 1+,
the result we were to show.

Exercise 21 (the cost of operating a dock)

Part (a): The cost to operate the dock depends on the the cost to unload the ships and the
cost to have them wait in the “queue” of the harbor. We therefore get a total cost of

E = 4800µ(1) + 100L ,

which fits the optimization models introduced earlier in this chapter. Since this is a single
server queue this has an optimum µmin given by

µmin = λ

{

1 +
( c

λb

)1/2
}

= 0.125 ,



ships per hour.

Part (b): The dock will be free p0 percent of the time, which in this case is given by
p0 = 1− ρ = 1− λ

µmin
= 1

3
.

Part (c): The probability that the ship will spend more than 24 hours anchored waiting for
the dock to be free can be computed by conditioning on the fact that the ship has to wait.
Thus the desired probability is

P{TQ > t} = P{TQ > t|TQ > 0}P{TQ > 0}

=
pse

−(sµ−λ)t

1− ρ
.

Since s = 1 this becomes

P{TQ > t} =
p1e

−(sµ−λ)t

1− ρ
=

ρ(1− ρ)e−(sµ−λ)t

1− ρ
= ρe−(µ−λ)t = 0.24525 ,

when we put in the above numbers (t = 24). These simple calculations are done in the
MATLAB file chap 11 prob 21.m.

Exercise 22 (Erlang’s loss function)

Part (a): For Erlang’s loss system the average number of orders taken is given by

λa = (1−B(s, α))λ .

Here Erlang’s loss formula, B(s, α), is defined as

B(s, α) =
αs

s!es(α)
,

and in this problem we have a traffic intensity α, of α = λ
µ
= 2. So with one operator

s = 1 and we find B(1, 2) = 2
3
. Using the formula for λa above we find in this case that

λa =
20
3
= 6.6667 per hour. While with two operator case s = 2 and we have B(2, 2) = 2

5
so

that λa = 12 per hour.

Part (b): The total profit rate for s serves is given by

E(s) = 15λa − 10bs .

The for one and two serves we have

E(1) = 15

(

20

3

)

− 10b = 100− 10b

E(2) = 15 (12)− 20b = 180− 10b .

So the two operator arraignment gives a larger profit rate if

E(2) > E(1) ⇒ b <
15(12)− 100

10
= 8 .



n = 0 n = 1 n = 2λµ λ2µ

Figure 27: The steady-state transition diagram for Exercise 23.

state rate entering = rate leaving

n = 0 µp1 = λp0
n = 1 λp0 + µ2p1 = µp1 + λp1
n = 2 λp1 = 2µp2

Table 3: The steady-state equations for Exercise 23

Exercise 23 (Erlang’s loss system)

Part (a): The states for this system can be taken to be n = 0, n = 1, and n = 2
representing 0, 1 or 2 customers in the system at the given time. Then in steady-state the
transition diagram looks like that shown in Figure 27.

The steady-state equations are then given by Table 3. Solving these with λ = 3 we find
p1 =

3
µ
p0, and p2 =

3
2µ
p1 =

9
2µ2p0, so the normalization condition p0 + p1 + p2 = 1 gives

p0 =
1

1 + 3
µ
+ 9

2µ2

,

and the other probabilities follow. Note that these agree with the general probabilities from
Erlang’s loss system given in the book.

Part (b): A caller will get a busy signal only if the system is in the state n = 2 which
happens a proportion of the time given by

p2 =
9/(2µ2)

1 + 3
µ
+ 9

2µ2

.

Management wants this too be less than 1/4. This imposes a requirement on µ of

9

(2µ2)
<

1

4

(

1 +
3

µ
+

9

2µ2

)

,

or equivalently this becomes a quadratic in 1/µ of

27

9

1

µ2
− 3

4

(

1

µ

)

− 1

4
< 0 .



Solving the above quadratic (set equal to zero) for 1/µ we find the only positive zero given
by µ∗ = 0.4065, so 1/µ∗ = 2.46862. Thus we require µ > µ∗ = 2.46862, for managements
requirement to be met. This problem is worked in the MATLAB script chap 11 prob 23.m

Exercise 24 (a large number of servers s)

Under Erlang’s loss system our steady-state probabilities are given by

pn =

{ (

αn

n!

)

p0 n ≤ s
ρn−sps n > s

,

with p0 given by

p0 =

(

es−1(α) +
αs

s!(1− ρ)

)−1

.

Part (a): If s is very large relative to n then we can assume that we are in the n ≤ s case for
pn above and in addition find that p0 is approximately p0 ≈ e−α which we get by recognizing
that ρ = λ

sµ
≈ 0 so es−1(α) +

αs

s!(1−ρ)
≈ es(α) ≈ eα, when s is large. Combining these two

expressions we find

pn ≈ αn

n!
e−α ,

or a Poisson distribution as claimed.

Part (b): Erlang’s loss formula is defined as B(s, α) = αs

s!es(α)
, which for large s by using

Sterling’s formula on the s! in the denominator becomes

B(s, α) =
αs

(2π)1/2ss+1/2e−seα
= (2πs)−1/2

(eα

s

)s

e−α ,

as requested.

Part (c): Since B(s, α) identifies the proportion of potential customers who are lost we desire
to find the number of servers s such that B(s, α) ≤ 0.05, specifically when α = 10. Following
the hint when s = α the value of B(s, α) ≈ (2πs)−1/2 = (2π(10))−1/2 ≈ 0.126157, which
is larger than the target of 0.05. Note that this approximation to B(s, α) is monotonically
decreasing as a function of s since

(eα)s < ss ,

for s large. Thus since B(s, s) = 0.126157, when s = 10 is too large we need to increase s to
find the required value for the number of servers. In the MATLAB script chap 11 prob 24.m

we loop over s find this number to be s = 15.



Exercise 25 (the optimum server rate)

Assuming a loss model where each server costs bµ dollars per hour and customer time in the
system costs c dollars per hour we find a loss function, E(α), given by

E(α) =
bλs

α
+ cα +

(

cα

s− α
C(s, α)

)

.

For a single server queue this becomes

E(α) =
bλ

α
+

cα

1− α
,

and has a minimum at αmin = z
1+z

where z =
(

bλ
c

)1/2
. To find the optimal service rate µmin

given a fixed arrival rate λ we let

αmin =
λ

µmin
=

z

1 + z
,

and solving for µmin. We find

µmin = λ(1 + z−1) = λ

{

1 +
( c

bλ

)1/2
}

,

as requested.

Exercise 26 (simulation of the enlarged car-wash-facility)

Example 11.9 is a simulation of Example 11.2, the enlarged car-wash-facility without a
blocking state. This later model has an analytic expression for all of the required parts
which is computed in Exercise 9. Here we are told that the processing rates for the two
stations are µ1 = 1

15
cars-per-minute and µ2 = 1

30
cars-per-minute (2 cars-per-hour), while

the default arrival rate is λ = 3 cars-per-hour or 1
20

cars per minute.

Part (a): The average customer time of the first facility (the wash facility) is 1/µ1 = 15
minutes, while the average time found in the simulation was 16.39 minutes. The average
length at the second facility (the vacuum facility) is 1/µ2 = 30 minutes, while the simulation
found 35.24 minutes.

Part (b): The proportion of time the was facility is busy in steady-state is p10+p11 = 0.4280,
while the simulation found this to be 0.4167.

Part (c): The proportion of time the vacuum station is busy in steady-state is p01 + p11 =
0.5130, while the simulation found the average utilization of this station to be 0.4992.

Part (d): The arrival rate at the wash facility is λaw = (p00 + p01)λ = 1.71 cars-per-hour,
while the simulation gave 1.525 cars-per-hour.



Part (e): The arrival rate at the vacuum facility, using Little’s law, is

λav =
Lv

Wv
=

1p11 + 1p01
1/µ2

= 1.026 ,

cars-per-hour. The simulation gave λav = 0.85 cars-per-hour.

Part (f): The proportion of wash customers who also use the vacuum facility is p11
p10

= 0.6653,

while the simulation gave 34
61

= 0.557.

This problem is worked in the MATLAB script chap 11 prob 26.m.

Exercise 27 (simulating dock usages)

Recall that this example is a M/M/1 queuing system with µ = 3 ships-per-day, λ = 2
ships-per-day. Using these we have ρ = λ

µ
= 2

3
= 0.667.

Part (a): The expected total number of arrivals in time T = 100 hours (100
24

days) is given
by Tλ =

(

100
24

)

2 = 8.333333 ships, while the simulation had 12 arrivals.

Part (b): The steady-state queue length is given by

LQ = λWQ =
ρ2

1− ρ
= 1.333333 ,

ships while the simulation had this 1.65 ships.

Part (c): The average queue time in this situation is given by WQ

WQ = W − 1

µ
=

ρ

(1− ρ)µ
= 1 ,

days or 24 hours. In simulation this was computed at 17.55 hours.

Part (d): The steady-state probability that we find the dock free is given by p0 = 1 − ρ =
0.33333, while in simulation we approximate this with 73

226
= 0.323009.

Part (e): The expected average unloading time is 1/µ = 0.333333 days or 8 hours. In the
simulation we find this to be 7.35 hours.

Part (f): The steady-state proportion of the time the dock is busy is given by p1 = 1−p0 =
ρ = 0.6667, while in simulation we find its average utilization to be 0.6796.

This problem is worked in the MATLAB script chap 11 prob 27.m.



Exercise 28 (the probability of a long wait at the dock)

See Exercise 21 (c), where we find the exact steady-state probability of this event to be
0.24525 or 24.5%.



Chapter 12: Renewal Processes

Exercise Solutions

Exercise 1 (the lifetime of light bulbs)

Part (a): We have
P{X > 2} = 1− P{X ≤ 2} = 1− FX(2) ,

with FX(·) the cumulative density function for the random variable X . From the discussion
in the book, given the failure rate function h(t), the cumulative density function FX(·) is
given by

1− FX(x) = exp

{

−
∫ x

0

h(t)dt

}

= exp{−x2

2
} .

So P{X > 2} = exp(−2) = 0.1353.

Part (b): We have a density function given by

fX(x) =
dFX(x)

dx
= xe−x2/2 .

Part (c): We find the expectation of X given by

E[X ] =

∫ ∞

0

x2e−x2/2dx .

To evaluate this let v = x2/2 so that dv = xdx or dx = dv√
2v
. The above then becomes

E[X ] =

∫ ∞

0

2ve−v

(

dv√
2v

)

=
√
2

∫ ∞

0

v1/2e−vdv

= Γ(1/2)
√
2

∫ ∞

0

v

(

v−1/2e−v

Γ(1/2)

)

dv .

Note that the expression v−1/2e−v

Γ(1/2)
is the density function for a Gamma random variable V

with parameters λ = 1 and r = 1/2. Since the above is the expectation for this Gamma
random variable we see that it is equal to

Γ(1/2)
√
2

(

1/2

1

)

=

√

π

2
.

To compute Var(X) we use the fact that Var(X) = E[X2] − E[X ]2. Computing E[X2] we
have

E[X2] =

∫ ∞

0

x3e−x2/2dx =

∫ ∞

0

(
√
2v)3e−v

(

dv√
2v

)

=

∫ ∞

0

2ve−vdv

= 2

∫ ∞

0

ve−vdv .



This last expression we recognize as two times the value of E[V ] if V is distributed as an
exponential random variable with λ = 1. In that case E[V ] = 1

λ
= 1. Thus E[X2] = 2 and

our variance is then
Var(X) = 2− π

2
.

Exercise 2 (Weibull failure rates)

Part (a): If X fits a Weibull distribution with α = 2 then its failure rate function h(x) is
given by h(x) = 2λx and so H(t) = λt2 so that R(t) = e−λt2 . Considering the requested first
difference we find

log(R(t+∆t))− log(R(t)) = −λ(t+∆t)2 + λt2

= −λ(t2 + 2t∆t+∆t2) + λt2

= −2λt∆t− λ∆t2 ,

which is linear in t.

Part (b): We are told that P{X < 100|X > 90} = 0.15, so P{X > 100|X > 90} =
1− 0.15 = 0.85. Since the probability our component has a lifetime greater than t, is given
by 1− F (t) ≡ R(t) we see that

P{X > 100|X > 90} =
P{X > 100}
P{X > 90} =

R(100)

R(90)
= e−λ(1002−902) = 0.85 .

Solving for λ in the above we find λ = 8.5536 · 10−5, so h(t) = 2λt = 1.717 · 10−4t.

Exercise 3 (electrical overloads)

Part (a): The probability the lifetime X is greater than t can be related to the given Poisson
process. Now P{X > t} = P{N(t) < 2}, since our system functions as long as we have had
less than two arrivals. This later expression becomes

P{N(t) < 2} = P{N(t) = 0}+ P{N(t) = 1} ,

and since P{N(t) = n} = (λt)ne−λt

n!
the above becomes

P{N(t) < 2} = e−λt + (λt)e−λt = (1 + λt)e−λt ,

thus
P{X < t} = 1− P{X > t} = 1− (1 + λt)e−λt .

Thus our distribution function for our components lifetime X is given by

fX(t) =
dP{X < t}

dt
= λ(1 + λt)e−λt − λe−λt = (λ+ λ2t− λ)e−λt

= λ2te−λt = λe−λ

(

λt

Γ(2)

)

.
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Figure 28: A plot of the failure rate function, h(t), for Exercise 3. We have taken λ = 2 and
notice how h(t) → λ as t → ∞.

which is the Gamma distribution with parameters (2, λ). Note that Γ(2) = (2− 1)! = 1.

Part (b): The failure rate function h(t) can be obtained from

h(t) = − d

dt
log(1− F (t)) .

We find in this case that
1− F (t) = (1 + λt)e−λt .

so that

h(t) =
F ′(t)

1− F (t)
=

λ2te−λt

(1 + λt)e−λt
=

λ2t

1 + λt
.

To visualize this function let λ = 2 and we get the plot shown in Figure 28.

For large t we see that

h(t) =
λ2t

1 + λt
→ λ2

λ
= λ ,

so the failure rate is approximately constant for large times.

Exercise 4 (a modified Weibull distribution)

The reliability function, R(t), is defined as R(t) = 1 − F (t) where F (t) is the cumulative
distribution function. In terms of the failure rate function h(t) we have

R(t) = 1− F (t) = exp

{

−
∫ t

0

h(x)dx

}

= exp

{

−βt+
λ

α
tα
}

,

for the cumulative reliability function.



Exercise 5 (the do-it-yourself car wash as a M/G/1 queue)

Example 11.1 was the example of the do-it-yourself car wash facility where there is only one
spot for a customer and two activities to perform, washing and vacuuming. Once the initial
spot is occupied, the facility will not be able to accept new customer until a time X1 +X2

(the sum of the time to wash and vacuum) has passed. After X1 + X2 we must wait an
additional time Y for another customer to arrive. Here Y is an exponential random variable
with rate λ. Thus, from the time the wash facility gets occupied we have to wait on average

E[X1 +X2 + Y ] =
1

µ1
+

1

µ2
+

1

λ
,

for the next customer.

Exercise 6 (an integral equation for the mean-value function M(t))

Part (a): Since N(t) = 0 before the first renewal (which we know happens at the time x)
we must have N(t) ≡ 0 when t < x. Thus E[N(t)|X1 = x] = 0, when t < x. To compute
E[N(t)|X1 = x] for t > x we have

E[N(t)|X1 = x] = E[1 +N(t− x)|X1 = x]

= 1 + E[N(t− x)|X1 = x]

= 1 + E[N(t− x)] ,

using the fact that all renewals that come after the first one are independent of when exactly
that renewal took place. This later equation becomes

E[N(t)|X1 = x] = 1 +M(t− x) when x ≤ t ,

as we were to show.

Part (b): By conditioning on the time when the first renewal takes place we have

M(t) = E[N(t)] =

∫ ∞

0

E[N(t)|X1 = x]f(x)dx

=

∫ t

0

(1 +M(t− x))f(x)dx

=

∫ t

0

f(x)dx+

∫ t

0

M(t− x)f(x)dx

= F (t) +

∫ t

0

M(t− x)f(x)dx ,

with f(x) the density function and F (x) the cumulative density function.

Part (c): Taking the derivative of the above integral equation (with m(t) ≡ M ′(t)) gives

m(t) = f(t) +M(t− t)f(t) +

∫ t

0

m(t− x)f(x)dx

= f(t) +

∫ t

0

m(t− x)f(x)dx , (50)



since M(0) = 0.

Part (d): If m(t) = λ (a constant) then Equation 50 above becomes

λ = f(t) + λ

∫ t

0

f(x)dx . (51)

If we differentiate this with respect to t we obtain

0 = f ′(t) + λf(t) or f ′(t) = −λf(t) .

Thus f(t) = Ce−λt. Putting this back into Equation 51 we find

λ = Ce−λt +
λC

(−λ)

(

e−λx
∣

∣

t

0
= Ce−λt − C(e−λt − 1) = C .

Thus f(t) = λe−λt, or the density function for an exponential random variable.

Exercise 7 (the cumulative distribution for the cycle length in a M/G/1 queue))

Define the random variable Y to be the length of the cycle (total time of the busy period
plus idle period). Then we want to compute F (t) ≡ P{Y < t}. Now Y can be decomposed
as Y = X + V . Here X the random variable denoting the length of the service time
with a distribution given by G(t). While V is the random variable denoting the idle time
which, because we assume that the arrivals are exponential, has a distribution given by an
exponential random variable with rate λ. Then by conditioning on the length of the idle
time V we have

F (t) = P{Y < t} = P{X + V < t}

=

∫

P{X + v < t|V = v}fV (v)dv .

Now the above becomes

F (t) =

∫

P{X < t− v}fV (v)dv .

Here X is a non-negative random variable so the largest value V can take is t and our limits
of the above integral become

F (t) =

∫ t

0

P{X < t− v}fV (v)dv .

Using the known distribution and density functions for X and V respectively, we find

F (t) =

∫ t

0

G(t− v)λe−λvdv , (52)

the requested expression.



Exercise 8 (the distribution function for cycle times in a M/M/1 queue)

Part (a): From Exercise 7, the distribution of the length of the busy period plus the idle
time i.e. the so called cycle time is given by Equation 52 above. If the service times are
exponentially distributed with a rate µ, then the distribution function G(t) takes the form
G(t) = 1− e−µt, and Equation 52 becomes

F (t) = λ

∫ t

0

(1− e−µ(t−x))e−λxdx

= λ

[

e−λt

−λ

∣

∣

∣

∣

t

0

− e−µt

∫ t

0

e−(λ−µ)xdx

]

= λ

[

1− e−λt

λ
− e−µt

(

e−(λ−µ)t − 1

−(λ− µ)

)]

=
1

λ− µ

(

λ− µ+ µe−λt − λe−µt
)

.

Thus the density function is given by the derivative of the above or

f(t) = F ′(t) =
1

λ− µ
(−µλe−λt + λµe−µt)

=

(

µλ

µ− λ

)

(e−λt − e−µt) ,

as we were to show.

Part (b): If we attempt t take the limit µ → λ we notice that we have an indeterminate
limit of the type 0/0 so we need to apply L’Hospital’s rule to evaluate it. We find

lim
µ→λ

f(t) = lim
µ→λ

(

µλ(e−λt − e−µt)

µ− λ

)

= lim
µ→λ

λ(e−λt − e−µt) + λµ(te−µt)

1
= λ2te−λt ,

which we obtain by taking the derivative with respect to µ on the “top and bottom”. We
notice that this last expression is a Gamma distribution with parameters (2, λ). That we
know this must be true follows from the fact that when µ = λ the length of a cycle is the sum
of two exponential random variables with the same rate. Sums of this type are distributed
as Gamma random variables.

Exercise 9 (bounds on the distribution function for Sn = X1 +X2 + · · ·Xn)

Part (a): Chebyshev’s inequality for an arbitrary random variable X with mean µ and
standard deviation σ is the statement that for all δ > 0 we have

P{|X − µ| ≥ δ} ≤
(σ

δ

)2

.



This above inequality implies (by considering the possible absolute values) that

P{X − µ ≥ δ} ≤
(σ

δ

)2

and P{X − µ ≤ −δ} ≤
(σ

δ

)2

.

For this problem we will consider our random variable to be the time of the n-th renewal or
Sn =

∑n
i=1Xi, so that E[Sn] = nτ and Var(Sn) = nσ2. Using the second of these expressions

we have that

P{Sn − nτ ≤ −δ} ≤ nσ2

δ2
,

or

P{Sn ≤ −δ + nτ} ≤ nσ2

δ2
,

by moving the tern nτ to the other side of the inequality. Now define t = −δ + nτ so that
δ = nτ − t and the above becomes

P{Sn ≤ t} ≤ nσ2

(t− nτ)2
,

since P{Sn ≤ t} is Fn(t) we have the desired expression. Note also that as δ > 0 this requires
n > t/τ .

Exercise 10 (more bounds on the distribution function for Sn = X1 +X2 + · · ·Xn)

Part (a): Consider the expression P{Sk+m ≤ t|∑m
i=1Xi = x}. Then as before this equals

P{Sk ≤ t− x} = Fk(t− x) ,

since if I tell you the value of
∑m

i=1Xi is x, then

Sk+m =
m
∑

i=1

Xi +
m+k
∑

i=m+1

Xi = x+
m+k
∑

i=m+1

Xi ,

so that the probability P{Sk+m ≤ t} is equal to the probability P{x +
∑m+k

i=m+1 Xi ≤ t}.
Equivalently, that the sum of the k elements Xm+1, Xm+2, · · · , Xm+k, are less than t − x.
This is equivalent to Fk(t − x). Since we know an expression for P{Sk+m ≤ t|Sm = x}, we
can compute P{Sk+m ≤ t} alone, by conditioning on the value of the random variable Sm.
That is

Fk+m(t) = P{Sk+m ≤ t} =

∫ t

0

P{Sk+m ≤ t|Sm = x}P{Sm = x}dx

=

∫ t

0

Fk(t− x)fm(x)dx ,

as we were to show.

Part (b): Now as all distribution functions are non-decreasing we know that Fk(t − x) ≤
Fk(t) and we have from Part (a) that

Fk+m(t) ≤
∫ t

0

Fk(t)fm(x)dx = Fk(t)Fm(t) ,



as we were to show.

Part (c): Given the inequality derived in Exercise 9 from Chebyshev’s inequality for a fixed
t we have

Fr(t) ≤
rσ2

(rτ − t)2
→ σ2

rτ 2
as r → +∞ .

Thus when t is fixed we can find an r large enough such that Fr(t) ≤ 1 i.e. any integer r such
that r ≫ O( τ

2

σ2 ). Then using this value of r let any integer n be decomposed as n = rq + k
with the remainder term k such that 0 ≤ k < r so that

Fn(t) = Frq+k(t) ≤ Fk(t)Frq(t) ,

using the result from Part (b).

Exercise 11 (stopping rules?)

Recall that a random variable N is a a stopping rule for the sequence of random variables
X1, X2, · · · if for every integer n ≥ 0 the event {N = n} is independent of all the random
variables that follow Xn+1, Xn+2, · · · . Intuitively this says that our determination of when
to stop at element n, can be made by only considering the samples Xi up to and including
Xn. Thus once we have seen enough “events”, we don’t need to see any more to make our
decision.

Part (a): Since the event {N = n} only depends on the values of Xi for i ≤ n and not on
any for i > n this is a random stopping rule.

Part (b): Since the only two value for N ′ are N ′ = 2 and N ′ = 3, from which the choice of
which to take is made after seeing the value of X2 so this is a random stopping rule.

Part (c): Since in this case we prescribe N ′′ = 1 or a “stop” if X2 6= 1 this is not a random
stopping rule. This is because to have the rule stop us at 1 i.e. N ′′ = 1 we cannot use any
information from the sequence after X1.

Exercise 12 (calculating E[
∑N

j=1Xj ])

Wald’s’ identity is that if N is a random stopping rule for the sequence {Xj} the elements
of which have expectations given by E[Xi] = τ then

E[
N
∑

j=1

Xj] = τ · E[N ] .

Thus to use this theorem we need to be able to calculate both τ (the expectation of the
renewal time i.e. E[X1]) and E[N ], the expected number of renewals. Since Xi is Bernoulli



the expected value of Xi is E[Xi] = p. The expected value of N depends on the specified
random stopping rule and will be calculated in each specific case below.

Part (a): Using Wald’s identity and the definition of N in this case we stop when we have
received 5 successes. A random variable of this type is distributed as a negative-binomial
with parameters (5, p) and has an expectation given by 5

p
. Thus we find

E[

N
∑

j=1

Xj] = p

(

5

p

)

= 5 ,

as we would expect. To calculate this directly we can condition the sum on the value taken
for N . We have

E[
N
∑

j=1

Xj] = E[
5
∑

j=1

Xj|N = 5]P{N = 5}+ E[
6
∑

j=1

Xj |N = 6]P{N = 6}+ · · · .

Note we start our sum at N = 5 since sums with fewer terms than five are not possible under
this stopping rule. This later expression becomes

5pP{N = 5}+ 6pP{N = 6}+ · = p

( ∞
∑

n=5

nP{N = n}
)

.

Now since P{N = n} is given by a negative-binomial random with parameters (5, p) and we
recognize the above summation as the expected value of n when n is given by a negative-
binomial random variable. Finally we have

E[

N
∑

j=1

Xj] = p

(

5

p

)

= 5 ,

as before.

Part (b): In this case to use Wald’s identity we need to calculate E[N ′]. We find

E[N ′] = 2p+ 3(1− p) = 3− p .

Thus

E[
N
∑

j=1

Xj] = (3− p)p .

To calculate this directly again by conditioning on the value of N ′ this can be computed as

E[

N ′

∑

j=1

Xj] = E[

2
∑

j=1

Xj |N ′ = 2]P{N ′ = 2}+ E[

3
∑

j=1

Xj|N ′ = 3]P{N ′ = 3}

= 2p(p) + 3p(1− p) = 3− p ,

the same as before.



Part (c): We cannot use Wald’s identity as before since the rule N ′′ is not a random stopping
rule, but we maybe able to compute the expectation directly by conditioning

E[
N ′′

∑

j=1

Xj] = E[
2
∑

j=1

Xj|N ′′ = 2]P{N ′′ = 2}+ E[
1
∑

j=1

Xj|N ′′ = 1]P{N ′′ = 1}

= 2p(p) + p(1− p) = p2 + p .

Incidentally this is what Wald’s identity would give also.

Exercise 13 (betting on Bernoulli outcomes)

Part (a): This is not a random stopping rule since you don’t know when your first loss will
happen. One can’t use any future outcomes from the sequence to determine when to stop.

Part (b): Let W be your expected winnings. Then

E[W ] =
∞
∑

i=0

wipi = 0q + 1pq + 2p2q + · · · ,

which is the expectation of K − 1, where K is a geometric random variable with parameter
p. Thus E[W ] = 1

p
− 1 = 1−p

p
= q

p
dollars.

Wald’s identity would be the statement that E[
∑N

i=1Xi] = E[N ] ·E[Xi], with Xi the amount
one wins on trial i. Thus

E[Xi] = 1p− 1q = 2p− 1 ,

and N the random variable denoting the number of trials one bets on. Thus

E[N ] = 0q + 1pq + 2p2q + · · · = q

p
,

since this is the same sum as before. Thus E[N ]E[Xi] =
q
p
(2p − 1) and is not equal to

what we had before, showing that if N is not a random stopping rule one cannot use Wald’s
identity.

Exercise 14 (examples of the Renewal-Reward theorem)

Part (a): The elementary renewal theorem is the statement that over an interval of length
t, the number of renewals is approximately t/τ so that the long term renewal rate is 1/τ i.e.
that

lim
t→∞

E[N(t)]

t
=

1

τ
.

Viewing Example 11.1 as a M/G/1 queue in the renewal framework we have that

λa = lim
t→∞

E[N(t)]

t
,



with τ = E[Xi] the average time between renewals. This was calculated in Exercise 5 to be
τ = 1

µ1
+ 1

µ2
+ 1

λ
so

λa =
1

τ
=

1
1
µ1

+ 1
µ2

+ 1
λ

=
λ

1 + λ
µ1

+ λ
µ2

.

Part (b): Defining Y (t) to be a renewal process i.e. Y (t) =
∑N(t)

i=1 Ri, then for large t the
expected total reward given by the Renewal-Reward theorem is rt

τ
. That is

lim
t→∞

E[Y (t)]

t
=

r

τ
.

So in the car-wash-example of Example 11.1 we have that Y (t) is the total profit made up
to and including time t. If we assume that each customer pays one dollar per hour of service
time then limt→∞

E[Y (t)]
t

is the long term occupation percentage. From the renewal reward
theorem this equals r

τ
, with r = E[Ri]. This is

r = E[Ri] = 1

(

1

µ1
+

1

µ2

)

,

so the long term occupational percentage then becomes

lim
t→∞

E[Y (t)]

t
=

1
µ1

+ 1
µ2

1
µ1

+ 1
µ2

+ 1
λ

=
λ
(

1
µ1

+ 1
µ2

)

1 + λ
µ1

+ λ
µ2

.

Part (c): Now assuming an exponential model as in Example 11.1 we have (by defining

p0 ≡
(

1 + λ
µ1

+ λ
µ2

)−1

, that λa = λp0 which agrees with Part (a) and that

L = p1 + p2 =
λ

µ1
p0 +

λ

µ2
p0 ,

which agrees with Part (b).

Exercise 15 (a M/G/1 queue)

Part (a): Given that the customer places an order, the average service time E[S] is given
by

E[S] =
∑

s

sp(s) = 2(0.5) + 4(0.4) + 6(0.1) = 3.2 ,

minutes.

Part (b): If we view this as a M/G/1 queue then the renewal time X is the time to first
service the customer plus the time to wait until the next customer arrives. Thus

E[X ] =
1

λ
+ E[S] = 6 + 3.2 = 9.2 ,



minutes. Here we have used the fact that the average waiting time for the exponential
distribution of the arrivals is 1

λ
.

Part (c): If we use the elementary renewal theorem we have

λa = lim
t→∞

E[N(t)]

t
=

1

τ
=

1
(

1
λ
+ E[S]

) =
1

9.2
= 0.108 ,

customers per minute.

Exercise 16 (exponentially distributed flashers)

We are told to assume that gY (y) = λe−λy, i.e. that the lifetime Y of our flasher is exponen-
tially distributed. In that case our distribution function is G(T ) = 1 − e−λT and L(T ) the
expected length of the replacement cycle is given by

L(T ) =

∫ T

0

R(y)dy =

∫ T

0

(1−G(y))dy =

∫ T

0

e−λydy =
e−λy

(−λ)

∣

∣

∣

∣

T

0

=
1

λ
(1− e−λT ) .

Then C(T ) our long term cost as described in the age-replacement model becomes

C(T ) =
C1 + C2G(T )

L(T )
=

C1 + C2(1− e−λT )
1
λ
(1− e−λT )

= λC1(1− e−λT )−1 + λC2 .

To show that this function is a monotonically decreasing function of T we take the derivative
of this expression. We find

C ′(T ) = −λC1(1− e−λT )−2(λe−λT ) = − λ2C1e
−λT

(1− e−λT )2
< 0 ,

for all T .

Exercise 17 (uniformly distributed flashers)

Part (a): In this case our density and distribution functions for the flashers lifetime, Y , is
given by

g(y) =

{

1 1 < y < 2
0 otherwise

and G(y) =







0 y < 1
y − 1 1 < y < 2
1 y > 2

.

Next we compute the expected length of the replacement cycle, L(T ), when 1 < T < 2 as

L(T ) =

∫ T

0

R(y)dy =

∫ T

0

(1−G(y))dy = T −
∫ T

0

G(y)dy

= T −
∫ T

1

(y − 1)dy = T −
(

1

2
T 2 − T +

1

2

)

= −1

2
T 2 + 2T − 1

2
.



Note that this expression is valid at the two boundary cases T = 1 and T = 2 also. For T
in the range 1 < T < 2 the average long term cost assuming a scheduled replacement cost
of C1 and an additional cost of C2 for random failure is

C(T ) =
C1 + C2G(T )

L(T )
=

C1 + C2(T − 1)

−1
2
T 2 + 2T − 1

2

.

Part (b): The value of T that minimizes this cost C(T ) is found by solving C ′(T ) = 0
which is

C ′(T ) =
C2

−1
2
T 2 + 2T − 1

2

− (C1 + C2(T − 1))(−T + 2)
(

−1
2
T 2 + 2T − 1

2

)2 = 0 .

or

C2

(

−1

2
T 2 + 2T − 1

2

)

− (C1 + C2(T − 1))(−T + 2) = 0 .

when C1 = 200 and C2 = 100 we can solve this using the quadratic equation. Using
Mathematica we find the positive root given by 1.449 (in units of years).

Part (c): The average cost under this policy is given by C(1.449) and is given by 181.65
dollars per year.

Part (d): If we replace the flashers when they randomly fail we find C(2) = 200, so the
policy in Part (c) is slightly better.

Some simple calculations for this problem can be found in the Mathematica file chap 12 prob 17.nb.

Exercise 18 (adding a salvage value)

Part (a): Assuming we routinely replace our flasher after T amount of time and that a
flasher that has not expired when replaced has a salvage value of 10(2− T ). Given this, we
can calculate a new expected cost per cycle depending on whether or not our flasher has
actually expired when we replace it. Defining Y to be the random variable denoting the
lifetime of the given flasher we find

E[Cost of a cycle] = (C1 − 10(2− T ))P{Y > T}+ (C1 + C2)P{Y ≤ T}
= (C1 − 10(2− T ))(1−G(T )) + (C1 + C2)G(T ) .

Here we have subtracted the salvage value of the flasher from the routine maintenance trip
cost C1 when the flasher is still working at the time of replacement i.e. when P{Y > T}.
Then the expected long term cost rate (defined as C(T )) in this case is given by

C(T ) ≡ E[Long term cost rate] =
E[Cost of a cycle]

E[length of a cycle]

=
(C1 − 10(2− T ))(1−G(T )) + (C1 + C2)G(T )

L(T )
,



with G(T ) and L(T ) as in Exercise 17. In that case the above becomes

C(T ) =
(C1 − 10(2− T ))(2− T ) + (C1 + C2)(T − 1)

−1
2
T 2 + 2T − 1

2

.

Part (b): To minimize C(T ) we solve the equation C ′(T ) = 0 for T . Taking this derivative
and solving the resulting equation for T is done in the Mathematica file chap 12 prob 18.nb.
When we do this we find that our solution is given by T = 1.3712 years. This is a smaller
time than found in Exercise 17. Which makes sense because we obtain some benefit when
the flasher is still working when we replace it.

Part (c): The average cost under this policy is given by C(1.3712) and is given by 179.04
dollars per year. This again is a smaller cost than what we found in Exercise 17 as would
be expected.

Exercise 19 (taking ticket reservations)

Part (a): If we define Xi to be the length of time required for the operator to service the
ith call, then the total time the operator spends servicing calls up to time t is given by
Y (t) =

∑N(t)
i=1 Xi, where N(t) is a Poisson process with rate λ. The long time proportion

of time the operator is busy is given by limt→∞
E[Y (t)]

t
, which can be calculated with the

Renewal-Reward theorem since

lim
t→∞

E[Y (t)]

t
=

r

τ
=

E[Xi]

1/λ
.

In the case here, E[Xi] = 20 seconds, since Xi is given by a uniform random variable
distributed between [15, 25] seconds. Since the incoming rate is λ = 2 calls per minute the
expression above becomes

E[Xi]

1/λ
=

20

60/2
=

2

3
.

Part (b): If under steady-state conditions 2/3 of the time the operator is busy then 1 −
(2/3) = 1/3 of the time the operator is free and all received calls will not be put on hold.

Exercise 21 (bus trip costs)

Using the variables from the dispatch shuttle bus example in the book we see that a = 10
and c = 20, while the largest N can be is 10 since that is the capacity of a bus. Then to find
a range of values for the average interarrival time, τ , requires Nmin > 10 or

(

2a

τc

)1/2

> 10 .

When we put in a and c from above and solve for τ we find τ < 0.01 hours or τ < 3/5
minutes. Note that this is different than the result given in the back of the book.



Exercise 22 (the optimal number of customers to wait for)

For the average long-term cost rate given in the dispatching shuttle bus example we found

F (N) =
a

Nτ
+

c(N − 1)

2
,

so that the derivative of this expression is given by

F ′(N) = − a

N2τ
+

c

2
.

Setting this equal to zero and solving for N we find

a

N2τ
=

c

2
⇒ N = +

√

2a

τc
.

Exercise 23 (a shuttle bus system)

Part (a): Since a bus will only depart once it is filled and that there is space for ten
passengers each of which arrives after the previous one at a time given by an exponential
random variable Yi (with rate λ) each bus will leave after a time

∑10
i=1 Yi. Sums of this type

are given by Gamma random variables with parameters (10, λ).

Part (b): Relating the numbers given to the shuttle bus example we have c = 10, a = 20,
and N = 10 so the average long term cost rate is given by

a

Nτ
+

c(N − 1)

2
= 2λ+ 45 ,

when τ = 1
λ
. So to operate for 1000 hours would require a cost of

2000λ+ 45000 ,

dollars.

Exercise 24 (the expected light bulb lifetime)

Following the discussion in the section entitled lifetime sampling and the inspection paradox,
the expected value for A the random variable denoting the age of our component is given as

E[A] =
τ

2
+

σ2

2τ
,

with τ = E[X ] the expected lifetime and σ2 = Var(X) the variance of the lifetime. From the
light bulbs described in problem 1 we have calculated both of these and found τ =

√

π
2
=

1.2533 and Var(X) = 2− π
2
= 0.429 so that E[A] = 0.7979.



Exercise 25 (the car batteries of Mr. Jones)

We can model this problem as in the section “Lifetime Sampling and the Inspection Paradox”.
In this case we want to evaluate P{A ≤ 1}. As shown there this is given by

P{A ≤ c} =
1

τ

∫ c

0

R(x)dx .

Now τ = E[X ] and R(x) is the reliability function for the random variable X the lifetime of
a battery.

Part (a): In this case τ = E[X ] = 1 and R(x) = 1− F (x) = 1− 1
2
x, so that

P{A ≤ c} =
1

1

∫ c

0

(

1− 1

2
x

)

dx = c− x2

4

∣

∣

∣

∣

c

0

= c− c2

4
.

When c = 1 this gives P{A ≤ 1} = 1− 1
4
= 3

4
.

Part (b): In this case τ = 1 while R(x) = 1− F (x) = 1− (1− e−x) = e−x, so

P{A ≤ c} = 1

∫ c

0

e−xdx = 1− e−c .

Thus P{A ≤ 1} = 1− e−1 = 0.632.

Exercise 26 (how long will this battery last?)

The expected remaining lifetime of the battery currently in use is computed in the section on
“Lifetime Sampling and the Inspection Paradox”. There we find that the expected remaining
lifetime, E[Z], is given by

E[Z] =
τ

2
+

σ2

2τ
.

When X is distributed as a uniform random variable over (0, 2) we have τ = 1 and σ2 =
(2−0)2

12
= 1

3
so

E[Z] =
1

2
+

1

6
=

2

3
,

of a year. The expected total lifetime of the batter in current use is

τ +
σ2

τ
= 1 +

1

3
=

4

3
,

of a year.



Exercise 27 (a numerical illustration of the inspection paradox)

Part (a): We compute the direct average of the Xi’s to be 1
5

∑5
i=1Xi = 2.6580.

Part (b): We can approximate the integral
∫ T

0
A(t)dt by recognizing that it represents the

area under the A(t) graph. The A(t) function is a sawtooth graph where each full sawtooth’s
is a triangle with a base and height of equal length. Thus each full triangle has an area of
Ai =

1
2
X2

i . The last (fifth) sawtooth is not complete in this example and has an area given
by (see Figure 12.4 in the book) of

U4 ≡
1

2
(T − S4)

2 =
1

2

(

T −
4
∑

i=1

Xi

)2

= 1.3613 .

Thus we find
1

T

∫ T

0

A(t)dt =
1

11

(

4
∑

i=1

1

2
X2

i + U4

)

= 1.2697 .

Part (c): In the same way as in Part (b) counting each sawtooth of the function Z(t) as
having an area given by the triangle it subtends we find

1

T

∫ T

0

Z(t)dt =
1

11

(

4
∑

i=1

1

2
X2

i +
1

2
(T − S4)(X5 +X5 − T + S4)

)

= 1.6132 .

Here the last uncompleted “triangle” (corresponding to the lifetime of the fifth component)
is actually a trapezoid and has an area given by the appropriate formula. In this case
the trapezoid is denoted by the following four points (going clockwise) (S4, 0), (S4, X4),
(T,X5 − (T − S4)), and (T, 0). Thus if we take the height of this trapezoid to be the line
between the points (S4, 0) and (T, 0), the first “base” of this trapezoid to be the line between
the points (S4, 0) and (S4, X5), and the second base of the trapezoid to be the distance
between the points (T,X5 − T + S4) and (T, 0) we see that our trapezoid has an area given
by

V4 ≡
1

2
(T − S4)(X5 + (X5 − T + S4)) =

1

2
(T − S4)(X5 + S5 − T ) = 5.1398 .

Exercise 28 (a analytical illustration of the inspection paradox)

Part (a-b): See Problem 27 where we do this calculation for a specific number of arrivals.
The calculation is the same for an arbitrary number of them.

Part (c): From the Renewal-Reward theorem if we take rewards given by Rn = X2
n then

for large t the expected total reward up to time t is approximately tr
τ
that is

lim
t→∞

1

t

N(t)
∑

i=1

X2
i =

E[X2
i ]

E[Xi]
.



Thus since as discussed in the hint UN = (T − Sn)
2 ≤ (SN+1 − SN)

2 =≤ X2
N+1 we see that

1

T

∫ T

0

A(t)dt =
1

2T

N(T )
∑

i=1

X2
i +

UN

2T
≤ 1

2T

N(T )+1
∑

i=1

X2
i ,

so taking the limit as T goes to infinity in the above expression we find

lim
T→∞

E

[

1

T

∫ T

0

A(t)dt

]

≤ lim
T→∞

1

2T
E





N(T )+1
∑

i=1

X2
i



 =
1

2

(

E[X2
i ]

E[Xi]

)

.

as desired to be shown.

Exercise 29 (WQ as a function of ρ for various M/G/1 queues)

These specifications follow from the section on waiting times for the M/G/1 queue where
the book calculates

WQ =
ρ

1− ρ

(

τ

2
+

σ2

2τ

)

. (53)

Part (a): For this distribution of X we have τ = ρ and σ2 = ρ2 so that WQ as a function
of ρ becomes

WQ =
ρ

1− ρ

(

ρ

2
+

ρ2

2ρ

)

=
ρ2

1− ρ
.

Part (b): For this distribution of X we have τ = ρ and σ2 = (2ρ−0)2

12
= ρ2

3
so that WQ as a

function of ρ becomes

WQ =
ρ

1− ρ

(

ρ

2
+

ρ2

3(2ρ)

)

=
2

3

(

ρ2

1− ρ

)

.

Part (c): For this distribution of X we have τ = n/λ = 2/(2/ρ) = ρ and σ2 = n
λ2 = 2

(2/ρ)2
=

ρ2

2
so that WQ as a function of ρ becomes

WQ =
ρ

1− ρ

(

ρ

2
+

ρ2

2(2ρ)

)

=
3

4

(

ρ2

1− ρ

)

.

Exercise 30 (the expression for LQ, W , and L for a M/G/1 queue)

Part (a): Equation 53 gives the expression for WQ for a M/G/1 queue so that from Little’s
law we have

LQ = λWQ =
λρ

1− ρ

(

τ

2
+

σ2

2τ

)

. (54)



Since W = WQ + 1
µ
= WQ + τ again using Equation 53 we have

W =
ρ

1− ρ

(

τ

2
+

σ2

2τ

)

+ τ . (55)

Using Little’s formula we find that L = λW , since λτ = ρ this is

L =
λρ

1− ρ

(

τ

2
+

σ2

2τ

)

+ ρ . (56)

Part (b): Under the assumption of exponential service times τ = 1
µ
and σ2 = τ 2 = 1

µ2 so

each of the above expression simplifies. We first find that the subexpression
(

τ
2
+ σ2

2τ

)

, which

appears in every expression above as

τ

2
+

σ2

2τ
=

τ

2
+

τ

2
= τ =

1

µ
.

Using this, the requested expressions become

LQ =
λρ

1− ρ

(

1

µ

)

=
ρ2

1− ρ

W =
ρ

1− ρ

(

1

µ

)

+
1

µ
=

1

(1− ρ)µ

L =
λρ

1− ρ

(

1

µ

)

+ ρ =
ρ

1− ρ
,

all of which agree with the results from a M/M/1 queue derived earlier.

Exercise 31 (statistics of particular M/G/1 queues)

Part (a): Following the discussion in the section entitled “Regeneration Points” we define
B the length of a busy period and calculated E[B] = 1

µ(1−ρ)
= τ

1−ρ
. With the given uniform

distribution for the servers we find this becomes

E[B] =
(ǫ/2)

1− λ(ǫ/2)
=

(ǫ/2)

1− ǫ
=

ǫ

2(1− ǫ)
,

when λ = 2.

Part (b): From Equation 24 since for X distributed as a uniform random variable over

(0, ǫ) that τ = ǫ
2
and σ2 = (ǫ−0)2

12
= ǫ2

12
, ρ = λ

µ
= λτ = λǫ

2
so

WQ =
(λǫ/2)

(1− (λǫ/2))

(

ǫ

4
+

ǫ2

12(2(ǫ/2))

)

=
λǫ2

3(2− λǫ)
,

with λ = 2 this becomes

WQ =
ǫ2

3(1− ǫ)
.



Part (c): From Little’s law or Equation 54 in Exercise 30 above we find that

LQ = λWQ =
2ǫ2

3(1− ǫ)
.
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