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Introduction

The Elements of Statistical Learning is an influential and widely studied book in the fields
of machine learning, statistical inference, and pattern recognition. It is a standard recom-
mended text in many graduate courses on these topics. It is also very challenging, particularly
if one faces it without the support of teachers who are expert in the subject matter. For
various reasons, both authors of these notes felt the need to understand the book well, and
therefore to produce notes on the text when we found the text difficult at first reading,
and answers to the exercises. Gaining understanding is time-consuming and intellectually
demanding, so it seemed sensible to record our efforts in LaTeX, and make it available on
the web to other readers. A valuable by-product of writing up mathematical material, is
that often one finds gaps and errors in what one has written.

Now it is well-known in all branches of learning, but in particular in mathematical learning,
that the way to learn is to do, rather than to read. It is all too common to read through
some material, convince oneself that one understands it well, but then find oneself at sea
when trying to apply it in even a slightly different situation. Moreover, material understood
only at a shallow level is easily forgotten.

It is therefore our strong recommendation that readers of the book should not look at our
responses to any of the exercises before making a substantial effort to understand it without
this aid. Any time spent in this way, even if it ends without success, will make our solutions
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easier to understand and more memorable. Quite likely you will find better solutions than
those provided here—let us know when you do!

As far as teachers of courses based on the text are concerned, our notes may be regarded as
a disadvantage, because it may be felt that the exercises in the book can no longer be used
as a source of homework or questions for tests and examinations. This is a slight conflict
of interest between teachers of courses on the one hand, and independent learners on the
other hand. Finding ourselves in the ranks of the independent learners, the position we take
is hardly surprising. Teachers of courses might benefit by comparing their own solutions
with ours, as might students in classes and independent learners. If you, the reader, find
a problem difficult and become stuck, our notes might enable you to unstick yourself. In
addition, there is a myriad of materials on any of the topics this book covers. A search for
“statistical learning theory” on Google (as of 1 January 2010) gave over 4 million hits. The
possible disadvantage of not being able to use the book’s problems in an academic course
is not really such a large one. Obtaining additional supplementary problems at the right
level for an academic course is simply a matter of a visit to the library, or a little time spent
surfing the net. And, of course, although one is not supposed to say this, teachers of courses
can also get stuck.
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Chapter 2 (Overview of Supervised Learning)

Statistical Decision Theory

We assume a linear model: that is we assume y = f(x) + ε, where ε is a random variable
with mean 0 and variance σ2, and f(x) = xTβ. Our expected predicted error (EPE) under
the squared error loss is

EPE(β) =

∫
(y − xTβ)2Pr(dx, dy) . (1)

We regard this expression as a function of β, a column vector of length p + 1. In order to
find the value of β for which it is minimized, we equate to zero the vector derivative with
respect to β. We have

∂EPE

∂β
=

∫
2 (y − xTβ) (−1)xPr(dx, dy) = −2

∫
(y − xTβ)xPr(dx, dy) . (2)

Now this expression has two parts. The first has integrand yx and the second has integrand
(xTβ)x.

Before proceeding, we make a quick general remark about matrices. Suppose that A, B and
C are matrices of size 1× p matrix, p× 1 and q × 1 respectively, where p and q are positive
integers. Then AB can be regarded as a scalar, and we have (AB)C = C(AB), each of these
expressions meaning that each component of C is multiplied by the scalar AB. If q > 1,
the expressions BC, A(BC) and ABC are meaningless, and we must avoid writing them.
On the other hand, CAB is meaningful as a product of three matrices, and the result is the
q × 1 matrix (AB)C = C(AB) = CAB. In our situation we obtain (xTβ)x = xxTβ.

From ∂EPE/∂β = 0 we deduce

E[yx]− E[xxTβ] = 0 (3)

for the particular value of β that minimizes the EPE. Since this value of β is a constant, it
can be taken out of the expectation to give

β = E[xxT ]−1E[yx] , (4)

which gives Equation 2.16 in the book.

We now discuss some points around Equations 2.26 and 2.27. We have

β̂ = (XTX)−1XTy = (XTX)−1XT (Xβ + ε) = β + (XTX)−1XT ε.

So
ŷ0 = xT

0 β̂ = xT
0 β + xT

0 (X
TX)−1XT ε. (5)

This immediately gives

ŷ0 = xT
0 β +

N∑

i=1

ℓi(x0)εi
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where ℓi(x0) is the i-th element of the N -dimensional column vector X(XTX)−1x0, as stated
at the bottom of page 24 of the book.

We now consider Equations 2.27 and 2.28. The variation is over all training sets T , and over
all values of y0, while keeping x0 fixed. Note that x0 and y0 are chosen independently of T
and so the expectations commute: Ey0|x0ET = ET Ey0|x0. Also ET = EXEY|X .

We write y0 − ŷ0 as the sum of three terms
(
y0 − xT

0 β
)
− (ŷ0 − ET (ŷ0))−

(
ET (ŷ0)− xT

0 β
)
= U1 − U2 − U3. (6)

In order to prove Equations 2.27 and 2.28, we need to square the expression in Equation 6
and then apply various expectation operators. First we consider the properties of each of
the three terms, Ui in Equation 6. We have Ey0|x0U1 = 0 and ET U1 = U1ET . Despite the
notation, ŷ0 does not involve y0. So Ey0|x0U2 = U2Ey0|x0 and clearly ET U2 = 0. Equation 5
gives

U3 = ET (ŷ0)− xT
0 β = xT

0 EX

(
(XTX)−1XTEY|X ε

)
= 0 (7)

since the expectation of the length N vector ε is zero. This shows that the bias U3 is zero.

We now square the remaining part of Equation 6 and then then apply Ey0|x0
ET . The cross-

term U1U2 gives zero, since Ey0|x0(U1U2) = U2Ey0|x0(U1) = 0. (This works in the same way
if ET replaces Ey0|x0

.)

We are left with two squared terms, and the definition of variance enables us to deal imme-
diately with the first of these: Ey0|x0ET U

2
1 = Var(y0|x0) = σ2. It remains to deal with the

term ET (ŷ0 − ET ŷ0)
2 = VarT (ŷ0) in Equation 2.27. Since the bias U3 = 0, we know that

ET ŷ0 = xT
0 β.

If m is the 1× 1-matrix with entry µ, then mmT is the 1× 1-matrix with enty µ2. It follows
from Equation 5 that the variance term in which we are interested is equal to

ET

(
xT
0 (X

TX)−1XT εεTX(XTX)−1x0

)
.

Since ET = EXEY|X , and the expectation of εεT is σ2IN , this is equal to

σ2xT
0ET

(
(XTX)−1

)
x0 = σ2xT

0EX

((
XTX/N

)−1
)
x0/N. (8)

We suppose, as stated by the authors, that the mean of the distribution giving rise to X
and x0 is zero. For large N , XTX/N is then approximately equal to Cov(X) = Cov(x0),
the p × p-matrix-variance-covariance matrix relating the p components of a typical sample
vector x—as far as EX is concerned, this is a constant. Applying Ex0 to Equation 8 as in
Equation 2.28, we obtain (approximately)

σ2Ex0

(
xT
0Cov(X)−1x0

)
/N = σ2Ex0

(
trace

(
xT
0Cov(X)−1x0

))
/N

= σ2Ex0

(
trace

(
Cov(X)−1x0x

T
0

))
/N

= σ2trace
(
Cov(X)−1Cov(x0)

)
/N

= σ2trace(Ip)/N

= σ2p/N.

(9)
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This completes our discussion of Equations 2.27 and 2.28.

Notes on Local Methods in High Dimensions

The most common error metric used to compare different predictions of the true (but un-
known) mapping function value f(x0) is the mean square error (MSE). The unknown in the
above discussion is the specific function mapping function f(·) which can be obtained via
different methods many of which are discussed in the book. In supervised learning to help
with the construction of an appropriate prediction ŷ0 we have access to a set of “training
samples” that contains the notion of randomness in that these points are not under complete
control of the experimenter. One could ask the question as to how much square error at our
predicted input point x0 will have on average when we consider all possible training sets T .
We can compute, by inserting the “expected value of the predictor obtained over all training
sets”, ET (ŷ0) into the definition of quadratic (MSE) error as

MSE(x0) = ET [f(x0)− ŷ0]
2

= ET [ŷ0 − ET (ŷ0) + ET (ŷ0)− f(x0)]
2

= ET [(ŷ0 − ET (ŷ0))
2 + 2(ŷ0 −ET (ŷ0))(ET (ŷ0)− f(x0)) + (ET (ŷ0)− f(x0))

2]

= ET [(ŷ0 − ET (ŷ0))
2] + (ET (ŷ0)− f(x0))

2 .

Where we have expanded the quadratic, distributed the expectation across all terms, and
noted that the middle term vanishes since it is equal to

ET [2(ŷ0 −ET (ŷ0))(ET (ŷ0)− f(x0))] = 0 ,

because ET (ŷ0)− ET (ŷ0) = 0. and we are left with

MSE(x0) = ET [(ŷ0 −ET (ŷ0))
2] + (ET (ŷ0)− f(x0))

2 . (10)

The first term in the above expression ET [(ŷ0−ET (ŷ0))
2] is the variance of our estimator ŷ0

and the second term (ET (ŷ0) − f(x0))
2 is the bias (squared) of our estimator. This notion

of variance and bias with respect to our estimate ŷ0 is to be understood relative to possible
training sets, T , and the specific computational method used in computing the estimate ŷ0
given that training set.

Exercise Solutions

Ex. 2.1 (target coding)

The authors have suppressed the context here, making the question a little mysterious. For
example, why use the notation ȳ instead of simply y? We imagine that the background is
something like the following. We have some input data x. Some algorithm assigns to x the
probability yk that x is a member of the k-th class. This would explain why we are told to
assume that the sum of the yk is equal to one. (But, if that reason is valid, then we should
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also have been told that each yk ≥ 0.) In fact, neither of these two assumptions is necessary
to provide an answer to the question. The hyphen in K-classes seems to be a misprint, and
should be omitted.

We restate the question, clarifying it, but distancing it even further from its origins. Let
K > 0 be an integer. For each k with 1 ≤ k ≤ K, let tk be the K-dimensional vector that
has 1 in the k-th position and 0 elsewhere. Then, for any K-dimensional vector y, the k for
which yk is largest coincides with the k for which tk is nearest to y.

By expanding the quadratic we find that

argmink||y − tk|| = argmink||y − tk||2

= argmink

K∑

i=1

(yi − (tk)i)
2

= argmink

K∑

i=1

(
(yi)

2 − 2yi(tk)i + (tk)i
2)

= argmink

K∑

i=1

(
−2yi(tk)i + (tk)i

2) ,

since the sum
∑K

i=1 yi
2 is the same for all classes k. Notice that, for each k, the sum∑K

k=1 (tk)i
2 = 1. Also

∑
yi(tk)i = yk. This means that

argmink||y − tk|| = argmink (−2yk + 1)

= argmink(−2yk)
= argmaxkyk .

Ex. 2.2 (the oracle revealed)

For this problem one is supposed to regard the centering points pi (blue) and qi (orange)
below as fixed. If one does not do this, and instead averages over possible choices, then
since the controlling points are (1,0) and (0,1), and all probabilities are otherwise symmetric
between these points when one integrates out all the variation, the answer must be that the
boundary is the perpendicular bisector of the interval joining these two points.

The simulation draws 10 “blue” centering points p1, . . . , p10 ∈ R
2 from N

([
1
0

]
, I2

)
and 10

“orange” centering points q1, . . . , q10 ∈ R
2 from N

([
0
1

]
, I2

)
. The formula for the Bayes

decision boundary is given by equating posterior probabilities. We get an equation in the
unknown z ∈ R

2, giving a curve in the plane:

P (blue)

10∑

i=1

exp(−5‖pi − z‖2/2) = P (orange)

10∑

j=1

exp(−5‖qj − z‖2/2) .
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Note that in the above I have canceled the constant weight fractions of 1
10

in the mixture
model and the normalization factors in the Gaussian densities (as they are the same on both
sides). In this solution, the boundary is given as the equation of equality between the two
probabilities, with the pi and qj constant and fixed by previously performed sampling. Each
time one re-samples the pi and qj , one obtains a different Bayes decision boundary. Note
that if the prior probabilities are equal (as they seem to be in this example) we have

P (blue) = P (orange) =
1

2
,

and they also cancel.

Ex. 2.3 (the median distance to the origin)

Solution 1: For this exercise we will derive the distribution function (CDF) for the Eu-
clidean distance (denoted by y) from the origin to the closest of n points xi where each point
xi is drawn uniformly from a p-dimensional unit ball centered at the origin.

For any given vector xi (uniform in the unit ball) the distribution function of y = ||xi|| is
the ratio of the volume of a ball of radius y and the volume of a ball of radius one. This
ratio is yp and so F (y) = yp. The distribution function for y is then f(y) = pyp−1.

Given N such vectors {xi}Ni=1 the distribution function for the smallest radius Y1 (from all
of them) is given by

FY1(y) = 1− (1− F (y))N = 1− (1− yp)N ,

see [9] where the order statistics are discussed. The median distance for Y1 is found by
solving for y in

1

2
= FY1(y) .

This gives

y =

(
1−

(
1

2

)1/N
)1/p

≡ dmedian(p,N) ,

which is the desired expression.

The mean distance to the closest point or the mean of Y1 can be obtained from what we have
above. The density function for Y1 is given by the derivative of the distribution function
FY1(y) above where we find

fY1(y) = N(1 − yp)N−1(pyp−1) = pN(1− yp)N−1yp−1 .

Then the mean distance to the closest of these N points is given by

dmean(p,N) ≡
∫ 1

0

yfY1(y)dy = pN

∫ 1

0

(1− yp)N−1ypdy .
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We cannot evaluate this explicitly by we can related it to the Beta function

B(a, b) ≡
∫ 1

0

ta−1(1− t)b−adt , (11)

if we let t = yp in the expression for dmean(p,N) we get

dmean(p,N) = N

∫ 1

0

(1− t)N−1t
1
pdt = NB

(
N,

1

p
+ 1

)
.

Solution 2: We denote the N -tuple of data points by (x1, . . . , xN ). Let ri = ‖xi‖. Let U(A)
be the set of all N -tuples with A < r1 < . . . < rN < 1. Ignoring subsets of measure zero,
the set of all N -tuples is the disjoint union of the N ! different subsets obtained from U(0)
by permuting the indexing set (1, . . . , N). We will look for A > 0 such that the measure of
U(A) is half the measure of U(0). The same A will work for each of our N ! disjoint subsets,
and will therefore give the median for the distance of the smallest xi from the origin.

We want to find A such that
∫

U(A)

dx1 . . . dxN =
1

2

∫

U(0)

dx1 . . . dxN .

We convert to spherical coordinates. Since the coordinate in the unit sphere Sp−1 contributes
the same constant on each side of the equality, obtaining

∫

A<r1<...<rN<1

rp−1
1 . . . rp−1

N dr1 . . . drn =
1

2

∫

0<r1<...<rN<1

rp−1
1 . . . rp−1

N dr1 . . . drn.

We change coordinates to si = rpi , and the equality becomes
∫

Ap<s1<...<sN<1

ds1 . . . dsn =
1

2

∫

0<s1<...<sN<1

ds1 . . . dsn.

In the left-hand integral, we change coordinates to

t0 = s1 − Ap, t1 = s2 − s1, . . . , tN−1 = sN − sN−1, tN = 1− sN .

The Jacobian (omitting t0 which is a redundant variable) is a triangular matrix with −1
entries down the diagonal. The absolute value of its determinant, used in the change of
variable formula for integration, is therefore equal to 1.

The region over which we integrate is

N∑

i=0

ti = 1−Ap, with each ti > 0,

which is an N -dimensional simplex scaled down by a factor (1−Ap). The right-hand integral
is dealt with in the same way, setting A = 0. Since the region of integration is N -dimensional,
the measure is multiplied by (1 − Ap)N . We solve for A by solving (1 − Ap)N = 1/2. We
obtain A = (1− 2−1/N )1/p, as required.

8



Ex. 2.4 (projections aTx are distributed as normal N(0, 1))

The main point is that
∑ ‖xi‖2 is invariant under the orthogonal group. As a consequence

the standard normal distribution exists on any finite dimensional inner product space (by
fixing an orthonormal basis). Further, if Rp is written as the orthogonal sum of two vector
subspaces, then the product of standard normal distributions on each of the subspaces gives
the standard normal distribution on R

p. Everything else follows from this.

The on-line edition is correct except that
√
10 ≈ 3.162278. So, the figure given should be

3.2 instead of 3.1. Note that the version of this question posed in the first edition makes
incorrect claims. The first edition talks of the “center of the training points” and the on-line
edition talks of the “origin”. The answers are very different. This is shown up best by taking
only one training point.

Ex. 2.5 (the expected prediction error under least squares)

Part (a): In order to discuss Equation (2.27), we go back to (2.26) on page 24. We have
y = Xβ + ε, where y and ε are N × 1, X is N × p, and β is p× 1. Hence

β̂ = (XTX)−1XTy = β + (XTX)−1XTε .

SinceX and ε are independent variables, ET (ε) = 0 and ET (εε
T ) = σ2IN , we have ET (β̂) = β

and we compute

VarT (β̂) = ET (β̂β̂
T )− ET (β̂)ET (β̂

T )

= ββT + ET ((X
TX)−1XT εεTX(XTX)−1)− ββT

= ββT + (XTX)−1XTET (εε
T )X(XTX)−1 − ββT

= (XTX)−1σ2 .

Now we prove (2.27) on page 26. Note that y0 is constant for the distribution T . Note also
that, if x0 is held constant, ŷ0 = xT

0 β̂ does not depend on y0 and so the same is true for
ET (ŷ0) and VarT (ŷ0). Let u = Ey0|x0(y0) = xT

0 β. Then

ET

(
(y0 − ŷ0)

2
)
=
(
y20 − u2

)
+
(
ET (ŷ

2
0)− (ET ŷ0)

2)+
(
(ET ŷ0)

2 − 2y0ET ŷ0 + u2
)
.

Therefore
Ey0|x0

ET

(
(y0 − ŷ0)

2
)
= Var(y0|x0) + VarT (ŷ0) + (ET (ŷ0)− u)2 .

We have
ET (ŷ0) = xT

0ET (β̂) = xT
0 β = u.

Part (b): If A is a p×q matrix and B is a q×p matrix, then it is standard that trace(AB) =
trace(BA). Note that x0 is p×1 andX is N×p, so that xT

0 (X
TX)−1x0 is 1×1 and is therefore

equal to its own trace. Therefore Ex0

(
xT
0 (X

TX)−1x0

)
= trace

(
Ex0(x0x

T
0 (X

TX)−1)
)
which

is approximately equal to σ2σ−2trace(Ip)/N = p/N .
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Ex. 2.6 (repeated measurements)

To search for parameter θ using least squares one seeks to minimize

RSS(θ) =

N∑

k=1

(yk − fθ(xk))
2 , (12)

as a function of θ. If there are repeated independent variables xi then this prescription is
equivalent to a weighted least squares problem as we now show. The motivation for this
discussion is that often experimentally one would like to get an accurate estimate of the
error ε in the model

y = f(x) + ε .

One way to do this is to perform many experiments, observing the different values of y
produced by the data generating process when the same value of x is produced for each
experiment. If ε = 0 we would expect the results of each of these experiments to be the
same. Let Nu be the number of unique inputs x, that is, the number of distinct inputs after
discarding duplicates. Assume that if the ith unique x value gives rise to ni potentially
different y values. With this notation we can write the RSS(θ) above as

RSS(θ) =
Nu∑

i=1

ni∑

j=1

(yij − fθ(xi))
2 .

Here yij is the jth response 1 ≤ j ≤ ni to the ith unique input. Expanding the quadratic in
the above expression we have

RSS(θ) =

Nu∑

i=1

ni∑

j=1

(yij
2 − 2fθ(xi)yij + fθ(xi)

2)

=
Nu∑

i=1

ni

(
1

ni

ni∑

j=1

yij
2 − 2

ni
fθ(xi)

(
ni∑

j=1

yij

)
+ fθ(xi)

2

)
.

Let’s define ȳi ≡ 1
ni

∑ni

j=1 yij, the average of all responses y resulting from the same input xi.
Using this definition and completing the square we have

RSS(θ) =
Nu∑

i=1

ni(ȳi − fθ(xi))
2 +

Nu∑

i=1

ni∑

j=1

yij
2 −

Nu∑

i=1

niȳ
2
i (13)

Once the measurements are received the sample points y are fixed and do not change. Thus
minimizing Equation 12 with respect to θ is equivalent to minimizing Equation 13 without
the term

∑Nu

i=1

∑ni

j=1 yij
2 −∑Nu

i=1 niȳ
2
i . This motivates the minimization of

RSS(θ) =

Nu∑

i=1

ni(ȳi − fθ(xi))
2 .

This later problem is known a weighted least squares since each repeated input vector xi is
to fit the value of ȳi (the average of output values) and each residual error is weighted by
how many times the measurement of xi was taken. It is a reduced problem since the number
of points we are working with is now Nu < N .
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Ex. 2.7 (forms for linear regression and k-nearest neighbor regression)

To simplify this problem lets begin in the case of simple linear regression where there is only
one response y and one predictor x. Then the standard definitions of y and X state that

yT = (y1, . . . , yn), and XT =

[
1 · · · 1
x1 · · · xn

]
.

Part (a): Let’s first consider linear regression. We use (2.2) and (2.6), but we avoid just

copying the formulas blindly. We have β̂ =
(
XTX

)−1
XTy, and then set

f̂(x0) = [x0 1]β̂ = [x0 1]
(
XTX

)−1
XTy.

In terms of the notation of the question,

ℓi(x0;X ) = [x0 1]
(
XTX

)−1
[

1
xi

]

for each i with 1 ≤ i ≤ n.

More explicitly, XTX =

[
n

∑
xi∑

xi

∑
x2
i

]
which has determinant (n−1)∑i x

2
i−2n

∑
i<j xixj .

This allows us to calculate
(
XTX

)−1
and ℓi(x0;X ) even more explicitly if we really want to.

In the case of k-nearest neighbor regression ℓi(x0;X ) is equal to 1/k if xi is one of the nearest
k points and 0 otherwise.

Part (b): Here X is fixed, and Y varies. Also x0 and f(x0) are fixed. So

EY|X

((
f(x0)− f̂(x0)

)2)
= f(x0)

2 − 2.f(x0).EY|X

(
f̂(x0)

)
+ EY|X

((
f̂(x0)

)2)

=
(
f(x0)− EY|X

(
f̂(x0)

))2
+ EY|X

((
f̂(x0)

)2)
−
(
EY|X

(
f̂(x0)

))2

= (bias)2 +Var(f̂(x0))

Part (c): The calculation goes the same way as in (b), except that both X and Y vary.
Once again x0 and f(x0) are constant.

EX ,Y

((
f(x0)− f̂(x0)

)2)
= f(x0)

2 − 2.f(x0).EX ,Y

(
f̂(x0)

)
+ EX ,Y

((
f̂(x0)

)2)

=
(
f(x0)− EX ,Y

(
f̂(x0)

))2
+ EX ,Y

((
f̂(x0)

)2)
−
(
EX ,Y

(
f̂(x0)

))2

= (bias)2 +Var(f̂(x0))

The terms in (b) can be evaluated in terms of the ℓi(x0;X ) and the distribution of εi. We
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need only evaluate EY|X

(
f̂(x0)

)
=
∑

ℓi(x0;X )f(xi) and

EY|X

((
f̂(x0)

)2)
=

∑

i,j

ℓi(x0;X )ℓj(x0;X )E ((f(xi) + εi) (f(xj) + εj))

=
∑

i,j

ℓi(x0;X )ℓj(x0;X )f(xi)f(xj) +
∑

i

σ2ℓi(x0;X )2.

The terms in (c) can be evaluated in terms of EX ,Y

(
f̂(x0)

)
and EX ,Y

((
f̂(x0)

)2)
. This

means multiplying the expressions just obtained by

h(x1) . . . h(xn)dx1 . . . dxn

and then integrating. Even if h and f are known explicitly, it is optimistic to think that
closed formulas might result in the case of linear regression. In this case, we have gone as
far as is reasonable to go.

In the case of k-nearest-neighbor regression, we can go a bit further. Let

U(a, b, c) = {x : |x− c| ≥ max(|a− c|, |b− c|)} ,

and let A(a, b, c) =
∫
U(a,b,c)

h(x) dx. Then A(a, b, c) is the probability of lying further from

c than either a or b. Consider the event F (X ) where x1 < . . . < xk and, when i > k,
xi ∈ U(x1, xk, x0). There are n!/(n− k)! disjoint events obtained by permuting the indices,
and their union covers all possibilities for X , as we see by starting with the k elements of X
that are nearest to x0.

We have

EX ,Y

(
f̂(x0)

)
=

n!

(n− k)!

∫

x1<···<xk

h(x1) . . . h(xk).A(x1, xk, x0)
n−k

k∑

i=1

f(xi)

k
dx1 . . . dxk

and

EX ,Y

((
f̂(x0)

)2)
=

n!

(n− k)!

∫

x1<···<xk

h(x1) . . . h(xk) . . .

. . . A(x1, xk, x0)
n−k

( ∑

1≤i,j≤k

f(xi)f(xj)

k2
+

σ2

k

)
dx1 . . . dxk

We have not answered Ex. 2.7(d) (on-line edition) as it doesn’t seem to us to mean anything.
In particular, the word Establish should mean some kind of formal deduction, and we don’t
think anything like that is available.
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Ex. 2.8 (classifying 2’s and 3’s)

This problem was implemented in R , a programming language for statistical computations,
in the file Ex2.8.R. The program takes a few minutes to run. The results of running this
program are given by

Training error on linear regression = 0.099

Proportion of training errors on the digit 2 = 0.404

Proportion of training errors on the digit 3 = 0.397

Test error on linear regression = 0.218

Proportion of test errors on the digit 2 = 0.364

Proportion of test errors on the digit 3 = 0.367

End of linear regression

======================

Now we look at nearest neighbour regression.

First the training error:

nhd F% training error

1 0 0

3 0.504 0.014

5 0.576 0.018

7 0.648 0.022

15 0.936 0.033

Test errors:

nhd F% test error

1 2.473 0.099

3 3.022 0.092

5 3.022 0.091

7 3.297 0.094

15 3.846 0.107

Note that linear regression is hopeless on this problem, partly, we think, because the pixels
for different samples do not align properly. What is unexpected is that the linear regression
does better on the test data than on the training data.

Nearest neighbor results are quite reasonable. The training error results are reduced by the
fact that there is one direct hit. Note how the amount of error creeps up as the number of
neighbors is increased.
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Ex. 2.9 (the average training error is smaller than the testing error)

The expectation of the test term 1
M

∑(
ỹi − β̂Txi

)2
is equal to the expectation of

(
ỹ1 − β̂Tx1

)2
,

and is therefore independent of M . We take M = N , and then decrease the test expression
on replacing β̂ with a value of β that minimizes the expression. Now the expectations of
the two terms are equal. This proves the result. Note that we may have to use the Moore-
Penrose pseudo-inverse of XTX , if the rank of X is less than p. This is not a continuous
function of X , but it is measurable, which is all we need.
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Chapter 3 (Linear Methods for Regression)

Notes on the Text

Linear Regression Models and Least Squares

For this chapter, given the input vector x, the model of how our scalar output y is generated
will assumed to be y = f(x) + ε = xTβ + ε for some fixed vector β of p+ 1 coefficients, and
ε a scalar random variable with mean 0 and variance σ2. With a full data set obtained of N
input/output pairs (xi, yi) arranged in the vector variables X and y, the space in which we
work is RN . This contains vectors like y = (y1, . . . , yN), and each column of X . The least
squares estimate of β is given by the book’s Equation 3.6

β̂ = (XTX)−1XTy . (14)

We fix X and compute the statistical properties of β̂ with respect to the distribution Y |X .
Using the fact that E(y) = Xβ, we obtain

E(β̂) = (XTX)−1XTXβ = β . (15)

Using Equation 15 for E(β̂) we get

β̂ − E(β̂) = (XTX)−1XTy − (XTX)−1XTXβ

= (XTX)−1XT (y −Xβ)

= (XTX)−1XT
ε,

where ε is a random column vector of dimension N . The variance of β̂ is computed as

Var[β̂] = E[(β̂ − E[β̂])(β̂ − E[β̂])T ]

= (XTX)−1XTE
(
εε

T
)
X(XTX)−1

= (XTX)−1XTVar(ε)X(XTX)−1 .

If we assume that the entries of y are uncorrelated and all have the same variance of σ2

(again given X), then Var[ε] = σ2IN , where IN is the N ×N identity matrix and the above
becomes

Var[β̂] = σ2(XTX)−1XTX(XTX)−1 = (XTX)−1σ2 , (16)

which is Equation 3.8 in the book.

It remains to specify how to determine σ2. To that end once β is estimated we can compute

σ̂2 =
1

N − p− 1

N∑

i=1

(yi − ŷi)
2 =

1

N − p− 1

N∑

i=1

(yi − xT
i β)

2 , (17)

and subsequently claim that this gives an unbiased estimate of σ2. To see this, we argue as
follows.
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Recall that we assume that each coordinate of the vector y is independent, and distributed
as a normal random variable, centered at 0, with variance σ2. Since these N samples are
independent in the sense of probability, the probability measure of the vector y ∈ R

N is the
product of these, denoted by N (0, σ2IN). This density has the following form

p(u) =
1

(√
2πσ

)N exp

(
−u

2
1 + . . .+ u2

N

2σ2

)
,

where the ui are the coordinates of u and u ∈ R
N . Now any orthonormal transformation of

R
N preserves

∑N
i=1 u

2
i . This means that the pdf is also invariant under any orthogonal trans-

formation keeping 0 fixed. Note that any function of u1, . . . , uk is probability independent
of any function of uk+1, . . . , uN . Suppose that R

N = V ⊕W is an orthogonal decomposition,
where V has dimension k and W has dimension N − k. Let v1, . . . , vk be coordinate func-
tions associated to an orthonormal basis of V and let wk+1, . . . , wN be coordinate functions
associated to an orthonormal basis of W . The invariance under orthogonal transformations
now shows that the induced probability measure on V is N (0, σ2Ik). In particular the square
of the distance from 0 in V has distribution χ2

k. (However, this discussion does not appeal
to any properties of the χ2 distributions, so the previous sentence could have been omitted
without disturbing the proof of Equation 3.8.)

If x is the standard variable in N (0, σ2), then E(x2) = σ2. It follows that the distance
squared from 0 in V ,

∑k
i=1 v

2
i , has expectation kσ2. We now use the fact that in ordinary

least squares ŷ is the orthogonal projection of y onto the column space of X as a subspace
of RN . Under our assumption of the independence of the columns of X this later space has
dimension p+1. In the notation above y ∈ V with V the column space of X and y− ŷ ∈ W ,
where W is the orthogonal complement of the column space of X . Because y ∈ R

N and V
is of dimension p + 1, we know that W has dimension N − p − 1 and y − ŷ is a random
vector in W with distribution N (0, σ2IN−p−1). The sum of squares of the N components

of y − ŷ is the square of the distance in W to the origin. Therefore
∑N

i=1 (yi − ŷi)
2 has

expectation (N − p − 1)σ2. From Equation 17 we see that E(σ̂2) = σ2. This proves the
book’s Equation 3.8, which was stated in the book without proof.

lcavol lweight age lbph svi lcp gleason pgg45
lcavol 1.000 0.300 0.286 0.063 0.593 0.692 0.426 0.483

lweight 0.300 1.000 0.317 0.437 0.181 0.157 0.024 0.074
age 0.286 0.317 1.000 0.287 0.129 0.173 0.366 0.276
lbph 0.063 0.437 0.287 1.000 -0.139 -0.089 0.033 -0.030
svi 0.593 0.181 0.129 -0.139 1.000 0.671 0.307 0.481
lcp 0.692 0.157 0.173 -0.089 0.671 1.000 0.476 0.663

gleason 0.426 0.024 0.366 0.033 0.307 0.476 1.000 0.757
pgg45 0.483 0.074 0.276 -0.030 0.481 0.663 0.757 1.000

Table 1: Duplication of the values from Table 3.1 from the book.
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Notes on the Prostate Cancer Example

In the R script duplicate table 3 1 N 2.R we provide explicit code that duplicates the
numerical results found in Table 3.1 and Table 3.2 using the above formulas for ordinary
least squares. In addition, in that same function we then use the R function lm to verify
the same numeric values. Using the R package xtable we can display these correlations in
Table 1.

Next, in Table 2 we present the results we obtained for the coefficients of the ordinary least
squares fit. These numerical values, generated from the formulas above, exactly match the
ones generated by the R “linear model” command lm.

Term Coefficients Std Error Z Score
1 (Intercept) 2.46 0.09 27.60
2 lcavol 0.68 0.13 5.37
3 lweight 0.26 0.10 2.75
4 age -0.14 0.10 -1.40
5 lbph 0.21 0.10 2.06
6 svi 0.31 0.12 2.47
7 lcp -0.29 0.15 -1.87
8 gleason -0.02 0.15 -0.15
9 pgg45 0.27 0.15 1.74

Table 2: Duplicated results for the books Table 3.2.

Once this linear model is fit we can then apply it to the testing data and observe how well
we do. When we do that we compute the expected squared prediction error (ESPE) loss
over the testing data points to be

ESPE ≈ 1

Ntest

Ntest∑

i=1

(yi − ŷi)
2 = 0.521 .

To compute the standard error of this estimate we use the formula

se(ESPE)2 =
1

Ntest
Var(Y − Ŷ) =

1

Ntest

(
1

Ntest − 1

Ntest∑

i=1

(yi − ŷi)
2

)
.

This result expresses the idea that if the pointwise error has a variance of σ2 then the average
of Ntest such things (by the central limit theorem) has a variance given by σ2/Ntest. Using
this we compute the standard error given by 0.179 both of which match the numbers given
in the book.

Notes on the Gauss-Markov Theorem

Let θ̃ be an estimator of the fixed, non-random parameter θ. So θ̃ is a function of data.
Since the data is (normally) random, θ̃ is a random variable. We define the mean-square-
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error (MSE) of our estimator δ̃ by

MSE(θ̃) := E
(
(θ̃ − θ)2

)
.

We can expand the quadratic (θ̃ − θ)2 to get

(θ̃ − θ)2 = (θ̃ − E(θ̃) + E(θ̃)− θ)2

= (θ̃ − E(θ̃))2 + 2(θ̃ − E(θ̃))(E(θ̃)− θ) + (E(θ̃)− θ)2 .

Taking the expectation of this and remembering that θ is non random we have

MSE(θ̃ − θ)2 = E(θ̃ − θ)2

= Var(θ̃) + 2(E(θ̃)− E(θ̃))(E(θ̃)− θ) + (E(θ̃)− θ)2

= Var(θ̃) + (E(θ̃)− θ)2 , (18)

which is the book’s Equation 3.20.

At the end of this section the book shows that the expected quadratic error in the prediction
under the model f̃(·) can be broken down into two parts as

E(Y0 − f̃(x0))
2 = σ2 +MSE(f̃(x0)) .

The first error component σ2 is unrelated to what model is used to describe our data. It
cannot be reduced for it exists in the true data generation process. The second source of
error corresponding to the term MSE(f̃(x0)) represents the error in the model and is under
control of the statistician (or the person doing the data modeling). Thus, based on the above
expression, if we minimize the MSE of our estimator f̃(x0) we are effectively minimizing the
expected (quadratic) prediction error which is our ultimate goal anyway. In this book we
will explore methods that minimize the mean square error. By using Equation 18 the mean
square error can be broken down into two terms: a model variance term and a model bias
squared term. We will explore methods that seek to keep the total contribution of these two
terms as small as possible by explicitly considering the trade-offs that come from methods
that might increase one of the terms while decreasing the other.

Multiple Regression from Simple Univariate Regression

As stated in the text we begin with a univariate regression model with no intercept i.e. no
β0 term as

Y = Xβ + ǫ .

The ordinary least square estimate of β are given by the normal equations or

β̂ = (XTX)−1XTY .

Now since we are regressing a model with no intercept the matrix X is only a column matrix
and the products XTX and XTY are scalars

(XTX)−1 = (

N∑

i=1

x2
i )

−1 and XTY =

N∑

i=1

xiyi ,
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so the least squares estimate of β is therefore given by

β̂ =

∑N
i=1 xiyi∑N
i=1 x

2
i

=
xTy

xTx
. (19)

Which is equation 3.24 in the book. The residuals ri of any model are defined in the standard
way and for this model become ri = yi − xiβ̂.

When we attempt to take this example from p = 1 to higher dimensions, lets assume that
the columns of our data matrix X are orthogonal that is we assume that 〈xT

j xk〉 = xT
j xk = 0,

for all j 6= k then the outer product in the normal equations becomes quite simple

XTX =




xT
1

xT
2
...
xT
p



[
x1 x2 · · · xp

]

=




xT
1 x1 xT

1 x2 · · · xT
1 xp

xT
2 x1 xT

2 x2 · · · xT
2 xp

...
... · · · ...

xT
p x1 xT

p x2 · · · xT
p xp


 =




xT
1 x1 0 · · · 0
0 xT

2 x2 · · · 0
...

... · · · ...
0 0 · · · xT

p xp


 = D .

So using this, the estimate for β becomes

β̂ = D−1(XTY ) = D−1




xT
1 y

xT
2 y
...

xT
p y


 =




xT
1 y

xT
1 x1

xT
2 y

xT
2 x2

...
xT
p y

xT
p xp



.

And each beta is obtained as in the univariate case (see Equation 19). Thus when the feature
vectors are orthogonal they have no effect on each other.

Because orthogonal inputs xj have a variety of nice properties it will be advantageous to study
how to obtain them. A method that indicates how they can be obtained can be demonstrated
by considering regression onto a single intercept β0 and a single “slope” coefficient β1 that
is our model is of the given form

Y = β0 + β1X + ǫ .

When we compute the least squares solution for β0 and β1 we find (with some simple ma-
nipulations)

β̂1 =
n
∑

xtyt − (
∑

xt)(
∑

yt)

n
∑

x2
t − (

∑
xt)2

=

∑
xtyt − x̄(

∑
yt)∑

x2
t − 1

n
(
∑

xt)2

=
〈x− x̄1,y〉∑
x2
t − 1

n
(
∑

xt)2
.

See [1] and the accompanying notes for this text where the above expression is explicitly
derived from first principles. Alternatively one can follow the steps above. We can write the
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denominator of the above expression for β1 as 〈x− x̄1,x− x̄1〉. That this is true can be seen
by expanding this expression

〈x− x̄1,x− x̄1〉 = xTx− x̄(xT1)− x̄(1Tx) + x̄2n

= xTx− nx̄2 − nx̄2 + nx̄2

= xTx− 1

n
(
∑

xt)
2 .

Which in matrix notation is given by

β̂1 =
〈x− x̄1,y〉

〈x− x̄1,x− x̄1〉 , (20)

or equation 3.26 in the book. Thus we see that obtaining an estimate of the second coefficient
β1 is really two one-dimensional regressions followed in succession. We first regress x onto
1 and obtain the residual z = x − x̄1. We next regress y onto this residual z. The direct
extension of these ideas results in Algorithm 3.1: Regression by Successive Orthogonalization
or Gram-Schmidt for multiple regression.

Another way to view Algorithm 3.1 is to take our design matrix X , form an orthogonal
basis by performing the Gram-Schmidt orthogonilization procedure (learned in introductory
linear algebra classes) on its column vectors, and ending with an orthogonal basis {zi}pi=1.
Then using this basis linear regression can be done simply as in the univariate case by by
computing the inner products of y with zp as

β̂p =
〈zp,y〉
〈zp, zp〉

, (21)

which is the books equation 3.28. Then with these coefficients we can compute predictions
at a given value of x by first computing the coefficient of x in terms of the basis {zi}pi=1 (as
zTp x) and then evaluating

f̂(x) =

p∑

i=0

β̂i(z
T
i x) .

From Equation 21 we can derive the variance of β̂p that is stated in the book. We find

Var(β̂p) = Var

(
zTp y

〈zp, zp〉

)
=

zTp Var(y)zp

〈zp, zp〉2
=

zTp (σ
2I)zp

〈zp, zp〉2

=
σ2

〈zp, zp〉
,

which is the books equation 3.29.

As stated earlier Algorithm 3.1 is known as the Gram-Schmidt procedure for multiple re-
gression and it has a nice matrix representation that can be useful for deriving results that
demonstrate the properties of linear regression. To demonstrate some of these, note that we
can write the Gram-Schmidt result in matrix form using the QR decomposition as

X = QR . (22)
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In this decomposition Q is a N × (p + 1) matrix with orthonormal columns and R is a
(p + 1)× (p+ 1) upper triangular matrix. In this representation the ordinary least squares
(OLS) estimate for β can be written as

β̂ = (XTX)−1XTy

= (RTQTQR)−1RTQTy

= (RTR)−1RTQTy

= R−1R−TRTQTy

= R−1QTy , (23)

which is the books equation 3.32. Using the above expression for β̂ the fitted value ŷ can be
written as

ŷ = Xβ̂ = QRR−1QTy = QQTy , (24)

which is the books equation 3.33. This last equation expresses the fact in ordinary least
squares we obtain our fitted vector y by first computing the coefficients of y in terms of the
basis spanned by the columns of Q (these coefficients are given by the vector QTy). We next
construct ŷ using these numbers as the coefficients of the column vectors in Q (this is the
product QQTy).

Notes on best-subset selection

While not applicable for larger problems it can be instructive to observe how best-subset se-
lection could be done in practice for small problems. In the R script duplicate figure 3 5.R

we provide code that duplicates the numerical results found in Figure 3.5 from the book.
The results from running this script are presented in Figure 1 . It should be noted that in
generating this data we did not apply cross validation to selecting the value k that should
be used for the optimal sized subset to use for prediction accuracy. Cross validation of this
technique is considered in a later section where 10 fold cross validation is used to estimate
the complexity parameter (k in this case) with the “one-standard-error” rule.

Notes on various linear prediction methods applied to the prostate data set

In this subsection we present numerical results that duplicate the linear predictive methods
discussed in the book. One thing to note about the implementation of methods is that many
of these methods “standardize” their predictors and/or subtract the mean from the response
before applying any subsequent techniques. Often this is just done once over the entire
set of “training data” and then forgotten. For some of the methods and the subsequent
results presented here I choose do this scaling as part of the cross validation routine. Thus in
computing the cross validation (CV) errors I would keep the variables in their raw (unscaled)
form, perform scaling on the training portion of the cross validation data, apply this scaling
to the testing portion of the CV data and then run our algorithm on the scaled CV training
data. This should not result in a huge difference between the “scale and forget” method but
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Figure 1: Duplication of the books Figure 3.5 using the code duplicate figure 3 5.R. This
plot matches quite well qualitatively and quantitatively the corresponding one presented in
the book.

I wanted to mention this point in case anyone reads the provided code for the all subsets
and ridge regression methods.

In duplicating the all-subsets and ridge regression results in this section we wrote our own R

code to perform the given calculations. For ridge regression an alternative approach would
have been to use the R function lm.ridge found in the MASS package. In duplicating the
lasso results in this section we use the R package glmnet [5], provided by the authors and
linked from the books web site. An interesting fact about the glmnet package is that for
the parameter settings α = 0 the elastic net penalization framework ignores the L1 (lasso)
penalty on β and the formulation becomes equivalent to an L2 (ridge) penalty on β. This
parameter setting would allow one to use the glmnet package to do ridge-regression if desired.
Finally, for the remaining two regression methods: principal component regression (PCR)
and partial least squares regression (PLSR) we have used the R package pls [7], which is a
package tailored to perform these two types of regressions.

As a guide to what R functions perform what coding to produce the above plots and table
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Term LS Best Subset Ridge Lasso PCR PLS
(Intercept) 2.452 2.452 2.452 2.452 2.452 2.452

lcavol 0.716 0.779 0.432 0.558 0.570 0.436
lweight 0.293 0.352 0.252 0.183 0.323 0.360

age -0.143 -0.045 -0.153 -0.021
lbph 0.212 0.168 0.216 0.243
svi 0.310 0.235 0.088 0.322 0.259
lcp -0.289 0.005 -0.050 0.085

gleason -0.021 0.042 0.228 0.006
pgg45 0.277 0.134 -0.063 0.084

Test Error 0.521 0.492 0.492 0.484 0.448 0.536
Std Error 0.178 0.143 0.161 0.166 0.104 0.149

Table 3: Duplicated results for the books Table 3.3. These coefficients are slightly different
than the ones presented in the book but still show the representative ideas.

entries we have:

• The least squares (LS) results are obtained in the script duplicate table 3 1 N 2.R.

• The best subset results are obtained using the script dup OSE all subset.R.

• The ridge regression results are obtained using the script dup OSE ridge regression.R.

• The lasso results are obtained using the script dup OSE lasso.R.

• The PCR and PLS results are obtained using the script dup OSE PCR N PLSR.R.

We duplicate figure 3.7 from the book in Figure 2. We also duplicate table 3.3 from the
book in Table 3. There are some slight differences in the plots presented in Figure 2, see
the caption for that figure for some of the differences. There are also numerical differences
between the values presented in Table 3, but the general argument made in the book still
holds true. The idea that should be taken away is that all linear methods presented in
this chapter (with the exception of PLS) produce a linear model that outperforms the least
squares model. This is important since it is a way for the applied statistician to make further
improvements in his application domain.

Notes on various shrinkage methods

After presenting ordinary least squares the book follows with a discussion on subset section
techniques: best-subset selection, forward- and backwards-stepwise selection, and forward-
stagewise regression. The book’s concluding observation is that if it were possible best-subset
selection would be the optimal technique and should be used in every problem. The book
presents two reasons (computational and statistical) why it is not possible to use best-subset
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selection in many cases of practical interest. For most problems the computational reason is
overpowering since if we can’t even compute all of the subsets it will not be practical to use
this algorithm on applied problems. The difficulty with best-subset selection is that it is a
discrete procedure and there are too many required subsets to search over. The development
of the various shrinkage method presented next attempt to overcome this combinatorial
explosion of best-subset by converting the discrete problem into a continuous one. The
continuous problems then turn out to be much simpler to solve. An example like this of
a technique we will study is ridge regression. Ridge regression constrains the sum of the
squares of the estimated coefficients βi (except for β0 which is dealt with separately) to be
less than a threshold t. The effect of this constraint is to hopefully “zero out” the same βi

that would have been excluded by a best-subset selection procedure. If one wanted to mimic
the result of best-subset selection and truly wanted a fixed number, say M , of non-zero
coefficients βi, one could always simply zero the p−M smallest in magnitude βi coefficients
and then redo the ordinary least squares fit with the retained coefficients. In fact in Table 3.3
we see that best-subset selection selected two predictors lcavol and lweight as predictors.
If instead we had taken the ridge regression result and kept only the two features with the
largest values of |βi| we would have obtained the same two feature subset. While these
are certainly only heuristic arguments hopefully they will make understanding the following
methods discussed below easier.

Notes on ridge regression

In this subsection of these notes we derive some of the results presented in the book. If we
compute the singular value decomposition (SVD) of the N × p centered data matrix X as

X = UDV T , (25)

where U is a N × p matrix with orthonormal columns that span the column space of X , V
is a p×p orthogonal matrix, and D is a p×p diagonal matrix with elements dj ordered such
that d1 ≥ d2 ≥ · · · dp ≥ 0. From this representation of X we can derive a simple expression
for XTX . We find that

XTX = V DUTUDV T = V D2V T . (26)

Using this expression we can compute the least squares fitted values ŷls = Xβ̂ ls as

ŷls = Xβ̂ ls = UDV T (V D2V T )−1V DUTy

= UDV T (V −TD−2V −1)V DUTy

= UUTy (27)

=

p∑

j=1

uj(u
T
j y) , (28)

where we have written this last equation in a form that we can directly compare to an
expression we will derive for ridge regression (specifically the books equation 3.47). To
compare how the fitted values ŷ obtained in ridge regression compare with ordinary least
squares we next consider the SVD expression for β̂ridge. In the same way as for least squares
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we find

β̂ridge = (XTX + λI)−1XTy (29)

= (V D2V T + λV V T )−1V DUTy

= (V (D2 + λI)V T )−1V DUTy

= V (D2 + λI)−1DUTy . (30)

Using this we can compute the product ŷridge = Xβ̂ridge. As in the above case for least
squares we find

ŷridge = Xβ̂ridge = UD(D2 + λI)−1DUTy . (31)

Now note that in this last expression D(D2+λI)−1 is a diagonal matrix with elements given

by
d2j

d2j+λ
and the vector UTy is the coordinates of the vector y in the basis spanned by the

p-columns of U . Thus writing the expression given by Equation 31 by summing columns we
obtain

ŷridge = Xβ̂ridge =

p∑

j=1

uj

(
d2j

d2j + λ

)
uT
j y . (32)

Note that this result is similar to that found in Equation 28 derived for ordinary least squares

regression but in ridge-regression the inner products uT
j y are now scaled by the factors

d2j
d2j+λ

.

Notes on the effective degrees of freedom df(λ)

The definition of the effective degrees of freedom df(λ) in ridge regression is given by

df(λ) = tr[X(XTX + λI)−1XT ] . (33)

Using the results in the SVD derivation of the expression Xβ̂ridge, namely Equation 31 but
without the y factor, we find the eigenvector/eigenvalue decomposition of the matrix inside
the trace operation above given by

X(XTX + λI)−1XT = UD(D2 + λI)−1DUT .

From this expression the eigenvalues of X(XTX + λI)−1XT must be given by the elements
d2j

d2j+λ
. Since the trace of a matrix can be shown to equal the sum of its eigenvalues we have

that

df(λ) = tr[X(XTX + λI)−1XT ]

= tr[UD(D2 + λI)−1DUT ]

=

p∑

j=1

d2j
d2j + λ

, (34)

which is the books equation 3.50.
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One important consequence of this expression is that we can use it to determine the values
of λ for which to use when applying cross validation. For example, the book discusses how
to obtain the estimate of y when using ridge regression and it is given by Equation 31 but
no mention of the numerical values of λ we should use in this expression to guarantee that
we have accurate coverage of all possible regularized linear models. The approach taken in
generating the ridge regression results in Figures 2 and 8 is to consider df in Equation 34 a
function of λ. As such we set df(λ) = k for k = 1, 2, · · · , p representing all of the possible
values for the degree of freedom. We then use Newton’s root finding method to solve for λ
in the expression

p∑

i=1

d2j
d2j + λ

= k .

To implement this root finding procedure recall that dj in the above expression are given by
the SVD of the data matrix X as expressed in Equation 25. Thus we define a function d(λ)
given by

d(λ) =

p∑

i=1

d2j
d2j + λ

− k , (35)

and we want λ such that d(λ) = 0. We use Newton’s algorithm for this where we iterate
given a starting value of λ0

λn+1 = λn −
d(λn)

d′(λn)
.

Thus we need the derivative of d(λ) which is given by

d′(λ) = −
p∑

i=1

d2j
(d2j + λ)2

,

and an initial guess for λ0. Since we are really looking for p values of λ (one for each value of
k) we will start by solving the problems for k = p, p− 1, p− 2, · · · , 1. When k = p the value
of λ that solves df(λ) = p is seen to be λ = 0. For each subsequent value of k we use the
estimate of λ found in the previous Newton solve as the initial guess for the current Newton
solve. This procedure is implemented in the R code opt lambda ridge.R.

Notes on the lasso

When we run the code discussed on Page 21 for computing the lasso coefficients with the
glmnet software we can also construct the profile of the βi coefficients as the value of λ
changes. When we do this for the prostate data set we obtain Figure 4. This plot agrees
quite well with the one presented in the book.

Notes on the three Bayes estimates: subset selection, ridge, and lasso

This would be a good spot for Davids discussion on the various reformulations of the con-
strained minimization problem for β stating the two formulations and arguing their equiva-
lence.
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Below are just some notes scraped together over various emails discussing some facts that I
felt were worth proving/discussing/understanding better:

λ is allowed to range over (0,∞) and all the solutions are different. But s is only allowed to
range over an interval (0, something finite). If s is increased further the constrained solution
is equal to the unconstrained solution. That’s why I object to them saying there is a one-to-
one correspondence. It’s really a one-to-one correspondence between the positive reals and
a finite interval of positive numbers.

I’m assuming by s above you mean the same thing the book does s = t/
∑p

1 |β̂j |q where q is
the ”power’ in the Lq regularization term. See the section 3.4.3 in the book) . Thus q = 1
for lasso and q = 2 for ridge. So basically as the unconstrained solution is the least squares
one as then all estimated betas approach the least square betas. In that case the largest
value for s is 1, so we actually know the value of the largest value of s. For values of s larger
than this we will obtain the least squares solution.

The one-to-one correspondence could be easily worked out by a computer program in any
specific case. I don’t believe there is a nice formula.

Notes on Least Angle Regression (LAR)

To derive a better connection between Algorithm 3.2 (a few steps of Least Angle Regression)
and the notation on the general LAR step “k” that is presented in this section that follows
this algorithm I found it helpful to perform the first few steps of this algorithm by hand and
explicitly writing out what each variable was. In this way we can move from the specific
notation to the more general expression.

• Standardize all predictors to have a zero mean and unit variance. Begin with all
regression coefficients at zero i.e. β1 = β2 = · · · = βp = 0. The first residual will be
r = y − ȳ, since with all βj = 0 and standardized predictors the constant coefficient
β0 = ȳ.

• Set k = 1 and begin start the k-th step. Since all values of βj are zero the first residual
is r1 = y− ȳ. Find the predictor xj that is most correlated with this residual r1. Then
as we begin this k = 1 step we have the active step given by A1 = {xj} and the active
coefficients given by βA1 = [0].

• Move βj from its initial value of 0 and in the direction

δ1 = (XT
A1
XA1)

−1XT
A1
r1 =

xT
j r1

xT
j xj

= xT
j r1 .

Note that the term xT
j xj in the denominator is not present since xT

j xj = 1 as all
variables are normalized to have unit variance. The path taken by the elements in βA1

can be parameterized by

βA1(α) ≡ βA1 + αδ1 = 0 + αxT
j r1 = (xT

j r1)α for 0 ≤ α ≤ 1 .
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This path of the coefficients βA1(α) will produce a path of fitted values given by

f̂1(α) = XA1βA1(α) = (xT
j r1)αxj ,

and a residual of

r(α) = y − ȳ − α(xT
j r1)xj = r1 − α(xT

j r1)xj .

Now at this point xj itself has a correlation with this residual as α varies given by

xT
j (r1 − α(xT

j r1)xj) = xT
j r1 − α(xT

j r1) = (1− α)xT
j r1 .

When α = 0 this is the maximum value of xT
j r1 and when α = 1 this is the value 0.

All other features (like xk) have a correlation with this residual given by

xT
k (r1 − α(xT

j r1)xj) = xT
k r1 − α(xT

j r1)x
T
k xj .

Notes on degrees-of-freedom formula for LAR and the Lasso

From the books definition of the degrees-of-freedom of

df(ŷ) =
1

σ2

N∑

i=1

cov(ŷi, y) . (36)

We will derive the quoted expressions for df(ŷ) under ordinary least squares regression and
ridge regression. We begin by evaluating cov(ŷi, y) under ordinary least squares. We first
relate this scalar expression into a vector inner product expression as

cov(ŷi, yi) = cov(eTi ŷ, e
T
i y) = eTi cov(ŷ, y)ei .

Now for ordinary least squares regression we have ŷ = Xβ̂ ls = X(XTX)−1XTy, so that the
above expression for cov(ŷ, y) becomes

cov(ŷ, y) = X(XTX)−1XT cov(y, y) = σ2X(XTX)−1XT ,

since cov(y, y) = σ2I. Thus

cov(ŷi, yi) = σ2eTi X(XTX)−1XTei = σ2(XTei)(X
TX)−1(XT ei) .

Note that the product XT ei = xi the ith samples feature vector for 1 ≤ i ≤ N and we have
cov(ŷi, yi) = σ2xT

i (X
TX)−1xi, which when we sum for i = 1 to N and divide by σ2 gives

df(ŷ) =
N∑

i=1

xT
i (X

TX)−1xi

=

N∑

i=1

trace
(
xT
i (X

TX)−1xi

)

=
N∑

i=1

trace
(
xix

T
i (X

TX)−1
)

= trace

((
N∑

i=1

xix
T
i

)
(XTX)−1

)
.
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Note that this sum above can be written as

N∑

i=1

xix
T
i =

[
x1 x2 · · · xN

]




xT
1

xT
2
...
xT
N


 = XTX .

Thus when there are k predictors we get

df(ŷ) = trace
(
(XTX)(XTX)−1

)
= trace (Ik×k) = k ,

the claimed result for ordinary least squares.

To do the same thing for ridge regression we can use Equation 29 to show

ŷ = Xβ̂ridge = X(XTX + λI)−1XTy .

so that
cov(ŷ, y) = X(XTX + λI)−1XT cov(y, y) = σ2X(XTX + λI)−1XT .

Again we can compute the scalar result

cov(ŷi, yi) = σ2(XT ei)
T (XTX + λI)−1(XT ei) = σ2xT

i (X
TX + λI)−1xi .

Then summing for i = 1, 2, · · · , N and dividing by σ2 to get

df(ŷ) =

N∑

i=1

trace
(
xix

T
i (X

TX + λI)−1
)

= trace
(
XTX(XTX + λI)−1

)

= trace
(
X(XTX + λI)−1XT

)
,

which is the books equation 3.50 providing an expression for the degrees of freedom for ridge
regression.

Methods Using Derived Input Directions: Principal Components Regression

Since the linear method of principal components regression (PCR) produced some of the best
results (see Table 3) as far as the prostate data set it seemed useful to derive this algorithm
in greater detail here in these notes. The discussion in the text is rather brief in this section
we bring the various pieces of the text together and present the complete algorithm in one
location. In general PCR is parameterized by M for 0 ≤ M ≤ p (the number of principal
components to include). The values of M = 0 imply a prediction based on the mean of the
response ȳ and when M = p using PCR we duplicate the ordinary least squares solution (see
Exercise 3.13 Page 42). The value of M used in an application is can be selected by cross
validation (see Figure 2). One could imaging a computational algorithm such that given a
value of M would only compute the M principal components needed and no others. Since
most general purpose eigenvector/eigenvalue code actually produces the entire eigensystem
when supplied a given matrix the algorithm below computes all of the possible principal
component regressions (for 0 ≤ M ≤ p) in one step. The PCR algorithm is then given by
the following algorithmic steps:
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• Standardize the predictor variables xi for i = 1, 2, . . . , p to have mean zero and variance
one. Demean the response y.

• Given the design matrix X compute the product XTX .

• Compute the eigendecomposition of XTX as

XTX = V D2V T .

The columns of V are denoted vm and the diagonal elements of D are denoted dm.

• Compute the vectors zm defined as zm = Xvm for m = 1, 2, . . . , p.

• Using these vectors zm compute the regression coefficients θ̂m given by

θ̂m =
< zm, y >

< zm, zm >
.

Note that we don’t need to explicitly compute the inner product < zm, zm > for each
m directly since using the eigendecomposition XTX = V D2V T computed above this
is equal to

zTmzm = vTmX
TXvm = vTmV D2V Tvm = (V Tvm)

TD2(V Tvm) = eTmD
2em = d2m ,

where em is a vector of all zeros with a one in the mth spot.

• Given a value of M for 0 ≤M ≤ p, the values of θ̂m, and zm the PCR estimate of y is
given by

ŷpcr(M) = ȳ1+

M∑

m=1

θ̂mzm .

While the value of β̂pcr(M) which can be used for future predictions is given by

β̂pcr(M) =

M∑

m=1

θ̂mvm .

This algorithm is implemented in the R function pcr wwx.R, and cross validation using this
method is implemented in the function cv pcr wwx.R. A driver program that duplicates the
results from dup OSE PCR N PLSR.R is implemented in pcr wwx run.R. This version of the
PCR algorithm was written to ease transformation from R to a more traditional programming
language like C++.

Note that the R package pcr [7] will implement this linear method and maybe more suitable
for general use since it allows input via R formula objects and has significantly more options.
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Notes on Incremental Forward Stagewise Regression

Since the Lasso appears to be a strong linear method that is discussed quite heavily in the
book it would be nice to have some code to run that uses this method on a given problem
of interest. There is the R package glmnet which solves a combined L2 and L1 constrained
minimization problem but if a person is programming in a language other than R you would
have to write your own L1 minimization routine. This later task is relatively complicated.
Fortunately from the discussion in the text one can get the performance benefit of a lasso
type algorithm but using a much simpler computational algorithm: Incremental Forward
Stagewise Regression. To verify that we understood this algorithm we first implemented it
in the R function IFSR.R. One interesting thing about this algorithm is that the version given
in the parameterized it based on ǫ, but provides no numerical details on how to specify this
value. In addition, once ǫ has been specified we need to develop an appropriate stopping
criterion. The book suggested to run the code until the residuals are uncorrelated with
all of the predictors. In the version originally implemented the algorithm was allowed to
loop until the largest correlation between the residual r and each feature xj is smaller than
a given threshold. One then has to pick the value of this threshold. Initially the value I
selected was too large in that the p value cor(xj , r) never got small enough. I then added
a maximum number of iterations to perform where in each iteration we step an amount ǫ
in the j component of β. Again one needs to now specify a step size ǫ and a maximum
number of iterations Nmax. If ǫ is taken very small then one will need to increase the value
of Nmax. If ǫ is taken large one will need to decrease Nmax. While not difficult to modify
these parameters and look at the profile plots of β̂ for a single example it seemed useful to
have a nice way of automatically determining ǫ given an value of Ntest. To do that I found
that the simple heuristic of

ǫ =
||βLS||1
1.5Nmax

. (37)

gives a nice way to specify ǫ in terms of Nmax. Here ||βLS||1 is the one norm of the least
squares solution for β̂ given by Equation 14. The motivation for this expression is that
this algorithm starts at the value β̂ = 0 and takes “steps” of “size” ǫ towards βLS. If we

want a maximum of Nmax steps then we should take ǫ of size ||βLS||1
Nmax

so that we get there
at the last step. The factor of 1.5 is to make the values of ǫ we use for stepping somewhat
smaller. Another nice benefit of this approach is that the amount of computation for this
algorithm then scales as O(Nmax) so depending on problem size one can pick a value of Nmax

that is reasonable as far as the required computational time. It is then easy to estimate
the computational time if this algorithm was run with 2Nmax. It seems more difficult to do
that if the value of ǫ is given a priori and instead we are asked estimate the time to run the
algorithm with ǫ

2
.
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Exercise Solutions

Ex. 3.1 (the F -statistic is equivalent to the square of the Z-score)

Now in the definition of the F -statistic

F =
(RSS0 − RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)
, (38)

we see from Equation 17 that the expression RSS1/(N − p1− 1) in the denominator is equal
to σ̂2. In addition, by just deleting one variable from our regression the difference in degrees
of freedom between the two models is one i.e. p1 − p0 = 1. Thus the F -statistic when we
delete the j-th term from the base model simplifies to

Fj =
RSSj − RSS1

σ̂2
.

Here the residual sum of squares of the larger model (with all terms) is denoted by RSS1 and
RSSj is the residual sum of squares of the smaller model, obtained by omitted the j variable
as a predictor.

Let vij be the entry in the i-th row and j-th column of the (p+1)× (p+1) matrix (XTX)−1.
The j-th Z-score is defined (see the book’s Equation 3.12) by

zj =
β̂j

σ̂
√
vjj

. (39)

To show that Fj = zj
2 we need to show that

RSSj − RSS1 =
β̂2
j

vjj
,

which we now proceed to do.

Notice the implicit assumption in the definition of the Z-score that vjj > 0. We prove this
first. Let u range over all (p + 1)-dimensional column vectors. Then w = (XTX)−1u also
does so. From the definition of w we have u = (XTX)w and can then write uT (XTX)−1u as

wT (XTX)(XTX)−1(XTX)w = wTXTXw = (Xw)T (Xw) ≥ 0 (40)

and equality implies that Xw = 0, hence w = 0 and therefore u = 0. So (XTX)−1 is a
positive definite matrix. In particular, taking u to be the standard vector with all entries 0,
except for 1 in the j-th place, we see that vjj > 0.

Next note that XTX(XTX)−1 = Ip+1. Let uj be the j-th column of X(XTX)−1, so that
xT
i uj = δij, the Kronecker delta. (Here xi is the i-th column of X .) Using the vij notation

to denote the elements of the matrix (XTX)−1 established above, we have

uj =

p+1∑

r=1

xrvrj . (41)
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We have seen that, for i 6= j, uj/vjj is orthogonal to xi, and the coefficient of xj in uj/vjj is
1. Permuting the columns of X so that the j-th column comes last, we see that uj/vjj = zj
(see Algorithm 3.1). By Equation 41,

‖uj‖2 = uT
j uj =

p+1∑

r=1

vrjx
T
r uj =

p+1∑

r=1

vrjδrj = vjj.

Then

‖zj‖2 =
‖uj‖2
v2jj

= vjj/v
2
jj =

1

vjj
. (42)

Now zj/‖zj‖ is a unit vector orthogonal to x1, . . . , xj−1, xj+1, . . . , xp+1. So

RSSj − RSS1 = 〈y, zj/‖zj‖〉2

=

( 〈y, zj〉
〈zj, zj〉

)2

‖zj‖2

= β̂2
j /vjj,

where the final equality follows from Equation 42 and the book’s Equation 3.28.

Ex. 3.2 (confidence intervals on a cubic equation)

In this exercise, we fix a value for the column vector β = (β0, β1, β2, β3)
T and examine

random deviations from the curve

y = β0 + β1x+ β2x
2 + β3x

3.

For a given value of x, the value of y is randomized by adding a normally distributed variable
with mean 0 and variance 1. For each x, we have a row vector x = (1, x, x2, x3). We fix N
values of x. (In Figure 6 we have taken 40 values, evenly spaced over the chosen domain
[−2, 2].) We arrange the corresponding values of x in an N × 4-matrix, which we call X , as
in the text. Also we denote by y the corresponding N × 1 column vector, with independent

entries. The standard least squares estimate of β is given by β̂ =
(
XTX

)−1
XTy. We now

compute a 95% confidence region around this cubic in two different ways.

In the first method, we find, for each x, a 95% confidence interval for the one-dimensional
random variable u = x.β̂. Now y is a normally distributed random variable, and therefore
so is β̂ = (XTX)−1XTy. Therefore, using the linearity of E,

Var(u) = E
(
xβ̂β̂TxT

)
− E

(
xβ̂
)
.E
(
β̂TxT

)
= xVar(β̂)xT = x

(
XTX

)−1
xT .

This is the variance of a normally distributed one-dimensional variable, centered at x.β, and
the 95% confidence interval can be calculated as usual as 1.96 times the square root of the
variance.
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In the second method, β̂ is a 4-dimensional normally distributed variable, centered at β, with

4× 4 variance matrix
(
XTX

)−1
. We need to take a 95% confidence region in 4-dimensional

space. We will sample points β̂ from the boundary of this confidence region, and, for each
such sample, we draw the corresponding cubic in green in Figure 6 on page 64. To see what
to do, take the Cholesky decomposition UTU = XTX , where U is upper triangular. Then
(UT )−1

(
XTX

)
U−1 = I4, where I4 is the 4×4-identity matrix. Uβ̂ is a normally distributed

4-dimensional variable, centered at Uβ, with variance matrix

Var(Uβ̂) = E
(
Uβ̂β̂TUT

)
− E

(
Uβ̂
)
.E
(
β̂TUT

)
= U

(
XTX

)−1
UT = I4

It is convenient to define the random variable γ = β̂ − β ∈ R
4, so that Uγ is a standard

normally distributed 4-dimensional variable, centered at 0.

Using the R function qchisq, we find r2, such that the ball B centered at 0 in R
4 of radius

r has χ2
4-mass equal to 0.95, and let ∂B be the boundary of this ball. Now Uγ ∈ ∂B if and

only if its euclidean length squared is equal to r2. This means

r2 = ‖Uγ‖2 = γTUTUγ = γTXTXβ.

Given an arbitrary point α ∈ R
4, we obtain β̂ in the boundary of the confidence region by

first dividing by the square root of γTXTXγ and then adding the result to β.

Note that the Cholesky decomposition was used only for the theory, not for the purposes of
calculation. The theory could equally well have been proved using the fact that every real
positive definite matrix has a real positive definite square root.

Our results for one particular value of β are shown in Figure 6 on page 64.

Ex. 3.3 (the Gauss-Markov theorem)

(a) Let b be a column vector of length N , and let E(bT y) = αTβ. Here b is fixed, and the
equality is supposed true for all values of β. A further assumption is that X is not random.
Since E(bT y) = bTXβ, we have bTX = αT . We have

Var(αT β̂) = αT (XTX)−1α = bTX(XTX)−1XT b,

and Var(bT y) = bT b. So we need to prove X(XTX)−1XT � IN .

To see this, write X = QR where Q has orthonormal columns and is N × p, and R is p× p
upper triangular with strictly positive entries on the diagonal. Then XTX = RTQTQR =
RTR. Therefore X(XTX)−1XT = QR(RTR)−1RTQT = QQT . Let [QQ1] be an orthogonal
N ×N matrix. Therefore

IN =
[
Q Q1

]
.

[
QT

QT
1

]
= QQT +Q1Q

T
1 .

Since Q1Q
T
1 is positive semidefinite, the result follows.
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(b) Let C be a constant p × N matrix, and let Cy be an estimator of β. We write C =
(XTX)−1XT + D. Then E(Cy) =

(
(XTX)−1XT +D

)
Xβ. This is equal to β for all β if

and only if DX = 0. We have Var(Cy) = CCTσ2, Using DX = 0 and XTDT = 0, we find

CCT =
(
(XTX)−1XT +D

) (
(XTX)−1XT +D

)T

= (XTX)−1 +DDT

= Var(β̂)σ−2 +DDT .

The result follows since DDT is a positive semidefinite p× p-matrix.

(a) again. Here is another approach to (a) that follows (b), the proof for matrices. Let c be a
length N row vector and let cy be an estimator of αTβ. We write c = αT

(
(XTX)−1XT

)
+d.

Then E(cy) = αTβ + dXβ. This is equal to αTβ for all β if and only if dX = 0. We have
Var(cy) = ccTσ2, Using dX = 0 and XTdT = 0, we find

ccT =
(
αT
(
(XTX)−1XT

)
+ d
)
.
(
αT
(
(XTX)−1XT

)
+ d
)T

= αT (XTX)−1α+ ddT

The result follows since ddT is a non-negative number.

Ex. 3.4 (the vector of least squares coefficients from Gram-Schmidt)

The values of β̂i can be computed by using Equation 23, where Q and R are computed from
the Gram-Schmidt procedure on X . As we compute the columns of the matrix Q in the
Gram-Schmidt procedure we can evaluate qTj y for each column qj of Q, and fill in the jth
element of the vector QTy. After the matrices Q and R are computed one can then solve

Rβ̂ = QTy . (43)

for β̂ to derive the entire set of coefficients. This is simple to do since R is upper triangular
and is performed with back-substitution, first solving for β̂p+1, then β̂p, then β̂p−1, and on

until β̂0. A componentwise version of backwards substitution is presented in almost every
linear algebra text.

Note: I don’t see a way to compute βi at the same time as one is computing the columns of
Q. That is, as one pass of the Gram-Schmidt algorithm. It seems one needs to othogonalize
X first then solve Equation 43 for β̂.

Ex. 3.5 (an equivalent problem to ridge regression)

Consider that the ridge expression problem can be written as (by inserting zero as x̄j − x̄j)

N∑

i=1

(
yi − β0 −

p∑

j=1

x̄jβj −
p∑

j=1

(xij − x̄j)βj

)2

+ λ

p∑

j=1

β2
j . (44)
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From this we see that by defining “centered” values of β as

βc
0 = β0 +

p∑

j=1

x̄jβj

βc
j = βi i = 1, 2, . . . , p ,

that the above can be recast as

N∑

i=1

(
yi − βc

0 −
p∑

j=1

(xij − x̄j)β
c
j

)2

+ λ

p∑

j=1

βc
j
2

The equivalence of the minimization results from the fact that if βi minimize its respective
functional the βc

i ’s will do the same.

A heuristic understanding of this procedure can be obtained by recognizing that by shifting
the xi’s to have zero mean we have translated all points to the origin. As such only the
“intercept” of the data or β0 is modified the “slope’s” or βc

j for i = 1, 2, . . . , p are not
modified.

We compute the value of βc
0 in the above expression by setting the derivative with respect

to this variable equal to zero (a consequence of the expression being at a minimum). We
obtain

N∑

i=1

(
yi − βc

0 −
p∑

j=1

(xij − x̄j) βj

)
= 0,

which implies βc
0 = ȳ, the average of the yi. The same argument above can be used to

show that the minimization required for the lasso can be written in the same way (with βc
j
2

replaced by |βc
j |). The intercept in the centered case continues to be ȳ.

Ex. 3.6 (the ridge regression estimate)

Note: I used the notion in original problem in [6] that has τ 2 rather than τ as the variance
of the prior.

Now from Bayes’ rule we have

p(β|D) ∝ p(D|β)p(β) (45)

= N (y −Xβ, σ2I)N (0, τ 2I) (46)

Now from this expression we calculate

log(p(β|D)) = log(p(D|β)) + log(p(β)) (47)

= C − 1

2

(y −Xβ)T (y −Xβ)

σ2
− 1

2

βTβ

τ 2
(48)
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here the constant C is independent of β. The mode and the mean of this distribution (with
respect to β) is the argument that maximizes this expression and is given by

β̂ = ArgMin(−2σ2 log(p(β|D)) = ArgMin((y −Xβ)T (y −Xβ) +
σ2

τ 2
βTβ) (49)

Since this is the equivalent to Equation 3.43 page 60 in [6] with the substitution λ = σ2

τ2
we

have the requested equivalence.

Exs3.6 and 3.7 These two questions are almost the same; unfortunately they are both
somewhat wrong, and in more than one way. This also means that the second-last paragraph
on page 64 and the second paragraph on page 611 are both wrong. The main problem is that
β0 is does not appear in the penalty term of the ridge expression, but it does appear in the
prior for β. . In Exercise 3.6, β has variance denoted by τ , whereas the variance is denoted
by τ 2 in Exercise 3.7. We will use τ 2 throughout, which is also the usage on page 64.

With X = (x1, . . . , xp) fixed, Bayes’ Law states that p(y|β).p(β) = p(β|y).p(y). So, the
posterior probability satisfies

p(β|y) ∝ p(y|β).p(β),
where p denotes the pdf and where the constant of proportionality does not involve β. We
have

p(β) = C1 exp

(
−‖β‖

2

2τ 2

)

and

p(y|β) = C2 exp

(
−‖y −Xβ‖2

2σ2

)

for appropriate constants C1 and C2. It follows that, for a suitable constant C3,

p(β|y) = C3 exp

(
−‖y −Xβ‖2 + (σ2/τ 2).‖β‖2

2σ2

)
(50)

defines a distribution for β given y, which is in fact a normal distribution, though not
centered at 0 and with different variances in different directions.

We look at the special case where p = 0, in which case the penalty term disappears and
ridge regression is identical with ordinary linear regression. We further simplify by taking
N = 1, and σ = τ = 1. The ridge estimate for β0 is then

argminβ

{
(β0 − y1)

2
}
= y1.

The posterior pdf is given by

p(β0|y1) = C4 exp

(
−(y1 − β0)

2 + β2
0

2

)
= C5 exp

(
−
(
β0 −

y1
2

)2)
,

which has mean, mode and median equal to y1/2, NOT the same as the ridge estimate
y1. Since the integral of the pdf with respect to β0(for fixed y1) is equal to 1, we see that
C5 = 1/

√
2π. Therefore the log-posterior is equal to

− log(2π)/2 +
(
β0 −

y1
2

)
= − log(2π)/2 + (β0 − y1)

2
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To retrieve a reasonable connection between ridge regression and the log-posterior, we need
to restrict to problems where β0 = 0. In that case, the claim of Exercise 3.6 that the ridge
estimate is equal to the mean (or the mode) of the posterior distribution becomes true.

We set λ = σ2/τ 2. From Equation 50 on page 37 for the posterior distribution of β, we find
that the minus log-posterior is not proportional to

N∑

i=1

(
yi −

p∑

j=1

xijβj

)2

+ λ

p∑

j=1

β2
j

as claimed, because the term log(C3) has been omitted.

Ex. 3.8 (when is the QR decomposition equivalent to the SV D decomposition)

This exercise is true if X has rank p + 1, and is false otherwise. Let X = QR, where
Q = (q0, . . . , qp) is N × (p + 1) with orthonormal columns, and R is upper triangular with
strictly positive diagonal entries. We write the entries of R as rkj in the k-th row and j-th
column, where 0 ≤ k, j ≤ p. Let e be the length N column matrix consisting entirely of
ones. Then e = r00q0. We deduce that all the entries of q0 are equal. Since ‖q0‖ = 1 and
r00 > 0, we see that q0 = e/

√
N and that r00 =

√
N . The columns of Q form a basis for the

column-space of X . Therefore the columns of Q2 form a basis for the orthogonal complement
of e in the column-space of X . For 1 ≤ j ≤ p, we have

q̄j =
N∑

i=1

qij/N = eT .qj/N = qT0 .qj/
√
N = 0.

Let X = (e, x1, . . . , xp) = QR. Then xj =
∑j

k=0 rkjqk, and so x̄j = r0j/
√
N . We have

x̄je = r0jq0, and so xj − x̄je =

p∑

k=1

rkjqk. (51)

Let R2 be the lower right p× p submatrix of R. Then

R =

(√
N
√
N(x̄1, . . . , x̄p)

0 R2

)
.

Using Equation 51 above, we have

Q2R2 = X̃ = UDV T . (52)

Since X is assumed to have rank p+ 1, DV T is a non-singular p× p matrix. It follows that
U , X̃ and Q2 have the same column space.

We assume that, by “up to sign flips”, the authors mean that the columns (as opposed to
the rows) of Q2 and U are the same, up to sign. In this case, multiplying Equation 52 by
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QT
2 , we see that R2 = D1DV T , where D1 is a diagonal matrix with entries ±1. Since V is an

orthogonal matrix, R2 has orthogonal rows. Also R2 has strictly positive diagonal entries. It
follows that R2 is a diagonal matrix, and so the columns of X̃ are orthogonal to each other.
Therefore V is also diagonal, and the entries must all be ±1.

Now let’s look at the converse, where we suppose that X̃ has orthogonal columns. Since
the QR decomposition is unique (see ???), we see that the QR decomposition of X̃ = Q2R2,
where R2 is diagonal with strictly positive entries. This is also an SVD, with U = Q2 and
V = Ip. However, it is not true that U = Q2 for every SVD. Suppose, for example X̃ = In
is the identity matrix. Then Q2 = R2 = In, and we can take U = V to be any orthogonal
matrix of the right size.

Ex. 3.9 (using the QR decomposition for fast forward-stepwise selection)

If we fit an ordinary least squares linear model with q terms then the QR decomposition
of X1 or the equation X1 = QR and Equation 24 expresses ŷ as a sum of q columns of Q.
Thus ŷ is the span of the columns of Q. Since Q is related to X1 by the Gram-Schmidt
orthogonilization process ŷ is also in the span of the q columns of X1. By properties of least
square estimates the residual r = y − ŷ is in the orthogonal complement of the columns of
both Q and X1. To pick the next column xj of the p − q possible choices to add next, the
one we should pick should be the column that had the largest projection in the direction of
r. Thus we want to pick xj that is most parallel with r to add next. Thus pick j∗ such that

j∗ = argminj

|xT
j r|
||xj||

,

This xj will reduce the residual sum of squares the most.

Note: I don’t see explicitly why we need the QR algorithm in this expression.

Let X1 = QR be the QR decomposition, and let zi be the i-th column of Q (1 ≤ i ≤ q). So
QTQ = Iq and R is upper triangular with strictly positive diagonal entries. The collection
{z1, . . . , zq} is an orthonormal basis of C0, the column space of X1. C0 is also the column
space of Q. Let ŷ be the orthogonal projection of the N -dimensional vector y to C0.

For each j (q < j ≤ p), let Cj be the subspace of RN spanned by C0 and xj , the (j − q)-th
column of X2. We define

uj = xj −
q∑

i=1

(zTi xj)zi and (53)

vj = uj/‖uj‖ (54)

and so {z1, . . . , zq, vj} is an orthonormal basis of Cj. Now ŷj = ŷ+(vTj y)vj is the orthogonal
projection of y to Cj, and so the residual sum of squares decreases by (vTj y)

2 if ŷ is replaced

by ŷj. It follows that the best variable to include is the k-th, where k = argmaxq<j≤p

∣∣vTj y
∣∣.

We then set zq+1 = vk.
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Note that, during the computation, we need to know zTi xj for all i and j (1 ≤ i ≤ q
and q < j ≤ p. We have therefore done already completed of the computation necessary
to include yet another variable in our Stepwise Forward Linear Regression. So this seems
reasonably efficient, and we know of no more efficient algorithm (but there may be a more
efficient algorithm that we don’t know about).

Ex. 3.10 (using the z-scores for fast backwards stepwise regression)

The F -statistic

F =
(RSS0 − RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)
,

when we drop a single term from the larger model (with residual sum of squares given by
RSS1) we will have p1 − p0 = 1, since the change in the degrees of freedom between the
two models is only one. In this case when we drop the j-th term from the regression the
F -statistic simplifies slightly and becomes

Fj =
RSSj − RSS1

RSS1/(N − p1 − 1)
.

This is a scaled version (scaled by the division of the expression RSS1/(N − p1 − 1)) of
the increase in the residual sum of squares we observe when we drop the j-th term. From
Exercise 3.1 this expression is equal to z2j the square of the j-th z-score

zj =
β̂j

σ̂
√
vj

.

Thus by picking the index j∗ that is associated with the smallest z-score and then deleting
that variable from our regression we will be selecting the variable xj∗ that when deleted from
the model will increase the residual sum of squares the least.

Ex. 3.11 (multivariate linear regression with different Σi)

The question refers to the book’s Equations 3.39 and 3.40. To recall the notation, the
following variables refer to matrices of the given sizes: Y size N ×K, X size N × (p+ 1),
B size (p+ 1)×K. Equation 3.38 gives the sum of squares as

RSS(B) = tr
[
(Y −XB)(Y −XB)T

]
.

In the book, the two factors are written in the other order. We are using the fact that
tr(UV ) = tr(V U) for any matrices U and V , provided both products make sense.

To prove Equation 3.39, we equate to zero the derivative of RSS(B) with respect to B.
Using the fact that the trace of a square matrix is equal to the trace of its transpose, we see
that this condition on the derivative is equivalent to the condition that, for all (p + 1)×K
matrices A, we have

tr((XA)T (Y −XB̂)) = 0.
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Let A be equal to zero, except for a 1 in row j and column k. The condition becomes∑
i xij (yik −

∑
s xisbsk) = 0, for each j and k. But this is the condition XT (Y −XB̂) = 0.

Multiplying on the left by the inverse of XTX, we obtain Equation 3.39.

In order to deal with the situation of Equation 3.40, we rewrite it as

RSS(B,Σ) = tr
[
(Y −XB)Σ−1(Y −XB)T

]
.

As a positive definite symmetric matrix, Σ−1 has a positive definite symmetric square root,
which we denote by S, a K × K matrix. We replace Y by YS and B by BS. This
reduces us to the previous case, which, by Equation 3.39, gives a minimum value when
B̂S = (XTX)−1XTYS, and we multiply on the right by S−1 to obtain the usual formula
(Equation 3.39) for B̂.

Now suppose that the correlations Σi vary from one sample to the next. We will not go
into the question of how to estimate these correlations, which seems to be possible only
under some additional assumptions. Instead we assume that these correlations are known.
Then there is no closed formula like Equation 3.39 for B̂. However the corresponding sum
of squares is, in general, a positive definite quadratic form whose variables are the entries of
B. The argmin is therefore easy to find, using the specific values of X, Y. This can be done
either with a computer program or analytically by diagonalizing the quadratic form.

Ex. 3.12 (ordinary least squares to implement ridge regression)

Consider the input centered data matrix X (of size pxp) and the output data vector Y both
appended (to produce the new variables X̂ and Ŷ ) as follows

X̂ =

[
X√
λIpxp

]
(55)

and

Ŷ =

[
Y
Opx1

]
(56)

with Ipxp and Opxp the pxp identity and px1 zero column respectively. The the classic least
squares solution to this new problem is given by

β̂LS = (X̂T X̂)−1X̂T Ŷ (57)

Performing the block matrix multiplications required by this expression we see that

X̂T X̂ =
[
XT
√
λIpxp

] [ X√
λIpxp

]
= XTX + λIpxp (58)

and

X̂T Ŷ =
[
XT
√
λ
] [ Y
Opx1

]
= XTY (59)

Thus equation 57 becomes
β̂LS = (XTX + λIpxp)

−1XTY (60)
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This expression we recognize as the solution to the regularized least squares proving the
equivalence.

In a slightly different direction, but perhaps related, I was thinking of sending an email to
the authors with some comments on some of the questions. For example, I think 3.7 (online)
is incorrect, as there should be an additive constant as well as a multiplicative constant.
The question is of course almost the same as 3.6, except for the spurious change from τ
to τ 2. There are sometimes questions that involve some mind-reading by the reader. For
example, I don’t like the word ”characterize” in 3.5. According to the dictionary, this means
”describe the distinctive character of”. Mind-reading is required. Another bugbear is the
word ”Establish” in the online Exercise 2.7(d). And there aren’t two cases, there are at least
four (nearest neighbor, linear, unconditional, conditional on keeping X fixed, more if k is
allowed to vary.) And do they mean a relationship between a squared bias and variance in
each of these four cases?

Ex. 3.13 (principal component regression)

Recall that principal component regression (PCR) using M components, estimates coeffi-
cients θ̂m, based on the top M largest variance principal component vectors zm. As such it
has a expression given by

ŷpcr(M) = ȳ1 +

M∑

m=1

θ̂mzm (61)

= ȳ1 +X
M∑

m=1

θ̂mvm ,

using the fact that zm = Xvm and writing the fitted value under PCR as a function of the
number of retained components M . The above can be written in matrix form involving the
data matrix as

ŷpcr(M) =
[
1 X

] [ ȳ∑M
m=1 θ̂mvm

]
.

We can write this as the matrix
[
1 X

]
times a vector β̂pcr if we take this later vector as

β̂pcr(M) =

[
ȳ∑M

m=1 θ̂mvm

]
. (62)

This is the same as the books equation 3.62 when we restrict to just the last p elements of
β̂pcr. It can be shown (for example in [11]) that for multiple linear regression models the
estimated regression coefficients in the vector β̂ can be split into two parts a scalar β̂0 and
a p× 1 vector β̂∗ as

β̂ =

[
β̂0

β̂∗

]
.

In addition the coefficient β̂0 can be shown to be related to β̂∗ as

β̂0 = ȳ − β̂∗x̄ ,
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where ȳ is the scalar mean of the response vector y and x̄ is the p × 1 vector where each
component hold the mean of a predictor say xi. Since from Equation 62 we see that β̂0 = ȳ
and can conclude that in principal component regression x̄ = 0 or that the input predictor
variables are standardized.

To evaluate β̂pcr(M) when M = p recall that in principal component regression the vectors
vm are from the SVD of the matrix X given by X = UDV T . This later expression is
equivalent to XV = UD from which if we equate the columns of the matrices on both sides
we get

Xv1 = d1u1

Xv2 = d2u2

...

Xvp = dpup .

Since the vectors zm are given by zm = Xvm for 1 ≤ m ≤ M ≤ p, by the above we have
the vectors zm in terms of the vectors um as zm = dmum. Since for this problem we are to
show that when M = p the estimate β̂pcr(M) above becomes the least squares estimate β̂ ls

it is helpful to see what this later estimate looks like in terms of the SVD matrices U , D,
and V . Recognizing that when λ = 0 the ridge regression estimate for β is equal to the least
squares estimate (when λ = 0 we have no λ||β||22 ridge penalty term) we can use Equation 30
to obtain

β̂ ls = β̂ridge(λ = 0) = V D−2DUT y = V D−1UTy . (63)

We now see if we can transform β̂pcr(p) into this expression. We have

β̂pcr(p) =

p∑

m=1

θ̂mvm = V




θ̂1
θ̂2
...

θ̂p


 = V




<z1,y>
<z1,z1>
<z2,y>
<z2,z2>

...
<zp,y>
<zp,zp>


 .

Using zm = dmum derived above we have

< zm, zm >= d2m < um, um >= d2m ,

since the vectors um are assumed to be orthonormal. Also < zm, y >= dm < um, y >, so the
estimate for β̂pcr(p) becomes

β̂pcr(p) = V




<u1,y>
d1

<u2,y>
d2
...

<up,y>
dp


 = V D−1UT y ,

which by Equation 63 equals β̂ ls as we were to show.
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Ex. 3.14 (when the inputs are orthogonal PLS stops after m = 1 step)

Observe that in Algorithm 3.3 on partial least squares (PLS) if on any given step m we
compute that φ̂mj = 0 for all j then it follows that the algorithm must stop. For this
problem when the xj ’s are orthonormal we will explicitly walk through the first step of the

algorithm by hand and show that φ̂2j = 0 for all 1 ≤ j ≤ p.

Note that the xj ’s to be orthogonal means that xT
i xj = 0 for all i 6= j. Following each step

of Algorithm 3.3 and starting with m = 1 we have

(a) We have that z1 is given by

z1 =

p∑

j=1

φ̂1jx
(0)
j with φ̂1j =< x

(0)
j , y > .

(b) Next we compute θ̂1 =
<z1,y>
<z1,z1>

. The denominator in the above fraction is given by

< z1, z1 > = 〈
p∑

j=1

φ̂1jx
(0)
j ,

p∑

j=1

φ̂1jx
(0)
j 〉 =

p∑

j=1

p∑

j′=1

φ̂1jφ̂1j′〈x(0)
j , x

(0)
j′ 〉

=

p∑

j=1

p∑

j′=1

φ̂1jφ̂1j′δjj′ =

p∑

j=1

φ̂2
1j ,

since the vectors x
(0)
j are orthogonal. The numerator in the above expression for θ̂1 is

given by

< z1, y >=

p∑

j=1

φ̂1j < x
(0)
j , y >=

p∑

j=1

φ̂2
1j ,

and thus we have θ̂1 = 1.

(c) Next we find ŷ(1) given by

ŷ(1) = ŷ(0) + z1 = ŷ(0) +

p∑

j=1

φ̂1jx
(0)
j .

(d) Next we compute x
(1)
j for each value of j = 1, 2, . . . , p using

x
(1)
j = x

(0)
j −

< z1, x
(0)
j >

< z1, z1 >
z1 .

Since the vectors x
(0)
j are orthogonal the inner product in the numerator above becomes

< z1, x
(0)
k >=

p∑

j=1

φ̂1j < x
(0)
j , x

(0)
k >= φ̂1k .
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Using this result x
(1)
j becomes

x
(1)
j = x

(0)
j −

φ̂1j∑p
j=1 φ̂

2
1j

z1

= x
(0)
j −

(
φ̂1j∑p
j=1 φ̂

2
1j

)
p∑

j=1

φ̂1jx
(0)
j .

Having finished the first loop of Algorithm 3.3 we let m = 2 and compute φ̂2j to get

φ̂2j = < x
(1)
j , y >=< x

(0)
j , y > −

(
φ̂1j∑p
j=1 φ̂

2
1j

)
p∑

j=1

φ̂2
1j

= 0 .

Thus as discussed at the beginning of this problem since φ̂2j = 0 the algorithm must stop.

Ex. 3.15 (PLS seeks directions that have high variance and high correlation)

This problem has not yet been worked.

Ex. 3.16 (explicit expressions for β̂j when the features are orthonormal)

When the predictors are orthonormal XTX = I and the ordinary least squared estimate of
β is given by

β̂ = XTY . (64)

In best-subset selection we will take the top M predictors that result in the smallest residual
sum of squares. Since the columns of X are orthonormal we can construct a basis for R

N

by using the first p columns of X and then extending these with N − p linearly independent
additional orthonormal vectors. The Gram-Schmidt procedure guarantees that we can do
this. Thus in this extended basis we can write y as

y =

p∑

j=1

β̂jxj +

N∑

j=p+1

γjx̃j . (65)

Where β̂j equal the components of β̂ in Equation 64, x̃j are the extended basis vectors
required to span R

N , and γj are the coefficients of y with respect to these extended basis
vectors. Then if we seek to approximate y with a subset of size M as in best subset selection
our ŷ can be written as ŷ =

∑p
j=1 Ij β̂jxj , with Ij = 1 if we keep the predictor xj and zero
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otherwise. Now since all the vectors xj and x̃j are orthonormal we have

||y − ŷ||22 = ||y −Xβ̂||22 =
∣∣∣∣∣

∣∣∣∣∣

p∑

j=1

β̂j(1− Ij)xj +

N∑

j=p+1

γjx̃j

∣∣∣∣∣

∣∣∣∣∣

2

2

=

p∑

j=1

β̂2
j (1− Ij)

2 ||xj||22 +
N∑

j=p+1

γj
2 ||x̃j||22

=

p∑

j=1

β̂2
j (1− Ij)

2 +
N∑

j=p+1

γj
2 .

Thus to minimize ||y − ŷ||22 we would pick the M values of Ij to be equal to one that have

the largest β̂2
j values. This is equivalent to sorting the values |β̂j| and picking the indices of

the largest M of these to have Ij = 1. All other indices j would be taken to have Ij = 0.
Using an indicator function this is equivalent to the expression

β̂j

best−subset
= β̂jI[rank(|β̂j|) ≤M ] . (66)

For ridge regression, since X has orthonormal columns we have

β̂ridge = (XTX + λI)−1XTy

= (I + λI)−1XTy =
1

1 + λ
XTy

=
1

1 + λ
β̂ ls ,

which is the desired expression.

For the lasso regression procedure we pick the values of βj to minimize

RSS(β) = (y −Xβ)T (y −Xβ) + λ

p∑

j=1

|βj | .

Expanding ŷ as ŷ =
∑p

j=1 βjxj and with y expressed again as in Equation 65 we have that
RSS(β) in this case becomes

RSS(β) =

∣∣∣∣∣

∣∣∣∣∣

p∑

j=1

(β̂j − βj)xj +
N∑

j=p+1

γjx̃j

∣∣∣∣∣

∣∣∣∣∣

2

2

+ λ

p∑

j=1

|βj|

=

p∑

j=1

(β̂j − βj)
2 +

N∑

j=p+1

γ2
j + λ

p∑

j=1

|βj |

=

p∑

j=1

{(β̂j − βj)
2 + λ|βj|}+

N∑

j=p+1

γ2
j .

We can minimize this expression for each value of βj for 1 ≤ j ≤ p independently. Thus our
vector problem becomes that of solving p scalar minimization problems all of which look like

β∗ = argminβ

{
(β̂ − β)2 + λ|β|

}
. (67)
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In this expression β̂ and λ are assumed fixed. This expression can be represented as the sum
of two terms (β̂ − β)2 and λ|β|. The first expression (β̂ − β)2 is symmetric about the least
squares estimate β̂ while the second expression is symmetric about β = 0. To get an idea
of what this objective function looks like we take some representative values of β̂ and λ and
plot of the sum of these two functions we get the plots in Figure 7.

Then the objective function F (β) in Equation 67 we want to minimize is

F (β) =

{
(β − β̂)2 − λβ when β < 0

(β − β̂)2 + λβ when β > 0
.

To find the minimum of this function take the derivative with respect to β and set the result
equal to zero and solve for β. We find the derivative of F (β) given by

F ′(β) =

{
2(β − β̂)− λ β < 0

2(β − β̂) + λ β > 0
.

When we set F ′(β) equal to zero we get two possible solutions for β given by

β = +λ
2
+ β̂ and β < 0

β = −λ
2
+ β̂ and β > 0

.

Note: I want this to be equal to the desired expression but I seem to be off by a factor of
1/2... did I do something wrong?

Ex. 3.17 (linear methods on the spam data set)

For this problem we were asked to apply various linear methods to predict whether or not a
piece of email is spam or not. This is very similar to the example presented in the book on
the prostate data set. We implemented each of the various methods: Ordinary Least Squares
(OLS), ridge regression, the lasso (a regression that imposes an L1 penalty on the vector of
least squares coefficient β), principal component regression (PCR), and partial least squares
(PLS). As a guide to what R functions perform what computations and produce the above
plots and table entries we have:

• The least squares (LS) results are obtained in the script spam OLS.R.

• The ridge regression results are obtained using the script spam ridge.R.

• The lasso results are obtained using the script spam lasso.R.

• The PCR and PLS results are obtained using the script spam PCR N PLSR.R.

Each of these script generates one of the plots given in Figure 8 Note that since the spam
data set has so many predictor variables (57) it is not possible (with the code written for the
prostate data set) to perform an exhaustive search over all possible subsets of size 1 ≤ k ≤ 57
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as in performed in dup OSE all subset.R for the prostate data set. One could drop some
variables from the spam data to produce a smaller set of variables and then run such an
exhaustive search procedure if desired. The fact that we can run the other routines on this
problem is an argument for their value. When the above codes are run we obtain Table 4
comparing their performance.

LS Ridge Lasso PCR PLS
Test Error 0.121 0.117 0.123 0.123 0.119
Std Error 0.007 0.004 0.007 0.007 0.005

Table 4: Duplicated results for the books Table 3.3 but applied to the spam data set. Note
that ridge regression and partial least squares outperforms ordinary least squares.

Ex. 3.18 (conjugate gradient methods)

The conjugate gradient method is an algorithm that can be adapted to find the minimum
of nonlinear functions [8]. It also provides a way to solve certain linear algebraic equations
of the type Ax = b by formulating them as a minimization problem. Since the least squares
solution β̂ is given by the solution of a quadratic minimization problem given by

β̂ = argminβRSS(β) = argminβ(y −Xβ)T (y −Xβ) . (68)

which has the explicit solution given by the normal equations or

(XTX)β = XTY . (69)

One of the properties of the conjugate gradient algorithm is that when it is used to solve
Ax = b where x is an p× 1 vector it will terminate with the exact solution after p iterations.
Thus during is operation we get a sequence of p approximate values of the solution vector x.

One obvious way to use the conjugate gradient algorithm to derive refined estimates of β̂
the least squared solution is to use this algorithm to solve the normal Equations 69. Thus
after finishing each iteration of the conjugate gradient algorithm we have a new approximate
value of β̂(m) for m = 1, 2, · · · , p and when m = p this estimate β̂(p) corresponds to the least
squares solution. The value of m is a model selection parameter and can be selected by
cross validation. To derive the algorithm just described one would then need to specify the
conjugate gradient algorithm so that it was explicitly solving the normal Equations 69.

Warning: The problem with the statements just given is that while viewing the conjugate
gradient algorithm as a iterative algorithm to compute β̂ seems to be a reasonable algorithm,
the algorithm given in the book for partial least squares does not seem to be computing
iterative estimates for β̂LS but instead each iteration seems to be computing an improved
estimates of y. While these two related as ŷ(m) = Xβ̂(m), I don’t see how to modify the partial
least squares algorithm presented in the book into one that is approximating β̂. If anyone
sees a simple way to do this or knows of a paper/book that describes this transformation
please let the authors know.
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Ex. 3.19 (increasing norm with decreasing λ)

To begin with we will use Equation 30 to compute ||β̂ridge||22. We find

||β̂ridge||22 = yTUD(D2 + λI)−1V TV (D2 + λI)−1DUT y

= yTUD(D2 + λI)−2DUTy

= (UT y)T [D(D2 + λI)−2D](UTy) .

The matrix in the middle of the above is a diagonal matrix with elements
d2j

(d2j+λ)2
. Thus

||β̂ridge||22 =
p∑

i=1

d2j(U
Ty)j

2

(d2j + λ)2
.

Where (UT y)j is the jth component of the vector UT y. As λ → 0 we see that the fraction
d2j

(d2j+λ)2
increases, and because ||β̂ridge||22 is made up of sum of such terms, it too must increase

as λ→ 0.

To determine if the same properties hold For the lasso, note that in both ridge-regression
and the lasso can be represented as the minimization problem

β̂ = argminβ




N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2

 (70)

subject to
∑

j

|βj|q ≤ t .

When q = 1 we have the lasso and when q = 2 we have ridge-regression. This form of the
problem is equivalent to the Lagrangian from given by

β̂ = argminβ




N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2

+ λ

p∑

j=1

|βj|q

 . (71)

Because as λ → 0 the value of
∑ |βj|q needs to increase to have the product λ

∑ |βj|q
stay constant and have the same error minimum value in Equation 71. Thus there is an
inverse relationship between λ and t in the two problem formulations, in that as λ decreases
t increases and vice versa. Thus the same behavior of t and

∑
j |βj|q with decreasing λ will

show itself in the lasso. This same conclusion can also be obtained by considering several of
the other properties of the lasso

• The explicit formula for the coefficients β̂j estimated by the lasso when the features

are orthogonal is given. In that case it equals sign(β̂j)(|β̂j |−λ)+. From this expression

we see that as we decrease λ we increase the value of β̂j, and correspondingly the norm

of the vector β̂.
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• In the books figure 3.11 since smaller λ (i.e. larger t values) correspond to larger
neighborhoods about the origin and correspondingly an lasso based estimate for β
that gets closer to β̂ and correspondingly gets larger in magnitude.

• Numerical solutions for the lasso estimates of β for the prostate data set are presented
in figure 3.10 as a function of s = t

∑p
1 |β̂j |

. We see that as t increases more and more βj

become “active” or non-zero. Correspondingly the norm increases.

Ex. 3.20

This problem has not been worked.

Ex. 3.21

This problem has not been worked.

Ex. 3.22

This problem has not been worked.

Ex. 3.23 ((XTX)−1XT r keeps the correlations tied and decreasing)

Part (a): Now in the expression 1
N
|〈xj , y − u(α)〉|, the function u(α) is a “scaled least

squares solution” and takes the form u(α) = αXβ̂ where β̂ is given by the least squares
solution or Equation 14. Because of this 1

N
|〈xj, y − u(α)〉| is the absolute value of the jth

component of

1

N
XT (y − u(α)) =

1

N
XT (y − αX(XTX)−1XTy)

=
1

N
(XTy − αXTy)

=
1

N
(1− α)XTy . (72)

Since in this problem we are told that the absolute value of each element of XTy is equal
to Nλ we have from the above that

∣∣ 1
N
XT (y − u(α))

∣∣ = (1− α)λ, or looking at the jth row
and taking absolute values of this expression we conclude that

1

N
|〈xj, y − u(α)〉| = (1− α)λ , (73)

for j = 1, 2, . . . , p as we were to show. In words, the magnitude of the projections of xj onto

the residual y − u(α) = y − αXβ̂ is the same for every value of j.
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Part (b): The correlations (not covariances) would be given by

〈xj ,y−u(α)〉

N(
〈xj ,xj〉

N

)1/2 (
〈y−u(α),y−u(α)〉

N

)1/2 =
(1− α)λ

(
〈y−u(α),y−u(α)〉

N

)1/2
,

using the result from Part (a).

To finish this exercise we next need to evaluate the expression 〈y − u(α), y − u(α)〉 in the
denominator above. As a first step we have

〈y − αXβ̂, y − αXβ̂〉 = yTy − αyTXβ̂ − αβ̂TXTy + α2β̂T (XTXβ̂) .

Now recall the normal equations for linear regression

XT (y −Xβ̂) = 0 or XTXβ̂ = XTy .

Using this we can write

〈y − αXβ̂, y − αXβ̂〉 = yTy − 2αyTXβ̂ + α2yTXβ̂

= yTy + α(α− 2)yTXβ̂ .

If α = 1 the left-hand-side is the RSS. This means that

RSS = yTy − yTXβ̂ so yTXβ̂ = yTy −RSS .

Using this we have that

〈y − αXβ̂, y − αXβ̂〉 = yTy + α(α− 2)(yTy −RSS)

= (1− α)2yTy + α(2− α)RSS .

As y has a mean zero and a standard deviation of one means that 1
N
yTy = 1 so the above

becomes
1

N
〈y − αXβ̂, y − αXβ̂〉 = (1− α)2 +

α(α− 2)

N
RSS .

Putting this expression into the above gives the desired expression.

Part (c): From the given expression derived in Part (a) and (b) one sees that when α = 0
we have λ(0) = λ, when α = 1 we have that λ(1) = 0, where all correlations are tied and
decrease from λ to zero as α moves from 0 to 1.

Ex. 3.24 (LAR directions)

From the definition of the LAR direction vector uk, we see that

XT
Ak
uk = XT

Ak
(XAk

δk)

= XT
Ak
XAk

(XT
Ak
XAk

)−1XT
Ak
rk

= XT
Ak
rk .
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Since the cosign of the angle of uk with each predictor xj in Ak is given by
xT
j u

||xj|| ||u||
=

xT
j u

||u||

each element of the vector XT
Ak
uk corresponds to a cosign of an angle between a predictor

xj and the vector uk. Since the procedure for LAR adds the predictor xj′ exactly when the
absolute value of xT

j′r equals that of xT
j r for all predictors xj in Ak, the direction uk makes

an equal angle with all predictors in Ak.

Ex. 3.25 (LAR look-ahead)

To start this exercise I’ll present a simple overview of LAR regression (see also Page 27 for
another such discussion).

At step k we have k predictors in the model (the elements in Ak) with an initial coefficient
vector βAk

. In that coefficient vector, one element will be zero corresponding to the predictor
we just added to our model. We will smoothly update the coefficients of our model until we
decide to add the next predictor. We update the coefficients according to

βAk
(α) = βAk

+ αδk , (74)

with α sliding between α = 0 and α = 1, and with δk is the least-angle direction at step k
given by

δk = (XT
Ak
XAk

)−1XT
Ak
rk . (75)

The residuals for each α are then given by

rk+1(α) = y −XAk
βAk

(α) . (76)

Notice that we have denoted the above residual as rk+1 which will be the starting residuals
for the next step once we have determined the LARs step length α.

From Exercise 3.23 the magnitude of the correlation between the predictors in Ak and the
above residual rk+1(α), is constant and decreases as α moves from zero to one. Lets denote
the signed correlation with a predictor xa in the active set as ca(α) = xT

a rk+1(α). Notionally
we will increase α from zero to one and “stop” with a value of α∗ where 0 < α∗ < 1 when
the new residual given by Equation 76 has the same absolute correlation with one of the
predictors not in the active set.

A different way to describe this is the following. As we change α from zero to one for α ≈ 0
the absolute correlation of rk+1(α) with all of the predictors in Ak will be the same. For
all predictors not in Ak the absolute correlation will be less than this constant value. If
xb is a predictor not in Ak then this means that |xT

b rk+1(α)| < |ca(α)| for all b /∈ Ak and
a ∈ Ak. We “stop” at the value of α = α∗ when one of the predictors not in Ak has an
absolute correlation equal to the value |c(α∗)|. The variable xb that has this largest absolute
correlation will be the next variable added to form the set Ak+1 and the process continued.

With this background we are ready to solve this problem. What we want to do is determine
which variable next enters the active set (to form Ak+1) and what the value of α∗ is where
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that happens. To do that we will algebraically describe the above procedure and show how
to compute the two requested items. Let xa be any of the predictors in the active set Ak

and xb be one of the p− k predictors not in the set Ak. Then from the discussion above and
Exercise 3.23 the magnitude of the correlation between xa and rk+1(α) will be the same for
all predictors xa in the active set Ak. This means that

ca(α) = xT
a rk+1(α) = xT

a (y −XAk
βAk

(α))

= xT
a (y −XAk

βAk
− αXAk

δk)

= xT
a rk − αxT

aXAk
δk ,

will have the same magnitude for all a ∈ Ak. Next consider the correlation of xb with
rk+1(α). In the same was as above we will find

cb(α) = xT
b rk − αxT

b XAk
δk .

We now consider what would need to be true if the predictor xb was to be the next predictor
added. If it was the next one added then we would have

|c(α)| = max
b

(|xT
b rk+1(α)|) , (77)

when α = α∗ the stopping value. Another way to say this is that xb would be the predictor
with the largest absolute correlation among all of the predictors not in Ak. We will now turn
this procedure around and ask the question if predictor xb was to be the next one added
what would be the value of α. In this case we would need to have

|c(α)| = |xT
b rk+1(α)| .

Now depending on the sign of c(α) and xT
b rk+1(α) we can consider the different possible

values for the absolute values and would find that either

α =
xT
b rk − xT

a rk
xT
b XAk

δk − xT
aXAk

δk
or

α =
xT
b rk + xT

a rk
xT
b XAk

δk + xT
aXAk

δk
.

Here xa is any predictor in XAk
(they will all have the same correlations with the residuals)

and everything on the right-hand-side is known at this step. Only one of these expressions
will give a value for α that is in the range 0 < α < 1. Lets call this value αb as it depends
on the bth predictor. The steps of the algorithm are then clear. We compute αb for all of
the b predictors not in Ak. Given that value of α = αb we can compute the right-hand-side
of Equation 77 and select the value of b that gives the largest correlation. This will be the
next variable added and the corresponding α at which it occurs.

Ex. 3.26 (forward stepwise regression vs. LAR)

Warning: I was unable to solve this problem. If anyone sees a way to solve it please let me
know.
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Ex. 3.27 (Lasso and LAR contributed by Franklin Wang)

Under the transformation βj = β+
j − β−

j the lasso objective function we seek to minimize is

L(β) + λ
∑

j

(β+
j + β−

j ) ,

now under the constraints that β+
j ≥ 0 and β−

j ≥ 0.

Part (a): The Lagrangian we form to turn this constrained optimization problem into an
unconstrained one is given by introducing the Lagrange multipliers λ−

j and λ+
j as

L(β) + λ
∑

j

(β+
j + β−

j )−
∑

j

λ+
j β

+
j −

∑

j

λ−
j β

−
j . (78)

Two of the Karush-Kuhn-Tucker (KKT) conditions are obtained by taking the derivatives
of the above objective function with respect to β+

j and β−
j and setting the results equal to

zero. This for β+
j gives

∇L(β)j + λ− λ+
j = 0 , (79)

and for β−
j gives

−∇L(β)j + λ− λ−
j = 0 . (80)

These are the first two expressions given in this part of the exercise. The other two KKT
conditions are the complementary slackness conditions which in this case take the form

λ+
j β

+
j = 0 (81)

λ−
j β

−
j = 0 , (82)

which are the last two conditions given in this part of the exercise.

Part (b): Summing the first two KKT equations gives

λ+
j + λ−

j = 2λ ≥ 0 .

Taking the differences of the same two equations we get

∇L(β)j =
1

2
(λ−

j − λ+
j ) .

Taking the absolute value of this gives (recall that λ+
j , λ

−
j ≥ 0)

|∇L(β)j| =
1

2
|λ−

j − λ+
j | ≤

1

2
(λ−

j + λ+
j ) = λ . (83)

Now if λ = 0 then from Equation 83 we see that |∇L(β)j | ≤ 0 so ∇L(β)j must be zero.
Another way to argue this is to note that when λ = 0 then the Lasso problem reduces to
ordinary least squares which is minimized by enforcing that the partial derivative of L w.r.t
any βj are zero.
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Next if λ > 0 then assuming that β+
j 6= 0, then from the complementary slackness conditions

Equation 81 we know that λ+
j = 0. Combined with Equation 79 we get, ∇L(β)j = −λ < 0.

Plug this into the Equation 80 we get λ−
j = 2λ > 0 so finally using Equation 82 we get

β−
j = 0.

If λ > 0 but now β−
j 6= 0, then from the complementary slackness conditions Equation 82

we know that λ−
j = 0. Combined with Equation 80 we get, ∇L(β)j = λ > 0. Plug this into

the Equation 79 we get λ+
j = 2λ > 0 so finally using Equation 81 we get β+

j = 0.

Thus in the above we have shown that

∇L(β)j = −λsign(βj) .

Next from the expression given for L(β) we have that

∇L(β)j = 2xT
j (y −Xβ) .

If the predictors are standardized by subtracting the mean and dividing by the standard
deviation of each feature the above is proportional to the correlation between xj and the
current residual. This and the previous equation give the desired result.

Part (c): The two previous equations gives a relationship between β and λ. Rewriting in
vector form and emphasizing the dependence on λ we get

−λ
2
sign(β̂j(λ)) = xT

j (y −Xβ̂j(λ)) ,

for all j ∈ S where S is the set of active variables. Recall that S doesn’t change for any
λ ∈ [λ0, λ1]. If j 6∈ S then β̂(λ)j = 0. Combining these two cases we have

XT (y −Xβ̂(λ)) = θ(λ) , (84)

where the vector function θ(λ) has components given by

θj(λ) =

{
−λ

2
sign(β̂j(λ)) j ∈ S

xT
j y j 6∈ S

.

If we take λ = λ0 in 84 and subtract that expression from 84 we get

β̂(λ)− β̂(λ0) = −(XTX)−1(θ(λ)− θ(λ0)) ,

where

(θ(λ)− θ(λ0))j =

{
−λ−λ0

2
sign(β̂j(λ0)) j ∈ S

0 j 6∈ S
.

This is consistent with (3.90) since θ(λ)− θ(λ0) is a linear function of λ− λ0.
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Ex. 3.28 (contributed by Franklin Wang)

Define the new, augmented observation matrix as two copies of X concatenated as Xnew =
[X,X ]. The new coefficient vector is then as βnew = (β ′

1, β
′
2)

′. With this notation

Xnewβnew = Xβ1 +Xβ2 = X(β1 + β2) .

The Lagrange multiplier expression (that we minimize) for the Lasso optimization is

L = ||y −Xnewβnew||2 + λ




p∑

j=1

|β1j |+
p∑

j=1

|β2j |




= ||y −X(β1 + β2)||2 + λ




p∑

j=1

|β1j + β2j |


+ λ




p∑

j=1

(|β1j |+ |β2j | − |β1j + β2j |)


 . (85)

Note that the first two terms represent the same minimization problem for the original lasso
(before we provided duplicate features) and that because

|β1j + β2j| ≤ |β1j|+ |β2j | ,

the third term is positive or zero. It will be zero if β1j and β2j are either both positive or
both negative. We know that the minimum of the first two terms of this objective function
happens for the solution β1 + β2 = β̂ = a as mentioned in the problem. As the third term is
guaranteed to be positive (thus increasing the objective value) if β1j and β2j have different
signs the solution set for β1 and β2 to this problem must satisfy

β1 + β2 = β̂ = a ,

and the components of β1 and β2 must have the same sign (so that the third expression
above is zero) i.e.

β1iβ2i > 0 ,

for all 1 ≤ i ≤ p.

Ex. 3.29

The ridge regression optimization selects β to minimize

||y − βX||2 + λ||β||2 . (86)

The minimum of this objective function is given by

β = (XTX + λI)−1XTy . (87)

In this problem, we are assuming that X ∈ R
n×1. That is, there is only one feature i.e.

p = 1. In this case XTX is a scalar and the inverse in Equation 87 is not a matrix inverse
but a scalar one and we get

β =
XTy

XTX + λ
.
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When we augment our inputs to include a duplicate predictor a second time the optimization
problem we seek to solve is to find the minimum of

||y −Xβ1 −Xβ2||2 + λ||β1||2 + λ||β2||2 .
As β1 and β2 are scalars the above is the same as

n∑

i=1

(yi − xiβ1 − xiβ2)
2 + λβ2

1 + λβ2
2 .

The first order conditions for this objective function are

2
n∑

i=1

(yi − xiβ1 − xiβ2)(−xi) + 2λβ1 = 0

2

n∑

i=1

(yi − xiβ1 − xiβ2)(−xi) + 2λβ2 = 0 .

or back in matrix/vector form

XT (y −Xβ1 −Xβ2)− λβ1 = 0

XT (y −Xβ1 −Xβ2)− λβ2 = 0 .

or as a system for β1 and β2 these are

(XTX + λ)β1 +XTXβ2 = XTy (88)

XTXβ1 + (XTX + λ)β2 = XTy .

This is a system of two equations and two unknowns and has a solution given by (using
Cramer’s rule)

[
β1

β2

]
=

1

(XTX + λ)(XTX + λ)− (XTX)2

[
XTX + λ −XTX
−XTX XTX + λ

]
.

This can be simplified to [
β1

β2

]
=

XTy

2XTX + λ

[
1
1

]
,

Notice that β1 = β2. We could have derived this result if we notice that exchanging β1 ↔ β2

leaves the system unchanged. This means that we know (before we solve the system) that
the solution must satisfy β1 = β2.

For m copies of the original predictor X the optimization problem we have is to minimize
(
y −X

m∑

j=1

βj

)T (
y −X

m∑

j=1

βj

)
+ λ

m∑

j=1

β2
j .

One of the first order conditions for this optimization is found by taking the derivative of
the above with respect to βk for 1 ≤ k ≤ m and setting the result equal to zero. Doing this
we find

−XT

(
y −X

m∑

j=1

βj

)
−
(
y −X

m∑

j=1

βj

)T

X + 2λβk = 0 ,
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or

2XTX

m∑

j=1

βj − 2XTy + 2λβk = 0 .

We can write this as

XTX

m∑

j=1

βj + λβk = XTy . (89)

Note that in Equation 89 if we exchange βk for any other βk′ with k 6= k′ we get another
of the first order equations (the one we would have gotten in taking the k′ derivative of
the objective function). This means that the values of βk are all equal for 1 ≤ k ≤ m and
Equation 89 then becomes

mXTXβk + λβk = XTy ,

or

βk =
XTy

mXTX + λ
,

for 1 ≤ k ≤ m.

Ex. 3.30 (solving the elastic net optimization problem with the lasso)

For this problem note that if we augment X with a multiple of the p× p identity to get

X̃ =

[
X
γI

]
,

then X̃β =

[
Xβ
γβ

]
. If we next augment y with p zero values as

ỹ =

[
y
0

]
.

Then we have

||ỹ − X̃β||22 =
∣∣∣∣
∣∣∣∣
[
y −Xβ

γβ

]∣∣∣∣
∣∣∣∣
2

2

= ||y −Xβ||22 + γ2||β||22 . (90)

Now in the this augmented space a lasso problem for β is

β̂ = argminβ

(
||ỹ − X̃β||22 + λ̃||β||1

)
.

Writing this using Equation 90 we get in the original variables the following

β̂ = argminβ

(
||y −Xβ||22 + γ2||β||22 + λ̃||β||1

)
.

To make this match the requested expression we take γ2 = λα or γ =
√
λα, and λ̃ = λ(1−α).

Thus to solve the requested minimization problem given y, X , λ and α perform the following
steps

58



• Augment y with p additional zeros to get ỹ =

[
y
0

]
.

• Augment X with the multiple of the p×p identity matrix
√
λαI to get X̃ =

[
X√
λαI

]
.

• Set λ̃ = λ(1− α).

• Solve the lasso minimization problem with input ỹ, X̃ , and λ̃.

The solution β̂ is the desired solution to the entire problem.
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Figure 2: Numerical duplication of the books Figure 3.7. Estimated prediction error curves
and their standard errors for various linear methods. From top to bottom, left to right
the methods displayed are: Best-Subset Selection, Ridge Regression, The Lasso, Principal
Components Regression (PCR), and Partial Least Squares (PLS). The lasso results look
different than that presented in the book since we present the default plot result using the
glmnet plot command. In addition, the PCR and PLS results don’t return cross validation
results for the case of no predictors (predicting with the constant mean ȳ only). These later
results should duplicate the first point in the best-subset selection.
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Figure 3: Duplication of the books Figure 3.8 using the code duplicate figure 3 8.R.
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Figure 4: Duplication of the books Figure 3.10 using the code dup OSE lasso.R. This plot
matches quite well qualitatively and quantitatively the corresponding one presented in the
book.
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Figure 5: Numerical duplication of the books Figure 3.19. Left: Using the Incremental
Forward Stagewise Regression (IFSR) with ǫ = 0.01 and 250 iterations of the algorithm.
Right: IFSR with ǫ = 0.001 and 2500 iterations. With ǫ this small the curves are so smooth
they approximate the lasso paths quite well.

63



−2 −1 0 1 2

−
5

0
5

s

a
c
c
u
ra

te
.y

Figure 6: The middle black curve is the curve
y = 1.3965849 + 1.9407724x− 0.1215529x2 + 0.1535441x3.

The two red curves come from the upper and lower limits of the 95% confidence interval,
taken separately at each value of x. The green curves are the result of sampling values from
the boundary of the 4-dimensional 95% confidence region for values of β̂, as determined by
the χ2

4 distribution, and then drawing the corresponding curve. Note that the green curves
do not lie entirely between the red curves.
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Figure 7: Plots of (β̂ − β)2 + λ|β| for various values of β̂ and λ.
Upper Left: For β̂ = −5.0 and λ = 1.0. The minimum appears to be at β = −5.0.
Upper Right: For β̂ = −1.0 and λ = 5.0. The minimum appears to be at β = 0.0.
Lower Left: For β̂ = 5.0 and λ = 1.0. The minimum appears to be at β = 5.0.
Lower Right: For β̂ = 1.0 and λ = 5.0. The minimum appears to be at β = 0.0.
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Figure 8: Estimated prediction error curves and their standard errors for various linear
methods applied to the spam data set. From top to bottom, left to right the methods
displayed are: Ridge Regression, The Lasso, Principal Components Regression (PCR), and
Partial Least Squares (PLS). The lasso results look different than that presented in the
book since we present the default plot result using the glmnet plot command. In addition,
the PCR and PLS results don’t return cross validation results for the case of no predictors
(predicting with the constant mean ȳ only).
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Chapter 4 (Linear Methods for Classification)

Notes on the Text

Notes on using LDA as a dimensionality reduction technique

In the R code dup fig 4.4.R we duplicate the results in the book where we project the vowel
data set into a two dimensional space. When we run the above R code we get the result
shown in Figure 9. This result looks very much like the result presented in the book.
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Figure 9: Duplication of the books Figure 4.4 using the code dup fig 4 4.R.

Notes on Linear Discriminant Analysis

In this subsection of the book there were comments on a two class method for classification
that was claimed to work quite well in practice. This novel method is based on an observation
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made during the derivation of LDA in that the cut classification threshold point or the scalar
value of the expression

1

2
µ̂T
2 Σ̂

−1µ̂2 −
1

2
µ̂T
1 Σ̂

−1µ̂1 + log

(
N1

N

)
− log

(
N2

N

)
, (91)

is only Bayes optimal when the two class conditional densities are Gaussian and have the
same covariance matrix. Thus the conclusion suggested by the authors is that one might
be able to improve classification by specifying a different value for this cut point. In the R

function entitled two class LDA with optimal cut point.R we follow that suggestion and
determine the cut point that minimizes the classification error rate over the training set. We
do this by explicitly enumerating several possible cut points and evaluating the in-sample
error rate of each parametrized classifier1. To determine the range of cut point to search for
this minimum over, we first estimate the common covariance matrix Σ̂, and the two class
means µ̂1 and µ̂2 in the normal ways and then tabulate (over all of the training samples x)
the left-hand-side of the book’s equation 4.11 or

xT Σ̂−1(µ̂2 − µ̂1) . (92)

Given the range of this expression we can sample cut points a number of times between
the minimum and maximum given value, classify the points with the given cut point and
estimating the resulting classifier error rate. The above code then returns the cut point
threshold that produces the minimum error rate over the in-sample data. This code is exer-
cised using the R script two class LDA with optimal cut point run.R where we perform
pairwise classification on two vowels. While the book claimed that this method is often su-
perior to direct use of LDA running the above script seems to indicate that the two methods
are very comparable. Running a pairwise comparison between the optimal cut point method
shows that it is only better then LDA 0.29 of the time. Additional tests on different data
sets is certainly needed.

Regularized Discriminant Analysis

Some R code for performing regularized discriminant analysis can be found in rda.R. This
code is exercised (on the vowel data) in the R code dup fig 4 7.R which duplicates the plot
given in the book. When that script is run we get

[1] "Min test error rate= 0.478355; alpha= 0.969697"

and the plot shown in Figure 10. This plot matches well with the one given in the book. In
addition, we can shrink Σ̂ towards a scalar and consider the more general three term model

Σ̂k(α, γ) = αΣ̂k + (1− α)(γΣ̂ + (1− γ)σ̂2I) .

With this form for Σ̂k we can again run a grid search over the parameters α and γ and
select values that optimize out of sample performance. When we do that (at the bottom of
the dup fig 4 7.R) we get

1A better algorithm but one that requires more computation would be to specify the classification point
and estimate the error rate using leave-one-out cross-validation.
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Figure 10: Duplication of the books Figure 4.7 using the code dup fig 4 7.R.

[1] "Min test error rate= 0.439394; alpha= 0.767677; gamma= 0.050505"

Notes on duplication of Table 4.1

In this dup table 4 1.R we call various R functions created to duplicate the results in the
book from Table 4.1. This code uses the R routine linear regression indicator matrix.R

which does classification based on linear regression (as presented in the introduction to this
chapter). When we run that code we get results given by
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Technique Training Test

[1] " Linear Regression: 0.477273; 0.666667"

[1] " Linear Discriminant Analysis (LDA): 0.316288; 0.556277"

[1] " Quadratic Discriminant Analysis (QDA): 0.011364; 0.528139"

[1] " Logistic Regression: 0.221591; 0.512987"

These results agree well with the ones given in the book.

Notes on Reduced-Rank Linear Discriminant Analysis
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Figure 11: Duplication of the coordinate 1 - 7 projection found in the books Figure 4.8.

In this section of these notes we implement the reduced-rank linear discriminant analysis in
the R code reduced rank LDA.R. Using this code in the R code dup fig 4 8.R we can then
duplicate the projections presented in figure 4.8 from the book. When we run that code we
get the plot given in Figure 11. This plot matches the results in the book quite well. In the
R code dup fig 4.10.R we have code that duplicates figure 4.10 from the book. When that
code is run we get the plot shown in Figure 12.
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Figure 12: Duplication of the books Figure 4.10.

Logistic Regression

From the given specification of logistic regression we have

log

(
Pr(G = 1|X = x)

Pr(G = K|X = x)

)
= β10 + βT

1 x

log

(
Pr(G = 2|X = x)

Pr(G = K|X = x)

)
= β20 + βT

2 x

... (93)

log

(
Pr(G = K − 1|X = x)

Pr(G = K|X = x)

)
= β(K−1)0 + βT

K−1x .

The reason for starting with expressions of this form will become more clear when we look at
the log-likelihood that results when we use the multinomial distribution for the distribution
satisfied over the class of each sample once the probabilities Pr(G = k|X = x) are specified.
Before we discuss that, however, lets manipulate the Equations 93 above by taking the the
exponential of both sides and multiplying everything by Pr(G = K|X = x). When we do
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this we find that these equations transform into

Pr(G = 1|X = x) = Pr(G = K|X = x) exp(β10 + βT
1 x)

Pr(G = 2|X = x) = Pr(G = K|X = x) exp(β20 + βT
2 x)

... (94)

Pr(G = K − 1|X = x) = Pr(G = K|X = x) exp(β(K−1)0 + βT
(K−1)x) .

Adding the value of Pr(G = K|X = x) to both sides of the sum of all of the above equations
and enforcing the constraint that

∑
l Pr(G = l|X = x) = 1, we find

Pr(G = K|X = x)

(
1 +

K−1∑

l=1

exp(βl0 + βT
l x)

)
= 1 .

On solving for Pr(G = K|X = x) we find

Pr(G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

. (95)

When we put this expression in the proceeding K − 1 in Equations 94 we find

Pr(G = k|X = x) =
exp(βk0 + βT

k x)

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

, (96)

which are equations 4.18 in the book.

Fitting Logistic Regression

In the case where we have only two classes, for the ith sample given the feature vector
X = xi the probability of that this sample comes from either of the two classes is given
by the two values of the posterior probabilities. That is given xi the probability we are
looking at a sample from the first class is Pr(G = 1|X = x), and from the second class is
Pr(G = 2|X = x) = 1 − Pr(G = 1|X = x). If for each sample xi for i = 1, 2, · · · , N in
our training set we include with the measurement vector xi a “coding” variable denoted yi,
that takes the value 1 if the ith item comes from the first class and is zero otherwise we
can succinctly represent the probability that xi is a member of its class with the following
notation

pgi(xi) = Pr(G = 1|X = xi)
yiPr(G = 2|X = x)1−yi . (97)

Since only one of the values yi or 1 − yi will in fact be non-zero. Using this notation given
an entire data set of measurements and their class encoding {xi, yi} the total likelihood of
this data set is given by

L =
N∏

i=1

pgi(xi) ,

the log-likelihood for this set of data is then given by taking the logarithm of this expression
as

l =

N∑

i=1

log(pgi(xi)) .
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When we put in the expression for pgi(xi) defined in Equation 97 we obtain

l =

N∑

i=1

yi log(pgi(xi)) + (1− yi) log(1− pgi(xi))

=

N∑

i=1

y log

(
pgi(xi)

1− pgi(xi)

)
+ log(1− pgi(xi))

If we now use Equations 93 to express the log-posterior odds in terms of the parameters we
desire to estimate β we see that

log

(
pgi(xi)

1− pgi(xi)

)
= β10 + βT

1 = βTx ,

and

log(1− pgi(xi)) =
1

1 + eβTx
.

Here we have extended the definition of the vector x to include a constant value of one to deal
naturally with the constant value term β10. Thus in terms of β the log-likelihood becomes

l(β) =
N∑

i=1

(
yiβ

Txi − log(1 + eβ
T xi)
)
.

Now to maximize the log-likelihood over our parameters β we need to take the derivative of
l with respect to β. We find

∂l(β)

∂β
=

N∑

i=1

(
yixi −

eβ
T xi

1 + eβT xi
xi

)
.

Since p(xi) =
eβ

T xi

1+eβ
T xi

the score (or derivative of l with respect to β) becomes

∂l(β)

∂β
=

N∑

i=1

xi(yi − p(xi)) . (98)

The score is a column vector and the Hessian or second derivative is a matrix. We can
denote this notationally by taking the derivative ∂

∂βT of the score column vector (note the

transpose). We find

∂l(β)

∂β∂βT
=

N∑

i=1

−xi

(
∂p(xi)

∂βT

)
.

This expression in the summation is a row vector and is given by

∂p(xi)

∂βT
=

eβ
T xi

1 + eβT xi
xT
i −

(eβ
Txi)2

(1 + eβT xi)2
xT
i = p(xi)(1− p(xi))x

T
i .

Thus we get

∂l(β)

∂β∂βT
= −

N∑

i=1

xix
T
i p(xi)(1− p(xi)) , (99)

for the Hessian.
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Notes on the South African heart disease data

In this dup table 4 2.R we call various R functions created to duplicate the results in the
book from Table 4.2. This gives a result that matches the books result quite well. Next in
the R code dup table 4 3.R we duplicate the results found in Table 4.3 in the book. We
use the R function step to systematically remove predictors from the heart disease model
to end with the model chd ~ tobacco + ldl + famhist + age. After this model is found
the step function tries to remove the remaining variables one at a time as can seen from the
step output

Step: AIC=495.44

chd ~ tobacco + ldl + famhist + age

Df Deviance AIC

<none> 485.44 495.44

- ldl 1 495.39 503.39

- tobacco 1 496.18 504.18

- famhist 1 502.82 510.82

- age 1 507.24 515.24

This shows that removing each of the three variables one at a time produces models that
have a larger Akaike information criterion (AIC) (and deviance) vs. the model above where
AIC = 495.44. Running the summary command on the resulting model gives

> summary(stepped_model)

Call:

glm(formula = chd ~ tobacco + ldl + famhist + age, family = binomial(),

data = SAheart)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7559 -0.8632 -0.4545 0.9457 2.4904

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.204275 0.498315 -8.437 < 2e-16 ***

tobacco 0.080701 0.025514 3.163 0.00156 **

ldl 0.167584 0.054189 3.093 0.00198 **

famhistPresent 0.924117 0.223178 4.141 3.46e-05 ***

age 0.044042 0.009743 4.521 6.17e-06 ***

These results match well with the ones given in the book.
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Notes on Optimal Separating Hyperplanes

For the Lagrange (primal) function to be minimized with respect to β and β0 given by

LP =
1

2
||β||2 −

N∑

i=1

αi[yi(x
T
i β + β0)− 1] , (100)

we have derivatives (set equal to zero) given by

∂Lp

∂β
= β −

N∑

i=1

αiyixi = 0 (101)

∂Lp

∂β0
= 0−

N∑

i=1

αiyi = 0 . (102)

Note that by expanding we can write Lp as

Lp =
1

2
||β||2 −

N∑

i=1

αiyix
T
i β − β0

N∑

i=1

αiyi +

N∑

i=1

αi .

From Equation 102 the third term in the above expression for Lp is zero. Using Equation 101
to solve for β we find that the first term in the above expression for Lp is

||β||2 = βTβ =

(
N∑

i=1

αiyix
T
i

)(
N∑

j=1

αjyjxj

)
=

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj ,

and that the second terms in the expression for Lp is

N∑

i=1

αiyix
T
i β =

N∑

i=1

αiyix
T
i

(
N∑

j=1

αjyjxj

)
=

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj .

Thus with these two substitutions the expression for Lp becomes (we now call this LD)

LD =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj . (103)

Exercise Solutions

Ex. 4.1 (a constrained maximization problem)

To solve constrained maximization or minimization problems we want to use the idea of
Lagrangian multipliers. Define the Lagrangian L as

L(a;λ) = aTBa+ λ(aTWa− 1) .
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Here λ is the Lagrange multiplier. Taking the a derivative of this expression and setting it
equal to zeros gives

∂L(a;λ)
∂a

= 2Ba+ λ(2Wa) = 0 .

This last equation is equivalent to

Ba + λWa = 0 ,

or multiplying by W−1 on both sides and moving the expression with B to the left hand side
gives the

W−1Ba = λa ,

Notice this is a standard eigenvalue problem, in that the solution vectors a must be an
eigenvector of the matrix W−1B and λ is its corresponding eigenvalue. From the form of the
objective function we seek to maximize we would select a to be the eigenvector corresponding
to the maximum eigenvalue.

Ex. 4.2 (two-class classification)

Part (a): Under zero-one classification loss, for each class ωk the Bayes’ discriminant func-
tions δk(x) take the following form

δk(x) = ln(p(x|ωk)) + ln(πk) . (104)

If our conditional density p(x|ωk) is given by a multidimensional normal then its function
form is given by

p(x|ωk) = N (x;µk,Σk) ≡
1

(2π)p/2|Σk|1/2
exp

{
−1
2
(x− µk)

TΣ−1
k (x− µk)

}
. (105)

Taking the logarithm of this expression as required by Equation 104 we find

ln(p(x|ωk)) = −
1

2
(x− µk)

TΣ−1
k (x− µk)−

p

2
ln(2π)− 1

2
ln(|Σk|) ,

so that our discriminant function in the case when p(x|ωk) is a multidimensional Gaussian
is given by

δk(x) = −
1

2
(x− µk)

TΣ−1
k (x− µk)−

p

2
ln(2π)− 1

2
ln(|Σk|) + ln(πk) . (106)

We will now consider some specializations of this expression for various possible values of
Σk and how these assumptions modify the expressions for δk(x). Since linear discriminant
analysis (LDA) corresponds to the case of equal covariance matrices our decision boundaries
(given by Equation 106), but with equal covariances (Σk = Σ). For decision purposes we
can drop the two terms −p

2
ln(2π)− 1

2
ln(|Σ|) and use a discriminant δk(x) given by

δk(x) = −
1

2
(x− µk)

TΣ−1(x− µk) + ln(πk) .
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Expanding the quadratic in the above expression we get

δk(x) = −
1

2

(
xTΣ−1x− xTΣ−1µk − µT

kΣ
−1x+ µT

kΣ
−1µk

)
+ ln(πk) .

Since xTΣ−1x is a common term with the same value in all discriminant functions we can
drop it and just consider the discriminant given by

δk(x) =
1

2
xTΣ−1µk +

1

2
µT
kΣ

−1x− 1

2
µT
kΣ

−1µk + ln(πk) .

Since xTΣ−1µk is a scalar, its value is equal to the value of its transpose so

xTΣ−1µk =
(
xTΣ−1µk

)T
= µT

k (Σ
−1)Tx = µT

kΣ
−1x ,

since Σ−1 is symmetric. Thus the two linear terms in the above combine and we are left with

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + ln(πk) . (107)

Next we can estimate πk from data using πi =
Ni

N
for i = 1, 2 and we pick class 2 as the

classification outcome if δ2(x) > δ1(x) (and class 1 otherwise). This inequality can be written
as

xTΣ−1µ2 −
1

2
µT
2Σ

−1µ2 + ln

(
N2

N

)
> xTΣ−1µ1 −

1

2
µT
1Σ

−1µ1 + ln

(
N1

N

)
.

or moving all the x terms to one side

xTΣ−1(µ2 − µ1) >
1

2
µT
1Σ

−1µ2 −
1

2
µT
1Σ

−1µ1 + ln

(
N1

N

)
− ln

(
N2

N

)
,

as we were to show.

Part (b): To minimize the expression
∑N

i=1(yi− β0− βTxi)
2 over (β0, β)

′ we know that the

solution (β̂0, β̂)
′ must satisfy the normal equations which in this case is given by

XTX

[
β0

β

]
= XTy .

Our normal equations have a block matrix XTX on the left-hand-side given by

[
1 1 · · · 1 1 1 · · · 1
x1 x2 · · · xN1 xN1+1 xN1+2 · · · xN1+N2

]




1 xT
1

1 xT
2

...
1 xT

N1

1 xT
N1+1

1 xT
N1+2

...
1 xT

N1+N2




.

When we take the product of these two matrices we find
[

N
∑N

i=1 x
T
i∑N

i=1 xi

∑N
i=1 xix

T
i

]
. (108)
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For the case where we code our response as − N
N1

for the first class and + N
N2

for the second

class (where N = N1 +N2), the right-hand-side or XTy of the normal equations becomes

[
1 1 · · · 1 1 1 · · · 1
x1 x2 · · · xN1 xN1+1 xN1+2 · · · xN1+N2

]




−N/N1

−N/N1
...

−N/N1

N/N2

N/N2
...

N/N2




.

When we take the product of these two matrices we get

 N1

(
− N

N1

)
+N2

(
N
N2

)
(∑N1

i=1 xi

)(
− N

N1

)
+
(∑N

i=N1+1 xi

)(
N
N2

)

 =

[
0

−Nµ1 +Nµ2

]
.

Note that we can simplify the (1, 2) and the (2, 1) elements in the block coefficient matrix
XTX in Equation 108 by introducing the class specific means (denoted by µ1 and µ2) as

N∑

i=1

xi =

N1∑

i=1

xi +

N∑

i=N1+1

xi = N1µ1 +N2µ2 ,

Also if we pool all of the samples for this two class problem (K = 2) together we can estimate
the pooled covariance matrix Σ̂ (see the section in the book on linear discriminant analysis)
as

Σ̂ =
1

N −K

K∑

k=1

∑

i:gi=k

(xi − µk)(xi − µk)
T .

When K = 2 this is

Σ̂ =
1

N − 2

[∑

i:gi=1

(xi − µ1)(xi − µ1)
T +

∑

i:gi=2

(xi − µ2)(xi − µ2)
T

]

=
1

N − 2

[∑

i:gi=1

xix
T
i −N1µ1µ

T
1 +

∑

i:gi=1

xix
T
i −N2µ2µ

T
2

]
.

From which we see that the sum
∑N

i=1 xix
T
i found in the (2, 2) element in the matrix from

Equation 108 can be written as

N∑

i=1

xix
T
i = (N − 2)Σ̂ +N1µ1µ

T
1 +N2µ2µ

T
2 .

Now that we have evaluated both sides of the normal equations we can write them down
again as a linear system. We get
[

N N1µ
T
1 +N2µ

T
2

N1µ1 +N2µ2 (N − 2)Σ̂ +N1µ1µ
T
1 +N2µ2µ

T
2

] [
β0

β

]
=

[
0

−Nµ1 +Nµ2

]
. (109)
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In more detail we can write out the first equation in the above system as

Nβ0 + (N1µ
T
1 +N2µ

T
2 )β = 0 ,

or solving for β0, in terms of β, we get

β0 =

(
−N1

N
µT
1 −

N2

N
µT
2

)
β . (110)

When we put this value of β0 into the second equation in Equation 109 we find the total
equation for β then looks like

(N1µ1 +N2µ2)

(
−N1

N
µT
1 −

N2

N
µT
2

)
β +

(
(N − 2)Σ̂ +N1µ1µ

T
1 +N2µ2µ

T
2

)
β = N(µ2 − µ1) .

Consider the terms that are outer products of the vectors µi (namely terms like µiµ
T
j ) we

see that taken together they look like

Outer Product Terms = −N
2
1

N
µ1µ

T
1 −

2N1N2

N
µ1µ

T
2 −

N2
2

N
µ2µ

T
2 +N1µ1µ

T
2 +N2µ2µ

T
2

=

(
−N

2
1

N
+N1

)
µ1µ

T
1 −

2N1N2

N
µ1µ

T
2 +

(
−N

2
2

N
+N2

)
µ2µ

T
2

=
N1

N
(−N1 +N)µ1µ

T
1 −

2N1N2

N
µ1µ

T
2 +

N2

N
(−N2 +N)µ2µ

T
2

=
N1N2

N
µ1µ

T
1 −

2N1N2

N
µ1µ

T
2 +

N2N1

N
µ2µ

T
2

=
N1N2

N
(µ1µ

T
1 − 2µ1µ2 − µ2µ2) =

N1N2

N
(µ1 − µ2)(µ1 − µ2)

T .

Here we have used the fact that N1 +N2 = N . If we introduce the matrix Σ̂B as

Σ̂B ≡ (µ2 − µ1)(µ2 − µ1)
T , (111)

we get that the equation for β looks like
[
(N − 2)Σ̂ +

N1N2

N
Σ̂B

]
β = N(µ2 − µ1) , (112)

as we were to show.

Part (c): Note that Σ̂Bβ is (µ2 − µ1)(µ2 − µ1)
Tβ, and the product (µ2 − µ1)

Tβ is a scalar.
Therefore the vector direction of Σ̂Bβ is given by µ2−µ1. Thus in Equation 112 as both the
right-hand-side and the term N1N2

N
Σ̂B are in the direction of µ2 − µ1 the solution β must be

in the direction (i.e. proportional to) Σ̂−1(µ2 − µ1).

Ex. 4.4 (multidimensional logistic regression)

In the case of K > 2 classes, in the same way as discussed in the section on fitting a logistic
regression model, for each sample point with a given measurement vector x (here we are
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implicitly considering one of the samples from our training set) we will associate a position
coded response vector variable y of size K−1 where the l-th component of y is equal to one
if this sample is drawn from the l-th class and zero otherwise. That is

yi =

{
1 x is from class l and i = l
0 otherwise

.

With this notation, the likelihood that this particular measured vector x is from its known
class can be written as

py(x) = Pr(G = 1|X = x)y1Pr(G = 2|X = x)y2 · · ·Pr(G = K − 1|X = x)yK−1

× (1− Pr(G = 1|X = x)− Pr(G = 2|X = x)− · · · − Pr(G = K − 1|X = x))1−
∑

K−1

l=1
yl . (113)

Since this expression is for one data point the log-likelihood for an entire data set will be
given by

l =

N∑

i=1

log(pyi
(xi)) .

Using the Equation 113 in the above expression we find log(py(x)) for any given training
pair (xi,yi) is given by

log(py(x)) = y1 log(Pr(G = 1|X = x)) + y2 log(Pr(G = 2|X = x)) + · · ·+ yK−1 log(Pr(G = K − 1|X = x))

+ (1− y1 − y2 − · · · − yK−1) log(Pr(G = K|X = x))

= log(Pr(G = K|X = x))

+ y1 log

(
Pr(G = 1|X = x)

Pr(G = K|X = x)

)
+ y2 log

(
Pr(G = 2|X = x)

Pr(G = K|X = x)

)
+ · · ·+ yK−1 log

(
Pr(G = K − 1|X = x)

Pr(G = K|X = x)

)

= log(Pr(G = K|X = x)) + y1(β01 + βT
1 x) + y2(β02 + βT

2 x) + · · ·+ yK−1(β(K−1)0 + βT
K−1x) .

The total log-likelihood is then given by summing the above expression over all data points

l(θ) =

N∑

i=1

[
K−1∑

l=1

yilβ
T
l xi + log(Pr(G = k|X = xi))

]
.

• Here xi is the ith vector sample 1 ≤ i ≤ N with a leading one prepended and so is of
length p+ 1.

• yil is the lth component of the ith response vector i.e. if the sample xi came from class
l when 1 ≤ l ≤ K − 1 the lth element of yi is one and all the other elements are zero.
If xi is a sample from class K then all elements of the vector yi are zero.

• βl is a vector of coefficients for the lth class 1 ≤ l ≤ K − 1 with the leading β0l

prepended and thus is of length p+ 1.

• Pr(G = k|X = xi) is the a posteriori probability that xi comes from class G = K and
is given in terms of the parameters {βl}K−1

l=1 as

Pr(G = k|X = xi) =
1

1 +
∑K−1

l=1 exp(βT
l xi)

.
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• The total parameter set that we need to solve for of θ can be thought of as the “stacked”
vector of β’s or

θ ≡




β1

β2
...

βK−2

βK−1



,

this is a vector of size (K − 1)(p+ 1). Since each sub vector βl has p+ 1 components.

Using the expression for Pr(G = k|X = xi) the expression for l(θ) can be written as

l(θ) =

N∑

i=1

[
K−1∑

l=1

yilβ
T
l xi − log

(
1 +

K−1∑

l=1

exp(βT
l xi)

)]
.

Once we have the objective function l(θ) defined we can develop an algorithm to maximize
it l(θ) as a function of θ. To develop a procedure for this maximization we will use the
Newton-Raphson algorithm in terms of θ (which is a block column vector in β) as

θnew = θold −
(
∂2l(θ)

∂θ∂θT

)−1
∂l(θ)

∂θ
. (114)

We need to evaluate the derivatives in the Newton-Raphson method. We will do this in
block form (which is the same way that θ is constructed). The expression ∂l(θ)

∂θ
is a block

vector with blocks given by the derivatives of l(θ) with respect to βl or

∂l(θ)

∂βl
=

N∑

i=1

yilxi −
exp(βT

l xi)

1 +
∑K−1

l′=1 exp(βT
l′ xi)

xi

=
N∑

i=1

(yil − Pr(G = l|X = xi))xi .

The argument of the summation above are each column vectors of dimension p + 1 (since

the vectors xi are) and we to create the full vector ∂l(θ)
∂θ

we would stack the K − 1 vectors
above (one for each of l in 1 ≤ l ≤ K − 1) on top of each other. That is we form the full

gradient vector ∂l(θ)
∂θ

as

∂l(θ)

∂θ
=




∂l
∂β1
∂l
∂β2

...
∂l

∂βK−1


 .

If we write the above βl derivative as two terms as

∂l(θ)

∂βl
=

N∑

i=1

yilxi −
N∑

i=1

Pr(G = l|X = xi)xi , (115)
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and introduce the N × 1 column vectors tl and pl for 1 ≤ l ≤ K − 1 as

tl =




y1,l
y2,l
...

yN,l


 and pl =




Pr(G = l|X = x1)
Pr(G = l|X = x2)

...
Pr(G = l|X = xN)


 .

With these definitions we can then write ∂l(θ)
∂βl

as

XT tl −XTpl = XT (tl − pl) .

The above can be verified by writing out components of the above products. When we stack
these vectors to form the full derivative we find

∂l(θ)

∂θ
=




XT (t1 − p1)
XT (t2 − p2)

...
XT (tK−1 − pK−1)


 =




XT 0 · · · 0
0 XT · · · 0
...

...
. . .

...
0 0 · · · XT







t1 − p1

t2 − p2
...

tK−1 − pK−1


 . (116)

We see the appearance of a (K − 1)× (K − 1) block diagonal matrix with blocks given by
the (p+ 1)×N matrix XT . Lets denote this matrix by X̂T or

X̂T ≡




XT 0 · · · 0
0 XT · · · 0
...

...
. . .

...
0 0 · · · XT


 ,

which we see is a (K − 1)(p+ 1)× (K − 1)N dimensioned matrix.

Next we have to evaluate the second derivative of l(θ). As we did when we evaluated the

first derivative we will evaluate this expression in block form. From the expression for ∂l(θ)
∂βl

given in Equation 115 we have that

∂2l(θ)

∂βl∂β
T
l′
= −

N∑

i=1

∂ Pr(G = l|X = xi)

∂βT
l′

xi .

The above derivative on the right-hand-side depends on whether l = l′ or not. The case
where l 6= l′ is slightly easier to compute and the derivative of Pr(G = l|X = xi) with
respect to βT

l′ in that case is

∂ Pr(G = l|X = xi)

∂βT
l′

= Pr(G = l|X = xi) Pr(G = l′|X = xi)x
T
i .

From this we have that the block off-diagonal second derivative terms are given by

∂2l(θ)

∂βl∂βT
l′
= −

N∑

i=1

Pr(G = l|X = xi) Pr(G = l′|X = xi)x
T
i xi for l 6= l′ . (117)
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Note that the right-hand-side of this expression evaluates to a (p + 1)× (p + 1) matrix (as
it should). If l = l′ we find the derivative of Pr(G = l|X = xi) with respect to βT

l′ given by

∂ Pr(G = l|X = xi)

∂βT
l′

=
∂

∂βT
l′

(
eβl′xi

1 +
∑K−1

l′′=1 e
βl′xi

)

=
eβl′xi

1 +
∑K−1

l′′=1 e
βl′xi

xi −
eβl′xi

(1 +
∑K−1

l′′=1 e
βl′xi)2

eβl′xixi

= Pr(G = l′|X = xi)xi − Pr(G = l′|X = xi)
2xi

= Pr(G = l′|X = xi)(1− Pr(G = l′|X = xi))xi .

From this we have that the block diagonal second derivative terms are given by

∂2l(θ)

∂βl∂βT
l

= −
N∑

i=1

Pr(G = l|X = xi)(1− Pr(G = l|X = xi))x
T
i xi . (118)

The right-hand-side of the above again evaluates to a (p+ 1)× (p+ 1) matrix. To compute
the full Hessian we will assemble the block pieces (computed above) and form the full matrix
as

∂2l(θ)

∂θ∂θT
=




∂2l
∂β1∂βT

1

∂2l
∂βl∂β

T
2

· · · ∂2l
∂βl∂β

T
K−1

∂2l
∂β2∂βT

1

∂2l
∂β2∂βT

2
· · · ∂2l

∂β2∂βT
K−1

...
...

. . .
...

∂2l
∂βK−1∂β

T
1

∂2l
∂βK−1∂β

T
2
· · · ∂2l

∂βK−1∂β
T
K−1



.

As we did in the case of the first derivative of l(θ) we will write the second derivative of l(θ)
in matrix notation. To do this, we first introduce K − 1, N × N diagonal matrices Ql for
1 ≤ l ≤ K − 1 with diagonal elements given by Pr(G = l|X = xi)(1 − Pr(G = l|X = xi))
where 1 ≤ i ≤ N . Then with these definitions we can write Equation 118 in matrix form by

∂2l(θ)

∂βl∂β
T
l

= −XTQlX .

We next introduce K − 1, N × N diagonal matrices Rl for 1 ≤ l ≤ K − 1 with diagonal
elements given by Pr(G = l|X = xi) where 1 ≤ i ≤ N . Then with these definitions we can
write Equation 117 in matrix form by

∂2l(θ)

∂βl∂βT
l

= −XTRlRl′X .

With these definitions we get that the Hessian can be written as

∂2l(θ)

∂θ∂θT
=




−XTQ1X −XTR1R2X · · · −XTR1RK−1X
−XTR2R1X −XTQ2X · · · −XTR2RK−1X

...
. . .

...
−XTRK−1R1X −XTRK−1R2X · · · −XTQK−1X




This is a block (K − 1) × (K − 1) matrix with each block matrix of size (p + 1) × (p + 1)
giving a total matrix size of (K − 1)(p+ 1)× (K − 1)(p+ 1). We can introduce the matrix
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X̂T by writing the above Hessian as

∂2l(θ)

∂θ∂θT
= −




XT 0 · · · 0
0 XT · · · 0
...

...
. . .

...
0 0 · · · XT







Q1 R1R2 · · · R1RK−1

R2R1 Q2 · · · R2RK−1
...

. . .
...

RK−1R1 RK−1R2 · · · QK−1







X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X


 .

Define the non-diagonal matrix W as

W ≡




Q1 R1R2 · · · R1RK−1

R2R1 Q2 · · · R2RK−1
...

. . .
...

RK−1R1 RK−1R2 · · · QK−1


 ,

and we have
∂2l(θ)

∂θ∂θT
= −X̂TWX̂ . (119)

Using Equation 116 and 119 we can write the Newton-Raphson method 114 for θ in matrix
form in the same way as was done in the text for the two-class case. Namely we find

θnew = θold +
(
X̂TWX̂

)−1

X̂T




t1 − p1

t2 − p2
...

tK−1 − pK−1




=
(
X̂TWX̂

)−1

X̂TW


X̂θold +W−1




t1 − p1

t2 − p2
...

tK−1 − pK−1





 .

This shows that θnew is the solution of a non-diagonal weighted least squares problem with
a response z given by

z ≡ X̂θold +W−1




t1 − p1

t2 − p2
...

tK−1 − pK−1


 .

The fact that the weight matrix W is non-diagonal means that there are not efficient algo-
rithms for solving the weighted least squares algorithm. In this case it is better perhaps to
form the matrices above and to numerically adjust θ using the above matrix products start-
ing at some initial value. Alternatively, another multidimensional optimization algorithm
could be used (rather than Newton-Raphson) for example the conjugate-gradient or Powell’s
method to find the optimal θ.
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Ex. 4.6 (proving the convergence of the perceptron algorithm)

Part (a): By definition, if the points are separable then there exists a vector β such that

βTx∗
i > 0 when yi = +1 and

βTx∗
i < 0 when yi = −1 ,

for all i = 1, 2, · · · , N . This is equivalent to the expression that yiβ
Tx∗

i > 0 for all i.
Equivalently we can divide this expression by ||x∗

i || (a positive number) to get

yiβ
T zi > 0 ,

for all i. Since each one of these N values of yiβ
Tzi is positive let m > 0 be the smallest

value of this product observed over all our training set. Thus by definition of m we have

yiβ
T zi ≥ m,

for all i. When we divide both sides of this inequality by this positive value of m we get

yi

(
1

m
β

)T

zi ≥ 1 .

If we define βsep ≡ 1
m
β we have shown that yiβ

T
sepzi ≥ 1 for all i.

Part (b): From βnew = βold + yizi we have that

βnew − βsep = βold − βsep + yizi .

When we square this result we get

||βnew − βsep||2 = ||βold − βsep||2 + y2i ||zi||2 + 2yi(βold − βsep)
T zi .

Since yi = ±1 and ||zi||2 = 1 we have that y2i ||zi||2 = 1 for the second term on the right-
hand-side. Note that the third term on the right-hand-side is given by

2(yiβ
T
oldzi − yiβ

T
sepzi) .

Since the “point” yi, zi was misclassified by the vector βold we have yiβ
T
oldzi < 0 (if it was

positive we would have classified it correctly). Since βsep is the vector that can correctly
classify all points we have yiβ

T
sepzi ≥ 1. With these two facts we can write

2(yiβ
T
oldzi − yiβ

T
sepzi) ≤ 2(0− 1) = −2 .

Thus we have just shown that

||βnew − βsep||2 ≤ ||βold − βsep||2 + 1− 2 = ||βold − βsep||2 − 1 .

Thus we can drive any initial vector βstart to βsep in at most ||βstart − βsep||2 steps.

Ex. 4.9 (classification of the vowel data set)

See the notes on the text on Page 69 where a comparison of various classification methods
on the vowel data set was done.
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Chapter 5 (Basis Expansions and Regularization)

Notes on the Text

There is a nice chapter on using B-splines in the R language for regression problems in the
book [12]. There are several regression examples using real data and a discussion of the
various decisions that need to be made when using splines for regression. The chapter also
provides explicit R code (and discussions) demonstrating how to solve a variety of applied
regression problems using splines.

Notes on piecewise polynomials and splines

If the basis functions hm(X) are local piecewise constants i.e. if

h1(X) = I(X < ξ1) , h2(X) = I(ξ1 ≤ X < ξ2) , h3(X) = I(ξ2 ≤ X) ,

and taking our approximation to f(X) of

f(X) ≈
3∑

m=1

βmhm(X) ,

then the coefficients βm are given by solving the minimization problem

β = ArgMinβ

∣∣∣∣∣

∣∣∣∣∣f(X)−
3∑

m=1

βmhm(X)

∣∣∣∣∣

∣∣∣∣∣

2

= ArgMinβ

∫ (
f(x)−

3∑

m=1

βmhm(X)

)2

dX

= ArgMinβ

(∫ ξ1

ξL

(f(X)− β1)
2dX +

∫ ξ2

ξ1

(f(X)− β2)
2dX +

∫ ξR

ξ2

(f(X)− β3)
2dX

)
.

Here ξL and ξR are the left and right end points of the functions domain. Since the above is
a sum of three positive independent (with respect to βm) terms we can minimize the total
sum by minimizing each one independently. For example, we pick β1 that minimizes the first
term by taking the derivative of that term with respect to β1, and setting the result equal
to zero and solving for β1. We would have

d

dβ1

∫ ξ1

ξL

(f(X)− β1)
2dX = 2

∫ ξ1

ξL

(f(X)− β1)dX = 0 .

When we solving this for β1 we get

β1 =
1

ξ1 − ξL

∫ ξ1

ξL

f(X)dX = Y 1 ,

as claimed by the book. The other minimizations over β2 and β3 are done in the same way.
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Note on R programming with splines

If one is working in the R language, much of the complexity of coding splines has already been
done by using the bs command (for B-splines) or the ns command (for natural splines). For
example, if one has data in the vector X the following given various spline approximations
that could be used as a first modeling attempt

• bs(x,degree=1,df=1) gives a single linear fit over the entire domain of X

• bs(x,degree=1,df=2) gives two linear fits with a break point at the median of the
data in X

• bs(x,degree=1,df=3) gives three linear fits separated at the 1/3 and 2/3 percentile
points of the date

• bs(x,degree=2,df=2) gives a single quadratic fit over the entire domain

• bs(x,degree=2,df=3) gives two quadratic fits with a break point at the median of
the data X

• bs(x,degree=2,df=4) gives three quadratic fits with a break points at the 1/3 and
2/3 percentile points of the date

The way to reason about the values passed to each of the arguments of the bs functions
is that the degree argument is the degree of the polynomial that will be fit in each region
and that additional df values (above the minimum necessary) inserts additional polynomials
into the domain. For example, to use linear fits requires degree=1 polynomials. Then the
value of df must be at least one (for the slope) thus each additional value for df introduces
a new region in which a line is fit. To use quadratic polynomials we use degree=2 and then
df must be larger than 2. As an example, in the R command dup fig 5 1.R we perform the
suggested fittings above on the function

Y = cos(X) + 0.3n .

where n ∼ N(0, 1). When that command is run we get the plots shown in Figure 13.

Notes on the South African Heart Disease Example

In the R code dup table 5 1.R we have code that duplicates logistic regression using the
South African heart disease data. When we run that code we first fit a logistic regression
model and then use the R function step1 to experiment with removing various terms. The
output from this command gives

> drop1( m, scope=form, test="Chisq", data=SAheart )

Single term deletions
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Figure 13: Piecewise regression using B-splines. The first row shows three linear models,
while the second row shows three quadratic models.
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Figure 14: Duplication of plots in Figure 5.5 from the book.

Model:

chd ~ ns(sbp, df = 4) + ns(tobacco, df = 4) + ns(ldl, df = 4) +

famhist + ns(obesity, df = 4) + ns(alcohol, df = 4) + ns(age,

df = 4)

Df Deviance AIC LRT Pr(Chi)

<none> 457.63 509.63

ns(sbp, df = 4) 4 466.77 510.77 9.1429 0.0576257 .

ns(tobacco, df = 4) 4 469.61 513.61 11.9753 0.0175355 *

ns(ldl, df = 4) 4 470.90 514.90 13.2710 0.0100249 *

famhist 1 478.76 528.76 21.1319 4.287e-06 ***

ns(obesity, df = 4) 4 465.41 509.41 7.7749 0.1001811

ns(alcohol, df = 4) 4 458.09 502.09 0.4562 0.9776262

ns(age, df = 4) 4 480.37 524.37 22.7414 0.0001426 ***

These numbers match well with the ones given in the book.

Notes on the phoneme classification example

In the R code dup fig 5 5.R we duplicate some of the plots shown in the book. When we
run that script we get the two plots shown in Figure 14. The error rate of the “raw” logistic
regression classifier (without any smoothing) gives for training and testing
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[1] "err_rate_train= 0.093114; err_rate_test= 0.24374"

These numbers are not that different for the ones given in the book. If we train a quadratic
discriminant classifier on these two phonemes we get

[1] "err_rate_train= 0.000000; err_rate_test= 0.33941"

Finally, just to compare algorithms performance, we can fit (using cross validation) a regu-
larized discriminant analysis model where we find

[1] "err_rate_train= 0.075781; err_rate_test= 0.19590"

the optimal parameters found were α = 0.1111111 and γ = 0.7474747. While this testing
error rate is not as good as the regularized result the book gives 0.158 regularized discriminant
analysis gives the best result of the three classifiers tested.

Notes on the bone mineral density (smoothing splines example)

In the R code dup fig 5 6.R we duplicate some of the plots shown in the book. When we
run that script we get the two plots shown in Figure 15. This plot uses the R command
smooth.spline.

Exercise Solutions

Ex. 5.1 (contributed by Mark-Jan Nederhof)

We can represent a cubic spline in two ways:

1. By the truncated power basis functions in (5.3).

2. By a collection of cubic functions, separated at the knots, such that in each knot, the
relevant pair of functions has identical function values, and identical first and second
derivatives.

For this exercise we need to show that we can represent a function by (1) if and only if
we can represent it by (2). The proof therefore distinguishes two directions. Here we only
consider the case of a single knot ξ. The proof is easily extended to having any number of
knots.
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Figure 15: Duplication of plot in Figure 5.6 from the book.

We will use that for f(x) = (x−ξ)3 = x3−3ξx2+3ξ2x−ξ3, we have f(ξ) = f ′(ξ) = f ′′(ξ) = 0.
Further, (x− ξ)3+ = 0 for x < ξ and (x− ξ)3+ = (x− ξ)3 for x ≥ ξ.

In the direction (1) → (2).

Consider h(x) = ax3 + bx2 + cx+ d+ e(x− ξ)3+. Now define:

h1(x) = ax3 + bx2 + cx+ d

h2(x) = ax3 + bx2 + cx+ d+ e(x− ξ)3

By expanding (x − ξ)3 = f(x) as cubic polynomial as above we immediately see that h2 is
a cubic polynomial. Furthermore, h(x) = h1(x) for x < ξ, h(x) = h2(x) for x ≥ ξ, h2(ξ) =
h1(ξ) + f(ξ) = h1(ξ), h

′
2(ξ) = h′

1(ξ) + f ′(ξ) = h′
1(ξ), and h′′

2(ξ) = h′′
1(ξ) + f ′′(ξ) = h′′

1(ξ), as
required.

In the direction (2) → (1).

Consider:

h(x) = h1(x) = a1x
3 + b1x

2 + c1x+ d1 if x < ξ

h(x) = h2(x) = a2x
3 + b2x

2 + c2x+ d2 if x ≥ ξ

such that h1(ξ) = h2(ξ), h
′
1(ξ) = h′

2(ξ), h
′′
1(ξ) = h′′

2(ξ), or in other words:

a1ξ
3 + b1ξ

2 + c1ξ + d1 = a2ξ
3 + b2ξ

2 + c2ξ + d2

3a1ξ
2 + 2b1ξ + c1 = 3a2ξ

2 + 2b2ξ + c2

6a1ξ + 2b1 = 6a2ξ + 2b2
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which means:

b2 − b1 = −3(a2 − a1)ξ

c2 − c1 = −3(a2 − a1)ξ
2 − 2(b2 − b1)ξ =

= −3(a2 − a1)ξ
2 + 6(a2 − a1)ξ

2 = 3(a2 − a1)ξ
2

d2 − d1 = −(a2 − a1)ξ
3 − (b2 − b1)ξ

2 − (c2 − c1)ξ =

= −(a2 − a1)ξ
3 + 3(a2 − a1)ξ

3 − 3(a2 − a1)ξ
3 = −(a2 − a1)ξ

3

Now let h(x) = h1(x) + (a2 − a1)(x− ξ)3+. If x < ξ then h(x) = h1(x) and if x ≥ ξ then:

h(x) = a1x
3 + b1x

2 + c1x+ d1+

(a2 − a1)x
3 − 3(a2 − a1)ξx

2 + 3(a2 − a1)ξ
2x− (a2 − a1)ξ

3

= a1x
3 + b1x

2 + c1x+ d1 + (a2 − a1)x
3 + (b2 − b1)x

2 + (c2 − c1)x+ (d2 − d1)

= a2x
3 + b2x

2 + c2x+ d2 = h2(x)

as required.

Ex. 5.2 (contributed by Mark-Jan Nederhof)

Part (a): We prove by induction Bi,m(x) = 0 for x /∈ [τi, τi+m).

Base for m = 1. By (5.77) Bi,1(x) = 0 for x /∈ [τi, τi+1).

Step from m − 1 to m. Suppose Bi,m−1(x) = 0 for x /∈ [τi, τi+m−1) and Bi+1,m−1(x) = 0 for
x /∈ [τi+1, τi+1+m−1) = [τi+1, τi+m), then by (5.78) Bi,m(x) = 0 for x /∈ [τi, τi+m).

Part (b): We prove by induction Bi,m(x) > 0 for x ∈ (τi, τi+m).

Base for m = 1. By (5.77) Bi,1(x) > 0 for x ∈ (τi, τi+1).

Step from m − 1 to m. Suppose Bi,m−1(x) > 0 for x ∈ (τi, τi+m−1) and Bi+1,m−1(x) > 0 for

x ∈ (τi+1, τi+m). Note
x−τi

τi+m−1−τi
> 0 for x ∈ (τi, τi+m−1) and

τi+m−x
τi+m−τi+1

> 0 for x ∈ (τi+1, τi+m).

Therefore by (5.78), Bi,m(x) > 0 for x ∈ (τi, τi+m).

Part (c): We prove by induction
∑i

j=i−m+1Bj,m(x) = 1 for x ∈ [τi, τi+1).

Base for m = 1. This is immediate by (5.77).

Step from m− 1 to m. Suppose
∑i

j=i−mBj,m−1(x) = 1 for x ∈ [τi, τi+1). By (5.78):

i∑

j=i−m+1

Bj,m(x) =
i∑

j=i−m+1

[
x− τj

τj+m−1 − τj
Bj,m−1(x) +

τj+m − x

τj+m − τj+1

Bj+1,m−1(x)

]

From (a), we know Bi−m+1,m−1(x) = 0 and Bi+1,m−1(x) = 0 for x ∈ [τi, τi+1). This means
that for j = i −m + 1, the first term in the right-hand side above is 0, and for j = i, the
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second term in the right-hand side is 0. For i−m ≤ j ≤ i, we combine the second term for
j − 1 with the first term for j, to obtain:

i∑

j=i−m

[
τj−1+m − x

τj−1+m − τj
+

x− τj
τj+m−1 − τj

]
Bj,m−1(x) =

i∑

j=i−m

Bj,m−1(x) = 1

Part (d): Again easy induction suffices. For the base, (5.77) is piecewise polynomial of order
0, and for the inductive step, (5.78) increases the order by 1, for each polynomial between
two consecutive knots, through the multiplication with x in the respective numerators.

Part (e): The claimed result does not seem to be true unless τi+1 = τi + 1, for all i, which
is known as a cardinal B-spline. In particular,

∫
Bi,1(x)dx = τi+1− τi, and therefore Bi,1 can

be seen as a probability distribution if and only if τi+1 = τi + 1.

With cardinal B-splines in mind, let us define B1(x) = 1 if x ∈ [0, 1) and B1(x) = 0 otherwise.

For m > 1, we define Bm(x) =
∫
Bm−1(x− y)B1(y)dy =

∫ 1

0
Bm−1(x− y)dy. This makes Bm

a convolution of m uniform random variables.

Let B′
m denote the derivative of Bm as usual. For m ≤ 2 we will only consider the derivatives

in values of x that are not integers. Note that ∂
∂y
Bm−1(x− y) = −B′

m−1(x− y) and therefore
by Leibniz’s integral rule:

B′
m(x) =

∫ 1

0

B′
m−1(x− y)dy = [−Bm−1(x− y)]10 = Bm−1(x)− Bm−1(x− 1)

It can be easily verified that:

B2(x) =





x for x ∈ [0, 1)
2− x for x ∈ [1, 2)
0 otherwise

(See also Figure 5.20 in the book.) This means:

B′
2(x) =





1 for x ∈ (0, 1)
−1 for x ∈ (1, 2)
0 otherwise

Now we will prove by induction:

xB′
m(x) = (m− 1)Bm(x)−mBm−1(x− 1) for m ≥ 2

Base for m = 2. We verify:

xB′
2(x) =





x = B2(x)− 2B1(x− 1) = x− 2 · 0 for x ∈ (0, 1)
−x = B2(x)− 2B1(x− 1) = 2− x− 2 · 1 for x ∈ (1, 2)
0 otherwise
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Step from m− 1 to m > 2. We have:

xB′
m(x) =

∫ 1

0

xB′
m−1(x− y)dy =

∫ 1

0

(x− y)B′
m−1(x− y)dy +

∫ 1

0

yB′
m−1(x− y)dy

Now use the inductive hypothesis on the first term in the right-hand side and integration by
parts on the second term, to obtain:

∫ 1

0

(m− 2)Bm−1(x− y)− (m− 1)Bm−2(x− y − 1)dy+

[−yBm−1(x− y)]10 +

∫ 1

0

Bm−1(x− y)dy =

(m− 2)Bm(x)− (m− 1)Bm−1(x− 1)− Bm−1(x− 1) + Bm(x) =

(m− 1)Bm(x)−mBm−1(x− 1)

which completes the proof by induction.

We combine this with an earlier observation to give:

(m− 1)Bm(x)−mBm−1(x− 1) = xB′
m(x) = xBm−1(x)− xBm−1(x− 1)

and hence:

Bm(x) =
x

m− 1
Bm−1(x) +

m− x

m− 1
Bm−1(x− 1)

This is seen to be the same recurrence as (5.78) once we realize that Bi+1,m−1(x) = Bi,m−1(x−
1) in the case of cardinal B-splines, that is, if τi+1 = τi + 1 for every i.

Ex. 5.4 (contributed by Mark-Jan Nederhof)

First we show (5.71). For x < ξ1, f(x) =
∑3

j=0 βjx
j and because f should be linear there,

we have β3 = 0 and β2 = 0. Similarly, for x ≥ ξK , f(x) =
∑3

j=0 βjx
j +
∑K

k=1 θk(x− ξk)
3 and

because f should be linear there, and because (x − ξk)
3 = x3 − 3ξx2 + 3ξ2x − ξ3, we have

β3 +
∑K

k=1 θk = 0 and β2 +
∑K

k=1−3ξkθk = 0, which imply
∑K

k=1 θk = 0 and
∑K

k=1 ξkθk = 0.

To complete the exercise, we need to show that the following two ways of defining natural
cubic splines are equivalent:

1. By the basis in (5.4), with the definition in (5.5).

2. By the truncated power series representation in (5.70), with the natural boundary
conditions in (5.71).

In the direction (1) ⇒ (2). It is immediate that a function described using the basis in (5.4)
can also be written in the form (5.70). What remains is to show that the natural boundary
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conditions of (5.71) are satisfied. For x < ξ1, all Nk+2(x) are 0, so the function is linear. For
x ≥ ξK and k ≤ K − 2, Nk+2(x) evaluates to:

(x3 − 3ξkx
2 + 3ξ2kx− ξ3k)− (x3 − 3ξKx

2 + 3ξ2Kx− ξ3K)

ξK − ξk
−

(x3 − 3ξK−1x
2 + 3ξ2K−1x− ξ3K−1)− (x3 − 3ξKx

2 + 3ξ2Kx− ξ3K)

ξK − ξK−1
=

(−3ξk + 3ξK)

ξK − ξk
x2 − (−3ξK−1 + 3ξK)

ξK − ξK−1
x2 + C1x+ C0 = C1x+ C0

for constants C1 and C0, so that once more the function is linear.

In the direction (2)⇒ (1). Assume a function is written as in (5.70) and (5.71). Then for the
basis in (5.4), the corresponding coefficient of Nk+2(x) is (ξK−ξk)θk for each k ≤ K−2, and
obviously the coefficients of N1(x) and N2(x) are β0 and β1. Let us verify that we thereby
obtain the same function, looking only at the coefficients of the Nk+2(x):

K−2∑

k=1

(ξK − ξk)θk

[
(x− ξk)

3
+ − (x− ξK)

3
+

ξK − ξk
− (x− ξK−1)

3
+ − (x− ξK)

3
+

ξK − ξK−1

]
=

K−2∑

k=1

θk(x− ξk)
3
+ −

K−2∑

k=1

θk(x− ξK)
3
+−

1

ξK − ξK−1

[
K−2∑

k=1

ξKθk −
K−2∑

k=1

ξkθk

]
[
(x− ξK−1)

3
+ − (x− ξK)

3
+

]

Now we make use of (5.71), in particular
∑K−2

k=1 θk = −θK−1 − θK and
∑K−2

k=1 ξkθk =
−ξK−1θK−1 − ξKθK and obtain:

K−2∑

k=1

θk(x− ξk)
3
+ + (θK−1 + θK)(x− ξK)

3
+−

1

ξK − ξK−1
[−ξKθK−1 − ξKθK + ξK−1θK−1 + ξKθK ]

[
(x− ξK−1)

3
+ − (x− ξK)

3
+

]
=

K−2∑

k=1

θk(x− ξk)
3
+ + (θK−1 + θK)(x− ξK)

3
+−

−ξKθK−1 + ξK−1θK−1

ξK − ξK−1

[
(x− ξK−1)

3
+ − (x− ξK)

3
+

]
=

K−2∑

k=1

θk(x− ξk)
3
+ + θK−1(x− ξK)

3
+ + θK(x− ξK)

3
+ + θK−1(x− ξK−1)

3
+ − θK−1(x− ξK)

3
+ =

K∑

k=1

θk(x− ξk)
3
+

as required.
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Ex. 5.7 (contributed by Mark-Jan Nederhof)

Part (a): Using integration by parts:
∫ b

a

g′′(x)h′′(x)dx = [g′′(x)h′(x)]ba −
∫ b

a

g′′′(x)h′(x)dx

The first term on the right-hand side is 0 as g′′(a) = g′′(b) = 0. For the second term note
that g′′′(x) = 0 for x < x1 and for x ≥ xN . We break up the remaining interval into the
pieces between consecutive knots, and once more apply integration by parts:

−
N−1∑

i=1

∫ xi+1

xi

g′′′(x)h′(x)dx = −
N−1∑

i=1

[g′′′(x)h(x)]xi+1
xi

+
N−1∑

i=1

∫ xi+1

xi

g(4)(x)h(x)dx

The first term on the right-hand side is 0 as h(xi) = 0 for all i. The second term is 0 as well,
as g(4)(x) = 0 for all x, since g is piecewise cubic.

Part (b): Using the result from (a):
∫ b

a

g̃′′(t)2dt =

∫ b

a

(g′′(t) + h′′(t))2dt

=

∫ b

a

g′′(t)2dt+

∫ b

a

h′′(t)2dt+ 2

∫ b

a

g′′(t)h′′(t)dt

=

∫ b

a

g′′(t)2dt+

∫ b

a

h′′(t)2dt

Hence
∫ b

a
g̃′′(t)2dt ≥

∫ b

a
g′′(t)2dt. Equality holds if and only if h′′(t) = 0 for all t ∈ [a, b],

which means h is linear in [a, b], and because h(xi) = 0 for all i and N ≥ 2, also h(t) = 0 for
all t ∈ [a, b].

Part (c): Consider a minimizer f1. We can construct a natural cubic spline f2 with the
same function values in knots xi as f1, and therefore

∑
i(yi − f1(xi))) =

∑
i(yi − f2(xi))).

Because of minimality of f1 and because of (b), λ
∫ b

a
f ′′
1 (t)

2dt = λ
∫ b

a
f ′′
2 (t)

2dt and thereby
f1 = f2.

Ex. 5.9 (deriving the Reinsch form)

Given
Sλ = N(NTN + λΩN)

−1NT ,

when N is invertible then we have

Sλ = (N−T (NTN + λΩN )N
−1)−1

= (N−TNTNN−1 + λN−TΩNN
−1)−1

= (I + λN−TΩNN
−1)−1 ,

so K ≡ N−TΩNN
−1.
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Chapter 6 (Kernel Smoothing Methods)

Ex. 6.1

Recall that the Nadaraya-Watson kernel smooth at x0 is given by

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

. (120)

For the Gaussian kernel given by

Kλ(x0, x) =
1√
2πλ

exp

(
−(x− x0)

2

2λ2

)
,

as Kλ(x0, xi) 6= 0 for all x0 and xi we don’t have a singularity in the denominator of the
above fraction. The Gaussian kernel is also everywhere differentiable in x0, and therefore
the Nadaraya-Watson kernel smooth is differentiable as a function of x0.

Next the Epanechnikov kernel is given by

Kλ(x0, x) = D

( |x− x0|
λ

)
with

D(t) =

{
3
4
(1− t2) |t| ≤ 1

0 otherwise
. (121)

From this expression we will argue that the Epanechnikov kernel is not everywhere differen-
tiable. As t = |x−x0|

λ
when |t| → 1− i.e. for |x − x0| → λ− that is we approach both limits

from below we have

d

dx0

Kλ(x0, x) =
dD(t)

dt

dt

dx0

=

(
−3
2
t

)(
−1

λ

)
=

3

2

t

λ
=

3

2

|x− x0|
λ2

6= 0 .

In contrast, when |t| → 1+ i.e. for |x−x0| → λ+ that is we approach both limits from above
we have

d

dx0

Kλ(x0, x) = 0 ,

because the function is identically zero in that domain. As these two limits are not equal
the Epanechnikov kernel is not differentiable everywhere.

This last result might have been more easily argued by just plotting the function D(t) and
observing that at |t| = 1 the function has a “kink” where it is not differentiable.

This problem is still there even in the case where we have an adaptive nearest-neighbor
bandwidth λ(x0) since the discontinuity will still be there whenever

|x− x0|
λ(x0)

= 1 .
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Depending on the function λ(x0) (i.e. whether it is has a very small or large magnitude) this
problem is worse/better than with a constant λ.

For k-nearest neighbor methods an additional problem is that

λ(x0) = hk(x0) = |x0 − x[k]| ,

is not differentiable. To see this, take 2k + 1 consecutive xk’s such that

x1 < x2 < · · · < x2k < x2k+1 ,

Let us evaluate the derivative of hk(x) at xm = x1+x2k+1

2
i.e. the midpoint of the range of the

x. Now
hk(x

−
m) = |xm − x1| = xm − x1 ,

so

lim
x0→xm

d

dx0
hk(x0) = +1 ,

while
hk(x

+
m) = |xm − x2k+1| = x2k+1 − xm ,

so

lim
x0→xm

d

dx0

hk(x0) = −1 .

As +1 6= −1 the derivative of hk(x0) at x0 = xm has a discontinuity there.

Incidentally, the tri-cube kernel given by

D(t) =

{
(1− |t|3)3 |t| ≤ 1

0 otherwise
, (122)

does not have this problem at |t| = 1 and is differentiable there. Note that

D′(t) = 3(1− |t|3)2
(

d

dt
(−|t|3)

)
.

It does not matter how to “evaluate” the t derivative of |t|3 in the above expression since
the other factor 1− |t|3 = 0 when |t| = 1 and so we have D′(t) = 0 there.

Ex. 6.2 (contributed by Franklin Wang)

For local polynomial regression of degree k let B be the N × (k + 1) matrix given by

B =




1 x1 . . . xk
1

1 x2 . . . xk
2

...
...

. . .
...

1 xN . . . xk
N


 .
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This has its ith row given by the vector valued function b(x) where

b(x)T = (1, x, . . . , xk−1, xk) .

Finally, let W (x0) be the N ×N diagonal matrix with the ith diagonal element Kλ(x0, xi).
Then based on the results from the book the local polynomial expansion at a point x0 can
be written as

f̂(x0) = b(x0)
T (BTW (x0)B)−1BTW (x0)y (123)

=

N∑

i=1

li(x0)yi . (124)

Based on Equation 123 we will replace the vector y with a vector vj that is the jth power
of each of the scalar xs in the training set i.e. with the vector

vT
j = (xj

1, x
j
2, · · · , xj

N−1, x
j
N) ,

for j = 0, 1, 2, . . . , k − 1, k. Using Equations 123 and 124 for a fixed j this is

b(x0)
T (BTW (x0)B)−1BTW (x0)vj =

N∑

i=1

li(x0)x
j
i .

If we repeat the above equation for each j i.e. for 0 ≤ j ≤ k then since the matrix B is the
column concatenation of the vjs i.e. since B = [v0,v1, . . . ,vk−1,vk] when we write all k + 1
of these expressions in matrix form the left-hand-side of this will be

b(x0)
T (BTW (x0)B)−1BTW (x0)[v0,vi, . . . ,vk−1,vk] = b(x0)

T (BTW (x0)B)−1BTW (x0)B

= b(x0)
T

= [1, x0, x
2
0, . . . , x

k
0 ] ,

which is a row vector. The right-hand-side of that procedure will be the row-vector

[
N∑

i=1

li(x0),

N∑

i=1

li(x0)xi, . . . ,

N∑

i=1

li(x0)x
k
i

]
.

If we compare the components of these two vectors we see that

N∑

i=1

li(x0)x
j
i = xj

0 , (125)

for 0 ≤ j ≤ k. Specifically taking j = 0 and j = 1 these are

N∑

i=1

li(x0) = 1 (126)

N∑

i=1

li(x0)xi = x0 . (127)
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Multiplying the first of these by x0 and subtracting it from the second gives

N∑

i=1

li(x0)(xi − x0) = 0 , (128)

one of the desired expressions.

We now define bj(x0) as

bj(x0) ≡
N∑

i=1

(xi − x0)
jli(x0) .

From Equation 126 we see that b0(x0) = 1. From Equation 128 we see that b1(x0) = 0. For
j > 1 using the binomial theorem twice and Equation 125 we have

bj(x0) =
N∑

i=1

(xi − x0)
jli(x0)

=
N∑

i=1

j∑

k=0

(
j

k

)
xk
i (−x0)

j−kli(x0)

=

j∑

k=0

(
j

k

)
(−x0)

j−k
N∑

i=1

xk
i li(x0)

=

j∑

k=0

(
j

k

)
(−x0)

j−kxk
0 = (x0 − x0)

j = 0 .

The implications of this on the bias are that if the true form of Y has a polynomial form (in
x) then these models will be unbiased (see the books Eq. 6.10).

Ex. 6.8 (contributed by Franklin Wang)

As suggested, we start with the joint (X, Y ) product kernel density estimate

f̂X,Y (x, y) =
1

Nλ2

N∑

i=1

φλ(x− xi)φλ(y − yi) .

To compute the conditional mean E(Y |X) we will need an estimate of the conditional density
f̂Y |X(y|x). To get this recall that

f̂Y |X(y|x) =
f̂X,Y (x, y)

f̂X(x)
.

To use this we need

f̂X(x) =

∫ ∞

−∞

fX,Y (x, y)dy =
1

Nλ

N∑

j=1

φλ(x− xj) ,
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so that

f̂Y |X(y|x) =
∑N

i=1 φλ(x− xi)φλ(y − yi)

λ
∑N

j=1 φλ(x− xj)
.

With this density we can compute the conditional expected mean as

E(Y |X = x) =

∫ ∞

−∞

yfY |X(y|x)dy =
1

λ

∫ ∞

−∞

∑N
i=1 φλ(x− xi)φλ(y − yi)∑N

j=1 φλ(x− xj)
ydy

=
1

λ
∑N

j=1 φλ(x− xj)

N∑

i=1

φλ(x− xi)

(∫ ∞

−∞

yφλ(y − yi)dy

)
.

For each i the integral can be evaluated using symmetry as

∫ ∞

−∞

yφλ(y − yi)dy =

∫ ∞

−∞

(y − yi)φλ(y − yi)dy +

∫ ∞

−∞

yiφλ(y − yi)dy = 0 + λyi = λyi .

Using this we have shown that

E(Y |X = x) =

∑N
i=1 φλ(x− xi)yi∑N
j=1 φλ(x− xj)

.

This fits into the definition of a Nadaraya-Watson estimator where we take

Kλ(x0, xi) = φλ(x0 − xi) .

Ex. 6.10 (contributed by Franklin Wang)

The average squared residual or ASR(λ) is the average residual squared of the fit from the
observed data yi = f(xi) + ǫi where ǫi ∼ N(0, σ2) i.e.

ASR(λ) = Eǫi

(
1

N

N∑

i=1

(yi − f̂λ(xi))
2

)
,

where the subscript on E helps us to determine what the expectation is taken over. This is
a measure of what the “average training” error would be. The book denotes the “training”
set by the letter T so we can also write the above expectation as ET (·) to denote the fact
that we are taking the expectation over the training set.

The in-sample prediction error is defined as the expected error when new y∗i = f(xi) + ǫ∗i
again with ǫ∗i ∼ N(0, σ2) are drawn and compared with our estimated values of f̂λ(xi) or

PE(λ) = Eǫi,ǫ∗i

(
1

N

N∑

i=1

(y∗i − f̂λ(xi))
2

)
.

Now the subscript on E has two random variables and helps us to determine what the
expectation is taken over. This is a measure of what the “average test” error would be as

101



we imagine receiving N new measurements f(xi) + ǫ∗i and comparing them to our model fit
on the original measurements f(xi) + ǫi.

We will start by computing ASR. We have

ASR(λ) =
1

N
Eǫi

(
N∑

i=1

(yi − f̂λ(xi))
2

)

=
1

N
E[(y − Sλy)

T (y − Sλy)]

=
1

N
E[((I − Sλ)y)

T (I − Sλ)y)]

=
1

N
E[yT (I − Sλ)(I − Sλ)y)]

=
1

N
E[yT (I − Sλ)

2y] .

In the above steps we have used the fact that Sλ is symmetric. Continuing we have

ASR(λ) =
1

N
E[tr(yT (I − Sλ)

2y)]

=
1

N
E[tr((I − Sλ)

2yyT ]

=
1

N
tr((I − Sλ)

2E[yyT ]) .

As this point we need to compute E[yyT ]. In vector form we have

y = f + ǫ ,

thus
yyT = (f + ǫ)(f + ǫ)T = ffT + fǫT + ǫfT + ǫǫT .

Taking the expectation of this and using E[ǫ] = 0 we get

E[yyT ] = ffT + σ2I .

If we multiply this by 1
N
(I − Sλ)

2 and take the trace we have then shown

ASR(λ) =
1

N
tr((I − Sλ)

2ffT ) +
σ2

N
tr((I − Sλ)

2)

=
1

N
tr(fT (I − Sλ)

2f) +
σ2

N
tr(I − 2Sλ + S2

λ)

=
1

N
fT (I − Sλ)

2f + σ2 − 2σ2

N
tr(Sλ) +

σ2

N
tr(S2

λ) .
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Now we will evaluate PE(λ). We have

PE(λ) =
1

N
Eǫi,ǫ∗i

(
N∑

i=1

(yi − f̂λ(xi))
2

)

=
1

N
Eǫi,ǫ∗i

(
N∑

i=1

(f(xi) + ǫ∗i − f̂λ(xi))
2

)

=
1

N
Eǫi,ǫ∗i

(
N∑

i=1

(f(xi)− f̂λ(xi))
2 + 2ǫ∗i (f(xi)− f̂λ(xi)) + ǫ∗i

2

)

=
1

N
Eǫi,ǫ∗i

(
N∑

i=1

(f(xi)− f̂λ(xi))
2

)
+

2

N
Eǫi,ǫ∗i

(
N∑

i=1

ǫ∗i (f(xi)− f̂λ(xi))

)
+

1

N
Eǫi,ǫ∗i

(
N∑

i=1

ǫ∗i
2

)

=
1

N
Eǫi

(
N∑

i=1

(f(xi)− f̂λ(xi))
2

)
+

2

N

N∑

i=1

Eǫ∗i
(ǫ∗i )Eǫi

(
(f(xi)− f̂λ(xi))

)
+

1

N
Eǫ∗i

(
N∑

i=1

ǫ∗i
2

)
.

In the above I have dropped the expectation on the random variables if the argument of the
expectation does not depend on it. Continuing our calculation we have

PE(λ) =
1

N
Eǫi

(
N∑

i=1

(f(xi)− f̂λ(xi))
2

)
+ 0 + σ2

=
1

N
E
(
(f − Sλy)

T (f − Sλy)
)
+ σ2

=
1

N
E((f − Sλf − Sλǫ)

T (f − Sλf − Sλǫ)) + σ2

=
1

N
E((f − Sλf)

T (f − Sλf)) +
1

N
E(ǫTS2

λǫ) + σ2

=
1

N
(f − Sλf)

T (f − Sλf) +
1

N
E(tr(ǫTS2

λǫ)) + σ2

=
1

N
(f − Sλf)

T (f − Sλf) +
1

N
E(tr(S2

λǫǫ
T )) + σ2

=
1

N
fT (I − Sλ)

2f +
σ2

N
tr(S2

λ) + σ2 .

Thus from these two expressions we see that

PE(λ)− ASR(λ) =
2σ 2

N
tr(Sλ) .

Ex. 6.11 (contributed by Franklin Wang)

Intuitively the likelihood will go to infinity if there are M = N clusters centered around each
of the data xi with a very small variance. Thus in the expression for a Gaussian mixture
model

f(x) =

M∑

m=1

αmφ(x;µm,Σm) ,

we set M = N and then an infinite likelihood will result as our parameters converge as
µm → xm and Σm → 0 for each m ∈ {1, . . . , N}.
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Chapter 7 (Model Assessment and Selection)

Notes on the Text

Notes on the bias-variance decomposition

The true model is Y = f(X) + ǫ with E(ǫ) = 0 and Var(ǫ) = σ2
ǫ . The function f(X) is not

random but is unknown. Define Err(x0) as the expected test error (or generalization error)
at a point x0. This expectation is taken over all possible training sets T for when we change
training sets we will change the value of f̂(x0) since f̂ is learned from the dataset T . We
can compute this using

Err(x0) = E[(Y − f̂(x0))
2|X = x0]

= E[(f(x0) + ǫ− f̂(x0))
2]

= E[(f(x0)− f̂(x0))
2 + 2ǫ(f(x0)− f̂(x0)) + ǫ2]

= E[(f(x0)− f̂(x0))
2] + 2E[ǫ(f(x0)− f̂(x0))] + E[ǫ2] .

Now by independence of the error (further helped perhaps if the estimator f̂ is unbiased)
the second term above vanishes as

E[ǫ(f(x0)− f̂(x0))] = E[ǫ]E[f(x0)− f̂(x0)] = 0 .

With this the above becomes

Err(x0) = E[(f(x0)− f̂(x0))
2] + σ2

ǫ .

Now f̂ is also random since it depends on the random selection of the initial training set
used to estimate it. To evaluate this first term we will break down its performance into two
terms that will form the basis of the “bias-variance trade-off”. We can that by inserting the
expected value of f̂(x0) taken over all random training sets (denoted Ef̂(x0)). We have

E[(f(x0)− f̂(x0))
2] = E[(f(x0)− Ef̂(x0) + Ef̂(x0)− f̂(x0))

2] .

The expression expands to

(f(x0)− Ef̂(x0))
2 + 2(f(x0)− Ef̂(x0))(Ef̂(x0)− f̂(x0)) + (Ef̂(x0)− f̂(x0))

2 .

As values of f(x0) and Ef̂(x0) are not random thus when we take the expectation of the
middle term above the factor in front is a constant multiplied by

E[Ef̂(x0)− f̂(x0)] = Ef̂(x0)−Ef̂(x0) = 0 ,

and the second term vanishes. We end with

Err(x0) = (f(x0)− Ef̂(x0))
2 + E[(Ef̂(x0)− f̂(x0))

2] + σ2
ǫ

= Model Bias2 +Model Variance + σ2
ǫ . (129)
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This is the bias-variance decomposition.

If our predictive model is the k nearest neighbor then the response at x0 is the average of
the k closest neighbors to x0 so assuming that f(x) is continuous (i.e. f(x(l)) ≈ f(x0)) then
we have

f̂(x0) =
1

k

k∑

l=1

y(l) =
1

k

k∑

l=1

(f(x(l)) + ε(l))

≈ 1

k

k∑

l=1

(f(x0) + ε(l)) = f(x0) +
1

k

k∑

l=1

ε(l) .

From this we see that the variance of the estimate f̂(x0) comes from the 1
k

∑k
l=1 ε(l) random

term. Taking the variance of this summation and using independence we have

1

k2

k∑

l=1

Var(ε(l)) =
1

k2
(kVar(ε)) =

1

k
σ2
ε . (130)

Which is the expression of the bias-variance decomposition for the k-nearest neighbor.

Notes on the 0.632 estimator

In this section the book derives a formula for the probability that a bootstrap sample will
contain a specific data point xi from the N training data points. First note that to not
have xi in the bootstrap sample when we draw the N samples with replacement from our
original dataset we must “miss” it each of the N independent draws which happens with a
probability of (

1− 1

N

)N

.

The probability that a given bootstrap sample will contain a given sample xi is then the
complement of this number.

Exercise Solutions

Ex. 7.1 (contributed by Franklin Wang)

To derive the book’s Eq. 7.24 we will start assuming the book’s Eq. 7.22 and then show that

N∑

i=1

cov(ŷi, yi) = dσ2
ǫ .

Now consider cov(ŷ, y) for vector y and ŷ. Under a linear regression model we have

cov(ŷ, y) = cov(X(XTX)−1XTy, y) = X(XTX)−1XT cov(y, y) = X(XTX)−1XTσ2
ǫ .
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The values cov(ŷi, yi) are the diagonal values of the above matrix cov(ŷ, y). Thus

N∑

i=1

cov(ŷi, yi) = trace
(
X(XTX)−1XT

)
σ2
ǫ

= trace
(
(XTX)−1XTX

)
σ2
ǫ

= trace (Id) σ
2
ǫ = dσ2

ǫ .

Here we have used properties of the trace operator.

Ex. 7.2 (contributed by Franklin Wang)

Part (a): To start this exercise we first will assume that the true probability of observing
Y = 1, when given x0, is larger than one-half or f(x0) >

1
2
. In this case the optimal decision

is then G(x0) = 1. The Bayes error or ErrB(x0) in this case is then the probability the
observed Y is not one or

ErrB(x0) = Pr(Y 6= 1) = Pr(Y 6= G(x0)) = Pr(Y = 0) = 1− f(x0) .

The full error in predicting Y when given x0, is the probability that Y is not the same label
as the one we assign it. To compute this we will condition on the true value of Y as

Err(x0) = Pr(Y 6= Ĝ(x0))

= Pr(Y = 1)Pr(Ĝ(x0) = 0) + Pr(Y = 0)Pr(Ĝ(x0) = 1)

= f(x0) Pr(Ĝ(x0) = 0) + (1− f(x0))(1− Pr(Ĝ(x0) = 0))

= 1− f(x0) + (2f(x0)− 1) Pr(Ĝ(x0) = 0)

= ErrB(x0) + (2f(x0)− 1) Pr(Ĝ(x0) = 0) .

Now
Pr(Ĝ(x0) = 0) = Pr(Ĝ(x0) 6= 1) = Pr(Ĝ(x0) 6= G(x0)) ,

since the correct assignment in this case is G(x0) = 1.

If instead we have that the true probability of observing Y = 1 is f(x0) <
1
2
. In this case

the optimal decision is then G(x0) = 0. The Bayes error in this case is then the probability
the observed Y is not zero or

ErrB(x0) = Pr(Y 6= 0) = Pr(Y 6= G(x0)) = Pr(Y = 1) = f(x0) .

Again to compute the full error we will condition on the true value of Y and nothing changes
until the final steps. We have

Err(x0) = 1− f(x0) + (2f(x0)− 1) Pr(Ĝ(x0) = 0) as before

= ErrB(x0) + (1− 2f(x0)) + (2f(x0)− 1) Pr(Ĝ(x0) = 0) .

Now
Pr(Ĝ(x0) = 0) = Pr(Ĝ(x0) = G(x0)) ,
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since the correct assignment in this case is G(x0) = 0. As we have

Pr(Ĝ(x0) = G(x0)) = 1− Pr(Ĝ(x0) 6= G(x0)) ,

we can write the expression for Err(x0) as

Err(x0) = ErrB(x0) + (1− 2f(x0)) + (2f(x0)− 1)(1− Pr(Ĝ(x0) 6= G(x0))

= ErrB(x0)− (2f(x0)− 1) Pr(Ĝ(x0) 6= G(x0) .

Both cases can be written as one expression if we write it as

Err(x0) = ErrB(x0) + |2f(x0)− 1|Pr(Ĝ(x0) 6= G(x0) ,

the expression we were trying to show.

Part (b): We now seek to approximate Pr(Ĝ(x0) 6= G(x0)). Lets assume that f(x0) <
1
2

then

Pr(Ĝ(x0) 6= G(x0)) = Pr(Ĝ(x0) = 1) = Pr

(
f̂(x0) >

1

2

)

= Pr


 f̂(x0)− Ef̂(x0)√

Var(f̂(x0))
>

1
2
−Ef̂(x0)√
Var(f̂(x0))




= 1− Φ




1
2
− Ef̂(x0)√
Var(f̂(x0))


 = Φ


 Ef̂(x0)− 1

2√
Var(f̂(x0))


 .

Next assuming that f(x0) >
1
2
then

Pr(Ĝ(x0) 6= G(x0)) = Pr(Ĝ(x0) = 0) = Pr

(
f̂(x0) <

1

2

)

= Pr


 f̂(x0)−Ef̂(x0)√

Var(f̂(x0))
<

1
2
−Ef̂(x0)√
Var(f̂(x0))




= Φ




1
2
−Ef̂(x0)√
Var(f̂(x0))


 .

Both cases can be written as one expression if we write it as

Pr(Ĝ(x0) 6= G(x0)) = Φ



sign

(
1
2
− f(x0)

) (
Ef̂(x0)− 1

2

)

√
Var(f̂(x0))


 ,

the expression we were trying to show.
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Ex. 7.3 (contributed by Franklin Wang)

Here we are assuming that the linear smoothing S of y means modeling the response y (given
X) using a linear regression model i.e. S ≡ X(XTX)−1XT in f̂ = Sy.

Part (a): Take the vector y to be y = (y1, . . . , yi, . . . , yN)
′ which is the vector of responses.

Now consider replacing the ith element of this vector i.e. yi with f̂ (−i)(xi) i.e. the prediction
made at xi using a model build from the data set that does not include the ith sample. This
gives the modified “target” vector y∗ which we can write as

y∗ = y + ei(f̂
(−i)(xi)− yi) .

Here ei is the vector in R
N with a single one at the ith location.

Note that regressing y∗ on X would produce the same coefficients as removing the sample
(xi, yi) from the original data set. In other words the coefficient β(−i) can be written

β(−i) = (XTX)−1XTy∗ .

Now the prediction for y using the coefficients β(−i) will be

f̂ (−i) = Xβ(−i) = X [(XTX)−1XTy∗]

= X(XTX)−1XT (y + ei(f̂
(−i)(xi)− yi))

= S(y + ei(f̂
(−i)(xi)− yi)) .

In the above, the value of f̂ (−i)(xi) is the ith location in the vector f̂ (−i). We can get that
location by multiplying by eTi on both sides. This gives

f̂ (−i)(xi) = eTi S(y + ei(f̂
(−i)(xi)− yi)) .

Expanding the terms on the right-hand-side we get

f̂ (−i)(xi) = eTi Sy + Sii(f̂
(−i)(xi)− yi) .

Subtracting yi from both sides gives

f̂ (−i)(xi)− yi = eTi Sy + Sii(f̂
(−i)(xi)− yi)− yi ,

or
(1− Sii)(f̂

(−i)(xi)− yi) = eTi Sy − yi .

Finally since Sy = f̂ we see that eTi Sy = f̂(xi) so that we get

(1− Sii)(f̂
(−i)(xi)− yi) = f̂(xi)− yi ,

which is equivalent to the desired result.

Part (b): From the definition of S = X(XTX)−1XT its easy to see that S is symmetric
and S2 = S that is the matrix S is idempotent (since the square of it is equal to itself again).
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From the expression S = S2 if we look at the mnth entry (and recalling that S is symmetric)
we see that

Smn = (S2)mn =
∑

k=1

SmkSkn =
∑

k=1

S2
mk .

To look at the diagonal element of S we take m = n = i in the above and we see that

Sii =
∑

k=1

S2
ik = S2

ii +
∑

k=1;k 6=i

S2
ik .

As the right-hand-side of this expression is positive we have that Sii ≥ 0. In addition,
because the sum on the right-hand-side is always non-negative we have

Sii ≥ S2
ii ,

or
Sii(Sii − 1) ≤ 0 .

As Sii ≥ 0 this implies the condition that Sii ≤ 1. Thus we have shown that 0 ≤ Sii ≤ 1.
Because of this we also have 0 ≤ 1− Sii ≤ 1 and

1

1− Sii
≥ 1 .

Using this in the previous part of this exercise this means that

|yi − f̂ (−i)(xi)| ≥ |yi − f̂(xi)| ,
as we were to show.

Ex. 7.4 (contributed by Franklin Wang)

For this exercise both squared terms in Errin and err will be expanded (by inserting “zero”)
in the same way. For example for the terms in err we would write

yi − ŷi = (yi − f(xi)) + (f(xi)−Ef̂(xi)) + (Ef̂(xi)− ŷi) .

Note we have used the shorthand ŷi = f̂(xi). Then the sum the squares for expressions like
this produces three “squared” terms and three “cross” terms which are

A1 =
∑

i

(yi − f(xi))
2

B =
∑

i

(f(xi)−Ef̂(xi))
2

C =
∑

i

(Ef̂(xi)− ŷi)
2

D1 = 2
∑

i

(yi − f(xi))(f(xi)− Ef̂(xi))

E = 2
∑

i

(f(xi)− Ef̂(xi))(Ef̂(xi)− ŷi)

F1 = 2
∑

i

(yi − f(xi))(Ef̂(xi)− ŷi) .
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These are the six terms we would get when we expand the quadratic in the expression for err.
In the expression for Errin most of the terms are the same but we would have the modified
terms A2, D2, and F2 where these are derived from the above by replacing yi with Y 0

i in A1,
D1, and F1 respectively and taking the expectation EY 0 . Thus for A2 we would have

A2 =
∑

i

EY 0(Y 0
i − f(xi))

2 ,

and similar expressions for D2 and F2.

Now to compute the expression of interest we consider

N(Errin − err) = (A2 +B + C +D2 + E + F2)− (A1 +B + C +D1 + E + F1)

= (A2 − A1) + (D2 −D1) + (F2 − F1) ,

since the terms without yi or Y
0
i cancel directly.

We want to evaluate the expectation of this expression. To start, note that both A1 and A2

capture the unpredictable error so

E(A1) = E(A2) = Nσ2
ǫ ,

thus the difference A2 −A1 vanishes (in expectation).

Next note that
E(D1) = 2

∑

i

(E(yi)− f(xi))(f(xi)−Ef̂(xi)) = 0 ,

since E(yi) = f(xi). We also have E(D2) = 0 for similar reasons.

Thus we have shown that

E[N(Errin − err)] = E(F2)− E(F1) .

To evaluate this note that

F2 = 2
∑

i

EY 0

[
(Y 0

i − f(xi))(Ef̂(xi)− ŷi)
]
= 0 ,

as E(Y 0
i ) = f(xi) and since Y 0

i and ŷi are independent.

Finally we need to evaluate E(F1). We have

E(F1) = 2
∑

i

E
[
(yi − f(xi))(Ef̂(xi)− ŷi)

]
.

Note that E(yi) = f(xi) and E(ŷi) = Ef̂(xi) so that the above is the sum of terms that are
the difference between the sample and the expectation we have

E(F1) = −2
N∑

i=1

cov(yi, ŷi) .
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Using all of what we have computed thus far we have shown that

E[N(Errin − err)] = −E(F1) = 2

N∑

i=1

cov(yi, ŷi) ,

which is equivalent to the expression we wanted to show.

Ex. 7.5 (contributed by Franklin Wang)

This is similar to Ex. 7.2 (above), but here we replace ŷ = X(XTX)−1XTy with Sy.

Ex. 7.7

The equation for GCV when our prediction is ŷ = Sy is given by

GCV(f̂) =
1

N

N∑

i=1

[
yi − f̂(xi)

1− trace (S) /N

]2
. (131)

Using the approximation 1
(1−x)2

≈ 1 + 2x we can write the above as

GCV(f̂) ≈ 1

N

N∑

i=1

(yi − f̂(xi))
2

(
1 +

2trace (S)

N

)

=
1

N

N∑

i=1

(yi − f̂(xi))
2 +

2

N2
trace (S)

N∑

i=1

(yi − f̂(xi))
2 .

The first term above is the in-sample training error and is denoted err (see Eq. 7.17) while
in the second term we note that

σ̂2
ε ≈

1

N

N∑

i=1

(yi − f̂(xi))
2 ,

so that we can write the above as

GCV(f̂) = err +
2trace (S)

N
σ̂2
ε .

In Section 7.6 it is discussed that trace (S) is the effective number of parameters in the model
which if we call d gives

GCV(f̂) = err +
2d

N
σ̂2
ε .

The right-hand-side of this is the same expression as for Cp in Eq. 7.26.
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Ex. 7.8

Given a fixed value of l from the points listed, the two points zl = 10−l and zl−1 = 10−l+1

will be the closest together and at a distance of

δ = 10−l+1 − 10−l = 10−l+1(1− 10−1) = 9 · 10−l .

Our given class of functions will be able to shatter the points given if we can construct a
function that can separate these two closest points. As sin(αx) will go from a peak to a
trough when x is incremented x→ x+∆x such that

α∆x = π so α =
π

∆x
.

If we take α > π
δ
with δ defined as above, we will have a function f(x) that can oscillate

between each of the points of the given set and thus shatter them.

Ex. 7.9

In the R code cv all subsets.R (found in Chapter 3) we implement best-subset cross-
validation for linear regression. To run cv all subsets.R we specify a subset size (in the
variable k for 0 ≤ k ≤ p) and then by calling that routine we will get the single set of k

predictors from the

(
p
k

)
possible sets of k predictors that has the smallest cross-validated

estimate of the mean square error. The default in using this function is to perform tenfold
cross-validation (five-fold cross-validation gives similar results).

The R code to run this on the prostate data and over all possible subset sizes 0 ≤ k ≤ p is
given in the R function dup OSE all subsets.R where we use the “one-standard-error” rule
to to then further select the optimal subset of size k. The graphical output from this is given
in Figure 2 (in the upper-left corner) where we see that the optimal subset size is k = 2 and
selected the two variables lcavol and lweight.

To perform model selection using the AIC or the BIC criterion we can use the R function
step which will sequentially remove predictors (or add them) depending on how called. Here
we build a full model and then remove predictors until we can no longer minimize the AIC
or the BIC. For the AIC we find a larger model containing seven predictors

(Intercept) lcavol lweight age lbph svi

0.259062 0.573930 0.619209 -0.019480 0.144426 0.741781

lcp pgg45

-0.205417 0.008945

This selection process only removed the predictor gleason.

The BIC selects smaller models since it penalizes the number of parameters more strongly.
In this case we find the optimal model contains
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(Intercept) lcavol lweight

-1.0494 0.6276 0.7384

These are the same variables that cross-validation selected.

The “0.632 estimator” is a way to estimate the prediction error using bootstrap samples. The
formula is given in the book but basically it weights the training error (denoted err) and a

bootstrapped based estimate (denoted Êrr
(1)
). In this exercise we could use this estimate to

do model selection but to save time I’ll just code it up and use it to estimate the prediction
error of a given specified linear model. One would then need to wrap a model selection
routine around these estimates for it to be used to perform model selection.

Using the features lcavol and lweight and then by calling the function estimate 632 Err.R
we find

[1] "B= 500; err_bar= 0.55; err_1= 0.63; (0.632 estimate)= 0.60; mse_test= 0.49"

From these numbers it looks like the testing MSE of 0.49 might be somewhat optimistic
(lower than what we might expect for other sets of out-of-sample data).
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Chapter 8 (Model Inference and Averaging)

Ex. 8.1 (contributed by Franklin Wang)

WWX: This has not been proofed/checked yet.

It is easy to show that
ln(1 + x) ≤ x ,

for any x. This explicitly holds when x = 0. Plug in r(y)
g(y)
− 1 for x and we get

ln

(
r(y)

g(y)

)
≤ r(y)− g(y)

g(y)
.

Since g(y) ≥ 0 for any y we have

∫ (
r(y)

g(y)

)
g(y)dy ≤

∫
r(y)− g(y)

g(y)
g(y)day

=

∫
r(y)dy −

∫
g(y)dy = 1− 1 = 0 .

If we plug in r = Pr(Zm|Z, θ′) and q = Pr(Zm|Z, θ) and R(θ′, θ)− R(θ, θ) we get

EZm|Z,θ ln

(
Pr(Zm|Z, θ′)
Pr(Zm|Z, θ)

)
= Eq ln

(
r

q

)
≤ 0 .

Ex. 8.2 (contributed by Franklin Wang)

WWX: This has not been proofed/checked yet.

F (θ′, P̃ ) =
∑

Zm

(
ln

(
Pr(Zm|Z, θ′)P (Z|θ′)

P̃ (Zm)

)
P̃ (Zm)

)

= ln(P (Z|θ′)) +
∑

Zm

P̃ (Zm) ln

(
Pr(Zm|Z, θ′)

P̃ (Zm)

)
.

Let x be any realization of P̃ (Zm).

L(P (Zm)) =
∑

Zm

P̃ (Zm) ln

(
Pr(Zm|Z, θ′)

P̃ (Zm)

)
− λ

(∑

Zm

P̃ (Zm)− 1

)
.

From this we have
∂L

∂x
= ln

(
Pr(Zm|Z, θ′)

x

)
− 1− λ = 0 .
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Thus
x = e−1−λPr(Zm|Z, θ′) ,

since
∑

Zm P̃ = 1. ∑

Zm

x = e−1−λ = 1 .

Thus
P̃ (Zm) = Pr(Zm|Z, θ′) .

Ex. 8.4 (contributed by Franklin Wang)

In fitting a B-spline smoother the fitted model takes the form

f̂(x) = Sy = H(HTH)−1HTy .

In this form S is a function of the input x and not the observed response vector y.

To use the parametric bootstrap, we simulate n additional samples of the response y by
adding noise to the fitted values above as

y∗ = f̂(x) + ǫ .

The above is a vector equation and we do it B times (getting a new vector y∗ each time),
one for each of the B bagging we are going to aggregate.

From the above formula, the fitted model for the jth parametric bootstrap sample is given
by

f̂ ∗(x) = Sy∗ = S(f̂(x) + ǫ) = S2y + Sǫ = Sy + Sǫ .

Here we have used the fact that S is idempotent so S2 = S. Lets denote the jth bootstrap
fitted model as f̂ ∗

(j) and the jth bootstrap added noise as ǫ(j).

If we then bag B simulated samples our estimate at x would take the form

f̂bag(x) =
1

B

B∑

j=1

f̂ ∗
(j)(x) = Sy + S

(
1

B

B∑

j=1

ǫ(j)

)
.

As
1

B

B∑

j=1

ǫ(j) → 0 ,

as B →∞ we have that
f̂bag(x) = Sy = f̂(x) ,

as B →∞ as we wanted to show.
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Chapter 10 (Boosting and Additive Trees)

Notes on the Text

Notes on the Sample Classification Data

For AdaBoost.M1 the books suggests using a “toy” ten-dimensional data set where the
individual elements X1, X2, · · · , X10 of the vector X are standard independent Gaussian
random draws and the classification labels (taken from {−1,+1}) are assigned as

Y =

{
+1 if

∑10
j=1X

2
j > χ2

10(0.5)

−1 otherwise
.

Here χ2
10(0.5) is the median of a chi-squared random variable with 10 degrees of freedom.

In [2] it is stated that the Xi are standard independent Gaussian and their 10 values are
squared and then summed one gets a chi-squared random variable (by definition) with 10
degrees of freedom. Thus the threshold chosen of χ2

10(0.5) since it is the median will split
the data generated exactly (in the limit of infinite samples) into two equal sets. Thus when
we ask for N samples we approximately equal number of N

2
of samples in each class and

it is a good way to generate testing data. Code to generate data from this toy problem
in Matlab is given by the function gen data pt b.m and in the R language in the function
gen eq 10 2 data.R.

Notes on duplicated Figure 10.2

See the R code dup fig 10 2.R where we use the R package gbm do duplicate the books
Figure 10.2. That package has an option (distribution=’adaboost’) that will perform
gradient boosting to minimize the exponential adaboost loss function. Since this package
does gradient boosting (a more general form of boosting) to get the results from the book
one needs to set the learning rate to be 1. When that code is run we get the results given in
Figure 16, which matches quite well the similar plot given in the text. For a “home grown”
Matlab implementation of AdaBoost see the problem on Page 124.

Notes on Why Exponential Loss

From the text and Equation 133 we have

f ∗(x) = argminf(x)EY |x(e
−Y f(x)) =

1

2
log

(
Pr(Y = +1|x)
Pr(Y = −1|x)

)

Solving the above for Pr(Y = +1|x) in terms of f ∗(x) we first write the above as

Pr(Y = +1|x)
1− Pr(Y = +1|x) = e2f

∗(x) ,
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Figure 16: Duplication of plots in Figure 10.2 from the book. See the main text for details.

or
(1 + e2f

∗(x)) Pr(Y = +1|x) = e2f
∗(x) .

Solving for Pr(Y = +1|x) we get

Pr(Y = +1|x) = e2f
∗(x)

1 + e2f∗(x)
=

1

1 + e−2f∗(x)
,

the expression given in the book.

Notes on the Loss Function and Robustness

To compare different loss functions for robustness in the R code dup fig 10 4.R we plot
the “modified” loss functions discussed in the book. Namely we consider the typical loss
functions discussed thus far but scaled so that they pass through the point (0, 1) in (fy, loss)
space. Since our targets are mapped to y ∈ {−1,+1} and our predictions are given by
G(x) = sign(f(x)) data points are misclassified when the product f(x)y < 0 and are correctly
classified when f(x)y > 0. Following the book, we consider the following losses as functions
of the product fy:

• Misclassification: I(sign(f) 6= y).

• Exponential: e−yf .

• Binomial deviance: log(1+e−2yf ) which when scaled to pass through (0, 1) this becomes
log(1 + e−2yf )/ log(2).
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• Squared error: (y − f)2 when scaled to pass through (0, 1) this becomes 1
y2
(1 − yf)2.

Note that we can drop the factor 1
y2

since y ∈ {−1,+1}.

• Support vector (1− yf)+.

When we run the above R script we get the plot shown in Figure 17. Note that all curves
but the one for binomial deviance (the orange curve) seem to be at their correct locations.
There must be something wrong since the location of the binomial deviance curve in this plot
would indicate that binomial deviance is less robust to outlying classification examples than
is exponential loss (the cyan curve). This follows from the fact that the binomial deviance
curve lies above the exponential loss curve when yf < 0 indicating greater relative penalty
applied when using the binomial deviance as a loss for incorrectly classified samples. This is
in contrast to what the book states. There must be an error in this discussion but I’m not
sure where it is. I’ve tried to “scale” the binomial functional form of log(1 + e−2yf ) by:

• Shifting the function along the fy axis

• Shifting the function along the loss axis

• Scaling the function by dividing by log(2)

and none of the resulting plots match the ones given in the book. Note that all of the above
transformations pass through the point (0, 1). You can view the other plots by uncommenting
lines in the dup fig 10 4.R script. If anyone sees a problem with my logic or knows what I
am doing incorrectly please contact me. For quadratic loss

f ∗(x) = argminf(x)EY |x(Y − f(x))2 = E(Y |x) ,

where the last step is via the Gauss Markov theorem (namely that the minimizer of the
squared error is the conditional expectation). Since the mapping for Y takes the form Y ∈
{−1,+1} we can evaluate the above expectation explicitly using the definition of expectation

E(Y |x) = +1Pr(Y = +1|x)− Pr(Y = −1|x)
= +1Pr(Y = +1|x)− (1− Pr(Y = +1|x))
= 2Pr(Y = +1|x)− 1 . (132)

Notes on Duplicating the Spam Data Example

See the R code dup spam classification.R where we use the R package gbm do duplicate
the books Spam data example. Following the documentation for the package gbm I selected
shrinkage=0.005 (a value be between 0.01 and 0.001), interaction.depth=1, cv.folds=5,
and n.trees=50000 boosting trees to get estimate of the learning curves associated with
the gbm method applied to this data set. After training when one then calls the function
gbm.perf one gets the plot shown in Figure 18 (left) and the fact that the best number
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Figure 17: An attempted duplication of plots in Figure 10.4 from the book. See the main
text for details.

of boosting trees is 10563. The error rate with this tree is 5.14%. This is a bit larger
than the numbers reported in the book but still in the same ballpark. If we retrain with
interaction.depth=3 we get the learning curve given in Figure 18 (right). The optimal
number of boosting trees in this case 7417, also given a smaller testing error of 4.75%. The
R routine summary can be use to plot a relative importance graph. When we do that we get
the plot shown in Figure 19.

While the labeling of the above plot is not as good in the books we can print the first twenty
most important words (in the order from most important to less important) to find

> most_important_words[1:20]

[1] "$" "!"

[3] "remove" "free"

[5] "hp" "your"

[7] "capital_run_length_average" "capital_run_length_longest"

[9] "george" "capital_run_length_total"

[11] "edu" "money"

[13] "our" "you"

[15] "internet" "1999"

[17] "will" "email"

[19] "re" "receive"

This ordering of words that are most important for the classification task agrees very well
with the ones presented in the book.

119



0 10000 20000 30000 40000 50000

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Iteration

B
e
rn

o
u
lli

 d
e
vi

a
n
ce

0 10000 20000 30000 40000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Iteration

B
e
rn

o
u
lli

 d
e
vi

a
n
ce

Figure 18: Left: The learning curves of the gbm method on the spam data when
interaction.depth=1. Note that after we have performed enough boosting iterations we
steadily decrease the loss in sample (the black curve) while the loss out-of-sample stays
nearly constant. Right: The learning curves of the gbm method on the spam data when
interaction.depth=3. In this case as we perform learning by using more boosts we start
to perform worse on the testing data set. This indicates that we are overfitting and learning
(memorizing) the training data set. We should stop learning at the point where the error
when using the cross validation data set starts to increase i.e. the location of the minimum
of the green curve. Note that the y-axis between the two plots are not the same.
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Figure 19: A plot of the relative importance of the various words in the spam classification
example using the R code summary(gbm).

Notes on Duplicating the Boosting with Different Sized Trees Example

See the R code dup fig 10 9.R where we use the R package gbm do duplicate the plot in the
book on comparing boosting with different sized trees. I could not get the gbm package to
perform boosting with 100 node trees due to memory problems in the gbm package. I think
the book was using the MART package to do these plots and thus might have been able to
perform boosting with these larger trees. The largest tree size I could boost with using gbm

was around 20. When I run the above script, I get the plot shown in Figure 20. This plot
shows that AdaBoost and stumps seem to perform best on this problem in that they have
out of sample learning curves that continue to improve as we perform boosting iterations.
Gradient boosting with 10 vs. 20 nodes seems to show qualitatively different behaviour. The
10 node boosting algorithm seems to seem to be overfitting as we continue boosting, while
boosting with 20 node trees does not show this behaviour.

Exercise Solutions

Ex. 10.1 (deriving the β update equation)

From the book we have that for a fixed β the solution Gm(x) is given by

Gm = ArgMinG

N∑

i=1

w
(m)
i I(yi 6= G(xi)) ,
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Figure 20: An attempted duplication of the Figure 10.9 from the book. The book’s learning
curve for AdaBoost does not perform as well as the result shown here.

which states that we should select our classifier Gm such that Gm(xi) = yi for the largest

weights w
(m)
i values, effectively “nulling” these values out. Now in AdaBoost this is done

by selecting the training samples according to a discrete distribution w
(m)
i specified on the

training data. Since Gm(x) is then specifically trained using these samples we expect that
it will correctly classify many of these points. Thus lets select the Gm(x) that appropriately
minimizes the above expression. Once this Gm(x) has been selected we now seek to minimize
our exponential error with respect to the β parameter.

Then by considering Eq. 10.11 (rather than the recommended expression) with the derived
Gm we have

(eβ − e−β)
N∑

i=1

w
(m)
i I(yi 6= Gm(xi)) + e−β

N∑

i=1

w
(m)
i

Then to minimize this expression with respect to β, we will take the derivative with respect
to β, set the resulting expression equal to zero and solve for β. The derivative (and setting
our expression equal to zero) we find that

(eβ + e−β)
N∑

i=1

w
(m)
i I(yi 6= Gm(xi))− e−β

N∑

i=1

w
(m)
i = 0 .

To facilitate solving for β we will multiply the expression above by eβ to give

(e2β + 1)

N∑

i=1

w
(m)
i I(yi 6= Gm(xi))−

N∑

i=1

w
(m)
i = 0 .

so that e2β is given by

e2β =

∑N
i=1w

(m)
i −∑N

i=1w
(m)
i I(yi 6= Gm(xi))∑N

i=1w
(m)
i I(yi 6= Gm(xi))

.
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Following the text we can define the error at the m-th stage (errm) as

errm =

∑N
i=1w

(m)
i I(yi 6= Gm(xi))∑N

i=1w
(m)
i

,

so that in terms of this expression e2β becomes

e2β =
1

errm
− 1 =

1− errm
errm

.

Finally we have that β is given by

β =
1

2
log

(
1− errm
errm

)
,

which is the expression Eq. 10.12 as desired.

Ex. 10.2 (minimize the AdaBoost loss)

We want to find f ∗(x) such that

f ∗(x) = argminf(x)EY |x(e
−Y f(x)) .

To find f(x), we take the derivative of the above objective function with respect to f(x),
set the resulting expression equal to zero, and solve for f(x). This procedure would give the
equation

∂

∂f
EY |x(e

−Y f(x)) = EY |x(−Y e−Y f(x)) = 0 .

Now evaluating the above expectation when our targets are Y = ±1 gives

−(−1)e−(−1)f(x)Pr(Y = −1|x)− 1(+1)e−f(x)Pr(Y = +1|x) = 0 .

Multiplying the above by ef(x) gives

e2f(x)Pr(Y = −1|x)− Pr(Y = +1|x) = 0 ,

or

e2f(x) =
Pr(Y = +1|x)
Pr(Y = −1|x) ,

or solving for f(x) we get

f(x) =
1

2
log

(
Pr(Y = +1|x)
Pr(Y = −1|x)

)
. (133)

the expression we were to show.
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Figure 21: A duplication of the Figure 10.2 from the book.

Ex. 10.4 (Implementing AdaBoost with trees)

Part (a): Please see the web site for a suite of codes that implement AdaBoost with trees.
These codes were written by Kelly Wallenstein under my guidance.

Part (b): Please see the Figure 21 for a plot of the training and test error using the provide
AdaBoost Matlab code and the suggested data set. We see that the resulting plot looks very
much like the on presented in Figure 10.2 of the book helping to verify that the algorithm
is implemented correctly.

Part (c): I found that the algorithm proceeded to run for as long as I was able to wait.
For example, Figure 21 has 800 boosting iterations which took about an hour train and test
with the Matlab code. As the number of boosting iterations increased I did not notice any
significant rise in the test error. This was one of the purported advantages of the AdaBoost
algorithm.

Ex. 10.5 (Zhu’s multiclass exponential loss function)

Part (a): We want to find the vector function f ∗(x) such that

f ∗(x) = argminf(x)EY |x[L(Y, f)] = argminf(x)EY |x

[
exp

(
− 1

K
Y Tf

)]
,
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and where the components of f(x) satisfy the constraint
∑K

k=1 fk(x) = 0. To do this we will
introduce the Lagrangian L defined as

L(f ;λ) ≡ EY |x

[
exp

(
− 1

K
Y Tf

)]
− λ

(
K∑

k=1

fk − 0

)
.

Before applying the theory of continuous optimization to find the optima of L we will first
evaluate the expectation

E ≡ EY |x

[
exp

(
− 1

K
Y Tf

)]
.

Note that by expanding the inner products the above expectation can be written as

EY |x

[
exp

(
− 1

K
(Y1f1 + Y2f2 + · · ·+ YK−1fK−1 + YKfK

)]
.

We then seek to evaluate the above expression by using the law of the unconscious statistician

E[f(X)] ≡
∑

f(xi)p(xi) .

In the case we will evaluate the above under the encoding for the vector Y given by

Yk =

{
1 k = c

− 1
K−1

k 6= c
.

This states that when the true class of our sample x is from the class c, the response vector
Y under this encoding has a value of 1 in the c-th component and the value − 1

K−1
in all

other components. Using this we get the conditional expectation given by

E = exp

{
− 1

K

(
− 1

K − 1
f1(x) + f2(x) + · · ·+ fK−1(x) + fK(x)

)}
Prob(c = 1|x)

+ exp

{
− 1

K

(
f1(x)−

1

K − 1
f2(x) + · · ·+ fK−1(x) + fK(x)

)}
Prob(c = 2|x)

...

+ exp

{
− 1

K

(
f1(x) + f2(x) + · · · −

1

K − 1
fK−1(x) + fK(x)

)}
Prob(c = K − 1|x)

+ exp

{
− 1

K

(
f1(x) + f2(x) + · · ·+ fK−1(x)−

1

K − 1
fK(x)

)}
Prob(c = K|x) .

Now in the exponential arguments in each of the terms above by using the relationship

− 1

K − 1
=

K − 1−K

K − 1
= 1− 1

K − 1
,

we can write the above as

E = exp

{
− 1

K

(
f1(x) + f2(x) + · · ·+ fK−1(x) + fK(x)−

K

K − 1
f1(x)

)}
Prob(c = 1|x)

+ exp

{
− 1

K

(
f1(x) + f2(x) + · · ·+ fK−1(x) + fK(x)−

K

K − 1
f2(x)

)}
Prob(c = 2|x)

...

+ exp

{
− 1

K

(
f1(x) + f2(x) + · · ·+ fK−1(x) + fK(x)−

K

K − 1
fK−1(x)

)}
Prob(c = K − 1|x)

+ exp

{
− 1

K

(
f1(x) + f2(x) + · · ·+ fK−1(x) + fK(x)−

K

K − 1
fK(x)

)}
Prob(c = K|x) .
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Using the constraint is
∑K

k′=1 fk′(x) = 0 the above simplifies to

E = exp

{
1

K − 1
f1(x)

}
Prob(c = 1|x) + exp

{
1

K − 1
f2(x)

}
Prob(c = 2|x)

...

+ exp

{
1

K − 1
fK−1(x)

}
Prob(c = K − 1|x) + exp

{
1

K − 1
fK(x)

}
Prob(c = K|x) .

Then to find the vector f(x), we take the derivative of the Lagrangian objective function L
with respect to each component fk(x) (and the Lagrangian multiplier λ), set the resulting
expressions equal to zero, and solve the resulting system of equations for fk(x). Recall that
to get the full function form for L we need to add −λ∑K

k=1 fk to E . With this the derivative
with respect to fk(x) of our Lagrangian gives

∂L
∂fk

=
∂E
∂fk
− λ =

1

K − 1
exp

{
1

K − 1
fk(x)

}
Prob(c = k|x)− λ , (134)

for 1 ≤ k ≤ K. The derivative of the Lagrangian with respect to λ gives back the constrain
equation

∑K
k′=1 fk′(x) = 0. To solve these equations we will solve each of Equation 134 for

fk(x) in terms of λ and then put these equations back into the constraint that all fk must
sum to zero. We find that fk(x) in terms of λ is given by

fk(x) = −(K − 1) log

( −(K − 1)λ

Prob(c = k|x)

)
,

or
fk(x) = −(K − 1) log(Prob(c = k|x))− (K − 1) log(−(K − 1)λ) . (135)

Enforcing that this expression must sum to zero means that

(K − 1)

K∑

k′=1

log(Prob(c = k′|x))−K(K − 1) log(−(K − 1)λ) = 0 .

If we divide by (K − 1)K we get

log(−(K − 1)λ) =
1

K

K∑

k′=1

log(Prob(c = k′|x)) ,

or solving for λ we get

λ = − 1

K − 1
exp

(
1

K

K∑

k′=1

log(Prob(c = k′|x))
)

.

When we put this expression for λ in Equation 135 we get

fk(x) = (K − 1) log(Prob(c = k|x))− K − 1

K

K∑

k′=1

log(Prob(c = k′|x))

= (K − 1)

(
log(Prob(c = k|x))− 1

K

K∑

k′=1

log(Prob(c = k′|x)
)

,
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for 1 ≤ k ≤ K. We can view the above as K equations for the K unknowns Prob(c = k|x).
To find these probabilities in terms of fk(x) we first write the above as

1

K − 1
fk(x) = log(Prob(c = k|x)) + log



[

K∏

k′=1

Prob(c = k′|x)
]−1/K


 .

From this we can solve for Prob(c = k|x) to get

Prob(c = k|x) =
[

K∏

k′=1

Prob(c = k′|x)
]1/K

e
fk(x)

K−1 . (136)

If we sum both sides of this equation from k′ = 1 to k′ = K the left-hand-side must sum to
one, the term in brackets is constant with respect to the summation index, and we get

1 =

[
K∏

k′=1

Prob(c = k′|x)
]1/K K∑

k′=1

e
f
k′

(x)

K−1 .

Using this expression we can solve for the term in brackets to find

[
K∏

k′=1

Prob(c = k′|x)
]1/K

=
1

∑K
k′=1 e

f
k′

(x)

K−1

.

Using this expression in Equation 136 we get

Prob(c = k|x) = e
fk(x)

K−1

∑K
k′=1 e

f
k′

(x)

K−1

,

one of the desired expressions.

Ex. 10.7 (the optimal offset γ̂jm)

We want to find the optimal constants γjm in each region of the tree. We have

γ̂jm = argminγjm

∑

xi∈Rjm

L(yi, fm−1(xi) + γjm)

= argminγjm

∑

xi∈Rjm

e−yifm−1(xi)−yiγjm since we assume exponential loss

= argminγjm

∑

xi∈Rjm

w
(m)
i e−yiγjm since w

(m)
i ≡ e−yifm−1(xi) .

Define a function of γjm by

F (γjm) ≡
∑

xi∈Rjm

w
(m)
i e−yiγjm ,
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then to find the minimum of this we solve

F ′(γjm) =
∑

xi∈Rjm

w
(m)
i e−yiγjm(−yi) = 0 .

We can write the above summation in two parts by introducing indicator functions. When
we use these the above equation can be written as

−
∑

xi∈Rjm

w
(m)
i e−γjmI(yi = +1) +

∑

xi∈Rjm

w
(m)
i eγjmI(yi = −1) = 0 .

Notice that eγjm in the sums above are independent of the summation index. Next multiply
the above equation by eγjm to get

e2γjm
∑

xi∈Rjm

w
(m)
i I(yi = −1) =

∑

xi∈Rjm

w
(m)
i I(yi = +1) ,

or solving for γjm we find

γjm =
1

2
log

(∑
xi∈Rjm

w
(m)
i I(yi = +1)

∑
xi∈Rjm

w
(m)
i I(yi = −1)

)
.

Note that in the above I have a factor of 1/2 that the book does not have. Note also that a
factor of 1/2 appears in a similar calculation that results in Equation 133. I wonder if this
missing 1/2 in the book might be a typo. If anyone sees anything wrong with what I have
done please contact me.

Ex. 10.8

Part (a): Note that if we approximate the class conditional probabilities using

pk(x) =
efk(x)∑K
l=1 e

fl(x)
, (137)

then pk(x) > 0 and
∑K

k=1 pk(x) = 1 as required for a probability model. Note that as
specified there is redundancy in this model since we can add an arbitrary function h(x)
to each function fk(x) and the value of pk(x) does not change. Thus we will impose the
constraint that

∑K
l=1 fl(x) = 0 to eliminate this redundancy. For this problem we are asked

to consider the log-likelihood (which is the negative multinomial deviance) and is specified
in the book. For a single training example the log-likelihood is given by

L(y, p(x)) =

K∑

k=1

I(y = Gk) log(pk(x)) =
K∑

k=1

I(y = Gk)fk(x)− log

(
K∑

l=1

efl(x)

)
. (138)

Part (b): If in the region R we want to increment fk(x) by some amount γk we should
consider the total log-likelihood over all samples in the region R and the total log-likelihood
then becomes (using the encoding of y specified)

LL ≡
∑

xi∈R

K∑

k=1

yikfk(xi)−
∑

xi∈R

log

(
K∑

l=1

efl(xi)

)
.
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When we increment fk(x) by γk our log-likelihood becomes

LL(γ) =
∑

xi∈R

K∑

k=1

yik(fk(xi) + γk)−
∑

xi∈R

log

(
K∑

l=1

efl(xi)+γl

)
.

As we are going to use Newton’s algorithm to find the maximum of the log-likelihood (or
the minimum of the deviance) with respect to the K − 1 values γk (the Kth value is taken
to be zero) we will need to evaluate the first and second derivatives of LL with respect to
these variables. We find

∂

∂γk
LL(γ) =

∑

xi∈R

yik −
∑

xi∈R

(
efk(xi)+γk

∑K
l=1 e

fl(xi)+γl

)
,

for 1 ≤ k ≤ K− 1. Next we need to take the derivative of the above with respect to γk′. We
have two cases to consider, when k′ = k and when k′ 6= k. We find when k′ 6= k that

∂2

∂γk∂γk′
LL(γ) = −

∑

xi∈R

efk(x)+γkefk′ (x)+γk′

(∑K
l=1 e

fl(xi)+γl

)2 ,

and when k′ = k that

∂2

∂γk∂γk
LL(γ) =

∑

xi∈R


− e2fk(x)+2γk

(∑K
l=1 e

fl(xi)+γl

)2 +
efk(x)+γk

(∑K
l=1 e

fl(xi)+γl

)


 ,

One step of Newton’s method will start with a value for γ0 and update to get γ1 using

γ1 = γ0 −
[
∂2LL(γ)

∂γk∂γk′

]−1
∂LL(γ)

∂γk
.

If we start our Newton iterations with γ0 = 0 then the gradient and the Hessian simplify.
We find

∂

∂γk
LL(γ = 0) =

∑

xi∈R

yik −
∑

xi∈R

pik =
∑

xi∈R

(yik − pik)

∂2

∂γk∂γk′
LL(γ = 0) = −

∑

xi∈R

pikpik′ for k′ 6= k

∂2

∂γk∂γk
LL(γ = 0) =

∑

xi∈R

(−p2ik + pik) for k′ = k .

Here we have defined pik = efk(xi)
∑K

l=1 fl(xi)
. If we assume that the Hessian is diagonal the the

matrix inverse becomes a sequence of scalar inverses, and our first Newton iterations become

γ1
k =

∑
xi∈R

(yik − pik)∑
xi∈R

pik(1− pik)
,

for 1 ≤ k ≤ K − 1.
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Part (c): The above update will produce values of γ1
k that do not sum to zero as our original

functions fk(x) do. I’m not sure how to argue using symmetry for the formula given in the
book. It is easy to show that the formula suggested does satisfy the desired requirement
that

∑K
k=1 γ̂k = 0 by simply summing each of the terms. If you assume that the form for the

normalized gammas, i.e. γ̂k, is an affine function of first Newton update γ1
k namely

γ̂k = aγ1
k + b ,

then to make sure that γ̂k sums to zero requires that

K∑

k=1

γ̂k = a
K∑

k=1

γ1
k + bK = 0 so b = − a

K

K∑

k=1

γ1
k .

Thus we have shown that

γ̂k = a

[
γ1
k −

1

K

K∑

k=1

γ1
k

]
,

but I’m not sure how to argue for the expression given in the book for a. If anyone knows
an argument for why the given expression is a good one to use please contact me.
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Chapter 11 (Neural Networks)

WWX: Note this chapter has not been proofed/checked.

Ex. 11.1 (contributed by Franklin Wang)

Lets start with a neural net with k = 1. Based on Eq. 11.5 we have

f(X) = g(T ) = g(β0 + βZ) = g(β0 +
∑

m

βmzm)

= g(β0 +
∑

m

βmσ(α0m + αT
mX) .

If we consider β0 as a constant term absorbed by a column of ones in X and assume that
g(·) is an identity function (Page 393)

f(X) =
∑

m

βmσ(α0m + αT
mX) ,

by comparing with 11.1 we have

gm(w
T
mX) = βmσ

(
α0m + ||αm||

αT
m

||αm||
X

)
,

where αT
m

||αm||
is a unit vector. sm = ||αm||. A similar derivation goes for classification where

k > 1.

Ex. 11.2 (contributed by Franklin Wang)

Keys to this problem is the Taylor expansion for the activation function σ(v). We have

σ(α0m + αT
mX) =

1

1 + exp(−α0m − αT
mX)

=
eα0m

eα0m + e−αT
mX

=

(
eα0m

1 + ǫα0m

)
 1

e−αT
mX−1

1+eα0m
+ 1




If X → 0 then
e−αT

mX − 1→ −αT
mX ,

so

σ(α0m + αT
mX)→

(
eα0m

1 + ǫα0m

)(
1 +

αT
mX

1 + eα0m

)
.

It is then trivial to show that f(X) is a linear function of X .
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Ex. 11.4 (contributed by Franklin Wang)

If there are no hidden layers then

Tk = β0k + βT
k X ,

so

fk(x) =
eTk

∑
i e

Ti
.

Consider
Tk − T0 = (β0k − β00) + (βk − β0)

TX .

If we model

Pr(G = k) = fk(x) =
eTk−T0

1 +
∑

i>0 e
Ti−T0

.

The objective function

−
∑

yik log(fk(xi)) ,

becomes identical to 4.19.
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Chapter 12 (Support Vector Machines and Flexible Dis-

criminants)

Notes on the Text

Notes on Computing the Support Vector Classifier

Taking the derivative of the primal Lagrangian LP with respect to the vector β and setting
this equal to zero we have

∂LP

∂β
= β −

N∑

i=1

αiyixi = 0 .

If we solve this for β we get

β =
N∑

i=1

αiyixi . (139)

This is the book’s Eq. 12.10.

Taking the derivative of LP with respect to the scalar β0 and setting this equal to zero we
have

∂LP

∂β0

= −
N∑

i=1

αiyi = 0 . (140)

This is the book’s Eq. 12.11.

Finally, taking the derivative of LP with respect to the scalar ξi and setting this equal to
zero we have

C − αi − µi = 0 ,

or
αi = C − µi . (141)

This is the book’s Eq. 12.12.

We next put the above expressions back into LP . From the form of LP one of the things in
the “third” term we are going to need to evaluate is xT

i β. Using Equation 139 for β we find

xT
i β =

N∑

j=1

αjyjx
T
i xj .

This means that αiyix
T
i β is given by

αiyix
T
i β =

N∑

j=1

αiαjyiyjx
T
i xj .
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Summing this over i gives

N∑

i=1

αiyix
T
i β =

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj .

This is the negative of the “third” term in the expansion of LP .

The other terms in LP (without the 1
2
βTβ term) are

LP,OT = C

N∑

i=1

ξi − β0

N∑

i=1

αiyi +

N∑

i=1

αi(1− ξi)−
N∑

i=1

µiξi .

Note that using Equation 140 the second term vanishes. Using Equation 141 the above
becomes

LP,OT = C
N∑

i=1

ξi +
N∑

i=1

(C − µi)(1− ξi)−
N∑

i=1

µiξi =
N∑

i=1

(C − µi) =
N∑

i=1

αi .

Thus we have shown that we can write LP as

LP =
1

2
βTβ −

N∑

i=1

N∑

i=1

αiαjyiyjx
T
i xj +

N∑

i=1

αi .

To simplify this further we will use Equation 139 which tells us that

βT =

N∑

i=1

αiyix
T
i .

so that
1

2
βTβ =

1

2

(
N∑

i=1

αiyix
T
i

)(
N∑

j=1

αjyjxj

)
=

1

2

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj .

This means that we have

LP = −1
2

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj +

N∑

i=1

αi . (142)

This is the book’s Eq. 12.13.

Exercise Solutions

Ex. 12.1

Firstly, we prove that for (12.8), the optimal solution must satisfy ξ̂i = [1− yi(x
T
i β̂ + β̂0)]+.

To see this, from the constraints in (12.8), we have ξ̂i ≥ [1 − yi(x
T
i β̂ + β̂0)]+. Assume for
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contradiction that ∃i such that ξ̂ > [1−yi(x
T
i β̂+ β̂0)]+, then setting ξ̂i ← [1−yi(x

T
i β̂+ β̂0)]+

results in smaller objective in (12.8), which is in contradiction to the fact that ξ̂i is from an
optimal solution.

On the other hand, ξi = [1− yi(x
T
i β + β0)]+ ⇒ ξi ≥ 0, yi(x

T
i β + β0) ≥ 1− ξi. Therefore, the

solution to (12.8) is the same as which is exactly the same as (12.25).
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Chapter 14 (Unsupervised Learning)

Notes on the Text

Notes on Unsupervised as Supervised Learning

I believe there is a slight typo in this section of the book or at least the results they present
are valid for the case where we duplicate (using the proposed density g0(x) exactly the same
number of cases as we are presented with originally, that is N0 = N . If we do actually only
generate N0 6= N cases from g0(x) then defining w = N

N0+N
and w0 = N0

N0+N
the density of

points x should be given by the two component mixture model

f(x) = wg(x) + w0g0(x) .

Then the expression for µ(x) = E(Y |x) is given by

µ(x) = E(Y |x) = 0P (Y = 0|x) + 1P (Y = 1|x) = P (Y = 1|x)

=
P (x|Y = 1)P (Y = 1)

P (x)
=

g(x)w

wg(x) + w0g0(x)

=
g(x)

g(x) +
(
w0

w

)
g0(x)

.

Note this equals the result in the book if N0 = N .

Notes on Object Dissimilarity

From the definition of d̄j of

d̄j =
1

N2

N∑

i=1

N∑

i′=1

(xij − xi′j)
2 ,

we can transform this to an expression relating d̄j to the variance of xj . To do this we first
expand the quadratic in the double summation and write d̄j as

d̄j =
1

N2

N∑

i=1

N∑

i′=1

(x2
ij − 2xi′jxij + x2

i′j)

=
1

N2

N∑

i=1

N∑

i′=1

x2
ij −

2

N2
(N2x̄2

j ) +
1

N2

N∑

i=1

N∑

i′=1

x2
i′j

=
1

N

N∑

i=1

x2
ij − 2x̄2

j +
1

N

N∑

i′=1

x2
i′j .
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To continue, recall that if X is a random variable with N samples xi then one can show that

Var(X) =
1

N

N∑

i=1

xi
2 −

(
1

N

N∑

i=1

xi

)2

=
1

N

N∑

i=1

xi
2 − x̄2 ,

so that
1

N

N∑

i=1

x2
i = Var(X) + x̄2 .

Thus using this we see that d̄j can be written as

d̄j = Var(xj) + x̄j − 2x̄2
j +Var(xj) + x̄j = 2Var(xj) , (143)

as claimed in the books equation 14.27.

Notes on the k-means algorithm

Recall the definition of W (C)

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

||xi − xi′ ||2 , (144)

then since
||xi − xi′ ||2 = (xi − xi′)

T (xi − xi′) = xT
i xi − 2xT

i xi′ + xT
i′xi′ ,

then we can write
∑

C(i′)=k ||xi − xi′ ||2 as

∑

C(i′)=k

(xT
i xi − 2xT

i xi′ + xT
i′xi′) = Nkx

T
i xi − 2xT

i (Nkx̄k) +
∑

C(i′)=k

xT
i′xi′ .

Next perform the summation of this expression over the points xi such that C(i) = k to get

Nk

∑

C(i)=k

xT
i xi − 2(Nkx̄k)

T (Nkx̄k) +Nk

∑

C(i′)=k

xT
i′xi′ = 2Nk


 ∑

C(i)=k

xT
i xi −Nkx̄

T
k x̄k


 . (145)

We would like to show that the expression in brackets is equal to
∑

C(i)=k ||xi− x̄k||2. To do
that we next consider

∑

C(i)=k

||xi − x̄k||2 =
∑

C(i)=k

(xT
i xi − 2xT

i x̄k + x̄T
k x̄)

=
∑

C(i)=k

xT
i xi − 2(Nkx̄k)

T x̄k +Nkx̄
T
k x̄k

=
∑

C(i)=k

xT
i xi −Nkx̄

T
k x̄k ,

137



so they are equal. Putting
∑

C(i)=k ||xi − x̄k||2 where the expression in brackets is in Equa-
tion 145, and then into Equation 144 we find

W (C) =

K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2 , (146)

which is the books equation 14.31.

The book also claims that the solution m to the following minimization problem

argminm

∑

i∈S

||xi −m||2

is x̄S or the mean over the points in the set S. This can be shown by defining f(m) ≡∑
i∈S ||xi−m||2 taking the derivative with respect to m, setting the result equal to zero and

then solving for m. Recalling that

∂

∂m
(xi −m)TA(xi −m) = −(A + AT )(xi −m) ,

so ∂
∂m

∑
i∈S ||xi −m||2 is given by

−2
∑

i∈S

(xi −m) .

When we set this expression equal to zero and solve for m we have
∑

i∈S

xi =
∑

i∈S

m = |S|m,

or

m =
1

|S|
∑

i∈S

xi = x̄S ,

showing the claimed result. Here we have denoted |S| the number of points in the set S.

Exercise Solutions

Ex. 14.1 (the weighted Euclidean distance)

Consider the expression for d
(w)
e (xi, x

′
i). We see that

d(w)
e (xi, x

′
i) =

∑p
l=1wl(xil − xi′l)

2

∑p
l=1wl

=

p∑

l=1

(
wl∑p
l=1wl

)
(xil − xi′l)

2 .

Define sl =
wl∑p
l=1 wl

then the above can be written as

d(w)
e (xi, x

′
i) =

p∑

l=1

(
√
slxil −

√
slxi′l)

2 .
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If we define vectors zi with components given by

zil = xil

√
sl = xil

(
wl∑p
l=1wl

)1/2

,

then the above shows that d
(w)
e (xi, x

′
i) is equal to de(zi, z

′
i) as we were to show.

Ex. 14.2 (k-means as the EM algorithm)

Part 1: The likelihood function for the data set {xi}Ni=1 is given by

N∏

i=1

g(xi) =

N∏

i=1

(
K∑

k=1

πkgk(x)

)
.

The loglikelihood is then given by

N∑

i=1

log

(
K∑

k=1

πkgk(x)

)
.

Ex. 14.5 (k-means and the SOM algorithm on some semi-spherical data)

Since the R programming envionment provides a function for k-means (called kmean) and a
function for Kohonen’s self-organizing maps (called SOM) we will use these functions to study
this problem.

Ex. 14.6 (k-means and the SOM algorithm on the tumor microarray data)

Ex. 14.7 (PC minimization)

We want to find µ and Vq that minimize

N∑

i=1

||xi − µ− Vqλi||2 . (147)

We take the derivative with respect to µ, set the result equal to zero, and solve for µ. We
find this derivative given by

∂

∂µ

(
N∑

i=1

(xi − µ− Vqλi)
T (xi − µ− Vqλi)

)
=

N∑

i=1

−2(xi − µ− Vqλi) .
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Setting this equal to zero and solving for µ we find

µ = x̄− Vq

(
1

N

N∑

i=1

λi

)
, (148)

where x̄ = 1
N

∑N
i=1 xi. Next we take the derivative of Equation 147, with respect to λi, set

the result equal to zero and then solve for λi. To do this we write the sum in Equation 147
as

N∑

i=1

[(xi − µ)T − 2(xi − µ)TVqλi + λT
i V

T
q Vqλi] .

From which we see that taking, the ∂
∂λi

derivative of this expression and setting the result
equal to zero is given by

−2((xi − µ)TVq)
T ++(V T

q Vq + V T
q Vq)λi = 0 ,

or
V T
q (xi − µ) = V T

q Vqλi = λi , (149)

since V T
q Vq = Ip. When we put this value of λi into Equation 148 to get

µ = x̄− VqV
T
q (x̄− µ) .

Thus µ must satisfy
VqV

T
q (x̄− µ) = x̄− µ ,

or
(I − VqV

T
q )(x̄− µ) = 0 .

Now I − VqV
T
q is the orthogonal projection onto the subspace spanned by the columns of Vq

thus µ = x̄+ h, where h is an arbitray p dimensional vector in the subspace spanned by Vq.
Since Vq has a rank of q the vector h is selected from an p− q dimensional space (the space
spanned by the orthogonal complement of the columns of Vq). If we take h = 0 then µ = x̄
and we get

λi = V T
q (xi − x̄) ,

from Equation 149.

Ex. 14.8 (the procrustes transformation)

For the Procrustes transformation we want to evaluate

argminµ,R||X2 − (X1R + 1µT )||F . (150)

This has the same solution when we square the same norm as above

argminµ,R||X2 − (X1R + 1µT )||2F .

When we use the fact that ||X||2F = trace(XTX) we see that the above norm equals

trace((X2 −X1R− 1µT )T (X2 −X1R− 1µT )) .
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To minimize this expression with respect to µ and R we next expand the quadratic in the
above expression as follows

((X2 −X1R)− 1µT )T ((X2 −X1R)− 1µT ) = ((X2 −X1R)T − µ1T )((X2 −X1R)− 1µT )

= (X2 −X1R)T (X2 −X1R)

− (X2 −X1R)T1µT − µ1T (X2 −X1R)

+ µ1T1µT . (151)

Note that when dealing with scalar inner products the terms linear in µ are equal to each
other and therefore double. In this case these two terms (X2−X1R)T1µT and µ1T (X2−X1R)
are matrices and are not nessisarily equal to each other. Note that some of the expressions
in the above simplify. We have 1T1 = N and

1TX2 = Nx̄T
2 ,

where x̄T
2 is the columnwise mean of the matrix X2 i.e.

x̄T
2 =

[
1

N

N∑

i=1

(X2)i1,
1

N

N∑

i=1

(X2)i2

]

In the same way 1TX1 = Nx̄1, where x̄T
1 is the columnwise mean of X1. Recalling that

our objective function to minimize is the trace of the four terms in Equation 151 above
we can minimize this expression by taking the µ derivative, setting the result equal to zero
and solving for µ. To take the derivative of the trace of Equation 151 we need to use
Equations 160, 159, and 162 to get

−(X2 −X1R)T1− (X2 −X1R)T1+ 2Nµ .

Setting this equal to zero and solving for µ gives

µ =
1

N
(XT

2 − RTXT
1 )1 = x̄2 −RT x̄1 . (152)

Note: that this somewhat different than the result in the book where the R appears without
the transpose. If anyone sees an error in my calculations please let me know. Using this
result we see that our minimization argument in Equation 150 now becomes

X2 −X1R − 1µT = X2 −X1R− 1(x̄T
2 − x̄T

1R)

= X2 − 1x̄T
2 − (X1 − 1x̄T

1 )R

= X̃2 − X̃1R ,

where we have introduced the mean reduced matrices X̃i as defined in the book. Using this
expression in Equation 150 and expanding the quadratic as before the minimization problem
we are trying to solve becomes

argminRtrace(X̃
T
2 X̃2 − X̃T

2 X̃1R −RT X̃T
1 X̃2 +RT X̃T

1 X̃1R) .

To minimize this we take the derivative with respect to R, set the result equal to zero, and
solve for R. Taking this derivative and using Equations 158, 161, and 162 we get

−X̃T
1 X̃2 − X̃T

1 X̃2 + 2X̃T
1 X̃1R = 0 .
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when we solve for R we get
R = (X̃T

1 X̃1)
−1(X̃T

1 X̃2) . (153)

Warning: this result is different that what is claimed in the book and I don’t see how to
make the two the same. If anyone knows how to make the results equivalent please let me
know. One piece of the puzzel is that R is supposted to be orthogonal. I have not explicitly
enforeced this constraint in any way. I think I need to modify the above minimization to
add the constraint that RTR = I.

This problem is discussed in greater detail in [10].

142



0 500 1000 1500 2000 2500

0.0
40

0.0
45

0.0
50

0.0
55

0.0
60

0.0
65

0.0
70

seq(1, n_trees)

rf_
tes

t_e
rro

r

Random Forest
Gradient Boosting (5 Node)

Figure 22: A duplication of the books Figure 15.1, comparing random forests with gradient
boosting on the “spam” data.

Chapter 15 (Random Forests)

Notes on the Text

Duplicating Figure 15.1 (classification performance on the spam data)

In the R script dup fig 15 1.R we duplicate the results from the books Figure 15.1 comparing
the classification performance of random forests and gradient boosting on the “spam” data.
When that script is run it generates the results given in Figure 22. This plot is qualitatively
the same as given in the book. My random forest test error rate seems more variable than
the one that the book presents. The general conclusion presented in the book still seems to
hold in that the gradient boosting algorithm seems to reach a lower error rate than random
forest algorithm.

Duplicating Figure 15.2 (classification of the nested spheres data)

In the R script dup fig 15 2.R we duplicate the results from the books Figure 15.2 comparing
random forests with gradient boosting on the “nested spheres” data. When that script is
run it generates the results given in Figure 23. This plot looks quantitatively very similar
to the one given in the book.
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Figure 23: A duplication of the books Figure 15.2, comparing random forests with gradient
boosting on the “nested spheres” data.

Exercise Solutions

Ex. 15.1 (the variance of the mean of correlated samples)

We are told to assume that xi ∼ N(m, σ2) for all i and that xi and xj are correlated with a
correlation coefficient of ρ. We first compute some expectation of powers of xi. First recall
from probability that the variance in terms of the moments is given by

E[X2] = Var(X) + E[X ]2 .

Next the definition of the correlation coefficient ρ we have that

1

σ2
E[(xi −m)(xj −m)] = ρ > 0 ,

for i 6= j. We can expand the above expectation to get

E[xixj ] = ρσ2 +m2 .

Thus we now have shown that

E[xi] = m

E[xixj ] =

{
ρσ2 +m2 i 6= j
σ2 +m2 i = j

.

The variance of the estimate of the mean is now given by

Var

(
1

B

B∑

i=1

xi

)
=

1

B2
Var

(
B∑

i=1

xi

)
=

1

B2


E



(

B∑

i=1

xi

)2

− E

[
B∑

i=1

xi

]2
 . (154)
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The second expectation is easy to evaluate

E

[
B∑

i=1

xi

]
=

B∑

i=1

E[xi] = Bm ,

as E[xi] = m for all i. For the first expectation note that

(
B∑

i=1

xi

)2

=

B∑

i,j=1

xixj .

Thus we have

E



(

B∑

i=1

xi

)2

 =

B∑

i,j=1

E[xixj ] = BE[x2
i ] + (B2 − B)E[xixj ]

= B(σ2 +m2) + (B2 − B)(ρσ2 +m2)

= Bσ2 +B2ρσ2 +B2m2 − Bρσ2 .

With this expression in Equation 154 we can now compute Var
(

1
B

∑B
i=1 xi

)
and find

Var

(
1

B

B∑

i=1

xi

)
=

σ2

B
+ ρσ2 − ρσ2

B
= ρσ2 +

1− ρ

B
σ2 . (155)

Which matches the expression in the book.
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A Appendix

A.1 Matrix and Vector Derivatives

In this section of the appendix we enumerate several matrix and vector derivatives that are
used in the previous document. We begin with some derivatives of scalar forms

∂xTa

∂x
=

aTx

∂x
= a (156)

∂xTBx

∂x
= (B+BT )x . (157)

Next we present some derivatives involving traces. We have

∂

∂X
trace(AX) = AT (158)

∂

∂X
trace(XA) = AT (159)

∂

∂X
trace(AXT ) = A (160)

∂

∂X
trace(XTA) = A (161)

∂

∂X
trace(XTAX) = (A+AT )X . (162)

Derivations of expressions of this form are derived in [3, 4].
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