
Some Notes from the Book:

Practical Genetic Algorithms

by Randy L. Haupt and Sue Ellen Haupt

John L. Weatherwax∗

December 9, 2015

Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

Acknowledgments

Special thanks to (most recent comments are listed first): Christopher Ryan (found a bug
in my tournament selection code), Arshia Prado (comments on the artificial neural network
example that helped find a few bugs in the MATLAB codes) for helping to improve these
notes and solutions.

All comments (no matter how small) are much appreciated. In fact, if you find these notes
useful I would appreciate a contribution in the form of a solution to a problem that is not yet
worked in these notes. Sort of a “take a penny, leave a penny” type of approach. Remember:
pay it forward.

∗
wax@alum.mit.edu

1

Introduction to Optimization

Problem Solutions

Note: For many of these problems I used the Matlab function testfunction.m provided in
the appendix of this book. Many of the local optimization routines discussed in this chapter
assume an infinite domain for the independent variables of the minimization function. Since
this is not true for all test function, if we are attempting to minimize a function defined
over a bounded domain we need to either modify the local algorithms from their unbounded
form to make sure that they respect variable constraints or transform the problem to a
function defined on an unbounded domain using a technique like the logistic transformation
as indicated in Problem 8 below. Once this transformation has been performed one can then
use unbounded local methods to compute function minimizations.

Problem 1 (some classical optimization methods)

The various functions from the Appendix can be called using the Matlab function testfunction.m.
If desired these functions can be plotted using the Matlab script plot test functions.m.
Since various local optimization routines from this chapter require derivative information
there are two Matlab functions denoted testfunctionprime.m and testfunctionprimeprime.m
that calculate the first and second derivatives of the objective function respectively. Rather
than implement the various local optimization methods discussed in the text we will simply
use the Matlab optimization routines found here: http://www4.ncsu.edu/~ctk/matlab_darts.html.
To use these routines we needed to use the same functional calling convention specified in the
documentation with these tools. Thus we created a function “wrapper” around the above
already mentioned test functions called fn wrap.m. The optimization methods discussed in
the text are implemented in the Matlab functions:

• nelder.m for Nelder Mead simplex optimization

• bfgswopt.m for the BFGS optimization method

• steep.m for the steepest decent optimization method

We choose to demonstrate the above solution methods on the F10 function. This function
is defined as

10N +
N
∑

n=1

[x2
n − 10 cos(2πxn)] , (1)

which has an unbounded domain and has a unique minimum of 0 at the point (x, y) =
(0, 0) (when N = 2). For the function F10 this exercise is worked in the Matlab script
chap 1 prob 1.m. When that script is run we observe that depending on the starting point
each algorithm can converge to points that are not the global minimum. The closer one starts

2

to the global minimum the better the algorithms do. If started close enough the algorithms
generally converge to the global minimum.

Problem 2 (different starting values)

Different starting values can lead to very different optimal solutions as seen by the numerical
experiments performed above.

Problem 3 (many different starting values)

We generate 25 random initial conditions and run the steep.m code for each one in the Mat-
lab script chap 1 prob 3.m. The initial guess at the minimum is taken as x0 = 10.*randn(2, 1);

or a Gaussian random vector centered at (0, 0) with a standard deviation of 10. When we
do that we get following

x_0= 11.65 y_0= 6.27 x_f= 12.93, y_f= 2.98, fn= 177.090

x_0= 0.75 y_0= 3.52 x_f= 3.98, y_f= -1.99, fn= 19.899

x_0= -6.97 y_0= 16.96 x_f= -5.97, y_f= -2.98, fn= 44.773

x_0= 0.59 y_0= 17.97 x_f= 2.98, y_f= -1.99, fn= 12.934

x_0= 2.64 y_0= 8.72 x_f= -2.98, y_f= -2.98, fn= 17.909

x_0= -14.46 y_0= -7.01 x_f= 1.99, y_f= 0.00, fn= 3.980

x_0= 12.46 y_0= -6.39 x_f= 0.00, y_f= 9.95, fn= 99.492

x_0= 5.77 y_0= -3.60 x_f= 5.97, y_f= 0.99, fn= 36.813

x_0= -1.36 y_0= -13.49 x_f= 4.97, y_f= 2.98, fn= 33.828

x_0= -12.70 y_0= 9.85 x_f= -12.93, y_f= 9.95, fn= 267.627

x_0= -0.45 y_0= -7.99 x_f= 5.97, y_f= -2.98, fn= 44.773

x_0= -7.65 y_0= 8.62 x_f= 0.99, y_f= 0.99, fn= 1.990

x_0= -0.56 y_0= 5.13 x_f= -2.98, y_f= -0.99, fn= 9.950

x_0= 3.97 y_0= 7.56 x_f= 3.98, y_f= 7.96, fn= 79.595

x_0= 4.00 y_0= -13.41 x_f= 0.99, y_f= 5.97, fn= 36.813

x_0= 3.75 y_0= 11.25 x_f= 1.99, y_f= -1.99, fn= 7.960

x_0= 7.29 y_0= -23.77 x_f= 0.99, y_f= -0.00, fn= 0.995

x_0= -2.74 y_0= -3.23 x_f= -0.99, y_f= -0.99, fn= 1.990

x_0= 3.18 y_0= -5.11 x_f= -0.99, y_f= -3.98, fn= 16.914

x_0= -0.02 y_0= 16.07 x_f= 2.98, y_f= -3.98, fn= 24.874

x_0= 8.48 y_0= 2.68 x_f= 4.97, y_f= 4.97, fn= 49.747

x_0= -9.23 y_0= -0.70 x_f= 2.98, y_f= -0.00, fn= 8.955

x_0= 1.48 y_0= -5.57 x_f= -0.99, y_f= -0.99, fn= 1.990

x_0= -3.37 y_0= 4.15 x_f= -2.98, y_f= -0.99, fn= 9.950

x_0= 15.58 y_0= -24.44 x_f= 11.94, y_f= 7.96, fn= 206.941

We see that none of the solutions found the global minimum. If we decrease the standard
deviation in the random variable draw to 1 from 10 we still don’t discover the global min-

3

imum. If we further decrease it to 0.1 most optimization runs find the global minimum of
(0, 0). This is a good demonstration of how strongly dependent the initial condition of our
minimization routines is.

Problem 5 (running with restarts)

This problem is implemented in the Matlab script chap 1 prob 5.m. For the minimization
routines tested, this did not seem to be an effect that is worthy of consideration. Rerunning
the minimization routines with an initial guess given by the solution to the previous iterate
seemed to converge to the same optimum.

Problem 7 (using Lagrangian multipliers)

We first form the Lagrangian augmented function fλ which in this case is given by

fλ(u, v, w, x; κ1, κ2) = u2 + 2v2 + w2 + x2

+ κ1(u+ 3v − w + x− 2)

+ κ2(2u− v + w + 2x− 4)

We then compute the derivatives of this function with respect to all variables (u, v, w, x, κ1, κ2)
and find

∂fλ
∂u

= 2u+ κ1 + 2κ2

∂fλ
∂v

= 4v + 3κ1 − κ2

∂fλ
∂w

= 2w − κ1 + κ2

∂fλ
∂x

= 2x+ κ1 + 2κ2

∂fλ
∂κ1

= u+ 3v − w + x− 2

∂fλ
∂κ2

= 2u− v + w + 2x− 4 .

When we see these relationships equal to zero we get six equations in the six unknowns
(u, v, w, x, κ1, κ2). Since the above is a system of linear equations we can solve it easily. This
is done in the Mathematica workbook chap 1 prob 7.nb where we get the solution

u =
67

69
, v =

2

23
, w =

14

69
, x =

67

69
, κ1 = −26

69
, κ2 = −18

23
.

4

Problem 8 (transforms from a bounded domain to an infinite domain)

To perform the transformation suggested in the book we would use something like the logistic
function defined by

P (t) =
1

1 + e−t
. (2)

Then p = P (t) maps the infinite interval in t i.e. −∞ < t < +∞ to the bounded interval in
p of [0, 1]. To map the unbounded variable t to an arbitrary variable v in the interval [a, b]
we would use

v = (b− a)P (t) + a .

Thus to map the bounded domain 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10 for the function F7 to an
infinite domain over new variables x̃ and ỹ we would use

x = 10P (x̃) and y = 10P (ỹ) ,

to get the objective function

f̃(x̃, ỹ) = 10P (x̃) sin(40P (x̃)) + 11P (ỹ) sin(20P (ỹ)) .

This later objective function is more suited to optimization via the unbounded techniques
above.

5

The Binary Genetic Algorithm

Notes on the Text

Notes on Variable Encoding and Decoding

I had trouble implementing exactly the expressions given for binary encoding of real variables.
In particular I found that

• The round function should be the ceiling function. This can be deduced by rec-
ognizing what this procedure is “doing”. Once we have a normalized variable qnorm
such that 0 ≤ qnorm ≤ 1 the first bit is denoting whether or not the value of qnorm is
to the left (denoted by a zero) or to the right (denoted by a one) of the midpoint of
the original interval [0, 1] or 1/2. Once we know which of the sub intervals [0, 1/2] or
[1/2, 1] contains qnorm we then recursively split that intervals into two regions. The
next bit determine whether the point qnorm falls to the left or right of the midpoint of
this interval. The midpoint in this case will be 1/4 if the point qnorm fall in [0, 1/2] and
will be 3/4 if the point falls in [1/2, 1]. The procedure is recursively continued Ngene

times.

• There should be no 2−(M+1) in the definition of qquant (at least it seems that encoding
followed by decoding matches the original variables better without this term).

• The expression for qn given by the books equation 2.9 or gene × QT is really the
expression for the variable qquant.

With these fixes I implemented binary encoding and decoding in the Matlab files: var encode.m

and var decode.m. These functions uses the axillary function enforce bounds.m and are
tested to show that they work using the script var encode decode Script.m. Running that
script give the result shown in Figure 1.

An implementaion of a binary genetic algorithm

To work the various problems and to understand the material better I implemented a binary
genetic algorithm in the MATLAB code binary GA.m. An example of how to run this code
is shown in the script binary GA Script.m. This code follows the discussion in the book
quite closely. In the routine select mates.m the user can choose from various types of ways
to select the parents of the offspring:

• pairing from top to bottom

• random pairing

6

10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

number of genes to use in binary representation

av
er

ag
e

er
ro

r
ov

er
 1

00
 d

is
cr

et
iz

at
io

ns

Figure 1: The results of running the script var encode decode Script.m. For various values
of Ngene, and for 100 trials, we generate 13 two dimensional random variables which we then
encode using var encode.m and decode using var decode.m. For that trial we compute the
matrix norm between the original samples and the encoded/decoded ones. The point plotted
about Ngene is the average this norm over all of the 100 samples. We see that as we increase
the number of genes the encoding/decoding procedure is more exact.

• rank weighting

• cost based weighting

• tournament selection

In the routine crossover.m the user can select various methods to perform crossover:

• single point

• double point

• uniform

The outputs from the routine binary GA.m are the final binary population and their function
values plus two arrays that given information on the algorithms convergence. The two arrays
are the minimum and the average function values over the population at each timestep. We
will use these routines to answer some of the questions below.

7

0 5 10 15 20 25
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

iteration number

best f(x)
average f(x)

Figure 2: The results of running the script binary GA Script.m on the F7 function.

Problem Solutions

Problem 1-2 (options for a binary GA)

These subroutines are all implemented in the discussed MATLAB files.

Problem 3 (using a binary GA to find the minimum of some functions)

In the routine binary GA Script.m we attempt to minimize a number of the functions given
in the text book. For example if we attempt to minimize the function F7 we get the following
convergence plot given in Figure 2. We see that the smallest value of the objective function
slowly making progress at getting smaller. The average fitness appears to oscillate as new
genetic material is added from mutations. The value found for the minimum is given by

top 5 solution x values

9.0759 8.7192

9.0725 8.5866

9.0725 8.5866

9.0725 8.5866

9.0725 8.5866

top 5 f(x) values

-18.4062

-18.3469

-18.3469

8

-18.3469

-18.3469

These are very close to the optimum global value which can be found on Page 25.

Problem 4 (experiments with binary GA)

One thing that I found interesting when experimenting with these routines was that increas-
ing the number of bits in a gene did not significantly “focus in” on the optimal location (or
at least it did so very slowly). On the other hand, it seemed that with a genetic algorithm
it was very “easy” to get “close” to the global minimization. What I mean by this is that
depending on the problem sometimes with very small populations N_pop=10 and very few
bits N_gene=10 the binary genetic algorithm was able to produce a solution very close the
global optimum. This is effectively impossible with local optimization methods. These local
optimization methods are able to converge to much greater precision however.

Problem 7 (sensitivity to µ and Npop)

Parts of this problem is worked in the MATLAB script chap 2 prob 7.m where we pick the
function F8 which seem to be rather difficult to find the exact minimum of. We then for
various value of µ and Npop we look at the smallest value of our objective function at the
end of our algorithmic runs. We run our genetic algorithm 100 times saving the smallest
value of our objective function each time. We then compute the average and the standard
deviation of our minimum function value over all of these Monte Carlo trials. It is this
average and its one sigma confidence interval that we then plot. These plots are presented
in Figure 3. Further explanations are given in the figure caption. From the discussion in the
caption it looks like having a larger population size is more important at ensuring we obtain
the global minimum. The mutation rate needs to be large enough so that we continue to
introduce genetic variability. Any larger and it just introduces variance to our optimization
runs, meaning that each optimization run can give very different results. It might be wise
then to start with a relatively small value for µ like 0.01 and only experiment with increasing
its value after one has decided on a optimal value for Npop (using plots like the above and
looking for a “kink” in the graph).

9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−19

−18.5

−18

−17.5

−17

−16.5

−16

−15.5

−15

value of mu

a
v
e

r
a

g
e

 o
f

th
e

 s
m

a
ll
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

average

lower 1 sigma CI

upper 1 sigma CI

0 100 200 300 400 500 600 700 800 900 1000
−18.5

−18

−17.5

−17

−16.5

−16

value of N
pop

a
v
e

r
a

g
e

 o
f

th
e

 s
m

a
ll
e

s
t
fu

n
c
ti
o

n
 v

a
lu

e

average

lower 1 sigma CI

upper 1 sigma CI

Figure 3: Left: The effect of the average minimum function (and its confidence interval)
value found for the function F8 using a genetic with Npop = 50 for all runs as a function
of the mutation rate µ. We see that as we increase the mutation rate the average of the
smallest function value found can vary but is relatively flat. What is very large are the
confidence bounds around this mean. Some of these optimization runs must find very low
function values while others must not (to generate this large variance). Right: The effect of
the average minimum function value found for the function F8 using a genetic algorithm and
confidence bounds on this value as a function of Npop. We see that as we increase the size
of the population the average of the smallest value found decreases quickly at first and then
eventually flattens out. This plot indicates that for this problem if we run Npop > 600 then
we can be more sure that we will obtain the global minimum (since the variance is relatively
small there).

10

The Continuous Genetic Algorithm

Notes on the Text

An implementation of a continuous genetic algorithm

To work the various problems and to understand the material better I implemented a con-
tinuous genetic algorithm in the MATLAB code continuous GA.m. An example of how to
run this code is shown in the script continuous GA Script.m. This code follows the discus-
sion in the book quite closely. Just as in the binary genetic algorithm case in the routine
select mates.m the user can choose from various types of ways to select the parents of the
offspring:

• pairing from top to bottom

• random pairing

• rank weighting

• cost based weighting

• tournament selection

In the routine crossover.m the user can select various methods to perform crossover:

• single point

• double point

• uniform

• various blending methods

The outputs from the routine continuous GA.m are the final genetic population, their func-
tion values plus two arrays that given information on the algorithms convergence. The
two arrays are the minimum and the average function values over the population at each
timestep. We will use these routines to answer some of the questions below.

Problem Solutions

Problem 1-2 (options for a continuous GA)

Many of these subroutines are implemented in the discussed MATLAB files.

11

0 5 10 15 20 25
−20

−15

−10

−5

0

5

iteration number

best f(x)
average f(x)

Figure 4: The results of running the script continuous GA Script.m on the F7 function.

Problem 3 (continuous GA to find the minimum of some functions)

In the routine continuous GA Script.m we attempt to minimize a number of the functions
given in the textbook. For example, if we attempt to minimize the function F7 we get the
convergence plot given in Figure 4. We see that the smallest value of the objective function
slowly making progress at getting smaller. The average fitness appears to oscillate as new
genetic material is added from mutations. The value found for the minimum is given by

op 5 solution x values

9.0389 8.6682

9.0389 8.6681

9.0390 8.6681

9.0389 8.6682

9.0389 8.6681

top 5 f(x) values

-18.5547

-18.5547

-18.5547

-18.5547

-18.5547

These are very close to the optimum global value which can be found on Page 25.

12

Problem 4 (experiments with continuous GAs)

This is similar to Problem 7 in the chapter on binary genetic algorithms. One could perform
the same type of experiments here.

Problem 8 (differences between binary and continuous GAs)

One thing that I found interesting when experimenting with these routines was that the
continuous genetic algorithm seamed more able to “focus in” on the optimal location as the
number of iterations increased. It appeared that it was easier to obtain minimums with higher
accuracy using the continuous genetic algorithm than using the binary genetic algorithm.
Again, it was remarkable how “easy” it was to get “close” to the global minimization. What
I mean by this is that depending on the problem sometimes with very small populations
N_pop=10 the continuous genetic algorithm was able to produce very quickly a solution very
close the global optimum. This is effectively impossible with local optimization methods.
To have a robust solution to a given problem one would need to study convergence plots like
presented in Problem 7 in the previous chapter to determine values for Npop, µ, the number
of iterations, etc. that give consistent (and good) results.

13

An Added Level of Sophistication

Problem Solutions

Problem 1 (avoiding repeated chromosomes)

Part (a): As the initial population of a continuous genetic algorithm is much less likely
to have duplicated elements we will only consider the case of a binary genetic algorithm.
The book initially suggests the following Matlab code to generate the population of initial
chromosomes

% Generate the initial population:

N_bits = N_gene*N_var;

pop = round(rand(N_pop,N_bits));

A drawback of this technique is that it can generate a population that has duplicate chro-
mosomes. One suggestion given in the book to avoid this problem is to ensure that there
is a unique binary string in each of the N pop chromosomes. Note that if N pop too large
relative to N bits it wont be possible to obtain unique chromosomes. In fact with N bits

we have at most 2N bits unique binary strings. Thus we assume that Npop < 2Nbits. Given
that constraint we can generate Npop unique binary strings with the alternative commands

% Generate the initial population:

N_bits = N_gene*N_var;

max_N_BS = 2^N_bits;; % maximum number of binary strings

assert(N_pop < max_N_BS, ’unique chromosomes not possible’);

binary_strings = dec2bin(0:(max_N_BS-1));

% permute the order for more randomness

binary_strings = binary_strings(randperm(max_N_BS), :);

% split the char strings into arrays with numerical 0’s and 1’s

binary_numbers = zeros(size(binary_strings));

binary_numbers(binary_strings(:)==’1’) = 1;

% a subset of these will be a unique binary population

pop = binary_numbers(1:N_pop, :);

In the above code we generate “all” possible binary strings and then take a random selection
as the initial population. If that takes too much computation time one could generate fewer
elements of the binary strings array.

14

Problem 2 (a method for dealing with multiobjective functions)

For this problem is based on the following observation that one could use to find the Pareto
front (if we had infinite computer power). To begin with we will specify a fixed set of weights,
wn, such that

∑N

n=1wn = 1 from which we combine our N objective functions fn as

cost(x) =

N
∑

n=1

wnfn(x) . (3)

We then run a standard genetic algorithm to find the optimal value for x∗ that minimizes
the above cost(x) function. The point (f1(x

∗), f2(x
∗), · · · , fN(x∗)) is a point on the Pareto

front. Note in a expression like this it is important that the range of each of the functions
fn(x) be the same. If it is not then the optimization above may have trouble blending the
functions fn(x) together. For the functions given here and where 1 ≤ xn ≤ 2 we should scale
their ranges so that they all map to the limits 0 ≤ fn ≤ 1. This could be done in a number
of ways. One way to do this would be for each of the above functions to tabulate its value
some number of times for xn between [1, 2] and compute the minimum and maximum fn
value. We would then scale the outputs of fn as

f̂n =
fn − fn,min

fn,max − fn,min
. (4)

We then implement the cost function as in Equation 3 but with fn → f̂n.

When there are many functions fn, there are many possible values of wn to compute min-
imization’s over and this is a computational intensive method. When there are just two

functions fnthe combination above becomes

cost(x) = wf1(x) + (1− w)f2(x) , (5)

with 0 ≤ w ≤ 1, and we can perform a simpler discretization of w to compute the Pareto
front. For this problem the book gives 9 weights for w for each of which we will run the
genetic algorithm that we developed earlier to find the minimum of Equation 5.

We now compute the bounds for each of the functions f1 and f2 and then display our results.
For the function f1 given here defined by

f1(x) = x1 + x2
2 + x3 +

√
x4 ,

by noting that each function in the sum is an increasing function of xn we see that

f1(x) ≤ 2 + 4 + 2 +
√
2 = 8 +

√
2

f1(x) ≥ 1 + 1 + 1 +
√
1 = 4 .

Thus we know the values of f1,min = 4 and f1,max = 8 +
√
2. For f2(x) defined by

f2(x) =
1

x1
+

1

x2
2

+
√
x3 +

1

x4
,

15

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

objective function f
1

ob
je

ct
iv

e
fu

nc
tio

n
f 2

pareto front

Figure 5: The results of running the script chap 5 prob 2.m followed by the script
pareto GA Script.m.

since there are no cross product terms in its definition we see that

f2(x) ≤ 1 + 1
√
2 + 1 = 3 +

√
2

f2(x) ≥
1

2
+

1

4
+
√
1 +

1

2
=

9

4
.

Thus we know the values of f2,min = 9
4
and f2,max = 3 +

√
2. We first compute the Pareto

front as discussed above using the MATLAB script chap 5 prob 2.m and associated routines.
When that script is run the results are the blue line given in Figure 5.

Problem 3 (implementing a pareto genetic algorithm)

This is implemented in the MATLAB script pareto GA Script.m and the corresponding
function pareto GA.m. This later function is basically a coding of the function given in
the appendix of the book. The “Script” function runs the pareto GA on the same objective
function as the previous problem. When that script is run we get the result shown in Figure 5.
That code will plot on each iteration the value of (f1(x), f2(x)) for each x in the population
as a black dot. The pareto curve (for each iteration) is plotted as a green line. We see that
as the Pareto GA converges the green lines become closer to the blue line computed in the
previous problem. One wonders if we could use a technique like the previous problem to
compute a few samples on the pareto front to help convergence.

16

0 2 4 6 8 10 12 14 16 18 20
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

iteration number

po
pu

la
tio

n
av

er
ag

e
co

st

nonhybrid GA
hybrid GA

Figure 6: The results of running the script hybrid GA Script.m.

Problem 5 (a hybrid GA)

As discussed in the book, there are many ways one can implement a hybrid genetic algorithm.
In this problem “hybrid” means we use genetic algorithms for a global minimization search
and then use a local optimizer at some point in the optimization. I choose to implement a
version of a hybrid genetic algorithm where every hybrid GA n iters iterations (notionally
5) we use the Nelder-Mead simplex routine on some number hybrid GA n solutions (no-
tionally 3) solutions with the best fitness. The solution suggested by the genetic algorithm
is only replaced/modified after the local optimization routine runs if the new solution has
an objective function that is smaller than the one found by the GA. One needs to be careful
when one codes these algorithms in that the local optimization routine can find optimum
that are outside of the domain of interest and thus are not feasible solutions. As this change
is really a slight change to the existing continuous GA developed earlier I will add this func-
tionality as an option to that code. I then ran 100 monte carlo runs with initial random
populations of size 16 and looked at the best solution at each iteration for both a standard
GA and the hybrid GA in the Matlab script hybrid GA Script.m. When that script is run
we get the result shown in Figure 6. This is for the 8th numerical optimization problem
given in the text. In that figure one can see that the hybrid genetic algorithm is able to
reach a lower cost much earlier in the sequence of iterates. This shows some of the power of
applying this technique to your optimization routines.

17

Advanced Applications

Notes on the Text

Building Dynamic Inverse Models – The Linear Case

In this subsection of these notes we attempt to duplicate results from the book where they
used a genetic algorithm to estimate the coefficients of in a linear dynamical system.

In the first method I choose to try to duplicate these results I tried to estimate the coefficients
in the ordinary differential equation d

dt
x = Ax + b. Thus the coefficients we will try to

estimate are the elements of the matrix A and the vector b. To test this procedure we
started with the known vector solution given by

x(t) =





sin(t)
cos(t)

t



 .

To have this be a solution the coefficient matrix A and the vector b for this must satisfy

dx(t)

dt
=





cos(t)
− sin(t)

1



 =





a11 a12 a13
a21 a22 a23
a31 a32 a33









sin(t)
cos(t)

t



+





b1
b2
b3



 .

Thus the above vector for x(t) will be a solution to the given dynamical system if we take

a11 = a13 = 0 , a12 = 1 and b1 = 0

a22 = a23 = 0 , a21 = −1 and b2 = 0

a31 = a32 = a33 = 0 and b3 = 1 .

Thus in this problem there are 12 = 9 + 3 unknown parameters that the genetic algorithm
must estimate. When I tried to estimate these parameters I found that after a large number
of iterations using a continuous genetic algorithm that I couldn’t get estimates of aij or bi
that looked anything like the truth. It was also true that the plots of the output variable
xi(t) as a function of t for the approximate solutions looked nothing like the true a spiral
that was the target output.

Because of this result I choose to try a second method. Since the solution for z(t) is z(t) = t
we can write a differential equation for z(t) directly in terms of a linear system of the form
ẋ = Ax by introducing the two components z1(t) and z2(t) defined as the value of z(t) and
its derivative. This is we introduce

z1(t) ≡ z(t)

z2(t) ≡ ż(t) .

18

Then forming the vector z =

[

z1
z2

]

we find that the differential equation for the vector z is

given by
d

dt
z =

[

ż(t)
z̈(t)

]

=

[

z2(t)
0

]

=

[

0 1
0 0

] [

z1
z2

]

=

[

0 1
0 0

]

z .

Thus to incorporate the variables x(t) and y(t) we define the big vector X as

X ≡









x(t)
y(t)
z(t)
ż(t)









.

Then from the above discussion the matrix differential equation we are looking to solve is
given by

d

dt
X =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 0 0

















x(t)
y(t)
z(t)
ż(t)









=









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 0 0









X .

To solve the above differential equation, we need an initial conditions on the vector X(t).
To duplicate the books results We will take x(0) = 0, y(0) = 1, z(0) = 0 and ż(0) = 1. Thus
the initial conditions we will use on the vector X are

X(0) =









0
1
0
1









.

Note that for linear ordinary differential equations we can get the full solution using the
fundamental matrix which is related to the matrix exponential eAt. A more general technique
(that would work with nonlinear equations) is to solve the ordinary differential equation
numerically.

To each of these problem formulations when we use the continuous genetic algorithm one
needs to specify bounds on the variables that we are optimizing our objective function over.
Since the known parameters are all ±1 to make it more likely that the genetic algorithm will
be able to find a solution I took these bounds at 2. It would be nice to be able to compute
solutions with a larger number for this bound, implying that the genetic algorithm was in
some sense robust to this choice.

In the three Matlab scripts linear inverse model Script.m, linear ode function.m, and
genetic ode function.m, I implemented these ideas using the genetic algorithm developed
in previous chapters. One thing that was very prevalent was that solutions of the ordinary
differential equation ẋ = Ax can have exponentially growing behavior (not necessarily oscil-
latory). Because of that due to random mutation, we can get average population values that
are quite large. The genetic algorithm seemed to stall, in that the best function evaluation
didn’t change much (or at all in subsequent iterations). It might be prudent to add more
randomness if we don’t see the best population solution improving. Based on the discussion

19

−2
−1

0
1

2
3

4

−6

−4

−2

0

2
0

5

10

15

20

25

30

35

Figure 7: A first attempt at reproducing the linear inverse problem results from the book.
The green curve is the true profile and the red curve is our approximate solution computed
via a genetic algorithm. The qualitative behavior of the solution X has been captured.

above we obtained the following results when the Matlab code was run. First for the coeffi-
cient matrix computed via optimization A and the true coefficient matrix denoted by Atruth

we get

A_truth =

0 1 0 0

-1 0 0 0

0 0 0 1

0 0 0 0

A =

-0.1488 1.2380 0.1171 -0.1568

-1.6300 -0.3665 -0.0909 -1.5075

0.0031 1.0322 0.3169 1.4036

0.8356 1.1452 0.0541 0.1281

These two results are not that great. There were done with a population size of 500 and
10000 iterations which is quite a lot of computations. One can see that its looks like the
genetic algorithm is “almost” correctly estimating some of the coefficients. Which if we plot
the output from these two solutions we get Figure 7.

In the previous attempt our optimization algorithm picked a matrix A, solved the ordinary
differential equation (ODE) Ẋ = AX, and then assigned a goodness of fit based on the
difference between the ODE’s solution and the known truth value for X. From the above
results this procedure seems to be slowly converging and perhaps with a great number of
iterations or a larger population size would eventually converge. It seemed like it might be
better to formulate the problem to use the fact that not only do we exactly know the values
of X but we also exactly know the values of the derivative of X. In fact if we assume that X
has dynamics that are governed by an ordinary differential equation we have that Ẋ = AX

20

for all t in the given range. That gives rise to a different criterion function that might be
better at producing the correct value of A. What we do is to pick an A, and then using the
known values for X and Xt compute the error that this value of A

||Xt −AX||p ,

where this norm has to be averaged over all of the sampling time points ti. This is perhaps the
exact norm that the book suggested in the first place and that I didn’t understand how to use
it. I implemented this function in the Matlab function genetic ode function xt minus Ax.m.
We obtained the following results when these code were run. The coefficient matrix computed
via optimization and the true coefficient matrix denoted by Atruth we get

A_truth =

0 1 0 0

-1 0 0 0

0 0 0 1

0 0 0 0

A =

-0.9729 -0.2285 0.1346 -1.9827

-1.1279 0.0301 -0.0600 1.6432

0.9579 -0.1003 0.0681 -0.6358

-0.6355 0.8353 -0.0569 1.8645

Again these are not great results. The trajectory of X that this matrix generates does not
look anything like that generated by the truth.

Warning: In short, I was not able to duplicate the results from the book for this section. If
anyone can find something wrong with what I attempted to do (or agrees that they cannot
duplicate them either) please contact me.

Notes on Optimizing Neural Nets with GA’s

In this section I attempt to duplicate the results on using genetic algorithms to fit an artificial
neural network. The function f(x) considered in this section was

f(x) =
12

x2 cos(x) + 1/x
for 1 ≤ x ≤ 5 ,

which when plotted did not look anything like the plot given in the book. When I plotted
the above function I get the graph in Figure 8 (left). A troubling problem is the the above
function is singular at a point x in the domain 1 ≤ x ≤ 5 which would certainly make the
fitting process more difficult. Assuming that there was an error somewhere, I then tried to
fit an artificial neural network with a genetic algorithms to a function which looked like the
one suggested in the book. I choose the function

f(x) =
10− x2 cos(x)− 1/x

22
.

21

1 1.5 2 2.5 3 3.5 4 4.5 5
−500

−400

−300

−200

−100

0

100

200

300

x

f(
x)

original function f(x)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

alternative function f(x)

f(x)

NN approximation

Figure 8: Left: The function f(x) suggested in the book to be approximated with an artificial
neural network (ANN). This function has singularity in the domain 1 ≤ x ≤ 5. Right: The
function f(x) I attempted to fit with an ANN (blue) and the approximate function produced
by the artificial neural network (in red).

This is plotted in the Figure 8 (right). Note that this function has its domain the interval
1 ≤ x ≤ 5 and its range the interval 0 ≤ f(x) ≤ 1. It is common in neural networks
to requires all inputs and outputs to be bounded: either in the range [0, 1] or [−1,+1].
Because of this I transformed the inputs using x−3

2
so that the natural domain [1, 5] would

be mapped to [−1,+1]. In the MATLAB script artificial neural net Script.m we used
a continuous genetic algorithm to find optimal weights and bias that should give the best
function approximation to f(x) when using a neural network. We can see the best function
approximation found via the genetic algorithm in Figure 8 (right) as the red curve. In
general, the agreement is quite good.

Notes on Solving High-Order Nonlinear Partial Differential Equations

For the ordinary differential equation

(αu− c)uX = µuXXX − νuXXXXX = 0 ,

If we let the solution u(X) be parametrized as

u(X) =
K
∑

k=1

ak cos(kX) ,

22

we have the given derivatives

uX =

K
∑

k=1

−akk sin(kX)

uXX =
K
∑

k=1

−akk
2 cos(kX)

uXXX =

K
∑

k=1

akk
3 cos(kX)

uXXXX =

K
∑

k=1

−akk
4 cos(kX)

uXXXXX =
K
∑

k=1

−akk
5 sin(kX) .

When we put that in the above we get

K
∑

k=1

ak
(

−k(αu(X)− c) + µk3 + νk5
)

sin(kX) = 0 .

If we call the left-hand-side of the above expression as a cost, we see that this cost is X
dependent via the sin(kX) and the function u(X), given known values of ak. Thus we can
evaluate the left-hand-side of this expression at a discrete set of grid points and and then sum
the absolute value of these points. If ak is picked such that this cost is exactly zero we have
found a solution to the original ordinary differential equation and to the super Korteweg–de
Vries sKDV equation.

23

More Natural Optimization Algorithms

Notes on the Text

Notes on particle swarm optimization (PSO)

For particle swam optimization the velocity and a particle update are given by

vnewm,n = voldm,n + Γ1r1(p
local
m,n − poldm,n) + Γ2r2(p

global best
m,n − poldm,n) (6)

pnewm,n = poldm,n + vnewm,n . (7)

Here r1 and r2 are random factors that change on iteration to iteration, the constant Γ1 is
the cognitive parameter that links the best local solution (found in the present population)
to the current particle. The constant Γ2 is the social parameter that links the best global
solution to the current particle.

In the Matlab code particle swarm optimization.m we have implemented a very simple
particle swarm optimization, that can allow the user to play with the parameters that are
input into this algorithm.

24

Test Functions

the test functions for minimization

This book provides a nice explanation and description of genetic algorithms. It provides more
than enough information for a practitioner to implement the ideas on his or her problem and
get quite satisfactory results. It also provides a nice set of test functions at the end of the
book that one can use to verify ones implementations. Unfortunately, it seems that there
are a great number of typos in this section of the book. The obvious ones that I found were:

• The function F3 defined as
∑N

n=1 x
2
n is said to have a minimum at (0, 0) of 1 (it should

be zero)

• The minimums of the F7 and F8 functions occur at exactly the same point and have
exactly the same value (even thought the function definitions are different). If the
suggested minimum point (0.9039, 0.8668) is evaluated we get 0.5283 under F7 and
0.5452 under F8 neither of which is very close to the suggested minimum value of
−18.55.

• The function F5 defined as
∑N

n=1 |xn| − 10 cos(
√

|10xn|) is said to have a minimum at
the scalar x = 0 with a value of 0.

There are probably other errors. To make sure that my genetic algorithm implemented when
I worked through this book I implemented an exhaustive search for the minimum in the
Matlab script global min of test functions.m. This could be improved in several ways
perhaps by running a local optimization routine like discussed in this chapter on the point
found from the exhaustive search I felt that having access to the true function minimization
helpful to provide confidence that my genetic algorithm were working. We tabulate the
minimum computed for some of the test functions here.

• F1 Minimum at 0 of value 1.

• F2 Minimum at 0 of value 0.

• F3 Minimum at (0, 0) of value 0.

• F4 Minimum at (1,−1) of value 0.

• F5 Minimum at (0, 0) of value −20.

• F6 Minimum at (9.6200) of value −100.2237.

• F7 Minimum at (9.0389, 8.6679) of value −18.5547.

• F8 Minimum at (1.1781, 8.6939) of value −18.2004.

• F9 Minimum varies depending on random draw.

25

• F10 Minimum at (0, 0) of value 0.

• F11 Minimum at (0, 0) of value 0.

• F12 Minimum at (−2.1417,−0.1515) of value −0.5231.

• F13 Minimum at (0, 0) of value 0.

• F14 Minimum at (1, 1.6606) of value −0.3356.

• F15 Minimum at (−2.7678,−5.0000) of value −16.9487.

• F16 Minimum at (−17.0077, 2.0742) of value −25.2305.

I have tried hard to make sure that everything above is correct but there could be some
errors in these calculations. If anyone finds any please let me know.

26

