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Chapter 4 (Eigenanalysis)

Problem Solutions

Problem 1 (some eigenvalues)

Part (a): We have
trace(R) = A1 + Ay = 2.0.

Part (b): Let the matrix @ = l 311 321 ] be the matrix with the eigenvectors of R as its
12 G2

columns. Then we must have

0.5 0
QHRQ:{ 0 1.5]'

Since the eigenvalues for R are unique the eigenvectors are unique under the assumption
that ¢7¢; = 1 so the decomposition is unique.

Problem 2 (the eigenvalues of triangular matrix)

Consider the expansion of the characteristic equation |[A — AI| = 0. From the form of A
this is equal to the product of the diagonal elements of A — Al and has zeros given by the
diagonal elements of A.

Problem 3 (pairs of eigenvectors)

If ¢. + jg; is an eigenvector of the system specified then

(Ar +JA) (@ +J@) = Mar + ja), (1)

and we want to know if ¢; —j¢, is an eigenvector. We can show that this is true by multiplying
Equation 1 by —j for which we get

(Ay + A (@ — jar) = Mai — Jar)

showing that the vector ¢; — jq, has the same eigenvalue.



Problem 4 (eigenvalues of correlation matrix)

From the definition of the correlation matrix and the vector u we have

o
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That is a matrix with o2 on the diagonals and the off diagonal elements don’t matter. Then
from Property 6: the sum of the \; equals the trace of R. Thus we have

Z \; = trace(R) = Mo? .

Problem 5 (the square root of a matrix R)

Part (a): Consider the given expression for R'/2

M
RY? =% N\qq!,
i=1

Then
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If ¢1,q0, -+, qu correspond to distinct eigenvalues of then the eigenvectors are orthogonal
and ¢fg; = 1if i = j and 0 if i # j (we assume normalized of eigenvectors) so the above

sum becomes
M
Z H
i=1

which equals R showing the intended summation expression for R'/? when squared does
produce R.

Part (b): Based on Part (a) we compute the unitary similarity transform i.e. we find the
eigenvalues \; and the eigenvectors ¢; of R such that Q¥ RQ = A. We then form the sum

M
> A aq!
=1

Then from Part (a) this equals R'/2.



Problem 6 (the determinant of R)

Use the similarity transform of R as Q" RQ = A and take the determinant of both sides.
We have

M
Q"RQ| = Al = [
i=1
The left-hand-side is |Q”||R||Q] as @ is unitary Q¥ = Q= thus we have

1
H| __ —1 -

thus the left-hand-side is |R].

Problem 7 (the product of two unitary matrices)

Let Uy and U, be unitary matrices that is UZ-H = U;l.

Part (a): Then consider (U,Uy)" = UMUH = U;'U! = (UU,)™! showing that U U, is
unitary.
Part (b): Let V = U~! with U a unitary matrix. Since
VH — (UH)fl — (Ufl)fl — U,
we have VVH = U~1U = I showing that V is unitary.

Problem 8 (the Schur decomposition)

Part (a): By the unitary similarity transformation property of positive semidefinite matrices
discussed in the book the Schur decomposition Z# AZ = T of the correlation matrix R takes
the form above with 7"= A a diagonal matrix.

Part (b): The subspace span(zi, 22, - - - , 2;) mentioned in the Schur decomposition is equiv-
alent to the subspace spanned by the eigenvectors of R with eigenvalues Aj, Ao, - -+, Ax.

Problem 9 (the LQ factorization)

We are told that A, — k,I = Q,L, thus L, = Q¥ (A, — k,I) since Q,, is unitary. We now
from A, 1 to find

An+1 = LnQn + kn[



as we were to show.

Part (a): From the given expression for v we have v/ v; = 1 and v/’v; = 0 if i # j, thus

i
we compute ¢;(n) as

ci(n) = VZH

u(n) for 0<i<M—1.

Part (b): Consider
Elci(n)cj(n)] = E[vi'u(n)(vj'u(n))"] = v Eua(n)u" (n)]v;
= VZHRV]' >0,

since R is positive semidefinite. We have assumed that u(n) is zero mean. Thus the Fourier
coefficients are correlated.

Part (c): From the above we see that E||c;(n)|?] = v Rv; or the power in the ith Fourier
mode.

Problem 11 (the condition number of A and UA)

Recall that the condition number of a matrix A is given by x(A) = ||A]|||A7Y]. If we use
the spectral norm for the definition of the norm || - || then one way to express this norm is
|| Ax||?
[|][?
Consider the matrix A but multiplied by a unitary matrix U or the matrix UA. We will

show that ||Al|s = |[|[UA]|s and ||A7Y||s = |[(UA)7Y|, from which we can conclude that y(A)
and y(UA) are the same. To begin note that

|[UAz||? = (UA2)? (UAx) = 2" ARUH U Az = 2" AP Az = || Ax| 2.

1112 = max

Thus U Al 2 A2
AR = max WAL _pp MAAE g2
w0 |lzl[F e ]2

Lets now consider |[(UA)7!|2. We have

O o O i i

Soap0 faf]? w0 [xf]?

To simplify the above note that

U 2|* = (U"2)" (U"2) = 2" UU" 2 = 2" = |||,

thus the norm of x is not changed by applying a unitary transformation to it. We can use

this to replace the denominator in the expression for ||(UA)™!||? above and get
AU |2
UA 112 ||
A = mae
[|A™ ]2 —12
pum S pu— A
max e AT



by replacing the maximization over x with a maximization over v = Uz since U is an
invertible transform. Combining these two results gives the desired result.

Problem 14 (Szego’s theorem)

If we take the function g to be g(x) = In(x) then the left-hand-side of the given expression

1S 1 " . 1M
am, (M 2 Wﬂ) =i, | (_11 Az‘)

Taking exponentials of this expression and the right-hand-side (the integral of g(S(w))) gives

(1) =ow (2 [ msene).

Since the determinant of R is equal to the product of the eigenvalues we have shown the
desired expression.

Problem 15 (condition numbers and linear systems)
Part (a): We are told to consider Rw = p and (R + 6R)(w + dw) = p. Expanding the
left-hand-side of the second equation gives
Rw + Réw + 0R(w + dw) =
Using Rw = p in the above gives
Réw + dR(w + dw) = 0.

Solving for dw we get
dw=—R'6R(w + dw) .

Taking vector norms on both sides we get

1wl < [[RZHINORI([Jwl] + [|ow])

IR IRI (‘ﬁfg‘ﬂ) (Il + 13w
18R] 18R]
= () ol + x0Tl

using the definition of the condition number y(R) = ||R]||||R~||. When we solve for ||dw
g X

in the above we get
H5RH) |9 R2]]
1—x(R) lowl]] < x(R) [|wl]
( [12]] 12|
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It can be shown that if our matrix perturbation dR is small enough that the new matrix

R + 0R is still invertible then % < ﬁ see [?]. In that case left-hand-side has a leading

coefficient that is positive and we can divide by it to get

lwll _  x(R) _|R]
- [[OR]] '
Tell = 1= x(m) B2 [[]

(2)

If we assume that X(R)% ~ 0 then we get
[|0w]| [|0R]|
— < x(R)——+.
wll = MR

the desired expression.

Part (b): We are told to consider Rw = p and R(w + dw) = p + op. Expanding the
left-hand-side of the second equation and using Rw = p gives

Réw = dp,
or solving for dw we get
Sw= R p.
Taking vector norms on both sides we get
- ||5p]]
0wl < ||R~"]||opl| = X(R)W’

using the definition of the condition number x(R) = ||R||||R7!||. Since Rw = p we have
1pll < |RI||w]] so & < 141 and we get

[IR|| — llpll
op
16wl] < x(RIPL
p||
o 6] 16p]|
w p
—— < Xx(R)5=7
] <X

the desired expression.

Problem 17 (doubly symmetric matrices)

An example of the matrix J and its actions on a matrix R can be helpful. For a 3-by-3
matrix we have

001
J=]010]. (3)
100

Then for a given matrix R
11 T2 T3
R= | 11 7192 793 )
31 T32 T33



we find JR given by

0 01 rir T2 713 r31 T32 T33
JR=1010 T21 To2 T23 = | To1 T22 T23 ) (4)
| 1 00 T3 T3z 733 T T2 T13

i.e. the rows of R are reversed. Next R.J is given by

i1 Ti2 T3 0 01 iz Ti2 Ti1
RJ = | ro1 792 123 0 1 0 =173 T2 ™11 ) (5)
L 731 T32 T33 100 ] 33 T32 Ti3

i.e. the columns of R are reversed. Finally we find JRJ given by

0 0 1 11 Ti2 T13 0 0 1 T's3 T32 T31
JRJ = 010 T91 To2 To3 010 — T3 Ta2 T21 ) (6)
1 00 r31 32 T33 1 00 i3 T2 Tl

i.e. the rows and columns of R are reversed.

Part (a): Note that if JRJ = R then
R'=WURN'=J'R'J'=JRJ,

showing that R~! is doubly symmetric.

Part (b): Let q be an eigenvector of R so that Rq = Aq. Then replacing R with JR.J since
R is double symmetric we get

JRJq = A\q,
or multiplying by J~! = J on both sides gives

RJq = \q, (7)

showing that Jq is also an eigenvector of R with the same eigenvalue A. Since we are told
that the eigenvalues of R are distinct R has distinct eigenvectors (one for each eigenvalue \)
thus we must have Jq o q since in that case Equation 7 would be satisfied. From the form
of J (a matrix with only zeros and ones) we only have to consider Jq = +q. Thus I have
shown that the matrix R has either symmetric or skew-symmetric eigenvectors.

Note: I'm not sure how to show that the number of these symmetric and skew-symmetric
eigenvectors equals [ (M + 1)/2| and |M/2] respectively. If anyone knows how to do this
part please contact me.

Problem 19 (more about doubly symmetric matrices)

Part (a): For a 3-by-3 matrix R given we note that

—= | p—p | =0=p2)|—=]| O = (1—p2)ar.
V2| V2|

Rq; =



Thus q; is an eigenvector of R with eigenvalue as claimed. Now with J given as in Equation 3
we have

0 01 1 1 1 -1
Jql = 010 —— 0 = = 0 =,
1 01 V2 —1 V2 1

thus this is our [ M/2]| = |3/2] = 1 skew-symmetric eigenvector. Now for R as given we find
Rq; given by

1 L+ pic; + po 1 L+ pici + p2
Rj=—F—= | mtatp | =—F— 2p1 + ¢
L | py 4 prei+1 Lrei | 14 pies + po

To have this equal \;q; requires (we can ignore the scaling factor /1 + ¢?)

L+ pici+pr=A
2p1 +c = )\Z‘Ci .

The first of these equations gives

A —1—
=t
P1
and the second of these equations gives
2p1
o1
Now note that
1
1
qu = &) =4q;,

which are the two symmetric eigenvectors.

Problem 20 (low-rank modeling)

When we apply low-rank modeling the output vector at the receiver is

p

p
Yindirect = Z ci(n)q; + Z v;(n)q; -
i=1

i=1

Then since u(n) = Zf\il ¢i(n)q; we have the error given by

€indirect — E [Hyindirect(n) - u(n)HQ}
M P 2 M 2
=FE |- Z ci(n)a; + Z vi(n)q; =LK Z di(n)q; )
i=p+1 i=1 =1




where we have defined d;(n) as

Thus evaluating €inqirect We have

P33 e,

i=1 j=1

€indirect =

Unless ¢ = j the term in the above summation vanishes due to the orthogonality of q; and
q; and we get

€indirect = ZE [d} (n ZE )] + Z Elci(n)ci(n)]
—Za + Z i = Z i+ po?,

i=p+1 =p+1

as we were to show.

Problem 21 (a minimum eigenfilter)

We would be minimizing the SNR at the output, since we are minimizing the Rayleigh
quotient
. wlRw _
i~y hein-
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Chapter 5 (Wiener Filters)

Notes on the Text
Notes on the principle of orthogonality

With a cost function J defined as J = Ele(n)e*(n)] and Vi defined in terms of the real
components ay and by as

oJ aJ
9o T an (8)
using the product rule we find ViJ is then given by
v.J = p|2eme®) +j5’(6(n)6 (n))
8ak 8bk

de(n) | de*(n)  .Oe(n) , ‘ de*(n)
- E[a—ake (n) +e(n) 2a, +7 b, e*(n) + je(n) b, } .

Vid =

(9)

To evaluate this expression recall that the definition of the error sequence e(n) in terms of
the complex numbers wy = a; + jby and the delayed signal u(n — k) is explicitly given by

e(n) =d(n) —y(n) =d(n) — Zw,’;u(n — k) =d(n Z ar — jbp)u(n — k).
k=0 k=0
From this the complex conjugate of this expression is easily computed
e*(n) =d*(n) —y*( Zwku n—=k)=d(n ZakJrjbk *(n—k).
k=0

Using each of these expressions we can directly compute the derivatives needed in Equation 9.
We find

a;((:) — —u(n—k)
agéz) = ju(n—k)
ag(f;’) — —uw'(n—k)
a‘gb(:) = —jut(n—k).

When we put these expressions into Equation 9 we find

Vid = =2F [u(n — k)e*(n)] .
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Appendix B (Differentiation with Respect to a Vector)

Notes On The Text

Verification of some simple properties of %

In this little subsection we validate some of the simple statements made about the complex
derivative 5-—. Consider first aw’“ . We find

ow 0 )
1 8 .0 ‘
= 5 a—m_ja_% (@k + Jyk)
~ layny-=1.

2

Next consider 8% We find

8wk . 0 (SL’ 4 )
ow;, n owy, kT Yk
_ (00N i
1
= 5(1—1):0.

Finally consider g—:ﬁ. We find

owy, 1,0 0 2k — jue)
ow;, N &Ek ‘783/ b JYk
1
= ;1-1=o0.
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