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Chapter 4 (Eigenanalysis)

Problem Solutions

Problem 1 (some eigenvalues)

Part (a): We have
trace(R) = λ1 + λ2 = 2.0 .

Part (b): Let the matrix Q =

[

q11 q21
q12 q22

]

be the matrix with the eigenvectors of R as its

columns. Then we must have

QHRQ =

[

0.5 0
0 1.5

]

.

Since the eigenvalues for R are unique the eigenvectors are unique under the assumption
that qHi qi = 1 so the decomposition is unique.

Problem 2 (the eigenvalues of triangular matrix)

Consider the expansion of the characteristic equation |A − λI| = 0. From the form of A
this is equal to the product of the diagonal elements of A − λI and has zeros given by the
diagonal elements of A.

Problem 3 (pairs of eigenvectors)

If qr + jqi is an eigenvector of the system specified then

(Ar + jAi)(qr + jqi) = λ(qr + jqi) , (1)

and we want to know if qi−jqr is an eigenvector. We can show that this is true by multiplying
Equation 1 by −j for which we get

(Ar + jAi)(qi − jqr) = λ(qi − jqr) ,

showing that the vector qi − jqr has the same eigenvalue.
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Problem 4 (eigenvalues of correlation matrix)

From the definition of the correlation matrix and the vector u we have

R =







σ2
u x x · · ·
x σ2

u x · · ·
...

...
. . .

...







That is a matrix with σ2
u on the diagonals and the off diagonal elements don’t matter. Then

from Property 6: the sum of the λi equals the trace of R. Thus we have

∑

i

λi = trace(R) = Mσ2
u .

Problem 5 (the square root of a matrix R)

Part (a): Consider the given expression for R1/2

R1/2 =
M
∑

i=1

λ
1/2
i qiq

H
i ,

Then

R1/2R1/2 =

M
∑

i=1

M
∑

i=1

λ
1/2
i λ

1/2
j qiq

H
i qjq

H
j .

If q1, q2, · · · , qM correspond to distinct eigenvalues of then the eigenvectors are orthogonal
and qHi qj = 1 if i = j and 0 if i 6= j (we assume normalized of eigenvectors) so the above
sum becomes

M
∑

i=1

λiqiq
H
i ,

which equals R showing the intended summation expression for R1/2 when squared does
produce R.

Part (b): Based on Part (a) we compute the unitary similarity transform i.e. we find the
eigenvalues λi and the eigenvectors qi of R such that QHRQ = Λ. We then form the sum

M
∑

i=1

λ
1/2
i qiq

H
i .

Then from Part (a) this equals R1/2.

3



Problem 6 (the determinant of R)

Use the similarity transform of R as QHRQ = Λ and take the determinant of both sides.
We have

|QHRQ| = |Λ| =
M
∏

i=1

λi .

The left-hand-side is |QH ||R||Q| as Q is unitary QH = Q−1 thus we have

|QH | = |Q−1| = 1

|Q| ,

thus the left-hand-side is |R|.

Problem 7 (the product of two unitary matrices)

Let U1 and U2 be unitary matrices that is UH
i = U−1

i .

Part (a): Then consider (U1U2)
H = UH

2 UH
1 = U−1

2 U−1
1 = (U1U2)

−1 showing that U1U2 is
unitary.

Part (b): Let V = U−1 with U a unitary matrix. Since

V H = (UH)−1 = (U−1)−1 = U ,

we have V V H = U−1U = I showing that V is unitary.

Problem 8 (the Schur decomposition)

Part (a): By the unitary similarity transformation property of positive semidefinite matrices
discussed in the book the Schur decomposition ZHAZ = T of the correlation matrix R takes
the form above with T = Λ a diagonal matrix.

Part (b): The subspace span(z1, z2, · · · , zk) mentioned in the Schur decomposition is equiv-
alent to the subspace spanned by the eigenvectors of R with eigenvalues λ1, λ2, · · · , λk.

Problem 9 (the LQ factorization)

We are told that An − knI = QnLn thus Ln = QH
n (An − knI) since Qn is unitary. We now

from An+1 to find

An+1 = LnQn + knI

= QH
n (An − knI)Qn + knI

= QH
n AnQn ,
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as we were to show.

Part (a): From the given expression for v we have vH
i vi = 1 and vH

i vj = 0 if i 6= j, thus
we compute ci(n) as

ci(n) = vH
i u(n) for 0 ≤ i ≤ M − 1 .

Part (b): Consider

E[ci(n)c
∗
j (n)] = E[vH

i u(n)(v
H
j u(n))

∗] = vH
i E[u(n)uH(n)]vj

= vH
i Rvj ≥ 0 ,

since R is positive semidefinite. We have assumed that u(n) is zero mean. Thus the Fourier
coefficients are correlated.

Part (c): From the above we see that E[|ci(n)|2] = vH
i Rvi or the power in the ith Fourier

mode.

Problem 11 (the condition number of A and UA)

Recall that the condition number of a matrix A is given by χ(A) = ||A||||A−1||. If we use
the spectral norm for the definition of the norm || · || then one way to express this norm is

||A||2s = max
x 6=0

||Ax||2
||x||2 .

Consider the matrix A but multiplied by a unitary matrix U or the matrix UA. We will
show that ||A||s = ||UA||s and ||A−1||s = ||(UA)−1||s from which we can conclude that χ(A)
and χ(UA) are the same. To begin note that

||UAx||2 = (UAx)H(UAx) = xHAHUHUAx = xHAHAx = ||Ax||2 .
Thus

||UA||2s = max
x 6=0

||UAx||2
||x||2 = max

x 6=0

||Ax||2
||x||2 = ||A||2s .

Lets now consider ||(UA)−1||2s. We have

||(UA)−1||2s = max
x 6=0

||A−1U−1x||2
||x||2 = max

x 6=0

||A−1UHx||2
||x||2 .

To simplify the above note that

||UHx||2 = (UHx)H(UHx) = xHUUHx = xHx = ||x||2 ,
thus the norm of x is not changed by applying a unitary transformation to it. We can use
this to replace the denominator in the expression for ||(UA)−1||2s above and get

||(UA)−1||2s = max
x 6=0

||A−1UHx||2
||UHx||2

= max
v 6=0

||A−1v||2
||v||2 = ||A−1||2s ,

5



by replacing the maximization over x with a maximization over v ≡ UHx since UH is an
invertible transform. Combining these two results gives the desired result.

Problem 14 (Szego’s theorem)

If we take the function g to be g(x) = ln(x) then the left-hand-side of the given expression
is

lim
M→∞

(

1

M

M
∑

i=1

ln(λi)

)

= lim
M→∞



ln

(

M
∏

i=1

λi

)1/M


 .

Taking exponentials of this expression and the right-hand-side (the integral of g(S(ω))) gives

lim
M→∞

(

M
∏

i=1

λi

)1/M

= exp

(

1

2π

∫ π

−π

ln(S(ω))dω

)

.

Since the determinant of R is equal to the product of the eigenvalues we have shown the
desired expression.

Problem 15 (condition numbers and linear systems)

Part (a): We are told to consider Rw = p and (R + δR)(w + δw) = p. Expanding the
left-hand-side of the second equation gives

Rw +Rδw + δR(w + δw) = p .

Using Rw = p in the above gives

Rδw + δR(w + δw) = 0 .

Solving for δw we get
δw = −R−1δR(w + δw) .

Taking vector norms on both sides we get

||δw|| ≤ ||R−1||||δR||(||w||+ ||δw||)

= ||R−1||||R||
(||δR||

||R||

)

(||w||+ ||δw||)

= χ(R)
||δR||
||R|| ||w||+ χ(R)

||δR||
||R|| ||δw|| ,

using the definition of the condition number χ(R) ≡ ||R||||R−1||. When we solve for ||δw||
in the above we get

(

1− χ(R)
||δR||
||R||

)

||δw|| ≤ χ(R)

( ||δR||
||R||

)

||w|| .
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It can be shown that if our matrix perturbation δR is small enough that the new matrix
R + δR is still invertible then ||δR||

||R||
≤ 1

χ(R)
see [?]. In that case left-hand-side has a leading

coefficient that is positive and we can divide by it to get

||δw||
||w|| ≤ χ(R)

1− χ(R) ||δR||
||R||

||δR||
||R|| . (2)

If we assume that χ(R) ||δR||
||R||

≈ 0 then we get

||δw||
||w|| ≤ χ(R)

||δR||
||R|| .

the desired expression.

Part (b): We are told to consider Rw = p and R(w + δw) = p + δp. Expanding the
left-hand-side of the second equation and using Rw = p gives

Rδw = δp ,

or solving for δw we get
δw = R−1δp .

Taking vector norms on both sides we get

||δw|| ≤ ||R−1||||δp|| = χ(R)
||δp||
||R|| ,

using the definition of the condition number χ(R) ≡ ||R||||R−1||. Since Rw = p we have

||p|| ≤ ||R||||w|| so 1
||R||

≤ ||w||
||p||

and we get

||δw|| ≤ χ(R)
||δp||
||p|| ||w|| ,

or
||δw||
||w|| ≤ χ(R)

||δp||
||p|| ,

the desired expression.

Problem 17 (doubly symmetric matrices)

An example of the matrix J and its actions on a matrix R can be helpful. For a 3-by-3
matrix we have

J =





0 0 1
0 1 0
1 0 0



 . (3)

Then for a given matrix R

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 ,

7



we find JR given by

JR =





0 0 1
0 1 0
1 0 0









r11 r12 r13
r21 r22 r23
r31 r32 r33



 =





r31 r32 r33
r21 r22 r23
r11 r12 r13



 , (4)

i.e. the rows of R are reversed. Next RJ is given by

RJ =





r11 r12 r13
r21 r22 r23
r31 r32 r33









0 0 1
0 1 0
1 0 0



 =





r13 r12 r11
r23 r22 r21
r33 r32 r13



 , (5)

i.e. the columns of R are reversed. Finally we find JRJ given by

JRJ =





0 0 1
0 1 0
1 0 0









r11 r12 r13
r21 r22 r23
r31 r32 r33









0 0 1
0 1 0
1 0 0



 =





r33 r32 r31
r23 r22 r21
r13 r12 r11



 , (6)

i.e. the rows and columns of R are reversed.

Part (a): Note that if JRJ = R then

R−1 = (JRJ)−1 = J−1R−1J−1 = JR−1J ,

showing that R−1 is doubly symmetric.

Part (b): Let q be an eigenvector of R so that Rq = λq. Then replacing R with JRJ since
R is double symmetric we get

JRJq = λq ,

or multiplying by J−1 = J on both sides gives

RJq = λJq , (7)

showing that Jq is also an eigenvector of R with the same eigenvalue λ. Since we are told
that the eigenvalues of R are distinct R has distinct eigenvectors (one for each eigenvalue λ)
thus we must have Jq ∝ q since in that case Equation 7 would be satisfied. From the form
of J (a matrix with only zeros and ones) we only have to consider Jq = ±q. Thus I have
shown that the matrix R has either symmetric or skew-symmetric eigenvectors.

Note: I’m not sure how to show that the number of these symmetric and skew-symmetric
eigenvectors equals ⌊(M + 1)/2⌋ and ⌊M/2⌋ respectively. If anyone knows how to do this
part please contact me.

Problem 19 (more about doubly symmetric matrices)

Part (a): For a 3-by-3 matrix R given we note that

Rq1 =
1√
2





1− ρ2
ρ1 − ρ2
ρ2 − 1



 = (1− ρ2)





1√
2





1
0
−1







 = (1− ρ2)q1 .
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Thus q1 is an eigenvector of R with eigenvalue as claimed. Now with J given as in Equation 3
we have

Jq1 =





0 0 1
0 1 0
1 0 1









1√
2





1
0
−1







 =
1√
2





−1
0
1



 = −q1 ,

thus this is our ⌊M/2⌋ = ⌊3/2⌋ = 1 skew-symmetric eigenvector. Now for R as given we find
Rqi given by

Rqi =
1

√

1 + c2i





1 + ρ1ci + ρ2
ρ1 + ci + ρ1
ρ2 + ρ1ci + 1



 =
1

√

1 + c2i





1 + ρ1ci + ρ2
2ρ1 + ci

1 + ρ1ci + ρ2



 .

To have this equal λiqi requires (we can ignore the scaling factor
√

1 + c2i )

1 + ρ1ci + ρ2 = λi

2ρ1 + ci = λici .

The first of these equations gives

ci =
λi − 1− ρ2

ρ1
,

and the second of these equations gives

ci =
2ρ1

λi − 1
.

Now note that

Jqi =
1

√

1 + c2i





1
ci
1



 = qi ,

which are the two symmetric eigenvectors.

Problem 20 (low-rank modeling)

When we apply low-rank modeling the output vector at the receiver is

yindirect =

p
∑

i=1

ci(n)qi +

p
∑

i=1

vi(n)qi .

Then since u(n) =
∑M

i=1 ci(n)qi we have the error given by

ǫindirect = E
[

||yindirect(n)− u(n)||2
]

= E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
M
∑

i=p+1

ci(n)qi +

p
∑

i=1

vi(n)qi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 = E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M
∑

i=1

di(n)qi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 ,
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where we have defined di(n) as

di(n) =

{

vi(n) 1 ≤ i ≤ p
−ci(n) p+ 1 ≤ i ≤ M

.

Thus evaluating ǫindirect we have

ǫindirect = E

[

M
∑

i=1

M
∑

j=1

d∗i (n)dj(n)q
H
i qj

]

.

Unless i = j the term in the above summation vanishes due to the orthogonality of qi and
qj and we get

ǫindirect =

M
∑

i=1

E[d∗i (n)di(n)] =

p
∑

i=1

E[v∗i (n)vi(n)] +

M
∑

i=p+1

E[c∗i (n)ci(n)]

=

p
∑

i=1

σ2 +
M
∑

i=p+1

λi =
M
∑

i=p+1

λi + pσ2 ,

as we were to show.

Problem 21 (a minimum eigenfilter)

We would be minimizing the SNR at the output, since we are minimizing the Rayleigh
quotient

min
w 6=0

wHRw

wHw
= λmin .
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Chapter 5 (Wiener Filters)

Notes on the Text

Notes on the principle of orthogonality

With a cost function J defined as J = E[e(n)e∗(n)] and ∇k defined in terms of the real
components ak and bk as

∇kJ =
∂J

∂ak
+ j

∂J

∂bk
, (8)

using the product rule we find ∇kJ is then given by

∇kJ = E

[

∂(e(n)e∗(n))

∂ak
+ j

∂(e(n)e∗(n))

∂bk

]

= E

[

∂e(n)

∂ak
e∗(n) + e(n)

∂e∗(n)

∂ak
+ j

∂e(n)

∂bk
e∗(n) + je(n)

∂e∗(n)

∂bk

]

. (9)

To evaluate this expression recall that the definition of the error sequence e(n) in terms of
the complex numbers wk = ak + jbk and the delayed signal u(n− k) is explicitly given by

e(n) = d(n)− y(n) = d(n)−
∞
∑

k=0

w∗
ku(n− k) = d(n)−

∞
∑

k=0

(ak − jbk)u(n− k) .

From this the complex conjugate of this expression is easily computed

e∗(n) = d∗(n)− y∗(n) = d∗(n)−
∞
∑

k=0

wku
∗(n− k) = d∗(n)−

∞
∑

k=0

(ak + jbk)u
∗(n− k) .

Using each of these expressions we can directly compute the derivatives needed in Equation 9.
We find

∂e(n)

∂ak
= −u(n− k)

∂e(n)

∂bk
= ju(n− k)

∂e∗(n)

∂ak
= −u∗(n− k)

∂e∗(n)

∂bk
= −ju∗(n− k) .

When we put these expressions into Equation 9 we find

∇kJ = −2E [u(n− k)e∗(n)] .
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Appendix B (Differentiation with Respect to a Vector)

Notes On The Text

Verification of some simple properties of ∂
∂wk

In this little subsection we validate some of the simple statements made about the complex
derivative ∂

∂wk

. Consider first ∂wk

∂wk

. We find

∂wk

∂wk
=

∂

∂wk
(xk + jyk)

=
1

2

(

∂

∂xk
− j

∂

∂yk

)

(xk + jyk)

=
1

2
(1 + 1) = 1 .

Next consider ∂wk

∂w∗

k

. We find

∂wk

∂w∗
k

=
∂

∂w∗
k

(xk + jyk)

=
1

2

(

∂

∂xk
+ j

∂

∂yk

)

(xk + jyk)

=
1

2
(1− 1) = 0 .

Finally consider
∂w∗

k

∂wk

. We find

∂w∗
k

∂w∗
k

=
1

2

(

∂

∂xk
− j

∂

∂yk

)

(xk − jyk)

=
1

2
(1− 1) = 0 .
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