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Chapter 3: Linear Difference Equations

Nonlinear equations that can be linearized: Ricatti Equations

The Ricatti difference equation is given by

y(t+ 1)y(t) + p(t)y(t+ 1) + q(t)y(t) + r(t) = 0 . (1)

To solve this let y(t) = z(t+1)
z(t)

− p(t), determine an equation for z(t). When we put this into
Equation 1, we find

(

z(t+ 2)

z(t+ 1)
− p(t+ 1)

)(

z(t+ 1)

z(t)
− p(t)

)

+ p(t)

(

z(t+ 2)

z(t+ 1)
− p(t+ 1)

)

+ q(t)

(

z(t+ 1)

z(t)
− p(t)

)

+ r(t) = 0 .

On expanding this expression we have

z(t+ 2)

z(t)
− p(t)

z(t+ 2)

z(t+ 1)
− p(t+ 1)

z(t+ 1)

z(t)
+ p(t+ 1)p(t)

+ p(t)
z(t+ 2)

z(t+ 1)
− p(t)p(t+ 1) + q(t)

z(t+ 1)

z(t)
− p(t)q(t) + r(t) = 0 .

On multiplying by z(t) and grouping terms gives

z(t+ 2) + (q(t) − p(t+ 1))z(t+ 1) + (r(t) − p(t)q(t))z(t) = 0 , (2)

which is linear in z(t) and can be solved by the methods previously discussed for linear
equations.

Example 3.27

Comparing to Equation 1, the given Ricatti equation has p(t) = 2, q(t) = 4, and r(t) = 9 so
that the corresponding linear equation for this example is then given by Equation 2 or

z(t+ 2) + (4 − 2)z(t+ 1) + (9 − 8)z(t) = 0 ,

or
z(t+ 2) + 2z(t+ 1) + z(t) = 0 .

This equation has a solution given by

z(t) = A(−1)t +Bt(−1)t .

So that the solution y(t) we want is given by

y(t) =
z(t+ 1)

z(t)
− 2 =

A(−1)t+1 +B(t+ 1)(−1)t+1

A(−1)t +Bt(−1)t
− 2 =

−A− B(t+ 1)

A+Bt
− 2 .



Assuming A 6= 0 we can divide by it to obtain

y(t) =
−1 − C(t+ 1)

1 + Ct
− 2 =

−3 − C(3t+ 1)

1 + Ct
,

where C ≡ B
A
. If A = 0 we cannot divide by A and the above expression for y(t) in this case

becomes

y(t) = −t+ 1

t
− 2 ,

both of which agree with the solutions given in the book.

Problem Solutions

Problem 86 (Solving Ricatti equations)

Part (a): For the Ricatti equation

y(t+ 1)y(t) + 2y(t+ 1) + 7y(t) + 20 = 0 ,

comparing to Equation 1 we have p(t) = 2, q(t) = 7, and r(t) = 20 so the corresponding
linear equation given in Equation 2 then becomes

z(t+ 2) + (7 − 2)z(t+ 1) + (20 − 14)z(t) = 0 ,

or
z(t+ 2) + 5z(t+ 1) + 6z(t) = 0 .

This latter equation has characteristic roots given by −2 and −3. Thus the general solution
for z(t) in this linear problem is given by

z(t) = A(−2)t +B(−3)t .

Thus, y(t), the solution to the Ricatti equation of interest is given by

y(t) =
A(−2)t+1 +B(−3)t+1

A(−2)t +B(−3)t
− 2 .

If A 6= 0 we can obtain (by dividing by A) the following

y(t) =
−2t+2 − 5C3t

2t + C3t
.

If A = 0 we can not divide by it and we find a particular solution of y(t) = −3 − 2 = −5,
which can be easily verified.



Chapter 10 Clarifications

The eigensystem for the discrete diffusion equation (Page 403)

The eigenvalues and eigenvectors of our matrix must satisfy

αw(t+ 1) + (1 − 2α)w(t) + αw(t− 1) = λw(t) (3)

with boundary conditions that w(0) = 0 and w(N) = 0. Then the above equation can be
written as

w(t+ 1) + (
1 − λ

α
− 2)w(t) + w(t− 1) = 0 (4)

Defining µ = 1−λ
α

and substituting w(t) = mt into the above we get

m2 + (µ− 2)m+ 1 = 0 (5)

Solving this quadratic equation for m gives

m =
−(µ− 2) ±

√

(µ− 2)2 − 4

2
(6)

From this expression if |µ− 2| ≥ 2 the expression under the square root is positive and the
two roots are both real. With two real roots, the only solution that satisfies the boundary
conditions is the trivial one (w(t) = 0). If |µ − 2| < 2 then m is a complex number and
the boundary conditions can be satisfied non-trivially. To further express this, define θ such
that

µ− 2 = −2 cos(θ)

then the expression for m (in terms of θ) becomes

m =
2 cos(θ) ±

√

4 cos(θ)2 − 4

2
= cos(θ) ±

√

cos(θ)2 − 1 (7)

or
m = cos(θ) ± i sin(θ) = e±iθ (8)

so the solution w(t) is a linear combination of the two fundamental solutions or

w(t) = Aeiθt +Be−iθt (9)

Imposing the two homogeneous boundary condition we have the following system that must
be solved for A and B

A +B = 0 (10)

AeiθN +Be−iθN = 0 (11)

Putting the first equation into the second gives

B(eiθN − e−iθN) = 0 (12)



Since B cannot be zero (else the eigenfunction is identically zero) we must have θ satisfy

sin(θN) = 0 (13)

Thus θN = πn or
θ =

πn

N
for n = 1, 2, . . . , N − 1

Tracing θ back to the definition of µ we have that

µ = 2 − 2 cos(θ) = 2 − 2 cos(
πn

N
) (14)

Using the trigonometric identity

1 − cos(ψ) = 2 sin(
ψ

2
)2

we get

µ = 2 · 2 sin(
πn

2N
)2 forn = 1, 2, 3, . . . , N − 1 (15)

Further tracing µ back to the definition of λ we have

λn = 1 − αµn = 1 − 4α sin(
πn

2N
)2 forn = 1, 2, 3, . . . , N − 1 (16)

With this expression for the eigenvalues we can explicitly solve for the unknowns y(i, ·) at
every time-level j. Expressing the unknowns at every time level in a vector v(j) as

v(j) = y(·, j) =











y(1, j)
y(2, j)

...
y(N − 1, j)











(17)

Then by decomposing the coefficient matrix A into a basis spanned by its eigenvalues as
A = M−1ΛM and defining b(j) = Mv(j) we see that b(j) satisfies

b(j + 1) = Λb(j) . (18)

Since Λ is diagonal the solution to the above difference equation is given by











b(1, j)
b(2, j)

...
b(N − 1, j)











=











λj
1b(1, 0)

λj
2b(2, 0)

...

λj
N−1b(N − 1, 0)











(19)

we can obtain the solution to the components of v(j) by premultiplying by M or











y(1, j)
y(2, j)

...
y(N − 1, j)











= M











b(1, 0)λj
1

b(2, 0)λj
2

...

b(N − 1, 0)λj
N−1











(20)



To guarantee stability of these matrix iterations we require |λn| < 1 which will be true if

|1 − 4α sin(
nπ

2N
)2| < 1 for n = 1, 2, . . . , N − 1 (21)

which is equivalent to

−1 ≤ 1 − 4α sin(
nπ

2N
)2 ≤ 1 (22)

or
−2 ≤ −4α sin(

nπ

2N
)2 ≤ 0 (23)

or
k

h2
sin(

nπ

2N
)2 <

1

2
for n = 1, 2, . . . , N − 1 (24)

Since the maximum of sin( nπ
2N

) over n is when n = N − 1 we see that for stability we must
have

k

h2
sin(

π

2

(N − 1)

N
)2 <

1

2
(25)

Which is equation 10.8 in the book.

Problem Solutions Chapter 10

Problem 1

We begin by noting that the expression

y(i, j + 1) =
1

2
y(i, j) +

1

4
(y(i+ 1, j) + y(i− 1, j)) (26)

with y(0, j) = y(4, j) = 0 and y(i, 0) = sin( iπ
4
) is a special case of the problem considered on

Page 403 (equation 10.6) of the book with α = 1
4

and N = 4. Now defining all the unknowns
y(i, j) for i = 1, 2, 3 at a given time-level j as the vector unknown v(j) we have

v(j) =





y(1, j)
y(2, j)
y(3, j)



 (27)

and

A =





1/2 1/4 0
1/4 1/2 1/4
0 1/4 1/2



 (28)

Then the unknowns at a new time level j in terms of the previous time level j − 1 is given
by v(j) = Av(j − 1). This vector difference equation has solution

v(j) = Ajv0 (29)

which can be simplified with an eigendecomposition of A (i.e. A = M−1ΛM) as follows.
Here M is a matrix with columns representing the eigenvalues of A and Λ is a diagonal



matrix who’s diagonal elements are the eigenvalues of A. Assuming this decomposition of A
Eq. 29 becomes

v(j) = (M−1ΛM)(M−1ΛM)(M−1ΛM) . . . (M−1ΛM)v0 = M−1ΛjMv0 (30)

Where we have j products in the above expression. For this problem the initial vector v0 is
given by evaluating y(i, 0) = sin( iπ

4
) for i = 1, 2, 3 giving

v0 =





1√
2

1
1√
2



 (31)

From the analogy with the equation on page 404 we see that the eigenvalues of A are given
by (using α = 1/4 and N = 4)

λn = 1 − 4α sin(
nπ

2N
)2 (32)

= 1 − sin(
nπ

8
)2 (33)

=
1

2
+

1

2
cos(

nπ

4
) for n = 1, 2, 3 (34)

Where the last expression follows from the trigonometric identity

sin(θ)2 =
1 − cos(2θ)

2

which upon evaluation gives

λ1 =
1

2
(1 + cos(

π

4
)) =

1

2
(1 +

1√
2
) =

(
√

2 + 1)

2
√

2

λ2 =
1

2
(1 + cos(

2π

4
)) =

1

2
(1 + 0) =

1

2

λ3 =
1

2
(1 + cos(

3π

4
)) =

1

2
(1 − 1√

2
) =

(
√

2 − 1)

2
√

2
(35)

while a matrix M with eigenvectors as columns is given by

M =





sin(π
4
) sin(2π

4
) sin(3π

4
)

sin(2π
4

) sin(4π
4

) sin(6π
4

)
sin(3π

4
) sin(6π

4
) sin(9π

4
)



 (36)

=





sin(π
4
) sin(π

2
) sin(3π

4
)

sin(π
2
) sin(π) sin(3π

2
)

sin(3π
4

) sin(3π
2

) sin(9π
4

)



 (37)

=





1√
2

1 1√
2

1 0 −1
1√
2

−1 1√
2



 (38)

Now defining b(j) = Mv(j) we see from Eq. 30 that the vector b(j) satisfies b(j) = Λjb0. So
calculating b0 we obtain

b0 =





1√
2

1 1√
2

1 0 −1
1√
2

−1 1√
2









1√
2

1
1√
2



 =





2
0
0



 (39)



so from Eq. 30 and Eqs. 35 b(j) is given by

b(j) =









(
√

2+1)j

2j
√

2
j 0 0

0 1
2j 0

0 0 (
√

2−1)j

2j
√

2
j













2
0
0



 =







(
√

2+1)j

2j−1
√

2
j

0
0






(40)

then v(j) is obtained from b(j) by premultiplying by M−1. Since M−1 is given by

M−1 =





1
2
√

2
1
2

1
2
√

2
1
2

0 −1
2

1
2
√

2
−1

2
1

2
√

2



 (41)

so we get

v(j) =





1
2
√

2
1
2

1
2
√

2
1
2

0 −1
2

1
2
√

2
−1

2
1

2
√

2











(
√

2+1)j

2j−1
√

2
j

0
0






(42)

=
(
√

2 + 1)j

2j−1
√

2
j





1
2
√

2
1
2
1

2
√

2



 (43)

=
(
√

2 + 1)j

2j
√

2
j





1√
2

1
1√
2



 (44)

Which is equivalent to the expression given at the back of the book.

Problem 2

The continuous equation to discretize is

∂u

∂t
=
∂2u

∂x2
(45)

defining a discrete representation of u as y(i, j) = u(xi, tj) = u(ih, jk) and using the approx-
imations for the derivatives provided in section 10.1 of the book we get

y(i, j) − y(i, j − 1)

k
+O(k) =

y(i+ 1, j) − 2y(i, j) + y(i− 1, j)

h2
+O(h2) (46)

dropping the order symbols and solving for y(i, j − 1) we obtain

y(i, j − 1) = (1 +
2k

h2
)y(i, j) − k

h2
(y(i+ 1, j) + y(i− 1, j)) (47)

which is equation 10.9 in our book.



Problem 3

In problem 2 above we derived the partial difference equation y(i, j) must satisfy. In that
expression defining α = k

h2 , v(j), and v(0) as

v(j) =











y(1, j)
y(2, j)

...
y(N − 1, j)











(48)

and

v(0) =











y(1, 0)
y(2, 0)

...
y(N − 1, 0)











=









f(1)
f(2)
· · ·

f(N − 1)









(49)

we obtain the matrix difference equation v(j − 1) = Bv(j) or v(j) = B−1v(j − 1) for
j = 1, 2, 3, · · · .

In general, the matrix difference equation v(i − 1) = Bv(i), or v(i) = B−1v(i − 1) has
explicit solutions depending on the eigenvalues of B−1. Since for nonsingular matrices B
the eigenvalues of B−1 are the reciprocals of the eigenvalues of B. In this problem rather
than start with the expression for B−1 we will first consider the eigenvalues of B. From the
solution above the eigenvalues of B must satisfy

−αw(t+ 1) + (1 + 2α)w(t) − αw(t− 1) = λw(t) (50)

with boundary conditions that w(0) = 0 and w(N) = 0. Here we have written the compo-
nents of the vector v(j) as w(t). Then the above equation can be written as

w(t+ 1) − (2 − λ− 1

α
)w(t) + w(t− 1) = 0 (51)

Defining 2µ = λ−1
α

and substituting w(t) = mt into the above we get a characteristic equation
of

m2 − 2(1 − µ)m+ 1 = 0 . (52)

Solving this quadratic equation for m gives

m =
2(1 − µ) ±

√

4(1 − µ)2 − 4

2
= 1 − µ±

√

(1 − µ)2 − 1 . (53)

From this expression if |1 − µ| ≥ 1 the expression under the square root is positive and the
two roots are both real. With two real roots, the only solution that satisfies the boundary
conditions is the trivial one (w(t) = 0). If |1 − µ| < 1 then m is a complex number and
the boundary conditions can be satisfied non-trivially. To further express this, define θ such
that

1 − µ = cos(θ)



then the expression for m (in terms of θ) becomes

m = cos(θ) ± i sin(θ) = e±iθ (54)

so the solution w(t) is a linear combination of the two fundamental solutions or

w(t) = Aeiθt +Be−iθt (55)

Imposing the two homogeneous boundary conditions (w(0) = 0 and w(N) = 0) we have the
following system that must be solved for A and B

A +B = 0 (56)

AeiθN +Be−iθN = 0 (57)

Putting the first equation into the second gives

B(eiθN − e−iθN) = 0 (58)

Since the coefficient B cannot be zero (else the eigenfunction is identically zero) we must
have θ satisfy

sin(θN) = 0 (59)

Thus θN = πn or
θ =

πn

N
for n = 1, 2, . . . , N − 1

A point that is often confusing is the range of n in the above expression. Note that if the
range of n was any larger than 1, 2, 3, . . . , N − 1 due to the periodicity of the sin(·) function
eigenvalues would start to repeat. Thus the range specified above is maximal. Tracing θ
back to the definition of µ we have that

µ = 1 − cos(θ) = 1 − cos(
πn

N
) (60)

Using the trigonometric identity

1 − cos(ψ) = 2 sin(
ψ

2
)2

we get

µ = 2 sin(
πn

2N
)2 for n = 1, 2, 3, . . . , N − 1 (61)

Further tracing µ back to the definition of λ we have

λn(B) = 1 + 2αµn = 1 + 4α sin(
πn

2N
)2 for n = 1, 2, 3, . . . , N − 1 (62)

Which we can see never is zero. Implying that our matrix B is not singular. In addition,
the eigenvalues of B−1 are the reciprocals of those of B.1

λn(B−1) =
1

1 + 4α sin( πn
2N

)2
for n = 1, 2, 3, . . . , N − 1 (63)

1This is a good trick if you are ever asked to compute the eigenvalues of the inverse of a matrix.



In the above two expressions I have explicitly include an argument of B or B−1 to indicate
which matrix the eigenvalues correspond to.

With this expression for the eigenvalues of B−1 we can explicitly solve for the unknowns y(i, ·)
at every time-level j. By eigendecomposing the coefficient matrix B−1 as B−1 = M−1ΛM
and defining the vector b(j) as b(j) = Mv(j) we see that b(j) satisfies

b(j + 1) = Λ(B−1)b(j) . (64)

Since Λ is diagonal the solution to the above difference equation is given by










b(1, j)
b(2, j)

...
b(N − 1, j)











=











λ−j
1 b(1, 0)

λ−j
2 b(2, 0)

...

λ−j
N−1b(N − 1, 0)











(65)

we can obtain the solution to the components of v(j) by premultiplying by M or











y(1, j)
y(2, j)

...
y(N − 1, j)











= M











b(1, 0)λ−j
1

b(2, 0)λ−j
2

...

b(N − 1, 0)λ−j
N−1











(66)

We have yet expressed the matrix of eigenvectors M . Again B−1 is the inverse of B and
as such has the same eigenvectors as B. As such since the eigenvector solutions w(t) were
found to be

w(t) = ei πn
N

t − e−i πn
N

t ∝ sin(
πn

N
) (67)

We have that the eigenvectors of B (and B−1) are

wn(t) = sin(
πn

N
t) for i = 1, 2, 3, . . . , N − 1 (68)

To guarantee stability of these matrix iterations we require |λ−1
n | < 1 which is the same as

1

1 + 4α sin( πn
2N

)2
< 1 for n = 1, 2, . . . , N − 1 (69)

which is always true. As such this method is called unconditionally stable.

Problem 4

Using the result from equation 10.3 in the text we obtain

∂2u

∂x2
(xi, yj) =

z(i+ 1, j) − 2z(i, j) + z(i− 1, j)

h2
+O(h2) (70)

∂2u

∂y2
(xi, yj) =

z(i, j + 1) − 2z(i, j) + z(i, j − 1)

k2
+O(k2) (71)



with z(i, j) ≡ u(ih, jk) which upon substitution into Laplace’s equation gives

1

h2
[z(i+ 1, j) − 2z(i, j) + z(i− 1, j)] +

1

k2
[z(i, j + 1) − 2z(i, j) + z(i, j − 1)] = 0 (72)

Solving for z(i, j) we obtain

2

[

(

h

k

)2

+ 1

]

z(i, j) = z(i+ 1, j) + z(i− 1, j) +

(

h

k

)2

(z(i, j + 1) + z(i, j − 1)) (73)

Which is the equation 10.11 in the text.

Problem 5

Part (a): Since

∂2u

∂t2
(xi, tj) =

y(i, j + 1) − 2y(i, j) + y(i, j − 1)

k2
+O(k2) (74)

and
∂2u

∂x2
(xi, tj) =

y(i+ 1, j) − 2y(i, j) + y(i− 1, j)

h2
+O(h2) (75)

with y(i, j) ≡ u(xi, tj) = u(ih, jk). Putting these two discrete approximations into the wave
equation

∂2u

∂t2
− ∂2u

∂x2
= 0 (76)

we obtain

y(i, j + 1) = 2y(i, j) − y(i, j − 1) +

(

k

h

)2

(y(i+ 1, j) − 2y(i, j) + y(i− 1, j)) (77)

Solving for y(i, j + 1), the next time level in terms of the previous timelevels and defining
α = k

h
we obtain

y(i, j + 1) = 2(1 − α2)y(i, j) + α2(y(i+ 1, j) + y(i− 1, j)) − y(i, j − 1) (78)

Which is the equation requested.

Part (b): This computational molecule looks identical to the one given for Laplace’s equa-
tion in Figure 10.5 of the book.

Problem 6

As suggested in the text for equations of the form

y(i, j) = p(i)y(i+ a, j + b) (79)



we can try a substitution of the following form

y(i, j) = z(i)f(aj − bi) (80)

In the problem given here we have a = 2 and b = 1 giving the substitution to make of
y(i, j) = z(i)f(2j − i). When this is inserted into the given difference equation and the
common function f canceled from both sides the following ordinary difference equation
results

z(i) = 4z(i+ 2) or z(i + 2) =
1

4
z(i) (81)

Which can be solved by iteration. This difference equation has two linearly independent
solutions given by

z1(i) =

{

1
4

i/2
i = 0, 2, 4, . . .

0 i = 1, 3, 5, . . .
(82)

z2(i) =

{

0 i = 0, 2, 4, . . .
1
4

(i−1)/2
i = 1, 3, 5, . . .

(83)

Thus our total solution is given by

y(i, j) = Az1(i)f(2j − i) +Bz2(i)f(2j − i) (84)

with A and B arbitrary constants and f an arbitrary function.

Problem 7

Consider the given difference equation

y(i, j) = 2y(i− 1, j − 1) + 3i (85)

We first find a solution to the homogeneous equation

y(i, j) = 2y(i− 1, j − 1) (86)

As such we can use the substitution

y(i, j) = z(i)f(aj − bi) (87)

Which in our case is y(i, j) = z(i)f(−j + i) since a = −1 and b = 1. Putting this in the
above and canceling the common f on both sides we obtain the following ordinary difference
equation

z(i) = 2z(i− 1) (88)

Which has fundamental solution z(i) = 2i. Thus a solution to the homogeneous equation
above is given by

y(i, j) = 2if(−j + i) (89)



for an arbitrary function f . To find a non-homogeneous solution we use the observation that
the right hand side is a function of only i and thus look for solutions of the form y(i, j) = z(i).
Putting this into our difference equation 85 we obtain

z(i) = 2z(i− 1) + 3i or z(i+ 1) − 2z(i) = 3i+1 (90)

This can be solved by inspection by noting that if z(i + 1) = 3i+2 the above equation is
satisfied. Another method is to define the operator E as Ez(i) = z(i+1) and then the above
equation becomes

(E − 2)z(i) = 3i+1 (91)

or

z(i) =
1

E − 2
3i+1 = −1

2

1

1 − 1
2
E

3i+1 (92)

= −1

2

∞
∑

k=0

Ek

2k
3i+1 = −1

2

∞
∑

k=0

3i+k+1

2k
(93)

= −3i+1

2

∞
∑

k=0

(

3

2

)k

= −3i+1

2

1

1 − 3
2

= 3i+1 (94)

Where we have formally summed the infinite series above. With this particular solution we
obtain a total solution of

y(i, j) = 2if(−j + i) + 3i+1 (95)

Problem 8

Given the difference equation

y(i, j) = p(i)y(i+ a, j + b) + q(i)y(i+ c, j + d) (96)

the substitution
y(i, j) = z(i)f(aj − bi) (97)

will reduce the given partial difference equation (for y(i, j)) into a ordinary difference equa-
tion (for z(i)) if a,b,c, and d satisfy ad − bc = 0. For the two problems given we have the
following:

Part (a): For this specific equation a = −1, b = 3, c = −2, d = +6, so ad − bc = 0.
Applying the above substitution and ignoring the f term which will cancel from both sides
i.e. substituting y(i, j) = z(i)f(−j − 3i) into the homogeneous equation we obtain the
following ordinary difference equation for z(i)

z(i) = 2z(i− 1) − z(i− 2) (98)

or
z(i) − 2z(i− 1) − z(i− 2) = 0 (99)



which has a characteristic equation of

m2 − 2m− 1 = 0 (100)

from which we see that m = 1 is a double root. Thus two linearly independent solutions to
this difference equation are given by

z1(i) = 1 (101)

z2(i) = i (102)

Thus we have a total solution to the above difference equation of

y(i, j) = f1(−j − 3i) + if2(−j − 3i) (103)

For arbitrary functions f1 and f2. Since these functions are arbitrary we can absorb the
negative sign in the above expressions obtaining

y(i, j) = f1(j + 3i) + if2(j + 3i) (104)

Part (b): For this specific equation a = −1, b = +1, c = −2, d = +2, so ad − bc = 0.
Applying the above substitution to the homogeneous equation and ignoring the f term which
will cancel from both sides i.e. substituting y(i, j) = z(i)f(−j − i) we obtain the following
ordinary difference equation for z(i)

z(i) − 5z(i− 1) + 6z(i− 2) = 0 (105)

which has a characteristic equation of

m2 − 5m+ 6 = 0 (106)

or
(m− 2)(m− 3) = 0 (107)

so two linearly independent solutions are given by

z1(i) = 2i (108)

z2(i) = 3i (109)

Thus a homogeneous solution to this difference equation is given by

y(i, j) = 2if1(i+ j) + 3if2(i+ j) (110)

To find a particular solution we note that since the right hand side is a function of only i
we will try a particular solution that is a function of only i. Motivated by the method of
undetermined coefficients we attempt a particular solution of the following form

y(i, j) = Ai+B (111)

when substituted into the given partial difference equation we obtain

Ai+B − 5(A(i− 1) +B) + 6(A(i− 2) +B) = 3i (112)



Collecting coefficients of i1 and i0 we have the following system of equations to be solved for
A and B.

2A = 3 (113)

2B − 7A = 0 . (114)

Which gives A = 3
2

and B = 21
4
. Thus the entire solution to this problem is given by

y(i, j) = 2if1(i+ j) + 3if2(i+ j) +
3

2
i+

21

4
(115)

Problem 9

Given the difference equation

W (n, k) = rW (n− 1, k − 1) + gW (n− 1, k) (116)

with initial condition of W (n, 0) = gn we will solve this problem using operator methods in
two ways. Defining the operators E1 and E2 as

E1W (n, k) = W (n+ 1, k) (117)

E2W (n, k) = W (n, k + 1) (118)

we can write our partial difference equation as

W = rE−1
1 E−1

2 W + gE−1
1 W (119)

The first method we will use to solve this equation is the simpler of the two and results from
recognizing that since our boundary conditions are given when the variable k = 0, we desire
an to solve for E2W (n, k) in terms of the operator E1 if possible. From the above expression
we obtain (after multiplying by E1 on both sides) the equation

E1W = rE−1
2 W + gW = r(

g

r
+ E−1

2 )W (120)

the solution of which is given by

W (n, k) = rn(
g

r
+ E−1

2 )nW̃ (k) (121)

Where W̃ (k) is (at this point) an arbitrary function of the variable k. Using the binomial
theorem to expand the term (·)n we obtain

W (n, k) = rn
n

∑

l=0

(

n
l

)

(g

r

)l
(

E−1
2

)n−l
W̃ (k) (122)

or performing the E−1
2 operation we obtain

W (n, k) = rn
n

∑

l=0

(

n
l

)

(g

r

)l

W̃ (k − n+ l) (123)



Evaluating this expression at k = 0 and assigning to the known initial conditions gives

W (n, 0) = gn = rn

n
∑

l=0

(

n
l

)

(g

r

)l

W̃ (−n + l) (124)

or
(g

r

)n

=

n
∑

l=0

(

n
l

)

(g

r

)l

W̃ (−n + l) (125)

Since in this sum the last term (when l = n) is the same as the left hand side we can obtain
an equality if we take W̃ to be a delta function picking out this last element. Specifically let

W̃ (−n + l) = δ0,−n+l (126)

This gives for W (n, k) the following

W (n, k) = rn
n

∑

l=0

(

n
l

)

(g

r

)l

δ0,k−n+l (127)

Letting l = n− k (the only nonzero term in the above) we obtain

W (n, k) = rn

(

n
n− k

)

(g

r

)n−k

= rkgn−k

(

n
n− k

)

. (128)

Which is the same expression given in the book.

We might be motivated to solve this equation in a slightly different way with the following
observation. Since we are given our initial condition with respect to k i.e. W (n, 0) = gn

it might be better to derive an “increment” equation in the k variable rather than the n
variable. Doing so would give an expression of the following form

E2W (n, k) = AW (n, k) or W (n, k) = Akf(n)

for some “object” A and some function W̃ (·). The initial condition we are given then imply
that would have W̃ (n) = gn and for W (n, k) the expression

W (n, k) = Akgn

This alternative method can be formulated as follows. Solving Eq. 119 for E2W we obtain

E2W (n, k) = r(1 − gE−1
1 )−1E−1

1 W (n, k) (129)

or
E2W (n, k) = r(E1 − g)−1W (n, k) (130)

Which has as its solution the following

W (n, k) = rk(E1 − g)−kW̃ (n) (131)

which since W (n, 0) = gn we obtain W̃ (n) = gn and thus

W (n, k) = rk(E1 − g)−kgn = rk 1

(E1 − g)k
gn (132)



We must now determine how to evaluate expressions like

(

1

E1 − g

)k

gn (133)

We will derive a general expression for such expressions. To determine the solution (X(n))
to this (for k = 1) we recognized that it must satisfy (by definition)

(

1

E1 − g

)

gn = X(n)

which is the same as
E1X(n) − gX(n) = gn (134)

and we are seeking a particular solution to the above equation. Since the homogeneous
equation has solution gn which is the same as the in homogeneous term the particular
solution will be proportional to ngn. With this ansatz we see that a particular solution is
given by X(n) = ngn−1. Thus we have the following

(

1

E1 − g

)

gn = ngn−1 (135)

Now for the second application of the operator 1
E1−g

we see that

(

1

E1 − g

)2

gn =

(

1

E1 − g

)

ngn−1 (136)

which has the same type of solutions as before (proportional to ngn). We can see that in
this case that

n(n− 1)

2
gn−2 =

(

n
2

)

gn−2

is the solution X(n) to
(E1 − g)2X(n) = gn (137)

Generalizing these results by induction we conclude that

(

1

E1 − g

)k

gn =

(

n
k

)

gn−k . (138)

With this we get for the solution W (n, k) of

W (n, k) =

(

n
k

)

rkgn−k . (139)

The same as before. In general, the technique of writing the inverse of a difference operator
(e.g. Eq. 134) as the solution to an inhomogeneous difference equation can be a quite
powerful technique that comes up rather often.



Problem 10

Given the partial differential equation

y(i+ 1, j) = ay(i, j + 1) + by(i, j) . (140)

We can solve this with operator methods as follows. Defining E1 and E2 as

E1y(n, k) = y(n+ 1, k) (141)

E2y(n, k) = y(n, k + 1) (142)

our partial difference equation becomes

E1y(i, j) = (aE2 + b)y(i, j) (143)

which has solution of

y(i, j) = (aE2 + b)if(j) = bi(1 +
a

b
E2)

if(j) (144)

for an arbitrary function f(j). Expanding the sum using the binomial expansion we obtain

y(i, j) = bi
i

∑

n=0

(

i
n

)

(a

b

)n

En
2 f(j) (145)

or

y(i, j) = bi
i

∑

n=0

(

i
n

)

(a

b

)n

f(j + n) (146)

Which is the desired result.

Problem 11

Part (a): Under the given problem assumption P wins a point with probability p and Q
wins a point with probability q = 1 − p. We define the function y(i, j) as the probability
P wins the game when he/she needs i more points to win, while playing against Q which
needs j more points to win. We can derive a difference equation for y(i, j) by noting that
after the next play if P has won a point (which happens with probability p) he/she will now
need only i − 1 points to win, while if Q wins the point (with a probability q) then Q will
need j − 1 points to win. This is represented mathematically by

y(i, j) = py(i− 1, j) + qy(i, j − 1) for i ≥ 1 and j ≥ 1 (147)

With initial conditions of y(i, 0) = 0 for i ≥ 1, and y(0, j) = 1 for j ≥ 1 which says that
the probability P wins when Q has needs no more points to win is zero (since Q has already
won) and that the probability P wins he/she requires no more points, while Q requires j
points is one.

Part (b): Skipped



Problem 12

Given the partial difference equation

y(i+ 1, j + 1) + y(i, j) = 2ij . (148)

The homogeneous equation is given by

y(i+ 1, j + 1) + y(i, j) = 0 , (149)

which can be solved by a great number of methods. To solve by the operator method we
define

E1y(i, j) = y(i+ 1, j) (150)

E2y(i, j) = y(i, j + 1) (151)

and our our original equation becomes

E1E2y(i, j) = −y(i, j) (152)

which has solution

y(i, j) = (−E2)
−if(j) = (−1)iE−i

2 f(j) = (−1)if(j − i) (153)

One can also use the method on Page 409 since our equation is of the form

y(i, j) = p(i)y(i+ a, j + b)

and we would substitute with y(i, j) = z(i)f(aj − bi) to obtain the same solution. To find a
particular solution as suggested in the text we substitute the trial solution

y(i, j) = aij + bi+ cj + d

to obtain the following (here we have grouped the coefficients of ij, i, j, and constant terms
together)

2aij + (a + 2b)i+ (a + 2c)j + (a + b+ c+ 2d) = 2ij (154)

Which enforcing equality among the coefficients gives

2a = 2 (155)

a + 2b = 0 (156)

a+ 2c = 0 (157)

a + b+ c+ 2d = 0 (158)

The solution of which is

a = 1 (159)

b = −1

2
(160)

c = −1

2
(161)

d = 0 (162)

giving for the final solution the expression

y(i, j) = (−1)if(j − i) + ij − 1

2
i− 1

2
j (163)



Problem 13

We desire the first few values to the following partial difference equation

y(i+ 1, j + 1) = iy(i, j + 1) + y(i, j) (164)

with initial conditions y(i, 0) = δi0 and y(0, j) = δ0j . As such, we can iterate the above
equation to obtain any number of terms. For instance to obtain y(1, 1) we compute

y(1, 1) = 0 · y(0, 1) + y(0, 0) = 1 (165)

This procedure for all of the requested i’s and j’s gives the following grid of values (the i
index corresponds to the row and the j index corresponds to the columns each starting from
0)

0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 1 0 0 0
3 0 1 3 2 0 0
4 0 1 6 11 6 0
5 0 1 10 35 50 24

Problem 14

Part (a): We desire to show that Z(2j
[

i
j

]

) =
∏i−1

k=0

(

k + 2
z

)

, where the Z-transform is taken
with respect to j. By definition the Z-transform of this expression is

Z

(

2j

[

i

j

])

=
∑

j≥0

2j

[

i

j

]

z−j =
∑

j≥0

[

i

n

]

(z

2

)−n

= ZS(
z

2
) (166)

where ZS is the Z transform of the Stirling numbers of the second kind with respect to j.
Since we know that

Z

([

i

j

])

= ZS =

i−1
∏

k=0

(k +
1

z
) (167)

we have from the above that

ZS(
z

2
) =

i−1
∏

k=0

(k +
2

k
) (168)

as requested.

Part (b): Our partial difference equation to solve is given by

y(i+ 1, j + 1) = (i− 1)y(i, j + 1) + 2y(i, j) i ≥ 1, j ≥ 0 (169)



with initial conditions given by y(i, 0) = δi1 and y(1, j) = δj0. The Z-transform of this
equation with respect to j gives

zY (i+ 1, z) − zy(i+ 1, 0) = (i− 1) (zY (i, z) − zy(i, 0)) + 2Y (i, z) (170)

since y(i+ 1, 0) = 0 when i ≥ 1 since y(i, 0) = δi1 the above becomes

Y (i+ 1, z) = (i− 1)Y (i, z) − (i− 1)δi1 +
2

z
Y (i, z) for i ≥ 1 . (171)

Note that the term (i− 1)δi1 = 0 for all i ≥ 1, giving

Y (i+ 1, z) =

(

i− 1 +
2

z

)

Y (i, z) for i ≥ 1 (172)

Iterating the above equation a few times gives

Y (2, z) =
2

z
Y (1, z) (173)

Y (3, z) =

(

1 +
2

z

)

Y (2, z) =

(

1 +
2

z

)

2

z
Y (1, z) (174)

Y (4, z) =

(

2 +
2

z

)

Y (3, z) =

(

2 +
2

z

) (

1 +
2

z

)

2

z
Y (1, z) (175)

Y (5, z) =

(

3 +
2

z

)

Y (4, z) =

(

3 +
2

z

) (

2 +
2

z

) (

1 +
2

z

)

2

z
Y (1, z) (176)

So by induction we see that

Y (i, z) =

i−2
∏

n=0

(n+
2

z
)Y (1, z) for i ≥ 2 (177)

To evaluate Y (1, z) we have from its definition

∑

j≥0

y(1, j)z−j =
∑

j≥0

δj0z
−j = 1

So the above becomes

Y (i, z) =

i−2
∏

n=0

(n+
2

z
) (178)

Since this is the expression is so similar to the one part (a) of this problem we know that
the solution to this difference equation is given by the inverse Z-transform of the above
expression. Since this is computed in part (a) of this problem we have

y(i, j) = 2j

[

i− 1

j

]

for i ≥ 2 and j ≥ 0 . (179)


