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Chapter 8

Analysis of Parallel Depth First Search Algorithms

Following the discussion in the book on this topic I will clarify some points
that I had difficulty following. Hopefully, these comments will be of help to
others as they learn this material.

In the presented analysis, there is a total of W work (searching) to be
done and we initially have all of it assigned to a single processor p∗. This
is in fact the way most parallel programs begin so our assumptions are in
line with reality. Since we have not specifically specified the load balancing
scheme we can be guaranteed that this W amount of work will be split up
and distributed to the remaining processors if the load balancing scheme is
“weakly fair”. Intuitively, this means that after enough requests for work in
the system (from any processor) have been issued eventually every processor
will have work requested from it. In other words, no processor is excluded
from being asked to provide work.

To quantify the notion of how many requests must take place before we
can guarantee that every processor has had work requested from it. We define
V (p) to be the number of requests that must take place in the system before
we can guarantee that every processor has been polled for work. Obviously,
V (p) depends on the specific load balancing scheme used be it global round
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robin, randomized polling etc. We see that at least V (p) ≥ p since if V (p) < p

we have not even generated enough polling to request from every existing
processor. Specifically V (p) will depend on the load balancing algorithm and
will be specified when we discuss the explicit load balancing schemes below.
In our initial situation, with all the work W at one processor, we must have
V (p) requests in our system before we can be guaranteed to to have requested
work from p∗. With the first request that p∗ accepts, the maximal work in
the system drops to (1 − α)W . This is assuming an α-splitting as discussed
in the book. After 2V (p) requests it drops to (1 − α)2W , etc. After nV (p)
total requests it drops to (1 − α)nW . To determine the number n of V (p)
requests before our tasks are so small they can no longer be split we enforce
the requirement that after these n work divisions, the maximal work left in
the system be less than ε. This gives

(1 − α)nW < ε

Solving for n gives

n > log1/(1−α)(
W

ε
)

Thus after n “chunks” of V (p) requests we can guarantee that the maximal
work at any given node in the system is less than ε. Thus the total number
of work requests is O(nV (p)) and since

O(n) = O(log1/(1−α)(
W

ε
)) = O(log W )

the total number of work requests simplifies to O(V (p) log W ) as given in the
text. If we further assume that each request for work and the correspond
work transfers occupy constant time tcomm, an upper bound on the amount
of communication overhead can be given by To = tcommV (p) log W . For
variations on communication that does not take place in constant time this
see the problems from this chapter.

A Different Analysis of V(p) for Random Polling

Here is a different method of attack for obtaining the same answer for this
question. As stated in the text, assume that we have p total boxes to mark
and we continue to make random attempts to mark an unmarked box. Define
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f(q, n) to be the probability that q boxes are marked after n trials. Then
the average number of trials needed to mark all of the boxes is given by

N̄ =
∞
∑

k=p

kf(p, k) (1)

A simple partial difference equation for f(q, n) is given by the following logic.
The probability that q + 1 boxes are marked after n + 1 trials can be given
by the sum of the two mutually exclusive events

• q + 1 boxes are marked after n trials and the n + 1 attempt to mark a
box fails

• q boxes are marked after n trials and the n + 1 attempt to mark a box
succeeds

Now at any stage, with q (of p) boxes marked, the chance we mark another
box (a success) on the next trial is p−q

p
and the chance we do not (a failure)

is given by q
p
. With this background we can now express f(q + 1, n + 1) as

f(q + 1, n + 1) =
q + 1

p
f(q + 1, n) +

p − (q + 1)

p
f(q, n) . (2)

For q ≥ 0 and n ≥ 1. Note that this is a linear partial difference equation
and has many amenable method for its solution. For initial and boundary
conditions for f(q, n) we see from simple arguments that

f(0, n) = 0 for n ≥ 1 (3)

f(q, 0) = 0 for q ≥ 1 (4)

f(q, n) = 0 for q > n (5)

f(1, 1) = 1 (6)

f(q, q) =
p(q)

pq
=

(p − 1)(p − 2) . . . (p − q + 1)

pq−1
for q ≥ 1 (7)

We now desire the solution to the partial difference equation, Eq. 2. It will
benefit us to write it decremented in q by one or as

f(q, n + 1) =
q

p
f(q, n) +

p − q

p
f(q − 1, n) for n ≥ 1, q ≥ 1 . (8)

3



Attempts to solve this partial difference equation are reported on below using
a variety of techniques. Some were more successful that others and may
indicate why the book choose the approach they took. Many reduce to
the same calculations. In locations where I couldn’t make more progress, I
simply stopped, opting to come back to these derivations when my skills had
improved more.

Operator Method

As a first attempt, lets try to solve Eq. 8 using the Operator Method. As
such we define

E1f(q, n) = f(q + 1, n) (9)

E2f(q, n) = f(q, n + 1) (10)

and our original equation becomes

E2f =

(

q

p
− (1 −

q

p
)E−1

1

)

f (11)

therefore recognizing the above as n iterations on f(q, n) we have (by induc-
tion) and then the binomial theorem that

f(q, n) =

(

q

p
+ (1 −

q

p
)E−1

1

)n

g(q) (12)

=
n
∑

k=0

(

n

k

)(

q

p

)k (

1 −
q

p

)n−k

E
−(n−k)
1 g(q) (13)

=
n
∑

k=0

(

n

k

)(

q

p

)k (

1 −
q

p

)n−k

g(q − n + k) (14)

As an interesting observation, that may shed light into how to proceed, no-

tice that

(

n

k

)

( q
p
)k(1 − q

p
)n−k is the Binomial distribution. That is, the

probability of k successes in n trials where the probability of a single success
is q

p
.

The Z-transform with respect to n

Taking the Z-transform with respect to n gives

zF (q, z) − zf(q, 0) =
q

p
F (q, z) + F (q − 1, z)

p − q

p
for q ≥ 1 (15)
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Now f(q, 0) = 0 when q > 0 so the above can be solved for F (q, z) giving

F (q, z) =
1 − q

p

z − q
p

F (q − 1, z) for q ≥ 1 (16)

Solving by iteration we obtain

F (q, z) =

∏q
l=1(1 − l

p
)

∏q
l=1(z − l

p
)
F (0, z) (17)

Note that

F (0, z) = Z(f(0, n)) =
∑

n≥0

f(0, n)z−n = f(0, 0)z0 = f(0, 0) (18)

At this point we have not determined f(0, 0). Limiting values of Eqs. 3 and 4
above would indicate that its value should be 0. This cannot be true, or else
we end up with the trivial solution for F (q, z). In addition, limiting values
of the Eq. 7 require the value of f(0, 0) = 1, which is what we use in the
analysis below.

To compute the inverse Z-transform of Eq. 17 we note that this expression
can be separated into a sum of individual terms by partial fractions. To
enable such a transformation we are looking for a set of coefficients Al such
that

1
∏q

l=1(z − l
p
)

=
q
∑

l=1

Al

z − l
p

(19)

Multiplying both sides by
q
∏

l=1

(

z −
l

p

)

in the standard way we can obtain the following for the coefficients Al

Al =
1

∏q
m=1,m6=l

(

l
p
− m

p

) =
pq−1

∏q
m=1,m6=l(l − m)

for l = 1, 2, . . . , q (20)

so that with this substitution F (q, z) becomes

F (q, z) = p

( q
∏

l=1

(1 −
l

p
)

) q
∑

l=1

Al

l

(

z
l
p

− 1
) (21)
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Note that the product expression in the above equation can be written in
terms of the factorial function as

q
∏

l=1

(1 −
l

p
) =

q
∏

l=1

(p − l)
1

p
(22)

=
1

pq

q
∏

l=1

(p − l) (23)

=
1

pq

p(p − 1)(p − 2) . . . (p − q)

p
(24)

=
1

pq+1
p(q+1) (25)

so that at this point F (q, z) becomes

F (q, z) =
p(q+1)

pq

q
∑

l=1

Al

l

(

z
l
p

− 1
) (26)

To further compute the inverse Z-transform of this expression recall that the
Z-transform of the Heavyside unit step (with jump occurring at 1) is given
by (see Page 112 in the book by Kelly and Peterson [1]: Example 3.37)

∑

n≥0

un(1) =
1

z − 1
(27)

and recalling the geometric product formula for the Z-transform

Z(anyn) = Y (
z

a
) (28)

we can invert the above function obtaining

f(q, n) =
p(q+1)

pq

q
∑

l=1

Al

l

(

l

p

)n

un(1) (29)

=
p(q+1)

pq+n
un(1)

q
∑

l=1

Al l
n−1 (30)

The Method of Generating Functions

In this method we multiply both sides of the equation by xn and sum from
n ≥ 0. This gives

∑

n≥0

f(q, n + 1)xn =
∑

n≥0

q

p
f(q, n)xn +

p − q

p

∑

n≥0

f(q − 1, n)xn (31)
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Defining F (q, x) =
∑

n≥0 f(q, n)xn the above becomes

∑

n≥1

f(q, n)xn−1 =
q

p
F (q, x) + (1 −

q

p
)F (q − 1, x) (32)

or
1

x
F (q, x) =

q

p
F (q, x) + (1 −

q

p
)F (q − 1, x) (33)

or

F (q, x) =
(1 − q

p
)

1
x
− q

p

(34)

The Method of Separation of Variables

To use Separation of Variables we define f(q, n) = FqGn and insert this into
our partial difference above to get

FqGn+1 =
q

p
FqGn + (1 −

q

p
)Fq−1Gn (35)

Now dividing by GnFq we obtain

Gn+1

Gn
=

q

p
+

(

1 −
q

p

)

Fq−1

Fq
. (36)

Since the left hand side is a function only n and the right hand side is only a
function of q they each must equal a separation constant we denote α. With
this substitution the equation for Gn then becomes

Gn+1 = αGn (37)

with a solution of
Gn = G0α

n (38)

Similarly Fq must satisfy

q

p
+ (1 −

q

p
)
Fq−1

Fq
= α (39)

or

Fq =

q
p
− 1

q
p
− α

Fq−1 (40)
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Derivation of a difference equation for N̄

This may yet be another method that could yield manageable calculations.

Chapter 8 Solutions

Problem 1

To evaluate the performance of this scheme we will follow the discussion given
in the book and compute the overhead due to communication i.e. resulting
from work requests and work transfers necessitated by the load balancing
algorithm; be it asynchronous round robin, global round robin, or random
poling. From the the discussions in the book, the communication overhead
is given by

T0 = tcommV (p) log W . (41)

Assuming a constant communication time (tcomm) independent of the dis-
tance between processors and the amount of data sent.

Problem 4

Part (a): Assume as in the discussion in the text that W amount of work
is initially placed at a single processor. In V (p) requests and assuming an
α-splitting we reduce the maximum work at any given node to (1−α)W . We
also require distributing either αW or (1−α)W to the requesting processor (in
a real implementation where communication bandwidth is limited one would
want to transmit the smaller of those two expressions). This transmission

requires a communication time proportional to either
√

αW or
√

(1 − α)W
and is bounded above by the larger of these two. Since we assume that

0 < α < 0.5 this is
√

(1 − α)W . This total negotiation for work results in at

most V (p) requests each with tcomm communication time and the additional

transfer of work which is bounded above by tw

√

(1 − α)W . Giving a total
communication overhead of

T (1)
o = tcommV (p) + tw

√

(1 − α)W . (42)

A second application of the same logic results in

T (2)
o = T (1)

o + tcommV (p) + tw

√

(1 − α)2W (43)
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= 2tcommV (p) + tw(
√

(1 − α)W +
√

(1 − α)2W ) (44)

Induction to multiple blocks of work requests on the above pattern (until the
work at all processors is less than the minimum split amount ε) gives for the
total overhead due to communication (transfer of data plus requests) of

To = tcommV (p) log W + tw
√

W
n
∑

i=1

(1 − α)i/2 (45)

Where as in the notes for this section

n > log1/(1−α)(
W

ε
) .

To determine the total communication overhead we must perform the sum-
mation in Eq. 45. The simplest way to evaluate this expression is to consider
the limit when n tends to infinity. In that case, the summation above is a
geometric series and converges nicely to a constant. Giving in total that the
total overhead is given by

T0 = tcommV (p) log(W ) + O(tw
√

W ) (46)

Now Eq. 46 represents the communication required by the load balancing
strategy through its dependence on V (p). For load balancing by Global
Round Robin (GRR) the function V (p) = p since we must have at least p

work requests in the system before we can be gaurrenteed that every processor
has received at least one request and Eq. 46 becomes

T0 = tcommp log(W ) + C1tw
√

W + C0 (47)

For the hypercube architecture the average distance between processors is
given by Θ(log(p)) so that the above becomes

T0 = O(p log(p) log(W )) + O(tw

√
W ) . (48)

To derive the iso-efficiency function we ballance the communication overhead
T0 with the total work to be done W giving

W = O(p log(p) log(W )) + O(
√

W ) (49)

and we desire to solve the above asymptotically for W = W (p). Asymptoti-
cally, W �

√
W , and we drop the O(

√
W ) term from the above giving

W ≈ p log(p) log(W ) when W → ∞
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giving

W = O(p log(p) log(p log(p log(W )))) (50)

= O(p log(p(log(p) + log(log(p)) + log(W )))) (51)

≈ O(p log(p)2) (52)

As discussed in the text for global round robin, the iso-efficiency due to
contention for the shared resource “counter” processor is O(p2 log(p)) and
this dominates the iso-efficiency above.
Part (b): In this case, after the system has “seen” V (p) work requests the
maximal work at any one processor is reduced to W (1−α), after two blocks
of V (p) work requests the maximal work in any one processor is given by
W (1 − α)2. As before we have, after n blocks of V (p) work requests the
maximal work in any one processor is given by W (1−α)n. The assumptions
of this part of the problem assume that the communication time for the
transfer of work is upper bounded by

log(W (1 − α)n) . (53)

So in total, the total time required for the data transfered is bounded above
by

n
∑

i=1

tw log(W (1 − α)i) = tw

n
∑

i=1

log(W ) + i log(1 − α) (54)

= twn log(W ) + tw log(1 − α)
n
∑

i=1

i (55)

with tw the per word data transfer time (time required to transfer a word of
data). Since n = O(log(W )) as discussed above we observe that the above is
bounded above by

tw(log(W ))2 + tw log(1 − α)n2 = O(log(W )2) . (56)

Thus the overhead due to communication of work requests is

T0 = tcommV (p) log(W ) + (log(W ))2 (57)

since for Global Round Robin V (p) = p and we obtain

T0 = tcommp log(W ) + (log(W ))2 (58)
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For the hypercube architecture tcomm = log(p) and we have

T0 = p log(p) log(W ) + (log(W ))2 . (59)

To derive the iso-efficency function set T0 = W and solve for W as a function
of p. The assignment of T0 = W gives

W = p log(p) log(W ) + (log(W ))2 (60)

Since (log(W ))2 is subdominant to W (the left hand side) we obtain equating
W with the log(p) term the expression

W = p log(p) log(W ) (61)

which is the same result as in Part (a) and gives an iso-efficiency function of
W = O(p(log(p))2 as before. Since for both of these situations the communi-
cation time due to data transfer did not affect the iso-efficiency function we
see a motivation for not including it in the discussion presented in the book.
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