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Additional Notes And Derivations

An Example Calculation of the Rankine-Hugoniot Curve
for the Isothermal Equations (Page 71)

The isothermal equation are given by

ρt + mx = 0 (1)

mt +

(

m2

ρ
+ a2ρ

)

x

= 0 (2)

Here m = ρu, p = a2ρ, and a2 = RT̄ . Defining the vector u as

u =

[

ρ

m

]

(3)

we see the Jacobian f ′(u) of the above flux is given by

f ′(u) =

[

0 1

−m2

ρ2 + a2 2m

ρ

]

=

[

0 1
a2 − u2 2u

]

(4)

To determine the eigenvalues we must solve for λ in

|λI − f ′(u)| = 0 (5)
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or
∣

∣

∣

∣

∣

λ −1
−a2 + u2 −2u + λ

∣

∣

∣

∣

∣

= 0 (6)

or evaluating the determinate we have

−2uλ + λ2 − a2 + u2 = 0 (7)

or
λ2 − 2uλ + u2 − a2 = 0 (8)

or on completing the square we have

(λ − u)2 − a2 = 0 (9)

or
λ = u ± a (10)

Now the Rankine-Hugoniot equations for the isothermal equations are (we
are assuming that ρ̂ and m̂ are the state ahead of the shock wave)

m̃ − m̂ = s(ρ̃ − ρ̂) (11)

m̃2

ρ̃
+ a2ρ̃ −

m̂2

ρ̂
− a2ρ̂ = s(m̃ − m̂) (12)

This is a system of two equations with three unknowns (the state behind the
shock wave of (ρ̃, m̃) and the shock speed s). We will choose to solve for m̃

and s in terms of ρ̃. One might ask why we choose these two variables over
any other. One reasons to try this choice might be that ρ̃ appears linearly in
both equations. We first solve the first equation for m̃ and put this into the
second equation. Solving the first equation for m̃ gives

m̃ = m̂ + s(ρ̃ − ρ̂) (13)

when put into the second equation we obtain

(m̂ + s(ρ̃ − ρ̂))2

ρ̃
+ a2ρ̃ −

m̂2

ρ̂
− a2ρ̂ = s(s(ρ̃ − ρ̂)) (14)

or expanding the square

m̂2 + 2m̂(ρ̃ − ρ̂)s + (ρ̃ − ρ̂)2s2

ρ̃
+ a2ρ̃ −

m̂2

ρ̂
− a2ρ̂ = s2(ρ̃ − ρ̂) (15)
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or multiplying by ρ̃

(ρ̃ − ρ̂)2s2 + 2m̂(ρ̃ − ρ̂) + m̂2 + a2ρ̃2 −
m̂2ρ̃

ρ̂
− a2ρ̃ρ̂ = s2(ρ̃ − ρ̂)ρ̃ (16)

or grouping together powers of the variable s

[

(ρ̃ − ρ̂)2 − ρ̃(ρ̃ − ρ̂)
]

s2 + 2m̂(ρ̃− ρ̂)s + m̂2 + a2ρ̃2 −
m̂2ρ̃

ρ̂
− a2ρ̃ρ̂ = 0 . (17)

The coefficient of s2 expands to

−ρ̂(ρ̃ − ρ̂) .

The above can be recognized as a quadratic equation for s. Dividing by the
leading coefficient of the s2 term we obtain

s2 − 2
m̂

ρ̂
s −

1

ρ̂(ρ̃ − ρ̂)

[

m̂2 + a2ρ̂2 −

(

m̂2ρ̃

ρ̂
+ a2ρ̃ρ̂

)]

= 0 (18)

To complete the square we take the coefficient of s divide it by two, square
it and add this to both sides, this gives the value of m̂2

ρ̂2 giving

s2 − 2
m̂

ρ̂
s +

m̂2

ρ̂2
−

m̂2

ρ̂2
−

1

ρ̂(ρ̃ − ρ̂)

[

m̂2 + a2ρ̃2 −

(

m̂2ρ̃

ρ̂
+ a2ρ̃ρ̂

)]

= 0 (19)

or

(s −
m̂

ρ̂
)2 −

m̂2

ρ̂2
−

1

ρ̂(ρ̃ − ρ̂)

[

m̂2

ρ̂
(ρ̂ − ρ̃) + a2ρ̃(ρ̃ − ρ̂)

]

= 0 (20)

or

(s −
m̂

ρ̂
)2 −

a2ρ̃

ρ̂
= 0 (21)

or giving

s =
m̂

ρ̂
± a

√

ρ̃

ρ̂
. (22)

Which is equation 7.10 in the book. Then we have for m̃ the following

m̃ = m̂ + (ρ̃ − ρ̂)

(

m̂

ρ̂
± a

√

ρ̃

ρ̂

)

(23)

or

m̃ =
m̂

ρ̂
(ρ̂ + ρ̃ − ρ̂) ± a(ρ̃ − ρ̂)

√

ρ̃

ρ̂
=

ρ̃

ρ̂
m̂ ± a(ρ̃ − ρ̂)

√

ρ̃

ρ̂
(24)

which is LeVeque Eq. 7.9 in the book.
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An Example Calculation of the Rarefaction Waves and
Integral Curves for the Isothermal Equations (Page 71)

Problem Solutions

Chapter 8:

Exercise 8.4

We first consider the Riemann problem between the states u1 and u2 and
then the corresponding Riemann problem between the states u2 and u3 as
defined in the text. To aid in this process we will use the FORTRAN code
developed to solve the Riemann problem for the isothermal equations which
can be found at:

http://web.mit.edu/wax/www/Software

The first Riemann problem is represented in the (ρ, m) = (ρ, ρu) plane in
Figure XXX
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