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Introduction

As a former applied mathematician, I found this book a very nice addition
to the computational finance literature. The mathematical formulation of
the problems discussed is clear without sacrificing rigor. Helpful but not
overly theoretical proofs are provided, and a nice summary appendix of useful
background mathematical results is given. One nice aspect of the book is that
it provides somewhat more advanced algorithms (and source code) than other
introductory books. This is beneficial in that this provides a more readable
introduction to the various papers one would need to read to understand
the same material. In these notes you’ll find the solutions to the problems
for Chapter 2 and any additional mathematical derivations I performed as I
worked thought this book.

*wax@alum.mit.edu



Chapter 2 (Introduction to Stochastic Processes)

Problem Solutions
Problem 1 (evaluating (8} = E[W}])

Part (a): As an explanation of the solution process we will take for this
problem we will derive a differential equation for W} which we will then solve.
Having solved this differential equation we will take the expectation of the
solution to derive a recursion relationship for the requested 3F = E[W}]. We
begin by defining the function ¢ as ¢(W;) = Wk. Since ¢ is only a function
of only a stochastic component W, (and not time) from Ito’s formula we have
for its differential the following

99

dp = =2

¢ ow

Thus for this specific ¢p(W;) we find

10
dWi + 3 ¢

28W2dt‘

1
d(W}) = k(W) tdW, + ik(k —1)(W,)F2dt .

Integrating both sides of this last expression from 0 to t gives

t t 1 t
/ d(WF) = k/ (W) taw, + §k(k — 1)/ (W) 2ds,
s=0 s=0 s=0

or
t

Wt’“—Wé“:k;/

s=0

1 t
(W) taw, + 5k(k - 1)/ (W) 2ds .
s=0

Since W = 0 we can take the expectation of the above to get

BF = E[W}] = kE U:O(Ws)kldws] + %k(k ~1)E Ut (WS)des]

=0

Since FE [ fstzo(Ws)k’ldWs] = 0 then passing the second expectation into the

integral above gives the desired expression for 3F of

|

ot = gkth=1) [ g, 1)

the desired expression.



Part (b): From Equation 1 above we have that when k = 4 that

B =t =30) [ s,

which depends on 32. When k = 2 Equation 1 gives

¢
ﬂf:%(Z)/_Ods:t.

So with these two results we see that
t
EW}] = 6/_0 s’ds = 233}3 =21,

Part (c): In the same way as above we have when k = 6 that

1 t t
EW?] = 56(5) / Bids = 15 / 3s%ds = 15t%.
s=0 5=0
Problem 2 (solving dX; = X,dt + dW;)

From the given differential equation dX; = X;dt + dW; we can write it
trivially but emphasizing that the random component W; can be considered
like a forcing term to the linear system represented by the left hand side as

dXt - Xtdt == th .

This also suggest multiplying both sides by the integration factor of e~ to
get
dXte_t - Xte_tdt = G_tth .

In this expression the left hand side is equivalent to an exact differential and

our equation becomes
d(Xteft) = eitth .

Upon integrating both sides of this from ¢y to ¢ we obtain

t t
/ d(Xteft) = / eitth s
to to



or performing the integration on the left hand side gives

t
Xt — Xtoe’to = / e *dWs.

to

Solving for X; we finally find

t
X; = Xy e ot ¢ / el dWy .

to

Problem 3 (solving dX; = —X,dt + e~ 'dWV,)

Writing the given differential equation as
dX, + X,dt = e tdW,,

we can simplify it by multiplying by an integrating factor of e! to get
eldX, + e X, dt = dW,,

or
d(etXt) = dVVt .
When we integrate both sides from ¢, to ¢t we find
t
€tXt — etOXtO = / dWS = Wt — Wto .
to

Since Wy, = 0 when we solve for X; we find

Xt = 6t07tXtO + €7tWt .

Problem 4 (integrating [ W2dW)

Consider a function ¢ defined as ¢ = W7. Then Ito’s formula in this case
since our stochastic variable, X, written in terms of W is so simple (X is
equal to W) the general expression has a = 0, b = 1, and we find

(2128 ) s 22

do o + 5 2 dt + ——dW

oW
6

= (0 + 5Wt) dt + 3W2dw

= 3W,dt + 3W2W ,
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or expressing this in terms of W} we find

1
Fd(WE) = Widt + WEdW .

On integrating both sides from ¢, to ¢ since W;, = 0 we see that

1 t t
WP = / Weds + / W2dWy,
3 s=0 s=0

which is the required identity.

Problem 5 (solving dY; = rdt + aY;dW;)

To solve
dY; = rdt + oY, dW, , (2)
a2
as a hint we are told to consider an integrating factor F;, = e_aWt_(T)t.
Note that there is a typo in the sign of the ¢ term in the expression the books

provides for F;. We begin by writing Equation 2 as
dY; — oY, dW, = rdt .
We next multiply both sides by the suggested integrating factor F; to obtain
FdY, — oY, F,dW, = rFidt . (3)

Now with Ito’s formula lets evaluate the differential of the integrating factor
F;. We find

OF 1 09%F oF
F, = D T ~ h
dF; <8t +20W2)dt+8WdW where
or o?
- - _(Z\F
i - (%)
or
72— _aF
W “
O’F 9
2 = oF.
So we see that
ot 1,
dF = —7—%504 Fdt — aFdW = —aFdW . (4)
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Using Equation 4 we see that the differential of the product Y, F; is
d(Y;Fy) = (dYy)F; + Yi(dF;)
= F(dY;) + Yt(—OZQFtth)
= L[(dY;) — oY FdW;.

Thus using this expression Equation 3 above becomes

o

d(YiFy) = reoe( 22)tdt.

Integrating both sides from %, to ¢t gives
! W,
ViF = YiyFy = [ re
to

so that when we solve for Y; we find

t 2
FF, Y, +rF ! / W= ()2 4

to

Y,
_ eaWt+(%)tefaWtof(%)t0KO + r@aWt+(aT2)t /t efawsf(%)sds ]
to
Since Wy, = 0 we get that

Y, — v, eaWﬁ(%)(t—to) N 7A/'f 6a(Wt—Ws)+(a7)(t—s)ds
0

s=to

for the solution.

Problem 6 (solving the Ornstein-Uhlenbeck process)
For the mean reverting Ornstein-Uhlenbeck process given by

dX; = (m — Xy)dt + odWy, (5)
we have by writing the random component on the right hand side

dX; + Xydt = mdt + odW; .

From this expression an integrating factor for this equation is given by F' =
et and multiplying by this we find the left hand side becomes the perfect
differential

e'dX; + ' Xydt = d(e' Xy) .
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Using this the above becomes
d(e'X;) = me'dt + oe'dW; .
Integrating both sides over the limits ¢ to ¢y gives

¢
e X — e X, =m(e' — e )—i—a/ e*dWy,

to

or solving for X; we obtain

t
X, = e X, 4+ m(l —e 7)) 4 aet/ e’dW,

to

¢
= m+ (X;, —m)e ) ¢ ae_t/ e*dWs . (6)

to

Part (b): Taking the expectation of Equation 6 above we find
E[X)) = m+ (X;, —m)e 1), (7)
Since F [ ft'; eSdWS] = 0 because dWj represents a draw from N (0, ds) which

has an zero expectation. To compute the variance of X; or Var[X;] first
consider subtracting the mean from X; to get

t
X, — E[X] = ae_t/ esdWy ,

to

then squaring this we find

(X, — E[X)])? = 0% 2 / / AW, dW, .
u=tg J v=to

Now the expectation of this (which is also the variance of X;) then is

E[(X, — E[X)))?] = 026%/ / e+ AW, dW,] .
u=tg J v=to

Recalling that E[dW,dW,| = E[dW?2]§( = dud(u—v), where §(-) is the
Dirac delta function. Using this we obtam

Var[X;] = E[(X;— E[X}])?]

t
— 0_26th / 62udu
u=to

2

= S(1— ey, (8)



Problem 7 (time-dependent Brownian motion)

Part (a): For time-dependent geometric Brownian motion our asset price
S; satisfies
dSt = IUtStdt + O'tStth s (9)

where now p and o are functions of the time variable . This is the general
stochastic differential of the variable S; with a; = uS; and b, = 0,5;. Now
define a function ¢ such that ¢ = log(S;), so by Ito’s formula we have

(06 06 B¢ 8¢
dp = <at+aas+2352 dt + b dW

o 1 O'tQStQ 1 St
= <,utSt (St) + 5 St2 dt+0t5tdW

0_2
= (ut — é) dt + o, dW, .

Thus integrating both sides of this expression we have
t o2 t
log(5:) ~ los(5) = [ (us - 7) st [oaw,, (o)
to to

or solving for S; we have

t o2 t
Sy = Sy, exp {/ (,us — ?S) ds +/ Jdes} ) (11)
to to

Taking the expectation of Equation 10 we have

Bllog(5)] = lox(5,) + | (=% ) as. (12

to

where we have used the fact that

t t
E{ / adeS} - / o E[dW,] = 0.
to to

Part (b): To compute the variance of log(S;) consider its definition

Varllog(S,)] = E [(log(S:) — Ellog(S)])?]



= b

(/tO'SdW) {/u to/v toauavdW dW}

= / / 00, E[dW, dW,] / / 0,0,10(u — v)du
u=tg J v=to u=tg Jv=tg

=L/ odu,
u=top

the requested expression.

Problem 8 (the differential of e!"'*)

This problem is a direct application of Ito’s lemma where one knows the
stochastic differential equation followed by the process X; and we want the
stochastic differential equation of a function of X; and ¢. That is when we
know dX; = adt+bdW;, some values of a and b, then the function ¢ = ¢( X t)

has a differential given by
2 92
L2 ¢) i +

o |
0= (G + %+ 7w

When the functional form form ¢ is ¢(X, t) = ¢ we have that the stochastic
process followed by X is simply dX = dW and we find the partial derivatives
given by

.92
“ox

9¢
+bordW.

(13)
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5 = Wt =

0 0

a_j; B ajv_ttw 10
0 0

Using these in the above and recognizing that when X = W we have a = 0

and b = 1 we find d¢ given by

dp =

as we were to show.

(qut + %t%) dt + tpdW,

1
o) (Wt + 5152) dt + tpdW,



Problem 9 (the differential of Z;)

To evaluate the differential of the given Z; = exp ( [ 0aw, L[ «95ds>,
observe that Z; can be considered a function of time only which is in tern a

function of only the variables 6, and W,. Thus to compute dZ; we will use
the chain rule. Defining a function A; as the argument of the exponential i.e.

t 1 t
A, :/ 0,dW, — —/ 02ds ,
s=0 2 s=0

we have Z, = exp(4,), and dA; = 0,dW, — %Hfdt so A; is stochastic with the

given differential. By Ito’s lemma we have since Z; = exp(A;) that
dz 1d*Z
dZ;, = ——dA+ =——dA?
ST RS VI

1
— thA + §thA2
1 2 1 2 2 1 3 1 4 742
- Zt thWt - 5915 dt + 5915 th - 5915 thdt + get dt

1 1
- Zté’thVt .
Since the product 67dW7? — 67dt in expectation.

Problem 10 (the function S; = SyertToWt)

Part (a): Given S; = Spexp(ut + oW,;) with Wy ~ N(0,¢) then Ito’s lemma
applied to the functional form

¢ =Sy = o(t, W) = Spexp(ut + oW;), (14)

Gives

06, 09 1 8%
do = Sodi+ g dW 4 5o
96, 09 1 8%
= St AW S

1
— Msoeut-l-O'Wt + O-S()e,ut-l-O'WtdW + 50_2506Mt+gwtdt

dW?

dt

1
= podt + 5a%dt + opdW .
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So since ¢ = S; we see that
1
dSy = (p+ 502)5@15 + oS dWy (15)

as we were to show.
Part (b): Integrating both sides of Equation 15 from t, to ¢ we find that

0_2 t t
St — Sto = (M + 7) / Sq—dT + O'/ STdWT .
to to

Then taking expectations of the above we find

E[S,] — E[S,] = (u + %2) /t " Bls.)dr (16)

since the expectation of the second term is zero.

Part (c): Note that Equation 16 is an integral relation for E[S;]. To solve
for E[S;] we can convert this into a differential equation for E[S;] that we
can then solve. Taking the derivative of Equation 16 with respect to time we

find dE[S)) o?
n (u + 7) E[S,].

The solution to this equation is

BIS,] = BlSole ) = gpele )

as we were to show.

Problem 11 (an integration by parts identity)

This problem looks like Ito’s product rule in two dimensions. Let ¢ = X,Y;
then from the product rule expression discussed in the book recall that d¢ is
given as

¢ ¢ 2 2
dp = ——dX, + dX2+ ZZ dXdX;| | (17)

0X, 0Xo X 8X

from which for when ¢ = XY, we obtain the result

d(X:Y;) = XudY; + Yid Xy + EldX,dY]

11



Then integrating both sides of this expression from ¢ to ¢y gives
t t t
XYy — XY, = / XedYs +/ Y,dX, + / EldXdYs],
s=to s=to s=to

which on rearranging gives the desired expression.
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