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Introduction

As a former applied mathematician, I found this book a very nice addition
to the computational finance literature. The mathematical formulation of
the problems discussed is clear without sacrificing rigor. Helpful but not
overly theoretical proofs are provided, and a nice summary appendix of useful
background mathematical results is given. One nice aspect of the book is that
it provides somewhat more advanced algorithms (and source code) than other
introductory books. This is beneficial in that this provides a more readable
introduction to the various papers one would need to read to understand
the same material. In these notes you’ll find the solutions to the problems
for Chapter 2 and any additional mathematical derivations I performed as I
worked thought this book.

∗
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Chapter 2 (Introduction to Stochastic Processes)

Problem Solutions

Problem 1 (evaluating βk
t = E[W k

t ])

Part (a): As an explanation of the solution process we will take for this
problem we will derive a differential equation for W k

t which we will then solve.
Having solved this differential equation we will take the expectation of the
solution to derive a recursion relationship for the requested βk

t = E[W k
t ]. We

begin by defining the function φ as φ(Wt) = W k
t . Since φ is only a function

of only a stochastic component Wt (and not time) from Ito’s formula we have
for its differential the following

dφ =
∂φ

∂W
dWt +

1

2

∂2φ

∂W 2
dt .

Thus for this specific φ(Wt) we find

d(W k
t ) = k(Wt)

k−1dWt +
1

2
k(k − 1)(Wt)

k−2dt .

Integrating both sides of this last expression from 0 to t gives

∫ t

s=0

d(W k
s ) = k

∫ t

s=0

(Ws)
k−1dWs +

1

2
k(k − 1)

∫ t

s=0

(Ws)
k−2ds ,

or

W k
t − W k

0 = k

∫ t

s=0

(Ws)
k−1dWs +

1

2
k(k − 1)

∫ t

s=0

(Ws)
k−2ds .

Since W k
0 = 0 we can take the expectation of the above to get

βk
t = E[W k

t ] = kE

[
∫ t

s=0

(Ws)
k−1dWs

]

+
1

2
k(k − 1)E

[
∫ t

s=0

(Ws)
k−2ds

]

Since E
[

∫ t

s=0
(Ws)

k−1dWs

]

= 0 then passing the second expectation into the

integral above gives the desired expression for βk
t of

βk
t =

1

2
k(k − 1)

∫ t

s=0

βk−2
s ds , (1)

the desired expression.
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Part (b): From Equation 1 above we have that when k = 4 that

E[W 4
t ] = β4

t =
4

2
(3)

∫ t

s=0

β2
sds ,

which depends on β2
s . When k = 2 Equation 1 gives

β2
t =

1

2
(2)

∫ t

s=0

ds = t .

So with these two results we see that

E[W 4
t ] = 6

∫ t

s=0

s2ds = 2s3
∣

∣

t

0
= 2t3 .

Part (c): In the same way as above we have when k = 6 that

E[W 6
t ] =

1

2
6(5)

∫ t

s=0

β4
sds = 15

∫ t

s=0

3s2ds = 15t3 .

Problem 2 (solving dXt = Xtdt + dWt)

From the given differential equation dXt = Xtdt + dWt we can write it
trivially but emphasizing that the random component Wt can be considered
like a forcing term to the linear system represented by the left hand side as

dXt − Xtdt = dWt .

This also suggest multiplying both sides by the integration factor of e−t to
get

dXte
−t

− Xte
−tdt = e−tdWt .

In this expression the left hand side is equivalent to an exact differential and
our equation becomes

d(Xte
−t) = e−tdWt .

Upon integrating both sides of this from t0 to t we obtain

∫ t

t0

d(Xte
−t) =

∫ t

t0

e−tdWt ,
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or performing the integration on the left hand side gives

Xte
−t

− Xt0e
−t0 =

∫ t

t0

e−sdWs .

Solving for Xt we finally find

Xt = Xt0e
−t0+t +

∫ t

t0

et−sdWs .

Problem 3 (solving dXt = −Xtdt + e−tdWt)

Writing the given differential equation as

dXt + Xtdt = e−tdWt ,

we can simplify it by multiplying by an integrating factor of et to get

etdXt + etXtdt = dWt ,

or
d(etXt) = dWt .

When we integrate both sides from t0 to t we find

etXt − et0Xt0 =

∫ t

t0

dWs = Wt − Wt0 .

Since Wt0 = 0 when we solve for Xt we find

Xt = et0−tXt0 + e−tWt .

Problem 4 (integrating
∫

W 2
s dWs)

Consider a function φ defined as φ = W 3
t . Then Ito’s formula in this case

since our stochastic variable, X, written in terms of W is so simple (X is
equal to W ) the general expression has a = 0, b = 1, and we find

dφ =

(

∂φ

∂t
+

1

2

∂2φ

∂W 2

)

dt +
∂φ

∂W
dW

=

(

0 +
6

2
Wt

)

dt + 3W 2
t dW

= 3Wtdt + 3W 2
t dW ,
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or expressing this in terms of 1
3
W 3

t we find

1

3
d(W 3

t ) = Wtdt + W 2
t dW .

On integrating both sides from t0 to t since Wt0 = 0 we see that

1

3
W 3

t =

∫ t

s=0

Wsds +

∫ t

s=0

W 2
s dWs ,

which is the required identity.

Problem 5 (solving dYt = rdt + αYtdWt)

To solve
dYt = rdt + αYtdWt , (2)

as a hint we are told to consider an integrating factor Ft = e
−αWt−

“

α
2

2

”

t
.

Note that there is a typo in the sign of the t term in the expression the books
provides for Ft. We begin by writing Equation 2 as

dYt − αYtdWt = rdt .

We next multiply both sides by the suggested integrating factor Ft to obtain

FtdYt − αYtFtdWt = rFtdt . (3)

Now with Ito’s formula lets evaluate the differential of the integrating factor
Ft. We find

dFt =

(

∂F

∂t
+

1

2

∂2F

∂W 2

)

dt +
∂F

∂W
dW where

∂F

∂t
= −

(

α2

2

)

F

∂F

∂W
= −αF

∂2F

∂W 2
= α2F .

So we see that

dF =

(

−

α2

2
+

1

2
α2

)

Fdt − αFdW = −αFdW . (4)

5



Using Equation 4 we see that the differential of the product YtFt is

d(YtFt) = (dYt)Ft + Yt(dFt)

= Ft(dYt) + Yt(−α2FtdWt)

= Ft(dYt) − αY FdWt .

Thus using this expression Equation 3 above becomes

d(YtFt) = re
−αWt−

“

α
2

2

”

t
dt .

Integrating both sides from t0 to t gives

YtFt − Yt0Ft0 =

∫ t

t0

re
−αWs−

“

α
2

2

”

s
ds

so that when we solve for Yt we find

Yt = F−1
t Ft0Yt0 + rF−1

t

∫ t

t0

e
−αWs−

“

α
2

2

”

s
ds

= e
αWt+

“

α
2

2

”

t
e
−αWt0

−

“

α
2

2

”

t0Yt0 + re
αWt+

“

α
2

2

”

t

∫ t

t0

e
−αWs−

“

α
2

2

”

s
ds .

Since Wt0 = 0 we get that

Yt = Yt0e
αWt+

“

α
2

2

”

(t−t0)
+ r

∫ t

s=t0

e
α(Wt−Ws)+

“

α
2

2

”

(t−s)
ds ,

for the solution.

Problem 6 (solving the Ornstein-Uhlenbeck process)

For the mean reverting Ornstein-Uhlenbeck process given by

dXt = (m − Xt)dt + σdWt , (5)

we have by writing the random component on the right hand side

dXt + Xtdt = mdt + σdWt .

From this expression an integrating factor for this equation is given by F =
et and multiplying by this we find the left hand side becomes the perfect
differential

etdXt + etXtdt = d(etXt) .
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Using this the above becomes

d(etXt) = metdt + σetdWt .

Integrating both sides over the limits t to t0 gives

etXt − et0Xt0 = m(et
− et0) + σ

∫ t

t0

esdWs ,

or solving for Xt we obtain

Xt = e−(t−t0)Xt0 + m(1 − e−(t−t0)) + σe−t

∫ t

t0

esdWs

= m + (Xt0 − m)e−(t−t0) + σe−t

∫ t

t0

esdWs . (6)

Part (b): Taking the expectation of Equation 6 above we find

E[Xt] = m + (Xt0 − m)e−(t−t0) , (7)

Since E
[

∫ t

t0
esdWs

]

= 0 because dWs represents a draw from N(0, ds) which

has an zero expectation. To compute the variance of Xt or Var[Xt] first
consider subtracting the mean from Xt to get

Xt − E[Xt] = σe−t

∫ t

t0

esdWs ,

then squaring this we find

(Xt − E[Xt])
2 = σ2e−2t

∫ t

u=t0

∫ t

v=t0

eu+vdWudWv .

Now the expectation of this (which is also the variance of Xt) then is

E[(Xt − E[Xt])
2] = σ2e−2t

∫ t

u=t0

∫ t

v=t0

eu+vE[dWudWv] .

Recalling that E[dWudWv] = E[dW 2
u ]δ(u−v) = duδ(u−v), where δ(·) is the

Dirac delta function. Using this we obtain

Var[Xt] = E[(Xt − E[Xt])
2]

= σ2e−2t

∫ t

u=t0

e2udu

=
σ2

2
(1 − e−2(t−t0)) . (8)
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Problem 7 (time-dependent Brownian motion)

Part (a): For time-dependent geometric Brownian motion our asset price
St satisfies

dSt = µtStdt + σtStdWt , (9)

where now µ and σ are functions of the time variable t. This is the general
stochastic differential of the variable St with at = µtSt and bt = σtSt. Now
define a function φ such that φ = log(St), so by Ito’s formula we have

dφ =

(

∂φ

∂t
+ a

∂φ

∂S
+

b2

2

∂2φ

∂S2

)

dt + b
∂φ

∂S
dW

=

(

µtSt

(

1

St

)

+
σ2

t S
2
t

2

(

−

1

S2
t

))

dt + σt

St

St

dW

=

(

µt −
σ2

t

2

)

dt + σtdWt .

Thus integrating both sides of this expression we have

log(St) − log(St0) =

∫ t

t0

(

µs −
σ2

s

2

)

ds +

∫ t

t0

σsdWs , (10)

or solving for St we have

St = St0 exp

{
∫ t

t0

(

µs −
σ2

s

2

)

ds +

∫ t

t0

σsdWs

}

. (11)

Taking the expectation of Equation 10 we have

E[log(St)] = log(St0) +

∫ t

t0

(

µs −
σ2

s

2

)

ds , (12)

where we have used the fact that

E

[
∫ t

t0

σsdWs

]

=

∫ t

t0

σsE[dWs] = 0 .

Part (b): To compute the variance of log(St) consider its definition

Var[log(St)] = E
[

(log(St) − E[log(St)])
2]
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= E

[

(
∫ t

t0

σsdWs

)2
]

= E

[
∫ t

u=t0

∫ t

v=t0

σuσvdWudWv

]

=

∫ t

u=t0

∫ t

v=t0

σuσvE[dWudWv] =

∫ t

u=t0

∫ t

v=t0

σuσv1δ(u − v)du

=

∫ t

u=t0

σ2
udu ,

the requested expression.

Problem 8 (the differential of etWt)

This problem is a direct application of Ito’s lemma where one knows the
stochastic differential equation followed by the process Xt and we want the
stochastic differential equation of a function of Xt and t. That is when we
know dXt = adt+bdWt, some values of a and b, then the function φ = φ(X, t)
has a differential given by

dφ =

(

∂φ

∂t
+ a

∂φ

∂X
+

b2

2

∂2φ

∂X2

)

dt + b
∂φ

∂X
dW . (13)

When the functional form form φ is φ(X, t) = etW we have that the stochastic
process followed by X is simply dX = dW and we find the partial derivatives
given by

∂φ

∂t
= WetW = Wφ

∂φ

∂X
=

∂φ

∂W
= tetW = tφ

∂2φ

∂X2
=

∂2φ

∂W 2
= t2etW = t2φ .

Using these in the above and recognizing that when X = W we have a = 0
and b = 1 we find dφ given by

dφ =

(

φWt +
1

2
t2φ

)

dt + tφdWt

= φ

(

Wt +
1

2
t2

)

dt + tφdWt ,

as we were to show.
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Problem 9 (the differential of Zt)

To evaluate the differential of the given Zt = exp
(

∫ t

s=0
θsdWs −

1
2

∫ t

s=0
θ2

sds
)

,

observe that Zt can be considered a function of time only which is in tern a
function of only the variables θs and Ws. Thus to compute dZt we will use
the chain rule. Defining a function At as the argument of the exponential i.e.

At =

∫ t

s=0

θsdWs −
1

2

∫ t

s=0

θ2
sds ,

we have Zt = exp(At), and dAt = θtdWt −
1
2
θ2

t dt so At is stochastic with the
given differential. By Ito’s lemma we have since Zt = exp(At) that

dZt =
dZ

dA
dA +

1

2

d2Z

dA2
dA2

= ZtdA +
1

2
ZtdA2

= Zt

(

θtdWt −
1

2
θ2

t dt +
1

2
θ2

t dW 2
t −

1

2
θ3

t dWtdt +
1

8
θ4

t dt2
)

≈ Zt

(

θtdWt −
1

2
θ2

t dt +
1

2
θ2

t dt

)

= ZtθtdWt .

Since the product θ2
t dW 2

t → θ2
t dt in expectation.

Problem 10 (the function St = S0e
µt+σWt)

Part (a): Given St = S0 exp(µt + σWt) with Wt ∼ N(0, t) then Ito’s lemma
applied to the functional form

φ = St = φ(t, Wt) = S0 exp(µt + σWt) , (14)

Gives

dφ =
∂φ

∂t
dt +

∂φ

∂W
dW +

1

2

∂2φ

∂W 2
dW 2

=
∂φ

∂t
dt +

∂φ

∂W
dW +

1

2

∂2φ

∂W 2
dt

= µS0e
µt+σWt + σS0e

µt+σWtdW +
1

2
σ2S0e

µt+σWtdt

= µφdt +
1

2
σ2φdt + σφdW .
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So since φ = St we see that

dSt = (µ +
1

2
σ2)Stdt + σStdWt , (15)

as we were to show.
Part (b): Integrating both sides of Equation 15 from t0 to t we find that

St − St0 =

(

µ +
σ2

2

)
∫ t

t0

Sτdτ + σ

∫ t

t0

SτdWτ .

Then taking expectations of the above we find

E[St] − E[St0 ] =

(

µ +
σ2

2

)
∫ t

t0

E[Sτ ]dτ , (16)

since the expectation of the second term is zero.
Part (c): Note that Equation 16 is an integral relation for E[St]. To solve
for E[St] we can convert this into a differential equation for E[St] that we
can then solve. Taking the derivative of Equation 16 with respect to time we
find

dE[St]

dt
=

(

µ +
σ2

2

)

E[St] .

The solution to this equation is

E[St] = E[S0]e

“

µ+ σ
2

2

”

t
= S0e

“

µ+ σ
2

2

”

t
,

as we were to show.

Problem 11 (an integration by parts identity)

This problem looks like Ito’s product rule in two dimensions. Let φ = XtYt

then from the product rule expression discussed in the book recall that dφ is
given as

dφ =
∂φ

∂X1
dX1 +

∂φ

∂X2
dX2 +

1

2
E

[

2
∑

i=1

2
∑

j=1

∂2φ

∂Xi∂Xj

dXidXj

]

, (17)

from which for when φ = XtYt we obtain the result

d(XtYt) = XtdYt + YtdXt + E[dXtdYt] ,
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Then integrating both sides of this expression from t to t0 gives

XtYt − Xt0Yt0 =

∫ t

s=t0

XsdYs +

∫ t

s=t0

YsdXs +

∫ t

s=t0

E[dXsdYs] ,

which on rearranging gives the desired expression.
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