
A Solution Manual for:

Computational Statistics Handbook with MATLAB

by Wendy L. Martinez and Angel R. Martinez.

John L. Weatherwax∗

August 8, 2011

Introduction

Here you’ll find various notes and derivations I made as I worked through this book. There
is also quite a complete set of solutions to the various end of chapter problems. This book
is quite nice in that it provides novel data sets to use to explore the techniques discussed
in the book on. One of the nice things about this approach is that often with real data the
most straight forward application of textbook procedures do not work. In this book, and
with these notes, you can see many places where at first it might appear that a technique
will work trivially1 but in fact they do not and can require some modifications or a different
approach altogether to be make to work. This learning by doing is a very powerful approach
and greatly facilitates the learning process.

I would appreciate constructive feedback (sent to the email below) on any errors that are
found in these notes. I hope you enjoy this book as much as I have an that these notes might
help the further development of your skills in computational statistics.

Book Review

With the wide distribution of very powerful personal computers in todays research environ-
ment it is imperative that todays practicing statistician be able to understand, implement,
and use computational statistical techniques that would have been considered impractical

∗wax@alum.mit.edu
1e.g. Chapter 9 Problem 9.2 when trying to cluster the household data

1

previously. An example of a very general and powerful technique in this class is the boot-
strap, which allows the statistician to extract very useful statistics (like the standard error)
by basically performing the same statistical estimation repeatedly. In the applied domain,
this technique is certainly not used in as many places as it could be. Simply recognizing

that we can obtain an estimate of the error on any statistic (no matter how complicated),
represents a powerful step in ones understanding and usually allows a number of interesting
analysis to be considered. This is just one example of the many useful techniques covered
in this excellent book. I would recommend it to anyone looking to learn some very powerful
and practical computational statistical techniques. In addition, there is ample MATLAB
code, the usage of which is demonstrated in the examples and exercises, available for the
user to use on his/her specific problems.

I’ve found that often simply reading a text is not sufficient for mastery of the presented
material. To ensure that I was able to receive the maximal benefit from this excellent book,
I worked and implemented a great number of the computational problems and exercises.
Notes and codes I developed as I worked through the book can be found here:

http://waxworksmath.com/Authors/G_M/Martinez/CSHWM/martinez.html

It is hoped that if other students of this book have questions on the material perhaps these
note may provide insight and or directions for further thought. Working them has certainly
provided me with a much larger arsenal of tools that can be brought to bear on my statistical
projects.

Chapter 2: Probability Concepts

Exercise Solutions

Exercise 2.4 (the Laplacian density)

Lets begin by showing that the given f is a density function. We will integrate and see if we
obtain unity. We have

∫ ∞

−∞

f(x)dx =

∫ 0

−∞

λ

2
eλxdx+

∫ ∞

0

λ

2
e−λxdx

=
λ

2

(

eλx

λ

∣

∣

∣

∣

0

−∞

+
λ

2

(

e−λx

(−λ)

∣

∣

∣

∣

∞

0

=
1

2
(1)− 1

2
(−1) = 1 ,

so the required normalization condition is satisfied.

Part (a): The cummulative distribution function F (·) for a Laplacian density is given by

F (x) =

∫ x

−∞

1

2
λeλξdξ =

1

2
eλξ

∣

∣

x

−∞
=

1

2
eλx for x < 0 ,

and

F (x) =
1

2
+

∫ x

0

1

2
λe−λξdξ =

1

2
+

λ

2

eλξ

(−λ)

∣

∣

∣

∣

x

0

= 1− 1

2
e−λx for x > 0 ,

Chapter 3: Sampling Concepts

Notes on the Text

The book presents the empirical estimate of a distributions p-th quantile q̂p by finding the
index j and returning X(j) such that

q̂p = X(j) where
j − 1

n
< p ≤ j

n
for j = 1, 2, · · · , n . (1)

Simple code in C++ to compute this index j is given by

int pthQuantileIndexJ(double p, int n){

// j is a "one" based index i.e. v[1] is the first element of the array v[]

int j;

if(p==0.){ // p==0 is a special case

j = 1;

}else{

j = static_cast<int>(ceil(n*p));

}

return j-1; // return a "zero" based index

}

Exercise Solutions

Exercise 3.1

See the code prob 3 1.m for Matlab code to perform these experiments. We see that all
distributions are centered on the mean 0 and that the variance decreases as the sample size
increases. In addition, the empirical distribution appears Gaussian in agreement with the
central limit theorem.

Exercise 3.2

See the code prob 3 2.m for Matlab code to perform these experiments. We see that all
distributions are centered on the mean of 0.5 and that the variance decreases as the sample
size increases. In addition, the empirical distribution appears Gaussian in agreement with
the central limit theorem.

Exercise 3.3

Since the mean square error estimator can be written in terms of the sum of the variance of
the estimator and the square bias of the estimator. In equation

MSE(T) = V(T) + Bias(T)2 .

Since we are told that these estimators are unbiased we know that Bias(T) = 0 for both.
Thus MSE(T) = V(T). The better estimator would be the one with the smaller mean square
error (equivalently variance) which in this case is T1 and is called the more efficient estimator.
The relative efficiency of estimator T1 to T2 is given by

eff(T1, T2) =
MSE(T2)

MSE(T1)
=

V(T2)

V(T1)
= 2 .

Exercise 3.4

See the code prob 3 4.m for Matlab code to perform these experiments. As the sample size
gets larger the empirical coefficient of skewness and kurtosis converge to their true theoretical
values.

Exercise 3.5

See the code prob 3 5.m for Matlab code to perform these experiments. As the sample size
gets larger the empirical coefficient of skewness and kurtosis converge to their true theoretical
values.

Exercise 3.6

See the code prob 3 6.m for Matlab code to perform these experiments. The cumulative
distribution function for a uniform random variable is linear. This behavior can be seen by
running this code.

Exercise 3.7

See the code prob 3 7.m for Matlab code to perform these experiments. The cumulative
distribution function for a normal random variable has a sort of “s” shape. This behavior can
be seen by running this code. The value of the empirical cumulative distribution function
evaluated at the smallest sample value should be somewhat near zero. The value of the
empirical cumulative distribution function evaluated at the largest sample value should be
somewhat near one.

Exercise 3.8

The quartiles are the values q0.25, q0.5, and q0.75 such that

p =

∫ qp

−∞

f(x)dx ,

in otherwards the points qp are the limit of the density function such that the total integral is
equal to p. For the quartiles, the point q0.5 can be approximated as the sample median, the
point q0.25 can be approximated as the median of the points that are less than the median
(over the entire sample) and the point q0.75 can be approximated at the median of the points
that are greater than the median (again over the entire sample). See the code prob 3 8.m

for Matlab code to perform these experiments.

Exercise 3.9

We can approximate the quantiles q̂p with a random sample from a given distribution from
the order statistics X(j) from the sample. Here j is selected such that

j − 1

n
< p <

j

n
.

Thus after sorting the random sample of data, to compute the quantile q̂p we compute the
index floor(np) and extract this order statistics from the sorted random sample. See the
code prob 3 9.m for Matlab code to perform these experiments.

Exercise 3.10

Empirical estimates of any given quantile are calculated in the Matlab code sample quantiles.m.
Running the code

sample_quantiles(randn(1e6,1), [0.01, 0.333, 0.5, 0.666, 0.99])

shows some approximate quantile values for the standard normal distribution.

Exercise 3.11

To facilitate this exercise we can generate the sample quantiles using linear interpolation
in the Matlab function sample quantiles linInterp.m. Experiments with an increasing
number of samples can be found in the file prob 3 11.m. As the number of samples goes up
the estimates indeed improve.

Exercise 3.14

The Matlab command

norminv([0.25 0.5 0.75])

gives the theoretical quantiles for the standard normal. The same thing can be approximated
using code from this chapter and running the command

sample_quantiles(randn(1e3,1), [0.25, 0.5, 0.75])

or

sample_quantiles_linInterp(randn(1e3,1), [0.25, 0.5, 0.75])

The results are quite similar to the theoretical values and improve as we add increase the
number of samples.

Exercise 3.15

The quartile coefficient of skewness is code in the Matlab function quartile coef skewness.m.
A simple example of running this code is given by the call

quartile_coef_skewness(randn(1e3,1))

Exercise 3.16

In the Matlab file cmpt ml var bias.m for a function that computes the empirical bias for
many random samples using the maximum likelihood estimator of the variance. The Matlab
file prob 3 16.m drives this code and plots histograms of the bias that results from many
Monte-Carlo trials. In Figure 1 we present the result from running this driver code. On
the left is a plot of the empirical bias when running many experiments with the maximum
likelihood estimator of the variance. On the right is the same set of experiments performed
with an unbiased estimator. These results show that the biased estimator is systematically
shifted away from zero. To derive these results we used samples consisting of 10 samples.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

bias=E[T]−1

nu
m

be
r

of
 s

am
pl

es

biased estimate of variance

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

500

600

700

bias=E[T]−1

nu
m

be
r

of
 s

am
pl

es

unbiased estimate of variance

Figure 1: A comparison between a biased and an unbiased estimator of the variance. Left:
using a biased variance estimator. Right: Using an unbiased variance estimator. Note the
constant shift to the left in the left most plot that results from using a biased estimator.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2: The empirical probabilty mass for each random variable when using the discrete
form of the acceptance rejection method. These empirical probabilites match quite well the
true probabilities.

Chapter 4: Generating Random Variables

Exercise Solutions

Exercise 4.1

Skipped, but as the sample size gets larger the relative frequencies of each discrete value will
converge to the probabilities of occurance.

Exercise 4.2

See the code disc acc rej.m for an implementation of a discrete form of the acceptance
rejection method for generating non-uniform discrete random varialbes from uniform discrete
random variables. Then see the code prob 4 2.m for an implementation of how to call this
function. There we generate 106 discrete random numbers distributed according to the given
discrete distribution and then compare the empirical probabilities of each variable with the
true distributions. See the Figure 2 for the output from running this code.

Exercise 4.3

This is implemented in the Matlab function disc inv tranf.m and is driven by the Matlab
function prob 4 3.m.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

x

P
D

F
 b

et
a

di
st

rib
ut

io
n

number of samples = 500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

P
D

F
 b

et
a

di
st

rib
ut

io
n

number of samples = 50000

Figure 3: A comparison between the empirical probability density function for a beta random
variable (with parameters α = 2 and β = 1, and the true expression (which is 2x). Left:
with an empirical density generated from 500 samples. Right: with an empirical density
generated from 50000 samples.

Exercise 4.7

See the Matlab code rubinstein beta.m and the driver code prob 4 7.m to run the re-
quested experiment.

Exercise 4.8

The requesed code is the the Matlab file prob 4 8.m. When this code is run it shows that of
the total number of random draws generated irv+irej approximatly one half of them are
rejected.

Exercise 4.9

The requesed code is the the Matlab file prob 4 9.m. When this code is run to generate 500
samples the comparison of the empirical probability density function and the true probability
density function is shown in Figure 3 (left). When this code is run to generate 50000 samples
the comparison is shown in Figure 3 (right).

Exercise 4.10

Skipped since this is very much like Exercise 4.2.

Exercise 4.11

Using the Matlab function chi2pdf these plots are produced in the routine prob 4 11.m.

−1.5 −1 −0.5 0 0.5 1 1.5
60

80

100

120

140

160

180

200
q−q plots for tibetan skull measurements

Standard Normal Quantiles

S
ku

ll
Q

ua
nt

ile
s

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

12

14

16

t

A
nd

re
w

s
C

ur
ve

Andrews Plot

Iris virginica
Iris versicolor

Figure 4: Left: Q-Q plots of the tibetian skull data. The fact that each curve is so linear
implies that it maybe well modeled with a Gaussian distribution. Right: The Andrews
plots for the Iris virginica and the Iris versicolor species of iris produced from Exercise 5.5.

Chapter 5: Exploratory Data Analysis

Exercise Solutions

Exercise 5.1

See the Matlab file prob 5 1.m for this exercise.

Exercise 5.2

See the Matlab file prob 5 2.m for this exercise.

Exercise 5.3

See the Matlab file prob 5 3.m for this exercise. We generate random variates to use in
comparing with the tibetian data. The q-q plot is presented in Figure 4 (left). There one
can see that the skull measurements would be very accurately approximated with a Gaussian
distribution.

Exercise 5.4

See the Matlab file prob 5 4.m for this exercise. This code plots both the planar “slice”
through the trivariate normal distribution and the curvy slice using the peaks function.

Exercise 5.5

See the Matlab file prob 5 5.m for this exercise. The Andrews plots for the Iris virginica and
Iris versicolor data are shown in Figure 4 (Right). In that plot these two species don’t seem
to be as separated as the Iris setosa and Iris virginica species. They look more difficult to
classify with these features. In fact the naming conventions might indicate that the botanist
found the setosa species significantly different than the virginica and the versicolor species.
This seems to be verified in the Andrews plots.

Exercise 5.6

See the Matlab file prob 5 6.m for this exercise. We can tell that the locations (center
points) of the two distributions are different because the center of the “line” is shifted left
or right from zero depending on the values of the means of the two normals. We can tell
that the scales of the two Gaussians are different because the quantiles for the x and y axis
are larger or smaller than what they would be for the standard normal. For example the
standard normal has a 99.9% of the probability less than the value of 3. While a Gaussian
with a standard deviation of σ has this same probability less than the value of 3σ.

Exercise 5.7

See the Matlab file prob 5 7.m for this exercise. There we randomly select an order for the
features and plot the corresponding parallel plot for all three species of iris. The results
of running this code is show in Figure 5 (left). In that figure one can see that the species
versicolor and virginica are rather similar in each coordinate value, but the species setosa

is different than the other two in the first and third features. This suggests that these two
features might be the best to us for classification.

We note that permuting the axis does not affect the results we obtain but only the vertical
location of the individual feature indices.

x4

x3

x2

x1

x4

x3

x2

x1

IRIS data Parallel Plot

x4

x3

x2

x1

−4 −3 −2 −1 0 1 2 3 4
−10

−5

0

5

10

15

20
IRIS data Andrew Plot (permuted)

feature value

fe
at

ur
e

in
de

x

Figure 5: Left: The result from plotting the three species of iris using a parallel plot. The
species setosa is plotted in black, virginica is plotted in red and the species versicolor is
plotted in green. Right: The result from plotting the three species of iris using a Andrews
plot. Each run of the code prob 5 8.m uses a different permutation of the feature indices
and so may yield a slightly different plot than that shown here. The species setosa is plotted
in black, virginica is plotted in red and the species versicolor is plotted in green.

Exercise 5.8

See the Matlab file prob 5 8.m for this exercise. The result from one particular run is shown
in Figure 5 (right). As discussed earlier the species setosa appears easier to classify than the
other two species.

Exercise 5.10

See the Matlab file prob 5 10.m for this exercise. When this script is run one can easily see
there looks to be easy separation between the clusters of insects. It appears that a linear
boundary (planes) would work to separate the classes.

Exercise 5.11

See the Matlab file prob 5 11.m for this exercise.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 6: A Q-Q plot of the order statics for the sphered forearm data v.s. the quantiles of
the standard normal. The fact that the resulting curve is linear is a strong indication that
this data is normally distributed.

Exercise 5.12

That these two vectors are orthogonal can be seen by taking their dot product. We find that

α(t)tβ(t) =
2

d
(sin(ω1t) cos(ω1t)− cos(ω1t) sin(ω1t) + · · ·

+ sin(ωd/2t) cos(ωd/2t)− cos(ωd/2t) sin(ωd/2t)) = 0 .

Since there are an even number of components they all cancel in pairs and the dot product
is zero.

Exercise 5.14

See the Matlab file prob 5 14.m for this exercise. When this is run it plots two alpha level
contour of the trivariate standard normal. As expected the isosurfaces are spheres.

Exercise 5.15

See the Matlab file prob 5 15.m for this exercise. To better see if this data is distributed via
a standard normal one can sphere the points i.e. compute new variables si from the given
xi by subtracting the mean and dividing by the standard deviation. That is

si =
xi − µ̂

σ̂
.

When we do this and plot the order statistics for the given data the plot we obtain is given
in Figure 6.

1 2 3 4 5 6 7 8 9 10 11
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

k

φ(
n k)

binomialness plot for the biology data

0 2 4 6 8 10 12 14
−25

−20

−15

−10

−5

0

5

10

15

20

k

φ(
n k)

poissonness plot for the counting data

Figure 7: Left: The Binomialness plot for the biology data set. Note that the degree of
linearity is not that great. Right: The Poissonness plot for the counting data set.

Exercise 5.16

See the Matlab file prob 5 16.m for this exercise. When this code is run the resulting stem
and leaf plot appears rather skewed. This skewed distribution also might have a small second
mode at larger values.

Exercise 5.17

See the Matlab file prob 5 17.m for this exercise. When this code is run the resulting plot
is shown in Figure 7 (left). The fact that this plot is not very linear indicates that the given
data is not distributed with a binomial distribution.

Exercise 5.18

See the Matlab file prob 5 18.m for this exercise. When this script is run it produces a plot
that is shown in Figure ?? (right). There one can see the very strong linear relationship that
exists gives a strong indication that this data maybe Poisson distributed.

Exercise 5.19

See the Matlab file prob 5 19.m for this exercise. When this plot is run it generates box
plots for each of the three species of iris for each of the four features. These plots are shown
in Figure 8.

setosa versicolor virginica

4.5

5

5.5

6

6.5

7

7.5

8

fe
a

tu
re

 v
a

lu
e

species

box plot for feature 1

setosa versicolor virginica

2

2.5

3

3.5

4

4.5

fe
a

tu
re

 v
a

lu
e

species

box plot for feature 2

setosa versicolor virginica

1

2

3

4

5

6

7

fe
a

tu
re

 v
a

lu
e

species

box plot for feature 3

setosa versicolor virginica
0

0.5

1

1.5

2

2.5

fe
a

tu
re

 v
a

lu
e

species

box plot for feature 4

Figure 8: Box plots for the four features of the iris data.

Exercise 5.20

See the Matlab file prob 5 20.m for this exercise. When this script is run it produces the
boxplot that is shown in Figure 9 (left). One can see immediately that the normal patients
have a much smaller value (and tighter distribution) of features when compared to the
diabetic patients.

Exercise 5.21

See the Matlab file prob 5 21.m for this exercise. Running this code produces the interesting
plot shown in Figure 9 (right).

Exercise 5.22

See the Matlab file prob 5 22.m for this exercise. We basically run the computational statis-
tics commands written for this book that do projection pursuit for exploratory data analysis
(PPEDA). When we attempt four “revisions” with the data we obtain the plots in Figure 10.
The revision are shown clockwise from top to bottom. To highlight how well this routine per-
forms at finding structure in the data we color the data corresponding to “genuine” money
in green and that corresponding to forged money in red. What is very apparent is that for
the first projection PPEDA does a very nice job of finding a projection that separates the

diabetic normal

10

20

30

40

50

60

70

fe
a

tu
re

 v
a

lu
e

patient type

box plot for thrombos data

Figure 9: Left: The boxplot for the trombos data set. Right: An example of some of the
shading options in Matlab for three dimensional graphics.

two classes very nicely. The other projections seem to be informative also.

Exercise 5.23

See the Matlab file prob 5 23.m for this exercise. When this script is run we use the Matlab
command plotmatrix to generate scatter plots of all features against all others. The sphered
data does not look much different than the non-sphered data. When the project pursuit
routine is run quite a few clusters can be observed. The first four are shown in Figure 11

Exercise 5.24

See the Matlab file prob 5 24.m for this exercise. An initial study of the data do not
show much clustering of the classes. An initial run of the projection pursuit algorithm for
exploratory data analysis PPEDA (with its default parameters) did not give clusters in the
data that provided much discrimination potential.

To further study this problem I requested that the project pursuit algorithm search longer
to find with the number of random starts to 50 and the number of steps to be taken with
no increase in our clustering metric to 50. With these parameter settings I was not able to
observe much clustering. See the Figure 12 for the first four projections.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

6

8
PPEDA bank projection=1

α*

β*

−3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4
PPEDA bank projection=2

α*

β*

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4
PPEDA bank projection=3

α*

β*

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
PPEDA bank projection=4

α*

β*

Figure 10: Four projections produced by using PPEDA on the bank data. The first projection
does the best job at separating the clusters. The third and fourth projection is quite good
also. The red dots correspond to forged money, while the black dots correspond to genuine
money.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
PPEDA ppdata projection=1

α*

β*

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
PPEDA ppdata projection=2

α*

β*

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3
PPEDA ppdata projection=3

α*

β*

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
PPEDA ppdata projection=4

α*

β*

Figure 11: Four projections produced when using PPEDA for the synthetic data given in
the book. Notice that the first, second, and third do a nice job of clustering the data.

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4
PPEDA bank projection=1

α*

β*

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
PPEDA bank projection=2

α*

β*

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4
PPEDA bank projection=3

α*

β*

−5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
PPEDA bank projection=4

α*

β*

Figure 12: Four projections produced when using PPEDA for the “posse” data given in the
book. None of these projections is particularly strong at representing clusters in this data.

Chapter 6: Monte Carlo Methods for Inferential Statis-

tics

Exercise Solutions

Exercise 6.1

See the Matlab file prob 6 1.m for this exercise. When we change the models standard
deviation to 5 from 15 it makes it much more likely that if the sample statistic is larger

than the expected 45 then the population has changed its mean travel time. In this case the
sample mean is located 4.4 standard deviations from the mean. This happens with such a
small probability that the Matlab function norminv(-4.4, 0, 1) can’t compute it. Thus
this value of x̄ is not consistent with the null hypothesis.

Exercise 6.2

We recall the two types of errors that can happen in hypothesis testing with a simple de-
scription that will hopefully help remember them. If we think of the hypothesis H0 as the
tried-and-true “accepted truth” and the alternative hypothesis H1 as the current new idea.
A type I error happens when one incorrectly rejects the status quo hypothesis H0 and decides
instead to believe in the new idea or H1. On the other hand, a type II error happens when
one incorrectly rejects the new idea H1 and instead maintains once believe in the old idea,
H0. We can perhaps relate these mathematical ideas to the way some people may act or
develop as they age. As a young person it is often the case that when starting something new
you think that the old way of doing something is outdated and wrong. If we label the old
way of operating H0 and the new way H1 it might postulated that early on, young people
are appt to make a type I mistakes in that they might argue against the old method H0

claiming that it is no longer valid and that the new method H1 is the correct way. On the
other hand it might be argued that old people are appt to make type II mistakes. Meaning
that when a new idea is presented (a H1 hypothesis) they are appt to not believe or accept
that idea and to instead stay with the status quo H0. If H0 is not correct they will have
made a type II error.

For this problem, as the mean of the true distribution of the travel times µ increases our
measured statistic z0 =

x̄−µ0

σX/
√
n
, also increases because the data used in computing x̄ increases.

Thus the probability that z0 falls in a region generated by H0 decreases. Thus the probability
that we make a type II error (fail to reject H0) decreases. The numeric probability that we
make a type II error (as a function of the true distribution mean µ) is the probability that
the statistic x̄ derived from H1 is less than our hypothesis testing threshold leading to us
to accept H0. This probability is equal to the cumulative distribution function for a normal
(with mean µ) evaluated at evaluated at our critical values.

10 20 30 40 50 60 70 80 90 100 110 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

the probability of a type II error

µ

pr
ob

ab
ili

ty

30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

pr
ob

ab
ili

ty

power

50
100
200

Figure 13: Left: The probability of a type II error as a function of the mean of the hypothesis
H1. As the mean decreases, our measurement statistics decreases, and we are almost certain
that the hypothesis H0 will be accepted and a type II error. In the same way as the mean
increases, our measurement statistic increases we are almost certain that the hypothesis H0

will be rejected avoiding a type II error. Right: The power (the probability we don’t make
a type II error) of our hypothesis test for several value of n. We see the curve steepening as
the number of samples increases.

See the Matlab file prob 6 2.m for this exercise. When this code is run it produces a plot
that can be seen in Figure 13 (left). See the figures caption for a discussion. This is plot the
complement (one minus) of the power.

Exercise 6.3

For the p-value approach to hypothesis testing for the given statistic observed we compute
the probability of obtaining this sample under the assumption that H0 is true. If this value is
“too small” we reject H0. The p-value is the probability you are still correct if you maintain
your believe in H0 or the probability that our observed statistic was produced randomly
from H0. If we consider the p-value from this example we find it to be given by 0.07. An
alpha threshold of 0.1 would state that if the probability of observing our statistic under H0

is less than this amount we reject the H0 hypothesis. Since in this case that is true we would
reject the H0 hypothesis. See the Matlab file prob 6 3.m for this exercise.

Exercise 6.4

From our study of the statistics of the sample mean, we recall that the sample mean itself
has a mean of that of the true distribution µ0, and a variance given by σ0√

n
. As n increases

this variance shrinks to zero. The smaller our variance the more powerful we expect our
test to be at avoiding type II errors (failing to reject H0). In the Matlab file prob 6 4.m

we compute the power of our test for the three sample n values suggested in the text. The

resulting plot is shown in Figure 13 (right).

Exercise 6.5

Here we are interested in the hypothesis test

H0 : µ = 454

H1 : µ 6= 454 ,

for which we will need to use a two tailed test. We will do Monte-Carlo simulation to perform
our hypothesis test in this case. To do this we assume we know the exact model (i.e. the
mean and standard deviation) under which data was generated from the H0 hypothesis and
generate a large number of “samples” M (each “sample” is consists of n points) from H0. For
each sample we compute the mean, which in this case is our test statistic. We then have M
example values of test statistics under the hypothesis H0. Next we pick a significance level
α, the probability that we don’t reject H0 given that H1 is true. This α is the probability
we make a type I error. With this α we then compute the α/2 and 1−α/2 quantiles. If our
original sample falls outside of this region, we can reject H0 in favor for concluding H1.

In implementing the procedure above, since we have samples of our statistic from H0 we need
to compute the empirical quantiles, which we do with the Matlab function csquantiles.
When we do this we find these values to be

q̂α/2 = −1.6444

q̂1−α/2 = +1.6691 .

Since our observed statistic is −2.5641, we reject the hypothesis H0 in favor for the hypothesis
H1. These calculations are done in the Matlab file prob 6 5.m.

Exercise 6.6

See the Matlab file prob 6 6.m for calculations of the approximate type I error α with a
larger number M of bootstrap samples. One sees that the more bootstrap samples one uses
the better the approximation to the true type I error. This result is to be expected.

Exercise 6.7 (the parametric bootstrap)

The parametric bootstrap procedure is the following algorithm/procedure:

• Given a random sample x = (x1, x2, · · · , xn), calculate our function (statistic) of these
variables θ̂. Here xi can be a scalar or a vector quantity.

• Estimate the parameters P for the distribution that did (or might have) generated these
n feature measurements {xi}ni=1. Thus we now assume that we know the distribution
function (p(x|P)) of the features.

• Sample from this distribution p(x|P), n times to get enough data to compute our
statistic of interest θ̂∗b.

• Repeat the previous two steps B (the number of bootstraps) times.

• This gives B estimates of your statistic θ. From the empirical distribution of these B
samples one can obtain an estimate of any desired characteristic of your statistic θ.
Common quantities of interest are the standard error, the bias, the confidence interval
etc.

To estimate the standard error we take the standard deviation of the above bootstrap gen-
erated distribution of our statistic θ. The bias of our estimator is estimated using the initial
sample x (to compute θ̂) and then using all the bootstrap replicas as

ˆbiasB =
¯̂∗
θ − θ̂ .

Here
¯̂∗
θ is the bootstrap estimated mean and θ̂ individual sample estimate (using our original

sample x) of our function θ̂ = T = t(x1, x2, · · · , xn). The bootstrap percentage interval
is obtained from the bootstrap generated distribution of our statistic θ. We specify the
probability of making a type I error α (failing to reject the null hypothesis) and compute
the interval α/2 confidence interval

(θ̂
α/2
B , θ̂

1−α/2
B) .

Where the bootstrap quantiles θ̂
α/2
B are determined empirically, using something like the

computational statistics toolbox function csquantiles or the Matlab function quantile.

See the Matlab file parm bootstrap.m for an implementation of the parametric bootstrap
and prob 6 7.m for an example using this function with the forearm data to compute para-
metric bootstrap estimates of the standard error of the skewness, kurtosis, and standard
percentile interval.

Exercise 6.8 (the bootstrapped confidence interval)

I choose to do this problems based on the variance function var rather than the standard
central moment. From the forearm data we get a value of the variance given by 1.25546.
The empirical bootstrapped confidence interval (computed here) with α = 0.1 is given by
(1.03746, 1.47049). The parametric bootstrap computed confidence interval is determined in
the previous problem and is given by (1.01545, 1.52213). The parametric estimate is wider
since when we generate the bootstrap samples from a Gaussian, we could obtain data points
that are larger than the ones we would see by considering only sampling with replacement.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

remission time
co

un
t

remission times

Figure 14: Histogram plots of the data in the remiss data set. The red bars correspond to
the control group while the green bars correspond to the experimental group.

The empirical bootstrapped α confidence interval can be computed with the Matlab func-
tion bootstrp sci.m, and this function is called in the script prob 6 8.m. Here α is the
probability of making a type I error by rejecting the hypothesis that our sample statistic is
based on the given distribution. Intuitively the “size” of the returned confidence interval is
based on this value, smaller values of α give rise to larger confidence intervals.

Exercise 6.9 (the bootstrap confidence interval for the sample mean)

Using the bootstrap estimator we can compute confidence intervals for an statistic (function)
we can compute using the set of n data points. This is very advantageous because it can
be difficult or impossible to derive the theoretical probabilistic distribution of the given
statistics. In the case of the sample mean we do know the theoretical probability distribution
when the individual samples xi are drawn from a normal distribution with population mean
µ0 and variance σ2

0 . In this case the sample mean of n points is also normally distributed with
a mean µ0 (the same as the population mean) and a variance equal to σ2

0/n. Given an α (the
probability of type I error), we can compute the theoretical quantile for the sample mean by
computing the α/2 and 1 − α/2 quantiles of a normal with the above mean and variance.
This is demonstrated in the Matlab script prob 6 9.m. With 1500 bootstrap replications
the empirical bootstrap estimate of the confidence interval is given by (18.64929, 18.95357)
while the theoretical confidence interval on the sample mean when we have 140 samples (the
number of samples in the forearm data set) is given by (18.64638, 18.95791) the two are
amazingly close.

Exercise 6.10 (Monte Carlo hypothesis tests on the difference of the means)

For this data since we are not given (or told) the probability distributions that generated it
we have to do some exploratory data analysis to decide what a reasonable density would be.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

10

15

20

25

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

remission times of the control group

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

25

30

35

40

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

remission times of the experimental group

Figure 15: The QQ plots of the remission data in remiss. Left: The QQ plot for the control
group. Right: the QQ plot for the experimental group. Notice that in both cases the data
is approximately linear from which we conclude that a normal approximation is not a bad
one to take.

We begin by plotting a histogram of the data in Figure 14. From that figure it looks like the
experimental distribution has longer remission times (on average)

To set up a hypothesis test we need to determine probability densities for these two sets of
data. We begin by assuming a normal distribution. In Figure 15 we present the QQ plots for
both the control group and the experimental group. In both cases a Gaussian approximation
seems reasonable.

Based on the results of earlier we will test the hypothesis that the average remission time
of the experimental data is greater than that of the control group. Thus in the language of
hypothesis testing we have that

H0 : µE = µC

H1 : µE > µC .

If we define our statistic t to be the sample mean of the remission times for members of the
experimental class and assume that we know the mean of the control group (estimated from
the data this is µC = 8.66) our hypothesis test becomes

H0 : µE = 8.66

H1 : µE > 8.66 .

The value of our initial statistic on the experimental remission times is given by t0 = 17.09.
Now to use the p-value method for hypothesis testing we need to determine the probability
that under hypothesis H0 we would get a value of our statistic this large or larger. That
is we need to determine PH0

(T ≥ t0) = PH0
(T ≥ 17.09). We do this in the Matlab file

prob 6 10.m. We can do this with the bootstrap method. We randomly draw 106 sam-
ples with replacement from the given data set control. We evaluate the mean of each
bootstrapped sample and estimate the p-value by counting the number of times that the
bootstrap sample had a value greater than or equal to the observed t0. When we run this

code we find that from H0 we never get a sample with mean value greater than or equal to
t0. Thus we take p-value to be zero and corresponding have a probability of making a type I
error (rejecting H0) of zero. We can safely conclude that the mean of the second population
is greater than the first.

Exercise 6.11

These calculations are done in the Matlab file prob 6 11.m. In the case of the lsat scores
we see that the sample estimates, with the bootstrap estimated standard error, generally
contain of the population variance.

The same calculation for the gpa data does not seem to match as well in that the bootstrap
estimated confidence interval of the variance does not aways include the true variance (it
does however come very close).

Exercise 6.12

We will use as our statistic. the correlation coefficient between the lsat scores and the grade
point averages (gpa). That function is implemented in the utility function cross corr fn.m.
To test for statistical significance in the Matlab file prob 6 12.m we compute the α = 0.1
(or 90 percent) confidence interval on the cross correlation between the lsat and gpa data.
We select a sample of size fifteen and use the bootstrap with 1000 bootstrap replications to
derive our confidence interval. If the lower bound of this confidence interval is greater than
zero we can conclude that the sample cross correlation is statistically significant (to within
making a type I error of 0.1).

Exercise 6.13

This is implemented in the Matlab file prob 6 13.m. Since the median is a non-smooth
statistic from the discussion in the book we expect that the bootstrap to not perform well.
How that manifests itself in this problem is that the location of the population parameter
seems to fall on the edges of the confidence interval. In addition, the addition of more samples
does not seem to decrease the size of or improve the confidence interval in a significant way.
I would expect that as we take more and more samples our confidence interval would shrink
smoothly surrounding the the population median. The confidence intervals do seem to shrink
as we take more samples but in a non-smooth way.

Exercise 6.14

We state that since the data for this exercise is waiting times, we expect that it is distributed
with an exponential distribution. Using the Matlab tool dfittool, we see that an exponen-
tial distribution fits quite well with a mean value of 437.21. To get an appropriate confidence
interval using the Matlab function created for this chapter bootstrp sci.m we generate a
90% confidence interval of (358.62097, 530.89516). These calculations are done in the Matlab
code prob 6 14.m.

−2 0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

average outside temperature

w
ee

kl
y

ga
s

co
ns

um
pt

io
n

pe
r

w
ee

k
pe

r
10

00

after insulation

raw data
first order poly

−2 0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

average outside temperature

w
ee

kl
y

ga
s

co
ns

um
pt

io
n

pe
r

w
ee

k
pe

r
10

00

after insulation

raw data
second order poly

Figure 16: Left: A scatter plot of the raw data and the first order polynomial model. Right:
The raw data and a second order polynomial model.

Chapter 7: Data Partitioning

Exercise Solutions

Exercise 7.1 and 7.2 (cross-validation)

See the Matlab file prob 7 1 N 2.m for this exercise. The data for the gas consumption
before insulation is plotted in Figure 16. Visually this looks like the relationship between
the two variables is linear. Performing cross-validation with K = 1 and with K = 4 we find
that the estimated prediction error for the first order polynomial (a line) are given by

0.08394 and 0.09383 .

When we run n fold cross-validation we obtain estimated prediction errors for three polyno-
mial models (first, second, and third order polynomials) of

0.08394, 0.08079, 0.08567 .

Thus the second order polynomial is slightly better at fitting this data than the first order
polynomial (but not by much). When we run cross-validation with K = 4 the results are
very similar. That the second order polynomial is not much different than the linear fit is
also verified when we look at the coefficients found for a second order fit. They are given by
(from highest degree to lowest degree)

−0.0098− 0.31636.7682 ,

Where we see that the O(x2) term has a coefficient that is O(10−2) the next smaller term.
When the linear and quadratic fits are plotted on type of the raw data you can see that the
two curves are almost indistinguishable.

When the data on the gas usage after insulation is plotted much of the above analysis is the
same. The main difference is that with hold one out cross validation the estimated prediction

0 20 40 60 80 100 120
99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

100.05
peanuts

raw data
first order poly

0 20 40 60 80 100 120
99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

100.05
peanuts

raw data
second order poly

Figure 17: Left: A scatter plot of the raw data and the first order polynomial model for the
peanuts data set. Right: The raw data and a second order polynomial model.

errors for the three polynomial models (first, second, and third order polynomials) are given
by

0.14137, 0.13875, 0.13769 ,

where each polynomial model seems about the same as far as preditive accuracy goes. The
results for K = 4 are different. For K = 4 gives estimated prediction errors for our three
polynomials are given by

0.12497, 0.48132, 0.46143 .

Here the fact that the magintude of the linear predictor is so much smaller than the other
ones suggests that on smaller data sets the linear model is better than the other two. From
this fact (and the assumption that we are working in a case where we have less data than
we would like) it seems reasonable to conclude that the linear model is the best one.

Exercise 7.3 (modeling the amount of alfatoxin in peanuts)

See the Matlab file prob 7 3.m for this exercise. When we perform leave one out cross
validated error for polynomial models of degree one, two, and three we find estimated errors
of

0.00168, 0.00159, 0.00184 ,

while the estimated error with K = 4 partitions of the data (we have roughly 8 data points
to test with) gives estimated model errors of

0.00159, 0.00135, 0.00198 .

Both sets of estimated errors indicate that we should take the second order polynomial for
the best fitting model. In all cases the model discrepency is not that great. Both models are
plotted in Figure 17

5.5 6 6.5 7 7.5 8 8.5 9

x 10
−3

0

50

100

150

200

250

300
histogram of bootstrap (green) and jackknife (red) standard error estimates

−2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
−3

0

50

100

150

200

250

300
histogram of bootstrap (green) and jackknife (red) bias estimates

Figure 18: A comparison between the bootstrap and jackknifed estimated standard confi-
dence intervals Left and bias Right in estimating the second moment. This histograms
show that the distribution of standard confidence intervals generated by the two procedures
is quite similar. The distribution of the bias is different in that it appears that the the boot-
strap has a much wider distribution of possible values while the jackknife produces much
smaller biases.

Exercise 7.4 (normal data)

When samples are drawn from a normal distribution with a standard deviation σ the standard
error of the sample mean (assuming n samples) is given by

σ√
n
,

when we draw our samples from the standard normal σ = 1 and the above simplifies to 1√
n
.

This exercise is performed in the Matlab file prob 7 4.m. In general the bootstraped and
the jacknifed estimate of the standard error are very close to the theretical estimate.

Exercise 7.5 (uniform data)

The procedures for computing the bootstrap and the jackknife estimates of the standard error
for the sample mean don’t change when the distribution changes. This is a very powerful
benifit of using parameter free methods to derive confidence bounds on our desired statistics.
For the standard uniform distribution (with range [0, 1]) the variance is given by

σ2 =
1

12
.

As suggested, we use σ/sqrtn = 1√
12n

as an estimate of the standard error for the sample
mean for this problem. When the Matlab file prob 7 5.m, is run we see that both the
bootstraped and jackknifed estimate of the standard error are quite close to this value.

0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.175
0

50

100

150

200

250

300
histogram of bootstrap (green) and jackknife (red) standard error estimates

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
0

50

100

150

200

250

300

350
histogram of bootstrap (green) and jackknife (red) bias estimates

Figure 19: A comparison between the bootstrap and jackknifed estimated distributions of
the standard confidence intervals Left and bias Right in estimating the skewness. These
histograms show that the distribution of the standard confidence interval generated by the
two procedures is quite similar. The distribution of the bias is different in that the bootstrap
appears to have a much wider distribution of possible values than the jackknife produces.

Exercise 7.6 (a MC study of estimating the standard error and bias)

When we run the code in the Matlab file prob 7 6.m we see two things. The first is that the
distribution of the standard errors produced by the bootstrap procedure and the jackknife
procedure are very similar. The histogram in Figure 18 Left shows the distribution of the
standard confidence interval of the second moment statistics mom = 1

n

∑n
i=1(xi− x̄)2, where

x̄ is the sample mean for both the bootstrap and jackknife procedures. In Figure 18Right we
show the distribution of the bias of the second moment when computed using the bootstrap
and the jackknife procedure.

Exercise 7.7 (a MC study of estimating the sample coefficient of kurtosis)

The Matlab code prob 7 7.m compares the distributions of the standard error on the sam-
ple estimate of skewness when using the bootstrap and the jackknife procedures. In Fig-
ure 19 Left we plot the two distributions of the standard error. From that we can see that
the distribution of standard errors for both procedures are very similar. In Figure 19 Right
we plot a histogram of the distributions of bias for both procedures. Again we see that the
jackknife is much more tightly distributed about the origin giving the conclusion that the
jackknife procedure is less biased that the bootstrap procedure in computing the skewness.

The histograms in Figure 20 Left shows the distribution of the standard confidence interval
on the kurtosis statistic for both the bootstrap and jackknife procedures. We see that
again both procedures generate very similar distributions. In Figure 20 Right we show the
distribution of the possible bias of the kurtosis statistic computed using the bootstrap and
the jackknife procedure.

0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.175
0

50

100

150

200

250

300
histogram of bootstrap (green) and jackknife (red) standard error estimates

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
0

50

100

150

200

250

300

350
histogram of bootstrap (green) and jackknife (red) bias estimates

Figure 20: A comparison between the bootstrap and jackknifed estimated standard confi-
dence intervals Left and bias Right in estimating the sample kurtosis. In the left figure,
the histograms show that the distribution of the standard confidence interval generated by
the two procedures is quite similar. In the right figure the distribution of the bias from the
bootstrap has a much wider distribution of possible values than the jackknife procedure.

Exercise 7.8 (jackknife replicates of the median)

This exercise is implemented in prob 7 8.m. When we compute the jackknifed replicates
of the median of the lsat data (a component of the entire law dataset) we have only two

unique values that of 587 and 598. The jackknife estimate of the standard error is 4.5 with
an estimated bias of zero.

When we compute the jackknifed replicates of the median of the gpa data we have only one

unique value of 3.15 giving zeros for the jackknifed estimate of the standard error and bias.
Obvisouly with so few unique samples in the jackknifed estimtes will be very poor.

Exercise 7.9 (estimates of the standard error)

This exercise is done in the Matlab file prob 7 9.m. Both the bootstrap and the jackknife
give similar results for the standard error. The bootstrap estimate (with B = 400 bootstrap
replicas) of the bias is −0.5 while the corresponding jackknife estimate is 0.0. Increasing the
number of bootstrap replicas causes the the bias estimated by the bootstrap procedure to
decrease.

Exercise 7.10 (the bootstrap-t interval)

This exercise is done in the Matlab file prob 7 10.m, where we will use three functions
from the computational statistics toolbox. The three functions are csbootint.m to compute
the bootstrap-t interval, csbooperint.m to compute the bootstrap percentile interval, and

csbootbca.m to compute the BCa interval. When this code is run we find that the

Chapter 8: Probability Density Estimation

Exercise Solutions

Exercise 8.3 (Monte Carlo estimation of the MSE for the histogram)

I found the definition of the MSE of an estimator given in the book a bit confusing. The
MSE of a function estimator f̂ is defined as

MSE[f̂(x)] = E[(f̂(x)− f(x))2] .

What is confusing about this is what the expectation in the above expression is to be taken
with respect to. One can determine what this expectation should be taken with respect
to with some simple reasoning. The idea is that f̂ is a function that is determined from a
specific sample of data and perhaps parameters of the method. The important point is that
it is different for every data sample (set of n points). Thus the expectation should be taken
with respect to all samples (of a given size) we could obtain from our given population. In
the case of this problem the function f̂ is an estimate of the true underlying population
probability density obtained from a frequency histogram (appropriately normalized) with a
fixed bin width h.2

To perform a Monte-Carlo simulation we repeatedly draw n = 100 univariate random nor-
mals, construct a histogram based probability density function approximation from them i.e.
construct f̂ , and compute (f̂(x)− f(x))2. For this exercise we can do this since we know the
specific form of the density function f(·). Since it is a univariate Gaussian we have that

f(x) =
1√
2π

e−x2/2 .

For the first part of this problem we hold the the number of points n constant and compute
a Monte-Carlo estimate of the MSE error (as a function of x) for two values of h one “small”
and one “large”. As an example of what we expect to obtain consider if our h is taken too
“small”. In that case we expect to not have many samples in each bin (one can imagine
an extreme case where there is only one point) in each bin so that the PDF estimate of
νk/nh would be very large and greatly over estimate the true value of the PDF. If we have
h too “large” then the coarseness of the discretization itself will result in a poor estimator
for f̂ by taking our approximation constant over large regions. To perform an experiment
demonstrating this effect, we compute 10 Monte-Carlo estimates of the PDF computed with
a fixed value of h and then take the mean and standard deviation of all PDF estimates. We
plot the mean PDF estimate and the one standard deviation “confidence interval” of this
PDF estimate. In addition, for each of the Monte-Carlo estimated PDF’s we can compute
the MSE error function (f̂(x)−f(x))2 as a function of x. We can average all the Monte-Carlo
MSE estimates to get a total average estimate as a function of x. In Figure ?? we present

2One could denote the dependence of f̂ on the parameters used in determining it by writing f̂(x) =

f̂({xi}, n, h)(x), to denote that the functional estimate we obtain depends on such things like the specific
samples xi, the number of samples n, and the chosen bin width h.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
histogram estimate of the PDF with confidence intervals

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
histogram estimate of the PDF with confidence intervals

−4 −3 −2 −1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

M
SE

 v
al

ue

mean MSE for h=3.000000e−02; with 100 MC trials

−4 −3 −2 −1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

M
SE

 v
al

ue

mean MSE for h=2.000000e+00; with 100 MC trials

Figure 21: Top: Plots of the average histogram PDF. The true PDF for our standard normal
is plotted in green on both. Bottom: Plot of the Monte-Carlo estimated MSE as a function
of x.

four plots of this type for two values of h. The first row of plots contains Monte-Carlo based
histogram based PDF estimates (and confidence intervals) for h = 0.003 and h = 2.0. The
bottom row contains the Monte-Carlo estimate of the corresponding MSE error as a function
of x.

Some comments are in order. For small values of h we see that the mean PDF estimate
is rather close to the true value (shown in green). The one standard deviation estimates
are much wider however. When we use a small h our estimator f̂ has a low bias but a
high variance. The case of large h gives poor estimates of the true PDF but the variance
of the estimates are much tighter. In this case the estimator f̂ has a high bias but a low
variance. These two effects are at the root of the bias-variance trade-off. We want to pick
an approximate f̂ has that has a low bias which in this case taking h small but not such a
small h that we end up with a large variance that the approximation f̂ is tailored specifically
to the observed data.

Figure 21 also show the average MSE as a function x for both approximations. In these two
cases the two MSE are of the same order of magnitude even though the h values are rather
different. Note that the MSE error is largest in the center of the distribution (nearer the
mean) and smaller in the tails of the distribution.

If the value of h is too small for a given number of data points then increasing the number
of points will improve the PDF estimate since with more data there is a better chance that
each bin will have more samples in it. With an h that is too large increasing the number of
samples will not help. The problem is that for a given h one does not necessary know the
number of data points required to get the optimal estimate. The optimal h is dependent on

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

P
D

F

normal distribution (normal reference rule)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8
x 10

−4 MSE error as a function of the domain x

x

M
S

E

histogram MSE
frequency poly MSE
Kernel density MSE

Figure 22: Left: Plots of three PDF estimates of a Gaussian. The true density is plotted in
green. Right: Plots of Monte-Carlo estimates of the MSE as a function of x for each of the
estimation techniques.

the number of samples simply modifying n or h independently is generally not optimal.

Changing the error function to the absolute error |f̂(x) − f(x)| changes the magnitudes
but does not change any of the conclusions above. These experiments are performed in the
Matlab script prob 8 3.m.

Exercise 8.4 (using the normal references rules Part I)

For this problem we draw samples from a normal distribution and use the suggested normal
reference rules to specify the bin widths for estimating the probability density estimate PDF
using a histogram, a frequency polygon, and a kernel density estimate. In Figure 22 Left
we present overlays of the three density estimate compared to the true Gaussian density
estimate.

Plots of an Monte-Carlo estimate of the mean square error for each of the three methods as
a function of the spatial domain are plotted in Figure 22 Right. From this plot it appears
that the kernel density estimate has a smaller mean square error as a function of x. If we
integrate across the domain in x to compute the mean square error we find that The errors
for the histogram, frequency polygon, and the kernel density estimate are given by

0.01676, 0.00707, 0.00543,

respectively. This again shows that the kernel density estimate has a smaller error on average.
These calculations are performed in the Matlab file prob 8 4.m and norm ref rule hist.m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

P
D

F

exponential distribution (normal reference rule)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

P
D

F

exponential distribution (normal reference rule with skew adjust)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

MSE error as a function of the domain x

x

M
S

E

histogram MSE
frequency poly MSE
Kernel density MSE

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

MSE error as a function of the domain x

x
M

S
E

histogram MSE
frequency poly MSE
Kernel density MSE

Figure 23: Top Left: Plots of three PDF estimates of a exponential distribution with a mean
of one-half. For each PDF estimate we select the bin width h using the normal reference rule
(without and skewness factor). Top Right: Plots of three PDF estimates of a exponential
distribution with a mean of one-half. For each PDF estimate we select the bin width h using
the normal reference rule with the skewness factor. The true density is plotted in green in
both cases. Bottom Left: Plots of Monte-Carlo estimates of the MSE as a function of x for
each of the estimation techniques with the normal reference rule. Bottom Right: Plots of
Monte-Carlo estimates of the MSE as a function of x for each of the estimation techniques
using the normal reference rule and a skewness factor.

Exercise 8.5 (using the normal references rules Part II)

For this problem we draw our samples from a exponential distribution with a mean taken
at 1/2. Since this distribution is skewed and we expect to show that when using the normal
reference rules naively (that is without introducing a skewness factor to the bin size) is not
optimal when compared using a skewness factor to modify the normal reference rule for bin
sizes. To do this we repeat the exercise in 8.4 above with the source of data given by an
exponential distribution. These results are presented in Figure 23.

We wrote two versions of code to test these ideas. The first version prob 8 5 no skew.m

generates data from an exponential distribution and approximates the probability density
function using the normal reference rule. The second version prob 8 5 with skew.m does
the same but apply a skewness correction factor as appropriate given that the data is highly
skewed. In all cases the skewness factor is less than one and decreases the bin size relative
to the normal reference rule. Under infinite data, all things being equal the decreased bins
size should provide better approximations to the true probability distribution. Because of
this fact perhaps the results below should be scaled to represent this fact. In both cases

we compute our density estimates using 5000 data points3 and initialize the Matlab random
seeds so that the same random samples will be processed by both algorithms. The three
probability density estimates compared are histograms, frequency polygons, and a kernel
density estimate for the specified value of h in both cases. The top row in Figure 23 shows
the densities in both cases compared with the truth. It has to be noted that the kernel
density estimate in both cases is significantly worse than the other two estimates near x = 0
due to the discontinuous nature of the exponential distribution there (it has a finite value
x = +ǫ and is zero for x = −ǫ). This feature makes it very difficult for the kernel density
estimates to fit to the true density. This affect can be seen in both plots.

We next perform an Monte-Carlo estimate of the MISE E
[

∫

(f̂(x)− f(x))2dx
]

for each

of the density estimate techniques. For 100 Monte-Carlo random draws of data from an
exponential distribution I computed three density estimates (using the above techniques), I
then computed the MSE function (f̂(x)− f(x))2 using these density estimates. To get a fair
representation of the functional value of this MSE function in interpolated it to a fixed grid
and finally integrated to complete the square error calculation. The average of each of our
100 Monte-Carlo estimates is then taken.

We find that integrated mean square errors for each of the three density methods is given by

hist= 1.33060; freqPol= 0.04667; kernel= 0.11766

hist= 2.08791; freqPol= 0.02783; kernel= 0.06314

From these numbers we see the general trend that the skewness adjustment produces prob-
ability density estimates that are better than not using such an adjustment. In addition,
we see the difficulty that the kernel density methods have at approximating discontinuous
densities in compared with the frequency polygon approach. We also see that both the fre-
quency polygon and the kernel density estimates outperform the pure histogram approach.
Something we saw in the earlier problem. Finally, we present some plots of the Monte-Carlo
average mean square error (f̂(x) − f(x))2 as a function of x plotted in the lower half of
Figure 23.

Note that in producing these plots we used the Matlab routines norm ref rule hist.m and
norm ref rule w skew hist.m to derive histogram estimate of the given input data.

Exercise 8.6 (different bin widths for histograms)

This exercise is done in prob 8 6.m where we load the snowfall data set is loaded and
histograms are computed for a variety of bin widths h. From the nature of the data (derived
from a natural phenomena) we expect the data to be Gaussian. Applying Sturges rule to
this data gives a bin width of 14.8 while using the Freedman-Diaconis rule gives an optimal
bin width of 17.0. When we plot this data for various bin widths we see that when the bin

3in both cases increasing the number of samples results in an improved density estimate of the true density

40 50 60 70 80 90 100 110 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

spatial variable

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

tio
n

freedman−diaconis rule
sturges rule

0 20 40 60 80 100 120 140
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

snowfall value

pr
ob

ab
ili

ty
 d

en
si

ty

kernel density estimate of the snowfall data

Figure 24: Left: Plots two version of the histogram approximation to the density if the
geyser data. The first method uses the Freedman-Draconis rule to select the histogram
width. The second method uses Sturges’ rule to specify the number of bins (equivalently the
bin width). On this data set the two results are very similar. Right: The kernel density
estimate of the probability density function for the snowfall data set.

width is small we have very “spiky” looking histogram (an estimator with a low bias but
high variance) while when we pick large values for our histogram bin width we obtain a very
smooth estimate (an estimator with a high bias but with low variance). These larger values
of h (near 15) do indeed produce histograms that look like a Gaussian with a large variance.

Exercise 8.7 (bin widths from the Freedman-Diaconis rule)

We implement this exercise in the Matlab file prob 8 7.m. When this script is run the
plot is produces is placed in Figure 24 (left). We see that for this dataset both rules, the
Freedman-Draconis rule and Sturges’ rule both produce very similar looking histograms.
The bin widths produced by the two methods are quite similar, with the Freedman-Draconis
rule giving hFD = 7.17, and Sturges’ rule giving hS = 7.26.

Exercise 8.10 (a frequency polygon of the iris data)

This exercise is worked in the Matlab file prob 8 10.m. When it is run we use the com-
putational statistics toolbox function csfreqpoly.m to compute the frequency polygon for
each pairing of the input features. From this we see that some features have multi-modal
distributions. For example the third and fourth features are multi-modal.

20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18
raw data histogram using Sturges rule

30 40 50 60 70 80 90 100 110 120
 0

.1

.2

.3

.4

.5

.6

.7

.8

.9

 1

Mean

M
ixi

ng
 C

oe
ffi

cie
nt

DF plot of the adaptivly found mixing coeffients

Figure 25: Left: Plots of the histogram of the data in the snowfall dataset. Right: A dF
plot of the mixture components.

Exercise 8.11 (evaluating a kernel density estimate)

We present the code to perform the evaluation of a kernel density by looping over the evalua-
tion points (rather than looping over the number of kernels) in the Matlab code prob 8 11.m.
When this code is run it produces a kernel density estimate for the snowfall data set that
looks like that shown in Figure ?? (right).

Exercise 8.14 (adaptive density modeling)

In the Matlab script prob 8 14.m we implement the required adaptive mixture density mod-
eling, followed by a refinement of these parameters using the expectation maximization (EM)
rule. Some discussion about the adaptive mixture density modeling procedure. When we
run the above code we notice that with the adaptive component algorithm presented in the
book, the order in which the data is presented to the algorithm matters and influence the
results one obtains. Thus there maybe an optimal ordering of the datum for this algorithm
such that would result in the fewest number of clusters. In addition, there is only one pass
through the data so that there is no way to reduce the number of clusters after they are cre-
ated. These properties are well seen in this example. In Figure 25 Left we plot a histogram
(using Sturges’ rule) from which we see that we don’t expect a large number of mixture
components. We find however that when we run the cluster algorithm provided in the book
we get N = 20 mixture components. A dF plot of the mixture components is presented in
Figure 25 Right. From that plot we see a great number of mixture components have means
that are very close together and we would expect that a more compact clustering could be
found.

In the second half of the above code we implement the expectation maximization procedure
using the number of clusters found earlier. Running the code as presented in the book we
found that the EM algorithm would evolve some of the mixture components towards zero.
To mitigate this effect we remove the mixture coefficients if they fall below a given threshold

34 54 74 94 114
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

adaptive mixture density
EM found density

Figure 26: A comparison of three density estimation techniques. The first is a direct applica-
tion of the adaptive mixtures procedure. The second is the output of the adaptive mixtures
but with coefficients refined using the EM algorithm. The third is a frequency polygon.

with the following Matlab code

% check for mixture coefficients that shrink to zero (and remove them):

%

inds = find(mix_cof<=1e-9);

if(any(inds))

fprintf(’removing at least the %d mixture coefficient ... \n’,inds(1));

mix_cof(inds) = [];

mu(inds) = [];

var_mat(inds) = [];

c = c-length(inds);

end

With this code in-place the EM algorithm ended up removing all but one mixture component
that had all of the weight showing that indeed a single Gaussian may not be a bad model for
this data. In Figure 26 we plot the original mixture density (with twenty) components, the
single Gaussian (found using the EM algorithm), and a frequency polygon. Both the single
Gaussian and the mixture model do a good job representing the density.

Exercise 8.15 (density estimate of the geyser data)

This exercise is implemented in the Matlab script prob 8 15.m. When this script is run it
estimates the mixture density for the raw data, generates data from this density, and then
recomputes another density estimate from these generated data. We can then compute the
integrated square error between these two estimated PDF’s. We find the integrated square

error to be 5.845e − 05, showing that the two estimated densities are quite close. In fact
when we plot the two densities they visually appear very similar. This result improves as we
take more samples.

Exercise 8.16 (finite mixtures viewed as a kernel estimate)

If the kernel density estimate is viewed as a finite mixture model the mixture components,
means, and variances are given by (using the variables of the kernel density estimate)

pi =
1

h
µi = xi σ2

i = h .

Exercise 8.17 (adaptive mixtures)

This exercise is implemented in the Matlab script prob 8 17.m. When this is run some
interesting things are found. From the initial data set x, we compute a permuted dataset
exactly as suggested in the book. When we run the adaptive mixture density estimation
procedure (with a maximum of 25 density components) each iteration returns approximately
seven modes. This is obviously greater than the number used to generate the data which
was three. The two densities that result are shown in Figure ?? Left. From this plot it is
apparent that the density might have fewer number of components that found in the adaptive
mixture components. In addition, we see the phenomena where the densities parameters

can be different but the resulting densities are the very similar. The ISE between these
two curves is negligible (the same holds for the IAE). If we directly use the EM algorithm
(provided in the Matlab function csfinmix) with the results from the adaptive mixture
algorithm as the initial guess (with its seven components) the resulting densities are shown
in Figure ?? Right. Remember that a different ordering of the input data was specified
to each application of the EM algorithm. This highlights a potential difficulty of the EM
algorithm to converge to a local minimum. Since the number of data points generated to fit
to was relatively small at 100, and the EM algorithm was seeded with an incorrect number
of mixture components each run of the EM algorithm generated a slightly different densities
which in this case do not look like the densities that generated the data. In fact, you can see
from the “spike” like behavior of the resulting density in Figure ?? that the EM algorithm is
fitting mixture components to specific data points. The EM algorithm is finding a solution
that it too specific to the particular data samples generated and is over fitting the data. This
is the symptom of having too many explanations for the observed facts.

In a very general way we have 100 observed facts and a combination of 7 mixture components
to explain them. This is too many, and has resulted in an overfit density. This problem can
be mitigated in several ways. By increasing the number of data points, you will have less
fear that applications of the EM iterations will produce a density that is overfit to the given
data set. This can also be achieved by decreasing the number of mixture components.

If after viewing the resulting density from the adaptive mixture modeling we set the maxterms

15 16 17 18 19 20 21 22 23
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

adaptive density estimate
refined EM model

Figure 27: Density estimates for the forearm data.

variable at three. With this modification out initial condition to the EM algorithm consists
of only three modes and the EM algorithm is able to find a more globally representative
density.

Exercise 8.21 (the forearm data)

Many of the comments in Exercise 8.17 apply here as well in the specification of the parameter
maxterms. When we specify value of maxterms at one (the expected number of modes) and
refine the estimated mixture parameters using the EM algorithm we get the results plotted
in Figure 27. See the Matlab file prob 8 21.m for the code.

Exercise 8.22 (the elderly data)

See the Matlab file prob 8 22.m for the code to perform this exercise. This is very similar
to Exercise 8.21 above. The densities produced did not appear to have different modes at
least not very significant ones.

Exercise 8.23 (the nfl data)

See the Matlab file prob 8 23.m for the code to perform this exercise. When we plot a
scatter plot of the x1 values against the x2 values we see a strong linear dependence. The
corresponding probability density function for the ordered pairs (x1, x2) has a strong diagonal
direction as expected.

Chapter 9: Statistical Pattern Recognition

Exercise Solutions

Exercise 9.2 (clustering based on expenditures)

See the Matlab file prob 9 2.m for this exercise. We will apply two clustering methods to
this data. The first will be agglomerative clustering and the second will be an application of
k-means clustering. We begin by combining the individual measurements into a single data
set. We have twenty measurements of men and twenty measurements of woman, thus if we
consider the first set of measurements to be composed of men a “good” clustering would
cluster the first twenty points together and the second twenty points together.

Since the measurements in the household data set correspond to things that are most likely
not in the same units we should normalized the measurements before attempting to use them
for classification. We can use the Matlab function zscore to perform this normalization.
Without any other information, we will perform agglomerative clustering using the Matlab
function linkage and the Euclidean distance as the similarity measure with single linkage.
The Matlab function call used to compute the dendrogram

[H,T] = dendrogram(z);

Where z is the output from the linkage command. The dendrogram that results from this
clustering is shown in Figure 28 (Left). The Matlab function dendrogram returns a number
of “clusters” where each cluster can contain more than one point. For example the command

find(T==24)

returns that the 24th “cluster” contains all of the points 24, 28, 31, 33, 36, 38, 39. Most “clus-
ters” contain only one point however.

From this dendrogram we see that there are indeed clusters but maybe not the ones expected.
It seems that the data clusters 3, 11, 5, 16, 20, 15, 10 and 17 (each containing only one point)
represent more unique people in that they don’t cluster at the same distance as the others.
These points excluded, there seem to be two main groupings. Except for the 24th “cluster”
the first is the Matlab cluster points 9, 18, 1, 7, 12, 2, 4, 6, 8 and 19 and the second is the
points 21, 27, 25, 28, 24, 26, 13, 22, 23, 29 and 30. Unfortunately, these discovered “clusters”
don’t seem to correspond strongly to two natural classification of men and women.

We next applied the k-means clustering procedure with random initial clusters and two

clusters. In Figure 28 (Right) we plot the standardized first two features from our data
set. We plot the true men with black squares, the clustered men with red squares, the

 9 18 1 7 12 2 4 6 8 19 21 27 25 28 24 26 13 14 22 23 29 30 3 11 5 16 20 15 10 17

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

datum instance

algomative clustering with single linkage

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

true men
true women
approx men
approx women

Figure 28: Left: The dendrogram produced via the Matlab command dendrogram (an
agglomerative clustering procedure) when applied to the household data. Right: The
corresponding clusters produced by the k-means clustering algorithm.

true women with black diamonds, and the approximate women with red squares. We see
that the clustering produces clusters that while they maybe close in a Euclidean distance do
not necessary correspond to the true class labels. This is the same results found with the
agglomerative clustering algorithm above. These results might be understood by recognizing
that even though we think that cluster men and woman should be an easy task, this may
not be true when the features given are not biologically related.

Exercise 9.3 (a classification tree from the household dataset

See the Matlab file prob 9 3.m for this exercise. When this script is run with parameters that
should result in a rather over fit tree maxn=1, we see that the resulting classification tree has
only two leaves. These classification tree procedure choose to split along the second dimension
with a split value (relative to the standardized) measurement of s2 = −0.42. This split value
is quite good in that when we then compare the classification accuracy of this one split tree we
find it classifies with one-hundred percent accuracy! This might seem in contradiction to the
results found in Exercise 9.2 where both clustering algorithms had difficulty extracting the
expected clustering of men and women. This disparity of results can be attributed to a couple
of factors. The most important is the recognition that these are indeed different algorithms.
The tree classification procedure can easily perform splits (and effectively separate classes)
along coordinate axis which is more difficult for the agglomerative and the k-means procedure
to perform. Both of these two later procedure use the Euclidean distance as a similarity
metric. This effectively treats all features as equivalent with depending on the problem
may not be desired. The household data set is one where this property may not perform
optimally.

12 18 16 15 13 17 11 20 14 2 3 9 4 6 10 8 19 5 7 1

0.4

0.6

0.8

1

1.2

1.4

1.6

datum instance

algomative clustering with single linkage

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

true men
true women
approx men
approx women

Figure 29: Left: The dendrogram produced via the Matlab command dendrogram (an
agglomerative clustering procedure) when applied to the measure data. Right: The corre-
sponding clusters produced by the k-means clustering algorithm.

Exercise 9.4 (clustering based on measurements)

See the Matlab file prob 9 4.m for this exercise. when we run the agglomerative clustering
algorithm we get the dendrogram shown in Figure29 (Left). In this case each “cluster”
contains only one point and see that at the highest level we have approximately 10 data
points in each major grouping. We see that the data points 7 and 1 are different that the
others in that they are the last data points brought into a cluster.

We next applied the k-means clustering procedure with random initial clusters and two

clusters. In Figure 29 (Right) we plot the standardized first two features from our data set.
As earlier, we plot the true men with black squares, the clustered men with red squares,
the true women with black diamonds, and the approximate women with red squares. We
see that in this case we see that the two clusters corresponds quite well with the physical
labels of men and women. This is a good result in that it enforces our expectation of what
we should find. In order to determine what Matlab used to label “men” we choose the label
Matlab selected for the samples with the largest value of the third feature. For this data set
that is the seventh sample.

Exercise 9.5 (the cluster and inconsistent Matlab functions)

See the Matlab code prob 9 5.m for the code to perform this exercise. We use the Matlab
function linkage to generate the hierarchical cluster tree for the sample data set give in the
text. We then use the Matlab function cluster to extract the clusters and plot each point
in a color that depends on its cluster. These routines work much as one would imagine,
clustering the first three points together and the last two points together.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probability of false alarm

p
ro

b
a

b
ilt

y
o

f
d

e
te

ct
io

n

ROC curve for the tibetan data

Figure 30: The ROC curve produced using the routine csrocgen on the tibetan data.

Exercise 9.6 (the tibetan data)

See the Matlab code prob 9 6.m for the code to perform this exercise. Rather than compute
the ROC curve for this data set in detail4, we will use the computational statistics toolbox
function csrocgen.

To begin this exercise we recall that we are told that the first 17 data points correspond to the
first class and the remaining 15 points correspond to the second class. From earlier exercises
we know that distribution the individual features of the tibetan data is well approximated
by a normal distribution. From this information we will build a Bayesian classifier using
a normal density as an approximation to the class conditional density. This is exactly the
density estimation technique used in the csrocgen procedure. When we run the code above
we get the ROC curve shown in Figure 30.

Exercise 9.7 (comparing the performance of two classifier)

When we run the Matlab code prob 9 7.m it calls two subroutines. The first prob 9 7 mdG.m

which uses hold one out cross-validation to estimate the probability of correct classification
when we classify using a multidimensional Gaussian as an approximation to the probability
density for each class. The second code prob 9 7 prD.m uses a product kernel to represent the
class-conditional probabilities. Running this script we get an estimate of the probability of
correct classification of 0.995 for the multidimensional Gaussian and a probability of correct
classification of 0.895 for the product kernel. These results indicate that the multidimensional
Gaussian is probably a better classifier.

Exercise 9.8 (ROC analysis on the bank data)

In this exercise we will study the ROC curve analysis on the bank data under two different
classifiers. The Matlab code prob 9 8.m calls two subroutines. The first, prob 9 8 mdG ROC.m,

4An example of performing this with two different feature estimation techniques is given in the Matlab
codes associated with Exercise 9.8 ??

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probability of false alarm

p
ro

b
a

b
ilt

y
o

f
d

e
te

ct
io

n

multidimensional Gaussian
product kernel

Figure 31: A comparison of the ROC curve produced when using a multidimensional Gaus-
sian and a product kernel to estimate the density of the third feature of the bank data.

uses hold one out cross-validation to estimate the ROC curve for the bank data while the
second prob 9 8 prD ROC.m, uses a product kernel representation of the probability density
in each class. In producing the ROC curve in both cases we need to perform the following
steps:

• Specify a range for the probability of false alarm.

• Compute likelihood ratios (using leave-one-out cross-validation) for all of the non-target
samples.

• For each of of the desired probabilities of false alarm pfa, determine the threshold in
likelihood ratio space that corresponds to this pfa i.e. using appropriate quantiles of
the likelihood ratios computed earlier.

• Using hold-one-out cross-validation compute the likelihood ratios for each member of
the target class.

• For each of the thresholds computed above, compute the probability of detection pd.

• Plot the probability of false alarm v.s. probability of detection.

All of these steps are implemented in the above Matlab files. When we execute these com-
mands with all features we obtain a “perfect” ROC curve i.e. one that is able to maintain
very large probability of correct classification while at the same time maintaining a very
small probability of false alarm. To make the problem more difficult we will remove some
features and recompute the ROC curve then. For example the third feature appears to be
reasonable informative and will be used for comparison purposes here. When the Matlab
scripts above are run we obtain the ROC curves shown in Figure 31. When we consider these
results we see that the two classifiers are rather similar but the multidimensional Gaussian
classifier has a higher probability of detection for smaller probabilities of false alarm. The
multidimensional Gaussian has an area under the ROC curve of 0.81, while the product
density has an area under the ROC curve of 0.79.

x2 < 1.7

x3 < 0.97 C− 2

x4 < 0.3 C− 1

x5 < 0.75 C− 1

x2 < 1.2 C− 1

x1 < 1.7C− 2

x4 < 0.2C− 2

x4 < 0.057C− 2

x3 < 0.23C− 1

x2 < 0.91C− 2

x1 < 1.3 C− 2

C− 2 C− 1

x2 < 1.7

x3 < 0.97
C− 2

x4 < 0.3
C− 1

x5 < 0.75
C− 1

x2 < 1.2
C− 1

x1 < 1.7
C− 2

x4 < 0.2
C− 2

x4 < 0.057
C− 2

C− 2C− 1

Figure 32: Left: The initial unpruned tree for the bank data and Right: The pruned tree
that has the smallest classification error on an independent test set.

Exercise 9.9 (a classification tree for the bank data)

See the Matlab file prob 9 9.m for the code to perform this exercise. When develop a
classification tree on the entire bank dataset we find that only one splitting (on the sixth
feature) is required to optimally split the data. Since this produces a tree with only two
branches we remove the sixth feature and obtain a classification tree that need considerably
more splits to classify this data set. Randomly dividing the data into two sets (with 50
samples per class) the largest decision tree is shown in Figure 32 (left)5. We then prune
this large tree using the Computational Statistics Toolbox function csprunec. Then using
the remaining samples as an independent data set we classify each sample using each of
the pruned trees above and record the probability of misclassification. We then select our
optimal tree to be the one with the minimum classification error. This remaining tree is
plotted if Figure 32 (right).

Exercise 9.10 (clustering the bank data)

In the Matlab script prob 9 10.m we first perform agglomerative clustering and then k-means
clustering on the bank data. In Figure 33 Left we see the results from applying a single
link agglomerative clustering algorithm to our data. One thing to note is that the Matlab
dendrogram command can produce a large number of data points “under” a given leaf in
the dendrogram. For example in this application the leaf 1 has 80 data points under it. The
leaf 16 has 84 data points represented by its label. We can plot the number of points in each
dendrogram cluster by issuing the Matlab command

figure; hist(T,length(unique(T)));

5Note that we have standardized the data using the Matlab function zscore before any computing the
decision tree

 1 2 28 7 3 11 13 16 19 24 20 22 29 26 27 21 14 30 23 18 5 10 12 17 6 9 25 15 8 4

1.5

2

2.5

3

3.5

4

datum instance

algomative clustering with single linkage

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90
the distribution of data points under each dendrogram leaf

dendrogram label

nu
m

be
r

of
 d

at
a

po
in

ts
 in

 e
ac

h
la

be
l

Figure 33: Results of hierarchal clustering on the bank data set.

 1 2 28 7 3 11 13 16 19 24 20 22 29 26 27 21 14 30 23 18 5 10 12 17 6 9 25 15 8 4

1.5

2

2.5

3

3.5

4

datum instance

algomative clustering with single linkage

Figure 34: Results of k-means clustering on the bank data set.

This plot is plotted in Figure 33 Right where we see that there are two clear labels that
contain a majority of the points and represent the two predominate clusters.

We next apply k-means clustering to the bank data. Since we know that there are two classes
we will desire a clustering that contains only two classes. The plot of the resulting clusters
is shown in Figure 34 along with the correct clustering using the known truth. When we
compute how well our clustering does we see that the k-means method associates the correct
class with a estimated probability of 0.96 which is quite good.

Exercise 9.11 (Monte Carlo study of the probability of error)

This exercise is performed in the Matlab file prob 9 11.m. There we generate a histogram
of the probability of correct classification (the probability of misclassification would be one
minus this result). The resulting histogram is plotted in Figure 35. From there we see that
this probability is approximately normally distributed.

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
0

5

10

15

20

25

pcc value

p
cc

 c
o

u
n

t

histogram of the p
cc

 NMC=100

Figure 35: A histogram of the probability of correct classification for a number of Monte-
Carlo runs.

x1 < 1.1

x1 < 0.94
C− 1

x2 < 1.2
C− 3

x1 < 0.018 x1 < 0.31

x2 < −0.69 x2 < −0.23
C− 2 C− 1

C− 3
x1 < −0.13

C− 3 C− 1

C− 2 C− 1

x1 < 1.1

x1 < 0.94
C− 1

x2 < 1.2
C− 3

x1 < 0.018
C− 2

x2 < −0.69 x2 < −0.23

C− 3 C− 2 C− 3 C− 1

Figure 36: The initial (left) and final (right) classification trees for the flea data.

Exercise 9.13 (a classification tree the flea data)

In this problem we load flea data and then develop a large classification tree on this data.
We then train a mixture model using all of the flea features with a call to the Computational
Statistics Toolbox function csfinmix. Using this probabilistic model we can then generate
additional data samples to prune our initial tree with. In many ways this is like the parametric

bootstrap. We then use the “independent sample” data generated from our mixture model to
calculate the classification error for each of the given pruned trees. We find that the largest
tree has the minimum error. We then add to this error estimate the estimate of standard
error for this tree. Finally, we pick the least complex tree that has a classification error
below this value. For this example that turns out to be the third tree. In Figure 36 (left) we
show the initial tree and in Figure 36 (right) we show the pruned find tree (corresponding
to the third index).

The calculations for this problem can be found in the Matlab file prob 9 13.m.

Exercise 9.15 (classifying versicolor and virginica)

In this problem we are asked to classify the classes versicolor and virginica using all four
of the features. When we classified these two species of iris using only the first two features
we obtained a classification rate of 0.68. Using more features (all other things being equal)
should improve our classification accuracy. When we run the Matlab code prob 9 15.m

which uses cross-validation with k = 1 to estimate the probability of correct classification
we see that this is indeed true. Using all four features we have an estimated probability of
correct classification of 0.96.

Exercise 9.16 (classifying virginica and setosa)

In this problem we are asked to develop Bayesian classifiers and estimate the probability of
misclassification using cross-validation on the virginica and the setosa species of iris. Since
these species are more distinct we would expect that on only using two features we should be
able to classify them relatively easily. This is implemented in the Matlab file prob 9 16.m

where we see that with only two features (the same as used when attempting to classify
virginica and versicolor that we obtain an estimated probability of classification of 0.99.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

poly deg 1
poly deg 2
poly deg 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−12

−10

−8

−6

−4

−2

0

2

4

6

8

predictor x

re
si

du
al

residual dependence plot for a polynomial model of degree3

poly deg 1
poly deg 2
poly deg 3

Figure 37: Left: The raw data and three polynomial models of degree one, two, and three
aimed at approximating it. Right: The residual dependence plot for polynomial models of
degree one, two and three. In this case the data is generated from a cubic polynomial with
a variance that varies with respect to the x variable as 20x+ 1.

Chapter 10: Nonparametric Regression

Exercise Solutions

Exercise 10.1 (a non-constant variance)

See the Matlab file prob 10 1.m for this exercise. In this problem we have data generated
from a polynomial model corrupted with noise whos variance is spatially dependent. Specifi-
cally, at a point x the noise’s variance is given by 20x+1. We attempt to fit three polynomial
models to this data and observe the resulting residuals. In Figure 37 (left) we show the raw
data (drawn with red x’s), the true polynomial distribution (drawn with green circles), and
the three polynomial models. We see that that the quadratic and cubic models appear very
similar. In Figure 37 (right) we show the residual dependence plots for each of the three
models. We see that the residuals of the quadratic and cubic polynomials are almost iden-
tical and the residual of the linear term is of a magnitude greater than the previous two. In
addition, we see that as x increases the magnitude of the residual terms grows. This last
observation is consistent with the fact that our noise variance grows as x increases. This
would also indicate that the model of a constant variance is not appropriate for this data
set.

Exercise 10.2 (a constant variance)

See the Matlab file prob 10 2.m for this exercise. Since we know that the true model for
this data is generated from (a third degree polynomial) we expect that model to fit this data
quite well. We attempt to fit polynomial models of degrees one, two, and three to the given

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8

10

poly deg 1
poly deg 2
poly deg 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

predictor x

re
si

du
al

residual dependence plot for a polynomial model of degree3

poly deg 1
poly deg 2
poly deg 3

Figure 38: Left: The raw data and three polynomial models of degrees one, two and three
aimed at approximating it. Right: The residual dependence plot for polynomial models of
degree one, two and three. In this case the data is generated from a cubic polynomial with
a variance that is constant with respect to the x variable.

noised data. In Figure 38 (left) we show the results for each of these three fits. The thing to
notice is that the linear polynomial fits the worst while the quadratic and cubic polynomial
fit approximately the same.

In Figure 38 (right) we show the results of the predictor residual plots for each of the
polynomial models. In this figure we see that in general the residuals from the linear model
are somewhat larger than the residuals from the quadratic and the cubic models. This
implies that the the linear model may not be as good as the other two. We also see that the
linear model has residuals that are larger in the middle (near x = 0.5) and on the extremes
(where x = 0 and x = 1). These two areas correspond to exactly where the linear model
diverges most from the curvature of the true cubic model. These results help emphasis that
the quadratic and cubic models are better for this data set.

Exercise 10.3 (the distribution of the residuals)

See the Matlab file prob 10 3.m for this exercise. For this exercise we will use the same
experimental setup found in Exercise 10.1. To better demonstrate the point of this exercise
we will increase the number of locations where we sample our x axis on. Specifically we
increase the number of points from 100 to 1000. This has the effect of increasing the number
of samples we draw from our noise distribution and correspondingly allows us to draw more
complete conclusions about the distribution of the residuals under each our models. When
the above Matlab file is run, several plots are generated for each of the polynomial models.
The first plot is a histogram of all residuals. These show longer tails than one would expect
from normal distributions indicating that the variance may not be distributed normally.
The second plots are qq-plots for each of the polynomial models and are shown in Figure 39.
These plots show a divergence of the residual for each model with the normal distribution
for large positive deviances from the mean. Again this gives an indication that the normal

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

a qq plot for the polynomial model of degree1

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

a qq plot for the polynomial model of degree2

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

a qq plot for the polynomial model of degree3

Figure 39: The qq-plots of the residuals for three polynomial models. The plots (from
left to right), correspond to polynomial models of degrees one, two, and three. Notice the
divergence from a normal model at the extreme positive values of the residuals.

distribution is not fully exact. Finally in Figure 40 we present boxplots of the residuals of
the three polynomial models. Again the large number of red “cross” points above the box
give an indication that a normal model is not fully appropriate.

Exercise 10.4 (residual smoothing)

See the Matlab file prob 10 4.m for this exercise. Following the residual smoothing procedure
we first fit a preliminary model to the data, here a third degree polynomial. We then
compute the residuals using ǫi = Yi − Ŷi, where the predicted variable Ŷi is obtained from
the polynomial model. Finally we perform loess smoothing on the residual and add this
correction to the cubic polynomial model. This is similar to stagewise additive refinement,
where we fit models to the remaining error (the residual) obtained from the additive sequence
of models previously estimated. The addition (over the base polynomial model) can be
observed in Figure 41

Exercise 10.5 (experiments with polynomial models)

See the Matlab file prob 10 5.m for this exercise. When we run this code we produce plots
of the raw data and the associated polynomial models along with plots of the residuals as-
sociated with each model. In general the residuals decrease as the order of the polynomial
increases this is true mainly because we evaluating the residuals at the same points where
we are computing the polynomial approximations. As higher order polynomial can be con-
structed to pass exactly through more points it is not surprising that the residuals decrease.
We should plot the residual function at point that were not used in the calculation of the
model polynomial. We then would expect to see that very higher order polynomials provides
a worse fit than lower ordered ones. Even taking this into consideration it appears the tenth

1

−10

−5

0

5

10

re
s
id

u
a

l

predictor x

residual boxplot for a polynomial model of degree1

1

−10

−5

0

5

10

re
s
id

u
a

l

predictor x

residual boxplot for a polynomial model of degree2

1

−10

−5

0

5

10

re
s
id

u
a

l

predictor x

residual boxplot for a polynomial model of degree3

Figure 40: Boxplots of the residuals for three polynomial models. The plots (from left to
right), correspond to polynomial models of degrees one, two, and three. Again notice that
we actually obtain more residuals with a large value than would be predicted by a normal
model.

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120
the environ data with a polynomial model

independent variable x

y
re

sp
on

se

raw environ data
polynomial model
loess corrected

−9 −8 −7 −6 −5 −4 −3
0.7

0.75

0.8

0.85

0.9

0.95
the filip data

deg 2
deg 4
deg 6
deg 10

Figure 41: Left: The loess corrected model for the environ data. Right: The filip data
with four polynomial models.

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

wind

oz
on

e

the environ data with loess models of degree 1

alpha = 0.1
alpha = 0.2
alpha = 0.3
alpha = 0.5
alpha = 0.6
alpha = 0.7
alpha = 0.9

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

wind

oz
on

e

the environ data with loess models of degree 2

alpha = 0.1
alpha = 0.2
alpha = 0.3
alpha = 0.5
alpha = 0.6
alpha = 0.7
alpha = 0.9

Figure 42: Left: Loess local smooths of the environ data using degree d = 1 polynomials
(lines) and various values of α. Right: Loess local smooths of the environ data using degree
d = 2 polynomials (quadratics) and various values of α.

order polynomial fits the data quite will. See Figure 41 for a plot of the model and the four
polynomial models.

Exercise 10.6 (using polytool)

See the Matlab file prob 10 6.m for this exercise, which is simply a driver script for the
polytool Matlab function call. The polytool lets one experiment fitting data with poly-
nomials of different degrees.

Exercise 10.7 (loess with various values for α)

See the Matlab file prob 10 7.m for this exercise. We plot loess estimate of the environ

data for various parameters. Remembering that a loess smooth of a data set is obtained
by fitting a low degree polynomial close to points. For this exercise we will choose local
polynomials of degree one and two. The number of local points (for each point where we
want to evaluate the loess smooth at) is determined by a certain fraction of the total number
of points in the data set. If n is the total number of data points and α is a number such
that 0 < α < 1, then the number of points used in each local smooth is given by O(αn).
We expect that when α is “small” we are fitting our local curves to specific details of the
specific values of the given data set. This can be seen empirically using the experiments
presented in prob 10 7.m. When this script is run two figures are produced. The first is
reproduced in Figure 42 (left) and corresponds to using linear polynomials locally. The
second is reproduced in Figure 42 (right) and corresponds to using quadratic polynomials
locally. In both cases we see that as we make α smaller and smaller the loess smooths become
much more oscillatory effectively, these local fits are begin fit to the noise inherent our data
rather than the actual signal.

0 2 4 6 8 10 12

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

independent variable

de
pe

nd
en

t v
ar

ia
bl

e

the Priesley−Chao Kernel Estimator

0 2 4 6 8 10 12

−2

−1.5

−1

−0.5

0

0.5

1

1.5

independent variable

de
pe

nd
en

t v
ar

ia
bl

e

the Nadaraya−Watson Kernel Estimator for various h

h = 0.1
h = 0.2
h = 0.5
h = 0.75
h = 1
h = 1.3
h = 2

Figure 43: Left: A demonstration of the Priestley-Chao estimator used to estimate a sinu-
soidal pattern in noisy data. Right: The Nadaraya-Watson Kernel estimator as a function
of h (the kernel width).

Exercise 10.8 (the Priestley-Chao estimator)

The Priestley-Chao estimator is a local regression estimator based on the use of kernels to do
the regression. For this exercise we will repeat Example 10.6 but instead using the Priestley-
Chao estimator. In the Matlab script prob 10 8.m we duplicate the Matlab code from that
exercise where we add noise to a sinusoidal signal and attempt to “reconstruct” the signal
using the Priestley-Chao estimator. Running the above code give the plot in Figure 43 (left)

Exercise 10.9 (experiments with various value of h)

See the Matlab file prob 10 9.m for this exercise. When this script is run we produce the
plot shown in Figure 43 (right). Again we see the trade-off between representation and
generalization that comes with changing the size of h. Smaller h fit the data too closely
while large value of h misses general trends.

Exercise 10.10 (loess on the human data)

See the Matlab file prob 10 10.m for this exercise. As in Exercise 10.7 we perform loess
smoothing on the human data. In this case we combine the female and the male measure-
ments into one matrix and perform loess on the entire data set. One thing to notice about
this data set is that it is not very large and it is rather noisy, both of which give the conclu-
sion that many data points (a large value of α) is appropriate for this data. When we look
at the results from running this script (shown in Figure 44) we indeed see that larger values
of α provide better global fits.

20 25 30 35 40 45 50 55 60 65
5

10

15

20

25

30

35

40

45

age

fa
t

the human data with loess models of degree 1

alpha = 0.2
alpha = 0.3
alpha = 0.5
alpha = 0.6
alpha = 0.7
alpha = 0.9

20 25 30 35 40 45 50 55 60 65
5

10

15

20

25

30

35

40

45

50

age

fa
t

the human data with loess models of degree 2

alpha = 0.2
alpha = 0.3
alpha = 0.5
alpha = 0.6
alpha = 0.7
alpha = 0.9

Figure 44: Left: Loess local smooths of the human data using degree d = 1 polynomials
(lines) and various values of α. Right: Loess local smooths of the human data using degree
d = 2 polynomials (quadratics) and various values of α.

Exercise 10.11 (loess on the anaerob data)

See the Matlab file prob 10 11.m for this exercise. As in Exercise 10.7 we perform loess
smoothing on the anaerob data. One thing to notice is about this data set is that while it
may not have a large number of data points (only 53) it does not seem to very noisy. Thus
both local and global fits should perform equally well when performing a loess smooth with
this data. Thus almost any reasonable value of α works well. This can been seen when we
run this code (the result of which is presented in Figure 45).

Exercise 10.12 (a regression tree on the brownlee data)

We desire to use cross-validation to pick the optimal sized tree for the regression task of
predicting the stack loss given independent variables that are related to the operational inputs
of an ammonia producing plant. This exercise is done in the Matlab script prob 10 12.m

where we split the input data into two parts and train on the first half and pick the optimal
tree using cross-validation on the second half of the data. When we do this we find that we
develop three regression trees with a mean square error of each tree on the testing set given
by

0.7111 , 0.8877 , 0.7398 .

The minimum mean square error is given by the first tree. Computing the standard error
of this tree we obtain a value of 0.5130. The minimum complexity tree that is less than the
sum of the mse and the standard error 1.2241 would be the third tree and that would be the
optimal one to return.

500 1000 1500 2000 2500 3000 3500 4000 4500

20

40

60

80

100

120

140

x

y

the anaerob data with loess models of degree 1

alpha = 0.2
alpha = 0.5
alpha = 0.7
alpha = 0.9

500 1000 1500 2000 2500 3000 3500 4000 4500

20

40

60

80

100

120

140

x

y

the anaerob data with loess models of degree 2

alpha = 0.2
alpha = 0.5
alpha = 0.7
alpha = 0.9

Figure 45: Left: Loess local smooths of the anaerob data using degree d = 1 polynomials
(lines) and various values of α. Right: Loess local smooths of the anaerob data using degree
d = 2 polynomials (quadratics) and various values of α. Note that all loess models work
approximately the same. Since this data set has very little noise the loess models with small
values of α (fits that are more local) do a better job.

Exercise 10.13 (a regression tree on the abrasion data)

We desire to use cross-validation to pick the optimal sized tree for the regression task of pre-
dicting the abrasion loss given independent variables that are hardness and tensile strength
on particular metals of interest. This exercise is done in the Matlab script prob 10 13.m

where we split the input data into two parts and train on the first half and pick the optimal
tree using cross-validation on the second half of the data. When we do this we find that we
develop seven regression trees with a mean square error of each tree on the testing set given
by (in order of decreasing tree complexity)

6.3272 , 6.3774 , 5.4224 , 5.5645 , 5.0481 , 4.9152 , 7.4069 ,

these should be multiplied by 1000 to give appropriate units. From these we see that the
minimum mean square error is given by the sixth tree. Computing the standard error of
this tree we obtain a value of 1231. The optimal tree in this case would be the minimum
complexity tree that is less than the sum of the mse and the standard error or 6146 would
be the sixth tree again and that would be the optimal tree to return.

Exercise 10.14 (a loess smooth of the helmets data)

See the Matlab file prob 10 14.m for this exercise, where we perform loess on the helmets

dataset. We use the Computational Statistics Toolbox function csloessenv. This function
has an option to perform robust loess if desired. Given the rather noisy acceleration data
around a time of 35 we expect that the α parameter which determine how many data
points we should use in each local fit should be rather small (implying a more global fit).
Experimenting we find that for a local first order polynomial fit α = 0.3 seem to work well as

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

time

ac
ce

l

the helmets data with a loess model of degree 1

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

time

ac
ce

l

the helmets data with a loess model of degree 2

Figure 46: Left: Loess local smooth and smoothed envelope for the helmets data using
local degree d = 1 polynomials (lines). Right: Loess local smooth and smoothed envelope
for the helmets data using local degree d = 2 polynomials (quadratics).

seen in Figure 46 (left). It didn’t seem that the robust version of loess was that much better
than the non-robust version. Using second degree polynomials gives very similar results.

Exercise 10.15 (kernel regression on the helmets data)

The code for this exercise is in the Matlab script prob 10 15.m. In this script we compute
a Nadarya-Watson estimator which is a kernel smoother given by

fNW(x) =

∑n
i=1Kh(Xi − x)Yi

∑n
i=1Kh(Xi − x)

.

Here Kh(·) is a kernel function with a “width” parameterized by the variable h. For this
exercise we use a Gaussian for the kernel given by

Kh(x) =
1√
2πh

e−
1

2
(x
h)

2

.

The result of applying the Nadarya-Watson estimator (with h = 2) is shown in Figure 47.

Exercise 10.16 (regression trees on the boston data)

The code for this exercise is in the Matlab script prob 10 16.m. When that code is run we
first grow the regression tree on the boston data set using Breiman et al. rule of thumb
where by we grow the regression (on half of the data) tree until a each leaf node contains
five or fewer data samples. This initial tree has 163 nodes and is quite large (relative to the
pruned tree we will find below). We then prune this overly dense tree obtaining seventy-four

pruned trees. Using each of these trees with the second half of our data we then determine
the mean square error (MSE) each tree achieves. We find that the mean square errors for

0 10 20 30 40 50 60
−150

−100

−50

0

50

100

time
ac

ce
l

the helmets data with a NW estimator; h=2

Figure 47: The helmet data with a Nadarya-Watson kernel estimator.

each of the regression tress is shown in Figure 48 (left). Also drawn on that figure are the
minimum of the mean square errors drawn as a red line and this minimum incremented by
the standard error of the tree that achieves this minimum error. We then select as an optimal
tree the tree that is of minimum complexity that has a MSE less than this value (the MSE
pulse its standard error). This corresponds to the tree with index 68. This tree is plotted in
Figure 48 (right). Note that the tree selected by cross-validation in contrast has far fewer
nodes.

0 10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

tree index (decreasing complexity)

m
ea

n
sq

ua
re

 e
rr

or

mean square error as a function of pruned tree x13 < 9

x6 < 7.4 x13 < 14

x8 < 1.6
y= 45y= 21

x5 < 0.61

y= 50
x6 < 6.7

y= 18 y= 13

y= 24 y= 33

Figure 48: Left: The mean square error corresponding to each pruned tree on the testing
data set for the boston data. Drawn as horizontal lines are the minimum mean square error
(MSE) and the minimum mean square error m plus one standard error of this quantity ŝe.
While the minimum MSE is located at index one (the most complex tree) the least complex
tree with MSE less than m + se is located at index 70. Right: The minimum complexity
tree selected by cross-validation.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iteration value

X
(i
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
univariate density histogram

Figure 49: Left: Data samples from the Metropolis-Hastings chain when sampling from a
von Mises distribution. Note in this case the support of the proposal distribution [−1,+1] is
smaller than the support of the true distribution [−π,+π] and we don’t expect to correctly
represent the desired target distribution. Right: The corresponding density histogram of
the samples from the chain.

Chapter 11: Markov Chain Monte Carlo Methods

Exercise Solutions

Exercise 11.1 (drawing samples from the von Mises distribution)

See the Matlab file prob 11 1.m for this exercise. To simulate from the von Mies distribution
using the random-walk version of the Metropolis-Hastings sampler we will draw variates Y
from our proposal distribution q, which in this case is the uniform distribution. Since this
distribution is constant it will cancel in the calculation of α (the rejection threshold for the
new point). That is, when we calculate α as

α = min

{

1,
π(Y)q(Xt|Y)

π(Xt)q(Y |Xt)

}

, (2)

we recognized that π is our target distribution which in this case is the von Mises distribution,
while q is the proposal distribution which in this case is uniform and therefore cancels itself
from the top and bottom of the above expression. Thus the above expression simplifies to

α = min

{

1,
π(Y)

π(Xt)

}

,

where Y is drawn from the target distribution and Xt is the previous state in the chain.
The chain history and a density histogram are shown in Figure 49. One difficulty with
simulating from this distribution, as suggested, is that the natural range of our variable is
−π ≤ x ≤ π but when using a uniform distribution for the proposal distribution we never
get data samples outside of [−1,+1] and thus never get samples as large as we should from

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration value

X
(i)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
univariate density histogram

x value

pd
f v

al
ue

Figure 50: Left: Data samples from the Metropolis-Hastings chain when simulating from
a beta distribution. Right: The corresponding density histogram of the samples from the
chain. The PDF of a beta distribution with parameters (α, β) = (0.5, 0.5) is plotted as an
overlay in green.

the given distribution. The support of our proposal distribution is smaller than the support
of the target distribution. Thus we will not accurately represent the true distribution we
desire to sample from. This can be fixed/corrected by sampling from a distribution with
a larger support, say the uniform distribution over [−4,+4]. In this case our Monte-Carlo
Metropolis-Hasting samples would converge to the correct distribution.

Exercise 11.2 (drawing samples from the beta distribution)

See the Matlab file prob 11 2.m for this exercise. We will simulate from the beta distribution
using the random-walk version of the Metropolis-Hastings (MH) algorithm as in Exercise 11.1
above. We begin by recognizing that the beta distribution, with parameters α and β, has a
probability density function given by

π(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 .

The natural domain for this distribution is [0, 1] so we will take as a proposal distribution q
a uniform distribution over this same range. Now in the random walk Metropolis-Hastings
sampler we will draw variates Y from our proposal distribution q and the probability that
we accept this proposed point Y with probability α via Equation 2. A nice thing about
using the Metropolis-Hastings algorithm to draw samples from π(·) is that we don’t have to
explicitly calculate the leading coefficients. For example in the case given here the probability
of accepting the given MH step α becomes

α = min

{

1,
Y α−1(1− Y)β−1

Xα−1
t (1−Xt)β−1

}

.

If we take α = β = 0.5 we obtain a particularly interesting looking probability density
function. Running the above script we obtain a plots of the particular chain samples and a
density histogram as shown in Figure 50.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

iteration value

X
(i)

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
univariate density histogram

x value

pd
f v

al
ue

Figure 51: Left: The Metropolis-Hastings chain of samples when simulating from a gamma
distribution. Right: The corresponding density histogram of the samples from the chain.
The PDF of a gamma distribution with parameters (α, β) = (5, 1) is plotted as an overlay
in green.

Exercise 11.3 (drawing samples from the gamma distribution)

See the Matlab file prob 11 3.m for this exercise. We will simulate from the gamma dis-
tribution using the random-walk version of the Metropolis-Hastings (MH) algorithm as in
Exercise 11.1. We begin by recognizing that one representation of the gamma distribution,
with parameters α and β, has a probability density function given by

π(x) =

(

βα

Γ(α)

)

xα−1e−βx .

The natural domain for this distribution is [0,+∞] so we will take as a proposal (candidate)
distribution, q a uniform distribution over a relatively large range say [0, 50]. Now in the
random walk Metropolis-Hastings sampler we will draw variates Y from our proposal distri-
bution q and the probability that we accept this proposed point Y happens with a probability
α via Equation 2. As in Exercise 11.2 a nice thing about using the Metropolis-Hastings al-
gorithm to draw samples from π(·) is that we don’t have to explicitly calculate the leading
coefficients for the distribution π. For example, in the case given here the probability of
accepting the given MH step α becomes

α = min

{

1,
Y α−1e−βY

Xα−1
t e−βXt

}

=

(

Y

Xt

)α−1

e−β(Y−Xt) .

If we take α = 5 and β = 1 we obtain a particularly interesting (and characteristic) looking
probability density function. Running the above script we obtain plots of the particular
chain samples and a density histogram as shown in Figure 51.

0 50 100 150 200 250 300 350 400 450 500
−25

−20

−15

−10

−5

0

5

iteration value
X

(i)

MC Chain as a function of different starting values

X(0) = −25
X(0) = −15
X(0) = −5

Figure 52: Data samples from the Metropolis-Hastings chain when simulating from a stan-
dard normal with three different starting locations −25, −15 and −5. Note that the number
of steps required to be generating samples from π(·) increases the further we are in the tail
of π(·) when we start.

Exercise 11.4 (generating standard normal random variates)

See the MATLAB script prob 11 4.m for this exercise. In this exercise we are to pick various
values of the chain starting value X0 and observe the affect this has on the length of the
burn-in period. In this problem we expect that by specifying an initial value for our Monte
Carlo (MC) chain that is significantly far from the mean of the distribution we are trying
to approximate it will take a longer time for the MC chain to obtain samples that are from
the desire distribution. Thus the experiment we will consider here is to start the chain with
several points different from the mean of zero, and observe qualitatively when our MC chain
seems to be generating samples from a standard normal. For starting points of −25, −15
and −5 (representing various distances from zero) we have a plot of the MC variates shown
in Figure 52. In that figure we see that the burn in parameter should increase depending on
how far the initial value of the chain X(0) is from zero. If we start further away from the
mean of the standard normal (say the point −25) it takes more iterations of the Metropolis-
Hastings chain to generate samples from our desired distribution. When we look at Figure 52
we see that qualitatively when X(0) = −25 it takes around 125 iterations before our chain
seems to be drawing samples from a standard normal. When X(0) = −15 this number is
around 75 while when X(0) = −5 it is 25.

Exercise 11.5 (using the Gibbs sampler)

In the specification of the Gibbs sampler we assume that we know the conditional distribu-
tions and desire to sample from the marginal distribution

f(x,1) =

∫

f(x,1, x,2)dx,2 .

The algorithm for the Gibbs sampler in the bivariate case is given by

0 500 1000 1500 2000 2500 3000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
gelman−rubin convergence diagnostic for the mean

GR mean
GR variance
GR skewness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

X
1

m
ar

gi
na

l P
D

F

estiamtes of the marginal distribution X
1

X1(0)=0.1*B
X1(0)=0.5*B
X1(0)=0.7*B

Figure 53: Left: A plot of the Gelman-Rubin convergence diagnostic for the mean, variance,
and the skewness statistics (using three chains) as a function of the chain index. Right: A
plot of the approximations to the marginal distribution of x,2. Three plots are shown one
for each chain (representing each initial condition).

• Generate at starting point X0 = (X0,1, X0,2) and set t = 0.

• Generate the first coordinate of Xt+1 i.e. Xt+1,1 from the conditional distribution

f(Xt+1,1|X,2 = xt,2) .

• Generate the second coordinate of Xt+1 i.e. Xt+1,2 from the conditional distribution

f(Xt+1,2|X,1 = xt+1,1) ,

where we are using the value of the sample drawn in the previous step.

• Set t = t + 1 and continue

Once we have a significant number of samples Xt by following the above procedure we can
compute an approximate marginal distribution of x,1 i.e. f̂(x,1) using

f̂(x,1) =
1

k −m

k
∑

i=m+1

f(x,1|Xi,2 = xi,2) , (3)

where f(x,1|x,2) is the known conditional distribution evaluated at the X,2 samples i =
m + 1, m + 2, · · · , k produced from the Gibbs sampler and m is the “burn-in” time. Now
from the problem specification the distribution of x,1, given x,2, is exponential with a mean
of 1/x,2 and the distribution of x,2, given x,1, is exponential with a mean of 1/x,1. To prevent
the exponential random variables generated from becoming too large we limit the output
of each exponential random draw to be less than B. By doing this we provide the desired
truncated exponential behavior.

For the MATLAB code to implement this problem see the MATLAB script prob 11 5.m.
When this code is run it produces two plots shown in Figure 53. In Figure 53 (left) we plot

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4

6

8

10

12

14
samples from all chains

iteration value

X
(i)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
univariate density histogram (all samples)

x value

pd
f v

al
ue

Figure 54: Left: The trajectories of each coordinate from of our sample. Right: The density
histogram corresponding the first coordinate x,1.

the Gelman-Rubin convergence diagnostic for the mean when we run three Monte-Carlo
(MC) chains with three different starting points. Since all data samples are confined to be
in the domain [0, B] we take the starting points to be spaced uniformly inside that range.
Specifically we take them to be 0.2B, 0.5B and 0.7B. We see that after about 400 iterations
the diagnostic begins to flatten towards 1.1 demonstrating convergence.

In Figure 53 (right) we plot the marginal distributions produced from of the chains (each
with a different initial start). We see that the three chains (after excluding a burn-in period)
produce quite similar marginal distributions.

Exercise 11.6 (higher dimensional Metropolis-Hasting sampling)

In this problem specification, the target distribution we are trying to draw samples from
is a tridimensional standard normal and we will use a proposal distribution q(Y |Xt) given
by a tridimensional normal centered on the previous chain iterate Xt but with a “larger”
covariance. That is

Y ∼ N (y;Xt, 9I) .

See the MATLAB script prob 11 6.m for this exercise. When this script is run it produces
several plots, two of which can be seen in Figure 54. In that figure, we plot the sample
trajectories for each component of our vector Xt and a density histogram of the first compo-
nent X1 of our generated sample. I choose to generate 5000 samples and used a burn-in of
500 samples. The density histogram in Figure 54 (right) is looks qualitatively like a normal
distribution.

500 1000 1500 2000 2500 3000 3500 4000

1

2

3

4

5

6

7

8

9

x
1
 samples from all chains after burnin

iteration value

X
(i)

500 1000 1500 2000 2500 3000 3500 4000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
1
 samples from all chains after burnin

iteration value

X
(i)

Figure 55: Left: The samples X1 generated from our MC chains when applying Gibb’s sam-
pling to this problem and using three independent exponential distribution with parameter
one for the proposal distributions. Right: The samples Xi when a poor proposal distribu-
tion is used. Note that we have a large number of iterations where the proposed point Y is
not selected. This lack of selection of the proposed point Y signifies that the proposal dis-
tribution is a poor one and many iterations with a corresponding large value for the burn-in
time will be required to draw samples correctly using it.

Exercise 11.7 (generating samples from a complicated density)

For this problem one could use Gibbs sampling by computing the required marginal dis-
tributions from the given joint distribution, f(x,1, x,2, x,3), using Bayes’ rule. For example
f(x,1|x,2, x,3) is computed as

f(x,1|x,2, x,3) =
f(x,1, x,2, x,3)

f(x,2, x,3)
,

with f(x,2, x,3) =
∫

f(x,1, x,2, x,3)dx,1. In these expressions the normalization constant C in
the definition of the joint f will cancel and we don’t need to explicitly know its numerical
value. Since this procedure would require computing several integrals it seems easier to take
an alternative approach by using the Metropolis-Hastings algorithm directly with a proposal
distribution given by three independent exponential random variables x,1, x,2, and x,3. Here
we have chosen an exponential random distribution for Yi based on the algebraic form of the
expression f(x,1, x,2, x,3). To be able to guarantee that our independent draws of y,i have a
large enough support, we take them to be exponential random variables with a parameter
1. That is, the probability density for Y,i will be taken to be

fY,i
(y) = e−y for i = 1, 2, 3 .

In this case our proposal distribution q(Y |Xt) is independent of Xt and this Monte Carlo
(MC) method is called the independence sampler [2]. With this expression for the distri-
bution of Y we see that the probability of accepting a given step in the chain α, is given

10002000300040005000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X
1

sample index
10002000300040005000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
2

sample index
10002000300040005000

0.1

0.2

0.3

0.4

0.5

0.6

X
3

sample index 0 0.5 1
0

100

200

300

400

500

600

700

800

0 0.5 1
0

100

200

300

400

500

600

700

800

0 0.5 1
0

100

200

300

400

500

600

700

Figure 56: Left: The samples Xi drawn when using the Gibbs algorithm on this problem.
Right: Frequency histograms of the samples drawn.

by

α = min

{

1,
π(Y)q(Xt|Y)

π(Xt)q(Y |Xt)

}

= min

{

1,
π(Y)q(Xt)

π(Xt)q(Y)

}

= min

{

1,
e−(y1+y2+y3+y1y2+y1y3+y2y3)e−(x1+x2+x3)

e−(x1+x2+x3+x1x2+x1x3+x2x3)e−(y1+y2+y3)

}

= min
{

1, e−(y1y2+y1y3+y2y3−x1x2−x1x3−x2x3)
}

.

When we do this, after enough iterates, we are generating samples from f(x,1, x,2, x,3), so
taking the product of the components of these samples for form the product X1X2X3 and
averaging, we can compute an estimate E[X1X2X3]. This is done in the MATLAB script
prob 11 7.m and we find that using a chain length of 5000 with a burn-in of 1000 that
E[X1X2X3] ≈ 0.08787. The samples drawn from this procedure are shown in Figure 55 (left).

To verify that we have done everything correctly we repeat the above exercise but with a
proposal distribution q that generates independent uniform variates over a significantly large
range say [0, L]. Doing this gives α = min{1, π(Y)

π(Xt)
} and we can compute E[X1X2X3] for

various values of L. If we take L = 5 (a relatively small value) we obtain E[X1X2X3] ≈
0.087799, in close agreement with the earlier calculation. If we take a uniform distribution
that is too “large” say L = 20 our MC iterations may not converge and we will obtain a very
poor approximation to our expectation of E[X1X2X3] ≈ 0.129317. The samples drawn from
this poor proposal distribution are shown in Figure 55 (right). The fact that over many steps
in the value from the proposal distribution for X1 is not accepted gives one the indication
that this proposal distribution is quite poor.

Exercise 11.8 (more Gibbs sampling)

In Gibbs sampling we generate elements from the joint distribution f(x,1, x,2, x,3) by sampling
repeatedly from the conditional distributions f(x,1|x,2, x,3), f(x,2|x,1, x,3), and f(x,3|x,1, x,2).
For this exercise we perform the following procedure

• Generate at starting point X0 = (X0,1, X0,2, X0,3) and set t = 0.

• Generate the first coordinate of Xt+1 i.e. Xt+1,1 from the conditional distribution

f(Xt+1,1|X,2 = xt,2, X,3 = xt,3) = (1− xt,2 − xt,3)Q ,

with Q ∼ B(5, 2).

• Generate the second coordinate of Xt+1 i.e. Xt+1,2 using the data point Xt+1,1, found
above, from the conditional distribution

f(Xt+1,2|X,1 = xt+1,1, X,3 = xt,3) = (1− xt+1,1 − xt,3)R ,

with R ∼ B(4, 2).

• Generate the third coordinate of Xt+1 i.e. Xt+1,3 using the data points Xt+1,1 and
Xt+1,2 from the conditional distribution

f(Xt+1,3|X,1 = xt+1,1, X,2 = xt+1,2) = (1− xt+1,1 − xt+1,2)S ,

with S ∼ B(3, 2).

• Set t = t + 1 and continue

Here the notation B(α, β) means a draw from the beta distribution with parameters α and
β. This exercise is done in the MATLAB script prob 11 8.m. When this script is run it
produces the plots shown in Figure 56.

Exercise 11.9 (simulating Bayesian learning)

For this problem we are told that P (θ|D) is known (up to a normalization constant) as

P (θ|D) ∝ 1

1 + θ2
exp

{

−n(θ − x̄)2

2

}

,

where z̄ is the average of n = 20 standard normals. To draw samples from P (θ|D) using a
Metropolis-Hasting type algorithm we need to select a proposal distribution P (Y |Xt). For
this problem we’ll select a uniform distribution with a range given by the minimum and
maximum of the 20 initial random draws. See the MATLAB script prob 11 9.m for this
exercise. When this script is run it produces several plots, two of which can be seen in
Figure 57. There we plot a density histogram of the samples generated and the Gelman-
Rubin convergence diagnostic. Taking the mean of all of our generated samples from P (θ|D)
we obtain an approximate mean of 0.2026 which is very close to the initial mean of the
samples of 0.2158.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5
univariate density histogram (all samples)

x value

pd
f v

al
ue

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
gelman−rubin convergence diagnostic for the mean

Figure 57: Left: A density histogram of the samples drawn from the Metropolis-Hasting
algorithm designed for this problem. Right: The Gelman-Rubin convergence diagnostic for
the mean (this is computed using five MH chains).

−2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

X(1)

X
(2

)

−2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

X(1)

X
(2

)

Figure 58: Left: The scatter plot generated when using an independence sampler with a
proposal distribution such that Y = Xt+Z and the increment random variable Z generated
from a bivariate uniform distribution. Right: The scatter plot generated when using an
independence sampler with a proposal distribution such that Y = Xt+Z and the increment
random variable Z generated from a bivariate normal distribution.

Exercise 11.11 (the random walk Metropolis-Hasting sampler)

If we have a proposal distribution q satisfies q(Y |X) = q(|X − Y |) then the Metropolis-
Hasting algorithm is called the Random-Walk Metropolis algorithm. For our random walk
to be given by Y = Xt+Z with Z a bivariate uniform we need q(Y |X) to be the probability
density function (PDF) of a bivariate uniform random variable centered on the point Xt.
Then the code for this exercise follows in much the same way as Example 11.3 from the book
but with the variate Y generated as (in MATLAB notation)

y(1) = unifrnd(X(i-1,1)-0.5*sig,X(i-1,1)+0.5*sig);

y(2) = unifrnd(X(i-1,2)-0.5*sig,X(i-1,2)+0.5*sig);

here sig is the desired width of the uniform distribution around Xt. In this case the proba-

bility of acceptance α, is given as α = min
{

1, π(Y)
π(Xt)

}

, with π(·) the desired bivariate normal

distribution with parameters

µ =

[

1
2

]

and Σ =

[

1 0.9
0.9 1

]

.

This exercise is implemented in the MATLAB script prob 11 11.m. When this script is run
it produces the plot shown in Figure 58 (left). This plot matches very well that presented
in Example 11.4 from the book.

Exercise 11.12 (more random walk Metropolis-Hasting sampling)

This exercise is implemented in the MATLAB script prob 11 12.m. When this script is run
it produces the plot shown in Figure 58 (right). Again this plot matches very well that
presented in Example 11.4 from the book.

Exercise 11.13 (generating samples from the log-normal distribution)

In simulating using the independence sampler we specify a proposal distribution such that
q(X|Y) = q(X), or one whos proposed samples, Y , do not depend on the previous state of
the chain.

α(Xt|Y) = min

{

1,
π(Y)q(Xt|Y)

π(Xt)q(Y |Xt)

}

= min

{

1,
π(Y)q(Xt)

π(Xt)q(Y)

}

.

For this problem we desire to sample from a log-normal distribution which has a density
function that is proportional to the following function

π(x) =
1

x
exp

{

−(ln(x))2

2

}

,

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

iteration value

X
(i)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

univariate density histogram

x value

pd
f v

al
ue

Figure 59: Left: Data samples from the Metropolis-Hastings chain when drawing samples
from a log-normal distribution. Right: The corresponding density histogram of the samples
from the chain. The PDF of a log-normal distribution with parameters (µ, σ) = (0, 1) is
plotted as an overlay in green.

To do this we will specify a proposal distribution q(X) given by a a Gamma distribution.
It is know that when using the independence sampler that care needs to be taken that the
proposal distribution have heavier tails than the desired density [1]. Guided by this we will
sample from a Gamma distribution with parameters α = 1 and β = 2. This procedure is
implemented in the MATLAB script prob 11 13.m. When this is run it produces the plots
shown in Figure 59.

265 270 275 280 285 290 295 300 305 310

755

760

765

770

775

780

785

790

795

800

265 270 275 280 285 290 295 300 305 310

755

760

765

770

775

780

785

790

795

800

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 60: Left: The estimated spatial event density function for the uganda dataset using a
bandwidth of h = 100. Right: The estimated spatial event density function for the uganda
dataset using a bandwidth of h = 500. These represent two “extremes” of the bias-variance
trade off.

Chapter 12: Spatial Statistics

Exercise Solutions

Exercise 12.1 (plotting labels on points)

See the MATLAB file prob 12 1.m for this exercise. When this is run it produces a labeled
dot plot for the okwhite dataset as requested.

Exercise 12.2 (estimating the first order intensity with various bandwidths)

See the MATLAB file prob 12 2.m for this exercise. When this script is run, the derived
two-dimensional estimate of the spatial intensity using a bandwidth of h = 100 is shown in
Figure 60 (left) while the same thing estimated for h = 500 is shown in Figure 60 (right).
Here again, we notice the standard bias-variance trade-off when estimating density functions
from samples. A kernel width that is “too small” (like h = 100) will produce a very sample
dependent result (low bias but high variance), while a kernel width that is “too large” (like
h = 500) will produce an estimate that is too smooth (high bias but low variance).

Exercise 12.3 (a dot map for the bodmin data)

See the MATLAB file prob 12 3.m for this exercise. When this script is run (now shown
here) we obtain a dot map for the bodmin dataset. From this plot it does appear that a

okwhite first order spatial intensity

120 125 130 135 140 145 150 155 160 165

65

70

75

80

85

90

95

100

105

110

0.05

0.1

0.15

0.2

0.25

0.3

okblack first order spatial intensity

115 120 125 130 135 140 145 150 155 160

115

120

125

130

135

140

145

150

155

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 61: Left: The estimated spatial event intensity using a kernel bandwidth of h = 100
for the okwhite dataset. Right: The estimated spatial event intensity using a kernel with
a bandwidth of h = 100 for the okblack dataset.

clustering process is at work.

Exercise 12.4 (using csgetregion)

See the MATLAB file prob 12 4.m for this exercise. When this is run the user can experiment
with the csgetregion code. This routine provides a very nice way of interactively selecting
a bounding region from a given two dimensional region.

Exercise 12.5 (estimating first-order and second-order properties)

This exercise is implemented in the MATLAB script prob 12 5.m. When that script is run,
we plot the estimated spatial intensity as an image using MATLAB’s imagesc command.
From the produced plots, shown in Figure 61, one can see that the location of thefts for white
offenders and black offenders appear at different locations. These first order properties are
estimated using the computational statistics toolbox function csintkern.

To estimate the second order properties of this data set we will compute an estimate of the
event-event nearest neighbor distribution function Ĝ(x). In 62 (left) we plot estimates of
the event-event distribution functions for both the okwhite and the okblack datasets. In
this figure we see that the okwhite curve seems to rises more slowly than the corresponding
curve for the okblack curve. This implies that the okblack theft events appear to be more
clustered than the corresponding events for okwhite dataset.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Event−Event Distances − w

G
ha

t

Estimated Event−Event Distribution Function

ok white thefts
ok black thefts

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

X(i)

Y
(i)

original points with selected thinned points

Figure 62: Left: The estimated event-event distribution functions for the Oklahoma City
data. Right: The original data points and the selected thinned points corresponding to the
desired inhibition process.

Exercise 12.6 (an inhibition process via thinning)

To generate an inhibition process using the thinning approach we first generate a large
number of data points according to a homogeneous Poisson process. These events are then
“thinned” by deleting all pairs of events that are closer than δ (the inhibition distance).
This problem can be found in the MATLAB script prob 12 6.m. When this script is run it
produces the plot shown in Figure 62 (right). There we see both the original Poisson data
points along with the points selected using the thinning process. All of the selected points
are at least δ = 0.01 from each other.

Exercise 12.7 (the point-event nearest neighbor distribution for the bodmin data)

The point-event nearest neighbor event distribution is denoted, F (x), and under the complete
spatial randomness (CSR) model it has an analytic expression given by

F (x) = P (X ≤ x) = 1− e−λπx2

, for x > 0 .

In this problem, we will assess if our data points are generated according to such a process,
using a Monte Carlo test. We begin by selecting a random initial sampling of points, P,
in our domain R to use in computing the point-event distances with. Using these, we can
compute an initial estimate of F called F̂Obs(x). We then generate B bootstrap estimates of
F̂CSR(x). To do this we generate B examples of n “events” at random and using the the initial
sampling of points found earlier, P, compute F̂b(x) (the estimated point-event distribution
under CSR events) for each. Using these B bootstrap replicas of our CSR process (at every
x) we compute the mean value of all our bootstrap replicas and the minimum and maximum
values. We will call the mean value F̂CSR(x). We then plot F̂Obs(x) against F̂CSR(x). If the
data follows a CSR process the resulting plot should be a straight line.

This problem is implemented in the MATLAB script prob 12 7.m. When this script is run

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fhat under CSR

F
ha

t O
bs

er
ve

d

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Event−Event Distances − w

C
(w

)

Figure 63: Left: A plot of F̂CSR(x) against F̂Obs(x). Right: The empirical event-event
cumulative distribution function transformed as specified by Equation 4.

the resulting plot is shown in Figure 63 (left). From this plot we see a rather straight line
(initially at least) which might indicate that the bodmin data might follow a CSR process.

Exercise 12.8 (another test for departure from the CSR model)

Equation 12.12 is

C(w) ≡
{

− log(1− Ĝ(w))

λ̂π

}1/2

. (4)

In this expression λ̂ is an estimate of the intensity of the spatial point process and Ĝ is
an estimate of the event-event nearest neighbor distance distribution function. The spatial
intensity can be estimated here as λ̂ = n

r
with n the number of events in a certain region of

area r. If a plot of w v.s. C(w) gives a straight line then we expect our process to be very
similar to a CSR point process. A significant departure from a straight line would provide
the opposite interpretation.

This exercise is done in the MATLAB script prob 12 8.m. When that script is run we obtain
the plot shown in Figure 63 (right). Since there are only thirty five points in the bodmin

dataset, we can’t expect our estimates to be incredibly statistically significant. In particular
we see that there are no event-event distances smaller than about 1.0 and all but one are
smaller than about 2.0. In between these two limits of w the data is rather linear. This
implies that the bodmin dataset maybe CSR and does not indicate evidence for a departure
from CSR. This is in agreement with the conclusion in Example 12.7, but in contradiction
to the conclusion in Example 12.5.

Exercise 12.9 (an alternative test-statistic for a CSR process)

Equation 12.22 is

P (F̂Obs(x) > U(x)) = P (F̂Obs(x) < L(x)) =
1

B + 1
,

but as discussed in the text, it maybe better to use the statistic

T = max
X

|F̂Obs(x)− F̂CSR(x)| .

Our hypothesis test for assessing the departure from a CSR model using this statistic would
then be

• H0: the data we observe is from a CSR process.

• H1: the data we observe is not from a CSR process.

To use the Monte Carlo tests from Chapter 6 we begin by selecting a random initial sampling
of points, P, in our domain R to use in computing the point-event distances with. From
these we can compute an initial estimate of F called F̂Obs(x). We then generate B bootstrap
samples of events under the CSR model. This entails generating new CSR located “events”.
We can then use the initial sampling of points, P, found earlier, to compute F̂b(x) the
estimated point-event distribution for every bootstrap replica. Using these B bootstrap
samples F̂b(x) we can compute B values of T using

Tb = max
X

|F̂Obs(x)− F̂b(x)| ,

to obtain an empirical sampling of the statistic T . One expects that if T > 0 we should reject
the hypothesis H0 in favor of H1. Here the expression T > 0 is taken to be an inequality in
statistical terms. Using our B bootstrap samples we can construct an approximation to the
distribution function for the random variable T . Our statistical test for this problem is then
to select a value for t∗ (depending on a desired probability of making a Type I error) and
reject H0 if T̄ > t∗, where T̄ is the mean value of all samples Tb samples.

Exercise 12.10 (clustering in a Poisson cluster process)

This exercise is done in the MATLAB script prob 12 10.m. In this script we first generate
data according to a Poisson cluster process. We then perform the processing outlined in
Exercise 12.9 discussed above. Based on that discussion, we would like to compute the
statistics of the variable T . To do this we draw B = 100 random “variables” F̂b(x). For each
each these samples, we compute the T statistic as explained above. When the above script
is run it produces a density estimate for T as shown in Figure 64 (left). The mean of this
distribution is located at 0.3757, while the mean minus three standard deviations is given
by 0.2872. Since this is significantly different than zero we conclude that our process is not
CSR and possibly represents a cluster process.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
0

2

4

6

8

10

12

14

T values

E
st

im
at

ed
 P

D
F

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G CSR

G
 O

bs
 (

ha
t)

Figure 64: Left: The empirical density function for the T statistic computed via Monte
Carlo simulation. Right: A plot of the observed empirical event-event CDF against one for
a CSR process. The 45 degree line is shown in red.

Exercise 12.11 (regularity in a inhibition process)

This exercise can be found in the MATLAB script prob 12 11.m. We begin by producing
data from an inhibition process and then compare the empirical event-event cumulative
distribution function with the known true one under the CSR model.

This exercise is based on the fact that we can assess departure from a CSR model by con-
sidering the empirical point-event F or event-event G distribution functions against known
representations of these distribution functions under the CSR model. If we estimate the
empirical nearest neighbor event-event distribution Ĝ and plot it against an estimate of the
theoretical distribution function under CSR we expect to observe a straight line if our process
is indeed CSR. To avoid all ambiguity, our procedure is then is to plot the theoretical event-
event distribution function under CSR as the dependent variable and the observed empirical
event-event CDF as the independent variable. We could of course do the same thing for
the point-event distribution function F . In each case if our data process is indeed CSR we
expect the independent variable to exactly predict the dependent variable and the resulting
plot should be close to a straight line. If the empirical observed point-event distribution
function, F̂ (x), lies above or below the 45 degree line different interpretations of the point
process results.

• If F̂ (x) lies below the 45 degree line we have evidence for a clustering process.

• If F̂ (x) lies above the 45 degree line we have evidence for a regularity process.

While for the empirical event-event distribution function Ĝ(x) the opposite interpretation
holds. That is

• If Ĝ(x) lies below the 45 degree line we have evidence for a regularity process.

• If Ĝ(x) lies above the 45 degree line we have evidence for a clustering process.

When the above MATLAB script is run it produces the plot shown in Figure 64 (right).
From this plot we see that the estimated Ĝ(x) lies below the 45 degree line which gives us
an indication that our process is a regularity process which is consistent with how the points
were generated in that points “too close” together were not allowed.

References

[1] W. R. Gilks. Markov Chain Monte Carlo In Practice. Chapman and Hall/CRC, 1999.

[2] T. L. Markov chains for exploring posterior distributions. The Annals of Statistics,
22:1701–1762, 1994.

