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Chapter 2 (Fundamentals of Unconstrained Optimiza-
tion)

Problem 2.1

For the Rosenbrock function
f(z) =100(zy — 27)* + (1 — 21)?,

we have that (recall that the gradient is a column vector)

[ of Ty — 22) (=221 —x1)(—
N e T

[ =400z (zg — 23) — 2(1 — 21)
200(xy — 27) '

Next for the Hessian we compute

9% f 2% f
v -| B
L Ox20z dx22
[ —400(zg — 2%) — 400z, (—22) — 2(—=1) —400x, ]
i —400z; 200
[ —400z5 + 120022 +2 —400x4 ]
—400z; 200 |-

By the first-order necessary conditions V f(xz*) = 0 for * to be a local minimizer. For this
to happen from the second equation in the system V f(z) = 0 we must have

T = LIZ‘% .
If we put this into the first equation in the system V f(z) = 0 we have
—2(1—1’1)20 SO Ilzl.

Using the first equation derived this means that zo = 12 = 1.

Next, evaluating the Hessian at this point gives

2w [ 802 —400
Vf(x)_{—zmo 200}

This matrix has two positive eigenvalues and is thus positive definite.

Problem 2.2

For this function I find
o 8 + 21‘1
Vite) = { 12 — day } '



X2
3
\

Figure 1: The requested contour plot.

To find the stationary points we set this equal to zero and solve for (z1,z3). I find 1 = —4
and xo = 3. From the above form of V f(x) we have
2 0
2rp
Vi = { 20 ] .

As this matrix has two eigenvalues of opposite signs every point is a saddle point.
In Figure 1 I present the contour plot for this function centered on the stationary point
(—4,3). Looking at the numbers on the contours we see that moving North or South the

value of f decreases while moving East or West the value of f increases. This is the definition
of a “saddle point”.

Problem 2.3

For fi(z) note that V f;(x) = a where a is a nx 1 vector. From this we have that V2f;(z) =0
where in this case 0 denotes the n x n matrix.

For fo(x) note that we can write it as

fg(!L’) = Z l’ia,ijl'j .
,J



From this and using the “Kronecker delta” we have

8f2(:)3)
axk = %: 5ikaijl’j + %: l’iaij(sj'k

= E akaj + E TiQik
7 [
E E T

= aijj + (a )]WZE'Z
7 [

= (Az), + (AT2)y,

where the notation (+); means the kth component of the vector inside the parenthesis. This

means that in matrix form we can write

Vfy(z) = (A+ ATz,

We now seek to evaluate V2 fy(z). To compute the ijth element of that matrix we compute

0

= % (; QLT + ; aijk>
= Z @0 + Z 0ikQrj
k k

= aji + aij .

(V2 fa(x))ss

((Az); + (AT2);)

Thus in matrix form we have

Vify(z) = A+ AT,

Problem 2.4

For the function f(z) = cos (1) we have

1 1 1 1
f/(l') = —sin <;) <—§> = ﬁ sin (;)
1 1 1 1 1
" .
ro = (o (2) () -2 ()= (3)
1 1 2 . 1
= Y COS ; — E S1n ; .
x
For x # 0 a second-order Taylor series expansion is thus given by

1 1 1 1 1
cos <$ —|—p> = cos <5> + ) sin <5> p+ §f”(:n + tp)p?

1 + 1 . 1 1 1 1 + 2 .
=cos | — —sin(—|p— = | ———cos sin
x x? )P 73 (x + tp)* x+tp (x + tp)3

<x+1tp>>’



for some ¢ € (0,1).

Next, for the function f(z) = cos(x) we have

f'(x) = —sin(z)
f'(x) = — cos(x)
" (z) = sin(z) .

Using these a third order Taylor series expansion gives
: 1 5 1 . 3
cos(x + p) = cos(z) — sin(x)p — 3 cos(z)p” + 6 sin(z + tp)p°,
for some t € (0,1). When x = 1 this becomes

1 1
cos(1 + p) = cos(1) —sin(1)p — 5 cos(1)p® + 6 sin(1 + tp)p° .

Problem 2.5

Our function f(x) is f(x) = ||z||* = 22 + 23. Then as cos?(k) + sin®(k) = 1 we see that

1
Then as
1 1
1+ W <1+ 2_k )
we see that f(xpy1) < f(xg).
Now if we are given a point on the unit circle ||z|| = 1 then using this points representation

as a polar complex number we have z = ¢% for some . Note that the points in our sequence
xk can be written as a polar complex number as

1 ik

From the periodicity of the trigonometric function we have e?* = e+ where §; is given as in
the book. Then using the statement in the book (that every value 6 is a limit point of the
sequence &) we have the desired result.

k

Problem 2.6

The definition of an isolated local minimizer is given in the book. The fact that z* is isolated
means that it is the only minimizer in a neighborhood A so that f(x) > f(z*) for all points
x # x*. This later statement is the fact that x* is a strict local minimizer.



Problem 2.7

Let G = {z;} be the set of global minimums of our function f(x). Then this means that

fw:) < fx),
for all z and each x; € G. In that relationship take = x; € G for j # ¢ and conclude that
f(x;) < f(x;). We could do the same thing with ¢ and j switched to show that f(z;) < f(z;).
This means that f(x;) = f(z;) and thus all global minimums must have the same function
value. Lets call this value m so that f(z;) = m for all x; € G. Next consider a new point z
from z; and z; for i # j given by
z2=Ar;+ (1 =Nz, .
As f is convex we have that
f(2) = fQzi+ (1= Nay) < Af(2i) + (1 = M) f(z;) = Am+ (1= Nm =m.

As z cannot have f(z) smaller than the global minimum m (otherwise m would not be the
true global minimum) we see that z must be equal to m and z is the location of another
global minimum thus z € G. This shows that the set G' convex set.

Problem 2.8

To be a decent direction p at x means that p? V f(z) < 0. For the given function f we have
B 2(xy + 22)
vi= [ 2ay +23)(2ma) |

At the point 27 = (1,0) we see that Vf = [ 2

0 } and that p’ Vf = —1(2) + 1(0) = -2 < 0.

Thus p is a decent direction.

The minimizers for the books Eq. 2.9 are to find

mingso f (@ + apr) .

For this problem

]
T+ ap= o )

so that f(x + ap) = (1 — a + a?)%. From this I find

d,

é =2(1—a+a?)(-1+2a).
To find the extremes of this function we need to have the derivative of f with respect to «
equal to zero which can happen if

o=,

2
or if the quadratic factor in its representation is zero. The quadratic factor being zero gives
complex roots for o and cannot be zero for o > 0.

We can show that f” (1) > 0 showing that a = 1 is a minimum of f.



Problem 2.9

In the notation of this problem f(z) means to view the function as a function of the variable
z and the notation f(x) means to view our function as a function of the variable z. Of course
f(2) = f(x). To start this problem we will first evaluate

of
8zi ’

Using the chain rule this can be written (and evaluated using the Kronecker delta) as

Z G G (1)

Jj=1 Jj=1

where the notation in the last term of the last line means the ¢th component of the vector
STV f. As a vector equation we have shown

Vi=5TVf.
We now seek to evaluate V2f(z). From Equation 1 above we have
PP~ of
02;0z1 JZI(S Viig— 0z, (8%)

i " *f Ox
_Z (5 >”Zax,axjazk
7=1 =1

P ICEDIE S DIERER
= " — 8x18xj 0z, 4 1

= ;(ST)U IZ a.ﬁl}l&l‘] (Z Slq qk)

Here (V2 S);x is the jkth element of the matrix product V2f S. Note that the above sum
is the ikth element of the matrix product ST V2f S and we have the identity we were trying
to show.



Problem 2.10

In terms of looking for the minimum of f as a function of x following the prescription for
search directions in line search methods we will iterate

Sk = Tpe1 — Th
Yk = Vi — Vi,

with By from the books Eq. 2.17 or Eq. 2.18 depending on the method used and starting
from an initial value x.

In terms of looking for the minimum of f(z) if we start from a point z, and enforce that
xr = Sz + s for all £ > 0 then the above two equations in terms of z, become

S — SZk_H — Szk = S(Zk—i—l — Zk) = Sgk
Yo =SV firs — STV = STV i — V) = S .

Here I have used the results from the previous problem and defined the vector §; and .

We now ask how does the update equation for By look in terms of these variables §;, and
Ui For Eq. 2.17 we have

(yx — Brsi)(yx — Brsi)”

Byi1 =B 2
wH e (Yx — Brsi)T sk @)
becoming
B — B, 4 (S_Tﬂk — BkSék)(S‘ngk — BkSék)T
B (S=Tgy, — ByS3;)T S5, ’
or

S~ (gr — ST BrS5) (Gr — ST BpS3)"S™!
(Ux — ST BRS5,)T 5y, ’
or finally by pre-multiplying by S” and post-multiplying by S we get
(x — ST ByS51) (g — S" BpS3i)"
(U — ST BS5:) T3y, ’

By = By +

STBy1S = STBLS +

Note that this is Equation 2 in terms of the variable z when we replace Bj, — ST B}S.

We now ask how does the update equation for By look in terms of these variables s, and

yi. For Eq. 2.18 we have
Bksks;ka yky]z

Bk+1 - Bk - (3)

sT By.sg ylsy’

which becomes in this case

BkSékE{STBk S‘TyjkngS‘l
§gSTBkS§k ngS—lSék ’

Biy1= By, —

or
(S B, S)33L (S"BS)  uil

S—l
51 (STBS) 31 Ui S '

By =By — ST




Again if we pre-multiplying by ST and post-multiplying by S we get
(ST B.S) 3151 (ST BS) n s

Note that this is Equation 3 in terms of the variable z when we replace B, — ST B}S.

STBi1S = STB,.S —

Problem 2.11

I was not fully sure I understood what this problem was asking but it is easy to imagine a
situation where f(z) is poorly scaled and V2f is ill-conditioned. For example for a scaling
of Az in the = direction and of Ay in the y direction we will normally have
02 f 1
o2~ Ax?
0 f 1
oy Ay?
0 f 1
oxdy ~ AzAy’

If we construct f such that Ay > Az and to make our life simpler take % = 0 then we
will have

1
Vif(") = { T ] :
Ay?
If we have Ay = 10°PAx (due to the poor scaling) this matrix is

2 *\ 1 1 0
Vf(z)_A—lQ 0 10—2p :

As the condition number of a matrix is the ratio of the maximum eigenvalue to the minimium
eigenvalue from the above we see that
1

RT3 F (@) = 1o = 107,

which can be quite large. A specific example of a function f that has the above proper-
ties is f(x1,22) = 10927 + 22 which following the arguments above can be shown to have
k(V2f(z*)) = 10°.

= 10%

Problem 2.12

To be Q-linearly convergent we must have

_ *
||xk+l [L’|| <7”, (4)
||z — 2|

for 0 < r < 1 and all £ sufficiently large. For this sequence the limit would be z* = 0 and

1
lownll =3k 1

IEN z k+1 1+1

for all k. Thus z; cannot be Q-linearly convergent.

> 1,



Problem 2.13

For this sequence the limit would be z* = 1 and

log — 1] 052 0.5

||z — 1|2 (0.52*)2  0.52*" -

for any M > 1 and for all k. Thus xj is Q-quadratically convergent to one.

Problem 2.14

For this sequence the limit would be z* = 0 and we need to consider

|51 _ (1)t 1 <1
[|2x]| = k+172°

1
!

for all £ > 1. This means that x; is Q-linearly convergent to zero.

Next consider

1

lowall _ mom _ (RD* K
el ()2 +D! k+1 ’

as k — oco. Thus this sequence does not converge Q-quadratically to zero.

Problem 2.15

For this sequence, the limit would be 2* = 0 and we need to consider

lzsal]
. 5
Tl (5)

Now for k even k 4 1 is odd and Equation 5 becomes

ekl 11
Ted] E -2 ©)

for kK > 2. For k odd, kK + 1 is even so Equation 5 becomes

||:L'k+1|| - 1 (1)2k+1 - 2 <1>2k+1
el axl] \4 ||zk—a]] \ 4
k41 k+1_ok—1
k() 1
o =)

_ G)M‘” _ (i) S (7)



as k — oo. We can prove this last fact (the limit) using L Hospital’s rule. Now if the limit
of the above sequence is zero it must eventually be smaller than any value specified if we
take k large enough. If we specify the value % then we have shown that

lzeal] 1

ol 2

for k sufficiently large. This is the condition needed to show Q-linear convergence.

Note that when we combine Equations 6 and 7 we get that

o Bl o
k—o0 ||$kH

which is the condition needed for Q-superlinear convergence.

Now to determine if z;, is Q-quadratically convergent we need to consider the ratio

If kis even k + 1 is odd and the ratio is given by

11
kl|zg| k(L)

s 7 00,

as k — oo and xp cannot be Q-quadratically convergent (since this limit can never be
bounded). As another way to see this consider the case where k is odd then k — 1 and k+ 1
are even so we have

loeetl]  K[loel] B (3)

2 2 _ 2: 2k :]{;2(1)_>OO’
||| |zk—1]| [(i)% 1} (4) 4

2k+1

as k — oo which again shows that x; cannot be Q-quadratically convergent.

Next if x; is to be R-quadratically convergent we need to find a positive sequence v, such
that
|z — 2| < w,

for all k£ where v} is Q-quadratically convergent.

To find a sequence v note that if £ is odd (then k£ — 1 is even) and we have

_ [zl _ (1
llzell = == <llzeall = | §

which is true as 2872 < 281 for k > 2. If k is even then

()< ()

2k71 2k72

(1)

2k72



This motivates taking the definition of v} as

1 2k72
Vi = Z )

for k > 2. We now ask if v, converges Q-quadratically to zero? To answer this we need to

study
el ")
e @
This is certainly bounded. Because of this we have that v} is Q-quadratically convergent to
zero and that xj is thus R-quadratically convergent to zero.

2k71

2k—1 =



Chapter 5 (Conjugate Gradient Methods)

Notes on the Text
Notes on the linear conjugate gradient method

The objective function we seek to minimize is given by

1
() = ExTAx —b'x. (8)
This will be minimized by taking a step from the current best guess at the minimum, xy, in

the conjugate directions, px, to get a new best guess as

Tkl = Tk + QP - 9)

Note that to find the value of « to use in the step given in Equation 9, we can select the
value of o that minimizes ¢(«) = ¢(x + apy). To find this value we take the derivative of
this expression with respect to «, set the resulting expression equal to zero, and solve for a.
Since ¢(x) + apg) can be written as

1
5(% + ap) T Az + apy) — b (zx + apy)

1 1
= §ngxk + ozngpk + §oz2pgApk — bz, — ablpy,

¢(a)

1
= o(x) + iazpprk + a(pF Ay, — pro)”

1
= ¢(ap) + 5042295/1]% + arp -

Setting the derivative of this expression equal to zero gives
Pk Aprec+ripr = 0.
From which when we solve for a we get the following for the conjugate direction stepsize:
T;?pk
p;;FApk 7

(10)

this is equation 5.6 in the book. Notationally we can add a subscript k£ to the variable o as
in a4, to denote that this is the step size taking in moving from xj to gy ;.

Since the residual r is defined as r = Az — b and to get the the k + 1st minimization estimate
Ty from x, we use Equation 9. If we premultiply this expression by A and subtract b from
both sides we get

Az — b= Az — b+ apApy

or in terms of the residuals we get the residual update equation:
Tkl = Tk + i Apy, (11)
which is the books equation 5.9.



The initial induction step in the expanding subspace minimization theorem

I found it a bit hard to verify the truth of the initial inductive statement used in the proof
of the expanding subspace minimization theorem presented in the book. In that proof the
initial step requires that one verify rZpy = 0. This can be shown as follows. The first residual
ry is given by

r = V(b(xo + Oé(]po) = A(LL’O + Oéop(]) —b.

Thus the inner product of r; with py gives
71 po = (Azo + agApo — b)" po = x§ Apo + copj Apo — b po -

T
To Po

— the above expression becomes
Py Ap
0 0

If we put in the value of ag = —

oPo 1 T
———pt Apy — b py
Pt Apo””
= (x5 A—=b")po — 1{po

= 1gp—13p0 =0,

= %TAPO -

as we were to show.

Notes on the basic properties of the conjugate gradient method

We want to pick a value for 55 such that the new expression for p; given by

Pk = =Tk + BrPr—1,

to be A conjugate to the old py_;. To enforce this conjugacy, multiply this expression by
pi | A on the left of the expression above where we get

pg—lApk = _pg_1Ark + 5kpg_1Apk—1 .
If we take the left-hand-side of this expression equal to zero and solve for 55, we get that

B = Pic ATy

— Dot lTe (12)
p£_1Apk—1

In this case the new value of p, will be A conjugate to the old value py_1.

Notes on the preliminary version of the conjugate gradient method

The stepsize in the conjugate direction is given by Equation 10. If we use the conjugate
update equation
Pe = —Tk + Be1Pr-1, (13)



and the residual prior-conjugate orthogonality condition given by
rip;j =0 for 0<j<k, (14)
in Equation 13 we get when we multiply by r] on the left we have
Tlicppk = _Tgrk + 5k—17”£pk—1 = —T;{Tk,
Thus using this fact in Equation 10 we have an alternative expression for ay given by

’/’g’/’k
Pprk '

ap — (15)

In the preliminary conjugate gradient algorithm the stepsize, 11, in the conjugate direction
is given by Equation 12. Using the residual update equation rp,1 = 7, + apApg, to replace
Apy. in the expression for Sy, 1 to get

alk(rgﬂ(rk—irl — 7)) - 7“;{_,_17%4-1

ipg(rkﬂ —r%)  PE (k1 —TR)

Bk—l—l =

since rgﬂrk = 0, by residual-residual orthogonality

rir;=0 for i=0,1,....,k—1. (16)
Using the conjugate update equation py = —ry + Brr1Pk—1 in the denominator above, we get

a new denominator given by
(=7 + Bepe—1)" (rrsr — i) -
Next using residual prior-conjugate orthogonality Equation 14 or
rTp;=0 for i=0,1,....k—1,

we have .
Tkt1Tk+1
ﬁk—i-l = T ) (17)
T Tk

as we wanted to show.

Notes on the rate of convergence of the conjugate gradient method

To study the convergence of the conjugate gradient method we first argue that the mini-
mization problem we originally posed: that of minimizing ¢(z) = %:ETAI — bz over z is
equivalent to the problem of minimizing a norm squared expression, namely ||z — z*||%. If
we take the minimum of ¢(x) to be denoted as z* such that z* solves Ax = b we then have
the minimum of ¢(x) at this point is given by

1 1 1
p(x*) = §$*TASL’* — bl = §x*Tb — b = —ZpTa* .



To show that these two minimization problems are equivalent consider the expression %||x —
z*||%. We have

1 * 1 * *
o=y = a—2") A o)
1 1

= il'TAl’—l'TAZL'*—I—ﬁl'*TAI*.

Since Az* = b we have that the above becomes

%Hx _ | = %ITAx — o Thy %x*TA:c*
= o(z)+ %x*TA:z*
= ¢x) — %x*TAx* + 2T Az
= ¢(z) — %x*TA:E* + 2T
= ¢(z) —o(z"),

verifying the books equation 5.27.

To study convergence of the conjugate gradient method we will decompose the difference
between our initial guess at the solution denoted as xy and the true solution denoted by x*
or g — z* in terms of the eigenvectors v; of A as xg — z* = Z?:l &v;. When we do this we
have that the difference between the k 4 1th iteration and z* is given by

n

i=1

Then in terms of the A norm this distance is given by

n T n
[ar = 2*(4 = <Z<1+Az~P,:<Ai>&w) A(Z(H&P;(Ai)&w)

i=1 i=1

= (i(l + )\iP;:(Ai)fz'UiT> A (i(l + Aiﬂ?@i)fﬂi)

i=1 i=1

= D ) G+ NPEO))G L+ NP (A)] Av;.

i=1 j=1

As v; are orthonormal eigenvectors of A we have Av; = \;v; and v}v; = 0 so that the above
becomes .

> EM+ NP N

i=1

as claimed by the book’s equation 5.31.



Notes on the Polak-Ribiere Method

In this subsection of these notes we derive an alternative expression for [y, that is used
in the conjugate-direction update Equation 13 and that is valid for nonlinear optimization
problems. Since our state update equation is given by xpi1 = xx + axpk, the gradient of
f(x) at the new point xy,; can be computed to second order using Taylor’s theorem as

V fes1 = Vi + axGrpr

where G}, is the average Hessian over the line segment [z, Tk1+1]. To be sure that the
new conjugate search direction pp.; derived from the standard conjugate direction update
equation:

Prt1 = =V frp1 + Brg1Dr s

is conjugate with respect to the average Hessian G means that
PrGrpr =0,
or using the expression for p;,; this becomes
—V L Grpr + Brapi Grpr = 0.
So this later expression requires that
Brs1 = Vf§+1ékpk ‘
Pk Gk

V1=V
——" 50 Br+1 above becomes

oy = V(i = V)
T (Y e = V) Tk

or the Hestenes-Stiefel formula and the books equation 5.45.

Recognizing that Gyp, =

(18)

Problem Solutions
Problem 5.1 (the conjugate gradient algorithm on Hilbert matrices)

See the MATLAB code prob_1.m where we call the MATLAB routine cgsolve.m to solve
for the solution to Az = b when A is the n x n Hilbert matrix (generated in MATLAB using
the built-in function hilb.m) and b is a vector of all ones and starting with an initial guess
at the minimum of zy5 = 0. We do this for the values of n suggested in the text and then
plot the number of CG iterations needed to drive the “residual” to 107¢. The result of this
calculation is presented in Figure 2. The definition of convergence here is taken to be when

|| Az — b]]
|10]]

We see that the number of iterations grows relatively quickly with the dimension of the
matrix A.

<1076,
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n [ N 3] =2
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number of iterations required to reduced the error to 1.e—6

o
T
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size of Hilbert matrix (n)

Figure 2: The number of iterations needed for convergence of the CG algorithm when applied
to the (classically ill-conditioned) Hilbert matrix.

Problem 5.2 (if p; are conjugate w.r.t. A then p; are linearly independent)

The books equation 5.4 is the statement that p/ Ap; = 0 for all i # j. To show that the
vectors p; are linearly independent we begin by assuming that they are not and show that
this leads to a contradiction. That p; are not linearly independent means that we can find
constants «; (not all zero) such that

If we premultiply the above summation by the matrix A we get

Next premultiply the above by p]T to get
a;pl Ap; =0,

since pl Ap; = 0 for all i # j. Since A is positive definite the term p] Ap; > 0 we can divide
by it and conclude that «; = 0. Since the above is true for each value of j we have that
each value of «; is zero. This is a contradiction to the assumption that p; are not linearly
independent thus they must be linearly independent.

Problem 5.3 (verification of the conjugate direction stepsize o)

See the discussion around Equation 10 in these notes where the requested expression is
derived.



Problem 5.4 (strongly convex when we step along the conjugate directions py)

I think this problem is supposed to state that f(x) is strongly convex (as which means that
f(z) has a functional form given by

1
f(z) = §xTAx — bz,
In such a case when we take x of the form = = x¢ 4+ ogpo + o1p1 + - - + Ok_1pr—1, We can
write f as a strongly convex function in the variables o = (01,09, ...,011)".

Problem 5.5 (the conjugate directions p; span the Krylov subspace)

We want to show that 5.16 and 5.17 hold for £ = 1. The books equation 5.16 is

span{rg, 1} = span{rg, Arg} .

To show this equivalence we need to show that r; € span{rg, Arg}. Now r; can be written
as

ri1 = Axy —0b with z; given by
= A(xo+ agpy) —b or
= Axg—b+ agApy orsince rg = Axg —b
= 719+ apApy or since pg = —1g
= 19— aAry,
showing that r; € span{rq, Aro}, and thus span{rg, 1} C span{rg, Arg}. Showing the other

direction, that is span{rg, Aro} C span{rg,r;} is the same as noting that we can perform
the manipulations above in the other direction.

The books equation 5.17 when k = 1 is span{pg, p1} = span{ro, Arg}, since py = —ry to
show span{pg, p1} C span{ry, Ar¢} we need to show that p; € span{rq, Arg}. Since

p1 = —ri+ Bipo
= —(Az; —b) — Biro
= —(A(xo + agpo) — b) — Biro)
= —1o+ agAro — Sirg.

Again showing the other direction is the same as noting that we can perform the manipula-
tions above in the other direction.

Problem 5.6 (an alternative form for the conjugate direction stepsize ;1)

See the discussion around Equation 17 of these notes where the requested expression is
derived.



Problem 5.7 (the eigensystem of a polynomial expression of a matrix)

Given the eigenvalues \; and eigenvectors v; of a matrix A then any polynomial expression
of A say P(A) has the same eigenvectors with corresponding eigenvalues P();) as can be
seen by simply evaluating P(A)v;. This problem is a special case of that result.

Problem 5.9 (deriving the preconditioned CG algorithm)

For this problem we are to derive the preconditioned CG algorithm from the normal CG
algorithm. This means that we transform the original problem, that of seeing a solution for
the minimum ¢(z) of

o(z) = %xTAx — bz,

by transforming the original x variable into a “hat” variable = C'z. In this new space the z
minimization problem above is equivalent to seeking the minimum solution to the following

~

1
o&) = 3
= %:&T(C‘TAC‘I)i — ()"

(C'2)TA(CT'7) — b (C )

This later problem we will solve with the CG method where in the standard CG algorithm
we take a matrix A and the vector b given by

= cTac™

b = CTb.

Y

Now given 7, as an initial guess at the minimum of the “hat” problem (note that specifying
this is equivalent to specifying a initial guess xo for the minimum of ¢(z)) and following the
standard CG algorithm but using the hated variables, we start to derive the preconditioned
CG by setting

fo = CTAC 4o —CTh
Po = —To
E = 0.

With these initial variables set, we then loop while 7, # 0 and perform the following steps
(following algorithm 5.2)

. FLTY,
o =
~T A~ 1A
PTCTAC Ty
Tpy1 = Tk + QpDi
A ~ ~ -T 1A
Tre1 = T+ a0 AC™ Py
B Tk4+1Tk+1
k+1 — T paA
Tgrk
Drt1 = —Tre1 + Brt1Dk

k= k+1.



After performing these iterations our output will be Z, or the minimum of the quadratic
1
o(2) = 5:@T(C—TAC—1):@ —(C™Th)z,

but we really want to output 2., = C 2. To derive an expression that works on z lets
write the above algorithm in terms of the unhatted variables x and r. Given an initial guess
xo at the minimum of ¢(z) then 2y = Cxy is the initial guess at the minimum of ¢(Z). Note
that
fo=C"TAC 4o —C b,
or
CT’f’QZAl’O—bzro,

is the residual of the original problem. Thus it looks like the residuals transform between
hatted an unhatted variables as

’fk = C_TTk . (19)
Next note that

po=—to=—C"Tro=C"py,

it looks like the conjugate directions transform between hatted an unhatted variables in the
same way, namely

Pe=C"p. (20)
Using these two simplifications our preconditioned conjugate gradient algorithm becomes in
terms of the unhatted variables (recall the unknown variable transforms as &, = Cxy)

T’gC’_lC'_T’I“]c

A

T IO CTACIC Ty,
Tg(CTC)_lT’k (21)
= IO TACTC
T = ok + @0 Py
zp + 6, C 1 C Tpy = xp + éék(CTC>_1pk (22)
Ther = TR+ G ACTIC Ty,
= re+ arACTO) 'py (23)
B = O e
rIC=1C-Try,
_ Tgﬂ(CTC)_ITkH (24)
T%(CTC)_I’F]C
Pr+1 = —Tgy1 + Bk+1pk (25)
k = k+1.

In the above expressions on each line, we first made the hat to unhat substitution and then
on the subsequent line simplified the resulting expression. Next to simplify these expressions
further we introduce two new variables. The first variable, y;, is defined by

Y = (CTC)_ITIM



or the solution y; to the linear system My, = rj,, where M = CTC. The second variable z;,
is defined similarly as
2k = (CTC)_lpk>
or the solution to the linear system Mz, = p,. To use these variables, as a first step, in
Equation 25 above we multiply by (CTC)~! on both sides and use the definitions of z;, and
Ui to get A
Zkt1 = —Ykt+1 + Bry12k -

our algorithm then becomes

Given 1z, our initial guess at the minimum of ¢(z) form ry = Azy — b and solve My, = rg
for yo. Next compute zy given by

20=M"py =M (—ry) = —M " (Myy) = —yp. (26)
Next we set & = 0 and iterate the following while r; #£ 0
G = Z?yk
2 Azy
The1 = Tp+ Qpap
Tee1 = Tr+ QrAz
solve  Myp1 = rpq for yrpp
5 T£+1yk+1
Br1 = —F5—
Tr Yk
2+l = —Yk+1 T+ Bk+lzk
k= k+1.

Note that this is the same algorithm presented in the book but the book denotes the variable
zr by the notation pp and I think that there is an error in the book’s initialization of this
routine in that the book states py = —rg while I think this expression should be py = —yq
(in their notation) see Equation 26.

Problem 5.10 (deriving the modified residual conjugacy condition)

In the transformed “hat” problem to minimize the quadratic QAS(i) given by
~ 1 ~
() = 5:7;T(C—TAO—1)5; —(C7Th)Ts,

see Problem 5.9 on page 20 above, if we define

= cTAC™!
= O Tp.

[« :B>

So that the transformed hat problem has a residual 7 given by
Po= Ai—b
= CTAC'Cx—C7 b
= C Az —b)=C"Tr.



Thus the orthogonality property of successive residuals i.e. the books equation 5.15 for the
hat problem which is given by

fir; =0 for i=0,1,2,---,k—1. (27)
becomes in terms of the original variables of the problem
rC C Ty =i M r; =0,

since M = CTC or the modified residual conjugacy condition and is what we were to show.

Problem 5.11 (the expressions for g*® and "5 reduce to 3'R)

Recall that three expressions suggested for 5 (the conjugate direction stepsize) are

PR _ Vi (Vi — Vi)

— 2
k+1 Vfgvfk ’ ( 8)
for the Polak-Ribiere formula,
HS _ vfg+l(vfk+1 - ka) (29)
B (Ve — V) Tor
for the Hestenes-Stiefel and .
FR __ V fix1V i (30)

VRV

for the Fletcher-Reeves expression.

To show that the Polak-Ribere CG stepsize B™R reduces to the Fletcher Reeves CG stepsize
BYRunder the conditions given in this problem, from the above formulas it is sufficient to
show that

Vi Vi =0,

since they agree on the other terms. Now when f(z) is a quadratic function f(z) = %ITAZL' —
bTz + ¢ for some matrix A, vector b, and scalar ¢ and xj,, is chosen to be the exact line
search minimum then V fyyq = 7. Thus VL,V fi = rl 7 = 0, by residual-residual
orthogonality Equation 16 (the books equation 5.15).

Now to show that Hestenes-Stiefel CG stepsize B'"S reduces to the Fletcher Reeves CG
stepsize S¥R, under the conditions given in this problem, from the above formulas it is
sufficient to show that (V fry1 — Vfi) pr = VIV fi. Using the results above we have

(V fr1 — ka)Tpk = (Fps1 — T‘k)T(—Tk + Brpr-1)
= =1k BTt + TR — Beri pr—1
= rire =V V.

Where in the above we have used residual prior-conjugate orthogonality given by Equation 14
to show r%pk_l =0.



