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Chapter 2 (Fundamentals of Unconstrained Optimiza-

tion)

Problem 2.1

For the Rosenbrock function

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2 ,

we have that (recall that the gradient is a column vector)

∇f(x) =

[

∂f

∂x1
∂f

∂x2

]

=

[

200(x2 − x2
1)(−2x1) + 2(1− x1)(−1)
200(x2 − x2

1)

]

=

[

−400x1(x2 − x2
1)− 2(1− x1)

200(x2 − x2
1)

]

.

Next for the Hessian we compute

∇2f(x) =

[

∂2f

∂x1
2

∂2f

∂x1∂x2

∂2f

∂x2∂x1

∂2f

∂x2
2

]

=

[

−400(x2 − x2
1)− 400x1(−2x1)− 2(−1) −400x1

−400x1 200

]

=

[

−400x2 + 1200x2
1 + 2 −400x1

−400x1 200

]

.

By the first-order necessary conditions ∇f(x∗) = 0 for x∗ to be a local minimizer. For this
to happen from the second equation in the system ∇f(x) = 0 we must have

x2 = x2
1 .

If we put this into the first equation in the system ∇f(x) = 0 we have

−2(1− x1) = 0 so x1 = 1 .

Using the first equation derived this means that x2 = 12 = 1.

Next, evaluating the Hessian at this point gives

∇2f(x∗) =

[

802 −400
−400 200

]

.

This matrix has two positive eigenvalues and is thus positive definite.

Problem 2.2

For this function I find

∇f(x) =

[

8 + 2x1

12− 4x2

]

.
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Figure 1: The requested contour plot.

To find the stationary points we set this equal to zero and solve for (x1, x2). I find x1 = −4
and x2 = 3. From the above form of ∇f(x) we have

∇2f =

[

2 0
0 −4

]

.

As this matrix has two eigenvalues of opposite signs every point is a saddle point.

In Figure 1 I present the contour plot for this function centered on the stationary point
(−4, 3). Looking at the numbers on the contours we see that moving North or South the
value of f decreases while moving East or West the value of f increases. This is the definition
of a “saddle point”.

Problem 2.3

For f1(x) note that∇f1(x) = a where a is a n×1 vector. From this we have that ∇2f1(x) = 0
where in this case 0 denotes the n× n matrix.

For f2(x) note that we can write it as

f2(x) =
∑

i,j

xiaijxj .



From this and using the “Kronecker delta” we have

∂f2(x)

∂xk

=
∑

i,j

δikaijxj +
∑

i,j

xiaijδjk

=
∑

j

akjxj +
∑

i

xiaik

=
∑

j

akjxj +
∑

i

(aT )kixi

= (Ax)k + (ATx)k ,

where the notation (·)k means the kth component of the vector inside the parenthesis. This
means that in matrix form we can write

∇f2(x) = (A + AT )x .

We now seek to evaluate ∇2f2(x). To compute the ijth element of that matrix we compute

(∇2f2(x))ij =
∂

∂xi

(

(Ax)j + (ATx)j
)

=
∂

∂xi

(

∑

k

ajkxk +
∑

k

akjxk

)

=
∑

k

ajkδki +
∑

k

δikakj

= aji + aij .

Thus in matrix form we have
∇2f2(x) = A+ AT .

Problem 2.4

For the function f(x) = cos
(

1
x

)

we have

f ′(x) = − sin

(

1

x

)(

−
1

x2

)

=
1

x2
sin

(

1

x

)

f ′′(x) =
1

x2

(

cos

(

1

x

))(

−
1

x2

)

− 2

(

1

x3

)

sin

(

1

x

)

= −
1

x4
cos

(

1

x

)

−
2

x3
sin

(

1

x

)

.

For x 6= 0 a second-order Taylor series expansion is thus given by

cos

(

1

x+ p

)

= cos

(

1

x

)

+
1

x2
sin

(

1

x

)

p+
1

2
f ′′(x+ tp)p2

= cos

(

1

x

)

+
1

x2
sin

(

1

x

)

p−
1

2

(

1

(x+ tp)4
cos

(

1

x+ tp

)

+
2

(x+ tp)3
sin

(

1

x+ tp

))

,



for some t ∈ (0, 1).

Next, for the function f(x) = cos(x) we have

f ′(x) = − sin(x)

f ′′(x) = − cos(x)

f ′′′(x) = sin(x) .

Using these a third order Taylor series expansion gives

cos(x+ p) = cos(x)− sin(x)p−
1

2
cos(x)p2 +

1

6
sin(x+ tp)p3 ,

for some t ∈ (0, 1). When x = 1 this becomes

cos(1 + p) = cos(1)− sin(1)p−
1

2
cos(1)p2 +

1

6
sin(1 + tp)p3 .

Problem 2.5

Our function f(x) is f(x) = ||x||2 = x2
1 + x2

2. Then as cos2(k) + sin2(k) = 1 we see that

f(xk) = 1 +
1

2k
.

Then as

1 +
1

2k+1
< 1 +

1

2k
,

we see that f(xk+1) < f(xk).

Now if we are given a point on the unit circle ||x|| = 1 then using this points representation
as a polar complex number we have x = eiθ for some θ. Note that the points in our sequence
xk can be written as a polar complex number as

xk =

(

1 +
1

2k

)

eik .

From the periodicity of the trigonometric function we have eik = eiξk where ξk is given as in
the book. Then using the statement in the book (that every value θ is a limit point of the
sequence ξk) we have the desired result.

Problem 2.6

The definition of an isolated local minimizer is given in the book. The fact that x∗ is isolated
means that it is the only minimizer in a neighborhood N so that f(x) > f(x∗) for all points
x 6= x∗. This later statement is the fact that x∗ is a strict local minimizer.



Problem 2.7

Let G = {xi} be the set of global minimums of our function f(x). Then this means that

f(xi) ≤ f(x) ,

for all x and each xi ∈ G. In that relationship take x = xj ∈ G for j 6= i and conclude that
f(xi) ≤ f(xj). We could do the same thing with i and j switched to show that f(xj) ≤ f(xi).
This means that f(xi) = f(xj) and thus all global minimums must have the same function
value. Lets call this value m so that f(xi) = m for all xi ∈ G. Next consider a new point z
from xi and xj for i 6= j given by

z = λxi + (1− λ)xj .

As f is convex we have that

f(z) = f(λxi + (1− λ)xj) ≤ λf(xi) + (1− λ)f(xj) = λm+ (1− λ)m = m.

As z cannot have f(z) smaller than the global minimum m (otherwise m would not be the
true global minimum) we see that z must be equal to m and z is the location of another
global minimum thus z ∈ G. This shows that the set G convex set.

Problem 2.8

To be a decent direction p at x means that pT∇f(x) < 0. For the given function f we have

∇f =

[

2(x1 + x2
2)

2(x1 + x2
2)(2x2)

]

.

At the point xT = (1, 0) we see that ∇f =

[

2
0

]

and that pT∇f = −1(2) + 1(0) = −2 < 0.

Thus p is a decent direction.

The minimizers for the books Eq. 2.9 are to find

minα>0 f(xk + αpk) .

For this problem

x+ αp =

[

1− α
α

]

,

so that f(x+ αp) = (1− α+ α2)2. From this I find

df

dα
= 2(1− α + α2)(−1 + 2α) .

To find the extremes of this function we need to have the derivative of f with respect to α
equal to zero which can happen if

α =
1

2
,

or if the quadratic factor in its representation is zero. The quadratic factor being zero gives
complex roots for α and cannot be zero for α > 0.

We can show that f ′′
(

1
2

)

> 0 showing that α = 1
2
is a minimum of f .



Problem 2.9

In the notation of this problem f̃(z) means to view the function as a function of the variable
z and the notation f(x) means to view our function as a function of the variable x. Of course
f̃(z) = f(x). To start this problem we will first evaluate

∂f̃

∂zi
.

Using the chain rule this can be written (and evaluated using the Kronecker delta) as

∂f̃

∂zi
=

n
∑

j=1

∂f

∂xj

∂xj

∂zi
=

n
∑

j=1

∂f

∂xj

∂

∂zi

(

n
∑

k=1

Sjkzk + sj

)

=

n
∑

j=1

∂f

∂xj

(

n
∑

k=1

Sjkδik

)

=
n
∑

j=1

∂f

∂xj

Sji =
n
∑

j=1

∂f

∂xj

(ST )ij = (ST∇f)i , (1)

where the notation in the last term of the last line means the ith component of the vector
ST∇f . As a vector equation we have shown

∇f̃ = ST∇f .

We now seek to evaluate ∇2f̃(z). From Equation 1 above we have

∂2f̃

∂zi∂zk
=

n
∑

j=1

(ST )ij
∂

∂zk

(

∂f

∂xj

)

=

n
∑

j=1

(ST )ij

n
∑

l=1

∂2f

∂xl∂xj

∂xl

∂zk

=

n
∑

j=1

(ST )ij

n
∑

l=1

∂2f

∂xl∂xj

∂

∂zk

(

n
∑

q=1

Slqzq + sq

)

=
n
∑

j=1

(ST )ij

n
∑

l=1

∂2f

∂xl∂xj

(

n
∑

q=1

Slqδqk

)

=

n
∑

j=1

(ST )ij

n
∑

l=1

∂2f

∂xl∂xj

Slk

=
n
∑

j=1

(ST )ij
(

∇2f S
)

jk
.

Here (∇2f S)jk is the jkth element of the matrix product ∇2f S. Note that the above sum
is the ikth element of the matrix product ST ∇2f S and we have the identity we were trying
to show.



Problem 2.10

In terms of looking for the minimum of f as a function of x following the prescription for
search directions in line search methods we will iterate

sk = xk+1 − xk

yk = ∇fk+1 −∇fk ,

with Bk+1 from the books Eq. 2.17 or Eq. 2.18 depending on the method used and starting
from an initial value x0.

In terms of looking for the minimum of f̃(z) if we start from a point z0 and enforce that
xk = Szk + s for all k ≥ 0 then the above two equations in terms of zk become

sk = Szk+1 − Szk = S(zk+1 − zk) ≡ Ss̃k

yk = S−T∇f̃k+1 − S−T∇f̃k = S−T (∇f̃k+1 −∇f̃k) ≡ S−T ỹk .

Here I have used the results from the previous problem and defined the vector s̃k and ỹk.

We now ask how does the update equation for Bk+1 look in terms of these variables s̃k and
ỹk. For Eq. 2.17 we have

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk −Bksk)T sk
, (2)

becoming

Bk+1 = Bk +
(S−T ỹk − BkSs̃k)(S

−T ỹk − BkSs̃k)
T

(S−T ỹk −BkSs̃k)TSs̃k
,

or

Bk+1 = Bk +
S−T (ỹk − STBkSs̃k)(ỹk − STBkSs̃k)

TS−1

(ỹk − STBkSs̃k)T s̃k
,

or finally by pre-multiplying by ST and post-multiplying by S we get

STBk+1S = STBkS +
(ỹk − STBkSs̃k)(ỹk − STBkSs̃k)

T

(ỹk − STBkSs̃k)T s̃k
.

Note that this is Equation 2 in terms of the variable z when we replace Bk → STBkS.

We now ask how does the update equation for Bk+1 look in terms of these variables s̃k and
ỹk. For Eq. 2.18 we have

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
, (3)

which becomes in this case

Bk+1 = Bk −
BkSs̃ks̃

T
k S

TBk

s̃Tk S
TBkSs̃k

+
S−T ỹkỹ

T
k S

−1

ỹTk S
−1Ss̃k

,

or

Bk+1 = Bk − S−T

[

(STBkS)s̃ks̃
T
k (S

TBkS)

s̃Tk (S
TBkS)s̃k

−
ỹkỹ

T
k

ỹTk s̃k

]

S−1 .



Again if we pre-multiplying by ST and post-multiplying by S we get

STBk+1S = STBkS −
(STBkS)s̃ks̃

T
k (S

TBkS)

s̃Tk (S
TBkS)s̃k

+
ỹkỹ

T
k

ỹTk s̃k
.

Note that this is Equation 3 in terms of the variable z when we replace Bk → STBkS.

Problem 2.11

I was not fully sure I understood what this problem was asking but it is easy to imagine a
situation where f(x) is poorly scaled and ∇2f is ill-conditioned. For example for a scaling
of ∆x in the x direction and of ∆y in the y direction we will normally have

∂2f

∂x2
≈

1

∆x2

∂2f

∂y2
≈

1

∆y2

∂2f

∂x∂y
≈

1

∆x∆y
.

If we construct f such that ∆y ≫ ∆x and to make our life simpler take ∂2f

∂x∂y
= 0 then we

will have

∇2f(x∗) =

[

1
∆x2 0
0 1

∆y2

]

.

If we have ∆y = 10p∆x (due to the poor scaling) this matrix is

∇2f(x∗) =
1

∆x2

[

1 0
0 10−2p

]

.

As the condition number of a matrix is the ratio of the maximum eigenvalue to the minimium
eigenvalue from the above we see that

κ(∇2f(x∗)) =
1

10−2p
= 102p ,

which can be quite large. A specific example of a function f that has the above proper-
ties is f(x1, x2) = 109x2

1 + x2
2 which following the arguments above can be shown to have

κ(∇2f(x∗)) = 109.

Problem 2.12

To be Q-linearly convergent we must have

||xk+1 − x∗||

||xk − x∗||
≤ r , (4)

for 0 < r < 1 and all k sufficiently large. For this sequence the limit would be x∗ = 0 and

||xk+1||

||xk||
=

1
k+1
1
k

=
k

k + 1
=

1

1 + 1
k

> 1 ,

for all k. Thus xk cannot be Q-linearly convergent.



Problem 2.13

For this sequence the limit would be x∗ = 1 and

||xk+1 − 1||

||xk − 1||2
=

0.52
k+1

(0.52k)2
=

0.52
k+1

0.52k+1
= 1 ≤ M ,

for any M ≥ 1 and for all k. Thus xk is Q-quadratically convergent to one.

Problem 2.14

For this sequence the limit would be x∗ = 0 and we need to consider

||xk+1||

||xk||
=

1
(k+1)!

1
k!

=
1

k + 1
≤

1

2
,

for all k > 1. This means that xk is Q-linearly convergent to zero.

Next consider

||xk+1||

||xk||2
=

1
(k+1)!
(

1
k!

)2 =
(k!)2

(k + 1)!
=

k!

k + 1
→ ∞ ,

as k → ∞. Thus this sequence does not converge Q-quadratically to zero.

Problem 2.15

For this sequence, the limit would be x∗ = 0 and we need to consider

||xk+1||

||xk||
. (5)

Now for k even k + 1 is odd and Equation 5 becomes

||xk/k||

||xk||
=

1

k
<

1

2
, (6)

for k ≥ 2. For k odd, k + 1 is even so Equation 5 becomes

||xk+1||

||xk||
=

1

||xk||

(

1

4

)2k+1

=
k

||xk−1||

(

1

4

)2k+1

=
k
(

1
4

)2k+1

(

1
4

)2k−1
= k

(

1

4

)2k+1
−2k−1

= k

(

1

4

)2k(2− 1

2)
= k

(

1

4

)( 3

2)2k

→ 0 , (7)



as k → ∞. We can prove this last fact (the limit) using L’ Hospital’s rule. Now if the limit
of the above sequence is zero it must eventually be smaller than any value specified if we
take k large enough. If we specify the value 1

2
then we have shown that

||xk+1||

||xk||
<

1

2
,

for k sufficiently large. This is the condition needed to show Q-linear convergence.

Note that when we combine Equations 6 and 7 we get that

lim
k→∞

||xk+1||

||xk||
= 0 ,

which is the condition needed for Q-superlinear convergence.

Now to determine if xk is Q-quadratically convergent we need to consider the ratio

||xk+1||

||xk||2
.

If k is even k + 1 is odd and the ratio is given by

1

k||xk||
=

1

k
(

1
4

)2k
→ ∞ ,

as k → ∞ and xk cannot be Q-quadratically convergent (since this limit can never be
bounded). As another way to see this consider the case where k is odd then k− 1 and k+1
are even so we have

||xk+1||

||xk||2
=

k2||xk+1||

||xk−1||2
=

k2
(

1
4

)2k+1

[

(

1
4

)2k−1
]2 =

k2
(

1
4

)2k+1

(

1
4

)2k
= k2

(

1

4

)

→ ∞ ,

as k → ∞ which again shows that xk cannot be Q-quadratically convergent.

Next if xk is to be R-quadratically convergent we need to find a positive sequence νk such
that

||xk − x∗|| ≤ νk ,

for all k where νk is Q-quadratically convergent.

To find a sequence νk note that if k is odd (then k − 1 is even) and we have

||xk|| =
||xk−1||

k
< ||xk−1|| =

(

1

4

)2k−1

<

(

1

4

)2k−2

,

which is true as 2k−2 < 2k−1 for k ≥ 2. If k is even then

||xk|| =

(

1

4

)2k

<

(

1

4

)2k−2

.



This motivates taking the definition of νk as

νk =

(

1

4

)2k−2

,

for k ≥ 2. We now ask if νk converges Q-quadratically to zero? To answer this we need to
study

||νk+1||

||νk||2
=

(

1
4

)2k−1

[

(

1
4

)2k−2
]2 =

(

1
4

)2k−1

(

1
4

)2k−1
= 1 .

This is certainly bounded. Because of this we have that νk is Q-quadratically convergent to
zero and that xk is thus R-quadratically convergent to zero.



Chapter 5 (Conjugate Gradient Methods)

Notes on the Text

Notes on the linear conjugate gradient method

The objective function we seek to minimize is given by

φ(x) =
1

2
xTAx− bTx . (8)

This will be minimized by taking a step from the current best guess at the minimum, xk, in
the conjugate directions, pk, to get a new best guess as

xk+1 = xk + αpk . (9)

Note that to find the value of α to use in the step given in Equation 9, we can select the
value of α that minimizes φ(α) ≡ φ(xk + αpk). To find this value we take the derivative of
this expression with respect to α, set the resulting expression equal to zero, and solve for α.
Since φ(xk + αpk) can be written as

φ(α) ≡
1

2
(xk + αpk)

TA(xk + αpk)− bT (xk + αpk)

=
1

2
xT
kAxk + αxT

kApk +
1

2
α2pTkApk − bTxk − αbTpk

= φ(xk) +
1

2
α2pTkApk + α(pTkAxk − pTk b)

T

= φ(xk) +
1

2
α2pTkApk + αrTk pk .

Setting the derivative of this expression equal to zero gives

pTkApkα + rTk pk = 0 .

From which when we solve for α we get the following for the conjugate direction stepsize:

α = −
rTk pk
pTkApk

, (10)

this is equation 5.6 in the book. Notationally we can add a subscript k to the variable α as
in αk to denote that this is the step size taking in moving from xk to xk+1.

Since the residual r is defined as r = Ax−b and to get the the k+1st minimization estimate
xk+1 from xk we use Equation 9. If we premultiply this expression by A and subtract b from
both sides we get

Axk+1 − b = Axk − b+ αkApk ,

or in terms of the residuals we get the residual update equation:

rk+1 = rk + αkApk , (11)

which is the books equation 5.9.



The initial induction step in the expanding subspace minimization theorem

I found it a bit hard to verify the truth of the initial inductive statement used in the proof
of the expanding subspace minimization theorem presented in the book. In that proof the
initial step requires that one verify rT1 p0 = 0. This can be shown as follows. The first residual
r1 is given by

r1 = ∇φ(x0 + α0p0) = A(x0 + α0p0)− b .

Thus the inner product of r1 with p0 gives

rT1 p0 = (Ax0 + α0Ap0 − b)T p0 = xT
0Ap0 + α0p

T
0Ap0 − bT p0 .

If we put in the value of α0 = −
rT
0
p0

pT
0
Ap0

the above expression becomes

= xT
0Ap0 −

rT0 p0
pT0Ap0

pT0Ap0 − bTp0

= (xT
0A− bT )p0 − rT0 p0

= rT0 p− rT0 p0 = 0 ,

as we were to show.

Notes on the basic properties of the conjugate gradient method

We want to pick a value for βk such that the new expression for pk given by

pk = −rk + βkpk−1 ,

to be A conjugate to the old pk−1. To enforce this conjugacy, multiply this expression by
pTk−1A on the left of the expression above where we get

pTk−1Apk = −pTk−1Ark + βkp
T
k−1Apk−1 .

If we take the left-hand-side of this expression equal to zero and solve for βk we get that

βk =
pTk−1Ark

pTk−1Apk−1

. (12)

In this case the new value of pk will be A conjugate to the old value pk−1.

Notes on the preliminary version of the conjugate gradient method

The stepsize in the conjugate direction is given by Equation 10. If we use the conjugate
update equation

pk = −rk + βk−1pk−1 , (13)



and the residual prior-conjugate orthogonality condition given by

rTk pj = 0 for 0 ≤ j < k , (14)

in Equation 13 we get when we multiply by rTk on the left we have

rTk pk = −rTk rk + βk−1r
T
k pk−1 = −rTk rk ,

Thus using this fact in Equation 10 we have an alternative expression for αk given by

αk =
rTk rk
pTkApk

. (15)

In the preliminary conjugate gradient algorithm the stepsize, βk+1, in the conjugate direction
is given by Equation 12. Using the residual update equation rk+1 = rk + αkApk, to replace
Apk in the expression for βk+1 to get

βk+1 =
1
αk

(rTk+1(rk+1 − rk))
1
αk

pTk (rk+1 − rk)
=

rTk+1rk+1

pTk (rk+1 − rk)
,

since rTk+1rk = 0, by residual-residual orthogonality

rTk ri = 0 for i = 0, 1, . . . , k − 1 . (16)

Using the conjugate update equation pk = −rk +βk+1pk−1 in the denominator above, we get
a new denominator given by

(−rk + βkpk−1)
T (rk+1 − rk) .

Next using residual prior-conjugate orthogonality Equation 14 or

rTk pi = 0 for i = 0, 1, . . . , k − 1 ,

we have

βk+1 =
rTk+1rk+1

rTk rk
, (17)

as we wanted to show.

Notes on the rate of convergence of the conjugate gradient method

To study the convergence of the conjugate gradient method we first argue that the mini-
mization problem we originally posed: that of minimizing φ(x) = 1

2
xTAx − bTx over x is

equivalent to the problem of minimizing a norm squared expression, namely ||x − x∗||2A. If
we take the minimum of φ(x) to be denoted as x∗ such that x∗ solves Ax = b we then have
the minimum of φ(x) at this point is given by

φ(x∗) =
1

2
x∗TAx∗ − bTx∗ =

1

2
x∗T b− bTx∗ = −

1

2
bTx∗ .



To show that these two minimization problems are equivalent consider the expression 1
2
||x−

x∗||2A. We have

1

2
||x− x∗||2A =

1

2
(x− x∗)TA(x− x∗)

=
1

2
xTAx− xTAx∗ +

1

2
x∗TAx∗ .

Since Ax∗ = b we have that the above becomes

1

2
||x− x∗||2A =

1

2
xTAx− xT b+

1

2
x∗TAx∗

= φ(x) +
1

2
x∗TAx∗

= φ(x)−
1

2
x∗TAx∗ + x∗TAx∗

= φ(x)−
1

2
x∗TAx∗ + x∗T b

= φ(x)− φ(x∗) ,

verifying the books equation 5.27.

To study convergence of the conjugate gradient method we will decompose the difference
between our initial guess at the solution denoted as x0 and the true solution denoted by x∗

or x0 − x∗ in terms of the eigenvectors vi of A as x0 − x∗ =
∑n

i=1 ξivi. When we do this we
have that the difference between the k + 1th iteration and x∗ is given by

xk+1 − x∗ =
n
∑

i=1

(1 + λiP
∗

k (λi))ξivi .

Then in terms of the A norm this distance is given by

||xk+1 − x∗||A =

(

n
∑

i=1

(1 + λiP
∗

k (λi)ξivi

)T

A

(

n
∑

i=1

(1 + λiP
∗

k (λi)ξivi

)

=

(

n
∑

i=1

(1 + λiP
∗

k (λi)ξiv
T
i

)

A

(

n
∑

i=1

(1 + λiP
∗

k (λi)ξivi

)

=

n
∑

i=1

n
∑

j=1

ξi(1 + λiP
∗

k (λi))ξj(1 + λjP
∗

k (λj))v
T
i Avj .

As vj are orthonormal eigenvectors of A we have Avj = λjvj and vTi vj = 0 so that the above
becomes

n
∑

i=1

ξ2i (1 + λiP
∗

k (λi))
2λi ,

as claimed by the book’s equation 5.31.



Notes on the Polak-Ribiere Method

In this subsection of these notes we derive an alternative expression for βk+1 that is used
in the conjugate-direction update Equation 13 and that is valid for nonlinear optimization
problems. Since our state update equation is given by xk+1 = xk + αkpk, the gradient of
f(x) at the new point xk+1 can be computed to second order using Taylor’s theorem as

∇fk+1 = ∇fk + αkḠkpk ,

where Ḡk is the average Hessian over the line segment [xk, xk+1]. To be sure that the
new conjugate search direction pk+1 derived from the standard conjugate direction update
equation:

pk+1 = −∇fk+1 + βk+1pk ,

is conjugate with respect to the average Hessian Ḡk means that

pTk+1Ḡkpk = 0 ,

or using the expression for pk+1 this becomes

−∇fT
k+1Ḡkpk + βk+1p

T
k Ḡkpk = 0 .

So this later expression requires that

βk+1 =
∇fT

k+1Ḡkpk

pTk Ḡkpk
.

Recognizing that Ḡkpk =
∇fk+1−∇fk

αk

so βk+1 above becomes

βk+1 =
∇fT

k+1(∇fk+1 −∇fk)

(∇fk+1 −∇fk)Tpk
, (18)

or the Hestenes-Stiefel formula and the books equation 5.45.

Problem Solutions

Problem 5.1 (the conjugate gradient algorithm on Hilbert matrices)

See the MATLAB code prob 1.m where we call the MATLAB routine cgsolve.m to solve
for the solution to Ax = b when A is the n×n Hilbert matrix (generated in MATLAB using
the built-in function hilb.m) and b is a vector of all ones and starting with an initial guess
at the minimum of x0 = 0. We do this for the values of n suggested in the text and then
plot the number of CG iterations needed to drive the “residual” to 10−6. The result of this
calculation is presented in Figure 2. The definition of convergence here is taken to be when

||Ax− b||

||b||
< 10−6 .

We see that the number of iterations grows relatively quickly with the dimension of the
matrix A.
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Figure 2: The number of iterations needed for convergence of the CG algorithm when applied
to the (classically ill-conditioned) Hilbert matrix.

Problem 5.2 (if pi are conjugate w.r.t. A then pi are linearly independent)

The books equation 5.4 is the statement that pTi Apj = 0 for all i 6= j. To show that the
vectors pi are linearly independent we begin by assuming that they are not and show that
this leads to a contradiction. That pi are not linearly independent means that we can find
constants αi (not all zero) such that

∑

αipi = 0 .

If we premultiply the above summation by the matrix A we get
∑

αiApi = 0 .

Next premultiply the above by pTj to get

αjp
T
j Apj = 0 ,

since pTj Api = 0 for all i 6= j. Since A is positive definite the term pTj Apj > 0 we can divide
by it and conclude that αj = 0. Since the above is true for each value of j we have that
each value of αj is zero. This is a contradiction to the assumption that pi are not linearly
independent thus they must be linearly independent.

Problem 5.3 (verification of the conjugate direction stepsize αk)

See the discussion around Equation 10 in these notes where the requested expression is
derived.



Problem 5.4 (strongly convex when we step along the conjugate directions pk)

I think this problem is supposed to state that f(x) is strongly convex (as which means that
f(x) has a functional form given by

f(x) =
1

2
xTAx− bTx .

In such a case when we take x of the form x = x0 + σ0p0 + σ1p1 + · · · + σk−1pk−1, we can
write f as a strongly convex function in the variables σ = (σ1, σ2, . . . , σk−1)

T .

Problem 5.5 (the conjugate directions pi span the Krylov subspace)

We want to show that 5.16 and 5.17 hold for k = 1. The books equation 5.16 is

span{r0, r1} = span{r0, Ar0} .

To show this equivalence we need to show that r1 ∈ span{r0, Ar0}. Now r1 can be written
as

r1 = Ax1 − b with x1 given by

= A(x0 + α0p0)− b or

= Ax0 − b+ α0Ap0 or since r0 = Ax0 − b

= r0 + α0Ap0 or since p0 = −r0

= r0 − α0Ar0 ,

showing that r1 ∈ span{r0, Ar0}, and thus span{r0, r1} ⊂ span{r0, Ar0}. Showing the other
direction, that is span{r0, Ar0} ⊂ span{r0, r1} is the same as noting that we can perform
the manipulations above in the other direction.

The books equation 5.17 when k = 1 is span{p0, p1} = span{r0, Ar0}, since p0 = −r0 to
show span{p0, p1} ⊂ span{r0, Ar0} we need to show that p1 ∈ span{r0, Ar0}. Since

p1 = −r1 + β1p0

= −(Ax1 − b)− β1r0

= −(A(x0 + α0p0)− b)− β1r0)

= −r0 + α0Ar0 − β1r0 .

Again showing the other direction is the same as noting that we can perform the manipula-
tions above in the other direction.

Problem 5.6 (an alternative form for the conjugate direction stepsize βk+1)

See the discussion around Equation 17 of these notes where the requested expression is
derived.



Problem 5.7 (the eigensystem of a polynomial expression of a matrix)

Given the eigenvalues λi and eigenvectors vi of a matrix A then any polynomial expression
of A say P (A) has the same eigenvectors with corresponding eigenvalues P (λi) as can be
seen by simply evaluating P (A)vi. This problem is a special case of that result.

Problem 5.9 (deriving the preconditioned CG algorithm)

For this problem we are to derive the preconditioned CG algorithm from the normal CG
algorithm. This means that we transform the original problem, that of seeing a solution for
the minimum φ(x) of

φ(x) =
1

2
xTAx− bTx ,

by transforming the original x variable into a “hat” variable x̂ = Cx. In this new space the x
minimization problem above is equivalent to seeking the minimum solution to the following

φ̂(x̂) =
1

2
(C−1x̂)TA(C−1x̂)− bT (C−1x̂)

=
1

2
x̂T (C−TAC−1)x̂− (C−T b)T .

This later problem we will solve with the CG method where in the standard CG algorithm
we take a matrix A and the vector b given by

Â = C−TAC−1

b̂ = C−T b .

Now given x̂0 as an initial guess at the minimum of the “hat” problem (note that specifying
this is equivalent to specifying a initial guess x0 for the minimum of φ(x)) and following the
standard CG algorithm but using the hated variables, we start to derive the preconditioned
CG by setting

r̂0 = C−TAC−1x̂0 − C−T b

p̂0 = −r̂0

k = 0 .

With these initial variables set, we then loop while r̂k 6= 0 and perform the following steps
(following algorithm 5.2)

α̂k =
r̂Tk r̂k

p̂TkC
−TAC−1p̂k

x̂k+1 = x̂k + α̂kp̂k

r̂k+1 = r̂k + α̂kC
−TAC−1p̂k

β̂k+1 =
r̂k+1r̂k+1

r̂Tk r̂k

p̂k+1 = −r̂k+1 + β̂k+1p̂k

k = k + 1 .



After performing these iterations our output will be x̂∞ or the minimum of the quadratic

φ̂(x̂) =
1

2
x̂T (C−TAC−1)x̂− (C−T b)x̂ ,

but we really want to output x∞ = C−1x̂∞. To derive an expression that works on x lets
write the above algorithm in terms of the unhatted variables x and r. Given an initial guess
x0 at the minimum of φ(x) then x̂0 = Cx0 is the initial guess at the minimum of φ̂(x̂). Note
that

r̂0 = C−TAC−1x̂0 − C−T b ,

or
CT r̂0 = Ax0 − b = r0 ,

is the residual of the original problem. Thus it looks like the residuals transform between
hatted an unhatted variables as

r̂k = C−T rk . (19)

Next note that
p̂0 = −r̂0 = −C−T r0 = C−Tp0 ,

it looks like the conjugate directions transform between hatted an unhatted variables in the
same way, namely

p̂k = C−Tpk . (20)

Using these two simplifications our preconditioned conjugate gradient algorithm becomes in
terms of the unhatted variables (recall the unknown variable transforms as x̂k = Cxk)

α̂k =
rTkC

−1C−T rk
pTkC

−1C−TAC−1C−Tpk

=
rTk (C

TC)−1rk
pTk (C

TC)−1A(CTC)−1pk
(21)

xk+1 = xk + α̂kC
−1p̂k

= xk + α̂kC
−1C−Tpk = xk + α̂k(C

TC)−1pk (22)

rk+1 = rk + α̂kAC
−1C−Tpk

= rk + α̂kA(C
TC)−1pk (23)

β̂k+1 =
rTk+1C

−1C−T rk+1

rTk C
−1C−T rk

=
rTk+1(C

TC)−1rk+1

rTk (C
TC)−1rk

(24)

pk+1 = −rk+1 + β̂k+1pk (25)

k = k + 1 .

In the above expressions on each line, we first made the hat to unhat substitution and then
on the subsequent line simplified the resulting expression. Next to simplify these expressions
further we introduce two new variables. The first variable, yk, is defined by

yk = (CTC)−1rk ,



or the solution yk to the linear system Myk = rk, where M = CTC. The second variable zk
is defined similarly as

zk = (CTC)−1pk ,

or the solution to the linear system Mzk = pk. To use these variables, as a first step, in
Equation 25 above we multiply by (CTC)−1 on both sides and use the definitions of zk and
yk to get

zk+1 = −yk+1 + β̂k+1zk .

our algorithm then becomes

Given x0, our initial guess at the minimum of φ(x) form r0 = Ax0 − b and solve My0 = r0
for y0. Next compute z0 given by

z0 = M−1p0 = M−1(−r0) = −M−1(My0) = −y0 . (26)

Next we set k = 0 and iterate the following while rk 6= 0

α̂k =
rTk yk
zTk Azk

xk+1 = xk + α̂kzk

rk+1 = rk + α̂kAzk

solve Myk+1 = rk+1 for yk+1

β̂k+1 =
rTk+1yk+1

rTk yk

zk+1 = −yk+1 + β̂k+1zk

k = k + 1 .

Note that this is the same algorithm presented in the book but the book denotes the variable
zk by the notation pk and I think that there is an error in the book’s initialization of this
routine in that the book states p0 = −r0 while I think this expression should be p0 = −y0
(in their notation) see Equation 26.

Problem 5.10 (deriving the modified residual conjugacy condition)

In the transformed “hat” problem to minimize the quadratic φ̂(x̂) given by

φ̂(x̂) =
1

2
x̂T (C−TAC−1)x̂− (C−T b̂)T x̂ ,

see Problem 5.9 on page 20 above, if we define

Â ≡ C−TAC−1

b̂ ≡ C−T b .

So that the transformed hat problem has a residual r̂ given by

r̂ = Âx̂− b̂

= C−TAC−1Cx− C−T b

= C−T (Ax− b) = C−Tr .



Thus the orthogonality property of successive residuals i.e. the books equation 5.15 for the
hat problem which is given by

r̂Tk r̂i = 0 for i = 0, 1, 2, · · · , k − 1 . (27)

becomes in terms of the original variables of the problem

rTkC
−1C−T rj = rTk M

−1rj = 0 ,

since M = CTC or the modified residual conjugacy condition and is what we were to show.

Problem 5.11 (the expressions for βPR and βHS reduce to βFR)

Recall that three expressions suggested for β (the conjugate direction stepsize) are

βPR
k+1 =

∇fT
k+1(∇fk+1 −∇fk)

∇fT
k ∇fk

, (28)

for the Polak-Ribiere formula,

βHS
k+1 =

∇fT
k+1(∇fk+1 −∇fk)

(∇fk+1 −∇fk)Tpk
, (29)

for the Hestenes-Stiefel and

βFR
k+1 =

∇fT
k+1∇fk+1

∇fT
k ∇fk

, (30)

for the Fletcher-Reeves expression.

To show that the Polak-Ribere CG stepsize βPR reduces to the Fletcher Reeves CG stepsize
βFR, under the conditions given in this problem, from the above formulas it is sufficient to
show that

∇fT
k+1∇fk = 0 ,

since they agree on the other terms. Now when f(x) is a quadratic function f(x) = 1
2
xTAx−

bTx + c for some matrix A, vector b, and scalar c and xk+1 is chosen to be the exact line
search minimum then ∇fk+1 = rk+1. Thus ∇fT

k+1∇fk = rTk+1rk = 0, by residual-residual
orthogonality Equation 16 (the books equation 5.15).

Now to show that Hestenes-Stiefel CG stepsize βHS reduces to the Fletcher Reeves CG
stepsize βFR, under the conditions given in this problem, from the above formulas it is
sufficient to show that (∇fk+1 −∇fk)

Tpk = ∇fT
k ∇fk. Using the results above we have

(∇fk+1 −∇fk)
Tpk = (rk+1 − rk)

T (−rk + βkpk−1)

= −rTk+1rk + βkr
T
k+1pk−1 + rTk rk − βkr

T
k pk−1

= rTk rk = ∇fT
k ∇fk .

Where in the above we have used residual prior-conjugate orthogonality given by Equation 14
to show rTk pk−1 = 0.


