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Chapter 1 (Basic R Programming)

Introduction

To experiment with some of the R commands presented in this chapter I duplicated some of
the code presented in the book in the R file chap 1 code examples.R.

Exercise 1.3

We find

• seq: Generate regular sequences.

• sample: takes a sample of the specified size from the elements of x using either with
or without replacement.

• order: returns a permutation which rearranges its first argument into ascending or
descending order, breaking ties by further arguments.

Exercise 1.4

The function order returns the order in which we would need to take the elements of x to
get them in a sorted order. The function rank returns the rank (spot in the sorted list) of
each element of x. An example will help clarify

> x = runif(5)

> x

[1] 0.7887347 0.7654628 0.8868125 0.2918536 0.1194615

> order(x)

[1] 5 4 2 1 3

> x[order(x)] # is a sorted list

[1] 0.1194615 0.2918536 0.7654628 0.7887347 0.8868125

> rank(x) # gives the spot in the sorted list of each element of x

[1] 4 3 5 2 1

An example of the usage for the various options for rep will clarify its options

> x = c(1,2,3)

> rep(x,times=5)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
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Figure 1: Left: The bootstrap samples of ȳ. Right: The bootstrap samples of q0.95(ȳ).

> rep(x,length.out=5)

[1] 1 2 3 1 2

> rep(x,each=5)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Exercise 1.7 (bootstrap examples)

Part (a): See the R code in ex 1 7.R. When that code is run it generates the plot shown in
Figure 1. We generate bootstrap samples by sampling with replacement 8 values from the y
vector. We then compute the mean of that sample. We do this 1000 times generating 1000
values for ȳ, that are plotted in Figure 1 (left). From all of these values we can compute the
95% percentage point using the R function quantile. This gives the value 5.906.

Part (b): To get a confidence interval for q0.95(ȳ) we need to do two bootstrap sample
generation loops. For each pass through the outer loop we will compute a single sample
of q0.95(ȳ) in the same way as Part (a) above. We do this by first generating a bootstrap
sample ystar from the original data y and then from this fixed sample we generate additional
bootstrap samples on which we can compute the sample mean ȳ. Once we have a large
number of bootstrapped samples of ȳ we can compute the 95% quantile of these samples
and save that number as a single sample for the outer bootstrap procedure. Once we have
many samples of q0.95(ȳ) we can plot all of them in a histogram. This plot is shown in
Figure 1 (right). A 95% confidence interval for q0.95(ȳ) can be obtained by computing the
0.025 and 0.975 percentage point of the outer bootstrap samples of q0.95(ȳ). When we do
that we find

[1] "the bootstrapped estimated confidence interval for q_{0.95} is"
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[1] "( 4.613294, 6.915125)"

Exercise 1.8 (the bootstrap with linear models)

For this problem see the R code in ex 1 8.R. When we use the R code lm to get the t based
standard error. This is extracted from the output of the lm command by using the summary
command. For this problem we get

> fitsum$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.669054 0.4023548 6.633582 0.0069789584

x 3.967274 0.1896719 20.916513 0.0002390236

Thus for the intercept we have β̂0 = 2.6690 and a t based standard error given by se(β̂0) =
0.402, while for the slope we have β̂1 = 3.967274 with a standard error of 0.1896719. From
these numbers a (1− α)× 100% confidence interval for β0 is given by [1]

β̂0 − t(α/2, n− 2)se(β̂0) ≤ β0 ≤ β̂0 + t(α/2, n− 2)se(β̂0) ,

here t(α/2, d) is the value that cuts off α/2 × 100% in the upper tail of the t-distribution
with d degrees of freedom. The same type of expression hold for the confidence interval for
β1 as long as we use the correct expression/value for se(β̂1). When we do that we find that

[1] "the t-based 0.90% confidence interval beta_0 is ( 1.722167, 3.615941)"

[1] "the t-based 0.90% confidence interval beta_1 is ( 3.520907, 4.413641)"

While the bootstrapped based confidence intervals are given by

> quantile( B[,1], c(0.05,0.95) ) # for beta_0

5% 95%

2.138569 3.136529

> quantile( B[,2], c(0.05,0.95) ) # for beta_1

5% 95%

3.727029 4.212291

These bootstrapped confidence intervals seem to be considerable tighter than their t distri-
bution based alternative.

Exercise 1.10

The command help(xor) gives a help on these logical operators. Both & and && perform
the logical “and” operation. The character | and || perform the logical or operation. These
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commands differ mainly in what they return when operating on vector operands. The single
forms returns a vector where the logical operation (and/or) is applied componentwise. The
double form for example the expression, &&, returns a single logical value that depends
on the individual elements in the vector. Because of this, the single character version is
typically used for index extraction, while the double character version is typically used for
logical expressions (i.e. “if” statements). An example will help clarify,

> # fix the random.seed, so I’ll always get the same answer:

> set.seed(10131985)

>

> x = rnorm(10)

> x

[1] 1.3034072 -0.4053758 1.4895198 0.2048860 0.7528309 -0.2749962

[7] 1.3107793 -0.7214373 0.3383096 0.1270985

>

> indsLT = x < -0.25 # less than -0.25

> indsLT

[1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE

>

> indsGT = x > +0.25 # greater than +0.25

> indsGT

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

>

> indsLT | indsGT # all points such that abs(value)>0.25

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

> indsLT & indsGT # no points (all elements FALSE)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

>

> # return "or" of first element (indsLT[1]=TRUE) *or* (indsGT[1]=FALSE) = TRUE

> indsLT || indsGT

[1] TRUE

>

> # return "and" of first element (indsLT[1]=TRUE) *and* (indsGT[1]=FALSE) = FALSE

> indsLT && indsGT

[1] FALSE

Notice how the double logical expressions only return a single logical value (and not a vector).
This example is worked in the R code ex 1 10.R.

Exercise 1.11

The attach command allows the user to have variable names searched for in the database
specified when using the attach command. The assign command allows the user to specify
a variable as a string and then assign a variable to this string.
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Exercise 1.12

This exercise is worked in the R code ex 1 12.R.

Exercise 1.13

1. capture.output produces a string that represents what the R interpreter would pro-
duce when the given command is executed.

2. dput produces an ASCII representation of an R object to a file or a connection.

3. dump produces an ASCII representation from a vector of names.

4. save write several R object to a file.

5. sink writes R output to a connection.

6. write writes columns of data to a file.

Some examples will help clarify. To consider these examples we need some data. We will
consider the following example

x = rnorm(20)

y = 3*x + 5 + rnorm(20,sd=0.3)

reslm = lm(y~x)

Then the command capture.output produces

> capture.output(summary(reslm))

[1] ""

[2] "Call:"

[3] "lm(formula = y ~ x)"

[4] ""

[5] "Residuals:"

[6] " Min 1Q Median 3Q Max "

[7] "-0.46481 -0.11923 -0.04518 0.14757 0.66035 "

[8] ""

[9] "Coefficients:"

[10] " Estimate Std. Error t value Pr(>|t|) "

[11] "(Intercept) 5.04771 0.06823 73.98 <2e-16 ***"

[12] "x 3.03041 0.09980 30.36 <2e-16 ***"

[13] "---"

[14] "Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 "

[15] ""
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[16] "Residual standard error: 0.291 on 18 degrees of freedom"

[17] "Multiple R-squared: 0.9809,\tAdjusted R-squared: 0.9798 "

[18] "F-statistic: 922 on 1 and 18 DF, p-value: < 2.2e-16 "

[19] ""

The command dput would give (truncated for space)

> dput(reslm)

structure(list(coefficients = structure(c(5.04771134844566, 3.03041491288024

), .Names = c("(Intercept)", "x")), residuals = structure(c(-0.141513023558070,

0.313560591005267, -0.464808029425501, 0.420523983312902, 0.302041310583233,

-0.209328782477972, 0.156642822808795, -0.0690696235004164, 0.0427729747192703,

-0.0864893938662702, -0.0212822529638138, -0.080798389233946,

-0.110494650289592, 0.0571855672545044, -0.406005294280871, 0.660353066118607,

0.0300317438264137, 0.144544712400732, -0.426070608489334, -0.111796723943939

), .Names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",

"11", "12", "13", "14", "15", "16", "17", "18", "19", "20")),

effects = structure(c(-25.3620821095076, 8.8356206498652,

The command dump creates a file called dumpdata.R which could be soured to get the output
variables into to the workspace. For example entering the command dump(‘‘reslm’’)

produces the above file that has contents given by

reslm <-

structure(list(coefficients = structure(c(5.04771134844566, 3.03041491288024

), .Names = c("(Intercept)", "x")), residuals = structure(c(-0.141513023558070,

0.313560591005267, -0.464808029425501, 0.420523983312902, 0.302041310583233,

-0.209328782477972, 0.156642822808795, -0.0690696235004164, 0.0427729747192703,

-0.0864893938662702, -0.0212822529638138, -0.080798389233946,

-0.110494650289592, 0.0571855672545044, -0.406005294280871, 0.660353066118607,

0.0300317438264137, 0.144544712400732, -0.426070608489334, -0.111796723943939

), .Names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",

The R command source(’dumpdata.R’) will then bring the variables back into the workspace
if needed.

The command save will save all R object into a file

save(file="r_workspace.dat")

produces a binary file that can be loaded into the workspace with the command load.
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Exercise 1.14

The command var has an option na.rm, which if true will disregard rows (vector observa-
tions) that have any element which is NA. This is not the same issue that arises when we
request the value of var(1). In that case the denominator of the estimator is n − 1 which
with one sample results in a zero denominator giving the NA result. There is an option to
the lm and glm commands called na.action that specifies what the commands should do
when it finds an observation with a NA in it. The default action is na.fail which means
the command will fail.

Exercise 1.15

In the R code ex 1 15.R we do some experiments with the commands match and which.

Exercise 1.16

The command identical is designed to test object for equality and for use in an logical (i.e.
“if”) statement. The command all.equal is used to test approximate equality.

Exercise 1.17

This exercise is worked in the R code ex 1 17.R. When we run that command we get

> N=100000

>

> y=c();

> system.time(for (t in 1:N){ y[t]=exp(t) })

user system elapsed

54.391 0.000 54.635

>

> system.time(exp(1:N))

user system elapsed

0.008 0.000 0.010

>

> system.time(sapply(1:N,exp))

user system elapsed

0.409 0.000 0.410

Showing that the second form is the fastest form.
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Figure 2: The requested linear regression for Exercise 1.21.

Exercise 1.18

The stated commands return objects that can be modified and can be used as the left-hand-
side of an expression.

Exercise 1.19

This exercise is worked in the R code ex 1 19.R. In that command we compute powers of a
matrix who’s rows sum to one. When I run the R code for this problem I get a quite stable
result in that quite large powers of the base matrix seems to have rows that sum to one.
This is in contrast to the answer that the book gives. If anyone sees anything wrong with
what I’ve done for this problem please contact me.

Exercise 1.21

This exercise is worked in the R code ex 1 21.R. In that command we compute two linear
regressions one based on simply the predicting circumference given age and another re-
gression where we allow a factor predictor based on the actual tree. When we plot this first
linear regression we get the result shown in Figure 2. We can then compare the two models
using the R command anova. When we do that we find that we find

> anova(m1,m2)

Analysis of Variance Table
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Model 1: circumference ~ age

Model 2: circumference ~ age + TF

Res.Df RSS Df Sum of Sq F Pr(>F)

1 33 18594.7

2 29 6753.9 4 11840.9 12.711 4.289e-06 ***

This table shows that by adding the tree as a factor we have restricted the degrees of freedom
of the residuals by 4 but reduced the residual sum of squares by 11840.9 the probability that
this might happen “by chance” is Pr(>F)=4.289e-06, thus this seems to be a modeling
improvement i.e. it is rather unlikely that this change happened by chance.

Exercise 1.22 (further applications of the bootstrap)

Part (a): Warning: I thought this problem was a simple extension of the bootstrap for
linear regression example presented in the book. The book says to sample the data set with
replacement. The problem with this statement is that the data is a time series and as such
we must sample the sequence in the same order. If we simply sample using the R command
sample and then call the acf function we will end up computing autocorrelation functions
on a different time series each time, thus there is no reason why the autocorrelation values
(and the uncertainty in these values) should converge to the population expressions as the
number of bootstrap samples goes to infinity. To use the bootstrap procedure on a time
series must require a different procedure that specified in the text. If anyone knows more
about this (or can tell me why the above logic is incorrect) please contact me.

Part (b): We implement this part of the problem in the R code ex 1 22 b.R. In that code
we first fit a single spline curve to the full data set. Then to each fitted point in that curve
we compute the residual with the true data. Each bootstrapped sample of output is obtained
by sampling from these residuals and producing a new output vector by adding this sample
of residuals to the original output. When the above R script is run we get the plot shown in
Figure 3.

Exercise 1.23 (solving sudoku)

Part (a): We have

> s

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0 0 0 0 0 6 0 4 0

[2,] 2 7 9 0 0 0 0 5 0

[3,] 0 5 0 8 0 0 0 0 2

[4,] 0 0 2 6 0 0 0 0 0
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Figure 3: Many bootstrapped spline fits to the bacteria abundance AOB versus nitrogen
levels.

[5,] 0 0 0 0 0 0 0 0 0

[6,] 0 0 1 0 9 0 6 7 3

[7,] 8 0 5 2 0 0 4 0 0

[8,] 3 0 0 0 0 0 0 8 5

[9,] 6 0 0 0 0 0 9 0 1

Part (b): See the R code ex 1 23.R.

Part (c): The value of s[i] is a way of expressing the elements of s by indexing down the
columns of s. Thus the first index is the first element in the first column. The ninth index
is the last element in the first column. The tenth index is the first element in the second
column and so on.

Part (e): The first for loop with control given by u in (1:9)[pool[a,b,]] selects values
for u that are possible to put into the spot s[i,j] as defined by the data structure pool.
We can put u at the spot a,b if it is not already in the a row, which we can check with the
elements of the vector u==s[a,]. If u is an element of this row one of the elements of this
vector will be TRUE which when we sum all the elements in the vector would give a positive
sum i.e. 1. This same logic holds for the b column with u==s[,b] and with the box around
element a,b with u==s[boxa,boxb]. If any of the sums evaluate to 1 this value of u is not
possible for the spot a,b.

Part (f): We can solve this grid with the following R code

while( sum(s==0)>0 ){

# generate a random a,b element
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a = sample(1:9,1)

b = sample(1:9,1)

if( s[a,b]==0 ){ # this element has not alread been filled

boxa = 3*trunc((a-1)/3)+1

boxa = boxa:(boxa+2)

boxb = 3*trunc((b-1)/3)+1

boxb = boxb:(boxb+2)

for ( u in (1:9)[pool[a,b,]])

pool[a,b,u] = (sum(u==s[a,])+sum(u==s[,b])+sum(u==s[boxa,boxb]))==0

if( sum(pool[a,b,])==1 ) s[a,b]=(1:9)[pool[a,b,]]

}

}

This gives the following grid

> s

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 3 8 5 2 6 7 4 9

[2,] 2 7 9 3 4 1 8 5 6

[3,] 4 5 6 8 7 9 3 1 2

[4,] 7 4 2 6 3 5 1 9 8

[5,] 9 6 3 1 8 7 5 2 4

[6,] 5 8 1 4 9 2 6 7 3

[7,] 8 9 5 2 1 3 4 6 7

[8,] 3 1 7 9 6 4 2 8 5

[9,] 6 2 4 7 5 8 9 3 1

the same as in the book.
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Chapter 2 (Random Variable Generation)

Exercise 2.2

To use the inverse transform method we draw a uniform random variable u ∼ U[0,1] and then
find a sample x from the distribution of interest by solving the equation F (x) = u for x,
where F (·) is the distribution function of the density we desire to sample from.

Part (a): For the Logistic probability density f(x) given by

f(x) =
1

β

e−(x−µ)/β

(1 + e−(x−µ)/β)2
, (1)

is defined over −∞ < x < +∞ so for the distribution function we find

F (x) =

∫ x

−∞

1

β

e−(x−µ)/β

(1 + e−(x−µ)/β)2
dx .

Let v = 1+e−(x−µ)/β so that dv = − 1
β
e−(x−µ)/β and dx = −βe(x−µ)/β and F (x) then becomes

F (x) = −
∫ v

∞

dv

v2
= −

(

−1

v

∣

∣

∣

∣

v

∞
=

1

v
=

1

1 + e−(x−µ)/β
, (2)

as we were to show. For the Logistic probability density solving F (x) = u for x gives

x = µ− β log

(

1

u
− 1

)

.

In the first part of ex 2 2.R we plot a comparison of two ways to generate these variables.
See Figure 4.

Part (b): For the Cauchy density f(x) defined over −∞ < x < +∞ we find

F (x) =

∫ x

−∞

1

πσ

dx

1 +
(

x−µ
σ

)2 .

Let v = x−µ
σ

so that dv = dx
σ

and we get

F (x) =
1

π

∫ v

−∞

dv

1 + v2
=

1

π
tan−1(v)− tan−1(−∞)) .

Since the limiting value of tan−1(x) as x → −∞ is −π
2
the above becomes

F (x) =
1

π
tan−1

(

x− µ

σ

)

+
1

2
,

as we were to show. For the Cauchy distribution when we solve F (x) = u for x we have

x = µ+ σ tan

(

π

(

u− 1

2

))

.

We generate random variables for a Cauchy distribution in the same way we did for the
Logistic distribution.
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Figure 4: Generating Logistic random variables.

Exercise 2.3

Part (a): Since E[Ui] = 0 we have E[Z] = 0. Since

E[Ui] =
1

12

(

1

2
−
(

−1

2

))

=
1

12
,

we have E[Z] = 12
(

1
12

)

= 1.

Part (b): In the R script ex 2 3.R, we generate random numbers using the central limit
theorem (CLT), the Box Muller transform, and the R command rnorm as suggested an
plot the resulting histograms in Figure 5. As commented in this problem the range of
the generated variates in the CLT generator seems somewhat smaller than the other two
generators produces.

Notes on Discrete Distributions

For example 2.4 (a binomial distribution) we can generate the values of pk using the R

command pbinom(0:10,10,0.3) which gives

> pbinom(0:10,10,0.3)

[1] 0.02824752 0.14930835 0.38278279 0.64961072 0.84973167 0.95265101

[7] 0.98940792 0.99840961 0.99985631 0.99999410 1.00000000
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Figure 5: A histogram comparison of three normal random variable generators.

In the same way for example 2.4 (a Poisson distribution) we generate the values of pk using
the R command ppois(0:20,7), which gives

> ppois(0:20,7)

[1] 0.000911882 0.007295056 0.029636164 0.081765416 0.172991608 0.300708276

[7] 0.449711056 0.598713836 0.729091268 0.830495937 0.901479206 0.946650377

[13] 0.973000227 0.987188607 0.994282798 0.997593420 0.999041817 0.999638216

[19] 0.999870149 0.999955598 0.999985505

where the upper limit (here 20) can be specified by the user to make the final probability as
close to one as desired.

Exercise 2.5 (the probability of acceptance)

The probability of acceptance is defined as

P

(

U ≤ f(Y )

Mg(Y )

)

,

since it is in these cases where we will take X = Y i.e. accept the sample Y from g(y) as
a sample from f(X). This is the denominator in the proof of the accept-reject method and
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we find

P

(

U ≤ f(Y )

Mg(Y )

)

=

∫ ∞

−∞

∫
f(y)

Mg(y)

0

1 dug(y)dy

=

∫ ∞

−∞

f(y)

Mg(y)
g(y)dy =

1

M

∫ ∞

−∞
f(y)dy =

1

M
.

For the second question we assume that we don’t know the exact normalization factors for
f or g to make them proper densities. Thus we have access to approximate densities f̃ and
g̃ and we then compute or derive a bound M̃ for these functions such that f̃ ≤ M̃ g̃ for use
with the accept-reject algorithm. When we run this algorithm using these functions we can

compute an empirical acceptance rate P
(

U ≤ f̃(Y )

M̃g̃(Y )

)

. This empirical acceptance rate is

equal to

P

(

U ≤ f̃(Y )

M̃g̃(Y )

)

=

∫ ∞

−∞

∫
f̃(y)

M̃g̃(y)

0

1 dug(y)dy =

∫ ∞

−∞

f̃(y)

M̃ g̃(y)
g(y)dy .

If our functions f̃ and g̃ are only incorrect in the sense that they have errors in the normalizing
constants then there exist other constants f̂ , ĝ, and M̂ that when multiplied by the “tilde”
variables give us the correct densities and reciprocal acceptance rate M . That is

f = f̂ f̃ , g = ĝg̃ , and M = M̂M̃ . (3)

Thus the empirical acceptance probability we compute when running the accept-reject algo-
rithm using f̃ , g̃, and M̃ becomes

P̃A =

∫ ∞

−∞

f̃(y)

M̃g̃(y)
g(y)dy =

(

ĝM̂

f̂

)

∫ ∞

−∞

(

f(y)

Mg(y)

)

g(y)dy = k
1

M
. (4)

where the constant k ≡ ĝM̂

f̂
. This statement says that when we don’t know the true normal-

ization factors for the densities of interest the empirical acceptance-rate will be proportional
to the true acceptance-rate when using the true densities.

Notes on the number of trials needed in the Accept-Reject Algorithm

The book comments that typically in a Monte-Carlo setting we want to generate Nsim draws
from the density f(x) of interest where the value of Nsim is given. When we use the accept-
reject algorithm (since it is a random algorithm) we then don’t know exactly how many
samples from f(x) we will actually obtain. However, since the probability of acceptance
(or the probability of getting a draw from f(x) is 1

M
) if we call the accept-reject algorithm

MNsim times then on average we will expect to get

1

M
(MNsim) = Nsim ,

draws from f(x). We can use this fact to code our iterations in a somewhat more intelligent
way.
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Exercise 2.7

When f ∼ B(α, β) and g ∼ B(a, b) then we have

f

g
=

xα−1(1− x)β−1

B(α, β)
· B(a, b)

xa−1(1− x)b−1
= xα−a(1− x)β−b

(

B(a, b)

B(α, β)

)

, (5)

with

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (6)

We want to show that there is a M such that f
g
≤ M for 0 < x < 1. If the powers of x and

1 − x are non-negative then over the domain 0 < x < 1 the ratio f
g
well be bounded, thus

we require
α− a ≥ 0 and β − b ≥ 0 .

or
a ≤ α and b ≤ β .

If a and b were to equal α and β then drawing samples from g would be the same as drawing
samples from f . Thus we want a and b to be as close as α and β as possible to make the
acceptance probability as large as possible. If a and b must be integers than we should take
them to be a = ⌊α⌋ and b = ⌊β⌋, to make the acceptance probability as large as possible.

The maximum of f
g
as a function of x is given by solving d

dx

(

f
g

)

= 0 for x or solving

(α− a)xα−a−1(1− x)β−b − (β − b)xα−a(1− x)β−b−1 = 0 .

or when we divide by xα−a(1− x)β−b we get

α− a

x
− β − b

1− x
= 0 .

Solving this for x we get

x = − α− a

β − b− α + a
so 1− x =

β − b

β − b− α+ a
.

When we put this value into the ratio given by Equation 5, we get

f

g

∣

∣

∣

∣

max

=
B(a, b)

B(α, β)

(

(a− α)α−a(β − b)β−b

(β − b− α + a)α−a+β−b

)

Exercise 2.8 (accept-reject with a double exponential distribution)

Part (a): For the densities specified we find the ratio given by

f(x)

g(x|α) =
1√
2π
e−x2/2

(

α
2

)

e−α|x| =

√

2

π
α−1 exp

(

−x2

2
+ α|x|

)

.

17



Lets consider the case when x > 0 then we have

x2 − 2α|x| = x2 − 2αx = (x2 − 2αx+ α2)− α2 = (x− α)2 − α2 .

Thus we see that the argument of the exponent above becomes

−1

2
(x2 − 2α|x|) = −1

2
(x− α)2 +

1

2
α2 ≤ 1

2
α2 .

When x < 0 the same type of transformation holds

−1

2
(x2 − 2α|x|) = −1

2
(x2 + 2αx+ α2) +

1

2
α2 = −1

2
(x+ α)2 +

1

2
α2 ≤ 1

2
α2 .

Thus we conclude that e−
x2

2
+α|x| ≤ e

α2

2 and we have shown

f(x)

g(x|α) ≤
√

2

π
α−1e

α2

2 .

When we try to minimize this with respect to the parameter α we take the derivative with
respect to α, set the result equal to zero, and solve for α. Setting the derivative equal to
zero gives me

d

dα

(

α−1e
α2

2

)

= −α−2e
α2

2 + α−1αe
α2

2 = 0 ,

or
−α−2 + 1 = 0 , so α = ±1 .

If we consider the second derivative of the α expression

d2

dα2

(

α−1e
α2

2

)

=
d

dα

(

(1− α−2)e
α2

2

)

= 2α−3e
α2

2 + (1− α−2)αe
α2

2 = (α− α−1 + 2α−3)e
α2

2 .

Thus we find that

d2

dα2

(

α−1e
α2

2

)

∣

∣

∣

∣

α=−1

= e1/2(−1 + 1− 2) < 0 is a maximum

d2

dα2

(

α−1e
α2

2

)

∣

∣

∣

∣

α=+1

= e1/2(+1− 1 + 2) < 0 is a minimum .

Part (b): Thus using this bound with α = +1 we get

f(x)

g(x|α) =
√

2

π
e1/2 so M =

√

2

π
e1/2 ,

and our acceptance rate is given by

1

M
=

√

π

2
e−1/2 = 0.760173 .
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Figure 6: Random draws from a N (0, 1) distribution using the R code rnorm (left) and the
accept-reject algorithm with a double exponential as the proposal distribution (right).

Part (c): To generate random variates from the double-exponential density g(x|α) we can
use the probability inverse transform. For g(x|α) we have a distribution function given by

G(x) =

∫ x

−∞
g(ξ|α)dξ = α

2

∫ x

−∞
e−α|ξ|dξ

=
α

2

{
∫ x

∞ eαξdξ x < 0
∫ 0

∞ eαξdξ +
∫ x

0
e−αξdξ x > 0

=
α

2

{
(

1
α
eαξ
∣

∣

x

−∞ x < 0
(

1
α
eαξ
∣

∣

0

−∞ +
(

1
α
e−αξ

∣

∣

x

−∞ x > 0

=

{

1
2
eαx x < 0

1− 1
2
e−αx x > 0

.

Then to use the inverse transform we draw a random sample U ∼ U[0,1] and solve for x in
x = G(x). Given u then if u < 1

2
we have

u =
1

2
eαx so x =

1

α
log(2u) ,

while if 1
2
< u < 1 we have

u = 1− 1

2
e−αx so x = − 1

α
log(2(1− u)) .

Part (c): For this part of the problem we use the accept-reject algorithm to generate data
from a normal distribution by using as a candidate density the double exponential. This
problem is worked in the R file ex 2 8.R. When that code is run it generates the results given
in Figure 6.
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Figure 7: Data from the randu generator.

Exercise 2.10 (the RANDU data set)

Part (a): This exercise is worked in the R file ex 2 10.R. When we run that script we obtain
the plot given in Figure 7.

Exercise 2.11

This exercise is worked in the R file ex 2 11.R.

Part (a): We implement code to generate random samples from a binomial distribution
using the inverse transform method. We then compare the timing of this routine with the
default R routine rbinom. We find

> system.time(wrbinom(10000,n,p)) # My generator

user system elapsed

0.160 0.000 0.161

>

> system.time(rbinom(10000,n,p)) # The R generator is rbinom

user system elapsed

0.000 0.000 0.002

Part (b): In the above R file we implement the suggested algorithm. A plot of the histogram
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of the data generated from the suggested loop verifies that the points are indeed from U[0,α].
When we compare the various generators for a couple of value of α we find that for α = 0.1
the computational time is given by

> system.time( wUniformAlpha(Nsim,alpha) )

user system elapsed

9.016 0.008 9.336

>

> system.time( runif(Nsim,max=alpha) )

user system elapsed

0.012 0.000 0.013

>

> system.time( alpha*runif(Nsim) )

user system elapsed

0.012 0.000 0.013

While for α = 0.9 we find

> system.time( wUniformAlpha(Nsim,alpha) )

user system elapsed

1.408 0.000 1.416

>

> system.time( runif(Nsim,max=alpha) )

user system elapsed

0.012 0.000 0.012

>

> system.time( alpha*runif(Nsim) )

user system elapsed

0.016 0.000 0.014

The hand coded generator takes more time when α is small. There is almost no difference
in the time of generation for the second two methods.

Exercise 2.12 (the inverse transformation method)

Part (a): This problem is worked in the R program ex 2 12.R. When we run that program
we get the plot shown in Figure 8. In working this problem one has to make sure to use
the same random draws from an E(1) distribution in computing the needed sums in the
numerator and the denominator to computing a correct sample from the beta distribution.

Part (b): For an exponential distribution its density and distribution functions are given
by

f(x) = λe−λx and F (x) = 1− e−λx for 0 ≤ x < ∞ .
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Figure 8: Samples (and the exact p.d.f) from a beta B(2, 4) distribution.

when we solve F (x) = u for x we have

x = − log(1− u)

λ
.

When u ∼ U[0,1] so is 1 − u and we can generate exponentially generated random variables
x using

x = − log(u)

λ
.

Part (c): For the Logistic distribution its density is given by Equation 1 and its distribution
function is given by Equation 2. Thus when we solve F (x) = u for x we have

x = µ+ β log

(

u

1− u

)

.

If we want µ = 0 and β = 1 then the above becomes

x = log

(

u

1− u

)

.

Exercise 2.13 (moments of the univariate Pareto distribution)

To begin we provide some background on the Pareto distribution. The general p.d.f for a
univariate Pareto distribution is given by

f(x|x0, α) =
αxα

0

xα+1
, (7)
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when x > x0 and is 0 otherwise. In this problem x0 = 1. Note that E(Xk) will only exist
the following integral

∫ ∞

x0

xk

xα+1
dx =

∫ ∞

x0

xk−α−1dx ,

converges. The convergence of this later integral requires k − α− 1 < −1 or

k < α .

We can compute various statistics for this distribution. We find

E(X) =

∫ ∞

x0

x
αxα

0

xα+1
dx =

∫ ∞

x0

αxα
0

xα
dx = αxα

0

(

x−α+1

−α + 1

∣

∣

∣

∣

∞

x0

= αxα
0

(

0 +
x−α+1
0

α− 1

)

=
αx0

α− 1
. (8)

Next assuming α > 2 we compute E(X2). We find that

E(X2) =

∫ ∞

x0

αxα
0

xα−1
dx = αxα

0

(

x−α+1+1

−α + 2

∣

∣

∣

∣

∞

x0

= αxα
0

(

0 +
x−α+2
0

α− 2

)

=
αx2

0

α− 2
. (9)

Thus from these two expressions we can compute the variance of X and find

Var(X) = E(X2)− E(X)2 =
αx2

0

α− 2
− α2x2

0

(α− 1)2

=
αx2

0

(α− 1)2(α− 2)
. (10)

The density function F (x) for a Pareto distribution is given by

F (x) =

∫ x

x0

f(ξ)dξ =

∫ x

x0

αxα
0

ξα+1
dξ = αxα

0

(

ξ−α

−α

∣

∣

∣

∣

x

x0

= −xα
0

(

1

xα
− 1

xα
0

)

= 1−
(x0

x

)α

. (11)

Then to generate random variables from a Pareto distribution we can use the inverse trans-
form method. We generate a a random variable from U[0,1] and then solve F (x) = u for x.
We have

1− u =
xα
0

xα
,

or
x =

x0

(1− u)1/α
= x0(1− u)−1/α .

Since u ∼ U[0,1], the variable 1 − u is also a draw from a U[0,1] distribution, and we can
generate a Pareto random variable using

x = x0u
−1/α . (12)

In the R code ex 2 13.R we generate Pareto random variables this way. The resulting
histogram is presented in Figure 9
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Figure 9: Samples (and the exact p.d.f) of a Pareto P(α) distribution when α = 2.4 and
x0 = 1. Note the extremely long tails that this distribution has.

Exercise 2.14 (the inverse transformation with discrete densities)

In this problem we are asked to generate 1000 draws from each of the distributions. When
we compare the histograms that result with the true density function this small number of
samples can result in a histogram that looks rather different than the expected true density
functions. To verify that we have coded everything correctly one can run the above code
with a much larger number of samples to draw from and observe that the histograms in that
case. One then observes that the histograms do indeed converge to the theoretical curves.

This exercise is worked in the R code ex 2 14.R.

Part (a): For 1000 samples, the resulting histogram for Poisson random variables is pre-
sented in Figure 10.

Part (b): For 1000 samples, the resulting histogram for the negative binomial distribution
is presented in Figure 11.

Part (c): For 1000 samples, the resulting histogram for the logarithmic distribution distri-
bution is presented in Figure 13.
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Figure 10: 1000 samples from a Poisson distribution with λ = 100.
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Figure 11: 1000 samples from a negative binomial distribution with r = 10 and (from left to
right) for p = 0.01, 0.1, and 0.5.
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Figure 12: 1000 samples from a logarithmic distribution (from left to right) for p = 0.001,
0.01, and 0.5.

Exercise 2.15 (the Poisson from exponential RV’s)

Note that the R definition of the exponential distribution matches that from the book. In
other words the density function for X when X ∼ Exp(λ) is given by

f(x) = λe−λx ,

and one sample from this distribution is generated with the R call rexp(1,rate=lambda).
We expect that the generator described will not be very good when λ is small, since in that
case many random draws Xi will be small and it will require a large number of draws from
Exp(λ) to produce a sum larger than one.

This exercise is worked in the R code ex 2 15.R.

Exercise 2.16 (more Beta RV’s)

In the R code ex 2 16.R, the suggested algorithm is implemented. It seems in the small α
and β cases the algorithm converges relatively quickly. In the large α and β cases this does
not seem to be true at all.
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Figure 13: Left: Generating 1000 RV’s from a beta distribution with α = 2.1 and β = 3.1.
Right: Generating 1000 RV’s from a beta distribution with α = 7.1 and β = 9.1. This
second run took much more computational time to run than the first.

Exercise 2.17 (the gamma distribution)

Part (a): We want to draw x from a Ga(α, β) distribution. If we draw y from a Ga(α, 1)
distribution and then compute x = y

β
then we claim that x will be drawn from a Ga(α, β).

To see this note that the p.d.f of y is given by by

g(y) =
1

Γ(α)
yα−1e−y .

Using this the p.d.f of x, denoted by f(x), is given by

f(x) = g(y(x))

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

= βg(y(x))

=
β

Γ(α)
(βx)α−1e−βx =

βα

Γ(α)
xα−1e−βx , (13)

which is the p.d.f of a Ga(α, β) as we were to show. Thus to generate random variables from
a Ga(α, β) it is sufficient to scale random variables from a Ga(α, 1) distribution.

Part (b): We want to generate random variables from a Ga(n, 1) using random variables
from an exponential Exp(λ) distribution as the candidate density using the accept-reject
algorithm. Now the p.d.f for the Exp(λ) distribution is given by g(x) = λe−λx and to find
the best value for the parameter λ we want to find the smallest value for M such that

f(x)

g(x)
≤ M ,
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where f(x) is the p.d.f for the Ga(n, 1) distribution. Recall that the functional form of a
Ga(n, 1) distribution is 1

Γ(n)
xn−1e−x. Thus this ratio in terms of x is given by

1

Γ(n)

xn−1e−x

λe−λx
=

1

λΓ(n)
xn−1e−(1−λ)x .

If −(1− λ) > 0 or λ > 1 then as x → +∞ this fraction diverges. Thus we must have λ ≤ 1
to use this method. Lets assume that λ < 1 and find the maximum value of xn−1e−(1−λ)x as
a function of x. Taking the x derivative and setting the result equal to zero gives

(n− 1)xn−2e−(1−λ)x − (1− λ)xn−1e−(1−λ)x = 0 .

When we solve for x we get

x =
n− 1

1− λ
.

With this value of x we get M given by

M(n;λ) =
1

λΓ(n)

(

n− 1

1− λ

)n−1

e−(n−1) .

We now ask what value of λ ≤ 1 makes this value as small as possible. To find that value,
we take the first derivative with respect to λ, set the result equal to zero, and solve for λ.
The first derivative gives

− 1

λ2

1

(1− λ)n−1
− (n− 1)

(−1)

λ(1− λ)n
= 0 .

We then multiply by (1− λ)nλ2 to get −(1− λ) + (n− 1)λ = 0 or

λ =
1

n
so 1− λ =

n− 1

n
. (14)

This is the optimal value for λ. When we use this value in M we get

M =
n

Γ(n)

(n− 1)n−1

(n− 1)n−1
nn−1e−(n−1) =

nne−(n−1)

Γ(n)
. (15)

Part (c): For this part of the problem we want to us random draws from the candidate
density of Ga(a, b) to generate random variables from a Ga(α, 1). In this case the ratio of f

g

is given by
f(x)

g(x)
=

1

Γ(α)
xα−1e−xΓ(a)

ba
1

xa−1e−bx
=

Γ(a)

Γ(α)

1

ba
xα−ae−(1−b)x .

Then for this ratio to not diverge as x → +∞ we must have 1− b > 0 or b < 1. For this to
not diverge as x → 0 we must have α − a ≥ 0 or a ≤ α. If we maximize this as a function
of x we must solve for x in

(α− a)xα−a−1e−(1−b)x − (1− b)xα−ae−(1−b)x = 0 .

Solving for x we get

x =
α− a

1− b
, (16)
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and M becomes

M =
Γ(a)

Γ(α)

1

ba

(

α− a

1− b

)α−a

e−(α−a) ,

which is the desired expression.

Part (d): We would next want to minimize the above expression for M with respect to
b. This will make the acceptance rate 1/M as large as possible and make the accept-reject
algorithm as efficient as possible. To find this minimum we take the derivative of the above
expression with respect to b, set the result equal to zero, and solve for b. We find this
derivative given by

−ab−a−1(1− b)−(α−a) + (α− a)b−a(1− b)−(α−a)−1 = 0 .

If we multiply by ba+1(1− b)α−a+1 we get

−a(1 − b) + (α− a)b = 0 ,

or

b =
a

α
so 1− b =

α− a

α
.

Recall that the mean of a Ga(a, b) distribution if given by a
b
. Then the mean of the Ga(α, 1)

is α, and the mean of the distribution Ga(a, b) with b as specified as above is given by

a

b
= α ,

showing these two distributions have the same mean. With that value for b we find that the
expression for M above becomes proportional to

(

α− a

e

)α−a
( a

α

)−a
(

α− a

α

)−(α−a)

=
αα−a

eα−a

(α

a

)a

=
αα

eα−aaa
.

Since e−aaa increases as a increases to make M as small as possible we want to make a as
large as possible. Since a ≤ α this motivates selecting a = ⌊α⌋ if we must restrict a to be
an integer.

Exercise 2.18 (an unnormalized density)

Part (a): We first plot the given function f in Figure 14 (left). We next consider the ratio
f(x)/g(x) where g is the standard normal density. We thus find

f(x)

g(x)
=

√
2π(sin(6x)2 + 3 cos(x)2 sin(4x)2 + 1) .

Since the trigonometric functions above are bounded we expect this ratio to have an upper
bound. To find this upper bound (as a function of x we can use the R command optimize.
When we do that we find that the above ratio is bounded above by M̃ = 10.94031.

Part (b): This exercise is worked in the R code ex 2 18.R.
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Figure 14: Left: The unnormalized density f(x) for Exercise 2.18 and the upper bound on
f(x) or Mg(x). Right: A histogram of the samples drawn from the normalized density f(x)
and a plot of this functions probability density function. The normalization factor for f(x)
is obtained from the empirical probability of acceptance (see the text for more details).

Part (c): In the above R script we also compute the empirical probability of acceptance P̃A

when using the functions given. From Equation 4 we have that P̃A = ĝM̂

f̂

1
M
, which when we

solve for f̂ the normalizing factor for the f̃(x) density and use Equations 3 we have that

f̂ =
ĝ

P̃A

1

M̃
.

In this problem, we have that ĝ = 1, M̃ = 10.94031, and we measure P̃A to be 0.5338.
Using this and the above expression for f̂ we can plot the p.d.f for f on top of the empirical
histogram of samples drawn using the accept-reject algorithm. See Figure 14 (right).

Exercise 2.19

This exercise has been already performed. See Exercise 2.8 on Page 17
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Exercise 2.20 (some more examples with the accept-reject algorithm)

Part (a): Our two densities in this case are

f(x) =
1√
2π

e−
x2

2 and g(x) =
1

π

(

γ

γ2 + x2

)

.

We will pick the parameter γ to make the accept-reject algorithm as efficient as possible.
We have the ratio of the desired density to the candidate density given by

f(x)

g(x)
=

πe−
x2

2 (γ2 + x2)√
2πγ

=

√

π

2

(

1

γ

)

(γ2 + x2)e−
x2

2 .

We next find the x value the makes the above expression a maximum. The first derivative
gives

2xe−
x2

2 + (γ2 + x2)e−
x2

2 (−x) = 0 .

or assuming x 6= 0 this means

x2 = 2− γ2 so x = ±
√

2− γ2 .

We thus have
f(x)

g(x)
≤
√

π

2

(

2

γ

)

e
1
2
(γ2−2) .

Lets now pick γ to make this expression as small as possible. The first derivative gives

− 1

γ2
e

1
2
(γ2−2) +

1

γ
e

1
2
(γ2−2)γ = 0 .

or

− 1

γ2
+ 1 = 0 or γ = ±1 .

Using this value for γ we find that

f(x)

g(x)
≤

√
2πe−1/2 .

Thus we will take as our upper bound for the accept-reject algorithm as M =
√
2πe−1/2.

This problem is worked in the R script ex 2 20.R.

Part (b): To begin with we need to find a value of M such that

Ga(x; 4.3, 6.2) ≤ MGa(x; 4, 7) ,

Since we can evaluate the gamma distribution G(x; a, b) (with the parametrization above)
using the R command pgamma(x,a,1/b) we can find the needed value of M using the R

function optimize. We find M = 1.0894. A plot of the functions f(x) and Mg(x) are shown
in Figure 15 (left). Using the accept-reject algorithm the histogram of the drawn samples is
shown in Figure 15 (right). This problem is worked in the R script ex 2 20.R.
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Figure 15: Left: The density f(x) for Exercise 2.20 and the product Mg(x) where M is se-

lected to be the smallest value such that f(x)
g(x)

< M . Right: A histogram of the samples from

a Ga(4.3, 6.2) drawn using the accept-reject algorithm with the candidate density Ga(4, 7).

Exercise 2.21 (the noncentral chi-squared distribution)

Part (a): To show that at noncentral chi-squared distribution χ2
p(λ) is a mixture represen-

tation of of χ2
p+2y and P(λ/2) we will simply calculate the proposed mixture distribution

and show that it equals the probability density function for a noncentral chi-squared dis-
tribution. To begin we recall the density function for a noncentral chi-squared distribution
f(x|λ) which is

f(x|λ) = 1

2

(x

λ

)
p−2
4

I p−2
2

(√
λx
)

e−
λ+x
2 , (17)

where Iν(x) is the modified Bessel function of the first kind and has a series represen-
tation given by

Iν(z) =
(z

2

)ν
∞
∑

j=0

1

j!Γ(ν + j + 1)

(

z2

4

)j

. (18)

We now construct the mixture density suggested. We want to evaluate
∑∞

i=0 pifi(x) where
pi = P(λ/2) and fi(x) = χ2

p+2i. The density function for a χ2
ν is a special case of the Gamma

distribution Ga(α, β) given by Equation 13 with α = ν
2
and β = 1

2
. Using these facts we find
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that the mixture density is given by

f̃(x|λ) =
∞
∑

i=0

P
(

i;
λ

2

)

χ2
p+2i(x) =

∞
∑

i=0

P
(

i;
λ

2

)

Ga
(

x;
p+ 2i

2
,
1

2

)

=

∞
∑

i=0

(

e−λ/2λi

i!2i

)(

1

2

)
p+2i

2 1

Γ
(

p+2i
2

)x
p+2i

2
−1e−

x
2

=
x

p
2
−1

2p/2

( ∞
∑

i=0

λi

i!22i
1

Γ
(

p
2
+ i
)xi

)

e−
λ+x
2 .

We now consider what the expression I p−2
2
(
√
λx) evaluates to. Using Equation 18 We find

I p−2
2
(
√
λx) =

(

(λx)
p−2
2

2

)
p−2
2 ∞
∑

i=0

((λx)/4)i

i!Γ
(

p
2
+ i
) =

(λx)
p−2
2

2
p
2
−1

∞
∑

i=0

λixi

i!22iΓ
(

p
2
+ i
) .

Thus the sum in the expression for f̃(x|λ) in terms of I p−2
2
(
√
λx) is given by

∞
∑

i=0

λixi

i!22iΓ
(

p
2
+ i
) =

2
p
2
−1

(λx)
p−2
4

I p−2
2
(
√
λx) ,

and we can write f̃(x|λ) as

f̃(x|λ) = x
p
2
−1

2
p
2

I p−2
2
(
√
λx)

2
p
2
−1

(λx)
p
4
− 1

2

=
1

2

(x

λ

)
p−2
4

I p−2
2
(
√
λx) ,

which is the probability density function for the noncentral chi-squared distribution showing
the desired equivalence.

Exercise 2.22 (the truncated normal distribution)

Part (b): We will generate a sample from N+(µ, σ2, a) using the given method if the given
sample z from the normal N (µ, σ2) fall in the region z ≥ a. This will happen with a
probability

1√
2πσ

∫ ∞

a

e−
(x−µ)2

2σ2 dx .

If we let v = −
(

x−µ
σ

)

then dv = −dx
σ

and the above probability can be written as

∫
µ−a
σ

−∞

1√
2π

e−
v2

2 dv ≡ Φ

(

µ− a

σ

)

,

the result we were trying to show. Since this is the probability of one acceptance then by
recalling the probabilities of the negative binomial random variable the number of trials (on
average) to get one acceptance is the reciprocal of this number or

1

Φ
(

µ−a
σ

) .
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If a is large then Φ
(

µ−a
σ

)

is small and the number of simulations to get one valid sample will
be large.

Part (c): We find

f(x)

g(x)
=





exp
(

−x2

2

)

1√
2π

exp
(

− (x−µ̄)2

2

)



 Ix≥a =
√
2π exp

(

−x2

2
+

1

2
(x− µ̄)2

)

Ix≥a

=
√
2π exp

(

−xµ̄ +
1

2
µ̄2

)

Ix≥a .

We next want to maximize this as a function of x over the domain x ≥ a. As x → +∞ when
µ̄ > 0 the above expression decreases to zero. Thus the largest value for this ratio happens
when x = a, where it equals

√
2π exp

(

−aµ̄ +
1

2
µ̄2

)

.

Now with this expression we want to pick the value of µ̄ that minimizes this expression. This
will happen at the minimum of the argument of the exponential or −aµ̄ + 1

2
µ̄2. Taking the

derivative of this expression, setting the result equal to zero and solving for µ̄ we get µ̄ = a.
Since the second derivative of this linear expression with respect to µ̄ is +1 > 0 the value
µ̄ = a is a minimum. Thus this minimum is given by

√
2π exp

{

−a2

2

}

.

Random draws from a truncated normal distribution are generated using the accept-reject
algorithm with a Gaussian for the candidate density are performed in the R script ex 2 21.R.
When that script is run it produces the plot shown in Figure 16 (left).

Part (d): We find

f(x)

g(x)
=





exp
(

−x2

2

)

α exp (−α(x− a))



 Ix≥a = α exp

(

−x2

2
+ α(x− a)

)

Ix≥a .

We need to pick the value of x that maximizes the right-hand-side of the above. Taking
the derivative of the argument of the exponent gives −x + α = 0 or x = α. The second
derivative of this argument is −1 < 0 showing that x = α is indeed a maximum. Since x ≥ a
by the requirements of the truncated normal distribution in order to use the solution x = α
we must have α ≥ a. When we put in x = α we get

f(x)

g(x)
≤ 1

α
exp

{

α2

2
− αa

}

. (19)

Next we want to pick α such that α ≥ a and the above expression is a minimum. As α

increases the expression exp
{

α2

2
− αa

}

increases while the fraction 1
α
decreases, thus there

maybe an α point, such that the above expression is a minimum. Taking the first derivative
of the right-hand-side with respect to α and setting the result equal to zero gives

− 1

α2
exp

{

α2

2
− αa

}

+
1

α
exp

{

α2

2
− αa

}

(α− a) = 0 .
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Figure 16: Left: The normalized density f(x) (in brown) for Exercise 2.21 and a histogram
of samples drawn using the accept reject algorithm and a Gaussian candidate density Right:
Using the translated exponential density as the candidate density. These plots look the same,
showing that both methods are drawing correct samples from f(x).

When we solve for α we get

α =
a±

√
a2 + 4

2
.

To make sure that α ≥ a we must take the positive sign in the above expression. With this
value for α specified we can evaluate the right-hand-side of the fraction f(x)

g(x)
using Equation 19

do determine the upper bound M needed in the accept-reject algorithm. Random draws
from a truncated normal distribution are generated using the accept-reject algorithm with
a translated exponential distribution for the candidate density are computed in the R script
ex 2 21.R. When that script is run it produces the plot shown in Figure 16 (right).

Exercise 2.23 (Monte-Carlo samples from the posterior distribution)

Part (a): The bound M in the accept-reject algorithm when the target density is π(θ|x)
and the candidate density is π(θ) must satisfy π(θ|x)

π(θ)
≤ M . From the Bayes’ rule statement

and ignoring constants (that don’t affect the results of the accept-reject algorithm) we have

π(θ|x)
π(θ)

=
∏

i

f(xi|θ) .
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Thus the smallest value (and optimal) M can be is when we maximize the right-hand-side
with respect to θ which is the maximum likelihood estimator (MLE). Thus

π(θ|x)
π(θ)

≤ maxθ
∏

i

f(xi|θ) .

Part (b): If Xi ∼ N(θ, 1) and θ ∼ C(0, 1) = 1
π(1+θ2)

, then π(θ|x) is proportional to

π(θ|x) ∝ 1

π(1 + θ2)

1

(2π)n/2

n
∏

i=1

e−
(xi−θ)2

2 .

We need to find the MLE for the factor
∏n

i=1 e
− (xi−θ)2

2 . By taking natural logarithms of this
expression, taking the derivative of the result with respect to θ, setting the result equal to
zero, and solving for θ we find that the maximum likelihood estimate is given by θ̄ = 1

n

∑n
i=1 xi

or the sample average. Then the value of M to use in the accept-reject algorithm is given
by

M =
n
∏

i=1

f(xi|θ̄) =
1

(2π)n/2

n
∏

i=1

e−
(xi−θ̄)2

2 .

Part (b): In the R script ex 2 23.R we perform the required computations for this problem.
We do this for n = 10, n = 100, and n = 1000. Since for each value of n we are getting some
number of samples from the posteriori distribution, π(θ|x), we get a distribution of possible
values of θ. We can evaluate how our estimation procedure is performing by computing
the mean and variance of this empirical posteriori distribution. By running the above code
several times for different values of n we find

n= 10; mean(theta samples)= 3.126708; var(theta samples)= 0.099886

n= 100; mean(theta samples)= 2.959917; var(theta samples)= 0.010182

n= 300; mean(theta samples)= 2.875398; var(theta samples)= 0.003364

n= 500; mean(theta samples)= 2.999528; var(theta samples)= 0.002046

showing improvement and convergence to 3 as n increases.
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Chapter 3 (Monte Carlo Integration)

Exercise 3.1 (Monte Carlo convergence)

Part (a): We work this exercise in the R file ex 3 1.R. The three integrands in the numer-
ator/denominator are plotted in Figure 17 (top/bottom). We see that the integral of the
integrand of the denominator should be equal for each value of x, while the value of the
numerator will change depending on x. Note that we can write the given expression for δ(x)
in the form

δ(x) =

∫∞
−∞ θ

(

1
π(1+θ2)

)(

1√
2π
e−

(x−θ)2

2

)

dθ

∫∞
−∞

(

1
π(1+θ2)

)(

1√
2π
e−

(x−θ)2

2

)

dθ
,

which shows explicitly that we have the expressions for a Cauchy and a normal density in
each integrand. Thus we can approximate these two integrals by either drawing samples
from a Cauchy distribution (and inserting them into a normal density) or drawing samples
from a normal density (and inserting them into a Cauchy distribution). When we do the
first of these two procedures for 104 random Cauchy draws we get

[1] "MC integration estimation using cauchy draws ..."

[1] "x= 0; N= 10000; MC estimate= 0.001614"

[1] "x= 2; N= 10000; MC estimate= 1.263821"

[1] "x= 4; N= 10000; MC estimate= 3.411461"

The exact numbers one gets depends on the value of the numerical random seed.

Part (b): To monitor the convergence of a Monte Carlo integration we can generate the
estimates of the integrals (with their standard errors) as a function of the number of sam-
ples used to compute the estimate. Rather than do this for both he numerator and the
denominator of the function δ(x) for the remaining parts of this problem I’ll just consider
convergence of the integral in the numerator for various values of x. I’ll look at estimating
the integral using each of the Monte Carlo methods discussed above. In Figure 18 we plot
the integrals estimate using Cauchy draws in black (with error boundaries in red) and the
integral estimate using normal draws in gray (with pink error bars). In general, it looks like
the normal random draws give better estimates much sooner.

Notes on Example 3.4

For the estimator

Φ̂(t) =
1

n

n
∑

i=1

Ixi≤t ,
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Figure 17: The integrands for Exercise 3.1.
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Figure 18: Plots of the MC convergence of the integral in the numerator for Exercise 3.1
using two different methods.

we can compute the exact variance using

Var

(

1

n

n
∑

i=1

Ixi≤t

)

=
1

n2

n
∑

i=1

Var(Ixi≤t) =
n

n2
Var(Ixi≤t) =

1

n
Φ(t)(1− Φ(t)) ,

since IXi≤t is a Bernoulli RV (each Xi is random). Since Φ(0) = 1/2 we have that when
t = 0 the variance of this estimator has variance approximately given by

(

1
2

) (

1
2

)

1
n
= 1

4n
.

Exercise 3.2 (the variance of the ratio
IXi≤t

Φ(t)
)

We compute

Var

(

IXi≤t

Φ(t)

)

=
1

Φ(t)2
Var (IXi≤t) =

1

Φ(t)2
Φ(t)(1 − Φ(t)) =

1− Φ(t)

Φ(t)
,

since IXi≤t is a Bernoulli RV and using the formula for what the variance of a Bernoulli is
given by. Since Φ(t) → 0 as t → −∞ this variance goes to +∞.

If we are attempting to estimate the error in the estimate of Φ(t) using the approximation
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Φ̂(t) we can compute the relative error from

Var

(

Φ̂− Φ

Φ

)

= Var

(

Φ̂

Φ
− 1

)

= Var

(

Φ̂

Φ

)

= Var

(

1

n

n
∑

i=1

IXi≤t

Φ(t)

)

=
n

n2
Var

(

IXi≤t

Φ(t)

)

=
1

n

(

1− Φ(t)

Φ(t)

)

.

To get a variance less than some accuracy (say 10−8) we would require n such that

1

n

(

1− Φ(t)

Φ(t)

)

< 10−8 .

We can solve for n in the above expression to determine the number of samples to use.

Exercise 3.3 (tail probabilities)

To evaluate the tail probability we need to evaluate the integral

Pr(X > 20) =

∫ ∞

20

1√
2π

e−
y2

2 dy .

To do that we let v = 1
y
. Then y = 1

v
so dy = − 1

v2
dv. The limits of the integral transform as

y = +∞ we have v = 0 and when y = +20 we have v = 1
20
. Thus we get the above is equal

to

Pr(X > 20) =

∫ 1
20

0

1√
2π

e−
1

2v2

(

dv

v2

)

=
1√
2π

∫ 1
20

0

e−
1

2v2

v2
dv .

This last integral can be approximated using random draws from a U(0, 1
20
) distribution and

evaluating them in the integrand of the integral. This is done in the R program ex 3 3.R.
When that script is run we get the plot given in Figure 19.
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Figure 19: Plots of the integrand (top) and the MC convergence (as a function of samples)
of the integral given in Exercise 3.3 (bottom).
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