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Introduction

Chapter 1: Introduction to Stochastic Processes

Chapter 1: Problems

Problem 1 (the variance of X + Y )

We are asked to consider Var(X + Y ) which by definition is given by

Var(X + Y ) = E[((X + Y ) − E[X + Y ])2]

= E[(X + Y − E[X] − E[Y ])2]

= E[(X − E[X] + Y − E[Y ])2]

= E[(X − E[X])2 + 2E[(X − E[X])(Y − E[Y ])] + E[(Y − E[Y ])2]

= Var(X) + 2Cov(X, Y ) + Var(Y ) ,

as we were asked to show.

∗
wax@alum.mit.edu

1



Problem 2 (moments of X in terms of its characteristic function)

From the definition of the characteristic function of a random variable X

φ(u) = E[eiuX ] ,

we see that the first derivative of φ with respect to u is given by

φ′(u) = E[iXeiuX ] .

Evaluating this expression at u = 0 and dividing by i we find that

φ′(0)

i
= E[X] .

Now taking the n-th derivative of φ(u) we have that

dnφ

dun
= E[inXneiuX ] .

Further evaluating this expression at u = 0 we have that

1

in
dnφ(0)

dun
= E[Xn] ,

as we were asked to show.

Problem 3 (the sum of two Poisson random variables)

We can evaluate the distribution of X+Y by computing the characteristic function of X+Y .
Since X and Y are both Poisson random variables the characteristic functions of X + Y is
given by

φX+Y (u) = φX(u)φY (u)

= eλ1(eiu
−1)eλ2(eiu

−1)

= e(λ1+λ2)(eiu
−1) .

From the direct connection between characteristic functions to and probability density func-
tions we see that the random variable X + Y is a Poisson random variable with parameter
λ1 + λ2, the sum of the Poisson parameters of the random variables X and Y .

Problem 4 (the distribution of X given X + Y )

We want the conditional distribution of X given X + Y . Define the random variable Z by
Z = X + Y . Then from Bayes’ rule we find that

p(X|Z) =
p(Z|X)p(X)

p(Z)
.



We will evaluate each expression in tern. Now p(X) is the probability density function of a

Poisson random variable with parameter λ1 so p(X = x) =
e−λ1λx

1

x!
. From problem 3 in this

chapter we have that P (Z = z) = e−(λ1+λ2)(λ1+λ2)z

z!
. Finally to evaluate p(Z = z|X = x) we

recognize that this is equivalent to p(Y = z−x), which we can evaluate easily. We have that

p(Z = z|X = x) = p(Y = z − x) =
e−λ2λz−x

2

(z − x)!
.

Putting all of these pieces together we find that

p(X = x|Z = z) =

(

e−λ2λz−x
2

(z − x)!

)(

e−λ1λx
1

x!

)(

z!

e−(λ1+λ2)(λ1 + λ2)z

)

=

(

z!

x!(z − x)!

)

λx
1λ

z−x
2

(λ1 + λ2)z

=

(

z
x

)(

λ1

λ1 + λ2

)x(
λ2

λ1 + λ2

)z−x

.

Defining p = λ1

λ1+λ2
and q = 1 − p = λ2

λ1+λ2
our density above becomes

p(X = x|Z = z) =

(

z
x

)

px(1 − p)z−x ,

or in words p(X = x|Z = z) is a Binomial random variable with parameters (n, p) =
(z, λ1

λ1+λ2
).

Problem 5 (a Poisson random variable with a random rate)

We are told that X is a Poisson random variable with parameter λ, but λ is itself an
exponential random variable with mean 1/µ. The first statement means that

p(x|λ) =
e−λλx

x!
.

and p(λ) = µe−µλ. We want to compute p(x), which we can do by conditioning on all possible
values of λ. This breaks the problem up into two expression that we know. We have

p(x) =

∫

p(x, λ)dλ =

∫

p(x|λ)p(λ)dλ .

With the definitions above we have that p(x) is given by

p(x) =

∫

∞

λ=0

e−λλx

x!
µe−µλdλ

=
µ

x!

∫

∞

λ=0

e−(µ+1)λλxdλ .



Letting v = (1 + µ)λ, so that dv = (1 + µ)dλ the above integral becomes

p(x) =
µ

x!

∫

∞

0

e−v vx

(1 + µ)x

dv

(1 + µ)

=
µ

x!(1 + µ)x+1

∫

∞

0

e−vvxdv

=
µ

x!(1 + µ)x+1
x!

=
µ

(1 + µ)x+1
.

Defining p = 1
1+µ

and

q = 1 − p = 1 −
1

1 + µ
=

1 + µ − 1

1 + µ
=

µ

1 + µ
,

our density above becomes

p(x) =

(

1

1 + µ

)x(
µ

1 + µ

)

= pxq ,

or in words p(x) is a geometric random variable with parameter p = 1
1+µ

.

Problem 6 (marking chips in an urn)

Let N be the random variable denoting the draw where a previously marked (or colored)
chip is drawn. We see that P{N = 1} = 0, since no chip has been selected previously when
the first draw is performed. Also P{N = 2} = 1/n, since only one chip is marked from the
n total in the urn. We can construct other probabilities by following the same logic. We find
that

P{N = 3} = 1

(

1 −
1

n

)(

2

n

)

.

Which can be reasoned as follows. In the first draw there are no marked chips so with
probability one we will not draw a colored chip on the first draw. On the second draw only
one chip is marked so we will not draw a marked chip with probability

(

1 − 1
n

)

. Finally,
since N = 3 we must draw a marked chip on the third draw which happens with probability
2
n
. For N = 4 we find that

P{N = 4} = 1

(

1 −
1

n

)(

1 −
2

n

)(

3

n

)

.

which can be reasoned as before. In general we find that

P{N = k} = 1

(

1 −
1

n

)(

1 −
2

n

)(

1 −
3

n

)

· · ·

(

1 −
k − 2

n

)(

k − 1

n

)

.

Where this expression is valid for 1 ≤ k ≤ n + 1. We can at least check that this result is a
valid expression to represent a probability by selecting a value for n and verifying that when
we sum the above over k for 1 ≤ k ≤ n + 1 we sum to one. A verification of this can be
found in the Matlab file chap 1 prob 6.m.



Problem 7 (trying keys at random)

Part (a): If unsuccessful keys are removed as we try them, then the probability that the
k-th attempt opens the door can be computed by recognizing that all attempts up to (but
not including) the k-th have resulted in failures. Specifically, if we let N be the random
variable denoting the attempt that opens the door we see that

P{N = 1} =
1

n

P{N = 2} =

(

1 −
1

n

)

1

n − 1

P{N = 3} =

(

1 −
1

n

)(

1 −
1

n − 1

)

1

n − 2
...

P{N = k} =

(

1 −
1

n

)(

1 −
1

n − 1

)(

1 −
1

n − 2

)

· · ·

(

1 −
1

n − (k − 2)

)

1

n − (k − 1)
.

The expectation would be computed using the standard formula E[N ] =
∑n

k=1 kP{N = k}.
We can at least check that this result is a valid expression to represent a probability by
selecting a value for n and verifying that when we sum the above over k for 1 ≤ k ≤ n we
sum to one. A verification of this can be found in the Matlab file chap 1 prob 7.m, along
with explicit calculations of the mean and variance of N .

Part (b): If unsuccessful keys are not removed then the probability that the correct key is
selected at draw k is a geometric random with parameter p = 1/n. Thus our probabilities
are given by P{N = k} = (1 − p)k−1p, and we have an expectation and a variance given by

E[N ] =
1

p
= n

Var(N) =
1 − p

p2
= n(n − 1) .

Problem 8 (the variance of Y in terms of the conditional variance)

We begin by recalling the definition of the conditional variance which is given by

Var(Y |X) = E[(Y − E[Y |X])2|X] .

In this problem we want to show that

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X]) .

Consider the definition of Var(Y |X) by expanding the quadratic. We find that

Var(Y |X) = E[Y 2 − 2Y E[Y |X] + E[Y |X]2|X]

= E[Y 2|X] − 2E[Y E[Y |X]|X] + E[E[Y |X]2|X] .



Now E[Y |X] is a function of X (since it is defined as
∫

yp(y|x)dy) so the nested expectation
in the second term above becomes

E[Y E[Y |X]|X] = E[Y |X]E[Y |X] = E[Y |X]2 ,

while the third term in the above becomes

E[E[Y |X]2|X] = E[Y |X]2E[1|X] = E[Y |X]2 .

So will all of these substitutions the expression for Var(Y |X) above becomes

Var(Y |X) = E[Y 2|X] − 2E[Y |X]2 + E[Y |X]2

= E[Y 2|X] − 2E[Y |X]2 + E[Y |X]2

= E[Y 2|X] − E[Y |X]2 .

Taking the expectation of the above with respect to X we have

E[Var(Y |X)] = E[E[Y 2|X]] − E[E[Y |X]2]

= E[Y 2] − E[E[Y |X]2] ,

using the properties of nested expectation. Subtracting E[Y ]2 from both sides and moving
E[E[Y |X]2] to the left hand side we obtain

E[Y 2] − E[Y ]2 = E[Var(Y |X)] + E[E[Y |X]2] − E[Y ]2 .

Now the left hand side of the above is equivalent to Var(Y ) and E[Y ]2 = E[E[Y |X]]2 (using
the properties of nested expectation). With these two substitutions the expression for Var(Y )
above becomes

Var(Y ) = E[Var(Y |X)] + E[E[Y |X]2] − E[E[Y |X]]2

= E[Var(Y |X)] + Var(E[Y |X]) .

Problem 9 (the expected amount spent)

We will assume that for this problem that N (the number of customers) is a constant and
not a random variable. Let Xi be the random variable denoting the amount spent by the
ith customer. Then the total amount of money spent in the store is given by

T =
N
∑

i=1

Xi .

So the expected amount of money is given by

E[T ] =

N
∑

i=1

E[Xi] = E[Xi] · N



Where E[Xi] =
∫

xdF (x), and F (x) is the cumulative distribution function for the random
variables Xi. Since we assume that the variables Xi are independent we have

Var(T ) =

N
∑

i=1

Var(Xi) = NVar(Xi) .

Here Var(Xi) is given by the usual expression

Var(Xi) =

∫

x2dF (x) −

(
∫

xdF (x)

)2

.

Problem 10 (an independent increments process is also a Markov process)

Let assume that our stochastic process {X(t), t ∈ T} has independent increments. This
means that for all choices of times t0 < t1 < t2 < · · · < tn then the n random variables

X(t1) − X(t0), X(t2) − X(t1), · · · , X(tn) − X(tn−1) ,

are independent. We desire to show that {X(t), t ∈ T} is then a Markov process. The
definition of a Markov process is that for all sequences of times t0 < t1 < · · · < tn−1 < t and
process values x0 < x1 < · · · < xn−1 < x we have the following identity on the cumulative
probability density of X(t) conditioned on the total sample path

P{X(t) ≤ x|X(t0) = x0, X(t1) = x1, · · · , X(tn−1) = xn−1} = P{X(t) ≤ x|X(tn−1) = xn−1} .

To show this, for our independent increments process consider the expression

P{X(t) ≤ x|X(t0) = x0, X(t1) = x1, · · · , X(tn−1) = xn−1} ,

which we can write (introducing increment variables) as follows

P{X(t) − X(tn−1) ≤ x − xn−1| X(tn−1) −X(tn−2) = xn−1 − xn−2,

X(tn−2) −X(tn−3) = xn−2 − xn−3,

· · ·

X(t2) −X(t1) = x2 − x1,

X(t1) −X(t0) = x1 − x0,

X(t0) −X(0) = x0 − X(0)}

For any X(0) < x0. Then the property of independent increments states that this expression
is equal to

P{X(t) − X(tn−1) ≤ x − xn−1} .

This is because each random variable (in the conditional expression) is an increment random
variable and our stochastic process is an independent increments process. To finish this
problem simply requires that we next recognize that the above probability is equivalent to

P{X(t) ≤ x − xn−1 + X(tn−1)} = P{X(t) ≤ x|X(tn−1) = xn−1} .

Since this last expression is equivalent to the definition of a Markov process we have shown
that our independent increments process is a Markov process.



Problem 11 (the probability all samples are greater than x)

Part (a): Now P{Zn > x} = 1 − P{Zn ≤ x}. Since P{Zn ≤ x} is the cumulative
distribution function for Zn (defined as Zn = min(Y1,n, Y2,n, · · · , Yn,n)) we can evaluate the
cumulative distribution function by first noting that the distribution function for Zn is given
by

fZn
(z) = n(1 − F (z))n−1f(z) .

Where f(·), and F (·) is the distribution and cumulative distribution function for the random
variables Yn,i. For a derivation of this result see [1]. In our case Yn,i is a uniform random
variable with range (0, t) and so f(z) = 1

t
, and F (z) = z

t
. We thus have that

fZn
(z) = n

(

1 −
z

t

)n−1 1

t
,

so that the cumulative distribution function for Zn is given by

P{Zn ≤ x} ≡

∫ x

0

fZn
(ξ)dξ =

∫ x

0

n

(

1 −
ξ

t

)n−1
1

t

= 1 −
(

1 −
x

t

)n

.

So that
P{Zn > x} = 1 −

(

1 −
(

1 −
x

t

)n)

=
(

1 −
x

t

)n

.

Part (b): Assuming that t is a function of n (t = t(n)) such that

lim
n→∞

n

t(n)
= λ ,

we can evaluate the requested limit as follows

lim
n→∞

P{Zn > x} = lim
n→∞

(

1 −
x

t

)n

= lim
n→∞

(

1 −

(

n
t

)

x

n

)n

.

To further evaluate this expression, we remember the following famous limit from calculus

lim
n→∞

(

1 +
ξ

n

)n

= eξ ,

from which we see that the above limit is equal to e−λx as claimed.

Problem 12 (continuous solutions to two functional equations)

Part (a): Consider the functional equation 6 which is f(t + s) = f(t)f(s). We will solve
this problem by computing f(·) at an increasing number of points on the real line and then



finally concluding what the function f(·) must be. We begin by computing f at zero. Letting
t = s = 0 in our functional equation we find that

f(0) = f(0)2 or f(0) = 1 .

We will now show that to compute f(t) for t an positive integer. We begin by letting
s = 1, we find that f(t + 1) = f(1)f(t), in the same way we have that f(t + 2) is given by
f(t + 2) = f(1)f(t + 1) = f(1)2f(t). Generalizing this process we see that for any positive
integer s we have that

f(t + s) = f(1)sf(t) .

At the same time these manipulations can be used to compute f for negative integers. We
find that

f(t − s) = f(1)−sf(t) .

From which if t = 0 we find that f(s) = f(1)s, and f(−s) = f(1)−s. In both of these
expressions the value of f(1) is an unknown constant. The benefit of deriving these expres-
sions is that we see that to evaluate f in any interval of the real line can be reduced to an
equivalent problem of evaluating f(·) on the interval 0 ≤ t ≤ 1, and multiplying this result
by a power of f(1). Thus we now attempt to evaluate f(·) for rational numbers s and t such
that 0 ≤ s, t ≤ 1. To begin lets consider s = 1

2
and t = 1

2
. We find that

f(1) = f(
1

2
)f(

1

2
) so f(

1

2
) = f(1)

1
2 .

Letting t = 1
3

and s = 2
3

we find that

f(1) = f(
1

3
)f(

2

3
) = f(

1

3
)f(

1

3
+

1

3
) = f(

1

3
)f(

1

3
)f(

1

3
) = f(

1

3
)3 so f(

1

3
) = f(1)

1
3 .

Continuing this train of thought we see that in general then

f(
1

n
) = f(1)

1
n for n > 0 ,

and thus we have evaluated f(·) at these specific fractions. Using our functional relationship
we can evaluate f at the fractions k

n
as follows

f(
k

n
) = f(

1

n
)f(

k − 1

n
) = f(

1

n
)f(

1

n
) · · ·f(

1

n
) = f(

1

n
)k = f(1)

k
n .

And thus we have evaluated f for a rational values r = k
n
. Using the known continuity of f

we can then conclude that for any real x,

f(x) = f(1)x .

Now defining λ such that f(1) = e−λ which is equivalent to λ = − ln(f(1)) our function f
becomes (in terms of λ)

f(x) = e−λx ,

as expected.

Part (b): Consider the functional equation 7 which is f(t + s) = f(t) + f(s). We will
solve this problem by computing f(·) at an increasing number of points on the real line and



then finally concluding what the function f(·) must be. We begin by computing f at zero.
Letting t = s = 0 in our functional equation we find that

f(0) = f(0) + f(0) or f(0) = 0 .

We will now show that to compute f(t) for t an positive integer. Consider

f(t) = f(t − 1 + 1) = f(t − 1) + f(1) = f(t − 2) + 2f(1) = · · · = tf(1) .

We can compute f for negative t by letting t be positive and s = −t so that our functional
equation 7 becomes

f(0) = f(t) + f(−t) ,

or since f(0) = 0 we then have that

f(−t) = −f(t) .

We thus have expressions for f for all integer x, in terms of an unknown constant f(1). As
in Part (a) of this problem if we desire to evaluate f at an x that is not in the interval
0 < x < 1, using the functional relationships possessed by f we can simplify the problem to
one where we only need to evaluate f inside the interval (0, 1). To show an example of this
let x be a positive real number with “integer” part n such that x = n + ξ, where 0 < ξ < 1.
We find that

f(x) = f(n + ξ)

= f(1 + (n − 1) + ξ)

= f(1) + f(n − 1 + ξ)

= 2f(1) + f(n − 2 + ξ)

= · · ·

= nf(1) + f(ξ) .

Thus we have reduced our problem to one where we only have to evaluate f(x) for 0 < x < 1.
Lets begin to evaluate f in this range by expression f(x) when x is rational. To begin let
t = 1

n
, and s = 1

n
, for which we find that

f(
1

n
+

1

n
) = f(

1

n
) + f(

1

n
) = 2f(

1

n
) .

In the same way we find that f( k
n
) = kf( 1

n
). Letting k = n in this expression gives f( 1

n
) = f(1)

n

so that

f(
k

n
) = kf(

1

n
) =

k

n
f(1) .

This result shows that for x rational we have f(x) = xf(1). Using the continuity of f we
have that for real x, that f(x) = xf(1). Defining c = f(1) we see that this is equivalent to
f(x) = cx, as we were asked to show.



Problem 13 (the variance of the Wiener process)

A Wiener process is defined as a stochastic process {X(t), t ≥ 0} if:

i {X(t), t ≥ 0} has stationary, independent increments.

ii For every t ≥ 0, X(t) is normally distributed with mean 0.

iii X(0) = 0.

Now introduce the function f(t) as f(t) ≡ Var(X(t)), and consider the expression f(t + s).
We find that

f(t + s) = Var(X(t + s))

= Var((X(t + s) − X(s)) + (X(s) − X(0))) .

Where we have explicity introduced increment variables so that we can take advantage of
the increments properties of the Wiener process. Specifically since X(·) has independent
increments the above can be written as

Var(X(t + s) − X(s)) + Var(X(s) − X(0)) .

Now because X(·) is stationary, we know that the distribution of the random variables
X(t2 + s) − X(t1 + s) and X(t2) − X(t1) is the same, the variance

Var(X(t + s) − X(s)) = Var(X(t) − X(0)) = Var(X(t)) = f(t) .

So that the function f(·) must satisfy the following functional equation

f(t + s) = f(t) + f(s) .

From Problem 12 in this chapter the unique continuous solution to this function equation is
f(t) = ct. Since Var(X(t)) > 0, we can assume our constant c is positive, and take it to be
σ2, so that f(t) = σ2t, as expected.

Chapter 2: The Poisson Process

Chapter 2: Problems

Problem 1 (equivalent definitions of a Poisson process)

We are asked to prove the equivalence of two definitions for a Poisson process. The first
definition (Definition 2.1 in the book) is the following

The counting process {N(t), t ≥ 0} is said to be a Poisson process if:



i N(0) = 0

ii {N(t), t ≥ 0} has independent increments

iii The number of events in any interval of length t has a Poisson distribution with mean
λt. That is for s, t ≥ 0, we have

P{N(t + s) − N(s) = n} = e−λt (λt)n

n!
n ≥ 0

We want to show that this definition is equivalent to the following (which is Definition 2.2
in the book)

i N(0) = 0

ii {N(t), t ≥ 0} has stationary, independent increments

iii P{N(t) ≥ 2} = o(t)

iv P{N(t) = 1} = λt + o(t)

We begin by noting that both definitions require N(0) = 0. From (ii) in Definition 2.1
we have the required independent increments needed in Definition 2.2 (ii). From (iii) in
Definition 2.1 we have that the distributions of X(t2 + s) − X(t1 + s) is given by a Poisson
distribution with mean λ(t2 − t1) and the distribution of random variable X(t2) − X(t1) is
also given by a Poisson distribution with mean λ(t2 − t1) showing that the process {N(t)}
also has stationary increments and thus satisfies the totality of Definition 2.2 (ii).

From (iii) in Definition 2.1 we have with s = 0 (and the fact that N(0) = 0) that

P{N(t) = n} =
e−λt(λt)n

n!
.

So that

P{N(t) ≥ 2} =

∞
∑

n=2

e−λt(λt)n

n!

= e−λt

[

∞
∑

n=0

(λt)n

n!
− 1 − λt

]

= e−λt
[

eλt − 1 − λt
]

= 1 − e−λt − λte−λt ,

which (we claim) is a function that is o(t). To show that this is true consider the limit as t
goes to zero. Thus we want to evaluate

lim
t→0

1 − e−λt − λte−λt

t
.



Since this is an indeterminate limit of type 0/0 we must use L’Hopital’s rule which gives that
the above limit is equal to the limit of the derivative of the top and bottom of the above or

lim
t→0

λe−λt − λe−λt + λ2te−λt

1
= λ − λ = 0 .

Proving that this expression is o(t) (since this limit equaling zero is the definition) and
proving that P{N(t) ≥ 2} = o(t). The final condition required for Definition 2.2 is (iv). We
have from Definition 2.1 (iii) that

P{N(t) = 1} =
e−λt(λt)

1!
= λte−λt

To show that this expression has the correct limiting behavior as t → 0, we first prove that

e−λt = 1 − λt + o(t) as t → 0 ,

Which we do by evaluating the limit

lim
t→0

e−λt − 1 + λt

t
= lim

t→0

−λe−λt + λ

1
= −λ + λ = 0 .

Where we have used L’Hopital’s rule again. With this result we see that

P{N(t) = 1} = λt(1 − λt + o(t))

= λt − λ2t2 + o(t2)

= λt + o(t) ,

showing the truth of condition (iv) in Definition 2.2.

Problem 2 (we can derive the fact that P{N(t) = 1} = λt + o(t))

Following the hint for this problem we will try to derive a functional relationship for P{N(t) =
0}, by considering P{N(t + s) = 0}. Now if N(t + s) = 0, this event is equivalent to the
event that N(t) = 0 and N(t + s) − N(t) = 0. so we have that

P{N(t + s) = 0} = P{N(t) = 0, N(t + s) − N(t) = 0}

= P{N(t) − N(0) = 0, N(t + s) − N(t) = 0}

= P{N(t) − N(0) = 0}P{N(t + s) − N(t) = 0}

= P{N(t) = 0}P{N(s) = 0} .

When we used the property of stationary independent increments. Thus defining f(t) ≡
P{N(t) = 0}, from the above we see that f satisfies

f(t + s) = f(t)f(s) .

By the discussion in the book the unique continuous solution to this equation is f(t) = e−λt,
for some λ. Thus we have that P{N(t) = 0} = e−λt. Using (iii) from Definition 2.2 and the
fact that probabilities must be normalized (sum to one) we have that

P{N(t) = 0} + P{N(t) = 1} + P{N(t) ≥ 2} = 1 .



which gives us (solving for P{N(t) = 1}) the following

P{N(t) = 1} = 1 − P{N(t) = 0} − P{N(t) ≥ 2}

= 1 − e−λt − o(t)

= 1 − (1 − λt + o(t)) − o(t)

= λt + o(t) ,

as we were to show.

Problem 3 (events registered with probability p)

Let M(t) be the process where we register each event i from a Poisson process (with rate λ)
with probability p. Then we want to show that M(t) is another Poisson process with rate
pλ. To do so consider the probability that M(t) has counted j “events”, by conditioning on
the number of observed events from the original Poisson process. We find

P{M(t) = j} =
∞
∑

n=0

P{M(t) = j|N(t) = n}
e−λt(λt)n

n!

The conditional probability in this sum can be computed using the rule defined above since
if we have n original events the number of derived events is a binomial random variable with
parmeters (n, p). Specifically then we have

P{M(t) = j|N(t) = n} =







(

n
j

)

pj(1 − p)n−j j ≤ n

0 j > n .

Putting this result into the original expression for P{M(t) = j} we find that

P{M(t) = j} =

∞
∑

n=j

(

n
j

)

pj(1 − p)n−j

(

e−λt(λt)n

n!

)

To evaluate this we note that

(

n
j

)

1
n!

= 1
j!(n−j)!

, so that the above simplifies as following

P{M(t) = j} =
e−λtpj

j!

∞
∑

n=j

1

(n − j)!
(1 − p)n−j(λt)n

=
e−λtpj

j!

∞
∑

n=j

1

(n − j)!
(1 − p)n−j(λt)j(λt)n−j

=
e−λt(pλt)j

j!

∞
∑

n=j

((1 − p)λt)n−j

(n − j)!

=
e−λt(pλt)j

j!

∞
∑

n=0

((1 − p)λt)n

n!

=
e−λt(pλt)j

j!
e(1−p)λt = e−pλt (pλt)j

j!
,

from which we can see M(t) is a Poisson process with rate λp.



Problem 4 (the correlation of a Poisson process)

Let {N(t), t ≥ 0} be a Poisson process with rate λ. Then manipulating the expression we
desire into increment variables and remembering that N(0) = 0, we find

E[N(t)N(t + s)] = E[N(t)(N(t + s) − N(s) + N(s))]

= E[N(t)(N(t + s) − N(s))] + E[N(t)N(s)]

= E[(N(t) − N(0))(N(t + s) − N(s))]

+ E[(N(t) − N(0))(N(s) − N(0))]

= E[N(t) − N(0)] E[N(t + s) − N(s)]

+ E[N(t) − N(0)] E[N(s) − N(0)] .

Where we have used the independent increments property of the Poisson process. Now from
the fact that a Poisson process is also a stationary process

E[N(t + s) − N(s)] = E[N(t) − N(0)] = λt .

Thus the above expression becomes

E[N(t)E(t + s)] = λt · λt + λt · λs = λ2t(t − s) .

Problem 5 (the sum of two Poisson processes)

Since N1(t) and N2(t) are both Poisson random variables with parameters λ1t and λ2t re-
spectively, from Problem 3 in Chapter 1 of this book the random variable M(t) defined
by N1(t) + N2(t) is a Poisson random variable with parameter λ1t + λ2t and thus has a
probability of the event M(t) = j given by

P{M(t) = j} =
e−(λ1t+λ2t)(λ1t + λ2t)

j

j!
=

e−(λ1+λ2)t((λ1 + λ2)t)
j

j!
,

showing that M(t) is a Poisson process with rate λ1 + λ2.

For the second part of this problem we want to evaluate

P{N1(t) = 1, N2(t) = 0|N1(t) + N2(t) = 1} ,

which we can do by using the definition of conditional probabilities as

P{N1(t) = 1, N2(t) = 0|N1(t) + N2(t) = 1} =
P{N1(t) = 1, N2(t) = 0}

P{N1(t) + N2(t) = 1}

=
P{N1(t) = 1}P{N2(t) = 0}

P{N1(t) + N2(t) = 1}
.

In the above we have used the independence of the process N1(·) and N2(·). The above then
equals

e−λ1t(λ1t)1

1!
· e−λ2t

e−(λ1+λ2)t((λ1+λ2)t)1

1!

=
λ1

λ1 + λ2

,

as we were to show.



Problem 6 (the probability that N1(t) reaches n before N2(t) reaches m)

Warning: I would appreciate feedback if this solution is not correct in anyway
or if you agree with the solution method.

We are asked to compute the probabilty of the joint event N1(t) = n and N2(t) < m, i.e.

P{N1(t) = n, N2(t) < m} ,

which we will evaluate by conditioning on the event N1(t) = n. We have the above equal to

P{N2(t) < m|N1(t) = n}P{N1(t) = n} .

Now since N1 and N2 are assumed independent, we have that the above equals

P{N2(t) < m}P{N1(t) = n} ,

from which each term can be evaluated. Remembering that for a Poisson procsses with rate
λ, we have that

P{N(t) = n} =
e−λt(λt)n

n!
,

the above is then equal to

P{N1(t) = n, N2(t) < m} =

(

m−1
∑

j=0

e−λ2t(λ2t)
j

j!

)

(

e−λ1t(λ1t)
n

n!

)

.

Problem 7 (the expectation and the variance of N(Y ))

We will compute both of these expressions by conditioning on the value of the random
variable Y e.g. for the first expression E[N(Y )] = E[ E[N(Y )|Y ] ]. Now since E[N(Y )|Y =
y] = λy, we find that

E[N(Y )] = E[λY ] = λE[Y ] .

For the variance calculation we have that Var(N(Y )) = E[N(Y )2] − E[N(Y )]2, from which
we can evaluate the first expression by conditional expectations as earlier. We have that
(remembering the definition of the variance for Poisson random variable) that

E[N(Y )2|Y = y] = λy + λ2y2 ,

so that we have upon taking the expectation with respect to Y that

E[N(Y )2] = λE[Y ] + λ2E[Y 2] .

This gives for the expression Var(N(Y )) the following

Var(N(Y )) = λE[Y ] + λ2E[Y 2] − λ2E[Y ]2

= λE[Y ] + λ2Var(Y ) .



Problem 8 (the infinite server Poisson queue)

From the example in the book, the probability that a customer who arrives at time x will
not be present (i.e. will have completed service) at time t is given by G(t − x). In the
book’s example the corresponding expression was 1 − G(t − x). Recognizing this of the
manipulations carry through from that example. Thus defining

q ≡

∫ t

0

G(t − x)
dx

t
=

∫ t

0

G(x)
dx

t
,

and heavily using the example result we see that

P{Y (t) = j} =
e−λtq(λtq)j

j!
.

Thus Y (t) has a Poisson distribution with a parameter λq = λ
∫ t

0
G(x)dx

t
. In addition, to

this result we recognize that the number of customers who have completed service by time
t is the “complement” of those that are still in the system at time t (this later number is
X(t)). This means that our random variable Y (t) is equivalent to (using the notation from
that section)

Y (t) = N(t) − X(t) .

With these observations we will now prove that X(t) and Y (t) are independent. From the
discussion above we have shown that

P{X(t) = i} =
e−λtp(λtp)i

i!
and P{Y (t) = j} =

e−λtp(λtp)j

j!
.

With N(t) = X(t) + Y (t). To investigate the independence of X(t) and Y (t) consider the
discrete joint density over the pair of variables (X(t), Y (t)) i.e.

P{X(t) = i, Y (t) = j} .

Now using an equivalent expression for Y (t) the above equals

P{X(t) = i, N(t) − X(t) = j} ,

or
P{X(t) = i, N(t) = i + j} .

By the definition of conditional probability we have the above equal to

P{X(t) = i, N(t) = i + j} = P{X(t) = i|N(t) = i + j}P{N(t) = i + j} .

We can directly compute each of these two terms. The first term P{X(t) = i|N(t) = i + j}
is the probability of an binomial random variable with probability of success p, while the
second term is obtained from the fact that N(t) is a Poisson process with rate λ. Thus we



have the above expression equal to (using p + q = 1)

P{X(t) = i|N(t) = i + j}P{N(t) = i + j} =

(

i + j
i

)

pi(1 − p)j

(

e−λt(λt)i+j

(i + j)!

)

=
(i + j)!

i!j!
pi(1 − p)j

(

e−λt(λt)i+j

(i + j)!

)

=
piqj

i!j!
e−λ(p+q)t(λt)i(λt)j

=

(

(λpt)ie−λpt

i!

)(

(λqt)je−λqt

j!

)

= P{X(t) = i}P{Y (t) = j} .

Thus we have shown that the joint density equals the product of the marginal densities the
random variables X(t) and Y (t) are independent.

Problem 9 (sums of jointly varying random variables)

We are told that S1, S2, · · · are the arrival times for a Poisson process, i.e. as an unordered
sequence of numbers these are independent identically distributed random variables with a
uniform distribution function over (0, t). Define the random variable X(t) as

X(t) =

N(t)
∑

i=1

g(Yi, Si) .

Lets begin by finding the characteristic function of this random variable. Closely following
the electronic counter example from the book we see that

φX(t)(u) = E[eiuX(t)]

=
∞
∑

n=0

E[eiuX(t)|N(t) = n]
e−λt(λt)n

n!

Now this internal expectation in terms of the sum of the g functions above given by

E[eiuX(t)|N(t) = n] = E

[

exp

{

iu
n
∑

i=1

g(Yi, Si)

}]

.

Where this expectation is taken with respect to the variables Yi and Si. We know that the
unordered sequence of arrival times Si are uniformly distributed over the interval (0, t). We
will also assume that the cumulative distribution function for Yi is given by G(y). Then
since everything is independent we have that

E

[

exp

{

iu

n
∑

i=1

g(Yi, Si)

}]

= E [exp {iug(Y1, S1)}]
n .



This final expectation can be taken just with respect to one Y and one S variable. By
definition it is equal to (assuming the domain of the y values are given by Ωy)

E [exp {iug(Y1, S1)}] =

∫

Ωy

∫ t

0

eiug(y,s) ds

t
dG(y) ≡ I .

We define this expression as I to save notation. This expression can now put back into the
expression for the characteristic function of X to give

φX(t)(u) = E[eiuX(t)]

=

∞
∑

n=0

In e−λt(λt)n

n!

= e−λt

∞
∑

n=0

(Iλt)n

n!

= e−λteλtI = e−λt(1−I) .

We can evaluate 1 − I by recognizing that since to be properly normalized probability
distributions we must have

1 =

∫

Ωy

∫ t

0

ds

t
dG(y) .

So that

1 − I =

∫

Ωy

∫ t

0

(1 − eiug(y,s))
ds

t
dG(y) .

When we put back in the expression for I we find the characteristic function for X(t) to be
given by

φX(t)(u) = exp

{

−λt

(

∫

Ωy

∫ t

0

(1 − eiug(y,s))
ds

t
dG(y)

)}

.

To evaluate the expectations we now compute E[X(t)] = φ′

X(0)/i. We find that the first
derivative of φX(u) is given by

φ′

X(u) = λt exp

{

−λt

(

∫

Ωy

∫ t

0

(1 − eiug(y,s))
ds

t
dG(y)

)}

×

(

∫

Ωy

∫ t

0

(ig(y, s)eiug(y,s))
ds

t
dG(y)

)

.

Evaluating the above for u = 0 and dividing by i we obtain

E[X(t)] = λt

(

∫

Ωy

∫ t

0

g(y, s)
ds

t
dG(y)

)

= λtE[g(Y, S)]



To compute the variance we need the second derivative of our characteristic function. Specif-
ically, Var(X(t)) = −φ′′

X(0) − E[X(t)]2. We find this second derivative given by

φ′′

X(u) = λ2t2 exp

{

−λt

(

∫

Ωy

∫ t

0

(1 − eiug(y,s))
ds

t
dG(y)

)}

×

(

∫

Ωy

∫ t

0

(ig(y, s)eiug(y,s))
ds

t
dG(y)

)2

+ λt exp

{

−λt

(

∫

Ωy

∫ t

0

(1 − eiug(y,s))
ds

t
dG(y)

)}

×

(

∫

Ωy

∫ t

0

(i2g(y, s)2eiug(y,s))
ds

t
dG(y)

)

.

Which could be simplified further but with more algebra. When we evaluate this for u = 0
we obtain the following

φ′′

X(0) = −λ2t2

(

∫

Ωy

∫ t

0

g(y, s)
ds

t
dG(y)

)2

− λt

(

∫

Ωy

∫ t

0

g(y, s)2ds

t
dG(y)

)

= −λ2t2E[g(Y, S)]2 − λtE[g(Y, S)2] .

With these results then Var(X(t)) is given by

Var(X(t)) = λ2t2E[g(Y, S)]2 + λtE[g(Y, S)2] − λ2t2E[g(Y, S)]2

= λtE[g(Y, S)2] .

Problem 11 (the expectation and variance of a compound Poisson process)

Equation 11 from the book is E[X(t)] = λtE[Y ], which we are asked to prove by using
conditional expectations. Since a compound Poisson process X(t) is defined as X(t) =
∑N(t)

i=1 Yi, where N(t) is a Poisson random process, we can compute the expectation of X(t) by
conditioning on the value of N(t), as follows. Notationally we have E[X(t)] = E[E[X(t)|N ]].
Now this inner expectation is given by

E[X(t)|N(t)] = E[

N(t)
∑

i=1

Yi|N(t) = n]

= E[
n
∑

i=1

Yi|N(t) = n]

= nE[Yi] = nE[Y ] .

Thus the total expectation of X(t) is given by taking the expectation of the above expression
with respect to N , giving

E[X(t)] = E[NE[Y ]] = E[Y ]E[N ] = λtE[Y ] ,



since for a Poisson process E[N ] = λt. To prove Equation 12 from the book we recall the
conditional variance formula which in terms of the random variables for this problem is given
by

Var(X) = E[Var(X|N)] + Var(E[X|N ]) .

From the earlier part of this problem we know that E[X|N ] = NE[Y ], so the second term
in the above expression is simply given by

Var(E[X|N ]) = Var(NE[Y ]) = E[Y ]2Var(N) = λtE[Y ]2 .

Where we have used the variance of a Poisson distribution (Var(N(t)) = λt). To complete
this derivation we will now compute the first term in the conditional variance formula above.
We begin with the expression inside the expectation, i.e. Var(X|N). We find that

Var(X|N) = Var





N(t)
∑

i=1

Yi|N





= Var

(

n
∑

i=1

Yi|N = n

)

=

n
∑

i=1

Var (Yi)

= nVar(Y ) .

Where in the above we have used the fact that since the Yi are independently identically
distributed random variables the variance of the sum is the sum of the variances. Using
this result the expectation of this with respect to N , and the first term in our conditional
variance formula, is given by

E[Var(X|N)] = E[NVar(Y )] = Var(Y )E[N ] = Var(Y )λt .

Using the known result for the expectation of a Poisson process. Combining everything we
find that

Var(X) = Var(Y )λt + E[Y ]2λt

= (E[Y 2] − E[Y ]2)λt + E[Y ]2λt

= E[Y 2]λt ,

as expected.

Problem 12 (a nonhomogenous Poisson process)

We want to prove that for an nonhomogenous Poisson process with intensity function λ(t)
that

P{N(t) = n} = e−m(t) m(t)n

n!
for n ≥ 0 .



where m(t) =
∫ t

0
λ(τ)dτ . To do this we will be able to follow exactly the steps in the proof

of Theorem 2.1 highlighting the differences between that situation and this one. We begin
by defining Pn(t) = P{N(t) = n}, and consider P0(t + h), we find that

P0(t + h) = P{N(t + h) = 0}

= P{N(t) = 0, N(t + h) − N(t) = 0}

= P{N(t) = 0}P{N(t + h) − N(t) = 0} ,

where the last step uses the independent increment property of the nonhomogenous Poisson
process. Now to evaluate P{N(t + h) − N(t) = 0}, we will use the fact that probabilities
are normalized (and must sum to one) We find that

1 = P{N(t + h) − N(t) = 0} + P{N(t + h) − N(t) = 1} + P{N(t + h) − N(t) ≥ 2} .

Using the assumed infinitesimal probability properties for a nonhomogenous Poisson process,
we see that

P{N(t + h) − N(t) = 0} = 1 − λ(t)h − o(h) − o(h)

= 1 − λ(t)h + o(h) .

This expression will be used twice in this problem. Using it once here the equation for
P0(t + h) is given by

P0(t + h) = P0(t)(1 − λ(t)h + o(h)) ,

so that an approximation to the first derivative of P0(t) is given by

P0(t + h) − P0(t)

h
= −λ(t)P0(t) +

o(h)

h
.

Taking the limit of both sides of this expression as h → 0, we get P ′

0(t) = −λ(t)P0(t), or

P ′

0(t) + λ(t)P0(t) = 0 .

Which is different from the constant homogenous Poisson process due to the time dependence
of λ in the above equation. To solve this differential equation we will introduce an integrating
factor which will enable us to integrate this expression easily. Define the function m(t) and
v(t) as

m(t) ≡

∫ t

0

λ(τ)dτ

v(t) ≡ e
R t

0
λ(τ)dτ = em(t) .

This v(t) is an integrating factor for the above differential equation. Multiplying the differ-
ential equation for P0(t) by v(t) we see that we obtain

v(t)P ′

0(t) + λ(t)v(t)P0(t) = 0 .

That v is an integrating factor of this differential equation, can be seen by noting that the
derivative of v has the property that

v′(t) = em(t)m′(t) = em(t)λ(t) = v(t)λ(t) ,



so that the v multiplied differential equation above becomes

v(t)P ′

0(t) + v′(t)P0(t) = 0 .

or
d

dt
(v(t)P0(t)) = 0 ,

which can be easily integrated to give v(t)P0(t) = C, for some constant C. Solving for P0(t)
gives in terms of m(t),

P0(t) = Ce−m(t) .

At the initial time t = 0, we are told that N(0) = 0 and from the definition of m we see that
m(0) = 0. Since P0(0) = 1, the constant C is seen to equal one. Thus we have found for
P0(t) the following expression

P0(t) = e−m(t) .

This verifies the correctness of the result we are trying to prove in the case when n = 0. To
generalize this result to higher n lets define Pn(t) = P{N(t) = n} for n ≥ 1. Then following
similar manipulations as before we find that

Pn(t + h) = P{N(t + h) = n}

= P{N(t) = n, N(t + h) − N(t) = 0}

+ P{N(t) = n − 1, N(t + h) − N(t) = 1}

+

n
∑

k=2

P{N(t) = n − k, N(t + h) − N(t) = k}

= P{N(t) = n}P{N(t + h) − N(t) = 0}

+ P{N(t) = n − 1}P{N(t + h) − N(t) = 1}

+

n
∑

k=2

P{N(t) = n − k}P{N(t + h) − N(t) = k}

= Pn(t)(1 − λ(t)h + o(h)) + Pn−1(t)(λ(t)h + o(h)) + o(h) ,

Which is derived using independent increments and the expression for P{N(t+h)−N(t) = 0}
derived earlier. Manipulating this expression into an approximation to the first derivative of
Pn(t) we have that

Pn(t + h) − Pn(t)

h
= −λ(t)Pn(t) + λ(t)Pn−1(t) +

o(h)

h
,

so that when h → 0, the above approximation becomes the following differential equation

P ′

n(t) + λ(t)Pn(t) = λ(t)Pn−1(t) .

Using the same integrating factor v(t) introduced above (we multiply both sides by v(t) and
recognize the derivative of v as one of the factors) this differential equation can be seen
equivalent to

d

dt
(em(t)Pn(t)) = λ(t)em(t)Pn−1(t) , (1)



Since we know an expression for P0(t), we can take n = 1 in the above to get the equation
for P1(t). We find that

d

dt

(

em(t)P1(t)
)

= λ(t)em(t)e−m(t) = λ(t) .

Integrating both side of this expression we find that

em(t)P1(t) = (m(t) + C)e−m(t) ,

for some constant C. Solving for P1(t), we have P1(t) = (m(t) + C)e−m(t). To evaluate this
constant C we note that since P1(0) = 0, the constant C must be taken as zero. Thus

P1(t) = m(t)e−m(t) .

This verifies the result we are trying to prove in the case when n = 1. To finally complete
this exercise we will prove by induction that the expression for Pn(t) is true for all n ≥ 0.
Lets assume that the functional expression for Pn(t) given by

Pn(t) =
m(t)ne−m(t)

n!
,

is valid up to some index n − 1, and then show using the differential equation above that
this formula gives the correct expression for the index n. We have already shown that this
formula is true for the cases n = 0 and n = 1. To show that it is true for the index n consider
Eq. 1 and insert the assumed true expression Pn−1(t) into the right hand side. We obtain

d

dt
(em(t)Pn(t)) = λ(t)em(t)

(

m(t)n−1e−m(t)

(n − 1)!

)

= λ(t)
mn−1(t)

(n − 1)!
.

When we integrate both sides of this expression we obtain

em(t)Pn(t) =

∫ t

0

mn−1(τ)

(n − 1)!
λ(τ)dτ + C .

To evaluate this integral we let u = m(τ) so that du = m′(τ)dτ = λ(τ)dτ . With this
substitution we find that our integral is given by

∫ m(t)

m(0)

un−1

(n − 1)!
du =

m(t)n

n!
−

m(0)n

n!
=

m(t)n

n!
,

since m(0) = 0. Thus the expression for Pn(t) above becomes

Pn(t) =

(

m(t)n

n!
+ C

)

e−m(t) .

Evaluate this function at t = 0 since Pn(0) = 0, we see that the constant C must be equal
to zero. Thus we have shown that for all n ≥ 0 that

P{N(t) = n} =
m(t)ne−m(t)

n!
,

as requested.



Problem 13 (the distribution of the event times in a nonhomogenous process)

Following the same strategy that the book used to compute the distribution function for a
homogenous Poisson process, we will begin by assuming an ordered sequence of arrival times

0 < t1 < t2 < · · · < tn < tn+1 = t

and let hi be small increments such that ti+hi < ti+1, for i = 1, 2, · · ·n. Then the probability
that a random sample of n arrival times Si happen at the times ti and conditioned on the
fact that we have n arrivals by time t can be computed by considering

P{ti ≤ Si ≤ ti + hi, for i = 1, 2, · · · , n|N(t) = n} .

Which if we define the event A to be the event that we have exactly one event in [ti, ti + hi]
for i = 1, 2, · · · , n and no events in the other regions then (by definition) the above equals
the following expression

P{A}

P{N(t) = n}
.

The probability that we have one event in [ti, ti + hi] is given by the fourth property in the
definition of a nonhomogenous Poisson and is given by

P{N(ti + hi) − N(ti) = 1} = λ(ti)hi + o(hi) (2)

To calculate the probability that we have no events in a given interval, we will derive this
from the four properties in the definition a nonhomogenous Poisson process. Specifically,
since the total probability must sum to one we have the constraint on increment variables
over the range of time [tl, tr],

P{N(tr) − N(tl) = 0} + P{N(tr) − N(tl) = 1} + P{N(tr) − N(tl) ≥ 2} = 1 .

or using properties (ii) and (iii) in the definition of a nonhomogenous Poisson process the
above becomes (solving for P{N(tr) − N(tl) = 0}) the following

P{N(tr) − N(tl) = 0} = 1 − λ(tl)(tr − tl) + o(tr − tl) . (3)

This result will be used in what follows. To evaluate P{A} we recognized that in the intervals

(0, t1), (t1 + h1, t2), (t2 + h2, t3), · · · , (tn + hn, tn+1) ,

no events occurs, while in the intervals

(t1, t1 + h1), (t2, t2 + h2), (t3, t3 + h3), · · · , (tn, tn + hn) ,

one event occurs. By the independent increments property of nonhomogenous process the
event A can be computed as the product of the probabilities of each of the above intervals
event. The contributed probability P (A1) in the evaluation of P{A} from the intervals where
the count increase by one is given by

P (A1) =

n
∏

i=1

{λ(ti)hi + o(hi)} =

n
∏

i=1

λ(ti)hi + o(h) ,



where we have used Eq. 2 and the term o(h) represents terms higher than first order in any
of the hi’s. By analogy with this result the contributed probability in the evaluation of P{A}
from the intervals where the count does not increase P (A0) is given by

P (A0) = (1 − λ(0)(t1) + o(t1))
n
∏

i=1

{1 − λ(ti + hi)(ti+1 − ti − hi) + o(ti+1 − ti − hi)} .

This expression will take some manipulations to produce a desired expression. We begin our
sequence of manipulations by following the derivation in the book and recognizing that we
will eventually be taking the limits as hi → 0. Since this expression has a finite limit we can
take the limit of the above expression as is and simplify some of the notation. Taking the
limit hi → 0 and defining t0 = 0 the above expression becomes

P (A0) =

n
∏

i=0

{1 − λ(ti)(ti+1 − ti) + o(ti+1 − ti)} .

We can simplify this product further by observing that the individual linear expressions we
multiply can be written as an exponential which will facilitate our evaluation of this product.
Specifically, it can be shown (using Taylor series) that

e−λ(ti)(ti+1−ti) = 1 − λ(ti)(ti+1 − ti) + o(ti+1 − ti) .

With this substitution the product above becomes a sum in the exponential and we have

P (A0) =
n
∏

i=0

e−λ(ti)(ti+1−ti) = exp

{

−
n
∑

i=0

λ(ti)(ti+1 − ti)

}

.

Recognizing the above summation as an approximation to the integral of λ(·), we see that
the above is approximately equal to the following

P (A0) = exp

{

−
n
∑

i=0

λ(ti)(ti+1 − ti)

}

≈ exp

{

−

∫ t

0

λ(τ)dτ

}

= e−m(t) .

With these expressions for P (A1) and P (A0), we can now evaluate our target expression

P{A}

P{N(t) = n}
=

P (A1)P (A0)

P{N(t) = n}

=

(

n!

e−m(t)m(t)n

)

P (A1)P (A0)

=

(

n!

e−m(t)m(t)n

)

((

n
∏

i=1

λ(ti)hi + o(h)

)

e−m(t)

)

= n!

(

n
∏

i=1

λ(ti)

m(t)
hi + o(h)

)

.

It is this final result we were after. After dividing by
∏n

i=1 hi and taking the limit where
hi → 0, we can conclude that the probability of drawing a specific sample of n event times



(i.e. obtaining a draw of the random variables Si) for a nonhomogenous Poisson process with
rate λ(t) given that we have seen n events by time t is given by

fS1,S2,··· ,Sn
(t1, t2, · · · , tn|N(t) = n) = n!

(

n
∏

i=1

λ(ti)

m(t)

)

0 < t1 < t2 < · · · < tn < t (4)

We recognized that this expression is the same distribution as would be obtained for the
order statistics corresponding to n independent random variables uniformly distributed with
probability density function f(·) and a cumulative distribution function F (·) given by

f(x) =
λ(x)

m(t)
and F ′(x) = f(x) .

By the definition of the function m(·) we have that λ(x) = m′(x), so that an equation for
our cumulative distribution function F is given by

F ′(x) =
m′(x)

m(t)
.

This can be integrated to give

F (x) =
m(x)

m(t)
,

which can only hold if x ≤ t, while if x > t, F (x) = 1. This is the desired result.
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