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Introduction

Chapter 1: Introduction to Probability Theory

Chapter 1: Exercises

Exercise 8 (Bonferroni’s inequality)

From the inclusion/exclusion identity for two sets we have

P (E ∪ F ) = P (E) + P (F ) − P (EF ) .

Since P (E ∪ F ) ≤ 1, the above becomes

P (E) + P (F ) − P (EF ) ≤ 1 .

or
P (EF ) ≥ P (E) + P (F ) − 1 ,

which is known as Bonferroni’s inequality. From the numbers given we find that

P (EF ) ≥ 0.9 + 0.8 − 1 = 0.7 .

∗
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1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Table 1: The possible values for the sum of the values when two die are rolled.

Exercise 10 (Boole’s inequality)

We begin by decomposing the countable union of sets Ai

A1 ∪ A2 ∪ A3 . . .

into a countable union of disjoint sets Cj. Define these disjoint sets as

C1 = A1

C2 = A2\A1

C3 = A3\(A1 ∪ A2)

C4 = A4\(A1 ∪ A2 ∪ A3)
...

Cj = Aj\(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Aj−1)

Then by construction
A1 ∪ A2 ∪ A3 · · · = C1 ∪ C2 ∪ C3 · · · ,

and the Cj’s are disjoint, so that we have

Pr(A1 ∪ A2 ∪ A3 ∪ · · · ) = Pr(C1 ∪ C2 ∪ C3 ∪ · · · ) =
∑

j

Pr(Cj) .

Since Pr(Cj) ≤ Pr(Aj), for each j, this sum is bounded above by

∑

j

Pr(Aj) ,

Problem 11 (the probability the sum of the die is i)

We can explicitly enumerate these probabilities by counting the number of times each oc-
currence happens, in Table 1 we have placed the sum of the two die in the center of each
square. Then by counting the number of squares where are sum equals each number from



two to twelve, we have

P2 =
1

36
, P7 =

6

36
=

1

6

P3 =
2

36
=

1

18
, P8 =

5

36

P4 =
3

36
=

1

12
, P9 =

4

36
=

1

9

P5 =
4

36
=

1

9
, P10 =

3

36
=

1

12

P6 =
5

36
, P11 =

2

36
=

1

18
, P12 =

1

36
.

Problem 13 (winning at craps)

From Problem 11 we have computed the individual probabilities for various sum of two
random die. Following the hint, let Ei be the event that the initial die sum to i and that
the player wins. We can compute some of these probabilities immediately P (E2) = P (E3) =
P (E12) = 0, and P (E7) = P (E11) = 1. We now need to compute P (Ei) for i = 4, 5, 6, 8, 9, 10.
Again following the hint define Ei,n to be the event that the player initial sum is i and wins
on the n-th subsequent roll. Then

P (Ei) =

∞
∑

n=1

P (Ei,n) ,

since if we win, it must be either on the first, or second, or third, etc roll after the initial

roll. We now need to calculate the P (Ei,n) probabilities for each n. As an example of this
calculation first lets compute P (E4,n) which means that we initially roll a sum of four and
the player wins on the n-th subsequent roll. We will win if we roll a sum of a four or loose
if we roll a sum of a seven, while if roll anything else we continue, so to win when n = 1 we
see that

P (E4,1) =
1 + 1 + 1

36
=

1

12
,

since to get a sum of four we can roll pairs consisting of (1, 3), (2, 2), and (3, 1).

To compute P (E4,2) the rules of craps state that we will win if a sum of four comes up (with
probability 1

12
) and loose if a sum of a seven comes up (with probability 6

36
= 1

6
) and continue

playing if anything else is rolled. This last event (continued play) happens with probability

1 −
1

12
−

1

6
=

3

4
.

Thus P (E4,2) =
(

3
4

)

1
12

= 1
16

. Here the first 3
4

is the probability we don’t roll a four or a
seven on the n = 1 roll and the second 1

12
comes from rolling a sum of a four on the second

roll (where n = 2). In the same way we have for P (E4,3) the following

P (E4,3) =

(

3

4

)2
1

12
.



Here the first two factors of 3
4

are from the two rolls that “keep us in the game”, and the
factor of 1

12
, is the roll that allows us to win. Continuing in this in this manner we see that

P (E4,4) =

(

3

4

)3
1

12
,

and in general we find that

P (E4,n) =

(

3

4

)n−1
1

12
for n ≥ 1 .

To compute P (Ei,n) for other i, the derivations just performed, only change in the probabil-
ities required to roll the initial sum. We thus find that for other initial rolls (heavily using
the results of Problem 24) that

P (E5,n) =
1

9

(

1 −
1

9
−

1

6

)n−1

=
1

9

(

13

18

)n−1

P (E6,n) =
5

36

(

1 −
5

36
−

1

6

)n−1

=
5

36

(

25

36

)n−1

P (E8,n) =
5

36

(

1 −
5

36
−

1

6

)n−1

=
5

36

(

25

36

)n−1

P (E9,n) =
1

9

(

1 −
1

9
−

1

6

)n−1

=
1

9

(

13

18

)n−1

P (E10,n) =
1

12

(

1 −
1

12
−

1

6

)n−1

=
1

12

(

3

4

)n−1

.

To compute P (E4) we need to sum the results above. We have that

P (E4) =
1

12

∑

n≥1

(

3

4

)n−1

=
1

12

∑

n≥0

(

3

4

)n

=
1

12

1
(

1 − 3
4

) =
1

3
.

Note that this also gives the probability for P (E10). For P (E5) we find P (E5) = 2
5
, which

also equals P (E9). For P (E6) we find that P (E6) = 5
11

, which also equals P (E8). Then our
probability of winning craps is given by summing all of the above probabilities weighted by
the associated priors of rolling the given initial roll. We find by defining Ii to be the event
that the initial roll is i and W the event that we win at craps that

P (W ) = 0 P (I2) + 0 P (I3) +
1

3
P (I4) +

4

9
P (I5) +

5

9
P (I6)

+ 1 P (I7) +
5

9
P (I8) +

4

9
P (I9) +

1

3
P (I10) + 1 P (I11) + 0 P (I12) .

Using the results of Exercise 25 to evaluate P (Ii) for each i we find that the above summation
gives

P (W ) =
244

495
= 0.49292 .

These calculations are performed in the Matlab file chap 1 prob 13.m.



Exercise 15 (some set identities)

We want to prove that E = (E ∩ F ) ∪ (E ∩ F c). We will do this using the standard proof
where we show that each set in the above is a subset of the other. We begin with x ∈ E.
Then if x ∈ F , x will certainly be in E ∩ F , while if x /∈ F then x will be in E ∩ F c. Thus
in either case (x ∈ F or x /∈ F ) x will be in the set (E ∩ F ) ∪ (E ∩ F c).

If x ∈ (E ∩ F ) ∪ (E ∩ F c) then x is in either E ∩ F , E ∩ F c, or both by the definition of
the union operation. Now x cannot be in both sets or else it would simultaneously be in F
and F c, so x must be in one of the two sets only. Being in either set means that x ∈ E and
we have that the set (E ∩ F ) ∪ (E ∩ F c) is a subset of E. Since each side is a subset of the
other we have shown set equality.

To prove that E∪F = E∪ (Ec∩F ), we will begin by letting x ∈ E∪F , thus x is an element
of E or an element of F or of both. If x is in E at all then it is in the set E ∪ (Ec ∩ F ). If
x /∈ E then it must be in F to be in E ∪ F and it will therefore be in Ec ∩ F . Again both
sides are subsets of the other and we have shown set equality.

Exercise 23 (conditioning on a chain of events)

This result follows for the two set case P{A∩B} = P{A|B}P{B} by grouping the sequence
of Ei’s in the appropriate manner. For example by grouping the intersection as

E1 ∩ E2 ∩ · · · ∩ En−1 ∩ En = (E1 ∩ E2 ∩ · · · ∩ En−1) ∩ En

we can apply the two set result to obtain

P{E1 ∩ E2 ∩ · · · ∩ En−1 ∩ En} = P{En|E1 ∩ E2 ∩ · · · ∩ En−1}P{E1 ∩ E2 ∩ · · · ∩ En−1} .

Continuing now to peal En−1 from the set E1∩E2∩· · ·∩En−1 we have the second probability
above equal to

P{E1 ∩ E2 ∩ · · · ∩ En−2 ∩ En−1} = P{En−1|E1 ∩ E2 ∩ · · · ∩ En−2}P{E1 ∩ E2 ∩ · · · ∩ En−2} .

Continuing to peal off terms from the back we eventually obtain the requested expression
i.e.

P{E1 ∩ E2 ∩ · · · ∩ En−1 ∩ En} = P{En|E1 ∩ E2 ∩ · · · ∩ En−1}

× P{En−1|E1 ∩ E2 ∩ · · · ∩ En−2}

× P{En−2|E1 ∩ E2 ∩ · · · ∩ En−3}
...

× P{E3|E1 ∩ E2}

× P{E2|E1}

× P{E1} .



Exercise 30 (target shooting with Bill and George)

warning! not finished...

Let H be the event that the duck is “hit”, by either Bill or George’s shot. Let B and G be the
events that Bill (respectively George) hit the target. Then the outcome of the experiment
where both George and Bill fire at the target (assuming that their shots work independently
is)

P (Bc, Gc) = (1 − p1)(1 − p2)

P (Bc, G) = (1 − p1)p2

P (B, Gc) = p1(1 − p2)

P (B, G) = p1p2 .

Part (a): We desire to compute P (B, G|H) which equals

P (B, G|H) =
P (B, G, H)

P (H)
=

P (B, G)

P (H)

Now P (H) = (1 − p1)p2 + p1(1 − p2) + p1p2 so the above probability becomes

p1p2

(1 − p1)p2 + p1(1 − p2) + p1p2
=

p1p2

p1 + p2 − p1p2
.

Part (b): We desire to compute P (B|H) which equals

P (B|H) = P (B, G|H) + P (B, Gc|H) .

Since the first term P (B, G|H) has already been computed we only need to compute P (B, Gc|H).
As before we find it to be

P (B, Gc|H) =
p1(1 − p2)

(1 − p1)p2 + p1(1 − p2) + p1p2
.

So the total result becomes

P (B|H) =
p1p2 + p1(1 − p2)

(1 − p1)p2 + p1(1 − p2) + p1p2

=
p1

p1 + p2 − p1p2

.

Exercise 33 (independence in class)

Let S be a random variable denoting the sex of the randomly selected person. The S can
take on the values m for male and f for female. Let C be a random variable representing
denoting the class of the chosen student. The C can take on the values f for freshman and
s for sophomore. We want to select the number of sophomore girls such that the random



variables S and C are independent. Let n denote the number of sophomore girls. Then
counting up the number of students that satisfy each requirement we have

P (S = m) =
10

16 + n

P (S = f) =
6 + n

16 + n

P (C = f) =
10

16 + n

P (C = s) =
6 + n

16 + n
.

The joint density can also be computed and are given by

P (S = m, C = f) =
4

16 + n

P (S = m, C = s) =
6

16 + n

P (S = f, C = f) =
6

16 + n

P (S = f, C = s) =
n

16 + n
.

Then to be independent we must have P (C, S) = P (S)P (C) for all possible C and S values.
Considering the point case where (S = m, C = f) we have that n must satisfy

P (S = m, C = f) = P (S = m)P (C = f)

4

16 + n
=

(

10

16 + n

)(

10

16 + n

)

which when we solve for n gives n = 9. Now one should check that this value of n works for
all other equalities that must be true, for example one needs to check that when n = 9 the
following are true

P (S = m, C = s) = P (S = m)P (C = s)

P (S = f, C = f) = P (S = f)P (C = f)

P (S = f, C = s) = P (S = f)P (C = s) .

As these can be shown to be true, n = 9 is the correct answer.

Exercise 36 (boxes with marbles)

Let B be the event that the drawn ball is black and let X1 (X2) be the event that we select
the first (second) box. Then to calculate P (B) we will condition on the box drawn from as

P (B) = P (B|X1)P (X1) + P (B|X2)P (X2) .

Now P (B|X1) = 1/2, P (B|X2) = 2/3, P (X1) = P (X2) = 1/2 so

P (B) =
1

2

(

1

2

)

+
1

2

(

2

3

)

=
7

12
.



Exercise 37 (observing a white marble)

If we see that the ball is white (i.e. it is not black i.e event Bc has happened) we now want
to compute that it was drawn from the first box i.e.

P (X1|B
c) =

P (Bc|X1)P (X1)

P (Bc|X1)P (X1) + P (Bc|X2)P (X2)
=

3

5
.

Problem 40 (gambling with a fair coin)

Let F denote the event that the gambler is observing results from a fair coin. Also let O1,
O2, and O3 denote the three observations made during our experiment. We will assume that
before any observations are made the probability that we have selected the fair coin is 1/2.

Part (a): We desire to compute P (F |O1) or the probability we are looking at a fair coin
given the first observation. This can be computed using Bayes’ theorem. We have

P (F |O1) =
P (O1|F )P (F )

P (O1|F )P (F ) + P (O1|F c)P (F c)

=
1
2

(

1
2

)

1
2

(

1
2

)

+ 1
(

1
2

) =
1

3
.

Part (b): With the second observation and using the “posteriori’s become priors” during a
recursive update we now have

P (F |O2, O1) =
P (O2|F, O1)P (F |O1)

P (O2|F, O1)P (F |O1) + P (O2|F c, O1)P (F c|O1)

=
1
2

(

1
3

)

1
2

(

1
3

)

+ 1
(

2
3

) =
1

5
.

Part (c): In this case because the two-headed coin cannot land tails we can immediately
conclude that we have selected the fair coin. This result can also be obtained using Bayes’
theorem as we have in the other two parts of this problem. Specifically we have

P (F |O3, O2, O1) =
P (O3|F, O2, O1)P (F |O2, O1)

P (O3|F, O2, O1)P (F |O2, O1) + P (O3|F c, O2, O1)P (F c|O2, O1)

=
1
2

(

1
5

)

1
2

(

1
5

)

+ 0
= 1 .

Verifying what we know must be true.



Problem 46 (a prisoners’ dilemma)

I will argue that the jailers reasoning is sound. Before asking his question the probability of
event A (A is executed) is P (A) = 1/3. If prisoner A is told that B (or C) is to be set free
then we need to compute P (A|Bc). Where A, B, and C are the events that prisoner A, B,
or C is to be executed respectively. Now from Bayes’ rule

P (A|Bc) =
P (Bc|A)P (A)

P (Bc)
.

We have that P (Bc) is given by

P (Bc) = P (Bc|A)P (A) + P (Bc|B)P (B) + P (Bc|C)P (C) =
1

3
+ 0 +

1

3
=

2

3
.

So the above probability then becomes

P (A|Bc) =
1(1/3)

2/3
=

1

2
>

1

3
.

Thus the probability that prisoner A will be executed has increased as claimed by the jailer.



Chapter 4: Markov Chains

Chapter 4: Exercises

Exercise 6 (an analytic calculation of P (n))

Given the transition probability matrix P =

[

p 1 − p
1 − p p

]

, by matrix multiplication we

see that P (2) is given as

P (2) =

[

p 1 − p
1 − p p

] [

p 1 − p
1 − p p

]

=

[

p2 + (1 − p)2 2p(1 − p)
2p(1 − p) p2 + (1 − p)2

]

.

We desire to prove that P (n) is given as

P (n) =

[

1
2

+ 1
2
(2p − 1)n 1

2
− 1

2
(2p − 1)n

1
2
− 1

2
(2p − 1)n 1

2
+ 1

2
(2p − 1)n

]

. (1)

We will do this by mathematical induction. We begin by verifying that the above formula
is valid for n = 1. Evaluating the above expression for n = 1 we find

P (1) =

[

1
2

+ 1
2
(2p − 1) 1

2
− 1

2
(2p − 1)

1
2
− 1

2
(2p − 1) 1

2
+ 1

2
(2p − 1)

]

=

[

p 1 − p
1 − p p

]

,

as required. Next we assume the relationship in Equation 1 is true for all n ≤ k and we
desire to show that it is true for n = k +1. Since P (k+1) = P (1)P (k) by matrix multiplication
we have that

P (k+1) = P (1)P (k) =

[

p 1 − p
1 − p p

] [

1
2

+ 1
2
(2p − 1)k 1

2
− 1

2
(2p − 1)k

1
2
− 1

2
(2p − 1)k 1

2
+ 1

2
(2p − 1)k

]

=

[

p
2

+ p
2
(2p − 1)k + 1−p

2
− 1−p

2
(2p − 1)k p

2
− p

2
(2p − 1)k + 1−p

2
+ 1−p

2
(2p − 1)k

1−p
2

+ 1−p
2

(2p − 1)k + p
2
− p

2
(2p − 1)k 1−p

2
− 1−p

2
(2p − 1)k + p

2
+ p

2
(2p − 1)k

]

=

[

1
2

+ 1
2
(p − (1 − p))(2p − 1)k 1

2
+
(

−p
2

+ 1−p
2

)

(2p − 1)k

1
2

+ 1
2
(1 − p − p)(2p − 1)k 1

2
+ 1

2
(−(1 − p) + p)(2p − 1)k

]

=

[

1
2

+ 1
2
(2p − 1)k+1 1

2
− 1

2
(2p − 1)k+1

1
2
− 1

2
(2p − 1)k+1 1

2
+ 1

2
(2p − 1)k+1

]

,

which is the desired result for n = k + 1.



Chapter 5: The Exponential Distribution

and the Poisson Process

Chapter 5: Exercises

Exercise 1 (exponential repair times)

We are told that T is distributed with a exponential probability distribution function with
mean 1/2. This means that the distribution function of T , fT (t), is given by

fT (t) =

{

2e−2t t ≥ 0
0 t < 0

Part (a): Now for the repair time to take longer than 1/2 an hour will happen with
probability that is the complement of the probability that it will take less than 1/2 of an
hour. We have

1 − P{T < 1/2} = 1 −

∫ 1/2

0

2e−2tdt

= 1 −
2e−2t

−2

∣

∣

∣

∣

1/2

0

= 1 +
(

e−1 − 1
)

= e−1 .

Part (b): Since the exponential distribution has no memory, the fact that the repair is still
going after 12 hours is irrelevant. Thus we only need to compute the probability that the
repair will last at least 1/2 more. This probability is the same as that calculated in Part (a)
of this problem and is equal to e−1.

Exercise 2 (the expected bank waiting time)

By the memoryless property of the exponential distribution now the fact that one person is
being served makes no difference. We will have to wait until an amount of time given by

T =

6
∑

i=1

Xi ,

where Xi are independent exponential random variables with rate µ. Taking the expectation
of the variable T we have

E[T ] =

6
∑

i=1

E[Xi] =

6
∑

i=1

1

µ
=

6

µ
.

We sum to six to allow the teller to service the five original customers and then you.



Exercise 3 (expectations with exponential random variables)

I will argue that E[X2|X > 1] = E[(X+1)2]. By the memoryless property of the exponential
random variable the fact that we are conditioning on the event that X > 1 makes no
difference relative to the event X > 0 (i.e. no restriction on the random variable X).
Removing the conditional expectation is equivalent to “starting” the process at x = 0. This
can be performed as long as we “shift” the expectation’s argument accordingly i.e. from X2

to (X + 1)2. The other two expressions violate the nonlinearity of the function X2. We can
prove that this result is correct by explicitly evaluating the original expectation. We find

E[X2|X > 1] =

∫ ∞

0

ξ2 pX(ξ|X > 1)dξ .

Now this conditional probability density is given by

pX(ξ|X > 1) =
p(X = ξ, X > 1)

p(X > 1)

=
p(X = ξ, X > 1)

1 − p(X < 1)

=
p(X = ξ, X > 1)

e−λ

=
λe−λξH(ξ − 1)

e−λ
= λe−λ(ξ−1)H(ξ − 1) .

Here H(·) is the Heaviside function defined as

H(x) =

{

0 x < 0
1 x > 0 ,

and this function enforces the constraint that X > 1. With this definition we then have that

E[X2|X > 1] =

∫ ∞

0

ξ2λe−λ(ξ−1)H(ξ − 1)dξ

=

∫ ∞

1

ξ2λe−λ(ξ−1)dξ ,

Letting u = ξ − 1, so that du = dξ the above becomes
∫ ∞

0

(u + 1)2λe−λudu = E[(X + 1)2] ,

where X is an exponential random variable with rate parameter λ. This is the expression
we argued at the beginning of this problem should hold true.

Exercise 4 (the post office)

Part (a): In this case, it is not possible for A to still be in the post office because in
ten minutes time A and B will both finish their service times and exit the service station
together. Thus there is no way for C to get served before A finishes.



Part (b): A will still be in the post office if both B and C are served before A. If we let
A, B, and C be the amount of time that each respective person spends with their clerks,
then the event that A is the last person in the post office is equivalent to the constraint that
A ≥ B +C. Here we have assumed (by using ≥) that an equality constraint is acceptable for
determining if A leaves last. For notational purposes we will define the event that A leaves
last as E. To compute the probabilities that this event happens we can condition on the
possible sums of B and C (the times B and C spend at their clerks). We have

P (E) = P (E|B + C = 2)P (B + C = 2) + P (E|B + C = 3)P (B + C = 3)

+ P (E|B + C = 4)P (B + C = 4) + P (E|B + C = 5)P (B + C = 5)

+ P (E|B + C = 6)P (B + C = 6) .

Now P (E|B + C = 4) = P (E|B + C = 5) = P (E|B + C = 6) = 0, since A will certainly
finish in a time less than four units. Also

P (E|B + C = 2) =
2

3
,

since to have A ≥ B + C, A can finishes in two or three units. While finally

P (E|B + C = 3) =
1

3
,

since to have A ≥ B + C, A can finish in three units. Now we have that our priors are given
by P (B +C = 2) = 1

9
and P (B +C = 3) = 2

9
, which gives for P (E) using the above formula

P (E) =
4

27
.

If we want to work this problem assuming strict inequality in the time relationships i.e. that
A will leave last only if A > B + C, we find that our conditional probabilities must be
adjusted. For example

P (E|B + C = 2) =
1

3
,

since A must now finish in three units of time. Also P (E|B + C = 3) = 0. These then give
in the same way that

P (E) =
1

3
·
1

9
=

1

27
.

Part (c): For this part we assume that the service time of each clerk is exponentially dis-
tributed. Now because the random variables are continuous there is no need to differentiate
between greater than and greater than or equal signs in the inequality denoting the event
that A finishes last. Thus we can take as an expression of the event that A will be the last
person served if A > B + C. This means that the time to service A takes more time than to
service both B and C. To evaluate the probability that this event happens we will condition
on the random variable which is the sum of B and C, i.e.

P{A > B + C} =

∫

p{A > B + C|B + C = t}P{B + C = t}dt .

Now since both B and C are exponential random variables with the same rate the sum of
them is a random variable distributed with a gamma distribution (see the section on further



properties of the exponential distribution). We thus have that the distribution of the sum
of B and C is given by

fB+C(t) =
1!e−µt(µt)

1!
= µ2te−µt .

So that our integral is given by

P{A > B + C} =

∫

PA{A > t}µ2te−µtdt .

Now PA{A > t} = 1 − (1 − e−µt) = e−µt, so that this integral becomes

P{A > B + C} =

∫ ∞

0

µ2te−2µtdt

= µ2 te−2µt

(−2µ)

∣

∣

∣

∣

∞

0

−
µ2

(−2µ)

∫ ∞

0

e−2µtdt

=
µ

2

(

e−2µt

(−2µ)

∣

∣

∣

∣

∞

0

=
1

4
.

Exercise 5 (old radios)

Because of the memoryless property of the exponential distribution the fact that the radio
is ten years old makes no difference. Thus the probability that the radio is working after an
additional ten years is given by

P{X > 10} =

∫ ∞

10

λe−λtdt = 1 − F (10) = 1 −
1

10
e−

1
10

(10) = 1 −
1

10
e−1 = 0.96321 .

Exercise 6 (the probability that Smith is last)

Now one of Mr. Jones or Mr. Brown will finish their service first. Once this person’s
service station is open, Smith will begin his processing there. By the memoryless property
of exponential the fact that Smiths “competitor” (the remaining Mr. Jones or Mr. Brown
who did not finish first) is in the middle of their service has no effect on whether Smith or
his comp editor finishes first. Let E be the event that Smith is finishes last. Then we have
that P (Ec) = 1 − P (E), where Ec is the desired event (i.e. that Smith is last). Now let
JB be the event that Mr. Jones finishes before Mr. Brown (then Mr. Smith will take Mr.
Jones’ server position), and let JB be the event that Mr. Brown finishes before Mr. Jones
(so that Mr. Smith would take Mr. Brown’s server positions). We have that by conditioning
on the events JB and BJ that

P (E) = P (E|JB)P (JB) + P (E|BJ)P (BJ) .

Now

P (JB) =
λJ

λJ + λB
and P (BJ) =

λB

λJ + λB
,



where λJ and λB are the rates of the servers who are initially servicing Mr. Jones and Mr.
Brown when Mr. Smith enters the post office. By the discussion in the text on the section of
the text entitled “Further properties of the exponential distribution”, we have that P (E|JB)
is the probability that Mr. Smith is last given that he is being serviced by Mr. Jones’ old
server. This will happen if Mr. Brown finishes first and thus has a probability of

λB

λB + λJ
.

In the same way we have

P (E|BJ) =
λJ

λB + λJ

.

So that P (E) is given by

P (E) =
λB

λB + λJ
·

λJ

λB + λJ
+

λJ

λB + λJ
·

λB

λB + λJ
=

2λBλJ

(λB + λJ)2
.

The probability that we want is P (Ec) and is given by

P (Ec) = 1 − P (E)

=
(λB + λJ)2

(λB + λJ)2
−

2λBλJ

(λB + λJ)2

=
λ2

B

(λB + λJ)2
+

λ2
J

(λB + λJ)2
,

as we where to show.

Exercise 7 (the probability X1 < X2 given the minimum value of X1 and X2)

For this exercise we will be considering the expression P{X1 < X2|min(X1, X2) = t}. Using
the definition of conditional probability we have that this is equal to

P{X1 < X2|min(X1, X2) = t} =
P{X1 < X2, min(X1, X2) = t}

P{min(X1, X2) = t}

=
P{X1 < X2, X1 = t}

P{min(X1, X2) = t}

=
P{t < X2, X1 = t}

P{min(X1, X2) = t}

=
P{X2 > t}P{X1 = t}

P{min(X1, X2) = t}
.

Where in the last step we used the independence of X1 and X2. We now need to be able to
relate the expressions above in terms of the failure rates of the random variables X1 and X2.
Given the failure rate of a random variable as a function of t say r(t) from the discussion in
the book the distribution function F (·) in this case is given by

F (t) = e−
R t

0 r(τ)dτ .



Taking the derivative of this expression we find that the density function f(·) for our random
variable with failure rate r(t) is given by

f(t) = r(t)e−
R t

0
r(τ)dτ .

With these two expressions we can evaluate part of the above fraction. We find that

P{X2 > t}P{X1 = t}

P{min(X1, X2) = t}
=

(e−
R t

0 r2(τ)dτ )r1(t)e
−

R t

0 r1(τ)dτ

P{min(X1, X2) = t}
.

Lets now work on evaluating the denominator of the above expression, which we do in the
same way as in the book. We find that

P{min(X1, X2) > t} = P{Xi > t , ∀i}

=
2
∏

i=1

P{Xi > t}

= e−
R t

0
r1(τ)dτ e−

R t

0
r2(τ)dτ

= e−
R t

0 (r1(τ)+r2(τ))dτ .

From which we see that min(X1, X2) is a random variable with a failure rate given by
r1(t)+r2(t). This then means that our density function for this random variable min(X1, X2)
is given by

P{min(X1, X2) = t} = (r1(t) + r2(t))e
−

R t

0 (r1(τ)+r2(τ))dτ .

Using this result in our desired expression we finally conclude that

P{X1 < X2|min(X1, X2) = t} =
r1(t)e

−
R t

0
(r1(τ)+r2(τ))dτ

(r1(t) + r2(t))e
−

R t

0
(r1(τ)+r2(τ))dτ

=
r1(t)

r1(t) + r2(t)
,

as we were to show.

Exercise 8 (the expectation of 1/r(x))

We will use an equivalent expression for the expectation of X which is derived in many books
on probability, for example see ??, which is that

E[X] =

∫

P{X > x}dx .



From this expression and with the following manipulations to introduce the failure rate
function r(X) we find that

E[X] =

∫

P{X > x}dx

=

∫

1 − F (x)

f(x)
f(x)dx

=

∫

1

r(x)
f(x)dx

= E[
1

r(X)
] .

Here we have used f(·) for the probability density function, F (·) for the cumulative density

function and r(·) for the failure rate function, i.e. r(x) ≡ f(x)
1−F (x)

.

Exercise 9 (the probability we fail first after working t time)

We are told that machine one is currently working and at time t, machine two will be put
into service. At that point if the first machine is still working they will be working in tandem.
We want to calculate the probability that machine one is the first machine to fail. Let E
be the event that machine one fails first and F the event that machine one fails in the time
(0, t). Now conditioning on F and F c we have that

P (E) = P (E|F )P (F ) + P (E|F c)P (F c) .

Now introducing X1 and X2 be the random variables denoting the time when machine
one/two fails.

P (F ) = P{X1 < t} = 1 − e−λ1t

P (F c) = P{X1 > t} = e−λ1t .

Now by the memoryless property of the exponential distribution when the second machine
is brought on-line with the first machine (assuming that machine one has not failed in the
time (0, t)) the probability that machine one fails before machine two is given by

λ1

λ1 + λ2
,

which is the probability P (E|F c). In addition we have that P (E|F ) = 1, so that P (E)
becomes

P (E) = 1 · (1 − e−λ1t) +
λ1

λ1 + λ2
· e−λ1t

= 1 −

(

λ2

λ1 + λ2

)

e−λ1t



Exercise 10 (some expectations)

Part (a): We want to evaluate E[MX|M = X]. Note that if we try to evaluate this as

E[MX|M = X] = E[X2] ,

this result cannot be correct since we have effectively lost the information that our minimum
of X and Y is X since the last expression involves only X. Instead we find that

E[MX|M = X] = E[M2] =

∫ ∞

0

m2e−(λ+µ)mdm =
2

(λ + µ)2
,

when we perform the integration.

Part (b): To evaluate E[MX|M = Y ], we will stress the information that Y = M is
less that X by writing X = M + X ′. Now by the memoryless property of the exponential
distribution X ′ is another exponential random variable with failure rate λ. With this we
find that

E[MX|M = Y ] = E[M(M + X ′)]

= E[M2] + E[MX ′]

= E[M2] + E[M ]E[X ′]

=
2

(λ + µ)2
+

1

λ + µ
·
1

λ
.

Part (c): We want to evaluate Cov(X, M), which we will do by simplifying the definition
of the covariance to find

Cov(X, M) = E[XM ] − E[X]E[M ] .

To compute E[XM ] we can condition on whether the minimum is X or Y . We find that

E[XM ] = E[XM |M = X]P{M = X} + E[XM |M = Y ]P{M = Y }

=
2

(λ + µ)2

(

λ

λ + µ

)

+

(

2

(λ + µ)2
+

1

λ(λ + µ)

)

µ

λ + µ

=
2λ + µ

λ(λ + µ)2
,

so that with this result Cov(X, M) is then given by

Cov(X, M) =
2λ + µ

λ(λ + µ)2
−

1

λ + µ

(

1

λ

)

=
1

(λ + µ)2
.



Exercise 12 (probabilities with three exponential random variables )

Part (a): We can evaluate P{X1 < X2 < X3} using the definition of this expression. We
find.

P{X1 < X2 < X3} =

∫ ∞

x1=0

∫ ∞

x2=x1

∫ ∞

x3=x2

p(x1, x2, x3)dx3dx2dx1

=

∫ ∞

x1=0

∫ ∞

x2=x1

∫ ∞

x3=x2

pX1(x1)pX2(x2)pX3(x3)dx3dx2dx1

=

∫ ∞

x1=0

pX1(x1)

∫ ∞

x2=x1

pX2(x2)

∫ ∞

x3=x2

pX3(x3)dx3dx2dx1 ,

by the independence of the random variables Xi. Because Xi are exponential with failure
rate λi the above becomes

P{X1 < X2 < X3} =

∫ ∞

x1=0

λ1e
−λ1x1

∫ ∞

x2=x1

λ2e
−λ2x2

∫ ∞

x3=x2

λ3e
−λ3x3dx3dx2dx1 .

To compute the above probability We can perform the above integrations one at a time from
the outside inward. The first integral is with respect to x3, the second with respect to x2,
and finally the third integral is with respect to x1. When this is done we obtain

P{X1 < X2 < X3} =
λ1λ2

(λ2 + λ3)(λ1 + λ2 + λ3)
.

See the Mathematica file chap 5 prob 12.nb for this algebra.

Part (b): We want to evaluate P{X1 < X2|max(X1, X2, X3) = X3}. Using the definition
of the conditional expectation we find that

P{X1 < X2|max(X1, X2, X3) = X3} =
P{X1 < X2, max(X1, X2, X3) = X3}

P{max(X1, X2, X3) = X3}

=
P{X1 < X2 < X3}

P{max(X1, X2, X3) = X3}
,

since the two events X1 < X2 and max(X1, X2, X3) = X3 imply that X1 < X2 < X3.
The probability of this event was calculated in Part (a) of this problem. Now the event
max(X1, X2, X3) = X3 is equivalent to the union of the disjoint events

X1 < X2 < X3 and X2 < X1 < X3 .

Each of these events can be computed using the results from Part (a). Specifically

P{X1 < X2 < X3} =
λ1λ2

(λ2 + λ3)(λ1 + λ2 + λ3)

P{X2 < X1 < X3} =
λ1λ2

(λ1 + λ3)(λ1 + λ2 + λ3)
,

so that

P{max(X1, X2, X3) = X3} = P{X1 < X2 < X3} + P{X2 < X1 < X3} .



Thus using these results we can calculate our desired probability

P{X1 < X2|max(X1, X2, X3) = X3} =

λ1λ2

(λ2+λ3)(λ1+λ2+λ3)

λ1λ2

(λ2+λ3)(λ1+λ2+λ3)
+ λ1λ2

(λ1+λ3)(λ1+λ2+λ3)

=
λ1 + λ3

λ1 + λ2 + 2λ3
.

Part (c): We want to evaluate E[max(Xi)|X1 < X2 < X3]. From the definition of condi-
tional expectation we have that (if we define the random variable M to be M = max(Xi))

E[max(Xi)|X1 < X2 < X3] =

∫ ∞

0

mpM (m|X1 < X2 < X3)dm .

So that we see that to evaluate this expectation we need to be able to compute the conditional
density pM(m|X1 < X2 < X3). Using the definition of conditional density we have that

pM(m|X1 < X2 < X3) =
P{M = m, X1 < X2 < X3}

P{X1 < X2 < X3}
.

From Part (a) of this problem we know how to compute P{X1 < X2 < X3}, so our problem
becomes how to calculate the expression P{M = m, X1 < X2 < X3}. We find that

P{M = m, X1 < X2 < X3} = P{max(X1, X2, X3) = m, X1 < X2 < X3}

= P{X3 = m, X1 < X2 < X3}

= P{X3 = m, X1 < X2 < m}

= P{X3 = m}P{X1 < X2 < m} ,

using the independence of the variables Xi. Since X3 is an exponential random variable
we know that P{X3 = m} = λ3e

−λ3m. We can also compute the second probability in the
product above as

P{X1 < X2 < m} =

∫ ∫

Ω:{X1<X2<m}

pX1(x1)pX2(x2)dx2dx1

=

∫ m

x2=0

∫ x2

x1=0

λ1e
−λ1x1λ2e

−λ2x2dx1dx2 .

We can perform the above integrations one at a time from the outside inward. The first
integral is with respect to x1 and the second is with respect to x2. When this is done we
obtain

P{X1 < X2 < m} =
λ1

λ1 + λ2

− e−λ2m +
λ2

λ1 + λ2

e−(λ1+λ2)m .

See the Mathematica file chap 5 prob 12.nb for this algebra. Now multiplying this ex-
pression by P{X3 = m} = λ3e

−λ3m we have (doing the steps very slowly) that

P{M = m, X1 < X2 < X3} =
λ1

λ1 + λ2

· λ3e
−λ3m − λ3e

−(λ2+λ3)m +
λ2λ3

λ1 + λ2

e−(λ1+λ2+λ3)m

=
λ1

λ1 + λ2

· λ3e
−λ3m −

λ3

λ2 + λ3

(λ2 + λ3)e
−(λ2+λ3)m

+
λ2λ3

λ1 + λ2 + λ3
(λ1 + λ2 + λ3)e

−(λ1+λ2+λ3)m .



The manipulations performed above were to enable us to recognize the above expression as
a linear combination of exponential random variables. We explicitly demonstrate this fact
by introducing normalized exponential random variables in the second line above. With this
representation, taking the expectation of this expression is simple to do. At this point in the
calculation we do not yet need divide by P{X1 < X2 < X3} since it is just a scalar multiplier
of the above and can be done after the integration. Performing the integration over m in the
above expression and remembering the expression for the mean of a exponentially distributed
random variable we find that

E[max(Xi)|X1 < X2 < X3] ∝
λ1

λ1 + λ2
·

1

λ3
−

λ3

λ2 + λ3
·

1

λ2 + λ3

+
λ2λ3

λ1 + λ2 + λ3
·

1

λ1 + λ2 + λ3
.

So that when we divide by P{X1 < X2 < X3} we find that we obtain for E[max(Xi)|X1 <
X2 < X3] the following

(λ2 + λ3)(λ1 + λ2 + λ3)

λ1λ2
×

(

λ1

λ3(λ1 + λ2)
−

λ3

(λ2 + λ3)2
+

λ3

(λ1 + λ2 + λ3)2

)

.

Which one might be able to simplify further but we stop here.

Part (d): To evaluate E[max(X1, X2, X3)] we will use the mins for maxs identity which is

max(X1, X2, X3) =
3
∑

i=1

Xi −
∑

i<j

min(Xi, Xj) +
∑

i<j<k

min(Xi, Xj, Xk)

= X1 + X2 + X3 − min(X1, X2) − min(X1, X3) − min(X2, X3)

+ min(X1, X2, X3) ,

Sine the Xi’s are independent exponential distributed random variables the random variables
which are the minimization’s of such random variables are themselves exponential random
variables with failure rates given by the sum of the failure rates of their various components.
Specifically the random variable min(X1, X2) is an exponential random variable with failure
rate give by λ1 + λ2. Taking the expectation of this expression we find that

E[max(X1, X2, X3)] =
1

λ1

+
1

λ2

+
1

λ3

−
1

λ1 + λ2

−
1

λ1 + λ3

−
1

λ2 + λ3

+
1

λ1 + λ2 + λ3

.

Note that by using the various pieces computed in this problem one could compute E[max(Xi)]
by conditioning on events like in Part (c). For example

E[max(Xi)] = E[max(Xi)|X1 < X2 < X3]P{X1 < X2 < X3]}

+ E[max(Xi)|X1 < X3 < X2]P{X1 < X3 < X2]}

+ E[max(Xi)|X2 < X3 < X1]P{X2 < X3 < X1]}

+ · · ·

The two approaches should give the same answer but the second seems more tedious.



Exercise 14 (are we less than c?)

Part (a): We have from the definition of conditional expectation that

E[X|X < c] =

∫

xpX(x|X < c)dx .

Now the density function in the above expression is by definition given by

pX(x|X < c) =
P{X = x, X < c}

P{X < c}
.

Now in the above expression the numerator is given by

P{X = x, X < c} = H(−(x − c))pX(x) = H(c − x)pX(x) .

here H(·) is the Heaviside function and enforces the requirement that X < c. The denomina-
tor is then given by the cumulative distribution function for an exponential random variable
i.e.

P{X < c} = FX(c) = 1 − λe−λc .

Using both of these expressions the above becomes

∫ ∞

0

x

(

H(c − x)pX(x)

1 − λe−λc

)

dx =
1

1 − λe−λc

∫ c

0

xλe−λxdx

=
1

λ(1 − λe−λc)
(1 − e−λc − cλe−λc) ,

for the requested expression.

Part (b): We now want to find the E[X|X < c] by conditioning on E[X]. To begin we
have

E[X] = E[X|X < c]P{X < c} + E[X|X > c]P{X > c} .

Now from the properties of an exponential distribution we know several of these pieces. We
know that

E[X] =
1

λ
P{X < c} = 1 − λe−λc

P{X > c} = λe−λc .

Thus using all of this information in the first expression derived in this part of this problem
we find

1

λ
= E[X|X < c](1 − λe−λc) + E[X|X > c](λe−λc) .

Now by the memoryless property of the exponential distribution we have the key observation
that

E[X|X > c] = E[X + c] = E[X] + c =
1

λ
+ c ,



so the formula above becomes

1

λ
= E[X|X < c](1 − λe−λc) +

(

1

λ
+ c

)

(λe−λc) ,

which when we solve for E[X|X < c] we find that

E[X|X < c] =
1 − (1 + cλ)e−λc

λ(1 − λe−λc)
,

the same expression as in Part (a).

Exercise 18 (mins and maxes of same rate exponentials)

Part (a): Since X(1) is defined as X(1) = min(X1, X2) it is an exponential random variable
with rate 2µ so we find that

E[X(1)] =
1

2µ
.

Part (b): Since X(1) is defined as X(1) = min(X1, X2) it is an exponential random variable
with rate 2µ so we find that

Var(X(1)) =
1

(2µ)2
=

1

4µ2
.

Part (c): To compute moments of X(2) = max(X1, X2) recall from the discussion on order
statistics that the density function for the ith order (of n independent random variables with
density/distribution function f/F ) is given by

fX(i)
(x) =

n!

(n − i)!(i − 1)!
f(x)F (x)i−1(1 − F (x))n−i ,

so the distribution of the maximum X(n) is given by

fX(n)
(x) =

n!

0!(n − 1)!
f(x)F (x)n−1 = nf(x)F (x)n−1 .

When there are only two independent exponential random variables this becomes

fX(2)
(x) = 2µe−µx − 2µe−2µx .

Notice that this is a linear combination of two exponential densities i.e. one with rate µ and
one with rate 2µ. This observation helps in computing various quantities. For example for
the expectation we find that

E[X(2)] = 2

(

1

µ

)

−
1

2µ
=

3

2µ
.



We note that this problem could also be solved by using the “mins” for “maxes” relationship
which for two variables is given by

max(X1, X2) = X1 + X2 − min(X1, X2) , (2)

where we know that since Xi is distributed as an exponential random variable with rate
µ the random variable min(X1, X2) is an exponential random variable with rate 2µ. Thus
taking the expectation of the above (and using the known value of the expectation for an
exponential random variable) we find that

E[max(X1, X2)] =
1

µ
+

1

µ
−

1

2µ
=

3

2µ
,

as before. The variance calculation using this approach would be more complicated because
it would involve products of terms containing X1 and min(X1, X2) which are not independent
and would have to be computed in some way. Finally a third way to compute this expectation
is to recall that by the memoryless property of the exponential distribution that the random
variable X(2) is related to the random variable X(1) by an “offset” random variable (say A)
in such a way that X(2) = X(1) + A, where A is an exponential random variable with rate µ
and X(1) and A are independent. Thus we then find using this method that

E[X(2)] = E[X(1)] + E[A] =
1

2µ
+

1

µ
=

3

2µ
,

the same as earlier.

Part (d): To compute the variance of X(2) we can use

Var(X(2)) = E[X2
(2)] − E[X(2)]

2 ,

and we can calculate E[X2
(2)] from the density given in Part (c). Remembering that the

second moment of an exponential random variable (say X) with failure rate λ is given by

E[X2] =
2

λ2
,

given the density for X(2) derived above we find that

E[X2
(2)] = 2

(

2

µ2

)

−
2

(2µ)2
=

7

2µ2
.

Using this result we see that Var(X(2)) is given by

Var(X(2)) =
7

2µ2
−

9

4

1

µ2
=

5

4µ2
.

Another way to compute this variance is to recall that by the memoryless property of the
exponential distribution that the random variable X(2) is related to the random variable X(1)

by an “offset” random variable (say A) in such a way that X(2) = X(1) + A, where A is an
exponential random variable with rate µ and X(1) and A are independent. Thus we then
find using this method that

Var(X(2)) = Var(X(1)) + Var(A) =
1

(2µ)2
+

1

µ2
=

5

4µ
,

the same as before.



Exercise 19 (mins and maxes of different rate exponentials)

Part (a): Using much of the discussion from Exercise 18 we have that X(1) is an exponential
random variable with rate µ1 + µ2, so that

E[X(1)] =
1

µ1 + µ2

.

Part (b): As in Part (a) the variance of X(1) is simple to calculate and we find that

Var(X(1)) =
2

(µ1 + µ2)2
.

Part (c): To compute E[X(2)] we condition on whether X1 < X2 or not. We have

E[X(2)] = E[X(2)|X1 < X2]P{X1 < X2} + E[X(2)|X1 > X2]P{X1 > X2}

= E[X(2)|X1 < X2]

(

λ1

λ1 + λ2

)

+ E[X(2)|X1 > X2]

(

λ2

λ1 + λ2

)

.

We will now evaluate E[X(2)|X1 < X2]. We first define the random variable M = max(X1, X2)
and use the definition of conditional expectation. We have

E[X(2)|X1 < X2] =

∫ ∞

0

mpM(m|X1 < X2)dm .

The conditional probability distribution pM(m|X1 < X2) is given by some simple manipula-
tions. We find

pM(m|X1 < X2) =
P{M = m, X1 < X2}

P{X1 < X2}

=
P{max(X1, X2) = m, X1 < X2}

P{X1 < X2}

=
P{X2 = m, X1 < X2}

P{X1 < X2}

=
P{X2 = m, X1 < m}

P{X1 < X2}

=
P{X2 = m}P{X1 < m}

P{X1 < X2}
,

where we have used the independence of X1 and X2 in the last step. From earlier we know
that the denominator of the above is given by P{X1 < X2} = λ1

λ1+λ2
, and the numerator is

given by

P{X2 = m}P{X1 < m} = λ2e
−λ2m(1 − e−λ1m) = λ2e

−λ2m − λ2e
−(λ1+λ2)m .

Combining all of this information we find that our probability density is given by

pM(m|X1 < X2) =

(

λ1 + λ2

λ1

)

(λ2e
−λ2m − λ2e

−(λ1+λ2)m) .



Multiplying by m and integrating we can use the fact that pM(m|X1 < X2) is a linear
combination of exponential densities to find that

E[X(2)|X1 < X2] =
λ1 + λ2

λ1λ2
−

λ2

λ1

(

1

λ1 + λ2

)

.

By the same arguments (effectively exchanging 1 with 2) we find that

E[X(2)|X1 > X2] =
λ1 + λ2

λ1λ2
−

λ1

λ2

(

1

λ1 + λ2

)

.

So combining these two results we can finally obtaining E[X(2)] as

E[X(2)] =
1

λ1

+
1

λ2

−
1

λ1 + λ2

.

Note that this could also have been obtained (with a lot less work) by using the mins for
max identity given by Equation 2.

Part (d): We want to evaluate Var(X(2)), which we will do by evaluating E[X2
(2)]−E[X(2)]

2

using the results from Part (c) above. As before we can evaluate E[X2
(2)] by conditioning on

whether X1 < X2 or not. From the expression for pM(m|X1 < X2) derived in Part (c) we
find that

E[X2
(2)|X1 < X2] =

λ1 + λ2

λ1

(

2

λ2
2

−
λ2

λ1 + λ2
·

2

(λ1 + λ2)2

)

,

and in the same way we then have

E[X2
(2)|X1 > X2] =

λ1 + λ2

λ2

(

2

λ2
1

−
λ1

λ1 + λ2
·

2

(λ1 + λ2)2

)

.

So that using the results above, the expectation of X2
(2) is given by

E[X2
(2)] =

2

λ2
1

+
2

λ2
2

−
2

(λ1 + λ2)2
.

Giving finally the desired result for Var(X(2)) of

Var(X(2)) =
2

λ2
1

+
2

λ2
2

−
2

(λ1 + λ2)2
−

(

1

λ1

+
1

λ2

−
1

λ1 + λ2

)2

=
1

λ2
1

+
1

λ2
2

−
3

(λ1 + λ2)2
,

after some algebra.

Exercise 21 (waiting time at a two station queue)

For simplicity let Xi for i = 1, 2 be an exponential random variables with parameter µ1,
and Yi for i = 1, 2 be exponential random variables with parameter µ2. When we enter the



system we will have to first wait for the first server to finish. By the memoryless property
of exponential random variables we have that the amount of time we have to wait for this
to happen will be X1. At this point we will be at server ones station while the person
ahead of us will be at sever number two’s station. The total time for us to wait until we
move to server number two’s station is given by the maximum amount of time spent at
either server number one or server number two and again using the memory less property of
the exponential distribution is represented as the random variable max(X2, Y1). Once this
amount of time has completed we will be a the second server where we will have to wait an
additional Y2 amount of time. Thus if T denotes the random variable representing the total
amount of time we will have to wait we have that

T = X1 + max(X2, Y1) + Y2 .

To evaluate this we need to compute the distribution function of a random variable A
defined by A = max(X2, Y1) when X2 and Y2 are distributed as above. To do this consider
the distribution function of this random variable where we drop the subscripts on X and Y
we have

F (a) = P{max(X, Y ) ≤ a} =

∫ ∫

Ωa

f(x, y)dxdy

where Ωa is the set of points in the XY plane where max(X, Y ) ≤ a. If we imagine a the
random variable X along the x axis of a Cartesian grid and the random variable Y along
the y axis of a Cartesian grid then the set of points where max(X, Y ) ≤ a is 0 ≤ X ≤ a and
0 ≤ Y ≤ a. Thus we can evaluate F (a) (using the independence of X and Y ) as

F (a) =

∫ a

0

∫ a

0

f(x, y)dxdy

=

∫ a

0

∫ a

0

µ1e
−µ1xµ2e

−µ2ydxdy

= µ1µ2

∫ a

0

e−µ1xdx

∫ a

0

e−µ2ydy

= (1 − e−µ1a)(1 − e−µ2a)

= 1 − e−µ1a − e−µ2a + e−(µ1+µ2)a

Thus our density function is then given by

f(a) = µ1e
−µ1a + µ2e

−µ2a − (µ1 + µ2)e
−(µ1+µ2)a .

Showing easily that the expectation of the random variable A is given by

E[A] =
1

µ1
+

1

µ2
−

1

µ1 + µ2
.

Thus we can now evaluate the expected length of time in the system T as

E[T ] = E[X1] + E[max(X2, Y1)] + E[Y2]

=

(

1

µ1

)

+

(

1

µ1
+

1

µ2
−

1

µ1 + µ2

)

+

(

1

µ2

)

=
2

µ1

+
2

µ2

−
1

µ1 + µ2

.



Exercise 22 (more waiting at a two station queue)

In the same way as in the previous problem we will let Xi be an exponential random variable
with parameter µ1 and Yi be an exponential random variable with parameter µ2. Then to
have server one become available we must wait an amount max(X1, Y1). After this amount of
time you move to server number one. To move to server number two you must wait another
max(X2, Y2) amount of time. Finally you must wait for server number two to finish (an
additional amount of time Y3) serving you. Thus the total time T spent in the system is
given by

T = max(X1, Y1) + max(X2, Y2) + Y3 .

So the expected time in the station is given by (using the results from the previous problem)

E[T ] =

(

1

µ1

+
1

µ2

−
1

µ1 + µ2

)

+

(

1

µ1

+
1

µ2

−
1

µ1 + µ2

)

+

(

1

µ2

)

=
2

µ1
+

3

µ2
−

2

µ1 + µ2
.

Exercise 23 (flashlight batteries)

By the memory less property of the exponential distribution, when two batteries are being
used simultaneously the lifetime of either battery is given by an exponential distribution
that does not depend on how long the battery has been operational up to that point. Thus
if X and Y are exponential random variables denoting the life expectancy of two batteries
with the same parameter µ the probability that X will fail before Y is given by

P{X < Y } =

∫ ∫

ΩX<Y

fX,Y (x, y)dxdy

=

∫ ∞

x=0

∫ x

y=0

fX,Y (x, y)dydx

=

∫ ∞

x=0

∫ x

y=0

fX,Y (x, y)dydx

=

∫ ∞

x=0

∫ x

y=0

µe−µxµe−myydydx

= µ

∫ ∞

x=0

e−µx(1 − e−µx)dx

=

∫ ∞

x=0

µe−µxdx −
1

2

∫ ∞

x=0

(2µ)e−2µxdx

= 1 −
1

2
=

1

2
.

Thus when two batteries are in place due to the memoryless property of the exponential
distribution it is equally likely that either one of them will expire first. With this information
we can calculate the various probabilities.



Part (a): P{X = n} is the probability that the last non failed battery is number n. Since
when the n the battery is placed in the flashlight, with probability 1/2 it will last longer
than the other battery. Thus P{X = n} = 1/2.

Part (b): P{X = 1} is the probability that when the last working battery is observed it
happens to be the first battery on the battery list. This will happen if the first battery
lasts longer than the second battery, the third battery, the fourth batter, etc. up to the nth
battery. Since the event that the first battery lasts longer than these n − 1 other batteries
this will happen with probability (1/2)n−1, thus

P{X = 1} =

(

1

2

)n−1

.

Part (c): To evaluate P{X = i} means that when the ith battery is placed in the flashlight
it proceeds to last longer than the remaining I, i + 1, i + 2, · · · , n other batteries. Here I is
the index of the other battery in the flashlight when the ith battery is placed in the flashlight
(1 ≤ I ≤ i− 1). Thus the ith battery has n− (i + 1) + 1 + 1 = n− i + 1 comparisons which
it must win. Thus

P{X = i} =

(

1

2

)n−i+1

2 ≤ i ≤ n

The reason this expression does not work for i = 1 is that in that case there is no battery
“before” this one to compare to. Thus the index in the above expression is one two large for
the case i = 1.

Part (d): The random variable T (representing the entire lifetime of our flashlight) can
be expressed in terms of sums of random variables representing the serial lifetimes of two
individual batteries. For example, the first two batteries will produced a functional flashlight
until the first one burns out. If we let T1 and T2 represent the exponential random variables
representing the lifetime of the first and second battery then the flashlight will function for
a random amount of time F1 = min(T1, T2). When one of these two batteries burns out
it is immediately replaces. By the memoryless property of the exponential distribution the
battery that is not replaced has a distribution as if it just started at this replacement time.
The next increment of time before the fourth battery is used is given by F2 = min(T∗, T3),
where T∗ is the battery not replaced earlier. Note that each of these minimizations is itself
a random variable with a rate given by 2µ. This process continues n− 1 times. Thus if T is
the lifetime of the total flashlight system we see that it is given by

T =
n−1
∑

i=1

Fi .

Since for each Fi we have E[Fi] = 1
2µ

, the expectation of T is given by

E[T ] =
n−1
∑

i=1

E[Fi] =
n − 1

2µ
.



Part (e): Since T is the sum of n − 1 exponential random variables with rates 2µ the
distribution of T is given by a gamma distribution with parameters n−1 and 2µ, specifically

fT (t) = 2µe−2µt (2µt)n−2

(n − 2)!
.

Exercise 24 (Laplace distributions)

Part (a): We want to show that the given f is a density function. We will integrate and
see if we obtain unity. We have

∫ ∞

−∞

f(x)dx =

∫ 0

−∞

λ

2
eλxdx +

∫ ∞

0

λ

2
e−λxdx

=
λ

2

(

eλx

λ

∣

∣

∣

∣

0

−∞

+
λ

2

(

e−λx

(−λ)

∣

∣

∣

∣

∞

0

=
1

2
(1) −

1

2
(−1) = 1 .

Part (b): The distribution function F (·) is given by

F (x) =

∫ x

−∞

1

2
λeλξdξ =

1

2
eλξ
∣

∣

x

−∞
=

1

2
eλx for x < 0 ,

and

F (x) =
1

2
+

∫ x

0

1

2
λe−λξdξ =

1

2
+

λ

2

eλξ

(−λ)

∣

∣

∣

∣

x

0

= 1 −
1

2
e−λx for x > 0 ,

Part (c): We are told that X and Y are exponential random variables then we want to
prove that X − Y is given by a Laplace (double exponential) distribution. To do this define
the random variable Z ≡ X −Y , which has a distribution function given by the convolution
of the random variables X and −Y . This means that

fZ(z) =

∫ ∞

−∞

fX(ξ)f−Y (z − ξ)dξ .

Now the density f−Y (y) is given by

f−Y (y) =

{

0 y > 0
λeλy y < 0

So to evaluate our convolution given above we begin by letting z < 0 and then since f−Y (z−
ξ) = f−Y (−(ξ−z)), plotted as a function of ξ this is the function f−Y (−ξ) shifted to the right

by z. Plotting the function f−Y (−(ξ − z)), for z = −1 and z = +1 we have the figure ??.
With this understanding if z < 0 our function fZ(z) is given by

fZ(z) =

∫ ∞

0

λe−λξ · λeλ(z−ξ)dξ =
λ

2
eλz for z < 0 ,



after some algebra. If z > 0 then fZ(z) is given by

fZ(z) =

∫ ∞

z

λe−λξ · λeλ(z−ξ)dξ =
λ

2
e−λz for z < 0 ,

Combining these results we find that

fZ(z) =

{

λ
2
eλz z < 0

λ
2
e−λz z > 0

showing that Z is a Laplace or double exponential random variable.

Part (d): Now to show that IX is a Laplace random variable we remember that I = ±1
both with probability 1/2. Defining Y ≡ IX the probability distribution of Y can be found
by conditioning on the value of I. We have

pY (y) = P{IX = y|I = −1}P{I = −1} + P{IX = y|I = +1}P{I = +1}

= P{IX = y|I = −1}
1

2
+ P{IX = y|I = +1}

1

2

= P{X = −y|I = −1}
1

2
+ P{X = y|I = +1}

1

2

= P{X = −y}
1

2
+ P{X = y}

1

2
,

by the independence of X and I. Since

P{X = −y} =

{

0 y > 0
λeλy y < 0

we have that pY (y) is given by

pY (y) =

{

1
2
λeλy y < 0

1
2
λe−λy y > 0

or a Laplace random variable.

Part (e): We define the random variable W as

W =

{

X I = 1
−Y I = −1

then this probability distribution can be calculated as in a Part (d) of this problem. For we
have

pW (w) =
1

2
pX(w) +

1

2
p−Y (w) =

1

2
H(w)λe−λw +

1

2
H(−w)λeλw ,

with H(·) the Heaviside function. From which we see that the random variable W is a
Laplace random variable.



Exercise 29 (replacement kidneys)

Part (a): From the information given the time till a new kidney’s arrival, T , is distributed
as an exponential random variable with rate λ. Thus as long as A is still living when it
finally arrives she will receive it. If we denote LA as the random variable representing the
lifetime of A then A will be alive if LA > T . This event happens with probability

λ

µA + λ
,

with µA the exponential rate of the lifetime of A. This result as derived in the section of the
book entitled “Further Properties of the Exponential Distribution”.

Part (b): For B to receive a new kidney we must have had A expire, and B still alive when
the kidney arrives. Mathematically if we denote LB as the random variable the lifetime of
B this is the event that

LB > LA and LB > T .

By the independence of these random variables the probability of this event is

P{LB > LA}P{LB > T} =

(

µA

µA + µB

)(

λ

µB + λ

)

.

Problem 30 (pet lifetimes)

Let L be the random variable denoting the additional lifetime of the surviving pet. We can
compute the expectation of L by conditioning on which pet dies first. If we let LD and LC

be random variables denoting the lifetimes of the dog and cat respectively, then the event
that the dog is the first do die is mathematically stated as LD < LC . With these definitions
we can compute E[L] as

E[L] = E[L|LD < LC ]P{LD < LC} + E[L|LD > LC ]P{LD > LC}

= E[L|LD < LC ]

(

λd

λd + λc

)

+ E[L|LD > LC ]

(

λc

λd + λc

)

= E[LC ]

(

λd

λd + λc

)

+ E[LD]

(

λc

λd + λc

)

=
1

λc

(

λd

λd + λc

)

+
1

λd

(

λc

λd + λc

)

=

(

1

λd + λc

)(

λd

λc
+

λc

λd

)

.

In the above we have been able to make the substitution that E[L|LD < LC ] = E[LC ],
because of the memoryless property of the exponential random variables involved.

Problem 31 (doctors appointments)

If the 1:00 appointment is over before the 1:30 appointment then the amount of time the
1:30 patient spends in the office is given by an exponential random variable with mean 30



minutes. If the 1:00 appointment runs over (into the 1:30 patients time slot) the 1:30 patient
will spend more time in the office due to the fact that his appointment cannot start on
time. Thus letting T1 and T2 be exponential random variables denoting the length of time
each patient requires with the doctor, the expected time the 1:30 appointment spends at the
doctors office (L) is given by conditioning on the length of time the 1:00 patient requires
with the doctor. We find

E[L] = E[L|T1 < 30]P{T1 < 30} + E[L|T1 > 30]P{T1 > 30} .

We can compute each of these expressions. We find E[L|T1 < 30] = E[T2] = 30 minutes,

P{T1 < 30} = 1 − e−(1/30)(30) = 1 − e−1 ,

and
P{T1 > 30} = e−(1/30)(30) = e−1 .

To evaluate E[L|T1 > 30] we can write it as follows.

E[L|T1 > 30] = E[(T1 − 30) + T2|T1 > 30]

= E[T1 − 30|T1 > 30] + E[T2|T1 > 30] .

By the memoryless property of the exponential random variable we have that

E[T1 − 30|T1 > 30] = E[T1] = 30 .

Thus we find
E[L|T1 > 30] = 30 + E[T2|T1 > 30] = 30 + 30 = 60 ,

and finally obtain
E[L] = 30(1 − e−1) + 60(e−1) = 41.03 ,

minutes for the expected amount of time the 1:30 patient spends at the doctors office.

Problem 34 (X given X + Y )

Part (a): Let begin by computing fX|X+Y =c(x|c). We have that

fX|X+Y =c(x|c) = P{X = x|X + Y = c}

=
P{X = x, X + Y = c}

P{X + Y = c}

=
P{X = x, Y = c − x}

P{X + Y = c}

=
P{X = x}P{Y = c − x}

P{X + Y = c}
,

By the independence of X and Y . Now defining the random variable Z as Z = X + Y , we
see that Z has a distribution function given by the appropriate convolution

fZ(z) =

∫ ∞

−∞

fX(ξ)fY (z − ξ)dξ ,



so that if z < 0 we have the above equal to

fZ(z) =

∫ z

0

λe−λξµe−µ(z−ξ)

=
λµ

λ − µ
(e−µz − e−λz) ,

when we do the integration. Thus with this result we see that the expression for fX|X+Y =c(x|c)
is given by

fX|X+Y =c(x|c) =
(λe−λx)(µe−µ(c−x))

λµ
λ−µ

(e−µc − e−λc)

=
(λ − µ)e−(λ−µ)x

1 − e−(λ−µ)c
for 0 < x < c .

The book gives a slightly different result (which I believe is a typo). I believe the result
above is correct. One can integrate the above over the range (0, c) to verify that this function
integrates to one.

Part (b): From Part (a) of this problem we can integrate this expression to compute
E[X|X + Y = c]. We find that

E[X|X + Y = c] =
(λ − µ)

(1 − e−(λ−µ)c)

∫ c

0

xe−(λ−µ)xdx

=
1

λ − µ
−

ce−(λ−µ)c

1 − e−(λ−µ)c
.

Part (c): To find E[Y |X + Y = c] we can use an idea like that in Exercise 14. Consider
the expression E[X + Y |X + Y = c], which we know must equal c since we are conditioning
on the event X + Y = c. By linearity of the expectation it must also equals

E[X|X + Y = c] + E[Y |X + Y = c] .

So solving for the desired E[Y |X + Y = c] we see that

E[Y |X + Y = c] = c − E[X|X + Y = c]

= c −
1

λ − µ
+

ce−(λ−µ)c

1 − e−(λ−µ)c

= c

(

1 − e−(λ−µ)c

1 − e−(λ−µ)c

)

−
1

λ − µ
+

ce−(λ−µ)c

1 − e−(λ−µ)c

=
c

1 − e−(λ−µ)c
−

1

λ − µ
.

Problem 35 (equivalent definitions of a Poisson process)

We are asked to prove the equivalence of two definitions for a Poisson process. The first
definition (Definition 5.1 in the book) is the following



The counting process {N(t), t ≥ 0} is said to be a Poisson process if:

i N(0) = 0

ii {N(t), t ≥ 0} has independent increments

iii The number of events in any interval of length t has a Poisson distribution with mean
λt. That is for s, t ≥ 0, we have

P{N(t + s) − N(s) = n} = e−λt (λt)n

n!
n ≥ 0

We want to show that this definition is equivalent to the following (which is Definition 5.3
in the book)

i N(0) = 0

ii {N(t), t ≥ 0} has stationary, independent increments

iii P{N(t) ≥ 2} = o(t)

iv P{N(t) = 1} = λt + o(t)

We begin by noting that both definitions require N(0) = 0. From (ii) in Definition 5.1
we have the required independent increments needed in Definition 5.3 (ii). From (iii) in
Definition 5.1 we have that the distributions of X(t2 + s) − X(t1 + s) is given by a Poisson
distribution with mean λ(t2 − t1) and the distribution of random variable X(t2) − X(t1) is
also given by a Poisson distribution with mean λ(t2 − t1) showing that the process {N(t)}
also has stationary increments and thus satisfies the totality of Definition 5.3 (ii).

From (iii) in Definition 5.1 we have with s = 0 (and the fact that N(0) = 0) that

P{N(t) = n} =
e−λt(λt)n

n!
.

So that

P{N(t) ≥ 2} =

∞
∑

n=2

e−λt(λt)n

n!

= e−λt

[

∞
∑

n=0

(λt)n

n!
− 1 − λt

]

= e−λt
[

eλt − 1 − λt
]

= 1 − e−λt − λte−λt ,

which (we claim) is a function that is o(t). To show that this is true consider the limit as t
goes to zero. Thus we want to evaluate

lim
t→0

1 − e−λt − λte−λt

t
.



Since this is an indeterminate limit of type 0/0 we must use L’Hospital’s rule which gives
that the above limit is equal to the limit of the derivative of the top and bottom of the above
or

lim
t→0

λe−λt − λe−λt + λ2te−λt

1
= λ − λ = 0 .

Proving that this expression is o(t) (since this limit equaling zero is the definition) and
proving that P{N(t) ≥ 2} = o(t). The final condition required for Definition 5.3 is (iv). We
have from Definition 5.1 (iii) that

P{N(t) = 1} =
e−λt(λt)

1!
= λte−λt

To show that this expression has the correct limiting behavior as t → 0, we first prove that

e−λt = 1 − λt + o(t) as t → 0 ,

Which we do by evaluating the limit

lim
t→0

e−λt − 1 + λt

t
= lim

t→0

−λe−λt + λ

1
= −λ + λ = 0 .

Where we have used L’Hospital’s rule again. With this result we see that

P{N(t) = 1} = λt(1 − λt + o(t))

= λt − λ2t2 + o(t2)

= λt + o(t) ,

showing the truth of condition (iv) in Definition 5.3.

Exercise 37 (helping Reb cross the highway)

At the point where Reb wants to cross the highway the number of cars that cross is a Poisson
process with rate λ = 3, the probability that k appear is given by

P{N = k} =
e−λt(λt)k

k!
.

Thus Reb will have no problem if no cars come during her crossing. If her crossing takes s
second this will happen with probability

P{N = 0} = e−λs = e−3s .

Note that this is the density function for a Poisson random variable (or the cumulative
distribution function of a Poisson random variable with n = 0). This expression is tabulated
for s = 2, 5, 10, 20 seconds in chap 5 prob 37.m.



Exercise 38 (helping a nimble Reb cross the highway)

Following the results from Exercise 29, Reb will cross unhurt, with probability

P{N = 0} + P{N = 1} = e−λs + e−λs(λs) = e−3s + 3se−3s .

Not that this is the cumulative distribution function for a Poisson random variable. This
expression is tabulated for s = 5, 10, 20, 30 seconds in chap 5 prob 38.m.

Exercise 40 (the sum of two Poisson processes)

We will first prove that the sum of two Poisson random variables is a Poisson random variable.
Let X and Y be Poisson random variables with parameters λ1 and λ2 respectively. We can
evaluate the distribution of X +Y by computing the characteristic function of X +Y . Since
X and Y are independent Poisson random variables the characteristic functions of X + Y is
given by

φX+Y (u) = φX(u)φY (u)

= eλ1(eiu−1)eλ2(eiu−1)

= e(λ1+λ2)(eiu−1) .

From the direct connection between characteristic functions to and probability density func-
tions we see that the random variable X + Y is a Poisson random variable with parameter
λ1 + λ2, the sum of the Poisson parameters of the random variables X and Y .

Now for the problem at hand, since N1(t) and N2(t) are both Poisson random variables with
parameters λ1t and λ2t respectively, then from the above discussion the random variable
N(t) defined by N1(t) + N2(t) is a Poisson random variable with parameter λ1t + λ2t and
thus has a probability of the event N(t) = j given by

P{N(t) = j} =
e−(λ1t+λ2t)(λ1t + λ2t)

j

j!
=

e−(λ1+λ2)t((λ1 + λ2)t)
j

j!
,

showing that N(t) is a Poisson process with rate λ1 + λ2.

Exercise 41 (the probability that N1 hits first)

For this problem we are asked to evaluate

P{N1(t) = 1, N2(t) = 0|N1(t) + N2(t) = 1} ,

which we can do by using the definition of conditional probabilities as

P{N1(t) = 1, N2(t) = 0|N1(t) + N2(t) = 1} =
P{N1(t) = 1, N2(t) = 0}

P{N1(t) + N2(t) = 1}

=
P{N1(t) = 1}P{N2(t) = 0}

P{N1(t) + N2(t) = 1}
.



In the above we have used the independence of the process N1(·) and N2(·). The above then
equals

e−λ1t(λ1t)1

1!
· e−λ2t

e−(λ1+λ2)t((λ1+λ2)t)1

1!

=
λ1

λ1 + λ2

.

Exercise 42 (arrival times for a Poisson process)

Part (a): For a Poisson process the inter-arrival times Ti are distributed as exponential
random variables with parameter λ. Thus the expectation of Ti is well known since

E[Ti] =
1

λ
.

With this results we see that the expected value of the fourth arrival time E[S4] is given by

E[S4] = E[

4
∑

i=1

Ti] =

4
∑

i=1

E[Ti] =

4
∑

i=1

1

λ
=

4

λ
.

From this we see that in general we have that

E[Sn] =
n

λ
.

Part (b): To calculate E[S4|N(1) = 2] we will use the memoryless property of the exponen-
tial distribution. Now since we are told that at t = 1 we have seen two of the four events (not
more) from the time t = 1 onward the evaluation of the above expression we only need to
compute the time for two more events to elapse. This last argument relies on the memoryless
property of the exponential distribution, i.e. no matter how much time has elapsed between
the last event seen, the time needed to elapse to the next event is given by an exponential
distribution that is unchanged. Mathematically we have

E[S4|N(1) = 2] = 1 + E[S2] = 1 +
2

λ
,

using the results from Part (a) of this problem.

Part (c): To calculate E[N(4) − N(2)|N(1) = 3] we will specifically use the stationary

increments property of the Poisson process. Subtracting one from each N(·) in the above
expectation we find that

E[N(4) − N(2)|N(1) = 3] = E[N(3) − N(1)|N(1) = 3]

= E[N(3) − 3]

= E[N(3)] − 3

= 3λ − 3 .

Using the result that E[N(t)] = λt which was shown in the book.



Exercise 50 (waiting for the train)

Part (a): We will solve this problem by conditioning on the time of arrival of the train t.
Specifically if X is the random variable denoting the number of passengers who get on the
next train the we have

E[X] = E[E[X|T ]] ,

where T is the random variable denoting the arrival time of the next train after the previous
train has left the station (we are told that this random variable is uniform). We begin by
computing E[X|T ]. Now assuming that the number of people that arrive to wait for the
next train is a Poisson process, the probability that there are n people waiting at the train
stop at time T = t is given by the standard expression for a Poisson process i.e.

P{X = n|T = t} =
e−λt(λt)n

n!
,

where from the problem statement we have λ = 7 (per hour). This expression has an
expected value is given by

E[X|T = t] = λt .

The expectation of X can now be computed by conditioning on the random variable T . We
have

E[X] = E[E[X|T ]] = E[λT ] = λE[T ] =
λ

2
.

Since we know T to be a uniform random variable over (0, 1).

Part (b): To compute the variance of X we will use the conditional variance formula given
by

Var(X) = E[Var(X|T )] + Var(E[X|T ]) .

We will compute each term on the right hand side. We begin with the second term:
Var(E[X|T ]). Since from the above the random variable E[X|T ] is given by λT , the variance
of this expression is related to the variance of T and is given by

Var(E[X|T ]) = Var(λT ) = λ2Var(T ) =
λ2

12
.

Now for the first term on the right hand side of the conditional variance expansion (and
the properties of the Poisson distribution), in exactly the same way as we computed the
expectation E[X|T = t], the conditional variance is given by

Var(X|T = t) = λt ,

so that the expectation of this expression then gives

E[Var(X|T )] = λE[T ] =
λ

2
.

When we combine these two sub-results we finally conclude that

Var(X) =
λ

2
+

λ2

12
.



Exercise 57 (Poisson events)

Part (a): Since our events are generated by a Poisson process we know that

P{N(t) = k} =
e−λt(λt)k

k!
,

so in one hour (t = 1) we have that

P{N(t) = 0} =
e−λ(λ)0

0!
= e−λ = e−2 = 0.1353 ,

Part (b): A Poisson process has the time between events given by exponential random
variables with parameter λ. Thus the fourth event will occur at the time S4 =

∑4
i=1 Xi,

where each Xi is an exponential random variable with parameter λ. Thus

E[S4] =
4
∑

i=1

E[Xi] =
4
∑

i=1

1

λ
=

4

λ
= 2 .

Since λ is measured in units of reciprocal hours, this corresponds to 2 P.M.

Part (c): The probability that two or more events occur between 6 P.M. and 8 P.M. (a two
hour span) is the complement of the probability that less than two events occur in this two
hour span. This latter probability is given by

P{N(2) = 0} + P{N(2) = 1} =
e−2λ(2λ)0

0!
+

e−2λ(2λ)1

1!
= e−2λ + e−2λ2λ = 5e−4 .

Thus the probability we seek is given by 1 − 5e−4 = 0.9084.

Exercise 58 (a Geiger counter)

To solve this problem we will use the following fact. If {N(t), t ≥} is a Poisson process with
rate λ then the process that counts each of the events from the process N(t) with probability
p is another Poisson process with rate pλ.

Now for this specific problem the arrival of the particles at a rate of three a minute can be
modeled as a Poisson process with a rate λ = 3 per minute. The fact that only 2/3 of the
particles that arrive are actually measured means that this combined event can be modeled
using a Poisson process with a rate 2

3
λ = 2 particles per minute. Thus the process X(t) is a

Poisson process with rate 2 particles per minute. With this information the various parts of
the problem can be solved.

Part (a): In this case we have

P{X(t) = 0} =
e−2t(2t)0

0!
= e−2t .



Part (b): In this case we have that

E[X(t)] = 2t .

Exercise 60 (bank arrivals)

Each part of this problem can be solved with the information that given n events have been
observed by time t, the location of any specific event is uniformly distributed over the time
interval (0, t).

Part (a): We desire that both events land in the first 20/60 = 1/3 of the total one hour
time. This will happen with probability

(

1

3

)2

=
1

9
.

Part (b): In this case we desire that at least one of the events fall in the first third of the
total time. This can happen in several ways. The first (or second) event falls in this interval
while the other event does not or both events happen in the first third of our total interval.
This would give for a probability (reasoning like above) of

1

3

(

2

3

)

+
1

3

(

2

3

)

+
1

3

(

1

3

)

=
5

9
.

We note that the situation we desire the probability for is also the complement of the situation
where both events land in the last 2/3 of time. Using this idea the above probability could
be calculated as

1 −

(

2

3

)2

=
5

9
.

Problem 81 (the distribution of the event times in a nonhomogenous process)

Part (a): Following the same strategy that the book used to compute the distribution
function for a homogeneous Poisson process, we will begin by assuming an ordered sequence
of arrival times

0 < t1 < t2 < · · · < tn < tn+1 = t

and let hi be small increments such that ti+hi < ti+1, for i = 1, 2, · · ·n. Then the probability
that a random sample of n arrival times Si happen at the times ti and conditioned on the
fact that we have n arrivals by time t can be computed by considering

P{ti ≤ Si ≤ ti + hi, for i = 1, 2, · · · , n|N(t) = n} .

Which if we define the event A to be the event that we have exactly one event in [ti, ti + hi]
for i = 1, 2, · · · , n and no events in the other regions then (by definition) the above equals



the following expression
P{A}

P{N(t) = n}
.

The probability that we have one event in [ti, ti + hi] is given by the fourth property in the
definition of a nonhomogenous Poisson and is given by

P{N(ti + hi) − N(ti) = 1} = λ(ti)hi + o(hi) (3)

To calculate the probability that we have no events in a given interval, we will derive this
from the four properties in the definition a nonhomogenous Poisson process. Specifically,
since the total probability must sum to one we have the constraint on increment variables
over the range of time [tl, tr],

P{N(tr) − N(tl) = 0} + P{N(tr) − N(tl) = 1} + P{N(tr) − N(tl) ≥ 2} = 1 .

or using properties (ii) and (iii) in the definition of a nonhomogenous Poisson process the
above becomes (solving for P{N(tr) − N(tl) = 0}) the following

P{N(tr) − N(tl) = 0} = 1 − λ(tl)(tr − tl) + o(tr − tl) . (4)

This result will be used in what follows. To evaluate P{A} we recognized that in the intervals

(0, t1), (t1 + h1, t2), (t2 + h2, t3), · · · , (tn + hn, tn+1) ,

no events occurs, while in the intervals

(t1, t1 + h1), (t2, t2 + h2), (t3, t3 + h3), · · · , (tn, tn + hn) ,

one event occurs. By the independent increments property of nonhomogenous process the
event A can be computed as the product of the probabilities of each of the above intervals
event. The contributed probability P (A1) in the evaluation of P{A} from the intervals where
the count increase by one is given by

P (A1) =

n
∏

i=1

{λ(ti)hi + o(hi)} =

n
∏

i=1

λ(ti)hi + o(h) ,

where we have used Eq. 3 and the term o(h) represents terms higher than first order in any
of the hi’s. By analogy with this result the contributed probability in the evaluation of P{A}
from the intervals where the count does not increase P (A0) is given by

P (A0) = (1 − λ(0)(t1) + o(t1))
n
∏

i=1

{1 − λ(ti + hi)(ti+1 − ti − hi) + o(ti+1 − ti − hi)} .

This expression will take some manipulations to produce a desired expression. We begin our
sequence of manipulations by following the derivation in the book and recognizing that we
will eventually be taking the limits as hi → 0. Since this expression has a finite limit we can
take the limit of the above expression as is and simplify some of the notation. Taking the
limit hi → 0 and defining t0 = 0 the above expression becomes

P (A0) =

n
∏

i=0

{1 − λ(ti)(ti+1 − ti) + o(ti+1 − ti)} .



We can simplify this product further by observing that the individual linear expressions we
multiply can be written as an exponential which will facilitate our evaluation of this product.
Specifically, it can be shown (using Taylor series) that

e−λ(ti)(ti+1−ti) = 1 − λ(ti)(ti+1 − ti) + o(ti+1 − ti) .

With this substitution the product above becomes a sum in the exponential and we have

P (A0) =

n
∏

i=0

e−λ(ti)(ti+1−ti) = exp

{

−

n
∑

i=0

λ(ti)(ti+1 − ti)

}

.

Recognizing the above summation as an approximation to the integral of λ(·), we see that
the above is approximately equal to the following

P (A0) = exp

{

−

n
∑

i=0

λ(ti)(ti+1 − ti)

}

≈ exp

{

−

∫ t

0

λ(τ)dτ

}

= e−m(t) .

With these expressions for P (A1) and P (A0), we can now evaluate our target expression

P{A}

P{N(t) = n}
=

P (A1)P (A0)

P{N(t) = n}

=

(

n!

e−m(t)m(t)n

)

P (A1)P (A0)

=

(

n!

e−m(t)m(t)n

)

((

n
∏

i=1

λ(ti)hi + o(h)

)

e−m(t)

)

= n!

(

n
∏

i=1

λ(ti)

m(t)
hi + o(h)

)

.

It is this final result we were after. After dividing by
∏n

i=1 hi and taking the limit where
hi → 0, we can conclude that the probability of drawing a specific sample of n event times
(i.e. obtaining a draw of the random variables Si) for a nonhomogenous Poisson process with
rate λ(t) given that we have seen n events by time t is given by

fS1,S2,··· ,Sn
(t1, t2, · · · , tn|N(t) = n) = n!

(

n
∏

i=1

λ(ti)

m(t)

)

0 < t1 < t2 < · · · < tn < t (5)

We recognized that this expression is the same distribution as would be obtained for the
order statistics corresponding to n independent random variables uniformly distributed with
probability density function f(·) and a cumulative distribution function F (·) given by

f(x) =
λ(x)

m(t)
and F ′(x) = f(x) .

By the definition of the function m(·) we have that λ(x) = m′(x), so that an equation for
our cumulative distribution function F is given by

F ′(x) =
m′(x)

m(t)
.

This can be integrated to give

F (x) =
m(x)

m(t)
,

which can only hold if x ≤ t, while if x > t, F (x) = 1. This is the desired result.



Problem 82 (selecting events from an nonhomogenous Poisson process)

Part (a): We claim that the process {Nc(t), t ≥ 0} is a nonhomogenous process with an
intensity function given by p(t)λ(t).

Part (b): The statement made in Part (a) can be proven by showing that Nc(t) satisfies the
four conditions in the definition of a nonhomogenous Poisson process with intensity function
p(t)λ(t). We begin, by defining N(t) to be the nonhomogenous Poisson process with intensity
function λ(t). We then have

• Because N(t) is a nonhomogenous Poisson process we have N(0) = 0. Because no
events have occurred at time t = 0 we then must necessarily have Nc(0) = 0.

• As N(t) has the property of independent increments Nc(t) will inherit this property
also. This can be reasoned by recognizing that if the increment variables for our original
nonhomogenous Poisson process N(t) are independent then when we select a subset of
these events by considering the process Nc(t) and involving the probability function
p(·) we cannot introduce dependencies.

• We will compute the expression P{Nc(t + h) − Nc(t) = 1}. Note that the desired
event Nc(t + h) − Nc(t) = 1 only holds true if our original process has an event
N(t + h) − N(t) = 1. Thus since we desire this probability we begin by defining the
event Et to be the event that (as h goes to zero) we count the single event that happens
in the interval (t, t + h) from our original nonhomogenous Poisson process N(t). We
then have conditioning on Et that

P{Nc(t + h) − Nc(t) = 1} = P{N(t + h) − N(t) = 1|Et}P (Et)

= P{N(t + h) − N(t) = 1}p(t)

= (λ(t)h + o(h))p(t)

= λ(t)p(t)h + o(h) .

Where we have used independence of Et and N(t).

• To compute P{Nc(t + h) − Nc(t) > 1} define EG to be the event that in the interval
(t, t+h) we count at least one event. This is the complement of the event we count no
events in this interval. Then we have

P{Nc(t + h) − Nc(t) > 1} = P{N(t + h) − N(t) > 1|EG}P (EG)

= P{N(t + h) − N(t) > 1}P (EG)

= o(h)P (EG) = o(h) .

Thus we have shown that Nc(t) satisfies the four requirements in the definition of a nonho-
mogenous Poisson process with intensity function p(t)λ(t).



Problem 83 (time rescaling results in a nonhomogenous Poisson processes)

We will show that N(t) is an nonhomogenous Poisson process by showing that all four of
the required properties hold. We have

• N(0) = N0(m(0)) = N0

(

∫ 0

0
λ(s)ds

)

= N0(0) = 0, since N0(t) is a Poisson process.

• To show that N(t) has independent increments consider two non overlapping intervals
of time (t1, t2) and (t3, t4). Then the since λ(·) is a non-negative function and the t’s
are ordered as

t1 < t2 ≤ t3 < t4

we have that m(t) =
∫ t

0
λ(s)ds is an increasing function of t. Thus our ordering of time

above introduced an ordering of mi ≡ m(ti) and we see

m(t1) < m(t2) ≤ m(t3) < m(t4) ,

so the independent increments property of N0(t) on the “transformed” intervals (m(t1), m(t2))
and (m(t3), m(t4)) imply that same property for N(t).

• Consider

P{N(t + h) − N(t) = 1} = P{N0(m(t + h)) − N0(m(t)) = 1}

= P{N0(m(t) + m′(t)h + o(h)) − N0(m(t)) = 1}

= 1 · (m′(t)h + o(h))

= m′(t)h + o(h) .

since m(t) =
∫ t

0
λ(s)ds we have that m′(t) = λ(t) and the above becomes

P{N(t + h) − N(t) = 1} = λ(t)h + o(h) .

• As in the above we find

P{N(t + h) − N(t) > 1} = P{N0(m(t) + m′(t)h + o(h)) − N0(m(t)) > 1}

= o(m′(t)h + o(h)) = o(h) .

Thus we have shown that N(t) satisfies all four requirements for a nonhomogenous Poisson
process with rate function λ(t) as we were asked to show.

Problem 72 (the departure of cable car riders)

Part (a): By definition the last rider will depart after all n − 1 other riders have. Lets
assume that we start our cable car with all n passengers at the time t = 0 and define the
random variables Xi to be the amount of time between successive stops. This means that we
will stop to let off the first passenger at a time of X1, we will stop for the second passenger



to get off at a time X1 +X2, for the third passenger to get off at a time of X1 +X2 +X3, etc.
In all of these cases Xi is an exponentially distributed random variable with rate λ. Thus
the last or nth passenger gets off the cable car at a time T given by T =

∑n
i=1 Xi. A sum of

n exponentially distributed random variables each with a rate of λ is distributed as Gamma
random variable with parameters (n, λ). That is the distribution function for T is given by

fT (t) = λe−λt (λt)n−1

(n − 1)!
.

Part (b): To solve this problem introduce the random variables Yi to be the time it takes
passenger i to arrive home after he/she is dropped off. Then for the next to last passenger
(the n − 1st rider) to be home before the last passenger (the nth rider) gets off requires
Yn−1 < Xn. Since Yn−1 is an exponential random variable with rate µ the probability this is
true is given by µ

µ+λ
. Given that the n−1 passenger makes it home before the nth passenger

gets off lets now consider the n−2nd passenger. Using the same logic for the n−2 passenger
to get home before the nth one gets off requires that

Yn−2 < Xn + Xn−1 .

In general, the requirement that the n − kth passenger get home before the nth rider has
departed is

Yn−k <

k−1
∑

i=0

Xn−i for k = 1, 2 · · ·n − 1 .

Since each Yi is an exponential random variable and each sum is a Gamma random variable,
to evaluate the probability of each of these events we need the following lemma.

Lemma: If Y is an exponential random variable with parameter µ and X is a Gamma
random variable with parameters (λ, n), independent of Y , we have

P{Y < X} =

∫ ∞

0

P{Y < X|X = x}P{X = x}dx

=

∫ ∞

0

P{Y < x}λe−λx (λx)n−1

(n − 1)!
dx

=

∫ ∞

0

(1 − e−µx)λe−λx (λx)n−1

(n − 1)!
dx

= 1 −
λn

(λ + µ)n
,

when we perform the required integration.

Combining this result with the discussion above we see that the probability that all the other



riders are home (denoted here as Ph) at the time the nth gets off is given by

Ph =
n−1
∏

k=1

P

{

Yn−k <
k−1
∑

i=0

Xn−i

}

= P{Yn−1 < Xn}P{Yn−2 < Xn + Xn−1} · · ·P{Y1 < Xn + Xn−1 + · · ·X2}

=

(

µ

µ + λ

)(

1 −
λ2

(µ + λ)2

)(

1 −
λ3

(µ + λ)3

)

· · ·

(

1 −
λn−1

(µ + λ)n−1

)

=
n−1
∏

k=1

(

1 −
λk

(λ + µ)k

)

.

Problem 73 (shocks to the system)

Part (a): We are told that it takes n shocks to cause our system to fail. Because these
events are from a Poisson process the times between individual events Xi are exponentially
distributed with a rate λ. Thus the time T can be written T =

∑n
i=1 Xi, and we have

P{T = t|N = n} = P{

n
∑

i=1

Xi = t|N = n} .

Since the distribution of the sum of n exponential random variables is distributed as a
Gamma random variable we have that the above becomes

P{T = t|N = n} = λe−λt (λt)n−1

(n − 1)!
.

Part (b): We want to compute P{N = n|T = t} which we can compute using an application
of Bayes’ rule. We have

P{N = n|T = t} =
P{T = t|N = n}P{N = n}

P{T = t}
.

The first factor in the numerator was calculated in Part (a). The second factor in the
numerator P{N = n} represents the probability it takes n trails to get one “success” where a
success represents the failure of the system. This is given by a negative-binomial distribution
and in this case is given by p(1 − p)n−1. The denominator P{T = t} can be calculated by
conditioning on N as

P{T = t} =
∞
∑

n=1

P{T = t|N = n}P{N = n}

= λpe−λt

∞
∑

n=1

(λt(1 − p))n−1

(n − 1)!

= λpe−λteλt(1−p) = λpe−λpt .

Note that this is an exponential distribution with rate λp, which could have been determined
without any calculations as follows. Recall that a Poisson process with rate λ that has its



events “filtered” with a Bernoulli process with parameter p is another Poisson process with
rate λp. Since this second Poisson process represents the process of failures the first failure
time will be distributed as an exponential random variable with rate λp exactly as found
above. Using these parts we then have

P{N = n|T = t} =

(

λe−λt(λt)n−1

(n−1)!

)

p(1 − p)n−1

λpe−λtp

= e−λ(1−p)t (λ(1 − p)t)n−1

(n − 1)!
for n = 1, 2, · · · .

This looks exactly like a Poisson distribution with a mean λ(1 − p)t but starts at the value
n = 1. Defining the random variable N ′ as N ′ ≡ N − 1, then from the above expression the
distribution of N ′ is given by

P{N ′ = n′|T = t} = e−λ(1−p)t (λ(1 − p)t)n′

(n′)!
for n′ = 0, 1, 2, · · · .

So N ′ is a Poisson random variable with a mean λ(1 − p)t and we have that N is given as
1 + N ′ as we were to show.

Part (c): The desired probability P{N = n|T = t} for n = 1, 2, · · · could have been
determined without calculation using the following argument. The probability P{N = n|T =
t} means that the system failure happened on shock n at the time t. This failure must have
been caused by the last shock and requires that the previous n − 1 shocks did not result
in failure. Since non-failure causing shocks occur according to a Poisson process with rate
λ(1− p), the number of such non-failure causing shocks, n− 1, is given by a Poisson random
variable with mean λ(1 − p)t, exactly as calculated in Part (b).

Problem 93 (min/max identities)

Part (a): To prove the given identity

max(X1, X2) = X1 + X2 − min(X1, X2) ,

we can appeal to the law of the excluded middle. Which is a fancy way of saying we can
simply consider the two possible cases for the relationship between X1 and X2. For example,
if X1 ≤ X2, then the left hand side of the above expression is max(X1, X2) = X2 while the
right hand side is X1 + X2 − min(X1, X2) = X1 + X2 − X1 = X2 which are equal. If in
fact the other relationship holds between X1 and X2, that is, X1 ≥ X2, a similar calculation
shows that the above identity to be true in this case also.

Part (b): I had a difficult time proving this identity directly but can offer the follow-
ing arguments in support of the given expression when Xi ≥ 0. Consider the expression
max(X1, X2, · · · , Xn) in comparison to the expression

∑n
i=1 Xi. Since one of the Xi, say

Xi∗ , is the largest the summation expression will “over count” the maximum by
∑

i6=i∗ Xi.



That is by all Xi that are less than Xi∗ and we have

max(X1, X2, · · · , Xn) ≤
n
∑

i=1

Xi .

We can “adjust” our sum on the right hand side to make it more like the left hand side
by subtracting off all terms smaller than Xi∗. Terms that are smaller than Xi∗ can be
represented as min(Xi, Xj) with i < j. We need to include the requirement that i < j since
otherwise considering all possible terms like min(Xi, Xj) we would double count all possible
minimums i.e. min(Xi, Xj) = min(Xj , Xi). Thus we now might consider the following

n
∑

i=1

Xi −
∑

i<j

min(Xi, Xj) .

Note that in the above the second expression now subtracts too many terms since smaller
terms will certainly appear more than once. For example if X1 = 1, X2 = 2, and X3 = 3
then max(X1, X2, X3) = 3, while the above gives

1 + 2 + 3 − (1 + 1 + 2) = 3 − 1 6= 3 .

Thus the value for X1 was subtracted off twice. This logic allows one to conclude that

max(X1, X2, · · · , Xn) ≥
n
∑

i=1

Xi −
∑

i<j

min(Xi, Xj) .

Our approximation to the maximum expression can be improved on by adding terms like
min(Xi, Xj, Xk) to give

max(X1, X2, · · · , Xn) ≤
n
∑

i=1

Xi −
∑

i<j

min(Xi, Xj) +
∑

i<j<k

min(Xi, Xj, Xk) .

This process is repeated until we add/subtract min(X1, X2, · · · , Xn). Whether we add or
subtract depends on whether the number of variables we start with n is even or odd.

If we define Xi for i = 1, 2, · · ·n to be an indicator random variables denoting whether or
not the event Ai occurred we see that

max(Xi, Xj, · · · , Xk) = P (Ai ∪ Aj · · · ∪ Ak) and

min(Xi, Xj, · · · , Xk) = P (AiAj · · ·Ak) .

With these expressions and using the max/min identity proven in Part (a) above we obtain
the well known identity that

P (∪n
i=1Ai) =

∑

i

P (Ai) −
∑

i<j

P (AiAj) +
∑

i<j<k

P (AiAjAk) + · · ·+ (−1)n−1P (A1A2 · · ·An) .

Part (c): There seemed to be two ways to do this part of the problem. To explicitly
use the results from above, let Xi be the random variable denoting the time when the
first event has occurred in the ith Poisson process. In a similar way, let X be a random



variable denoting the time at which and event has occurred in all n Poisson processes. Then
X = max(X1, X2, · · · , Xn). We desire to calculate E[X]. From the identity in Part (b) we
have that X can be expressed in term of minimization’s as

X =
∑

i

Xi −
∑

i<j

min(Xi, Xj) +
∑

i<j<k

min(Xi, Xj, Xk) + · · ·+ (−1)n−1 min(X1, X2, · · · , Xn) .

Taking the expectation of the above expression we find that

E[X] =
∑

i

E[Xi] −
∑

i<j

E[min(Xi, Xj)]

+
∑

i<j<k

E[min(Xi, Xj, Xk)] + · · ·+ (−1)n−1E[min(X1, X2, · · · , Xn)] .

Using the independence of the Xi, the fact that they are exponential with a rate λi, and
earlier results from the book about the distribution of minimum of exponential random
variables we find

E[X] =

n
∑

i=1

1

λi
−
∑

i<j

1

λi + λj
+
∑

i<j<k

1

λi + λj + λk
+ · · ·+

(−1)n−1

λ1 + λ2 + · · ·+ λn
. (6)

As another way to solve this problem that results in a quite different formula consider
the following where we compute the distribution function for X directly. Using the above
definitions we find

P{X < t} = P{max
i

(Xi) < t} = P{Xi < t for all i}

=
n
∏

i=1

(1 − e−λit) .

Now we can compute E[X] if we know P{X > t} as E[X] =
∫∞

0
P{X > t}dt. From this we

have

E[X] =

∫ ∞

0

(

1 −
n
∏

i=1

(1 − e−λit)

)

dt . (7)

From the above functional form it appears that one should be able to expand the product
in the integrand, perform the integration, and show that it agrees with the Equation 6.

Chapter 5: Additional Exercises

The following are some problems that appeared in different editions of this book in the
chapter on exponential distributions and Poisson processes.

Expectations of products of pairs of order statistics

The Problem: Let X1, X2, · · · , Xn be independent exponential random variables, each
having rate λ. Also let X(i) be the ith smallest of these values i = 1, · · · , n. Find



(a) E[X(1)X(2)]

(b) E[X(i)X(i+1)] for i = 1, 2, · · · , n − 1.

(c) E[X(i)X(j)] for i < j.

The Solution: To evaluate the above expectations we will simply use the joint density
of the order statistic X(i) and X(j), when i < j and integrate over the appropriate region.
Rather than deriving this density we simply state the result, which can be discussed in [1].
We have

fX(i),X(j)
(xi, xj) =

n!

(i − 1)!(j − i − 1)!(n − j)!
[F (xi)]

i−1

× [F (xj) − F (xi)]
j−i−1[1 − F (xj)]

n−jf(xi)f(xj) for xi < xj .

When X is an exponential random variable with rate λ we have that our density and distri-
bution functions f and F are given by the following special forms

fX(x) =

{

λe−λx x ≥ 0
0 x < 0

FX(x) = 1 − e−λx

1 − FX(x) = e−λx .

So that our density above becomes in this specific case the following

fX(i),X(j)
(xi, xj) =

λ2n!

(i − 1)!(j − i − 1)!(n − j)!
[1 − e−λxi]i−1

× [e−λxi − e−λxj ]j−i−1e−λ[(n−j+1)xj+xi] for xi < xj .

Part (a): When i = 1 and j = 2 our density function above becomes

fX(1),X(2)
(x1, x2) = λ2n(n − 1)e−λ((n−1)x2+x1) for x1 < x2 .

So that our expectation is then given by

E[X(1)X(2)] =

∫ ∞

x1=0

∫ ∞

x2=x1

x1x2fX(1),X(2)
(x1, x2)dx2dx1

= λ2n(n − 1)

∫ ∞

x1=0

∫ ∞

x2=x1

x1x2e
−λ((n−1)x2+x1)dx2dx1

= λ2n(n − 1)

∫ ∞

x1=0

x1e
−λx1

∫ ∞

x2=x1

x2e
−λ(n−1)x2dx2dx1

=
3n − 2

(n − 1)

(

1

nλ

)2

,

See the Mathematica file chap 5 eprob pp.nb for the algebra for this problem. In addition,
for a Monte-Carlo verification of the above see the Matlab file exp pp order stats pt a.m

and Figure 1.
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Figure 1: A comparison between a Monte-Carlo simulation of E[x(1)x(2)] and the derived
analytical expression. Left: the Monte-Carlo simulation plotted as a function of λ and n.
Middle: The analytical solution derived above. Right: The error between the two.

Part (b): When j = i + 1 our joint density function becomes

fX(i),X(i+1)
(xi, xi+1) =

λ2n!

(i − 1)!(n − i − 1)!
(1 − e−λxi)i−1e−λ[(n−i)xi+1+xi] for xi < xi+1 .

So that our expectation is then given by

E[X(i)X(i+1)] =

∫ ∞

xi=0

∫ ∞

xi+1=xi

xixi+1fX(i),X(i+1)
(xi, xi+1)dxi+1dxi

=
λ2n!

(i − 1)!(n − i − 1)!

×

∫ ∞

xi=0

∫ ∞

xi+1=xi

xixi+1(1 − e−λxi)i−1e−λ((n−i)xi+1+xi)dxi+1dxi

=
λ2n!

(i − 1)!(n − i − 1)!

×

∫ ∞

xi=0

xi(1 − e−λxi)i−1e−λxi

∫ ∞

xi+1=xi

xi+1e
−λ(n−i)xi+1dxi+1dxi .

At this point even performing algebra by a computer becomes difficult. See the Mathematica
file chap 5 eprob pp.nb for some of the algebra. A literature search reveals that this is a
rather difficult problem to solve exactly, so instead I’ll use a Monte-Carlo calculation to
compute these expressions. See the Matlab file exp pp order stats pt b.m and Figure 2
for the computational experiment done for this part of the problem. Since we expect the
expression to scale as 1/λ2, we have assumed λ = 1 for the plots presented.

Part (c): As in Part (b) an exact analytic solution is quite difficult so in the Matlab file
exp pp order stats pt c.m and Figure 3, I have presented the results from the Monte-Carlo
calculation done to evaluate the requested expression. Again since we expect the results to
scale as 1/λ2, we have assumed that λ = 1.
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Figure 3: The Monte-Carlo simulation of E[x(i)x(j)] as a function of i and j for i < j.

A Identity with Reciprocal Sums

The Problem: Argue that if λi, i = 1, 2, · · · , n are distinct positive numbers then

n
∑

i=1

1

λi

∏

j 6=i

λj

λj − λi
=

n
∑

i=1

1

λi
.

Hint: Relate this problem to Section 5.2.4.

The Solution: From Section 5.2.4 we know that the random variable X defined as the
sum of n exponential random variables X =

∑n
i=1 Xi is called a hypo-exponential random

variable and has a probability density function given by

fX1+X2+···+Xn
(x) =

n
∑

i=1

∏

j 6=i

λj

λj − λi

λie
−λit .

Since X is the sum of n exponential random variables when we multiply both sides of the
above by x and integrate the left hand side becomes the expectation of random variable
X =

∑n
i=1 Xi, and equals

n
∑

i=1

1

λi

.

While the right hand side results in a another expectation of sums of exponential random
variables. Taking these expectations we have an expression given by

n
∑

i=1

1

λi

∏

j 6=i

λj

λj − λi
.

When we equate these two results we have the requested theorem.



We can derive the fact that P{N(t) = 1} = λt + o(t)

The Problem: Show that assumption (iv) of Definition 5.3 follows from assumptions (ii)
and (iii).

Hint: Derive a functional equation for g(t) = P{N(t) = 0}.

The Solution: Following the hint for this problem we will try to derive a functional rela-
tionship for P{N(t) = 0}, by considering P{N(t + s) = 0}. Now if N(t + s) = 0, this event
is equivalent to the event that N(t) = 0 and N(t + s) − N(t) = 0. so we have that

P{N(t + s) = 0} = P{N(t) = 0, N(t + s) − N(t) = 0}

= P{N(t) − N(0) = 0, N(t + s) − N(t) = 0}

= P{N(t) − N(0) = 0}P{N(t + s) − N(t) = 0}

= P{N(t) = 0}P{N(s) = 0} .

When we used the property of stationary independent increments. Thus defining f(t) ≡
P{N(t) = 0}, from the above we see that f satisfies

f(t + s) = f(t)f(s) .

By the discussion in the book the unique continuous solution to this equation is f(t) = e−λt,
for some λ. Thus we have that P{N(t) = 0} = e−λt. Using (iii) from Definition 5.3 and the
fact that probabilities must be normalized (sum to one) we have that

P{N(t) = 0} + P{N(t) = 1} + P{N(t) ≥ 2} = 1 .

which gives us (solving for P{N(t) = 1}) the following

P{N(t) = 1} = 1 − P{N(t) = 0} − P{N(t) ≥ 2}

= 1 − e−λt − o(t)

= 1 − (1 − λt + o(t)) − o(t)

= λt + o(t) ,

as we were to show.

Cars v.s. Vans on the Highway

The Problem: Cars pass a point on the highway at a Poisson rate of one per minute. If 5
percent of the cars on the road are vans, then

• what is the probability that at least one van passes during the hour?

• given that ten vans have passed by in an hour, what is the expected number of cars to
have passes by in that time?



• if 50 cars have passed by in an hour, what is the probability that five of them are vans?

The Solution:

Part (a): The number of vans that have passed by in time Nv(t) is given by a Poisson
process with rate pλ, where p is the fraction of the cars that are vans and λ is the Poisson
rate of the cars (we are told these values are λ = 1 (per minute) and p = 0.05). Because
of this fact the probability that at least one van passes by in one hour t = 60 (minutes) is
given by

P{Nv(60) ≥ 1} = 1 − P{Nv(60) = 0}

= 1 − e−pλ60

= 1 − e−0.05·1·60

= 0.9502 .

Part (b): We can think of the question posed: how many cars need to pass by to given ten
vans as equivalent to the statement of the expected number of trials will we need to perform
to guarantee ten successes, where the probability of success is given by p = 0.05. This is the
definition of a negative binomial random variable. If we define the random variable X to be
the number of trials needed to get r success where each success occurs with probability p we
have that

E[X] =
r

p
.

For this part of the problem at hand (r, p) = (10, 0.05), so the expected number of cars that
must have passed is given by

10

0.05
= 200 .

Part (c): If 50 cars have passed by and we have a 5 percent chance that each car is a
van, the probability that n from 50 are vans is a binomial random variable with parameters
(n, p) = (50, 0.05), so the answer to the question posed is given by

(

50
5

)

(0.05)5(0.95)45 = 0.06584 .
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