
Worked Examples and Solutions for the Book:

Programming Collective Intelligence

by Toby Segaran.

John L. Weatherwax∗

December 1, 2007

Introduction

In this book Segaran has demystified the abstract ideas often associated with
collective intelligence and machine learning. To make the presentation even
more clear and applicable he presents the concepts in the excellent and easy
to learn programming language Python.

I found this book is so enjoyable that I found myself wanting to experi-
ment with the code and work the problems. In doing this I ended up making
this document and thought it might be of interest to others. Please let me
know of any errors that might exist. Enjoy!

∗
wax@alum.mit.edu

1

Chapter 2: Making Recommendations

Exercise Solutions

Exercise 1 (Tanimoto similarity score)

The Tanimoto coefficient is a modification/extension of the so called Jaccard
similarity which is used to compute the similarity of two sets. The Jaccard
similarity between sets A and B is defined as

J(A, B) =
|A ∩ B|

|A ∪ B|
. (1)

Two sets that are exactly the same have a Jaccard similarity of one, while sets
that are completely different (having no overlap) have a Jaccard similarity
of zero. The Tanimoto score is a modification of this idea to account for
continuous valued vector variables (rather than set variables) and is defined
for vectors A and B as

T (A, B) =
A · B

||A||2 + ||B||2 − A · B
. (2)

Note that if A = B the above gives the value of 1, while if A and B are
orthogonal the above expression is zero. The Tanimoto coefficient reduces
to the Jaccard coefficient in the case of binary vectors where the element
zero corresponds to absence of an element in the set and element one cor-
responds to the presence of an element. This metric is implemented in the
recommendations.py module under the name sim tanimoto.

2

Chapter 3: Discovering Groups

Notes on the Text

Notes on Hierarchical Clustering

If one reads the python code that is provided with the book one notes that
the book uses a somewhat strange definition of the cluster representative
for a merged cluster. Effectivly the representive of the merged cluster is the
arithmetic average of the two individual cluster represntatives of the individ-
ual clusters involved in the merge. While this is certainly a viable technique,
it might not be optimal for some applications. The reason it might not be
optimal can be observed when we consider that representative location will
result when we combine a large clusters containing many points with a sin-
gleton cluster (a cluster that contains only a single point). Since the newly
formed cluster will have a cluster representative given by the arithmetic av-
erage of the two participating clusters when merging into into a singleton
set the merged cluster will have its representative moved “half way” towards
the single point (no matter how many points are in the other cluster). The
hierarchical clustering method described in the book is known as the Gener-
alized Agglomerative Scheme (GAS) [2] and has several varients depending
on how one choose to mesure the distance between clusters. Other methods
in this same family require number of feature vectors in each cluster as well
as its cluster reprentative. One could imagine clustering routines that might
require the individual cluster elements as well. One very common and quite
good cluster varient of the GAS family uses cluster means as the cluster
reprentative and then determines the distance between clusters i and j with

d′

ij =
ninj

ni + nj

dij .

See [2]. I modified the cluster.py

Exercise Solutions

Exercise 5 (returning the total distance to the cluster centers)

See the modified python function kcluster in clusters.py which now re-
turns the resested total distance.

3

0 10 20 30 40 50
number of clusters

�10

0

10

20

30

40

50

60

70

80

t
o
t
a
l
d
is

t
a
n
c
e

t
o

n
e
a
r
e
s
t

c
e
n
t
r
o
id

0 10 20 30 40 50
number of clusters

�0.20

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

p
e
r
c
e
n
t
a
g
e

c
h
a
n
g
e

f
r
o
m

p
r
e
v
io

u
s

c
lu

s
t
e
r

r
e
s
u
lt

Figure 1: Left: The steady decrease in the total distance to each points
membership cluster as we add more and more cluster centers. This is a plot
of the cumulative distance from each point to the cluster center that it is
in. Right: The fractional change in total distance as we consider more and
more clusters.

Exercise 6 (running several k-means clustering)

See the python function runSeveralKClusters in clusters.py for an im-
plemention of this. If we run this on the blog data set, in Figure 1 (left) we
see that the total distance decreases as expected and in Figure 1 (right) we
see that a plot of the fractional change

dist(k + 1) − dist(k)

dist(k)
,

begins to look more and more like noise as we add clusters. The point where
this plot seems to oscillate (taken backwards) would be a good place to stop
clustering. From this picture it looks as if 5 clusters should be considered.

4

Chapter 4: (Searching and Ranking)

Book Notes

For this chapter I didn’t do any of the problems but simply ran the code
presented in the book. It is quite amazing to be able to develop a search
engine in only a few lines of python code. The script to run much of the
examples from the book is presented in the chapter directory as run all.py.

Exercise Solutions

Exercise 1 (word separation)

To do this problem one would need to modify the separatewords function
to make it separate “tokens” differently.

5

Chapter 5: Optimization

Book Notes

Notes on Student Dorm Optimization

For the student dorm optimization problem we can explicitly determine the
number of possible student dorm assignments (or solutions we might have to
search over) as follows. Assuming each dorm is an “entity”, that can select
two students for membership, we see that the first dorm can select two of
the ten students in

(

10
2

)

,

ways. Once these two students have been selected and placed that dorm the
next dorm can select two students from the remaining eight students in

(

8
2

)

,

ways. This process continues until all of the students are selected. The total

number of ways we can do this selection process is then given by the product
of all of these expressions. Thus the total number is given by

(

10
2

) (

8
2

) (

6
2

) (

4
2

) (

2
2

)

= 113400 ,

in agreement with the value of around 100000 suggested in the book. At
this size explicit enumeration of all possible values for the cost function is
possible.

Exercise Solutions

Exercise 2 (multiple annealing with random starting points)

See the python function multiple start annealing in the optimization

module for an implementation of this routine.

Exercise 3 (quick exit if genetic optimization stalls)

See the python function geneticoptimize in the optimization module for
an implementation of some exit criterion in case the computed cost function
has not changed after ten iterations.

6

Exercise 5 (pairing students)

One might have each student rank all the other students according to their
preference for each of the other person being his/her roommate. Thus each
person would assign the rank of one to the person they would most likely like
to room with and the rank of N (where N is the maximal number of students)
to the person they would least like to room with. A solution to this problem
would be a pairing of students. Given the ith student we can represent such
a pairing as the function mapping S(i). This mapping implies that if we have
S(i) = j then person j is the roommate of person i and correspondingly we
must also have S(j) = i. To determine the cost of a particular solution S(·)
if the ith student ranks his/her j classmate with a cost cij, then we could
assume that if person i had to room with person j who was his fifth pick
say he would experience a cost given by ciS(j) − 1 = 5 − 1 = 4. Thus the
total cost for the solution S might look like the sum of such individual cost
functions over all students or

C(S) =
N

∑

i=1

(ciS(i) − 1) .

The subtraction of 1 is to make the cost of a persons first choice of a roommate
zero.

Exercise 6 (line angle penalization)

One could use the fact that the dot product of two vectors x and y and
denoted by the expression xT y equals ||x||||y|| cos(θ) where θ is the angle

between the two vectors x and y to introduce an additional cost in the opti-
mization objective function. Specifically, for every two lines attached to the
same vertex one would add the penalty

| cos(θ)| =
|xT y|

||x||||y||
,

to the total cost.

7

Chapter 6: Document Filtering

Book Notes

For this chapter I didn’t do any of the problems but simply ran the code
presented in the book. I will say that running the fisherclassifier on the
RSS python feed data is really cool. To watch the classifier learn in real time
is quite a nice effect. One can actually see the predictions of the blog entries
improve as one tags the inputs. The script to run much of the examples from
the book is presented in the chapter directory as run all.py.

8

Chapter 7: Modeling with Decision Trees

Exercise Solutions

Exercise 1 (result probabilities)

We can map the count dictionaries to probabilities with a simple function

def count_to_prob(d):

total = sum(d.values())

res = {}

for kk in d:

res.setdefault(kk,d[kk]/total)

return res

In the python script chap 7 ex 1.py several example of this function are
demonstrated.

Exercise 2 (missing data ranges)

Now for this problem we will modify the logic in mdclassify when a feature
is missing. When reviewing this code to make the needed modifications for
this problem I think that I discovered an error. The code in the version of
the book that handled missing feature cases looked like

if(v==None): # we have no measurement ... go down BOTH branchs

tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb)

tcount=sum(tr.values())

fcount=sum(fr.values())

tw=float(tcount)/(tcount+fcount)

fw=float(fcount)/(tcount+fcount)

result={}

for k,v in tr.items(): result[k]=v*tw

for k,v in fr.items(): result[k]=v*fw

return result

The problem with this code is that the assignment in the fr.items loop in
the second line from the end. In that loop if tr and fr share any keys in
common this second statement will override the first rather than computing
the needed average. For example if

9

tr = {’Premium’: 3, ’Basic’: 100}

fr = {’Basic’: 1}

which is a case where its much more likely that this person will sign up for
basic service but the buggy code above gives when we print result

{’Premium’: 2.9711538461538463, ’Basic’: 0.0096153846153846159}

indicating that premium is the more likely choice. The correct code would
change these two for loops over the items of tr and fr lines to

for k,v in tr.items(): result[k] = v*tw # get everything from tr

for k,v in fr.items():

if k not in result: result[k] = v*fw # append new keys from fr

else: result[k] += v*fw # add old keys from fr

In that case when we print result we get

{’Premium’: 2.9711538461538463, ’Basic’: 99.048076923076934}

which is a more reasonable result.
To implement the requested performance for this problem we modify the

treepredict function by adding an if statement that tests if the observation
in the given column is a tuple or not. If it is a tuple we may have to send
this observation to both sides of the tree. We will not have to do this if the
values in the tuple are all on one side of the split point. If the split point is
in the interior of the tuple then we take a percentage of the results from the
left and a percentage of the results from the right. For example if the split
point had a value of 5.0 and we supplied the tuple (0.0, 15.0) then we would
expect 1/3 of the time an observation would be less than the split value and
2/3 of the time our observation would be greater than the split value. Logic
in this direction resulted in the following code to classify an instance that
has tuple

elif(isinstance(v,tuple)):

assert v[1]>v[0], "incorrectly ordered tuple %10s encountered" % (v)

maxv = max(v)

minv = min(v)

if(minv>=tree.value):

return mdclassify(observation,tree.tb)

elif(maxv<tree.value):

10

return mdclassify(observation,tree.fb)

else:

assert v[0]<=tree.value<=v[1], "expected split point to be between tuple end points"

tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb)

fw=float(tree.value-v[0])/(v[1]-v[0])

tw=1.-fw

result={}

for k,v in tr.items(): result[k] = v*tw

for k,v in fr.items():

if k not in result: result[k] = v*fw

else: result[k] += v*fw

return result

In the python script chap 7 ex 2.py we test this new code by constructing
a tree and then classifying several instances with tuples.

Exercise 3 (early stopping when tree building)

For this problem the code for the function treebuild has to be modified
to accept a threshold such that if the reduction in entropy is too small for
the best split at a point we will not perform the subsequent split. This is
to prevent overfitting where by the produced decision tree has too many
branches and is tuned to the intricacies of the specific training data set. To
do this one needs to introduce a variable that specifies this threshold into the
call of this routine. We denote this variable mars denoting the “minimum
acceptable reduction in score” and change the function declaration to

def buildtree(rows,scoref=entropy,mars=0.):

Next we modify the splitting criterion depending how large the largest en-
tropy gain found was large enough

if best_gain > mars:

trueBranch=buildtree(best_sets[0],scoref=scoref,mars=mars)

falseBranch=buildtree(best_sets[1],scoref=scoref,mars=mars)

return decisionnode(col=best_criteria[0],value=best_criteria[1],

tb=trueBranch,fb=falseBranch)

else:

return decisionnode(results=uniquecounts(rows))

11

Note that if we want any input parameter specifications to propagate to the
trees built later we need to explicitly specify them in the recursive function
calls. In the version of the code I was working off had a bug in that it didn’t
recursively pass the scoref to subtrees.

When we add the code above we can compare some differences between
the trees built for different values of mars. In the python script chap 7 ex 3.py

we find with no additional threshold mars=0 that

tree = treepredict.buildtree(treepredict.my_data)

treepredict.printtree(tree)

0:google?

T-> 3:21?

T-> {’Premium’: 3}

F-> 2:yes?

T-> {’Basic’: 1}

F-> {’None’: 1}

F-> 0:slashdot?

T-> {’None’: 3}

F-> 2:yes?

T-> {’Basic’: 4}

F-> 3:21?

T-> {’Basic’: 1}

F-> {’None’: 3}

while with an additional threshold say mars=0.3 that

tree = treepredict.buildtree(treepredict.my_data,mars=0.3)

treepredict.printtree(tree)

0:google?

T-> 3:21?

T-> {’Premium’: 3}

F-> 2:yes?

T-> {’Basic’: 1}

F-> {’None’: 1}

F-> {’None’: 6, ’Basic’: 5}

showing that the splits down the “false” branch of the initial google split
don’t reduce the entropy that much are are perhaps not very informative out

12

of sample.

Exercise 4 (building a classification tree with missing data)

For this exercise we would like to modify the buildtree function to send
any vectors with a None for a feature value in a given column to both sides
of the potential split. Currently if a None is found as a feature the function
buildtree will call divideset and will split the data into two sets: all
vectors with None in the given component and those without. Thus the
routine as written provides a reasonable way to handle None’s.

If we consider the current logic in buildtree

Now try dividing the rows up for each value in this column

for value in column_values.keys():

(set1,set2)=divideset(rows,col,value)

Information gain

p=float(len(set1))/len(rows)

gain=current_score-p*scoref(set1)-(1-p)*scoref(set2)

if gain>best_gain and len(set1)>0 and len(set2)>0:

best_gain=gain

best_criteria=(col,value)

best_sets=(set1,set2)

We see that if one wanted to send all feature vectors with a None value in
the given column down both sides of the tree one would need to compute the
information gain twice; the first time with all None vectors in set1 and the
second time with the None vectors in set2. Each of the resulting two splits
would be compared to the best split entropy reduction seen thus far.

13

Chapter 8: Building Price Models

Exercise Solutions

Exercise 1 (optimizing the number of neighbors)

We can create a “function generator” that will take a value for k, representing
the number of nearest neighbors, perform k nearest neighbor cross validation
on a given data set using that number of neighbors and return the mean
square error obtained under each model. The python code to create this
function generator is given by

def createKNNcostfunction(algf,data):

def knn_costf(kk):

return lambda x, y: algf(x,y,k=kk)

def costf(kk):

return numpredict.crossvalidate(knn_costf(kk),data,trials=20)

return costf

Using code like the above we can perform cross-validation using three nearest
neighbors with

knn_fn = createKNNcostfunction(numpredict.knnestimate, data)

knn_fn(3)

One can then very easy perform an exhaustive search of the number of neigh-
bors using the commands

k_vals = range(1,15)

mse = map(knn_fn, k_vals)

When we execute these commands and then plot the results we obtain the
plot given in Figure 2 (left) This exercise is worked in the python script
chap 8 ex 1.py.

Exercise 2 (leave-one-out cross-validation)

The python code to implement leave-one-out cross-validation is simple. One
way to do this would be with the following function

14

0 2 4 6 8 10 12 14
number of nearest neighbors

90

100

110

120

130

140

150

160

170

180

w
e
ig

h
t
e
d

k
n
n

c
r
o
s
s
-
v
a
li
d
a
t
io

n

M

S
E

MSE on the wine1 dataset

knn
wknn

0 2 4 6 8 10 12 14
number of nearest neighbors

95

100

105

110

115

120

125

130

135

140

w
e
ig

h
t
e
d

k
n
n

le

a
v
e
-
o
n
e
-
o
u
t

C

V

M

S
E

MSE on the wine1 dataset

knn
wknn

Figure 2: Left: Plots of the mean square error vs. the number of neighbors,
when classifying the first wine data set with k-nearest neighbors (in blue) and
weighted k-nearest neighbors (in green). From this plot it looks like a value
of k between 3 or 4 is the optimal number of neighbors. Right: Plots of the
estimated mean square error vs. the number of neighbors, when classifying
the first wine data set with k-nearest neighbors (in blue) and weighted k-
nearest neighbors (in green). In this case we use the method of leave-one-out
cross validation to estimate the out of sample mean square error. Note that
this method is much smoother than that derived from the cross-validation
results presented in Exercise 1.

15

def leave_one_out_CV(algf,data):

"""

Perfoms leave-one-out cross validation on the given data set

"""

error=0.0

for i in range(len(data)):

testset = [data[i]] # get the i-th sample in a list

trainset = data[0:i] + data[(i+1):] # exclude the i-th sample

error += numpredict.testalgorithm(algf,trainset,testset)

return error/len(data)

Using this routine we can perform the same experiment as in Exercise 1 to
observe how changing the number of nearest neighbors in k nearest neigh-
bors affect the mean square error performance metric. In the python script
chap 8 ex 2.py, we do this and then plot the results and obtain the plot
given in Figure 2 (right). Note that these results are much smoother than
those found in Exercise 1 and are probably more representative of what
would be found out-of-sample. This result indicates that k = 4 looks to be
the optimal choice for both methods.

Exercise 3 (eliminating variables)

One way to do this might to use some of the ideas from the section on
the appropriate scaling to apply to various features. In that discussion we
allowed an optimizer to find the best multiplicative scaling to apply to a set
of features. If we simply want to specify which variables are predictive we
could specify our possible feature scalings to take only the values 0 or 1.
Then when we use the rescale function we get that any feature multiplied
by a 0 will not contributed to the pointwise distance calculations. We can
modify some of the code presented in this chapter to solve this problem. In
the code chap 8 ex 3.py we use the geneticoptimize routine developed in
the chapter on optimization with a possible domain for scaling each features
specified by the tuple (0, 1) which allows only two choices for scaling. The
code to test this procedure on the the wineset2 function is simple

generate data and create a cost function to optimize over:

#

data = numpredict.wineset2()

costf = numpredict.createcostfunction(numpredict.knnestimate, data)

16

next create a domain that will have only two values

0 => that feature is not needed

1 => that feature will be used

#

n_vars = len(data[0][’input’])

domain = [(0,1)] * n_vars

optimization.geneticoptimize(domain, costf, popsize=50, step=1, maxiter=20)

When we run this we get

[1, 1, 0, 1]

Indicating that the third dimension (which is the aisle variable) is not im-
portant to making predictions on price.

We can also try to make this problem more challenging by construct-
ing data in the same way as we have above but appending five additional
measurements that tell us nothing about the price of wine. In the above
python script we define a function wineset4 that does just that. We then
run our “feature” selector code in much the same way as earlier. When we
do this we now have feature vectors with 9 inputs 6 of which don’t provide
any information. An example vector in this case looks like

{’input’: (50.641494249981434,

12.656975253781578,

14.0,

375.0,

12.371621826161466,

10.340159242792581,

3.6478535849936455,

10.280064086090633,

2.8716313510491078),

’result’: 0.0}

Given this input data when we run the command

optimization.geneticoptimize(domain, costf, popsize=50, step=1, maxiter=20)

we end up with

17

[1, 1, 0, 1, 0, 0, 0, 0, 0]

which is quite a nice result since it explicitly shows the variables that are not
relevant.

18

Chapter 9: Advanced Classification: Kernel

Methods and SVMs

Exercise Solutions

Exercise 1 (Bayesian classifier)

One example of using Bayesian classification that is outside of chapter 6
(where this technique was discussed) is given in chapter 10 where we classify
articles based on the count of the words in each article. In this chapter we
could train a Bayesian classifier using real valued features such as age. The
data set ageonly has already been separated into two classes: the pairs of
ages that are good matches and the ones that are not.

Exercise 2 (Optimizing a dividing line)

The book talks about using a SVM classifier but does not discuss how to
train one. In fact the dividing line obtained when training a SVM classifier
is computed as the solution to an optimization problem. This optimization
problem results in a solution that is different than the individual class aver-
ages. This is best explained in more specialized source, for example see [1].

Exercise 3 (Choosing the best kernel parameters)

In the python function chap 9 ex 3.py we implement some functions to per-
form optimization over the radial basis function (RBF) kernel parameter
gamma. Some of the results we obtain when we run this routine are shown
in in Figure 3. In that figure we present a plot of the probability of error for a
radial basis function classifier as a function of the kernel parameter gamma,
where gamma is taken to be an integer between 1 and 50. In that plot we
see that for the region of gamma greater than about 15 there does not seem
to be large changes in the value of classification error probability and the
error probability does not change much. For fun, in the python function
chap 9 ex 3.py we also use some of the optimization routines developed in
chapter 5 to find the “optimal” setting for gamma. These routines find that
gamma ≈ 35 seems best. From the above plot this seems to be a reasonable
number. Note that I did not take the time to get a Yahoo! application key
so the milesdistance routine is certainly incorrect. With a different version
of that function one would certainly get different results.

19

Figure 3: A plot of the estimated probability of error as a function of gamma
when classifying the matchmaker data set using a RBF classifier.

20

Chapter 11: Evolving Intelligence

Book Notes

Notes on a simple mathematical test

It is very interesting to run the genetic algorithm developed in this chapter on
the numeric data set generated by the user specified function hiddenfunction.
While similar results are discussed in the book it is very interesting to observe
the trees that the evolve routine generates when one runs the command

gp.evolve(2,500,rf,mutationrate=0.2,breedingrate=0.1,pexp=0.7,pnew=0.1)

At the end of that routine a program (displayed as a tree) is presented. On
one of the calls gave the following program

add

multiply

p0

add

p0

3

add

p1

add

5

p1

When we convert this program into its equivalent algebraic expression recall-
ing that p0 is x and p1 is y we see that it is equivalent to

(x(x + 3)) + ((y + 5) + y) = x2 + 3x + 2y + 5 ,

the exact function we used to generate the given results! Since on each
call to the evolve function we begin our algorithm search using a randomly
selected population another run can and will give a different solution to the
same problem. A second run gave

21

add

add

subtract

multiply

add

p0

5

p0

p0

add

p1

6

add

subtract

p1

p0

subtract

8

9

When we write this as its equivalent algebraic expression we get

[(x(x + 5) + (y + 6)] + [(y − x) + (8 − 9)] = x2 + 5x − x + y + 6 + y − x − 1

= x2 + 3x + 2y + 5 .

As an aside, it would seem useful to have the given program display itself as
an algebraic expression

Exercise Solutions

Exercise 1 (other function types)

Other functions could be division, logarithms, trigonometric etc. There is
really no limit on what type of functions one could consider. We can imple-
ment a Euclidean distance function (and create a wrapper for it) with the
python code

22

def euclidianDist(l):

"""

The Euclidian distance between the points (l[0],l[1]) and (l[2],l[3])

"""

return sqrt((l[0]-l[2])**2 + (l[1]-l[3])**2)

edw=fwrapper(euclidianDist,4,’euclidiandistance’)

Exercise 2 (replacement mutation)

See the function function replacement mutate for the implementation of
the discussed mutation function and the script chap 11 ex 2.py for an exam-
ple at using this function. To test this new function we modified the evolve

function to use this new function rather than the books mutate function.
For some reason after some initial convergence towards a solution this new
function seemed to slow down convergence.

Exercise 4 (stopping evolution when there is no change in the score)

For this exercise we simply save the optimal score found in a given generation.
We compare this value to the optimal score found in the next generation. If
there has been no change in this optimal value for some number of generations
we simply exit our search loop early. This procedure was needed to work
other exercises and is implemented in the evolve function of the gp module.

Exercise 5 (alternative mathematical functions to guess)

One alternative to the hiddenfunction function that is interesting to con-
sider is to modify the hiddenfunction by adding noise to it. This is done in
the noise hiddenfunction function which is implemented in the gp module.
We can run our genetic program with data generated via this function and
observe its behavior. In general we cannot expect our algorithm to drive the
error to zero and the evolve routine as provided will only end when it has
considered all maxgen generations (which can take a long time). When we
run evolve on this function we see that for this type problem our genetic
algorithm will initially be able to reduce the objective function but at some
point the best scores from the subsequent generations will all be the same (or
nearly the same), thus we need to implement the suggestion from Exercise 4.
Thus it seems that the genetic algorithm has “stalled”. It eventually returns
the best program it could come up with.

23

A second alternative that is interesting to consider is a function that has
operations that are not expressed in the provided nodes vocabulary. For ex-
ample, in the examples from this chapter the divide function is not a possible
candidate and I would expect that our genetic algorithms would have a hard
time at approximating a function that has a division operation. We tested
this hypothesis on the function

1

x + 1
,

and found that the function was rather poorly approximated. If we add a
division function and its wrapper with the following code

def simple_divide(l):

if(l[1]==0):

return float(100.) # +infinity

else:

return float(l[0])/l[1]

divw=fwrapper(simple_divide,2,’divide’)

and rerun the corresponding genetic program we quickly converge to the
correct functional representation. One solution found while running evolve

was

divide

2

subtract

add

p0

p0

subtract

3

5

When we express this result algebraically we get

2

x + x − (3 − 5)
=

2

2x + 2
=

1

x + 1
,

the input expression.

24

References

[1] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning. Springer, New York, 2001.

[2] S. Theodoridis and K. Koutroumbas. Pattern Recognition, Third Edition.
Academic Press, Inc., Orlando, FL, USA, 2006.

25

