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Problem Solutions

Chapter 1
Problem 1.1

Since the differential equation is not in the form

y'(t) = ft,y(1))

one cannot use the simple Lipshitz condition

1f(E,w) = f(& v)[| < Lfju —vl|
to prove existance and uniqueness of this O.D.E. The equation

yiryt=1 y(0)=0

y'(t)=+/1—-92  y(0)=0

can be written as:

(3)

(4)

which shows that two solutions will exist. Thus this result does not violate any of the

existance/uniqueness results stated earlier.
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Problem 1.2

The equation is
y'(t) =yl (5)

and a question to ask is does this right hand side satisfy a Lipshitz condition? Or mathe-

matically:
[V lul = /[l < Llu —v| (6)

From the text we know that a function f(¢,y) will satisfy a Lipshitzs condition if ‘g_i‘ is
bounded by a constant. Taking derivatives we get

of

+1 u>0

11
oy 5@{—1 u<0 (7)

From the above expression this derivative is not bounded as u — 0. By setting v = 0 the
Lipshitz condition now requires:

Viul < Ll Vue [-1,+1] (8)

this is equivalent to the following:

1
— <L (9)
VIl

which can obviously not be true for small enought . In fact for any |u| < 7z Thus f(y) =

+1/|y| is not Lipshitz on this domain. To show that this differential equation may have more
than one solution assume y > 0 for all time and consider the following

y(t)=vy  y0)=0 (10)

this is equivalent to

d
e (11)
VY
Integrating both sides of the above we get
2,y +C =t (12)
or . )
—C\2 2
= =—(t— 13
y= (5P =10 (13)
Imposing the initial condition gives ¢ = 0 and y(t) = % Since indeed the function y is

positive for all ¢ > 0 our assumptions are valid. To find another solution assume now that
y < 0 for all time and consider the following

yt)=v-y y0)=0 (14)
this is equivalent to
=dt. (15)

[ ]<
<



Integrating both sides of the above we get

—2/—y+C=t (16)

o t—c, 1 9
5 = —1—0) (17)

Imposing the initial condition gives ¢ = 0 and y(t) = —%. Again since indeed the solution
y is everywhere negative our manipulations are justified.

y=(—

By the derivative argument presented above /|y| is not Lipshits when |y| < 1 but by the

same arguments f(y) will be Lipshitz y € [«, 1) since in this region the first derivative is

bounded: o/ . .
Ay R D P G 1

Problem 1.3

From the differential equation
1

((—1){-2)

we can expand the right hand side in partial fractions. This is an expansion of the following
form:

y'(t) = (19)

1 A N B (20)
t—1)t—2) t—1 t-2
Solving for A and B we get A = —1 and B = 1. Thus the differential equation is now
-1 1
dy = ——+ —— 21
(I (1)

and both sides can be integrated. This gives:

t—2
t—1

y—1yo=—In(t—1)+In(t —2) = In( ) (22)

or

) (23)

Imposing the initial condition y(0) = 1 we get the equation 1 = yy + In(2) or

y = Yo + In(

t—1

y(t) =1—1In(2) + In( ) (24)

From this one can see that one cannot prescribe initial conditions at ¢ = 1 or ¢ = 2 since
these correspond to singularities of the In function.

Given the following O.D.E. \
y'(t) = =3y sin(t) (25)



———1 =sin(t) (26)
3 Y3
integrating both sides gives
1 y%l
—-=5 +C = —cos(t) (27)
3 —3
or after solving for y(¢) we obtain
1
y(t) = =———3 (28)

(C' — cos(t))?
Applying the initial condition y(%) = 1 results in

1

y(t) = 1= cos(D))? (29)

this function has singularities when ¢ is a multiple of 2.

Problem 1.4

WWX: Finish!!!

Problem 1.5

The solution to the following differential equation:
Y =5(y—12)  y(0)=0.08 (30)
is given by
y(t) = t* + 0.4t + 0.08 (31)

To numerically compute its solution using Euler’s method the following difference equation
is used

Ynt1 = Yn + hf(tna yn) (32)

with a stepsize of h = 0.1. In this case the local solution w is the solution to the following
D.E.
u' — bu = —5t withu(t,) = ya (33)

The solution to this ODE consists of a homogenous part and a particular part. The homoge-
nous part is given by
u(t) = Ce (34)

while the particular solution maybe found by considering a soltuion of the following form

u,(t) = At> + Bt + C (35)



Putting this equation into the local solution 33 gives A =1, B = %, and C = % Thus in

total the local solution is given by

2 2
H=t>4+t+—+Ce*
u(t) ettt Ce

Using the initial condition wu(t,) = y, gives for the constant C' the value

2 2
_5t 2

— ey, — 2 — Zt, — —
C=ce (y - 25)

So in total the local solution at each timestep wu(t) is given by:

2 2 p P
D=1+ St+ — 4+ (y, — 12 — =t 5(t—tn)
u(t) 50T o5 (yn — t5 5l 25)6

Problem 1.6

Let y; = y and y2 = 3y'. Now

(p()y") + q(x)y(x) = r(x)

expands to give
P @)y (z) + p(x)y"(x) + q(z)y(z) = r(z)

or

y r(x) —q(x)y(x) — p'(2)y'(x
J(z) = (z) — q(@)y(z) — p'(2)y'(x)
p()
therefor the system to solve is the following:
yi = Yo
;o r(x) —qlx)y(e) —p'(e)y'(z)
Y2 =
p(z)

with initial conditions given by

y1(0) =0 and va(1) =

(36)

(37)

(38)

(44)

This method of forming a system of ODE’s can be contrasted with the following choice. Let

y1 =y and y2 = p(z)y’. Then the system becomes:

g, = 2
! p(x)
Yo = —q(@)y(x) +r(z)

with initial conditions given by y;(0) = 0 and y,(1) = 2.

(45)
(46)



Problem 1.7

Part (i): For the special second order form y” = f(t,y) then

62$
(v")? ==
Yy
or )
s
VY

yi(r) = ya(w)

/
yolz) = £—
2 NG
with initial conditions of y;(0) = 0 and y»(0) = 0.
Problem 1.8
Let our individual y; be the following
Y1 )
y2 =y
ys =y’
y4 — y///
then our given ODE becomes
i = Y
Y = U3
Ys = W
vi = —(Q+y1)ya— Qs + (26 — 1) (yays + Q3)

In addition to these equations define y5 and yg as

K Q
ys = /0(1—3/26 ") dn

n
v = | YoM (1 — yoe) d

then the derivatives and initial conditions for y5 and yg are given by

ys = 1—gpe™ and  y5(0) =0
Vg = ygeQ”(l — ygeﬂn) and v6(0) =0

(@)
[\

A~ N /N
ot
w

S— N N

— N N N



Finally, our complete set of differential equations would be

yio= (63)
Yo = Y3 (64)
Ys = W (65)
yr = —(Q+y)ya — Wiys + (26 — 1)(yays + Qw3) (66)
ys = 1 —ye™ (67)
v = yae™(1 — yoe™), (68)
wit initial/boundary conditions given by
53(0) = 0 (69)
y2(0) = 0 (70)
p(b) = e (71)
ys(b) = —Qe (72)
ys(0) = 0 (73)
y6(0) 0 (74)
Problem 1.9
Let y; = p and y, = —p/, then
Y= Y (75)
1—a? 1
_ 2 2
Yo = —w ( Vi ( /71+M2>+a)y1> (76)
as suggested in the text let y3 be defined by
1 o dx 1
p=ogll-(1—a®) [ =iy then  y(0) = - (77)
o’ 0 1+ p(x)? o
The derivative of y3 is then
1—a? 1
- (78)

/
Ys = —
a? \/ 1 y%

in addition let y, be defined by y4s = H, with derivative given by y, = 0. With these
definitions the total system is given by

Y= Yo (79)

/ o (1—0a? 1 2
Y = —W < H <m>+a)yl> (80)

Ys = — (81)
’ 07 14y}

yp = 0 (82)




with initial conditions given by:

11(0) = e (83)
y2(0) = 0 (84)
p(l) = 0 (85)
ys(0) = 1/a? (86)
1
ya(l) = ?U — (1 —a?)ys(1)] (87)
Problem 1.10
I was not sure how to do this problem.
Problem 1.11
Eq. 120 in the book is
Yi(tn) — ynil < relyi(tn)| + ae; (88)
with re =ae; = 7
Problem 1.12
The differential equation is
y'(t)=4/1—y*>  withy(0) =0 (89)

and this maybe satisfied by y = sin(t). At ¢t = 7/2 we have sin(7/2) = 1 and the expression
1 —y? might become negative due to round off. In addition, f(t,y) = /1 — y?2 is not Lipshitz
on 0 <y <1, since

of —2y

A 90

oy VI )
is unbounded as y — 1. Therefore uniqueness may fail to hold as well.
Problem 1.13
The differential equation is

21 8
j0 = (PO 5) 0 i) -1 (o1)



Note that In(y) is complex for y < 0. With analytic solution given by
y(t) = ettt fort >1 (92)

we see that y(t) < 1 and limy(t) = 0 as t — oo. Thus numerically, the solution y(¢) can fall
below zero.

Problem 1.14

Writing out a few terms of the given differential equations we obtain:

yi = U
Yy = Y1 — 2y
/

Yz = 2y —3y3

Yy = 8ys — Yo
Yo = 9o

We see that by adding each row in the above set of equations we get:

> =0 (93)

Thus if ¢ is a 10 component column vector with entries of all ones, then ¢’y(t) is constant
for all time and corresponingly this system of ODE’s satisfies a conservation law.

Problem 1.15

I think there is a typo in the discription of the Volterra predator-prey model. I belive the
equations should read:

¥ = azx(l—y)
—cy(l—x)

In this case the derivative of G = x~ ¢y~ %“+% with respect to ¢ is:

dG
dt

_ _cxfcflx/yfaecawray + _axfcyfaflylechray + xfcyfa(cw/ + &y/)echray



oy e (—ex ! —ay Ty + e + ay)

oy e (—cxHax(1 — y)) — ay”H(—cy(l — 2)) + 2’ + ay)

Y %Y (—ca(l — y) + ac(l — z) + acx(1 —y) — acy(1 — x))
= z %Y et (—ca + acy + ac — acx + acx — acry — acy + acry)
=0

Using the Volterra equations above. Eulers method for ¢ = f(¢,y) (with constant stepsize
h) is given by
Ynt1 = Yn + hff(tna yn) (94)

For the problem at hand this becomes:

Tpt1 = Tp+ hax,(1 —y,)
Yn+1 = Yn — hcxn(l - yn)

For an implementation of this, see the matlab code prob_1_15.m.
Chapter 2

Problem 2.1

The consistency condition we need is
1 S
5= ZAjaffl fork=1,2,...,p (95)

For the first example we have

/abf(x)dx b—a

Q

(a+0(b—@))+4f(a+b_7“>+f(a+(b—a))} (96)
= DTt 0h) + 4f(a+ o)+ flat ) (o7)

with h = b — a. Then we see that s =3, A; =1/6, Ay =2/3, A3 =1/6, a1 =0, ay = 1/2,
and ag = 1. So with k£ = 1 the right hand side of Eq. 95 is

for k£ = 2 the right hand side of Eq. 95 is

3 1 21 1 1
Ajaf=-0+=+-1== 99
JZIJO‘J 6 T3216 —2 (99)

for k = 3 the right hand side of Eq. 95 is

3 1 21 1 1
2_—02 e e 100
2:: % 3176 73 (100)



for k£ = 4 the right hand side of Eq. 95 is
(101)

however for k = 5 the right hand side of Eq. 95 is

3

1, 21 1. 1 1 1 4 5 1
Ajat = 0"+ -l=— o= F—=—F— 102
;JO‘J 6" t316 76 "20 6 2t 275 (102)

therefor the given method has local error of O(h%). From the discussion on the top of page
46, the global error is then O(h?*). For the second example we have

1 1 1 1
—(1=—2)h)+ fla+ )1+ —=)h 103
3L )+ fa+ 5)(1+ o)) (103)
with o = b — a. Then we see that s =4, A} =0, Ay = 1/2, A3 =1/2, Ay, =0, oy =0,
g =1/2(1—1//3), a3 = 1/2(1+1/4/3), and ay = 0. So with k = 1 the right hand side of
Eq. 95 is

b h
| f@yde ~ Slia+

3 3
Y Ajaf =3 A;=1 (104)

for k = 2 the right hand side of Eq. 95 is

53 al = 11 -—-;LJ-+-11(1—+-;LJ _1 (105)
= A 2 V322 NG
for k = 3 the right hand side of Eq. 95 is
1 1 1 11 1 1
for k = 4 the right hand side of Eq. 95 is
2 11 1 11 1
ad==-(1- =P +==(14+——=)*=27? 107
Problem 2.2
Explicitly the Runge-Kutta formulas have the following form
Ynt1 = Yn +h Y A f(njs Unj) (108)

=1

with y,, ; given explicity interms of previous ¥y, ;’s i.e.

j—1
Yn,j = Un +h Z ﬁj,kfn,k (109)
k=1



with f,; = f(tn + ajhn, Yn ;) using the midpoint rule to evaluate the explicit Runge-Kutta
expression gives

h
Ynt1 = Yn + hf(tn + 5 Yn,1/2) (110)

with Y, 1/2 = y(t, + h/2) using Euler’s method to evaluate y,,1/2 gives

h
Yn1/2 = Yn + §f(tn7 Yn) (111)

thus the entire update step is given by

h
Yni/2 = Yot §f(tm Yn) (112)

h
Ynt1 = Yo+ hf(t,+ 5 yn,1/2) (113)

Problem 2.3

The equation of condition for a Runge-Kutta code of order p are given on Page 51 of the
book. They are given by

1 S
E:Zvjaffl for k=1,2,3,---,p (114)
=1

Then for the given method to be second order we require

Yn1 = Yn (115)
fn,l = f(tm yn,l) (116)
j—1
Ynj = UYUn + hn Z ﬁj,kfn,k (117)
k=1
fn,j = f(tn + ajhna ymj) (118)
Yn+1 = yn+h27jfn,j (119)
j=1
have
1 2 2
7 = Xwmai =2 (120)
j=1 j=1
1 2
5 = 2% =m0+ %0 (121)
j=1
Yn+1 = Yn + h(ﬂylfn,l + 72fn,2) (122)
Sa1 = f(tn, yn) (123)

fn,2 = f(tn + a1h> Yn + hﬂl,Ofn,l) (124)



giving

Ynt1 = Un + A1 f(tn, yn) + 2 f (tn + cah, yn + hB10f (tn, Yn))) (125)
with f(¢,u) a scalar, we have
u(tni1) = Yni (126)
/ h2 " h3 " 4

W(tnyr) = ulty) + hu'(t,) + Eu (tn) + gu (tn) + O(h%) (127)

since u(t,) = yn, and u'(t,) = f(tn, yn) gives

h2 " hS " 4

U(tng1) = Yn + hf (tn, yn) + U (tn) + ik (tn) + O(R7) (128)

and

Ynt1 = Yn+hif(tn,Yn) + hyaf(tn + arh, y, -
Yn + hyif (tns Yn) + hva f (tn, Yn + hB1L0 S (tns Yn))
hyo(f (tny Yn) + a1 fe(tn, yn) + BB fy(tn, Yn) [ (tn, yn) + O(R?)

therefore

Y1 = Yn+ (hy1+hy2) f (Lo yn) F1Pv200 ity Yn) + B2 810 fy (tny Yn) f(tny yn) +O(R?) (132)

so we have
h2
ultn)=nr = h(1=71=92) f (tn, Yo )+ 50" (b) =19200 filtn, Y) =H*7281, 0y (b, ya) | (tn, ) +O(R?)
(133)
But U,/(tn) = with u,(t) = f(t> U), S0 u”(t> - ft + fuu/ = ft + fufa SO U”(tn) = ft(tnayn) +
fu (tm yn)f(tn, yn) therfore

u(tn—l—l)_yn-i—l = h(l—%—%)f(tm yn)+h2(%ft(tna yn)—i_%fu(tm yn)f(v )_720‘1ft(7 )_72517 Ofu(v ))+O(h3)

therefore the equations of consistency becomes 0
I = m+7 (135)

% = Yo (136)

% = 7B (137)

Popms(t) = ynﬂh(;f(;ntﬂ (]jn—_lt)nl) (138)

n Yn-1(t = tni1) ([ — tn-1) (139)

_hn(hnfl)

or

Papra(t) = A(t — o)t — tar) + Bt — b1 )(t — tns) + Clt — ts)(t — 1) (140)



Phppa(t) = At —t, 1)+ At —t,)+ Bt —tp_1)+ Bt —t,1)+C(t—t,) +C(t —t,1) (141)

evaluating this at t = ¢,,11 gives

Yn+1 Yn+1 yn(hn + hn—l) yn—lhn
P that) = 142
bors(fu1) = 5 = (hn+hoser  (“h)hoor (o + hoo1) (142
plus the collocation requirement that
P],BDFI (tn-i—l? { . }) - f(tn—l—la yn-i-l) (143)
SO
Yn— Yn
P]/3DF1(t§ Yn, yn—l) = - . (t - tn) + _(t - tn) (144)
hn,1 hn
SO y y
n—1 n
P]/3DF1(t; { . }) = - + = (145)
hn—l hn
P'(tns1) = f(tns1, P(tns1)) (146)
Pepp1 (tng1, {- - -}) = Ynt1 + Phppr (tnsr, {- - 3) = f(tns1s Yngr) (147)
(t - tn+1) (t B tn)
P the1,{.. )= —yp+ ———, 148
BDFl( +1 { }) (tn — tn+1) (thrl — tn)y +1 ( )
Yn Yn Yn+1 — Un
Poppi(tasr, {--}) = T h+1 = +}z = [(tn+1, Ynt1) (149)
For the BDF2 we have
(t—t,)(t —th1)
P the1, 4. .. = Un 150
BDF?( +1 { }) Yn+1 (tn-i—l _ tn)(tn—l—l —_ tn—l) ( )
(t - thrl)(t - tnfl)
+ 151
(tn - tn+1)(tn - tnfl) ( )
(t —tny1)(t —tn)
+ Yn— 152
Y (th1 — tnt1)(tno1 — tn) (152)

For BDF2 (rathar than approximating f at previous mesh points we approximate y(t) at
Yn—; for j > 0, with the requirement that the polynomial satitifsy the ODE at t = ¢,,1; i.e.
it collocates the ODE at ¢, or

P'(tni1) = f(tnr1, Pltnsa)) = f(tns1, Yntr) (153)
tnthn
Yn+1 = Yn + I ] St u(t)dt’ =y, + hy, (154)
S0 n
Yn+1 = Pltnt1, {Un—3}) (155)
S0

P'(tni1; {yn—j}) = f(tns1s Ynt1) (156)



so first order extrapolation of y,,.1 gives

(t—t.) (t—t,1)
Ynt1 = (tli_nt)yn—l + ﬁyn = P(t; {Yn, Yn-1})
n— n n n—

this may come before that other section ...

so AB2 is
tnthn (t — tn_l) (t — tn)
n - n T ——Jnt T/ Jfn- dt
Ynt1 4 tn (tn - tn—l)f (tn—l - tn)f !
_ o fe =)’ o L fr () e
T2, (“ho) 2|,
fn 2 fn 2 fn—l 2
= UYn hy— h, ) — h: , — h
Y * 2hn—1( o ) 2hn—1 el 2hn—1 "
In 2 2 2 fn—lhi
= oh, - —
Yn + 2h, 1 (h’nfl + 2hn—1hy + hn h’nfl) 2h, 1
1 h 1/ h
- n hn 1 ——= n— |3 = n—
o | (g ) (3 () oo
define r = % then we have
Problem 2.5
AB2

/t:ﬁh f(z,u(z))dz

Take t,, ; = t,—; for j > 1 Adams Bashforth with «’ = f(¢,u) with u(t,,) = yn.

trthn
u(tn + hp) = yn + f(z,u(z))dz

ln

(157)

(158)

(159)

(160)

The Adams Bashforth first order method (AB1) is defind by interpolating f at ¢, using the
assumed inital condition f(¢,,y,) = f,. For the Adams Bashforth second order method
(AB2) we interpolate f at ¢, and ¢, i.e. interpolate betweeen the points (t,, f(t., yn)),
and (tn,_1, f(tn—1,Yn-1)). To simplify the notation we define f, = f(t,,y,) and f,_ 1 =
f(tn_1,yn_1) as the two previous points. Lagrange interpolation to these two previous points

then gives
Fltuy m Lt gy U0

(tnfl - tn) tnfl - tn fnil

(161)



Page 69 Shampine

Yn1 = by f(tns1, Yngr) + W
m+1 m m—+1 m
yT[H—Jlr l=v + hy(f (tng1s y7[z+]1) + J(yL;{ I yLJr]l))
let Z/T[znrlru = y,[ﬁ]l + A,, then the above becomes

(I = ) A = W+ by f(tar, yhtth — 9t
with J = 8 (t,1, 5, this is Shampine Eq. 2.36.

lest| < Telyniil + Ta

with Apew = oh we get

2 1 4
est = h <§fn,1 + <_ - 1) fn,2 + §fn,3>

3
h
= 5 (2fn,1 - 6fn,2 + 4fn,3)
2h
= ? (fn,l - 3fn,2 + 2fn,3)
Define
Yn1 = UYn

fn,l = f(tna yn,l)
1
Yn2 = YnTt hifn,l

h
fn,2 = f(tn + _7yn,2)

2
3
Yn3 = UYn + han,Z
3
fn,?) = f(tn + Zha yn,3)

Finally we have
2 3 4
Ynt1 = Yo+ h <§fn,l + §fn,2 + §fn,3>

B

so we have

Q

I
~—
o= O
\——/

=2

Il
~
OO [LxXO [0
ok O
NI
\——/

Butcher’s tableu is:

(162)
(163)

(164)

(165)

(166)

(167)
(168)

(169)

(170)
(171)

(172)
(173)
(174)

(175)

(176)

(177)



Euler-Huen is

and finally we have

Problem 2.4

Yn1i = Yn

fn,l = f(tna yn,l)

Yn2 = Ynthbafn

frz = [(tn+ a2k, yn2)

2
Ynt1 = Yn + hzr}/jfn,j
j=1

Yn1l = Yn

fn,l = f(tna yn,l)

Yn2 = Yn+hfna

fr2 = ftn + a2h,yn2)

1 1
Ynt1 = Yn+h <§fn,1 + 5fn,2>

Yn+1 = yn+hfn,2

h
Yni1 = Yn+ 9 (2fn1 +3fn2+4f03)

fn1 = 2. The Euler-Heun Runge-Kutta method is

yn,l

Yn+1

= Yo+ hf(tn, Yn)
Yn + h (%f(tmyn) + %f(thrl;yn,l))

Here a@ = (0,1), and 7 = (3, 3), and § = (0,1). so

yn,l
fn,l

yn,j
fn,j

Yn+1

Yn

f(tm yn,l)
7j—1

Yn + hn Z 6j,kfn,k and
k=1

ftn + ajhn,yn,;) for j=2,34,... s

s
Yn + hn Z ﬂ}/jfn,j
j=1

(188)
(189)

(190)
(191)

(192)
(193)

(194)
(195)
(196)



