
Some Notes from the Book:

Optimal Control and Estimation

by Robert F. Stengel

John L. Weatherwax∗

October 8, 2004

Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

Acknowledgments

Special thanks to (the most recent comments are listed first): Andrew J. Taylor and Adam
Chapman for finding bugs and typos in this material.

All comments (no matter how small) are much appreciated. In fact, if you find these notes
useful I would appreciate a contribution in the form of a solution to a problem that is not yet
worked in these notes. Sort of a “take a penny, leave a penny” type of approach. Remember:
pay it forward.

∗
wax@alum.mit.edu

1

The Mathematics of Control and Estimation

Notes on the text

Notes on the Newton-Raphson method

When J is a scalar function and u is a vector and we consider

∂J

∂u

∣

∣

∣

∣

u=ξ

,

this is a vector function of the point where we evaluate it i.e. ξ. If we Taylor expand this
function about ξ = u0 we have

∂J

∂u

∣

∣

∣

∣

u=ξ

=
∂J

∂u

∣

∣

∣

∣

u=u0

+ (ξ − u0)
T ∂2J

∂u2

∣

∣

∣

∣

u=u0

If we evaluate this expression at ξ = u∗ the location of a minimum, where by the necessary
condition for a minimum we have ∂J

∂u

∣

∣

u=u∗ = 0 and the left-hand-side vanishes and we get

0 =
∂J

∂u

∣

∣

∣

∣

u=u0

+ (u∗ − u0)
T ∂2J

∂u2

∣

∣

∣

∣

u=u0

.

Solving for u∗ and we get

u∗ = u0 −
(

∂2J

∂u2

)−1(
∂J

∂u

)T

,

where both ∂2J
∂u2 and ∂J

∂u
are evaluated at u = u0.

Notes on Lagrange Multipliers

Because of the vector constraint f(u′) = 0 is of dimension n (the vector f has n components)
the vector u′ must have at least n components or else it is over-specified by the constraint
f(u′) = 0. Lets therefore assume that u′ is of dimension n+m. Using the constraint we could
in principal solve for n of the components ui’s in the vector u′ terms of the remaining m
other variables. To emphasis this we write the vector u′ as u′ = (x,u) where the components
in the n vector x are viewed as functions of the remaining m elements in u, implicitly defined
by f(x,u) = 0. Then form the augmented objective function JA defined as

JA(x,u) = J(x,u) + λ
T f(x,u) . (1)

Here the vector λ is of dimension equal to the number of constraints in f = 0 or n. Then
∆JA is given by

∆JA =
∂JA
∂x

∣

∣

∣

∣

(x,u)=(x∗,u∗)

∆x+
∂JA
∂u

∣

∣

∣

∣

(x,u)=(x∗,u∗)

∆u .

2

But from the form of JA given in Equation 1 we have these derivatives given by

∂JA
∂x

=
∂J

∂x
+ λ

T ∂f

∂x
(2)

∂JA
∂u

=
∂J

∂u
+ λ

T ∂f

∂u
. (3)

If we pick λ
∗ such that ∂JA

∂x
= 0 in Equation 2 or

λ
∗ = −

[

(

∂J

∂x

)(

∂f

∂x

)−1
]T

= −
[

(

∂f

∂x

)−1
]T
(

∂J

∂x

)

. (4)

Then ∆JA is given by (we can drop the ∆x term) with the above value for λ∗

∆JA =
∂JA
∂u

∣

∣

∣

∣

(x,u)=(x∗,u∗)

∆u =

(

∂J

∂u
+ λ

∗T ∂f

∂u

)

∆u .

For ∆JA = 0 for all ∆u requires that

∂J

∂u
+ λ

∗T ∂f

∂u
= 0 , (5)

or when we put in λ
∗ from before we get

∂J

∂u
− ∂J

∂x

(

∂f

∂x

)−1
∂f

∂u
= 0 . (6)

Note that Equation 6 is a system of m equations that we need to solve for u and x to find
the constrained extrema. We get a complete system of m+ n equations by augmenting the
n constraint equations f(x,u) = 0 to this system. If the combined system

∂J

∂u
− ∂J

∂x

(

∂f

∂x

)−1
∂f

∂u
= 0 and (7)

f(x,u) = 0 , (8)

is sufficiently complicated then it may have to be solved using Newton iterations like as
discussed on Page 2.

Notes on Example 2.1-5 (decent into the valley part 2)

Consider the example where J = u21 − 2u1u2 + 3u22 − 40. The let u = u1 and x = u2 to get

J(x, u) = u2 − 2ux+ 3x2 − 40 .

The equality constraint is x − u − 2 = 0 which is also the definition of the constraint
f(x, u) = 0. Then to find the minimum of this constrained problem we need to solve the
system given by Equations 7 and 8. One way to do that is to follow the derivation above by
first computing the Lagrange multiplier as in Equation 4 we have

λ∗ = −
(

∂f

∂x

)−1(
∂J

∂x

)T

.

3

Thus we need to compute

∂f

∂x
= 1 and

∂J

∂x
= −2u+ 6x .

So λ∗ = −(−2u+ 6x) = 2u− 6x. To put this into Equation 5 we need

∂J

∂u
= 2u− 2x and

∂f

∂u
= −1 .

Then Equation 5 becomes

(2u− 2x) + (2u− 6x)(−1) = 0 ,

or x = 0. Then with this value for x the constraint f(x, u) = 0 gives u∗ = −2. Then we find
the optimal value for J using these two numbers given by

J∗ = J(x∗, u∗) = 4− 2(−2)(0) + 0− 40 = −36 ,

as we found from the method of substitution.

Notes on sufficient condition for a constrained minimum

For a constrained problem a positive definite Hessian matrix for JA is sufficient to conclude
that we have a minimum of our constrained problem. We can write a block matrix expression
for this Hessian as

∆2JA =
1

2

[

∆xT ∆uT
]

[

JAxx JAxu

JAux JAuu

] [

∆x
∆u

]

.

If ∆2JA ≡ 0 then we require that a higher order even derivative be positive definite. By the
constraint f(x,u) = 0 changes in x and u must be related by ∆f = 0 or

fx∆x + fu∆u = 0 .

Thus ∆x = −f−1
x

fu∆u. Thus the left most matrix above becomes

[

∆xT ∆uT
]

=
[

−∆uT fT
u
(f−1

x
)T ∆uT

]

= ∆uT
[

−(f−1
x

fu)
T I

]

.

Putting this into the expression for ∆2JA we get that

∆2JA =
1

2
∆uT

[

−(f−1
x

fu) I
]

[

JAxx JAxu

JAux JAuu

] [

−(f−1
x

fu)
I

]

∆u

=
1

2
∆uT

[

(f−1
x

fu)
TJAxx(f

−1
x

fu)− (f−1
x

fu)
TJAxu − JAux(f

−1
x

fu) + JAuu

]

∆u (9)

=
1

2
∆uTJ ′

Auu
∆u ,

where we have defined J ′
Auu

as the four term expression above it. Then ∆2JA will be positive
definite if J ′

Auu
is. Thus one can compute J ′

Auu
and observe if this is positive definite to

determine if we have found a constrained, local, minimum of J .

4

Notes on Pivotal Condensation for Evaluating Determinants

The method of Laplace expansion is what is typically taught in a course on linear algebra
for evaluating determinants. Another method for evaluating determinants which the book
claims may requires fewer multiplications and is more easily implemented is called Pivotal
Condensation. In this method, to evaluate the determinant of A, a nonzero element of A,
say aij , is selected. Then many 2×2 determinants of submatrices with one element taken to
be the element aij two elements taken from the ith row and jth column of A and the fourth
element taken from A with the ith row and jth column removed. These determinants as
elements give a matrix of size n − 1 × n − 1 made up of these smaller determinants. This

matrix is multiplied by
(

1
aij

)n−2

to give a final n−1×n−1 matrix. This process is repeated

until a 2×2 matrix is obtained for which we know how to take the determinant. An example
will help clarify this procedure. Consider evaluating the determinant of the 3× 3 matrix A

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 .

If we assume that a11 6= 0 and perform pivotal condensation about this element. Then i = 1
and j = 1. Now we consider the matrix A′ that remains when we remove the first row and
first column or

A′ =

[

a22 a23
a32 a33

]

.

Then for each element in the matrix A′ we consider a matrix of 2× 2 determinants that are
created using the element a11 as the upper left element, and and an element from the above
matrix as its lower right element. The cross diagonal elements are obtained by selecting the
corresponding elements from row i = 1 and column j = 1 that are in the same row and
column of A and then dividing by 1

a3−2
11

= 1
a11

for example we would have

|A| = 1

a11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

∣

∣

∣

∣

a11 a13
a21 a23

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12
a31 a32

∣

∣

∣

∣

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

a11

∣

∣

∣

∣

a11a22 − a12a21 a11a23 − a13a21
a11a32 − a12a31 a11a33 − a13a31

∣

∣

∣

∣

=
1

a11
[(a11a22 − a12a21)(a11a33 − a13a31)− (a11a23 − a13a21)(a11a32 − a12a31)]

=
1

a11

[

a211a22a33 − a11a22a13a31 − a12a21a11a33 + a12a21a13a31

− a211a23a32 + a11a12a23a31 + a11a13a21a32 − a13a21a12a31
]

= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a22a13a31 ,

which is the save value when computed via other means.

Notes on properties of positive/negative definite matrices

Given a matrix Q of size n× n, we define the principal minors of Q to be determinants of
smaller square matrices obtained from the matrix Q. The smaller submatrices are selected

5

from Q by selecting a set of indices from 1 to n representing the rows (and columns) we
want to downsample from. Thus if you view the indices selected as the indices of rows from
the original matrix Q to extract into the submatrix, then the columns we select for this
submatrix must equal the indices of the rows we select. As an example, if the matrix Q is
6× 6 we could construct one of the principal minors from the first, third, and sixth rows. If
we denote the elements of Q denoted as qij then this would be the value of

∣

∣

∣

∣

∣

∣

q11 q13 q16
q31 q33 q36
q61 q63 q66

∣

∣

∣

∣

∣

∣

.

Then the theorem of interest about how principal minors relate to Q is that if all principal
minors of a matrix Q are positive then we can conclude that Q is positive definite. In
addition, if all principal minors are either positive or zero then the matrix Q is positive
semidefinite.

We next consider a slight modification of the above definition by considering the leading
principal minors which are the specific principal minors that we get by considering the
first k rows and columns. Since Q is of dimension n×n we will then have n leading principal
minors. We can denote these leading principal minors as ∆k. In the example above where Q
was assumed to be a 6×6 matrix the 6 leading principal minors are the following expressions

∆1 = |q11| , ∆2 =

∣

∣

∣

∣

q11 q12
q21 q22

∣

∣

∣

∣

, ∆3 =

∣

∣

∣

∣

∣

∣

q11 q12 q13
q21 q22 q23
q31 q32 q33

∣

∣

∣

∣

∣

∣

∆4 =

∣

∣

∣

∣

∣

∣

∣

∣

q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

∣

∣

∣

∣

∣

∣

∣

∣

, ∆5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q11 q12 q13 q14 q15
q21 q22 q23 q24 q25
q31 q32 q33 q34 q35
q41 q42 q43 q44 q45
q51 q52 q53 q54 q55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and ∆6 is the the determinant of Q. Then with these definitions we have the fact that if
the leading principal minors are all positive then Q is positive definite. If in fact the leading
principal minors alternate in sign as we consider more of them as

∆1 < 0 , ∆2 > 0 , ∆3 < 0 , · · · ,

then Q is negative definite. The take away from this section is that one way to test of
positive/negative definiteness of a matrices we might be working with is to consider the
signs of the leading principal minors.

Notes on derivation of the pseudoinverses (left and right)

To begin this section we assume that A is of dimension r × n. Then the product AAT is
of dimension r × r and the product ATA is of dimension n × n. Because of the dimensions
of A the largest the value that the of A can be is min(r, n). It is possible that the rank
A actually be smaller than min(r, n), for example if it was a matrix with a single column

6

repeated multiple times. We will assume for further discussion that the rank of A equals this
minimum. Then there are two cases to consider when attempting to “solve” the expression

y = Ax .

for x. These two cases depend on which is larger r or n.

• Overdetermined Systems: The most common situation is the one that arises when
we have many measurements (elements of y) each of which is a linear mapping (via
A) of a few parameters (elements of x). Thus the dimension of y is larger than the
dimension of x or we have r > n. Then since the rank of A is min(r, n) = n the matrix
ATA which is of size n×n is nonsingular. Thus we will define the Left Pseudoinverse
for overdetermined system is given by

ALPI = (ATA)−1AT . (10)

• Underdetermined Systems: This is the opposite case as above and we have that
r < n and y = Ax is said to be underdetermined. When this happens there are multiple

solutions to the system Ax = y. In this case AAT is of dimension r× r and because of
the rank condition on A the product matrix is non-singular. We now derive the right
pseudoinverse by starting with the fact that AAT is invertible or the expression

(AAT)(AAT)−1 = I .

Using y = Ax we can multiply the left-hand-side of this expression by y and the
right-hand-side of it by Ax to get

(AAT)(AAT)−1y = Ax .

Then “canceling” A on both sides of this equation gives the expression for x in terms
of y or

x = AT (AAT)−1y .

Thus we define the Right Pseudoinverse for underdetermined system as

ARPI = AT (AAT)−1 . (11)

We note a property of this expression. The right pseudoinverse selects one of the
multiple possible solutions in that it is the solution x with the smallest value of ||x||
over all x that satisfy Ax = y.

Given the type of system we are presented with (in terms of the relative size of r and n) we
then “solve” for x (at least in principle) using

x = AXPIy .

where X is either L or R and computed using Equation 10 or Equation 11 depending on the
problem considered.

7

Notes on resistor network

In the book at the end of this section it is mentioned that the overdetermined system produces
solutions x that are more robust to errors in measurements than simply using a smaller but
invertible system (like for instance using only the first two measurements). To test this idea
lets introduce a 10% error in the measurement of i2 i.e. we take i

′
2 = 0.9(2.667) = 2.4 Amps.

The true voltages do not change i.e. V1 = 100 V and V2 = 200 V. Then using the left
pseudoinverse gives

[

V1
V2

]

= ALPI





0.5
2.4
2



 =

[

118.611
162.20

]

.

While using just the first two current measurements gives
[

V1
V2

]

=

[

−3000 600
2000 −300

] [

0.5
2.4

]

=

[

−60
280

]

.

Given the correct value of

[

100
200

]

we see that the first method does a much better job

at estimating its value than the second method does. This experiment is performed in the
Matlab script chap 2 notes on resistor network.m.

Notes on minimal norm flow (the right pseudoinverse)

The book derives the minimal dimensional flow rate expression





x1
x2
x3



 =





8.33
8.33
8.33



, which

correspond to percentage opening for values with maximal openings of 10, 20, 30 given by

8.33

10
= 0.833 ,

8.33

20
= 0.4167 ,

8.33

30
= 0.277 .

Now maybe we want to solve for a minimum norm solution in percentage flow terms rather
than dimensional flow. We can solve this problem by redefining the definition of the matrix
A. Then our problem in the percentage flow terms is to find

[

x1 x2 x3
]

such that

25 =
[

10 20 30
]





x1
x2
x3



 .

The minimum norm solution to the above system is given by the right pseudoinverse as




x1
x2
x3



 = AT (AAT)−1(25) =





10
20
30





1

102 + 202 + 302
(25) =





0.178
0.358
.535



 ,

the same answer one gets in Example 2.2-5. Another solution method would be to open each
valve by the same p percent. This would require

p(10) + p(20) + p(30) = 25 ,

or p = 0.41.

8

Notes on matrix identities

In this section we consider block matrix inverses. That means we start with a block matrix
A of dimensions (m+ n)× (m+ n) written as

A =

[

A1 A2

A3 A4

]

,

and then consider its inverse B partitioned in the same way

B =

[

B1 B2

B3 B4

]

,

Our goal is to find the block matrix elements of B in terms of the block matrix elements of
A. We can focus on the right column of the expression AB = I to derive equations for B1

and B3. For example, if we then form the matrix block product AB = I and equate the
(2, 1) block we get an expression for B3, in terms of B1. Equating the (1, 1) block then gives
an equation for B1, in terms of the submatrices of A. We can use that solution to derive an
expression for B3 in terms of the submatrices of A. This gives the expressions

B1 = (A1 − A2A
−1
4 A3)

−1 (12)

B3 = −A−1
4 A3(A1 −A2A

−1
4 A3)

−1 . (13)

The same sort of procedure on the second column of the expression AB = I gives relation-
ships for B2 and B4 in terms of the components of A. In this case the equating the (1, 2)
block element gives for B2

B2 = −A−1
1 A2B4 .

Then equating the (2, 2) element gives

A3B2 + A4B4 = In .

or grouping to solve for B4 we find

(−A3A
−1
1 A2 + A4)B4 = I so B4 = (A4 − A3A

−1
1 A2)

−1 . (14)

Using this in what we just derived for B2 give

B2 = −A−1
1 A2(A4 − A3A

−1
1 A2)

−1 .

If A is symmetric then its block matrices must satisfy AT
1 = A1, A

T
4 = A4, and A3 = AT

2 ,
and its inverse matrix B must also be symmetric. This means that the block element of B
at (1, 2) (or B2) must equal the transpose of the block element of B at (2, 1) (or B3). Since
we know expressions for B2 and B3 in terms of block elements of A this means that from

−B2 = −BT
3 ,

we get

A−1
1 A2(A4 −A3A

−1
1 A2)

−1 = (A−1
4 A3(A1 − A2A

−1
4 A3))

T = (AT
1 −AT

3A
−T
4 AT

2)
−1AT

3A
−T
4

= (A1 − A2A
−1
4 AT

2)
−1A2A

−1
4 . (15)

9

Similar relationships can be derived by considering the product BA = I. If we form that
block product and then consider the equation given by (2, 2) component we have

B3A2 +B4A4 = In ,

or solving for B4 we get

B4 = (In − B3A2)A
−1
4 = A−1

4 − B3A2A
−1
4 . (16)

Using B4 from Equation 14 and B3 from Equation 13 we derive

(A4 − A3A
−1
1 A2)

−1 = A−1
4 + A−1

4 A3(A1 − A2A
−1
4 A3)

−1A2A
−1
4

= A−1
4 −A−1

4 A3(A2A
−1
4 A3 − A1)

−1A2A
−1
4 .

Note that we can get an alternative expression by negating the matrix A1. The resulting
expression will be called the Matrix Inversion Lemma:

(A4 ± A3A
−1
1 A2)

−1 = A−1
4 −A−1

4 A3(A2A
−1
4 A3 ± A1)

−1A2A
−1
4 . (17)

If A is symmetric A3 = AT
2 and we get the Symmetric Matrix Inversion Lemma:

(A4 ± AT
2A

−1
1 A2)

−1 = A−1
4 − A−1

4 AT
2 (A2A

−1
4 AT

2 ± A1)
−1A2A

−1
4 . (18)

Notes on Numerical Integration of Linear Equations

In this section we will discuss solution methods for the linear system for the perturbation
function ∆x(t) that in general looks like

∆ẋ(t) = F (t)∆x(t) +G(t)∆u(t) + L(t)∆w(t) . (19)

The total solution to Equation 19 is specified in terms of the solution to an unforced (ho-
mogeneous) part plus the solution to the forced or inhomogeneous part. We start with the
solution to the homogeneous part

∆ẋ(t) = F (t)∆x(t) .

One way to solve this is to construct the so called fundamental solution matrix, U(t), from
unit initial conditions in each of the state variables. What this means is that we solve
∆ẋ(t) = F (t)∆x(t), with n “unit” initial conditions given by











1
0
...
0











,











0
1
...
0











, · · · ,











0
0
...
1











.

Note each of these i initial conditions 1 ≤ i ≤ n is a zero vector with a single one in the ith
spot. The solutions at time t to each of these problems is denoted by the column vectors

∆x1(t) ,∆x2(t) , · · · ,∆xn(t) .

10

If we put all n of these solutions into the columns of a matrix U(t) then by the fact that
∆ẋ(t) = F (t)∆x(t), is a linear problem by superposition the solution at any time t to that
problem with an arbitrary initial condition ∆x(t0) is given by

[∆x1(t) ,∆x2(t) , · · · ,∆xn(t)]∆x(t0) ≡ U(t)∆x(t0) .

Thus the solution ∆x(t) is given by

∆x(t) = U(t)∆x(t0) . (20)

The matrix U(t) is known as the fundamental solution matrix. An example of these funda-
mental solutions ∆xi(t) is given in figure 2.3-2 in the book. There we see that at t = t0 = 0
the first function ∆x1(t) takes the value 1 in its first component and is 0 in all other com-
ponents, the function ∆x2(t) takes the value 1 in its second component and is 0 in all other
components, etc. Viewing Equation 20 this fundamental solution matrix U can be though
of as linear mapping of the initial conditions ∆x(t0) at the time t0 to the solution ∆x(t) at
an arbitrary time. In the same way the mapping U−1 can then be viewed as a mapping of
the solution from the time t back to the initial time t0. That is

∆x(t1) = U(t1)∆x(t0)

∆x(t0) = U(t1)
−1∆x(t1) .

We can generate a mapping of the solution ∆x(t) between two arbitrary times say t1 and t2
by combining these two relationships

∆x(t2) = U(t2)∆x(t0) = U(t2)U(t1)
−1∆x(t1) ≡ Φ(t2, t1)∆x(t1) ,

where we have defined
Φ(t2, t1) = U(t2)U(t1)

−1 , (21)

and Φ is known as the state-transition matrix. We now introduce some properties of the
state transition matrix. If we take t2 to be arbitrary say t2 = t from the above we have

∆x(t) = Φ(t, t1)∆x(t1) so ∆ẋ(t) = Φ̇(t, t1)∆x(t1) ,

but from the differential equation ∆ẋ(t) = F (t)∆x(t) and we have

Φ̇(t, t1)∆x(t1) = F (t)∆x(t) = F (t)Φ(t, t1)∆x(t1) .

Thus we get the important identity

dΦ(t, t1)

dt
= F (t)Φ(t, t1) . (22)

Thus the state-transition matrix Φ(t, t1), when viewed as a function of its first argument,
satisfies the given differential equation. In the special case where F (t) is not actually a
function of time we can make some simplifications. In that case Φ(t, t0) takes on a simple
form

Φ(t, t0) = eF (t−t0) , (23)

so that Φ(t, t0) only depends on difference in time t − t0. If this time difference is ∆t then
Φ(∆t) = eF∆t. Thus we see that

Φ(2∆t) = eF2∆t = (eF∆t)(eF∆t) = (eF∆t)2 = Φ(∆t)2 .

11

In the same way in general we find we have

Φ(n∆t) = Φ(∆t)n . (24)

After this discussion we want to now discuss solving the forced system using our knowledge
of the fundamental matrix U(t). Recall the derivative of a matrix inverse identity

d

dt
U−1 = −U−1U̇U−1 , (25)

we can solve this for U̇ to get

U̇ = −U
(

d

dt
U−1

)

U .

In addition, by the definition of U it must solve the differential equation U̇ = FU and we
get

−U
(

d

dt
U−1

)

U = FU ,

or canceling factors
d

dt
U−1 = −U−1F . (26)

When we premultiply the linear dynamic equation of interest Equation 19 or

∆ẋ = F (t)∆x+G(t)∆u(t) + L(t)∆w(t) ,

by U−1 we get
U−1∆ẋ = U−1F (t)∆x+ U−1G∆u+ U−1L∆w .

If we add to this to
(

d
dt
U−1

)

∆x = −U−1F∆x we get

U−1∆ẋ+
d

dt
U−1 ∆x = U−1G∆u+ U−1L∆w ,

or using the product rule on the left-hand-side

d

dt
(U−1∆x) = U−1[G∆u+ L∆w] . (27)

When we integrate this from t0 to t we find

U−1(t)∆x(t)− U−1(t0) =

∫ t

t0

U−1(τ)[G(τ)∆u(τ) + L(τ)∆w(τ)]dτ .

Premultiply both sides by U(t) and recall the definition of Φ via Equation 21 we get the full
solution for ∆x(t) given by

∆x(t) = Φ(t, t0)∆x(t0) +

∫ t

t0

Φ(t, τ)[G(τ)∆u(τ) + L(τ)∆w(τ)]dτ . (28)

12

If we take G(·) to be the identity matrix and ∆u to be the Dirac delta function δ(t0 − τ) in
the first coordinate then the forcing term in the solution for ∆x(t) above becomes

∫ t

t0

Φ(t, τ)











δ(t0 − τ)
0
...
0











dτ =

∫ t

t0

(first column of Φ(t, τ))δ(t0 − τ)dτ

= first column of Φ(t, t0) = ∆x1(t) ,

where ∆x1(t) is the first fundamental solution column.

We can use Equation 28 as a recursive algorithm to compute ∆x(tk) from ∆x(tk−1). Do do
this we take t→ tk and t0 → tk−1 as

∆x(tk) = Φ(tk, tk−1)∆x(tk−1) +

∫ tk

tk−1

Φ(tk, τ)[G(τ)∆u(τ) + L(τ)∆w(τ)]dτ .

If, in addition, all matrices are independent of time and we take ∆u(τ) and ∆w(τ) constant
at their pointwise values at the left end of the τ interval: tk−1 ≤ τ ≤ tk, i.e. equal to
∆u(tk−1) and ∆w(tk−1) the above simplifies further. Since when F is constant we have
Φ(tk, tk−1) = eF (tk−τ) = eF (tk−τ) and get with ∆t = tk − tk−1 that

∆x(tk) = Φ(∆t)∆x(tk−1) +

∫ tk

tk−1

eF (tk−τ)dτ [G∆u(tk−1) + L∆w(tk−1)] . (29)

Note that we can factor the expression G∆u(tk−1) + L∆w(tk−1) out of the integral since it
is a constant vector. Let write the exponential expression we are integrating as

eF (tk−tk−1+tk−1−τ) = eF∆teF (tk−1−τ) = Φ(∆t)eF (tk−1−τ) .

Then let v = −(tk−1−τ) = τ−tk−1 so that dv = dτ and our integral
∫ tk
tk−1

eF (tk−τ)dτ becomes

Φ(∆t)

∫ ∆t

0

e−Fvdv . (30)

If F were a scalar (and not a matrix0 then
∫

e−Fvdv = −e−Fv

F
. As F is a matrix this integral

has to be written as
−e−FvF−1 or − F−1e−Fv .

These two expressions are the same since the matrices e−Fv and F−1 commute. Considering
the first of these two expressions we have

∫ ∆t

0

e−Fvdv = − e−FvF−1
∣

∣

∆t

0
= (−e−F∆t + I)F−1 = (I − Φ−1(∆t))F−1 .

Using this in Equation 29 we have ∆x(tk) given by

Φ(∆t)∆x(tk−1) + Φ(∆t)(I −Φ−1(∆t))F−1G∆u(tk−1) + Φ(∆t)(I −Φ−1(∆t))F−1L∆w(tk−1) .

13

If we define Γ(∆t) and Λ(∆t) as

Γ(∆t) = Φ(∆t)(I − Φ−1(∆t))F−1G (31)

Λ(∆t) = Φ(∆t)(I − Φ−1(∆t))F−1L , (32)

we can write ∆x(tk) using these as

∆x(tk) = Φ(∆t)∆x(tk−1) + Γ(∆t)∆u(tk−1) + Λ(∆t)∆w(tk−1) . (33)

At this point we note that we don’t have to demand that F be invertible to evaluate ∆x(tk).
We can also evaluate the integral in Equation 30 using the Taylor expansion of e−Fv or

e−Fv = I − Fv +
1

2
F 2v2 − 1

3!
F 3v3 + · · · =

∞
∑

k=0

(−1)k
vk

k!
F k . (34)

Thus using this series we have that the integral factor in Equation 30 becomes

∫ ∆t

0

e−Fvdv =

∫ ∆t

0

∞
∑

k=0

(−1)k
vk

k!
F kdv =

∞
∑

k=0

(−1)k
∆tk+1

(k + 1)!
F k

=

[

I − 1

2
∆tF +

1

3!
∆t2F 2 − · · ·

]

∆t .

With this Equation 29 becomes

∆x(tk) = Φ(∆t)∆x(tk−1)

+ Φ(∆t)

[

I − 1

2
∆tF +

1

3!
∆t2F 2 − · · ·

]

[G∆w(tk−1) + L∆w(tk−1)]∆t

= Φ(∆t)∆x(tk−1) + Γ(∆t)∆w(tk−1) + Λ(∆t)∆w(tk−1) .

This expression defines Γ(∆t) and Λ(∆t) when F is not invertible. In particular we have

Γ(∆t) ≡ Φ(∆t)

[

I − 1

2
∆tF +

1

3!
∆t2F 2 − · · ·

]

G∆t (35)

Λ(∆t) ≡ Φ(∆t)

[

I − 1

2
∆tF +

1

3!
∆t2F 2 − · · ·

]

L∆t . (36)

Notes on Spectral Density Functions of Random Process

In this section of these notes we discuss the spectral density functions of two very important
signals. The first is the white noise process and the second is a Markov process.

For white noise process we have the autocovariance function given by

φxx(τ) = φxx(0)δ(τ) , (37)

Using the definition of the power spectral density Φxx(ω) as the Fourier transform of the
autocorrelation function φxx(τ) we find

Φxx(ω) = φxx(0)

∫ ∞

−∞
δ(τ)e−jωτdτ = φxx(0) , (38)

14

showing that the power spectral density function for white noise, Φxx(ω), is a constant func-
tion. Computing the the autocovariance function, by taking the inverse Fourier transform of
the power spectral density, and then evaluating the autocovariance function at a lag of zero
(τ = 0) we get the variance of the process. As an equation this is

σ2
x =

1

π

∫ ∞

0

Φxx(ω)dω . (39)

We now notice a difficulty with this relationship for a white noise process. In the above
equation the left-hand-side is a constant, σ2

x, while using Equation 38 the right-hand-side
can not be a convergent integral if Φxx(ω) is a nonzero constant. As a fix for this problem
we argue that for any realizable physical system there must be an upper most frequency at
which the most oscillatory disturbance propagates. In other wards a physical system cannot
be made to respond to arbitrary large frequencies. Thus we turn the above procedure where
we went from φxx(τ) to Πxx(ω), into one where we specify Φxx(ω) (based on arguments above)
and from that derive the autocovariance function φxx(τ).

To do this if we truncate Φxx(ω) at some upper bound say, ωB, then we have

Φxx(ω) =

{

Φ |ω| ≤ ωB

0 |ω| > ωB
, (40)

Then with this power spectral density function Equation 39 then becomes

σ2
x =

1

π
ΦωB or Φ = π

σ2
x

ωB
. (41)

Given a functional form for the power spectral density Φxx(ω) we can take its inverse Fourier
transform to determine φxx(τ) as

φxx(τ) =
1

2π

∫ ∞

−∞
Φxx(ω)e

jωτdω =
Φ

2π

∫ ωB

−ωB

e+jωτdω

=
Φ

2π

(

ejωτ

jτ

∣

∣

∣

∣

ωB

−ωB

=
Φ

2πjτ
(ejτωB − e−jτωB)

=
Φ

πτ
sin(τωB) . (42)

The other process we want to study is the Markov process. From the book a Markov
process has an autocovariance function given by

φxx(τ) = σ2
we

f |τ | , (43)

here f < 0. Then with this autocovariance function we find the power spectral density

15

function for a Markov process given by

Φxx(ω) =

∫ ∞

−∞
φxx(τ)e

−jωτdτ = σ2
w

∫ ∞

−∞
ef |τ |e−jwτdτ

= σ2
w

[
∫ 0

−∞
e−fτe−jωτdτ +

∫ ∞

0

efτe−jωτdτ

]

= σ2
w

[
∫ ∞

0

efτejωτdτ +

∫ ∞

0

efτe−jωτdτ

]

= σ2
w

[
∫ ∞

0

e(f+jω)τdτ +

∫ ∞

0

e(f−jω)τdτ

]

= σ2
w

[

e(f+jω)τ

f + jω

∣

∣

∣

∣

∞

0

+
e(f−jω)τ

f − jω

∣

∣

∣

∣

∞

0

]

= σ2
w

[

− 1

f + jω
− 1

f − jω

]

= −σ2
w

[

f − jω + f + jω

f 2 + ω2

]

= − 2f

f 2 + ω2
σ2
w . (44)

Because we have defined f < 0 the above expression must have the negative sign otherwise
Φxx(ω) will not be positive.

Notes on the quasistatic equilibrium example

When we consider the equilibrium point of the system
[

ẋ1
ẋ2

]

=

[

a b
1 0

] [

x1
x2

]

+

[

c
0

]

u .

For fixed u = u∗ and when b 6= 0 we have a constant equilibrium solution for
[

x∗1 x∗2
]T
. If

b = 0 then for a fixed control u = u∗ the system is
[

ẋ1
ẋ2

]

=

[

a 0
1 0

] [

x1
x2

]

+

[

c
0

]

u∗ .

The steady-state solution for the first equation is given by

0 = ax∗1 + cu∗ ,

or x∗1 = − c
a
u∗ and the steady-state solution to the second equation is given by ẋ∗2 = x∗1. Thus

solving for x∗2(t) by integrating we find

x∗2(t) = x2(0) +

∫ t

0

x∗1(τ)dτ = x2(0)−
c

a
u∗t . (45)

Since the solution for x∗2(t) is not a constant but depends on t we call this a quasistatic
equilibrium solution.

Notes on the cost function J when ũ(t) = −Cx̃

If we introduce an objective function J that depends on the perturbed state x̃ and the
perturbed control ũ as

J =
1

2

∫ ∞

0

[x̃T (t)Qx̃(t) + ũT (t)Rũ(t)]dt ,

16

then when our control ũ is proportional to our perturbed state x̃ as

ũ = −Cx̃ ,
in that we want to “push” the state back to the equilibrium value, then we see that J
becomes

J =
1

2

∫ ∞

0

[x̃T (t)Qx̃(t) + x̃T (t)CTRCx̃(t)]dt =
1

2

∫ ∞

0

[x̃T (t)(Q + CTRC)x̃(t)]dt ,

or the integral of a quadratic form with a matrix

Q + CTRC .

Notes on Reachability, Controllability, and Stability

In this section of these notes we discuss reachability and controllability conditions. The book
gives a very high level overview of these concepts and what follows are simply some notes
that I made to myself as I read these sections.

If we consider linearizing our state x(t) solution around a base trajectory or state x0(t) as
x(t) = x0(t) + ∆x(t) where ∆x(t) satisfies the linearized dynamical system

d∆x

dt
= F (t)∆x(t) +G(t)∆u(t) .

Then the solution for ∆x(t) given the initial condition ∆x(t0) is

∆x(t) = Φ(t, t0)∆x(t0) +

∫ tf

t0

Φ(t, τ)G(τ)∆u(τ)dτ , (46)

and out total solution x(t) is then

x(t) = x0(t) + Φ(t, t0)∆x(t0) +

∫ t

t0

Φ(t, τ)G(τ)∆u(τ)dτ , (47)

Note that this point the system matrices F and G can be time dependent. Then for local

controllability we must have a control that enables us to make x(tf) = 0. As a condition
that must hold for this to be true we introduce the controllability Grammian matrix, M, as

M(tf , t0) =

∫ tf

t0

Φ(tf , τ)G(τ)G(τ)
TΦT (tf , τ)dτ . (48)

Lets assume that M is invertible and consider a control, ∆u(t), given by

∆u(t) = GT (t)ΦT (tf , t)M
−1(tf , t0)[−x0(tf)− Φ(tf , t0)∆x(t0)] . (49)

Lets define Γ to be the vector Γ ≡ −x0(tf)− Φ(tf , t0)∆x(t0), then in Equation 47 we find

x(t) = x0(t) + Φ(t, t0)∆x(t0) +

∫ t

t0

Φ(t, τ)G(τ)GT (τ)Φ(tf , τ)
T
M

−1(tf , t0)Γdτ

= x0(t) + Φ(t, t0)∆x(t0) +

[
∫ t

t0

Φ(t, τ)G(τ)GT (τ)Φ(tf , τ)
Tdτ

]

M
−1(tf , t0)Γ .

17

Under this control, when we let t = tf , since the integral term in brackets above becomes
M(tf , t0) we see that x(tf) is given by

x(tf) = x0(tf) + Φ(tf , t0)∆x(t0) + Γ = 0 .

In summary then, to be able to guarantee a control that takes us from x0 to x(tf) = 0 we
must have the controllability Grammian matrix given by Equation 48 nonsingular. In that
case the control given by Equation 49 will do the desired job.

In the above the system matrices F and G can be time dependent resulting in a Φ(tf , t0)
that in general can be arbitrary. If in fact our system is linear and time-invariant so that F
and G don’t depend on t then Φ takes the special form

Φ(tf , t0) = eF (tf−t0) .

With this in Equation 46 and taking ∆x(tf) = 0 (assuming our system is controllable) and
taking t0 = 0 we have

x(tf) = 0 = eF (tf−0)x(0) +

∫ tf

0

eF (t−τ)Gu(τ)dτ = eFtf

[

x(0) +

∫ tf

0

e−FτGu(τ)dτ

]

.

Use the Cayley-Hamilton theorem to write e−Fτ as

e−Fτ = r0In + r1F + r2F
2 + · · ·+ rn−1F

n−1 ,

where the ri are functions that depend on the eigenvalues of F and the value of τ . Using
this and the above we get

−x(0) = G

∫ tf

0

r0(τ)u(τ)dτ + FG

∫ tf

0

r1(τ)u(τ)dτ + · · ·+ F n−1G

∫ tf

0

rn−1(τ)u(τ)dτ

=
[

G FG F 2G · · · F n−1G
]















∫ tf
0
r0(τ)u(τ)dτ

∫ tf
0
r1(τ)u(τ)dτ

∫ tf
0
r2(τ)u(τ)dτ

...
∫ tf
0
rn−1(τ)u(τ)dτ















.

We will call the stacked matrix of G’s and F ’s the controllability matrix

C ≡
[

G FG F 2G · · · F n−1G
]

. (50)

In theory at least one can pick a function u(τ) such that we can drive all components of x
to zero if C is of rank n.

We now briefly talk about the concept of observability, which has to do with how well we
can reconstruct x based on the measurements, y, we take. We consider local observability
in that we will Taylor expand about an equilibrium solution where the perturbed solution
(here denoted x) will have a dynamic equation and a measurement equation given by

x(τ) = Φ(τ, t0)x(t0)

y(τ) = H(τ)Φ(τ, t0)x(t0) , (51)

18

Note that we are considering the case where the system matrices are time varying. Then
the condition for observability can be obtained by multiplying both sides of Equation 51 by
ΦT (τ, t0)H

T (τ) and integrating from t0 to tf to get

∫ tf

t0

ΦT (τ, t0)H
T (τ)y(τ)dτ =

[
∫ tf

t0

ΦT (τ, t0)H
T (τ)H(τ)Φ(τ, t0)dτ

]

x(t0) .

Thus if we define the observability Grammian, N, as

N ≡
∫ tf

t0

ΦT (τ, t0)H
T (τ)H(τ)Φ(τ, t0)dτ . (52)

Then our system is observable if N is nonsingular. This is the condition needed for linear
time-varying systems.

If we have a time-invariant system then we can apply the fact that controllability and
observability are dual problems. To use this result we recognize that the controllability of
the dual problem is the observability condition of the primal problem. The dual to the
dynamic equation is

ẋ(t) = −F Tx(t) +HTu(t) . (53)

Here since we are in the time-invariant case F and G are independent of time. Then writing
the controllability matrix C in terms of this dual problem we have

O =
[

HT F THT (F T)THT · · · (F T)n−1HT
]

. (54)

If this matrix O is of rank n then our time-invariant system is observable.

As a final result comment on the dual problem, we recall that the modal matrix D is the
matrix that diagonalizes the system matrix F as Λ = D−1FD. From this we can derive the
modal matrix for the dual system Equation 53 with the following manipulations. We first
take the transpose of both sides

Λ = D−1FD so ΛT = DTF TD−T so − Λ = (D−T)−1(−F T)(D−T) ,

showing that the matrix that diagonalizes −F T isD−T . Since now we know the modal matrix
for the dual problem we can enforce complete modal controllability for the dual problem by
requiring that there are no zero rows in the product of the inverse of the dual problem’s
modal matrix D−T , and the dual problem’s control coupling matrix HT or

(D−T)−1HT = DTHT .

Notes on discrete time systems

If we look for the steady-state solution x∗ to our time-invariant discrete time system

xk+1 = Φxk + Γuk + Λwk for k ≥ 0 , (55)

19

when the inputs u and w are fixed at u∗ and w∗ respectively then we must have x∗ given by

x∗ = (In − Φ)−1(Γu∗ + Λw∗) . (56)

If the discrete system is the result of discretizing a continuous system then Γ and Λ are given
by Equations 35 and 36 respectively. In that case we find that x∗ becomes

x∗ = −F−1Gu∗ − F−1Lw∗ = −F−1(Gu∗ + Lw∗) . (57)

Notes on Example 2.6-1: Transfer functions for aircraft pitching motion

For this example α is the pitch angle (angle of attack) and q is the pitching rate (the time
derivative of the angle of attack). For the given two dimensional time domain system given
in the book by taking the Laplace transform of the matrix system and dropping the transfer
function of the noise (αw) term we get

s

[

q(s)
α(s)

]

−
[

q(0)
α(0)

]

=

[

Mq Mα

1 −Lα

V

] [

q(s)
α(s)

]

+

[

MδE MδF

−LδE

V
−LδF

V

] [

δE(s)
δF (s)

]

.

Dropping the initial conditions

[

q(0)
α(0)

]

to study the steady-state or long term forcing

response only we get
[

s−Mq −Mα

−1 s+ Lα

V

] [

q(s)
α(s)

]

=

[

MδE MδF

−LδE

V
−LδF

V

] [

δE(s)
δF (s)

]

.

Thus when we solve for

[

q(s)
α(s)

]

we get

[

q(s)
α(s)

]

=

[

s−Mq −Mα

−1 s+ Lα

V

]−1{[
MδE

−LδE

V

]

δE(s) +

[

MδF

−LδF

V

]

δF (s)

}

.

Considering the input-output relationship that follows from an input of δE(s) followed by
an output of α(s). If we multiply the above by

[

0 1
]

to extract out the component α(s)
we get

α(s)

δE(s)
=
[

0 1
]

[

s−Mq −Mα

−1 s+ Lα

V

]−1 [
MδE

−LδE

V

]

.

The inverse of the given sIn − F coefficient matrix using matrix adjoint theory is given by
[

s−Mq −Mα

−1 s+ Lα

V

]−1

=
1

s2 −
(

Mq − Lα

V

)

s−Mα

[

s + Lα

V
Mα

1 s−Mq

]

,

so we get

α(s)

δE(s)
=
[

0 1
]

(

1

s2 −
(

Mq − Lα

V

)

s−Mα

)

[

s+ Lα

V
Mα

1 s−Mq

] [

MδE

−LδE

V

]

=
MδE − (s−Mq)

LδE

V

s2 −
(

Mq − Lα

V

)

s−Mα

= −LδE

V

(

s−Mq − MδEV
LδE

s2 −
(

Mq − Lα

V

)

s−Mα

)

20

Lets define ωn and ξ using ω2
n = −Mα and 2ξωn = Lα

V
−Mq so that

α(s)

δE(s)
= −LδE

V

(

s− (Mq +
MδEV
LδE

)

s2 + 2ξωns + ω2
n

)

.

From the definition of ωn and ξ we have in terms of more primitive variables that

ωn =
√

−Mα

ξ =
1

2ωn

(

Lα

V
−Mq

)

=
1

2
√−Mα

(

Lα

V
−Mq

)

.

If we assume that M(·) < 0 we see that ωn is a real number. Next to consider the poles of
this transfer function compute the roots of the quadratic polynomial s2 + 2ξωns + ω2

n = 0,
which are given by

s =
−2ξωn ±

√

4ξ2ω2
n − 4ω2

n

2
= −ξωn ± ωn

√

ξ2 − 1 .

If we assume that Lα

V
−Mq < 2

√−Mα then from the definition of ξ we have that

ξ =
1

2
√−Mα

(

Lα

V
−Mq

)

< 1 ,

showing that the poles of the denominator are complex since ξ2 − 1 < 0. The one root at
the location

Mq +
VMδE

LδE

< 0 ,

is less than zero when we take L(·) > 0.

Notes on the root locus

The transfer function algebra can be obtained by walking clockwise around the presented
circuit. First the signals yc(s) and −y(s) combine before entering a linear time invariant
system with transfer function Y (s), where the output is again y(s), thus we have

(yc(s)− y(s))Y (s) = y(s) .

Solving for “output over input” or y(s)
yc(s)

we find

y(s)

yc(s)
=

Y (s)

1 + Y (s)
. (58)

Problem Solutions

Section 2.1 Problem 1 (stationary points)

For these problems we plot the function Ji(u) in Figure 1. With these plots we can verify
the classification of each stationary point.

21

Part (a): For the given J(u) we find J ′(u) = 15+ 10u = 0 so u = −3
2
, and J ′′(u) = 10 > 0,

thus the point u = −3
2
is a minimum.

Part (b): For this expression for J(u) we find extreme points given by

J ′(u) = 4− 12u+ 30u2 = 0 ,

or after we divide by 2 and us the quadratic formula

u =
6±

√
36− 120

30
=

3±
√
−21

15
,

which are both complex numbers. Thus J ′(u) has no real roots and J ′(u) is one sign. We
see that J ′(0) = 4 ≥ 0 so J(u) has no maximum or minimum on −∞ < u < +∞.

Part (c): First expand J(u) as

J(u) = (u2 + u− 2)(u− 3) = u3 − 2u2 − 5u+ 6 ,

Thus J ′(u) is given by
J ′(u) = 3u2 − 4u− 5 = 0 .

Thus we get for u when we solve this

u =
4±

√

16− 4(3)(−5)

2(3)
=

4±
√
76

6
= −0.786 , 2.119 .

We have J ′′(u) = 6u− 4. Thus

J ′′(u) > 0 if u >
2

3

J ′′(u) < 0 if u <
2

3
.

Thus u1 = −0.786 is a maximum and u2 = 2.119 is a minimum.

Part (d): For this J expression we have

J ′(u) = eu − e−u = 0 ,

or eu = e−u so u = −u or u = 0 is the only solution. Then the second derivative is given by

J ′′(u) = eu + e−u > 0 ,

for all u. Thus u = 0 is a minimum.

Section 2.1 Problem 2 (more stationary points)

Part (a): For J(u) given by

J(u) = (u21 + 3u1 − 4)(u22 − u2 + 6) ,

22

−3 −2 −1 0 1 2 3
−400

−300

−200

−100

0

100

200

300

u

J

J

1
(u)

J
2
(u)

J
3
(u)

J
4
(u)

Figure 1: Plots of the functions Ji(u) as a function of u.

we find setting its first derivative to zero the following equations

∂J

∂u1
= (2u1 + 3)(u22 − u2 + 6) = 0 and

∂J

∂u2
= (u21 + 3u1 − 4)(2u2 − 1) = 0 .

If u1 = −3
2
and u2 =

1
2
then these equations are satisfied. These two solutions were found by

setting the linear factors in the above equations equal to zero. If we seek another solution
to ∂J

∂u1
= 0 say by picking u22 − u2 + 6 = 0 so that have that

u2 =
1±

√

1− 4(1)(6)

2
=

1±
√
−23

2
,

which is imaginary showing that the factor u22 − u2 + 6 is never zero. We conclude that
(u1, u2) =

(

−3
2
, 1
2

)

is the only stationary point. Lets compute the Hessian of J at the point
(

−3
2
, 1
2

)

. To do this we need the second derivatives

∂2J

∂u12
= 2(u22 − u2 + 6)

∂2J

∂u2∂u1
= (2u1 + 3)(2u2 − 1)

∂2J

∂u22
= 2(u21 + 3u1 − 4) .

Thus the Hessian is then

H(u1, u2) =

[

2(u22 − u2 + 6) (2u1 + 3)(2u2 − 1)
(2u1 + 3)(2u2 − 1) 2(u21 + 3u1 − 4)

]

.

23

When we evaluate this at the point (u1, u2) =
(

−3
2
, 1
2

)

we get

H =

[

23/2 0
0 −25/2

]

.

This matrix has eigenvalues of two different signs and thus the point (u1, u2) =
(

−3
2
, 1
2

)

is a
saddle point.

Part (b): Since we have only one equality constraint u1−2u2 = 0, we notationally separate
the two unknowns u1 and u2 into the two parts x and u as x = u1 and u = u2. In terms of
x and u we next form the augmented function JA

JA(x, u) = (x2 + 3x− 4)(u2 − u+ 6) + λ(x− 2u) ,

and the constraint function f(x, u) = x− 2u = 0. We then need derivatives

∂J

∂x
= (2x+ 3)(u2 − u+ 6)

∂f

∂x
= 1

∂J

∂u
= (x2 + 3x− 4)(2u− 1)

∂f

∂u
= −2 .

Then Equation 7 and Equation 8 are given by

(x2 + 3x− 4)(2u− 1)− (2x+ 3)(u2 − u+ 6)(−2) = 0

x− 2u = 0 .

If we put x = 2u into the first equation we get

16u3 + 6u2 + 28u+ 40 = 0 .

Solving this and looking for the real root gives u = −1.03 so x = −2.06.

Section 2.1 Problem 3 (optimal values under a constraint)

We need to construct the derived Lagrangian equation

∂J

∂u
− ∂J

∂x

(

∂f

∂x

)−1
∂f

∂u
= 0 . (59)

Since J in this problem is given by the expression

J =
1

2
(2x21 + 4x22) + u2 = x21 + 2x22 + u2 ,

24

With u = u and x =
[

x1 x2
]

we have

∂J

∂u
= 2u

∂J

∂x
=
[

2x1 4x2
]

.

With f =

[

x2
−x1 − x2 + u

]

we find the derivatives given by

∂f

∂u
=
∂f

∂u
=

[

0
1

]

and
∂f

∂x
=

[

0 1
−1 −1

]

.

Then Equation 59 becomes

2u−
[

2x1 4x2
]

[

0 1
−1 1

]−1 [
0
1

]

= 0 .

Since

[

0 1
−1 1

]−1

=

[

1 −1
1 0

]

this is given by

2u−
[

2x1 4x2
]

[

−1
0

]

= 0 ,

or 2u + 2x1 = 0. This equation with constraint f = 0 gives the following linear system for
x1, x2, and u





0 1 0
−1 −1 1
2 0 2









x1
x2
u



 =





0
0
0



 .

The first equation gives x1 = 0 and then the third equation gives u = 0 and then the second
equation gives x2 = 0. This solution certainly satisfies the constraint f = 0 and gives a cost
of J = 0. We might have been able to directly guess at this solution without going through
all of this work.

Section 2.1 Problem 4 (optimal values under a constraint continued)

For the J given here

J =
1

2

[

x1 x2
]

[

2x1 + 2x2
2x1 + 4x2

]

+ u2

=
1

2
(2x21 + 2x1x2 + 2x1x2 + 4x22) + u2

= x21 + 2x1x2 + 2x22 + u2 .

Now as in the previous case we have u = u with x =
[

x1 x2
]

and we have

∂J

∂u
= 2u

∂J

∂x
=
[

2x1 + 2x2 2x1 + 4x2
]

.

25

Then Equation 59 becomes

2u−
[

2x1 4x2
]

[

0 1
−1 1

]−1 [
0
1

]

= 0 .

Since

[

0 1
−1 1

]−1

=

[

1 −1
1 0

]

we get

2u−
[

2x1 + 2x2 2x1 + 4x2
]

[

−1
0

]

= 0 ,

or 2u+2x1 +2x2 = 0. This equation with constraint f = 0 gives the following linear system
for x1, x2, and u





0 1 0
−1 −1 1
2 2 2









x1
x2
u



 =





0
0
0



 .

The first equation gives x1 = 0 and the second and third equations then becomes
[

−1 1
2 2

] [

x2
u

]

= 0 .

Again the solution to this system is u = 0 and x2 = 0. This solution could perhaps be seen

from the form for J in that the matrix in the quadratic form

[

2 2
2 4

]

is positive definite

thus we will have a minimum in (x1, x2) of (0, 0).

Section 2.1 Problem 5 (derivatives)

The gradient vector in this book is defined as a row vector, so for the objective function J
given by J(x1, x2, u) = (a+ bu2)x22 we have with uT =

[

x1 x2 u
]

that

∂J

∂u
=
[

∂J
∂x1

∂J
∂x2

∂J
∂u

]

=
[

0 2(a+ bu2)x2 2bx22
]

.

The the Hessian of J is defined in general as

∂2J

∂u2
= Juu =







∂2J
∂u1

2
∂2J

∂u1∂u2
· · · ∂2J

∂u1∂um
...

...
∂2J

∂um∂u1

∂2J
∂um∂u2

· · · ∂2J
∂um

2






.

For this problem since there are three input variables x1, x2, and u this is

∂2J

∂u2
=







∂2J
∂x1

2
∂2J

∂x1∂x2

∂2J
∂x1∂u

∂2J
∂x2∂x1

∂2J
∂x2

2
∂2J

∂x2∂u
∂2J

∂u∂x1

∂2J
∂u∂x2

∂2J
∂u2






=





0 0 0
0 2(a+ bu2) 4bux2
0 4bux2 2bx22



 .

The Jacobian matrix associated with f has (i, j)th elements given by ∂fi
∂uj

so we find it equal

fX,U =

[

∂f1
∂x1

∂f1
∂x2

∂f1
∂u

∂f2
∂x1

∂f2
∂x2

∂f2
∂u

]

=

[−1 2c(a+ bu2)x2 2bucx22
0 du+ e

x2
2

dx2

]

.

26

Section 2.1 Problem 7 (minimization with inequality constraints)

For this problem we want to minimize J = x2+5u subject to f(x, u) = x− 3u− 3 ≤ 0. One
way we might be able to do this problem is to first attempt to perform the minimization
unconditionally. That is to ignore the constraint, find the minimum over an unconstrained
set of variables, and then see if the found minimum satisfies the given constraint. If it does
we are done. To look for unconstrained minimization we consider

∂J

∂x
= 2x = 0

∂J

∂u
= 5 = 0 .

Since the last equation is impossible to satisfy, we are not able to find an unconstrained
solution. Since this did not work we now discuss a more formal way to solve constrained
optimization problems.

Notes on optimization with inequality constraints

In this section of these notes we document at a very high level (without much motivation
or background) how to solve constrained optimization problems. These notes can then
be referenced, as needed, when working with specific optimization problems. The general
optimization problem with inequality constraints is given by

minimize J(θ)

subject to fi(θ) ≥ 0 for i = 1, 2, · · · , m .

To solve this problem we first form the Lagrangian, L, defined by

L(θ;λ) ≡ J(θ)−
m
∑

i=1

λifi(θ) . (60)

The variables λi in the above expression are called Lagrange multipliers. Using this definition,
a set of necessary conditions for a local minimizer θ∗ to exist is the following:

1. ∂
∂θ
L(θ∗;λ) = 0.

2. λi ≥ 0 for i = 1, 2, . . . , m.

3. λifi(θ
∗) = 0 for i = 1, 2, . . . , m.

These three conditions are called the Karush-Kuhn-Tucker or KKT conditions. The third
conditions are called the complementary slackness conditions. A given complementary slack-
ness condition say λifi(θ

∗) = 0 mean that when this product is zero and λi 6= 0 we have the
original nonlinear constraint fi(θ

∗) ≥ 0 active i.e. at the optimal point θ∗ it is the hard con-
straint fi(θ

∗) = 0. Given these conditions we next ask how to use them to actually find the

27

optimal point θ∗. One approach, that might work for small problems, is to explicitly specify
which nonlinear constraints we want to have active that is assume fi(θ

∗) = 0, from some set
of i. We can than solve the remaining equations for the respective Lagrange multipliers. To
verify that we indeed have a solution we would then need to check that the values computed
for these Lagrange multipliers were non-negative. This can be hard to do in general when
there are many constraints, since there are many possible sets fi(θ

∗) = 0 to consider. An
alternative approach is to express the problem in its Wolfe Dual Form. This later form
expresses the fact that in the situation where the objective function J(θ) is convex while the
constraint functions fi(θ) are concave then the above programming problem is equivalent to
a simpler convex maximization programming problem

maximizeλ≥0 L(θ;λ)

subject to
∂

∂θ
L(θ;λ) = 0

and λ ≥ 0 .

The benefit of this later formulation is that the relatively complicated nonlinear inequality
constraints of the original problem, fi(θ) ≥ 0, are replaced with the simpler equality con-
straint ∂

∂θ
L(θ;λ) = 0 and a maximization over λ ≥ 0. This later problem (if needed) can be

solved with more standard convex programming codes.

To use the above notes we first convert the given inequality into an inequality of the form
g(x, u) ≥ 0 as

g(x, u) = −f(x, u) = −x+ 3u+ 3 ≥ 0 .

Then we form the Lagrangian

L(x, u;λ) ≡ J(x, u)− λ(−x+ 3u+ 3) ,

or
L(x, u;λ) = x2 + 5u2 − λ(−x+ 3u+ 3) .

The necessary conditions are then that

∂L
∂x

= 2x+ λ = 0

∂L
∂u

= 10u− λ(3) = 0 .

Using the above to solve for x and u in terms of λ and then putting those expressions into
the complementary slackness condition gives

λ

(

λ

2
+

9λ

10
+ 3

)

= 0 .

This means that λ = 0 or λ = −15
7
. If λ = 0 then x = u = 0 while if λ = −15

7
we have x = 15

14

and u = − 9
14
. The point (x, u) = (0, 0) clearly gives the smaller value for the objective

function and is the desired minimum.

28

Section 2.1 Problem 8 (the minimum of x(t))

We find the extreme points of x(t) via the equation

dx

dt
= ξωne

−ξωnt cos(ωnt+ φ) + ωne
−ξωnt sin(ωnt + φ) = 0 ,

or
ξ cos(ωnt + φ) + sin(ωnt+ φ) = 0 ,

or

tan(ωnt + φ) = −1

ξ
,

To find the solutions to this equation we can plot the function tan(ωnt+ φ) as a function of
t and the constant function −1

ξ
on the same graph. Their intersection is the solution. When

ωn = 1 and φ = 0 we plot tan(t) and we need to solve for t = tan−1
(

−1
ξ

)

.

Section 2.2 Problem 1 (determinants)

Part (a): Using Laplace expansion or cofactor expansion we expand about the first row to
get

|F | = a

∣

∣

∣

∣

∣

∣

d 0 0
0 e 0
0 0 f

∣

∣

∣

∣

∣

∣

− c

∣

∣

∣

∣

∣

∣

b 0 0
0 e 0
0 0 f

∣

∣

∣

∣

∣

∣

= adef − cbef = ef(ad− bc) .

Note that we can consider this matrix as a block diagonal matrix with three blocks on the
diagonal given by

[

a b
c d

]

, [e] , and [f] .

Then the determinant of F can be computed via the product of the determinants of the
block elements. This gives

|F | =
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

|e||f | = ef(ad− bc) ,

the same was what we have above.

To use pivotal condensation to evaluate this determinant we can expand about the (1, 1)
element (assumed nonzero) to get

|F | = 1

a4−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

∣

∣

∣

a 0
c 0

∣

∣

∣

∣

∣

∣

∣

∣

a 0
c 0

∣

∣

∣

∣

∣

∣

∣

∣

a b
0 0

∣

∣

∣

∣

∣

∣

∣

∣

a 0
0 e

∣

∣

∣

∣

∣

∣

∣

∣

a 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

a b
0 0

∣

∣

∣

∣

∣

∣

∣

∣

a 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

a 0
0 f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

a2

∣

∣

∣

∣

∣

∣

ad− bc 0 0
0 ae 0
0 0 af

∣

∣

∣

∣

∣

∣

.

29

To evaluate this determinant we can again use the method of pivotal condensation about
the (1, 1) element assuming that ad− bc 6= 0. We find

|F | = 1

ad− bc

(

1

a2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ad− bc 0
0 ae

∣

∣

∣

∣

∣

∣

∣

∣

ad− bc 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

ad− bc 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

ad− bc 0
0 af

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

a2(ad− bc)

∣

∣

∣

∣

ae(ad− bc) 0
0 af(ad− bc)

∣

∣

∣

∣

=
a2ef(ad− bc)2

a2(ad− bc)
= ef(ad− bc) ,

the same result as before.

Part (b): The determinant of an upper/lower triangular matrix is the product of the
diagonal elements so

|F | = 1 · 3 · 6 · 10 = 180 .

Performing a Laplace expansion about the first row for each matrix gives

1

∣

∣

∣

∣

∣

∣

3 0 0
5 6 0
8 9 10

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

6 0
9 10

∣

∣

∣

∣

= 3 · 6 · 10 = 180 ,

the same result. To use pivotal condensation to evaluate this determinant we can expand
about the (1, 1) element to get

|F | = 1

14−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0
2 3

∣

∣

∣

∣

∣

∣

∣

∣

1 0
2 0

∣

∣

∣

∣

∣

∣

∣

∣

1 0
2 0

∣

∣

∣

∣

∣

∣

∣

∣

1 0
4 5

∣

∣

∣

∣

∣

∣

∣

∣

1 0
4 6

∣

∣

∣

∣

∣

∣

∣

∣

1 0
4 0

∣

∣

∣

∣

∣

∣

∣

∣

1 0
7 8

∣

∣

∣

∣

∣

∣

∣

∣

1 0
7 9

∣

∣

∣

∣

∣

∣

∣

∣

1 0
7 10

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3 0 0
5 6 0
8 9 10

∣

∣

∣

∣

∣

∣

.

Again expanding about the (1, 1) element gives

|F | = 1

33−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 0
5 6

∣

∣

∣

∣

∣

∣

∣

∣

3 0
5 0

∣

∣

∣

∣

∣

∣

∣

∣

3 0
8 9

∣

∣

∣

∣

∣

∣

∣

∣

3 0
8 10

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

3

∣

∣

∣

∣

18 0
27 30

∣

∣

∣

∣

=
1

3
18 · 30 = 180 ,

the same value as before.

30

Part (c): Performing a Laplace expansion about the first row of the matrix gives

|F | = 1

∣

∣

∣

∣

∣

∣

1 −3 4
−2 0 −5
3 5 0

∣

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∣

1 0 4
−2 3 −5
3 −4 0

∣

∣

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

∣

∣

1 0 −3
−2 3 0
3 −4 5

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

0 −5
5 0

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

−2 −5
3 0

∣

∣

∣

∣

+ 4

∣

∣

∣

∣

−2 0
3 5

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

3 −5
−4 0

∣

∣

∣

∣

+ 2 · 4
∣

∣

∣

∣

−2 3
3 −4

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

3 0
−4 5

∣

∣

∣

∣

− 3(3)

∣

∣

∣

∣

−2 3
3 −4

∣

∣

∣

∣

= 25 + 3(15) + 4(−10) + 2(−20) + 8(8− 9) + 3(15)− 9(8− 9) = 36 .

To use pivotal condensation to evaluate this determinant we can expand about the (2, 1)
element (since it is nonzero) to get

|F | = 1

14−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

∣

∣

∣

∣

0 2
1 −3

∣

∣

∣

∣

∣

∣

∣

∣

0 −3
1 4

∣

∣

∣

∣

∣

∣

∣

∣

1 0
−2 3

∣

∣

∣

∣

∣

∣

∣

∣

1 −3
−2 0

∣

∣

∣

∣

∣

∣

∣

∣

1 4
−2 −5

∣

∣

∣

∣

∣

∣

∣

∣

1 0
3 −4

∣

∣

∣

∣

∣

∣

∣

∣

1 −3
3 5

∣

∣

∣

∣

∣

∣

∣

∣

1 4
3 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −2 3
3 −6 3
−4 14 −12

∣

∣

∣

∣

∣

∣

.

Again using the (1, 1) element we have

|F | = 1

13−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −2
3 −6

∣

∣

∣

∣

∣

∣

∣

∣

1 3
3 3

∣

∣

∣

∣

∣

∣

∣

∣

1 −2
−4 14

∣

∣

∣

∣

∣

∣

∣

∣

1 3
−4 −12

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −6
6 0

∣

∣

∣

∣

= 36 ,

The same as before. These numbers are verified in the R code chap 2 sec 2 2 prob 1.R.

Section 2.2 Problem 3 (definiteness of some matrices)

Part (a): The leading principle minors for this matrix are

∆1 = 1

∆2 =

∣

∣

∣

∣

1 0
0 2

∣

∣

∣

∣

= 2

∆3 =

∣

∣

∣

∣

∣

∣

1 0 0
0 2 0
0 0 3

∣

∣

∣

∣

∣

∣

= 6 .

Since all leading principal minors are positive this matrix is positive definite. In addition,
since this is a diagonal matrix the eigenvalues are the elements of the diagonal. Since all
eigenvalues are positive we can conclude that this is a positive definite matrix.

31

Part (b): Since this is a diagonal matrix it has eigenvalues given by 1, −2 and 0, since
there are both positive and negative eigenvalues this matrix is of indeterminate type.

Part (c): Q has eigenvalues 1, 2, and 0 this is a positive semidefinite matrix.

Part (d): We compute the leading principal minors of this matrix to find

∆1 = 1 ∆2 = 1− 1 = 0 .

We cannot tell what the type of the matrix Q is with this test. Lets compute the eigenvalues
of Q we have

(λ− 1)2 − 1 = 0 → λ ∈ {0, 2} .
Thus Q is positive semidefinite, since it has one positive eigenvalue and one zero eigenvalue.

Section 2.2 Problem 4 (the pseudoinverses)

Part (a): This matrix H is of rank 1 and thus and both HTH and HHT are singular so
the pseudoinverse does not exist for this matrix.

Part (b): For this matrix H the system y = Hx would represent an overdetermined system.
Because the rank of H is two, the product HHT which is of dimension 3×3 must be singular.
The matrix HTH which is of dimension 2×2 is nonsingular. Because of this we can compute
a left pseudoinverse using Equation 10.

Part (c): This matrix is of size 3 × 4 and has rank 3. The system y = Hx represents an
underdetermined system. The product HTH is of dimension 4 × 4 and must be singular.
The product HHT is of dimension 3 × 3 and will be nonsingular. Because of this using
Equation 11 we can compute a right pseudoinverse.

Section 2.2 Problem 5 (a linear transformation)

From the given expression for how y is computed from x we have in matrix notation that





y1
y2
y3



 =





3 1 0
0 1 3
1 0 1









x1
x2
x3



 .

32

Thus we find (using the differential equation for x) that

d

dt





y1
y2
y3



 =





3 1 0
0 1 3
1 0 1





d

dt





x1
x2
x3





=





3 1 0
0 1 3
1 0 1









−1 0 0
0 −10 0
0 0 −100









x1
x2
x3



+





3 1 0
0 1 3
1 0 1









1 0
0 1
1 0





[

u1
u2

]

=





−3 −10 0
0 10 −300
−1 0 −100









x1
x2
x3



+





3 1
3 1
2 0





[

u1
u2

]

.

From the mapping of x to y we have




x1
x2
x3



 =





3 1 0
0 1 3
1 0 1





−1 



y1
y2
y3



 =





1/6 −1/6 1/2
1/2 1/2 −3/2
−1/6 1/6 1/2









y1
y2
y3



 .

Thus doing the matrix multiplication we get

d

dt





y1
y2
y3



 =
1

2





−11 −9 27
90 −110 −270
33 −33 −101









y1
y2
y3



+





3 1
3 1
2 0





[

u1
u2

]

.

for the differential equation for y

Section 2.2 Problem 6 (a matrix identity)

Consider the expression Equation 17 with A4 = I, A3 = A, A−1
1 = B−1 and A2 = C, then

the the left-hand-side of that expression is

(I − AB−1C)−1 ,

while the right-hand-side of that expression becomes

I − A(CA− B)−1C ,

showing the desired expression.

Section 2.3 Problem 1 (numerical integration)

The rectangular or Euler integration method integrates ẋ = f(x) by holding the right-hand-
side constant at its earliest value of tk−1, when performing the needed quadrature. Thus we
have

x(tk) = x(tk−1) +

∫ tk

tk−1

f [x(t), u(t), w(t), p(t), t]dt (61)

= x(tk−1) + f [x(tk−1), u(tk−1), w(tk−1), p(tk−1), tk−1]∆t . (62)

33

So for the specific differential equation ẋ(t) = cos(2πt) we would iterate

x(tk) = x(tk−1) + cos(2πtk−1)∆t .

We are told to take tk = 0.1k for 0 ≤ k ≤ 10.

For the trapezoidal rule with a strictly time-dependent right-hand-side in Equation 61 we
evaluate

∫ tk

tk−1

f [t]dt =
1

2
(f [tk−1] + f [tk])∆t .

For this problem this means that

x(tk) = x(tk−1) +
1

2
(cos(2πtk−1) + cos(2πtk))∆t .

For the Runge-Kutta algorithm the steps we compute are given by

∆x1 = f [x(tk−1), u(tk−1), w(tk−1), p(tk−1), tk−1]∆t = cos(2πtk−1)∆t

∆x2 = f [x(tk−1) + ∆x1/2, u(tk−1/2), w(tk−1/2), p(tk−1/2), tk−1/2]∆t = cos(2πtk−1/2)∆t

∆x3 = f [x(tk−1) + ∆x2/2, u(tk−1/2), w(tk−1/2), p(tk−1/2), tk−1/2]∆t = cos(2πtk−1/2)∆t

∆x4 = f [x(tk−1) + ∆x3, u(tk), w(tk), p(tk), tk]∆t = cos(2πtk)∆t

x(tk) = x(tk−1) +
1

6
(∆x1 + 2∆x2 + 2∆x3 +∆x4)

= x(tk−1) +
1

6
(cos(2πtk−1) + 4 cos(2πtk−1/2) + cos(2πtk))∆t .

The exact answer for anytime t where 0 ≤ t ≤ 1 is

x(t)− x(0) =
sin(2πt′)

2π

∣

∣

∣

∣

t

0

=
1

2π
sin(2πt) .

When t = 1 we get the answer of 0.

Section 2.3 Problem 2 (local linearization)

When one linearizes the original nonlinear dynamic equation

dx

dt
= f [x(t), u(t), w(t)] ,

one ends up with a linear system for the perturbation function ∆x(t) that in general will
look like

∆ẋ(t) = F (t)∆x(t) +G(t)∆u(t) + L(t)∆w(t) ,

34

where F , G, and L are the partial derivatives of the nonlinear function f , with respect to
the variables x, u, and w respectively. In this problem we don’t have a noise variable w and
thus no L term. We now compute the other derivatives and find

F (t) =
∂f

∂x
=





a1 + 2a2x1 3a2x
2
1x

2
2 + a3x3 cos(x2) 0

x1 + x3 0 x1 + x3
a4 0 −a4





G(t) =
∂f

∂u
=





2b1u
b2
0



 .

Thus our linear system in terms of a system of scalar equations is

d

dt





∆x1
∆x2
∆x3



 =





a1 + 2a2x1 3a2x
2
1x

2
2 + a3x3 cos(x2) 0

x1 + x3 0 x1 + x3
a4 0 −a4









∆x1
∆x2
∆x3





+





2b1u
b2
0



∆u .

Since (x, u) = (0, 0) is an equilibrium point, if we happen to linearize about this specific
point we will get the system

d

dt





∆x1
∆x2
∆x3



 =





a1 0 0
0 0 0
a4 0 −a4









∆x1
∆x2
∆x3



+





0
b2
0



∆u .

Section 2.3 Problem 3 (Van der Pol’s equation)

To begin this problem, we write the given scalar differential equation as a system. To do
this let x1 = x and x2 = ẋ1 = ẋ, then our system is given by

ẋ1 = x2

ẋ2 = ẍ = −a(1 − x21)x2 − bx1 + c .

As a matrix system this is

d

dt

[

x1
x2

]

=

[

x2
−a(1− x21)x2 − bx1 + c

]

. (63)

Part (a): In the above form we can apply numerical integration techniques such as Euler’s
method, the trapezoidal rule, or a Runge Kutta method.

Part (b): The same as Part (a).

Part (c): The nominal equilibrium condition is given by setting the right-hand-side of the
above matrix system equal to zero. This gives x2 = 0 and

−bx1 + c = 0 or x1 =
c

b
.

35

In that case we can perform a linearization about the point (c
b
, 0) and find

[

x2
−a(1− x21)x2 − bx1 + c

]

=

[

0
0

]

+
∂f

∂(x1, x2)

∣

∣

∣

∣

(x1,x2)=(c
b
,0)

[

x1 − c
b

x2 − 0

]

+ · · ·

≈
[

0 1
2ax1x2 − b −a(1− x21)

]
∣

∣

∣

∣

(x1,x2)=(c
b
,0)

[

x1 − c
b

x2

]

=

[

0 1

−b −a
(

1− c2

b2

)

]

[

x1 − c
b

x2

]

.

Where f is the vector function that represents the right-hand-side of Equation 63.

Part (d): When a = 1, b = 1, and c = 0 this coefficient matrix becomes

[

0 1
−1 −1

]

. Local

linearization about this point would then require integrating the system

d

dt

[

∆x1(t)
∆x2(t)

]

=

[

0 1
−1 −1

] [

∆x1(t)
∆x2(t)

]

,

to find

[

∆x1(t)
∆x2(t)

]

as a function of t.

When we numerically integrate the equations given by Part (a), Part (b), and Part (d) we
obtain the vector functions xa(t), xb(t), and ∆xd(t). We then expect if the linearization done
in Part (c) is valid then

xb(t) ≈ xa(t) + ∆xd(t) .

When t = 0 (the initial condition) the above approximation is exact. We do this in the
MATLAB script sect 2 3 prob 3.m. When that script is run we obtain the plot shown
in Figure 2. We see that the linearization ∆xd(t) when added to xa(t) matches xb(t) very
closely.

Section 2.3 Problem 4 (state transition and control effect matrices)

Since the system matrix F for this problem is a constant the state-transition matrix Φ(t2, t1)
has the explicit form given by

Φ(t2, t1) = eF (t2−t1) = eF∆t .

We can explicitly compute eF∆t if we can find a similarity transformation to diagonalize the
matrix F as F = EΛE−1 then powers of F are easy to compute

F 2 = EΛ2E−1 , · · · , F n = EΛnE−1 .

Thus using the power series representation of eF∆t we can show that

eF∆t = EeΛ∆tE−1 = E







eλ1∆t

. . .

eλn∆t






E−1 .

36

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time

x(
t)

fo
r t

he
 v

an
 d

er
 p

ol
 e

qu
at

io
n

NL: x(0)=0.1

NL: x(0)=0.2

L: x(0)+∆ x(0)

Figure 2: A comparison of the nonlinear integration of the Van Der Pol equation with its
linearization.

For this problem because F is upper triangular we know that the eigenvalues are −0.5 and
−0.7. To compute the eigenvalues for λ1 = −0.5 we consider the null space of the matrix
F − (−0.5)I or

[

0 1
0 −0.7 + 0.5

] [

v1
v2

]

= 0 .

Which states that v1 can be arbitrary while v2 must be zero. Lets take v1 = 1. For the
eigenvectors for λ2 = −0.7, we consider the null space of the matrix F − (−0.7)I or

[

−0.5 + 0.7 1
0 0

] [

v1
v2

]

= 0 .

Which states that v2 = −0.2v1 and v1 arbitrary. Lets take v1 = 1, so that v2 = −0.2. With
the eigenvectors specified we can form the matrix of eigenvectors E and its inverse E−1 given
by

E =

[

1 1
0 −0.2

]

and E−1 =

[

1 5
0 −5

]

.

Then

eF∆t = E

[

e−0.5∆t 0
0 e−0.7∆t

]

E−1 =

[

e−0.5∆t 5(e−0.5∆t − e−0.7∆t)
0 e−0.7∆t

]

,

when we do the matrix multiplications. This is also the expression for Φ(∆t). To evaluate
Γ(∆t), the control effect matrix, we will use Equation 31, as

Γ(∆t) = Φ(∆t)[In − Φ−1(∆t)]F−1G = (Φ(∆t)− In)F
−1G ,

where G =

[

0
1

]

and F−1 =

[

−2 −20/7
0 −10/7

]

to find F−1G = −10
7

[

2
1

]

and

Γ(∆t) = [Φ(∆t)− In]F
−1G = −10

7

[

7e−0.5∆t − 5e−0.7∆t − 2
e−0.7∆t − 1

]

.

37

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

time

x(
t)

special linear integrator

RK4

Figure 3: Numerical integration of the differential equation dx
dt

=

[

−0.5 1
0 −0.7

]

x+

[

0
1

]

u,

for u ≡ 1.

Part (a): With these definitions one way we can now obtain the value of x at the discrete
times tk is by iterating

x(tk) = Φ(∆t)x(tk−1) + Γ(∆t)u(tk−1) ,

for ∆t = 1
10

and for 10
1
10

= 100 time steps.

Part (b): A second way to integrate this differential equation is to use Runge-Kutta method,
say RK4. This requires us to pick a value for the time step ∆t = 1

10
, an initial time t0 = 0

and then iterate the following

∆x1 =

{[

−0.5 1
0 −0.7

] [

x1(tk−1)
x2(tk−1)

]

+

[

0
1

]}

∆t

∆x2 =

{[

−0.5 1
0 −0.7

] [

x1(tk−1) +
1
2
∆x11

x2(tk−1) +
1
2
∆x12

]

+

[

0
1

]}

∆t

∆x3 =

{[

−0.5 1
0 −0.7

] [

x1(tk−1) +
1
2
∆x21

x2(tk−1) +
1
2
∆x22

]

+

[

0
1

]}

∆t

∆x4 =

{[

−0.5 1
0 −0.7

] [

x1(tk−1) + ∆x31
x2(tk−1) + ∆x32

]

+

[

0
1

]}

∆t

[

x1(tk)
x2(tk)

]

=

[

x1(tk−1)
x2(tk−1)

]

+
1

6
(∆x1 + 2∆x2 + 2∆x3 +∆x4) .

for k = 1, 2, · · · , 10
∆t

= 100 time steps. When we do this in the code sect 2 3 prob 4.m we
obtain the results given in Figure 3. There we see that the special linear integrator does
quite well on this problem.

38

Section 2.3 Problem 5 (linearized equations of a satellite)

Part (a): For the linearized system

∆ṗ =
Mx

Ix

∆q̇ =
p0(Ix − Iz)∆r

Iy
+
My

Iy

∆ṙ =
p0(Iy − Ix)∆q

Iz
+
Mz

Iz
.

Then taking as the vector state x the variables ∆p, ∆q, and ∆r and as the controls Mx, My,
and Mz we get the following matrix system

d

dt





∆p
∆q
∆r



 =







0 0 0

0 0 p0(Ix−Iz)
Iy

0 p0(Iy−Ix)

Iz
0











∆p
∆q
∆r



+





1/Ix 0 0
0 1/Iy 0
0 0 1/Iz









Mx

My

Mz



 .

This is a type of dynamical system in the form dx
dt

= Fx+Gu, where F andG are independent
of time. Because of this, the state translation matrix Φ(∆t) is eF∆t. We might be able to
compute expressions like this this analytically based on the form of the matrix F , but it
will be easier to compute everything numerically. One has to be careful in using Matlab for
the calculation eF∆t. If you have a matrix F and simply use the Matlab command exp(F),
you will be getting the exponential of each element in the matrix rather than the matrix
exponential. To get the matrix exponential one needs to use expm(F). The difference is
substantial. For the F expressed here the two commands give

>> F = [0, 0, 0; 0, 0, p_0*(I_x - I_z)/I_y; 0, p_0*(I_y-I_x)/I_z, 0];

F =

0 0 0

0 0 -13.3333

0 5.0000 0

>> exp(F) % the elementwise exponential:

ans =

1.0000 1.0000 1.0000

1.0000 1.0000 0.0000

1.0000 148.4132 1.0000

>> expm(F) % the matrix exponential

ans =

1.0000 0 0

0 -0.3060 -1.5547

0 0.5830 -0.3060

39

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time

x(
t)

∆ p

∆ q

∆ r

Figure 4: The integrated system for the equations of motion for a spinning orbiting satellite.

We do this in the MATLAB code sect 2 3 prob 5.m. When we specify the numerical values
for Ix, Iy, Iz and p0 we obtain

Φ(∆t) =





1.0000 0 0
0 0.6848 −1.1900
0 0.4463 0.6848



 and G =





0.0020 0 0
0 0.0013 0
0 0 0.0010



 .

For this system since F is singular so we can’t use Equation 31 to compute Γ(∆t) and we
must instead use Equation 35. When we do that we find

Γ(∆t) =
1

1000





0.2000 0 0
0 0.1190 −0.0630
0 0.0315 0.0893



 .

Part (b): For this system when we assume no input forcing so that Mx = My = Mz = 0
we can integrate this system to get the result shown in Figure 4.

Section 2.4 Problem 1 (generating random variables)

Part (c): For this part of the problem we generate 1000 random variables that are themselves
created from the sum of 2 or 3 uniform random variables. In the R code sect 4 prob 1.R

we do this and plot the results in Figure 5.

Section 2.4 Problem 2 (statistics of the uniform distribution)

For this problem at first we will consider a uniform (rectangular) distribution between the
values of α and β and then restrict this result to the case of interest. The uniform distribution

40

(x1+x2)/2

f1

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

(x1+x2+x3)/3

f2

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

Figure 5: Left: The random variable V obtained by adding (and dividing by 2) two uniform
random variables. Right: The random variable V obtained by adding (and dividing by 3)
three uniform random variables. Note that this is more peaked around the population mean
(1/2) than the previous histogram.

has a characteristic function that can be computed directly

ζ(t) = E(eitX) =

∫ β

α

eitx
1

β − α
dx

=
1

β − α

(

eitβ − eitα

it

)

.

We could compute E(X) using the characteristic function ζ(t) for a uniform random variable.
Beginning this calculation we have

E(X) =
1

i

∂ζ(t)

∂t

∣

∣

∣

∣

t=0

=
1

i

1

β − α

[

1

it
(iβeitβ − iαeitα)− 1

it2
(eitβ − eitα)

]
∣

∣

∣

∣

t=0

= − 1

β − α

[

t(iβeitβ − iαeitα)− (eitβ − eitα)

t2

]
∣

∣

∣

∣

t=0

.

To evaluate this expression requires the use of L’Hopital’s rule, and seems a somewhat
complicated route to compute E(X). The evaluation of E(X2) would probably be even
more work when computed from the characteristic function. For this distribution, it is much
easier to compute the expectations directly. We have

E(X) =

∫ β

α

x
1

β − α
dx =

1

β − α

x2

2

∣

∣

∣

∣

β

α

=
1

2
(α+ β) .

41

In the same way we find E(X2) to be given by

E(X2) =

∫ β

α

x2
1

β − α
dx =

1

β − α

(

β3 − α3

3

)

=
(β − α)(β2 + αβ + α2)

3(β − α)
=

1

3
(β2 + αβ + α2) .

Using these two results we thus have that the variance of a uniform random variable is

Var(X) = E(X2)−E(X)2

=
1

3
(β2 + αβ + α2)− 1

4
(α2 + β2 + 2αβ)

=
(β − α)2

12
.

If we specify the above results to the case where α = −a and β = a we get

E(X) =
1

2
(−a + a) = 0

E(X2) =
1

3
(a2 − a2 + a2) =

1

3
a2

Var(X) =
(a− (−a))2

12
=

1

3
a2 .

Section 2.4 Problem 3 (a discrete approximation)

WARNING: I was not sure how to do this problem. Perhaps the problem meant to evaluate
z by simulation? If anyone has any ideas please email me.

Section 2.4 Problem 4 (a Rayleigh process)

Part (a): For the given density function

f(x) =
x

r
e−

1
2

x2

r ,

for x ≥ 0 and 0 otherwise, we will verify that this represents a valid probability density
function by showing that it integrates to one. We consider

∫ ∞

−∞
f(x)dx =

∫ ∞

0

f(x)dx =

∫ ∞

0

x

r
e−

1
2

x2

r dx .

To integrate this let v = x2

r
, so that dv = 2x

r
dx or xdx = r

2
dv. We thus see that the above is

equal to

∫ ∞

0

1

r
e−v/2 r

2
dv =

1

2

∫ ∞

0

e−v/2dv =
1

2

e−v/2

(−1/2)

∣

∣

∣

∣

∞

0

=
1

2
(−2) [0− 1] = 1 ,

42

as we were to show.

Part (b): For the Rayleigh density function

f(x) =
x

r
e−

1
2

x2

r ,

for x ≥ 0 and 0 otherwise, we will compute the expectation of X and X2 directly from the
definition of the given Rayleigh density function. We have that

E(X) =

∫ ∞

x=0

x2

r
e−

x2

2r dx .

To evaluate this integral let v = x2

2r
so that x =

√
2rv and dx =

√

r
2
v−1/2dv to get

E(X) =
1

r

∫ ∞

v=0

(2rv)e−v

√

r

2
v−1/2dv =

√
2r

∫ ∞

0

v
3
2
−1e−vdv

=
√
2rΓ(

3

2
) =

√
2r

(

1

2

)

Γ(
1

2
) =

√

πr

2
.

Next we calculate E(X2). We find

E(X2) =
1

r

∫ ∞

v=0

x3e−
x2

2r dx .

Using the same transformations as was used to evaluate E(X) we get

E(X2) =
1

r

∫ ∞

v=0

23/2r3/2v3/2e−v

√

r

2
v−1/2dv

= 2r

∫ ∞

v=0

v0+1v−vdv = 2rΓ(0) = 2r .

Thus the variance of X is given by

Var(X) = E(X2)− E(X)2 = 2r − r
π

2
= r

(

2− π

2

)

.

Section 2.4 Problem 5 (the p.d.f for y when y = x2 and x is a Gaussian)

We are told that x ∼ N (1, 1) and we let y = x2 and want to determine the probability
density function for y. Consider the distribution function for Y or FY (y). We have when
y ≥ 0 that

GY (y) = P{Y ≤ y} = P{X2 ≤ y} = P{|X| ≤ y1/2}
= FX(

√
y)− FX(−

√
y) ,

where FX(x) is the distribution function for X . Thus the density function gY (y) is given by
the first derivative of the above expression GY (y) with respect to y. Since F ′

X = fX we have

gY (y) = fX(
√
y)

(

1

2
√
y

)

− fX(−
√
y)

(−1

2
√
y

)

=
1

2
√
y
(fX(

√
y) + fX(−

√
y)) .

43

0 200 400 600 800 1000

−3
−2

−1
0

1
2

3

1:nsim

U

0 200 400 600 800 1000

−3
−2

−1
0

1
2

3

1:nsim

X
Figure 6: Left: The raw time series data for the uk sequence where each sample, uk, is drawn
from the standard normal distribution. Right: The raw time series data for the requested
xk (an AR(1)) sequence. These plots look rather similar.

Since we know the functional form for fX(x) we can write the above as

gY (y) =
1

2
√
2πy

(

e−
(
√

y−1)2

2 − e−
(−

√
y−1)2

2

)

.

Section 2.4 Problem 6 (an AR(1) process)

This problem is worked in the R code sect 4 prob 6.R. To begin we plot both the time
series of of uk and xk and display that in Figure 6. The left plot shows the random inputs
uk and the right plot shows the xk time series.

Part (a): The continuous autocovariance function, φ is defined as

φ[x̃(t1), x̃(t2)] =

∫ ∞

−∞

∫ ∞

−∞
[x(t1)− x̄(t1)][x(t2)− x̄(t2)]p(x(t1), x(t2))dx(t1)dx(t2) ,

which for discretely sampled ergodic sequences can be approximated as

φxx(k) = E[x̃kx̃n+k] = lim
k→+∞

1

N

N
∑

n=1

x̃nx̃n+k = lim
k→+∞

1

N

N
∑

n=1

(xn − x̄)(xn − x̄n) .

In the same way the discrete cross-covariance is given by

φxy(k) = E[xnyn+k] = lim
k→+∞

1

N

N
∑

n=1

(xn − x̄)(yn+k − ȳ) .

44

0 5 10 15 20 25 30

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series U

0 5 10 15 20 25 30

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series X

Figure 7: Left: The autocorrelation function for the uk time series. This result shows that
there is no memory in the uk process. Right: The autocorrelation function for the xk time
series. This series shows a significant autocorrelation or a relationship between the current
term and historical terms. These plots look nothing alike.

In R we can compute both of these with the functions acf. In Figure 7 we plot the autocor-
relation function corresponding to the time series uk and xk.

Part (b): In Figure 8 we plot the histogram of the two time series uk and xk.

Section 2.5 Problem 1 (the steady-state response)

Part (a): The steady-state response to dx
dt

= Fx+Gu, when F is invertible and u is specified
at u∗ is given by

x∗ = −F−1Gu∗ .

Since in this part of the problem the given F is not invertible, we could look for quasistatic
equilibrium solutions as suggested in the book. To find the solutions, the book suggested
reordering the state elements to partition F as

F =

[

F1 0
F2 0

]

.

The problem with this is that the state equation for x2 depends on all three unknowns x1,
x2, and x3 thus I don’t see how a reordering of the state elements would give a matrix of

this form. We can consider the given vector u∗ =

[

1
0

]

and see if we can compute a state

vector x such that satisfies
Fx = −Gu∗ .

45

Histogram of U

U

De
nsi

ty

−3 −2 −1 0 1 2 3

0.0
0.1

0.2
0.3

0.4

Histogram of X

X

De
nsi

ty

−3 −2 −1 0 1 2 3

0.0
0.1

0.2
0.3

0.4

Figure 8: Left: A histogram of the noise uk data. Right: A histogram of the state xk data.
Note how similar these two plots look.

For this u∗ we find −Gu∗ =





−1
−1
0



 and a common way see if any solutions to the above

system exist is to first form the augmented matrix

[

F | −Gu∗
]

=





−1 1 0 −1
1 −2 2 −1
0 2 0 0



 ,

and then perform elementary row operations on this matrix to reduce it to echelon form.
MATLAB has a command to do just that called rref. When we call this command on the
above matrix we get





1 0 −2 0
0 1 −2 0
0 0 0 1



 .

The fact that the last row results in the contradiction 0 = 1 we conclude that the expression
−Gu∗ is not in the span of the column space and we cannot find a steady-state solution to
this problem.

Part (b): If we perform the same steps as in Part (a) above we find we again cannot find

a steady-state solution. It is more interesting if we keep the same value for u∗ =

[

0
1

]

but

take the second column of G to be in the span of the column space of F . For example we
could take

G =





1 0
1 1
0 −2



 ,

46

where the second column of G is the sum of all of the columns in F . Then in that case
forming the augmented matrix and then reducing it to echelon form gives the matrix





1 0 −2 1
0 1 −2 1
0 0 0 0



 .

This last matrix has an identity for the last row. This means that there is a non-trivial
relationship between x1, x2, and x3 in steady-state. This relationship is

x1 = 1 + 2x3

x2 = 1 + 2x3 .

Part (c): If the (3, 3) element is changed from −4 to 0 we get the coefficient matrix of




−1 1 0
1 −2 2
0 2 0



 .

This is a matrix of rank 3 and is invertible. Thus for the given u∗ we find a constant
steady-state response given by

1

4





2
−2
−7



 .

This problem is worked in the MATLAB file sect 5 prob 1.m.

Section 2.5 Problem 3 (the Laplace transform description)

Part (a): For the system ẋ(t) = Fx(t) +Gu(t) we have a Laplace transform given by

sx(s) = Fx(s) +Gu(s) + x(0) ,

or in this case

s





x1(s)
x2(s)
x3(s)



 =





−1 1 0
1 −2 2
0 2 −4









x1(s)
x2(s)
x3(s)



+





1 0
1 1
0 1





[

u1(s)
u2(s)

]

+





x1(0)
x2(0)
x3(0)



 .

Part (b): Let u1 = u2 = 0 and we get




s+ 1 −1 0
−1 s+ 2 −2
0 −2 s + 4









x1(s)
x2(s)
x3(s)



 =





x1(0)
x2(0)
x3(0)



 .

The coefficient matrix in the above expression is sI − F . We can use the adjoint expression
for the inverse (sI − F)−1 = Adj(sI−F)

|sI−F | . We need to calculate |sI − F | which in this case
becomes

|sI − F | = (s+ 1)[(s+ 2)(s+ 4)− 4] + 1[−(s+ 4)]

= s(s2 + 7s− 9) , (64)

47

when we simplify. Next we need to compute the adjoint matrix of sI − F . We find the
matrix of cofactors (defined as C) is given by

C =





+[(s+ 2)(s+ 4)− 4] −[−s− 4] +[2]
−[−s + 4] [(s+ 1)(s+ 4)] −[−2(s + 1)]

+[2] −[−2(s + 1)] +[(s+ 1)(s+ 2)− 1]





=





s2 + 6s+ 4 s + 4 2
s+ 4 s2 + 5s+ 4 2s+ 2
2 2s+ 2 s2 + 3s+ 1



 .

Thus we have that (sI − F)−1 is given by

(sI − F)−1 =
CT

|sI − F | =
1

s(s2 + 7s− 9)





s2 + 6s+ 4 s + 4 2
s+ 4 s2 + 5s+ 4 2s+ 2
2 2s+ 2 s2 + 3s+ 1



 . (65)

We can multiply this by





x1(0)
x2(0)
x3(0)



 to get x(s) as a function of the initial conditions assuming

no control inputs.

Part (c): If x1(0) = x2(0) = x3(0) = 0 then we get




x1(s)
x2(s)
x3(s)



 =
1

s(s2 + 7s− 9)





s2 + 6s+ 4 s+ 4 2
s+ 4 s2 + 5s+ 4 2s+ 2
2 2s+ 2 s2 + 3s+ 1









1 0
1 1
0 1





[

u1(s)
u2(s)

]

.

We would need to multiply the above matrices and use partial fractions to solve for xi(s) for
i = 1, 2, 3.

Part (d): The roots of the characteristic equation are given by solving Equation 64 set
equal to zero 0 and are given by s = 0 and s = 1

2
(−7±

√
13) ≈ {−5.3,−1.6}.

Part (e): If we assume the initial conditions are all one i.e. x1(0) = x2(0) = x3(0) = 1 and
take the control vector equal to zero then when we consider Equation 65 we have





x1(s)
x2(s)
x3(s)



 =
1

s(s2 + 7s− 9)





s2 + 7s+ 9
s2 + 7s+ 10
s2 + 5s+ 5



 .

We would then need to find partial fraction expansions of each component and then take the
inverse Laplace transforms to get xi(t) for i = 1, 2, 3.

Section 2.5 Problem 4 (completely controllable)

To determine controllability we need to compute the controllability matrix given by Equa-
tion 50 for each of the specified set of matrices. If this matrix is of rank n then our system is
completely controllable. Since n = 2 the above expression is equivalent to C =

[

G FG
]

.

48

Part (a): We find C is rank 1 and this system is not completely controllable.

Part (b): We find C is rank 1 and this system is not completely controllable.

Part (c): We find C is rank 2 and this system is completely controllable.

Part (d): We find C is rank 1 and this system is not completely controllable.

Part (e): We find C is rank 1 and this system is not completely controllable.

Part (f): We find C is rank 2 and this system is completely controllable.

This problem is worked in the MATLAB script sect 5 prob 4.m.

Section 2.5 Problem 5 (observability)

The observability condition can be obtained via duality by applying controllability to the
dual system

ẋ(t) = −F Tx(t) +HTu(t) .

This results in considering the observability matrix given by Equation 54. Again since n = 2
this becomes O =

[

HT F THT
]

.

Part (a): We find O is rank 2 and this system is observable.

Part (b): We find O is rank 1 and this system is not observable.

Part (c): We find O is rank 1 and this system is not observable.

Part (d): We find O is rank 1 and this system is not observable.

Part (e): We find O is rank 1 and this system is not observable.

Part (f): We find O is rank 2 and this system is observable.

This problem is worked in the MATLAB script sect 5 prob 5.m.

Section 2.5 Problem 6 (nilpotency)

We will consider a general matrix M =

[

a b
c d

]

, form the desired product M2 and consider

what values of a, b, c, and d we could take for to make this product equal zero. From the

form for M2 we could take a = 0, d = 0, and b = 0 to get the matrix M =

[

0 0
c 0

]

.

49

Since the degree of a nilpotent n × n matrix is always less than or equal to n there are no
2× 2 matrices with nilpotent degree higher than 2.

Section 2.6 Problem 1 (an example control systems)

Recall that for this problem α is the angle of attack, q is the pitching rate ≈ α̇, δE is the
elevator angle, and δF is the flap angle.

Part (a): For this part we want to evaluate the root locus for the pitch-rate q relative to the

elevator angle δE, i.e. we need the transfer function for q(s)
δE(s)

. In the same way as derived
on Page we have

q(s)

δE(s)
=
[

1 0
]

[

s−Mq −Mα

−1 s+ Lα

V

]−1 [
MδE

−LδE

V

]

=

(

s+ Lα

V

)

MδE −Mα

(

LδE

V

)

s2 + 2ξωns+ ω2
n

.

As discussed in that section of the book we typically haveM(·) < 0, so I’ll negate the numbers
Mα and MδE given in the book which are positive so that they satisfy M(·) < 0. Now for
this transfer function if we consider the closed-loop roots of negative feedback we want to
plot the roots of the equation

1 + k

(

q(s)

δE(s)

)

= 0 ,

as a function of positive and negative k. Recall k is denoted as the loop gain. This is
equivalent to finding the roots s to

δE(s) + kq(s) = 0 ,

for various −∞ < k < +∞ or the roots of

s2 + 2ξωns+ ω2
n + k

(

s+
Lα

V

)

MδE − kMα

(

LδE

V

)

= 0 ,

or grouping terms by powers of s this is

s2 + (2ξωn + kMδE)s +

(

ω2
n + k

(

Lα

V
MδE − LδE

V
Mα

))

= 0 .

This is a quadratic equation and so we could solve for s explicitly using the quadratic formula.
Rather than do that I choose to use the MATLAB roots command which is a more general
technique and would work for more complicated transfer functions. In the MATLAB script
sect 6 prob 1 part a.m we do just that for −100 ≤ k ≤ +100. When that script is run it
produces the plot shown in Figure 9 (left). Since there are two roots we plot one in red and
the other in blue. We plot each pole when k = 0 as a large black dot. For negative values of
k we plot the roots as a dot, while for positive values of k we plot the roots as a cross.

Part (b): For this part we want to consider the transfer function for the angle-of-attack
α(s)
δE(s)

which we have computed on Page and the corresponding close-loop root locus. That
is we desire the solutions for s of

1 + k

[

−
(

LδE

V

)

(s− (Mq +
MδE

LδE/V
))

s2 + 2ξωns+ ω2
n

]

= 0 ,

50

−20 −15 −10 −5 0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

real part

im
a
g
 p

a
rt

root 1(k)

root 2(k)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2
−6

−4

−2

0

2

4

6

real part

im
a
g
 p

a
rt

root 1(k)

root 2(k)

Figure 9: Left: The root loci for the transfer function q(s)
δE(s)

. Right: The root loci for the

transfer function α(s)
δE(s)

.

for various value of the loop gain k. This is equivalent to solving for s in (when we group
everything by powers of s)

s2 +

[

2ξωn − k
LδE

V

]

s+

[

ω2
n +K

(

LδE

V

)(

Mq −
MδE

LδE/V

)]

= 0 .

In the MATLAB script sect 6 prob 1 part b.m plots of these roots are shown in Fig-
ure 9 (right).

Part (c-d): The open-loop frequency response is defined as

Y (jω) = H(jωI − F)−1G ,

evaluated for ω ∈ (0,+∞). If we assume that H = I i.e. both components are observable,
then the above expression has been evaluated in Part (a) and (b) of this problem. We will
consider only pitch rate since the other calculation is similar. We find

q(jω)

δE(jω)
=

(

jω + Lα

V

)

MδE −Mα

(

LδE

V

)

−ω2 + 2jξωnω + ω2
n

.

We will plot this using a Bode plot where we consider the polar representation of Y (jω)
as A(ω)ejφ(ω) and then plot 20 log(A(ω)) and φ(ω) in degrees. In the MATLAB script
sect 6 prob 1 part c N d.m we do this. When we do we get the plots shown in Fig-
ure 10 (left) and (right).

Section 2.6 Problem 2 (control dynamics)

Warning: I’m not sure that what I have answered is what was intended for this problem.

51

0 10 20 30 40 50 60 70
−120

−110

−100

−90

−80

−70

−60

−50

−40

omega (radians)

2
0

 l
o

g
(A

(w
))

0 10 20 30 40 50 60 70
−200

−150

−100

−50

0

50

100

150

200

omega (radians)

p
h

i(
w

)
(d

e
g

)
Figure 10: For the open-loop frequency response for q(jω)

δE(jω)
= A(ω)ejφ(ω). Left: A plot of

20 log(A(ω)) as a function of ω. Right: A plot of φ(ω) (in degrees) as a function of ω.

If anyone has a better ideas please contact me.

We are told that δE has a differential equation given by

˙δE = −1

τ
δE +

1

τ
δEC ,

where now δEc is the control to the elevation that is applied. Then our system has to be
extended to include this equation for δE as

s





q(s)
α(s)
δE(s)



 =





Mq Mα 0
1 Lα

V
0

0 0 −1/τ









q(s)
α(s)
δE(s)



+





MδE MδF 0
−LδE

V
−LδF

V
0

0 0 1/τ









δE(s)
δF (s)
δEc(s)



 .

Thus we would need to solve for





q(s)
α(s)
δE(s)



 and then consider transfer functions defined by

q(s)
δEc(s)

and α(s)
δEc(s)

as in the previous problem.

Section 2.6 Problem 4 (more control systems)

For this problem we have that x1 and x2 are the angular position and rate of the rigid

body motion, while x3 and x4 are the angular position and rate of the bending motion. The
variable y is the total net position and is the sum of x1 and x3. Notice that the system

52

specified is nonlinear but when we take a21 = a23 = a41 = 0 we have the matrix system

d

dt









x1(t)
x2(t)
x3(t)
x4(t)









=









0 1 0 0
0 0 0 0
0 0 0 1
0 0 −ω2

n −2ζωn

















x1(t)
x2(t)
x3(t)
x4(t)









+









0
b2
0
b4









u(t) ,

which is a linear system. If we take the Laplace transform of the above system and drop the
initial conditions on xi(0) for i = 1, 2, 3, 4 we have

s









x1(s)
x2(s)
x3(s)
x4(s)









=









0 1 0 0
0 0 0 0
0 0 0 1
0 0 −ω2

n −2ζωn

















x1(s)
x2(s)
x3(s)
x4(s)









+









0
b2
0
b4









u(s) .

Or solving for the vector of xi(s) we have









s −1 0 0
0 s 0 0
0 0 s −1
0 0 ω2

n s+ 2ζωn

















x1(s)
x2(s)
x3(s)
x4(s)









=









0
b2
0
b4









u(s) .

We need to take the inverse of the matrix above. We could use the fact that

(sIn − F)−1 =
Adj(sIn − F)

|sIn − F | ,

or we could just compute the inverse directly. Using Mathematica in sect 6 prob 4 inverse.nb

we find









s −1 0 0
0 s 0 0
0 0 s −1
0 0 ω2

n s+ 2ζωn









−1

=











1
s

1
s2

0 0
0 1

s
0 0

0 0 s+2ωnζ
s2+2ζωn+ω2

n

1
s2+2ζωn+ω2

n

0 0 − ω2
n

s2+2ζωn+ω2
n

s
s2+2ζωn+ω2

n











.

Thus we have









x1(s)
x2(s)
x3(s)
x4(s)









=











1
s

1
s2

0 0
0 1

s
0 0

0 0 s+2ωnζ
s2+2ζωn+ω2

n

1
s2+2ζωn+ω2

n

0 0 − ω2
n

s2+2ζωn+ω2
n

s
s2+2ζωn+ω2

n



















0
b2
0
b4









u(s) =









b2
s2
b2
s
b4

s2+2ζωn+ω2
n

b4s
s2+2ζωn+ω2

n









u(s) .

Part (a): From the above we now have transfer functions for xi(s)
u(s)

for i = 1, 2, 3, 4, and to
compute the root loci we want to consider the roots of

1 + k

(

xi(s)

u(s)

)

= 0 ,

for negative value of k. This would be done in the same way as for Problem 1 from this
section and presented on Page 50.

53

Part (b): To plot the open-loop frequency response for y(s)
u(s)

, since y(t) = x1(t) + x3(t) the

Laplace transform of this expression gives y(s) = x1(s) + x3(s). From this expression the

transfer function y(s)
u(s)

is then given by

y(s)

u(s)
=
x1(s)

u(s)
+
x3(s)

u(s)
.

The two terms in the right-hand-side of this last expression were computed in the previous
part of this problem.

Part (c): The Nyquist plot of y(s)
u(s)

simply evaluates y(s)
u(s)

at s = jω and then plots these
numbers in the polar plane as ω varies.

54

Optimal Trajectories and

Neighboring Optimal Solutions

Notes on the text

The Cart on a Track Example: Part 1

Part (a): For this example we start with the simple constraint

J = q(x1f − 100)2 + r

∫ tf

0

u2dt .

Now u2 = k2 is a constant and tf = 10 so we can evaluate the above some to get

J = q(x1f − 100)2 + rk2tf .

Since x1(t) =
1
2
kt2 we have that x1f = x1(tf) = 50k then J becomes

J = q(50k − 100)2 + 10rk2 .

From this we have that

∂J

∂k
= 2q(50k − 100)(50) + 20rk = (5000q + 20r)k − 10000q .

Setting ∂J
∂k

= 0 we get the optimal k given by

kopt =
1000q

500q + 2r
=

1000
(

q
r

)

500
(

q
r

)

+ 2
.

As q
r
→ ∞ we get kopt → 1000

500
= 2, while when q

r
→ 0 we get kopt → 0.

Part (b): Consider the model of control given by u = k1 + k2t where k1 and k2 need to be
specified. Our system dynamics are still

ẋ1 = x2 (66)

ẋ2 = k1 + k2t . (67)

Then integrating the second equation gives x2(t) = k1t +
1
2
k2t

2 when we impose the initial
condition that x2(0) = 0. Then x1(t) is given by integrating x2(t) to get x1(t) =

1
2
k1t

2+ 1
6
k2t

3

again using x1(0) = 0. To make x1(tf) = 100 when tf = 10 requires that

100 = 50k1 + 166.7k2 or k1 = 2− 166.7

50
k2 .

Evaluating our constraint J under this control gives

J = J(k1, k2) = q(x1f − 100)2 + r

∫ tf

0

(k1 + k2t)
2dt

= q(x1f − 100)2 + r

∫ tf

0

(k21 + 2k1k2t+ k22t
2)dt

= q(x1f − 100)2 + r

(

k21tf + k1k2t
2
f +

1

3
k22t

3
f

)

.

55

Since tf = 10 and x1f = 50k1 + 166.7k2 this becomes

J = q(50k1 + 166.7k2 − 100)2 + r
(

10k21 + 100k1k2 + 333.3k22
)

.

Now computing ∂J
∂k1

and ∂J
∂k2

we have

∂J

∂k1
= 2q(50k1 + 166.7k2 − 100)(50) + r(20k1 + 100k2)

∂J

∂k2
= 2q(50k1 + 166.7k2 − 100)(166.7) + r(100k1 + 666.6k2) .

Setting these two derivatives equal to zero, dividing by 10, and forming a linear system we
find that k1 and k2 must satisfy

(500q + 2r)k1 + (1666.7q + 10r)k2 = 1000q

(1666.7q + 10r)k1 + (5555.6q + 66.6r)k2 = 3333.3q .

This is a linear system such that that given values for q and r we can solve to get the optimal
solutions for k1 and k2.

If we also want to impose the “constraint” that the velocity at xf1 = 100 is zero we would
like x2(tf) = 0. Under the constraint u(t) = k1 + k2t and what that makes the functional
form for x2(t), we could impose this as a “hard” constraint. This means that

x2(tf) = x2(10) = 10k1 + 50k2 = 0 . (68)

If we impose this constraint as specified then since the velocity x2(t) looks like

x2(t) = k1t+
k2
2
t2 ,

we see that the acceleration a(t) is given by

a(t) = ẋ2(t) = k1 + k2t ,

Evaluating a(t) at t = 5 seconds (the midpoint of the trajectory), to get a(5) = k1 + 5k2 =
1
10
(10k1 + 50k2) = 0 by Equation 68 the requirement that v(tf) = v(10) = 0. Thus we have

shown that the acceleration at the midpoint of the trajectory must vanish. We could also
enforce this constraint “softly” by including it as a cost our new cost function J could look
like

J = q1(x1f − x1D)
2 + q2x

2
2f

+ r

∫ tf

0

u2dt .

Part (d): We now consider the control u(t) = k1 cos(ω1t) + k2 sin(ω2t) with ω1 = π
10

and
ω2 = π

5
. Since the differential equation for x2(t) is ẋ2(t) = u(t) and we know u(t) we can

integrate this equation to find an expression for x2(t). We have

x2(t) =
k1
ω1

sin(ω1t)−
k2
ω2

cos(ω2t) + C .

56

Since x2(0) = 0 = 0− k2
ω2

+ C we see that C = k1
ω1

and thus

x2(t) =
k1
ω1

sin(ω1t) +
k2
ω2

(1− cos(ω2t)) .

Since the differential equation for x1(t) is ẋ1(t) = x2(t) and we know x2(t) we can integrate
this equation to find an expression for x1(t). We have

x1(t) = −k1
ω1

cos(ω1t)−
k2
ω2
2

sin(ω2t) +
k2
ω2
t + C .

Since x1(0) = 0 = − k1
ω2
1
+ C we see that C = k1

ω2
1
and

x1(t) =
k1
ω1

(1− cos(ω1t)) + k2

[

t

ω2
− 1

ω2
2

sin(ω2t)

]

.

With these expressions at tf = 10 we have

x2(10) =
k1
ω1

sin(π)− k2
ω2

(1− cos(2π)) = 0

x1(10) =
k1
ω2
1

(1− cos(π)) + k2

[

10

(π/5)
− 25

π2
sin(2π)

]

=
200

π2
k1 +

50

π
k2 .

The cost function from Part (c) then in terms of k1 and k2 becomes given what x1(t), x2(t)
and u(t) are

J(k1, k2) = q1

(

200

π2
k1 +

50

π
k2 − 100

)2

+ q2(0)
2 + r

∫ 10

0

(k1 cos(ω1t) + k2 sin(ω2t))
2dt .

We next solve ∂J
∂k1

= 0 and ∂J
∂k2

= 0 to find the optimal solution for k1 and k2. This is made
easier by taking the derivatives inside the t integrand and then evaluating the integrand of
the derived result.

Notes on Example 3.4-1 the Cart on Track Part 2

Part (b): Our objective function J in this case is given by

J = φ(xf) +

∫ tf

t0

L(t)dt ,

where the end point condition is given by φ(x1f) = q(x1f −100)2 and the expression for L(t)
is given by L(t) = ru2(t). To find the Lagrangian multipliers or λ(t) for this problem we
solve the ordinary differential equations

dλ(t)

dt
= −F Tλ(t)−

[

∂L
∂x

]T

(69)

= −
[

0 1
0 0

]T [
λ1(t)
λ2(t)

]

= −
[

0 0
1 0

] [

λ1(t)
λ2(t)

]

= −
[

0
λ1(t)

]

,

57

with final conditions at t = tf given by

λ(tf) =

(

∂φ

∂x

)T
∣

∣

∣

∣

∣

t=tf

=

[

2q(x1f − 100)
0

]

=

[

λ1(tf)
λ2(tf)

]

.

From the ordinary differential equation for λ(t) we see that λ1 can be solved since

λ̇1 = 0 ⇒ λ1(t) = λ1(tf) = 2q(x1f − 100) .

While for λ2(t) we have
λ̇2(t) = −λ1(t) = −2q(x1f − 100) ,

thus
λ2(t) = −2q(x1f − 100)t+ C ,

for some constant C. Let t = tf where λ2(tf) = 0 to get −2q(x1f −100)tf +C = 0, therefore
C = 2q(x1f − 100)tf so

λ2(t) = −2q(x1f − 100)(t− tf) .

To find the control history we need to solve

[

∂L
∂u

]T

+GT (t)λ(t) = 0 , (70)

for u(t). For this problem we have G ≡ ∂f
∂u

= ∂
∂u

[

0
u

]

=

[

0
1

]

and L = ru2 so the equation

above becomes

2ru+
[

0 1
]

[

λ1(t)
λ2(t)

]

= 0 .

Solving the above for u(t) gives

u(t) = − 1

2r
λ2(t) = − 1

2r
(−2q(x1f − 100)(t− tf)) =

q

r
(x1f − 100)(t− tf) .

Note that this control can be written as an affine function of t as u(t) = k1 + k2t with

k1 = −q
r
(x1f − 100)tf (71)

k2 =
q

r
(x1r − 100) . (72)

In that case by integrating Equation 67 we get

x1f =
k1
2
t2f +

k2
6
t3f , (73)

but since we have just shown that the optimal control u(t) = k1 + k2t has k1 and k2 given
by Equations 71 and 72 we can put this into Equation 73 to get

x1f = −1

2

q

r
(x1f − 100)t3f +

1

6

q

r
(x1f − 100)t3f .

Which we can solve for x1f . Putting x1f on one side we find
(

1 +
q

2r
t3f −

q

6r
t3f

)

x1f =
q

2r
(100)t3f −

q

6r
(100)t3f

58

or simplifying we get

x1f =
100q
r

(

1
2
− 1

6

)

t3f
(

1 + q
r
t3f
(

1
2
− 1

6

)) =
100

1 + 3r
qt3f

=
100

1 + 3r
1000q

.

Part (b): For this part we change our endpoint objective function φ(xf) to be φ = q1(x1f −
100)2 + q2x

2
2f . With this expression for φ the final condition for the function λ(t) is now

λ(tf) =

(

∂φ

∂x

)T
∣

∣

∣

∣

∣

t=tf

=

[

2q1(x1f − 100)
2q2x2f

]

.

The ordinary differential equation for λ(t) does not change so again we have

λ1(t) = 2q1(x1f − 100) ,

and λ2(t) = −2q1(x1f − 100)t+ C for some constant C as before. From the final condition
above C must satisfy

−2q1(x1f − 100)tf + C = 2q2x2f .

Or solving for C we get
C = 2q2x2f + 2q1(x1f − 100)tf .

Thus the entire function λ2(t) then becomes

λ2(t) = −2q1(x1f − 100)(t− tf) + 2q2x2f ,

To evaluate the control function u(t) we consider Equation 70 where again we have ∂L
∂u

= 2ru

and G =

[

0
1

]

. Thus Equation 70 becomes

2ru+
[

0 1
]

[

λ1(t)
λ2(t)

]

= 0 ,

or 2ru + λ2(t) = 0 so u(t) = −λ2(t)
2r

. We again write the optimal control u(t) in the affine
form k1 + k2t where in this case from the above expression for λ2(t) we find

k1 = −q2x2f + q1(x1f − 100)tf
r

k2 =
q1(x1f − 100)

r
.

If we solve then for x1f and x2f in terms of k1 and k2 we find from the second equation above
that

x1f =
r

q1
k2 + 100 , (74)

Then using this expression and the first equation above we see that

x2f = − r

q2
k1 −

q1
q2
tf

(

r

q1
k2

)

= − r

q2
k1 −

r

q2
k2tf . (75)

59

Since once the control u(t) is specified in the affine form u(t) = k1 + k2t the final values of
x1f and x2f are given by (we need to integrate u(t) once to get the velocity and a second
time to get the position) or

x2f = k1tf +
k2
2
t2f and x1f =

k1
2
t2f +

k2
6
t3f .

We can put in what we know about x1f from Equation 74 and x2f from Equation 75 to get

r

q1
k2 + 100 =

k1
2
t2f +

k2
6
t3f

− r

q2
k1 −

r

q2
k2tf = k1tf +

k2
2
t2f ,

which is a linear system for k1 and k2.

Warning: When we solve for k1 and k2 in the above linear system we don’t seem to get a
result that matches the book. If anyone sees an error in what I have done (or agrees with
me) please contact me.

Notes on the Hamilton-Jacobi-Bellman Equation

For the optimal value function V ∗[x(t), t] we have the total derivative at t1 given by

dV ∗

dt

∣

∣

∣

∣

t=t1

=

(

∂V ∗

∂t
+
∂V ∗

∂x
ẋ+

∂V ∗

∂u
u̇

)
∣

∣

∣

∣

t=t1

.

If we are on the optimal path then V ∗(t) = Jmax − J(t) when t < tf so

∂V ∗

∂u
= −∂J

∂u
,

which vanishes due to the first order optimality conditions of u on J . Therefore dropping
the term ∂V ∗

∂u
in the expression for dV ∗

dt

∣

∣

t=t1
we have that

dV ∗

dt

∣

∣

∣

∣

t=t1

=

(

∂V ∗

∂t
+
∂V ∗

∂x
ẋ

)
∣

∣

∣

∣

t=t1

. (76)

Since the total derivative of the optimal value function is also the (negative) Lagrangian
evaluated pointwise on the optimal trajectory or

dV ∗

dt

∣

∣

∣

∣

t=t1

= −L[x∗(t1), u∗(t1), t1] , (77)

we can equate this with the result in Equation 76 to get the partial derivative of V ∗ with
respect to t or

∂V ∗

∂t

∣

∣

∣

∣

t=t1

= −L[x∗(t1), u∗(t1), t1]−
∂V ∗

∂x

∣

∣

∣

∣

t=t1

f [x∗(t1), u
∗(t1), t1] (78)

= −MinuH(t) , (79)

on the optimal trajectory. These last two equations are known as the Hamilton-Jacobi-
Bellman (HJB) equation.

60

Notes on terminal state equality constraints

In this section we want to consider control problems where we have a “hard” end point
constraints i.e. where the constraints take the form ψ[x(tf), tf] = 0. We will combine the
original optimization objective J0 with one used to enforce these new end point constraints
ψ[x(tf), tt] = 0 (denoted J1). We combine these two expressions in our total objective
function

Jc = J0 + µJ1 . (80)

We assume a function J1 where the optimal solution is to minimize the value of ψ[x(tf), tf]
subject to the dynamic constraints ẋ = f [x(t), u(t), t]. Thus we need to consider the function

J1 = ψ[x(tf), tf] +

∫ tf

t0

λT1 (f − ẋ)dt = ψ +

∫ tf

t0

(H1 − λT1 ẋ)dt .

The first two Euler-Lagrange equations to minimize this J1 are given by

λ̇1(t) = −∂H1

∂x

T

= −F Tλ1 with (81)

λ1(tf) =

(

∂ψ

∂x

)T
∣

∣

∣

∣

∣

t=tf

. (82)

These equations must hold for all t in the domain t1 ≤ t ≤ tf and will be the equation
used to determine λ1(t). To enforce the dynamic constraint under the part J0 part of the
objective function J we will require to solve

λ̇0 = −
(

∂H0

∂x

)T

= −F Tλ0 −
(

∂L
∂x

)T

, (83)

with a final condition as we would have in the case where we don’t worry about the boundary
constraint.

λ0(tf) =

(

∂φ

∂x

)T
∣

∣

∣

∣

∣

t=tf

(84)

We are finished when we can link the control u(t) to these two functions λ0(t) and λ1(t) with

∂Hc

∂u
=

(

∂L
∂u

+ λT0G

)

+ µλT1G = 0 , (85)

which introduced the constant µ. This in tern is given by

µ = −a
b

where (86)

a =

∫ tf

t0

λT1G

[

(

∂L
∂u

)T

+GTλ0

]

dt (87)

b =

∫ tf

t0

λT1GG
Tλ1dt . (88)

In summary, to solve this type of control problem we need to specify that all of the above
expressions hold true and a solution requires the specification of the functions λ0(t), λ1(t)
and u(t). Once we have x(t) and u(t) expressed in terms of µ we might be able to solve for
the scalar Lagrangian µ using the point constraint ψ[x(tf), tf] = 0. An example of this type
of problem is given on Page 76.

61

Notes on singular control

WWX: Proof this section
H = uT (t)R + λ(t)TG .

If we take R = 0 we have Hu = λT (t)G so that

d

dt
(Hu) = λ̇TG .

From the Euler-Lagrange conditions we have λ̇(t) = −∂H
∂x

T
we get

d

dt
Hu = −

(

∂H

∂x

)

G .

From the form of the Hamiltonian with R = 0 we get

H =
1

2
(xT (t)Qx(t)) + λT (Fx+Gu) .

so we have
d

dt
Hu = −(xTQ+ λTF)G = 0 . (89)

d2

dt2
Hu = −(ẋ(t)TQ+ λ̇TF)G

= −
[

(Fx(t) + Gu(t))TQ− (xT (t)Q + λTF)TF
]

G . (90)

Notes on finding optimal controls numerically with the quasilinear method

WWX: Proof this section

ẋ(t) = f [x(t), u0(t), t] = f ′[x(t), λ0(t), t]

We guess x0(t) and λ0(t) in [t0, tf]. Let x(t) = x0(t) + ∆x0(t) and put

λ = λ0 +∆λ0 .

Thus we get

ẋ = ẋ0 + ∆̇x0 = f ′[x0 +∆x0, λ0 +∆λ0, t]

= f ′[x0, λ0, t]

+
∂

∂x
f ′[x0, λ0, t]∆x0 +

∂

∂λ0
f ′[x0, λ0, t]∆λ0 .

Thus

ẋ0 − f ′[x0, λ0, t] = −∆ẋ0 +
∂

∂x
f ′[x0, λ0, t]∆x0 +

∂

∂λ0
f ′[x0, λ0, t]∆λ0 . (91)

62

Let λ(t) = λ0(t) + ∆λ(t) we have

λ̇(t) = λ̇0(t) + ∆̇λ(t)

= − ∂

∂x
HT [x0 +∆x0, λ0 +∆λ0]

= −
[

∂

∂x
HT [x0, λ0] +

∂

∂x
HT

x [x0, λ0]∆x0 +
∂

∂λ
HT

x [x0, λ0]∆λ0

]

.

Thus

λ̇0(t) +HT
x [x0(t), λ0(t), t] ≈ −∆̇λ(t)

− ∂

∂x
HT

x [x0(t), λ0(t)]∆x0

− ∂

∂λ
HT

x [x0(t), λ0(t)]∆λ0 .

Think want to write this system as if x0 and λ0 are solutions to ẋ0 − f ′[x0, λ0, t] = 0, then

λ̇x0 =
∂f ′

∂x
[]∆x0 +

∂f ′

∂λ0
[]∆λ0 + [ẋ0 − f ′] .

WWX: place these notes somewhere

G =

[

0
umax

]

so

Gu∗ =

[

0
umax

]

ũ∗ =

[

0
umaxũ

∗

]

.

we have
λ∗TGu∗ = · · · = λ∗2(t)umaxũ

∗ ,

so minimum control picks u∗(t) such that λ∗2(t)umaxũ
∗ is as negative (small) as possible. Solve

adjoint equation for λ(t).

λ̇(t) = −F Tλ(t) = −
[

0 0
1 0

]

λ ,

with

λ(tf) =
∂ψ

∂x

∣

∣

∣

∣

t=tf

=

[

2c1(x(tf)− 1)
2c2x2(tf)

]

.

Then
ψ(x) = c1(x1 − 1)2 + c2(x2 − 0)2 .

Thus
λ̇1 = 0 ,

λ1(tf) = 2c1(x1(tf)− 1) ⇒ λ1(t) = 2c1(x1(tf)− 1) .

63

The two point boundary problem is

ẋ1 = − 1

T1
(x1 − xair) + k1(x2 − x1)−

k22
2c2

λ1

ẋ2 = − 1

T2
(x2 − xair) + k1(x1 − x2)

λ̇1 =

(

1

T1
+ k1

)

λ1 + k1λ2 − 2c1(x1 − xd)

λ̇2 = −k1λ1 +
(

1

T2
+ k1

)

λ2 − 2c1(x2 − xd)

x1(0) = x01

x2(0) = x02

λ1(tf) = 2c1(x1f − xd)

λ2(tf) = 2c1(x2f − xd) .

Set up MMA to solve the problem needed.

Problem Solutions

Problem 3.3.1 (a different final velocity at the time tf = 10)

In this case where we desire the final velocity to be 10 we should take x2(tf) = 10 rather
than 0. This means that the constant (i.e. hard) constraint becomes

10 = 10k1 + 50k2 .

If we want to use a “soft” constraint all that changes is to add a term

q2

(

k1tf +
1

2
k2t

2
f − 10

)2

,

to the expression for J . We could then solve ∂J
∂k1

= 0 and ∂J
∂k2

= 0 for k1 and k2 to compute
the optimal solution.

Problem 3.3.2 (control of rocket equations)

For the problem given here v(t) is the velocity, γ(t) is the flight path angle, h(t) is the
altitude, and m(t) is the mass of an ascending rocket. The dynamical equations that govern

64

its motion are given by

v̇ =
1

m
(T cos(α)−D − g sin(γ))

γ̇ =
1

mv
(T sin(α) + L− g cos(γ))

ḣ = v sin(γ)

ṁ = f(T) .

Since we are told that T is a constant this last equation can be integrated to give m(t) =
f(T)t+m(0), were m(0) is the initial condition on m(t).

Part (a): With the suggested explicit linear form for the control α(t) = α0 +α1t the above
ordinary differential equations become

v̇ =
1

m
(T cos(α0 + α1t)−D − g sin(γ))

γ̇ =
1

mv
(T sin(α0 + α1t) + L− g cos(γ))

ḣ = v sin(γ) . (92)

The objective function we seek to minimize is

J =
1

2

{

(x(tf)− xd)
TQ(x(tf)− xd) + r

∫ tf

0

α2(t)dt

}

, (93)

where Q is a positive definite matrix. Given the functional form for α(t) we can simplify the
integral term as

∫ tf

0

α2(t)dt =

∫ tf

0

(α0 + α1t)
2dt = α0tf + α0α1tf

2 +
1

3
α2
1tf

3 .

Thus the total expression for J becomes

J =
1

2

{

(x(tf)− xd)
TQ(x(tf)− xd) + r

(

α0tf + α0α1tf
2 +

1

3
α2
1tf

3

)}

, (94)

In the above expression the final value of our state x(tf) depend on the explicit values
taken for α0 and α1 during the integration of the nonlinear differential equations 92. Since
we cannot integrate these equations analytically we will will implicitly view the expression
x(tF) as x(tf ;α0, α1) since the final state value at the time tf depends on values for α0 and
α1. The minimum of J considered as a function of α0 and α1 can be obtained by solving

∂J

∂α0
=

∂J

∂α1
= 0 ,

for α0 and α1. I don’t see how to explicitly take the α0 and α1 derivative of the endpoints
expression x(tf). Thus to compute the minimization of J we will have to result in evaluating
it numerically.

65

Part (b): When we specify the numbers given for this part of the problem we have f(T) = 0
so m(t) = m(0) = 20. The differential equation for the other functions v, γ, and h becomes

v̇ =
1

20
(10000 cos(α0 + α1t)− 32 sin(γ)) v(0) = 100 , vd unspecified

γ̇ =
1

20v
(10000 sin(α0 + α1t)− 32 cos(γ)) γ(0) =

π

2
, γd =

π

3

ḣ = v sin(γ) h(0) = 0 , hd unspecified . (95)

The objective function with Q = Diag(0, dγ, 0) we seek to minimize is given by

J =
1

2

{

dγ

(

γ(tf)−
π

3

)2

+ α2
0tf + α0α1tf

2 +
1

3
α2
1tf

3

}

. (96)

Note that in Equations 95 once the first two equations are solved for v(t) and γ(t) the third
function h(t) is then directly computed (using the third equation) from the previous two.
Since our objective function J in Equation 96 in this case does not depend on h(t) when
we numerically evaluate the above ordinary differential equation we don’t need to compute
it. To finish this problem then we will need to numerically evaluate the function J . This is
done in the following way

• First integrate the first two Equations 95 starting at t = 0 to get the values of v(t) and
γ(t) at t = tf (only γ(tf) is needed).

• Second evaluate Equation 96 with the just computed value of γ(tf).

This procedure is implemented in the Matlab code sect 3 prob 2 part b.m. When that
script is run we find the optimal values given by α0 = −0.1379 and α1 = 0.0170. At that
value we find Jopt = 0.0349.

Part (c): For this part matrix Q is now Diag(0, 10, 0) so the constant dγ has increased 10
times. We can use the same script as above to solve this problem. When that script is run
we find the optimal values given by α0 = −0.1785 and α1 = 0.0220. At that value we find
Jopt = 0.0451. Since this change has increased the importance of the final value of γ(tf)
matching the desired value of γd =

π
3
= 1.0472 we can compare how close the value of γ(tf)

from Part (a) and Part (b) are to this target.

γd − γf,Part(b) = −0.1328 , γd − γf,Part(c) = −0.0170 ,

showing that our error in γd is better in this case.

Part (d): I’ll assume that there is a typo in the book and it is supposed to read f(T) = −1
(rather than f(T) = +1). Then in this case then m(t) = −t + m(0) = −t + 20, so that
m(10) = 10. This means that the mass of the rocket decreases as time passes (presumably
from burning fuel). Our dynamic equations are now given by

v̇ =
1

20− t
(10000 cos(α0 + α1t)− 0.0004v2 − 32 sin(γ))

γ̇ =
1

(20− t)v
(10000 sin(α0 + α1t)− 32 cos(γ))

ḣ = v sin(γ) .

66

The initial conditions are the same as in Part (c). Again nothing in J depends on h(t) and
it can be dropped from consideration. This is the same type of problem as discussed before
and to solve it requires some simple modifications of the previous codes. It is worked in the
Matlab script sect 3 prob 2 part d.m. When that script is run with dγ = 1 we find the
optimal values given by α0 = −0.1285 and α1 = 0.0144 with Jopt = 0.0320.

Part (e): In this case we introduced a dependence on h(t) and must evaluate it as a function
of time as we progress. This is because when hd = 20000 with Q = Diag(0, 10, 0.01) then
the objective function J becomes

J =
1

2

{

10
(

γ(tf)−
π

3

)2

+ 0.01(h(tf)− 20000)2 + α2
0tf + α0α1tf

2 +
1

3
α2
1tf

3

}

.

This part is worked in the Matlab script sect 3 prob 2 part e.m. When that script is run
we find the optimal values given by α0 = 0.4290 and α1 = −0.1689 with Jopt = 2.4712.

Problem 3.3.3 (more control of the rocket equations)

For the suggested functional form for α(t) we have that the state variables are governed by
the following ordinary differential equations

v̇ =
1

m
(T cos(α0 + α1 sin(ωt) + α2 cos(ωt))−D − g sin(γ))

γ̇ =
1

mv
(T sin(α0 + α1 sin(ωt) + α2 cos(ωt)) + L− g sin(γ)) .

with ω = 2π
tf
. We don’t need the consider the differential equation for h(t) since it is not

used in the expression for J . With the numbers given in the text these equations become

v̇ =
1

20
(10000 cos(α0 + α1 sin(ωt) + α2 cos(ωt))− 32 sin(γ))

γ̇ =
1

20v
(10000 sin(α0 + α1 sin(ωt) + α2 cos(ωt))− 32 sin(γ)) ,

where we have taken m(t) = 20. The expression J we want to minimize is given by

J =
1

2

{

dγ(γ(tf)− γd)
2 + r

∫ tf

0

(α0 + α1 sin(ωt) + α2 cos(ωt))
2dt

}

.

When we evaluate the integral above we get for J

J =
1

2

{

dγ(γ(tf)− γd)
2 +

r

2
(2α2

0 + α2
1 + α2

2)tf

}

.

Since γ(tf) depends on the control inputs α0, α1, and α2 we will complete the minimization
of J numerically. This is done in the Matlab function sect 3 prob 3.m. When that script is
run we find optimal values given by α0 = −0.0835, α1 = −0.0467, and γ2 = −0.0706, with
a J value given by J = 0.0549.

67

Problem 3.3.4 (even more control of the rocket equations)

For this problem we assume that α and T are the input controls and are constant. Since
if T is a input control then to integrate the equation ṁ = f(T) we would need to know
what the functional form for f(·) is. Since this is not given we will assume that the ordinary
differential equation for m(t) is ṁ = −1 with m(0) = 20 and thus m(t) = 20− t. The other
dynamical variables evolve according to

v̇ =
1

20− t
(T cos(α)− 32 sin(γ))

γ̇ =
1

(20− t)v
(T sin(α)− 32 sin(γ))

ḣ = v sin(γ) .

with the expression for J given by

J =
1

2

{

qv(v(tf)− vd)
2 + qγ(γ(tf)− γd)

2 + qh(h(tf)− hd)
2 + r1α

2tf + r2T
2tf
}

,

when we integrate the integral term in J . Note that v(tf), γ(tf), and h(tf) depend implicitly
on the input control values α and T and thus we will do the minimization of J numerically.
We implement the numerical minimization in the Matlab routine sect 3 prob 4.m. When
it is run we get α = 0.0 and T = 91.42, with J = 2.9927 106.

Problem 3.3.5 (control of an oscillator)

Part (a): For this problem we assume a control u(t) in terms of the state x1(t) and x2(t)
given by

u(t) = −c1(x1(t)− x1d)− c2x2(t) ,

with a cost function given by

J =
1

2

{

q(x1(tf)− x1d)
2 +

∫ tf

0

ru2(t)dt

}

.

We can’t evaluate J explicitly since we don’t know the optimal values of c1 and c2 and thus
don’t know the functional form for u(t). To solve this problem we will select values for c1
and c2, solve the following ordinary differential equation

[

ẋ1
ẋ2

]

=

[

0 1
−ω2

n −2ξωn

] [

x1
x2

]

+

[

0
ω2
n

]

(−c1(x1 − x1d)− c2x2) ,

starting with x1(0) = x2(0) = 0 and for 0 ≤ t ≤ tf . This gives the final value x1(tf)
and the function u(t) which we can use to evaluate J . This is done in the Matlab file
sect 3 prob 5.m. When we run that script we find c1 = 3.5121, c2 = 31.1545, and J =
0.3234 with u(t) with these values plotted in Figure 11.

Part (b): This part is worked in the same way as Part (a). It can be found in the same
Matlab file as above.

68

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

time

u(
t)

u(t) Part (a)

u(t) Part (b)

Figure 11: The controls u(t) for Part (a) in blue and Part (b) in red for Problem 5.

Problem 3.4.1 (rate of pollution increase)

For this problem we assume a Lagrangian given by

L[x(t), u(t), t] ≡ (1− e−u/u0)

(

1−
(

x

x0

)n)

e−ct ,

such that we want to minimize the functional J defined as

J =

∫ tf

0

L[x(t), u(t), t]dt .

The dynamic equations for this problem are governed by

ẋ(t) = f(x(t), u(t)) = −ax(t) + bu(t) .

To derive the Euler-Lagrange equations we augment to the cost function J , the dynamic
constraint by introducing a Lagrangian multiplier λ(t) to get

JA =

∫ tf

t0

{L[x(t), u(t), t] + λ(t)(ẋ(t)− f(x(t), u(t), t))} dt .

Then the Euler-Lagrange equations in terms of the Lagrangian L[x, u, t] the and the dynamic
function f(x, u) are the following coupled differential and algebraic equations for x(t), λ(t),
and u(t).

• Solve the ordinary differential equation

λ̇(t) = −
(

∂f

∂x

)T

λ(t)−
(

∂L
∂x

)T

, (97)

69

with a final condition given by

λ(tf) =
∂φ

∂x

T
∣

∣

∣

∣

t=tf

. (98)

• Solve the ordinary differential equation

ẋ = f(x, u) , (99)

with a initial condition given by
x(t0) = x0 . (100)

• Solve the algebraic equation

(

∂L
∂u

)T

+

(

∂f

∂u

)T

λ(t) = 0 (101)

These give three equation for the three unknowns x(t), λ(t), and u(t). For the specific f(x, u)
and L given in this problem we have

F ≡ ∂f

∂x
= −a and G ≡ ∂f

∂u
= b

∂L
∂x

= (1− e−u/u0)

(

−n
(

x

x0

)n−1
1

x0

)

e−ct

∂L
∂u

=
1

u0
e−u/u0

(

1−
(

x

x0

)n)

e−ct ,

and we get for the Euler-Lagrange equations

• Solve the ordinary differential equations

λ̇ = aλ+
n

x0
(1− e−u/u0)

(

x

x0

)n−1

e−ct with λ(tf) = 0

ẋ = −ax+ bu with x(t0) = x0 .

• The functions x(t), λ(t), and u(t) must also satisfy

1

u0
e−u/u0

(

1−
(

x

x0

)n)

e−ct + bλ = 0 .

Problem 3.4.2 (rate of pollution increase – a numerical example)

For the numbers specified in the problem, the Euler-Lagrange equations become

70

0 1 2 3 4 5 6 7 8 9 10
0.4

0.41

0.42

0.43

0.44

0.45

0.46

time

x
(
t)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

time

u
(
t)

Figure 12: Left: The state estimate x(t) for Chapter 3 Section 4 Problem 2 (rate of pollution
increase). Right: The control u(t) for the same problem.

• Solve the ordinary differential equations

λ̇ = 0.015λ+ 8(1− e−u)x with λ(10) = 0

ẋ = −0.015x+ 0.01u with x(0) = 0.4 .

• With the constraint that
e−u(1− 4x2) + 0.01λ = 0 .

We have to solve these expressions numerically to determine the functions x(t), λ(t), and u(t).
To do that we will use the “neighboring extremal method” which is a shooting based method
applicable for nonlinear two-point boundary value problem. This numerical procedure is
implemented in the Matlab files sect 4 prob 2.m which calls the functions:

• sect 4 prob 2 J min fn.m

• sect 4 prob 2 J ode fn.m

• sect 4 prob 2 u from x N lambda.m.

When that script is run we find that the initial condition for λ(t) is λ0 ≈ −19.8753 and
obtain the plots shown in Figure 12.

71

Problem 3.4.3 (a mechanical spring mass system)

Our dynamic equation is specified with ẋ = f(x, u) where f(x, u) is given by

f(x, u) =

[

0 1
−ω2

n −2ξωn

] [

x1
x2

]

+

[

0
ω2
n

]

u .

Here the variable x is a 2 × 1 vector and u is a scalar. We then can compute F ≡ ∂f
∂x

and

G ≡ ∂f
∂u

and find

F =

[

0 1
−ω2

n −2ξωn

]

and G =

[

0
ω2
n

]

We will assume that our cost function J is quadratic

J =

∫ tf

t0

[

x(t)T u(t)
]

[

Q m
mT r

] [

x(t)
u(t)

]

dt

=

∫ tf

t0

[xT (t)Qx(t) + 2u(t)xT (t)m+ ru(t)2]dt . (102)

Here Q is a 2× 2 matrix, m is a 2× 1 vector, and r is a scalar. Thus for this problem

L = xT (t)Qx(t) + 2u(t)xT (t)m+ ru(t)2 and φ[x(tf), tf] = 0 .

Thus the derivatives needed for the Euler-Lagrange Equations 97 and 101 are

(

∂L
∂x

)T

= 2Qx+ 2um and
∂L
∂u

= 2xTm+ 2ru .

With these we can now write down the Euler-Lagrange equation. We must find consistent
solutions to the ordinary differential equations

d

dt

[

λ1
λ2

]

= −
[

0 −ω2
n

1 −2ξωn

] [

λ1
λ2

]

− 2

[

q11 q12
q21 q22

] [

x1
x2

]

− 2

[

m1

m2

]

u

with

[

λ1(tf)
λ2(tf)

]

=

[

0
0

]

d

dt

[

x1
x2

]

=

[

0 1
−ω2

n −2ξωn

] [

x1
x2

]

+

[

0
ω2
n

]

u

with

[

x1(t0)
x2(t0)

]

=

[

x10
x20

]

,

and the algebraic equation

2xTm+ 2ur +
[

0 ω2
n

]

[

λ1
λ2

]

= 0 ,

or in component form
2(x1m1 + x2m2) + 2ru+ ω2

nλ2 = 0 .

72

Problem 3.4.4 (the temperature in an oven)

The dynamics of our state x(t) is given by

ẋ = −k1(x− Ts)− k2(x
4 − T 4

s)− k3u+ k4

= −k1x− k2x
4 + k3u+ (k1Ts + k2T

3
s) ,

the book defines the constant k4 to be k4 ≡ k1Ts + k2T
4
s . We assume there is a typo, the

book is missing the square on the difference x(tf)−xd, in the expression for J such that our
cost function is

J = q(x(tf)− xd)
2 +

∫ tf

0

ru2dt .

Thus for this problem we have

L[x, u, t] = ru2

f(x, u) = −k1x− k2x
4 + k3u+ k4 .

Since L is not an explicit function of time we know that dH
dt

= 0 and thus H is independent
of time. Our control “law” is then

H[x, u] = L[x, u] + λTf(x, u)

= ru2 + λ(−k1x− k2x
4 + k3u+ k4) = a constant . (103)

The functions λ(t), x(t), and u(t) must be consistent with Equations 97 and 99 or

λ̇ = (k1 + 3k2x
3)λ with λ(tf) = 2q(x(tf)− xd)

ẋ = −k1x− k2x
4 + k3u+ k4 with x(0) = x0 .

Problem 3.4.5 (chemical reactor dynamics)

Warning: I’m not entirely sure this is what is requested for this problem. If anyone has a
better solution (or agrees with me) please contact me.

The Hamilton-Jacobi-Bellman (HJB) equation for the optimal value function V ∗ and this
problem is given by specifying Equation 78 to this specific problem. When we do that we
get

∂V ∗

∂t

∣

∣

∣

∣

t=t1

= −
[

L[x∗(t1), u∗(t1), t1] +
∂V ∗

∂x

∣

∣

∣

∣

t=t1

f [x∗(t1), u
∗(t1), t1]

]

= −
[

(x(t)− xd)
2 + u2 + (axn + bu)

∂V

∂x

]
∣

∣

∣

∣

t=t1

.

In the second equation we have dropped the asterisk on x(t) and u(t). If we assume that the
functional form for V (t) takes the general form given by V = p(t)x2(t) then ∂V

∂t
= 0 (since

73

this expression does not explicitly depend on the variable t) and ∂V
∂x

= 2p(t)x(t), so we get
for the HJB equation the constraint

0 = (x(t)− xd)
2 + u(t)2 + 2p(t)x(t)(ax(t)2 + bu(t)) .

This is to be coupled with the dynamic constraint

ẋ(t) = ax(t)n + bu(t) and x(0) = 0.1 .

Problem 3.5.1 (rotations of a nonspinning satellite)

This is a minimum time problem with a linear dynamic system. Following the section on
minimum time problems we first redefine the problem so that the control we apply is bounded
by 1 i.e ũ ≤ 1. To do that, we assume that the original control u, is bounded as |u| ≤ umax

(the book does not have the absolute value). Thus we consider the problem

[

ẋ1
ẋ2

]

=

[

0 1
0 0

] [

x1
x2

]

+ umax

[

0
1

]

ũ .

The cost function we desire to minimize is J =
∫ tf
t0

1dt. With this setup introduce a Hamil-
tonian given by

H = 1 + λT (Fx∗ +Gu∗) ,

and the minimum principle gives

1 + λ∗T [Fx∗ +Gu∗] ≤ 1 + λ∗T [Fx∗ +Gu] ,

that must be satisifed by the optimal u∗. The above can be written as

λ∗TGu∗ ≤ λ∗TGu .

The minimum control picks u∗ to make λ∗TGu must be negative.

u∗(t) =

{

+1 λ∗T < 0

−1 λ∗T > 0

is how you specify the optimal control.

We will take the functional we want to minimize to be given by

J =

∫ tf

t0

1dt = tf − t0 ,

so L ≡ 1 (a constant value). Our dynamics of θ(t) are given by the differential equation
θ̈ = u with initial conditions θ(0) = 1 and θ̇(0) = 0. We can write this in system form by
introducing the variables x1 = θ and x2 = θ̇ where we see that

ẋ1 = x2

ẋ2 = u .

74

To enforce the terminal constraints that θ(tf) = θ̇(tf) = 0 we will introduce a vector end
point constraint

ψ[x(tf), tf] =

[

x1(tf)
x2(tf)

]

=

[

0
0

]

.

For the system above we find our functions F and G given by

F =
∂f

∂x
=

[

0 1
0 0

]

and G =

[

0
1

]

.

Note that with the above expression forG we have GGT =

[

0 0
0 1

]

and thus xGGTy = x2y2

or the product of the second elements in the vectors x and y. Following the book on vector
terminal constraints we have the associated r adjoint vectors λi which must solve

λ̇i = −F Tλi with λ(tf) =
∂ψi

∂x
for i = 1, 2, · · · r .

In this problem, the differential equations and initial conditions for i = 1 are

d

dt

[

λ11(t)
λ12(t)

]

= −
[

0 0
1 0

] [

λ11(t)
λ12(t)

]

with

[

λ11(tf)
λ12(tf)

]

=
∂ψ1

∂x
=

∂

∂x
x1(tf) =

[

1
0

]

.

To solve for λ1(t) we see that the first equation is d
dt
λ11(t) = 0 with λ11(tf) = 1, thus λ11(t) =

1. The second equation is d
dt
λ12(t) = −λ11(t) = −1 with λ12(tf) = 0 thus λ12(t) = −t + tf .

As a vector we then have

λ1(t) =

[

1
tf − t

]

.

For this problem, the differential equations and initial conditions for i = 2 are

d

dt

[

λ21(t)
λ22(t)

]

= −
[

0 0
1 0

] [

λ21(t)
λ22(t)

]

with

[

λ21(tf)
λ22(tf)

]

=
∂ψ2

∂x
=

∂

∂x
x2(tf) =

[

0
1

]

.

To solve for λ2(t) we see that the first equation is d
dt
λ21(t) = 0 with λ21(tf) = 0, thus

λ21(t) = 0. The second equation is d
dt
λ22(t) = −λ11(t) = 0 with λ12(tf) = 1 thus λ22(t) = 1.

As a vector we then have

λ2(t) =

[

0
1

]

.

Now we need to solve for µ in Bµ = −A with

bir =

∫ tf

t0

λTi GG
Tλrdt

ai =

∫ tf

t0

λTi G

[

∂L
∂u

T

+GTλ0

]

dt .

75

For the functions λi just computed we have

b11 =

∫ tf

t0

λ12(t)
2dt =

∫ tf

t0

(t− tf)
2dt =

(t− tf)
3

3

∣

∣

∣

∣

tf

t0

=
(tf − t0)

3

3

b12 =

∫ tf

t0

λ12(t)λ22(t)dt =

∫ tf

t0

(tf − t)dt = −(t− tf)
2

2

∣

∣

∣

∣

tf

t0

=
(tf − t0)

2

2

b21 =

∫ tf

t0

λ22(t)λ12(t)dt = b12 =
(tf − t0)

2

2

b22 =

∫ tf

t0

λ22(t)
2dt =

∫ tf

t0

dt = tf − t0 .

We have to find λ0 which satisfies

d

dt

[

λ01
λ02

]

= −F Tλ0 −
∂L
∂x

T

.

with

λ0(tf) =
∂φ

∂x

T
∣

∣

∣

∣

t=tf

.

Once one has µ we solve

∂L
∂u

+ λT0G+ (µ1λ
T
1 + · · ·+ λrλ

T
r)G = 0 ,

for u.

The dynamic model

ẋ1 = x1(1− x2)

ẋ2 = x2(1− x1)− 0.5(e−a(t−ti) + b)x2u .

Now since u kills the predictor x2 and not the prey x1.

Problem 3.5.3 (single room temperature control: hard end constraints)

For this problem we assume we have the hard constraint on x1 at tf of x1(tf) = xd as
discussed on Page 61 of these notes. We will assume that the cost function that penalizes
power consumption is given by J =

∫ tf
t0
u2dt (the book does not have the square on the

function u(t)) with ψ = x1(tf)− xd. For the system

ẋ1 = − 1

T
(x1 − xair) + k1u , (104)

76

we have F = ∂f
∂x

= − 1
T
and G = ∂f

∂u
= k1. Following the discussion on Page 61 we need to

solve Equation 81 or

λ̇1(t) = −
(

∂H1

∂x

)T

= −F T (t)λ1(t) =
1

T
λ1(t) with

λ1(tf) =

(

∂ψ

∂x

)T
∣

∣

∣

∣

∣

t=tf

= 1 ,

We solve for λ1(t) and find λ1(t) = e
t−tf
T . Next we need to consider Equation 83 for λ0(t) or

λ̇0(t) = −
(

∂H0

∂x

)T

= −F T (t)λ0(t)−
(

∂L
∂x

)T

=
1

T
λ0(t) with

λ0(tf) =

(

∂φ

∂x

)T
∣

∣

∣

∣

∣

t=tf

= 0 .

The only way we can have a function λ0(t) that satisfies these conditions is if λ0 ≡ 0. To
determine u(t) we need to use Equation 85 where we get

∂Hc

∂u
=
∂L
∂u

+ λT0G+ µλT1G = 0 ,

or

2u(t) + µk1λ1(t) = 0 so u(t) = −µk1
2
λ1(t) = −µk1

2
e

t−tf
T .

Now that we know explicit formulas for λ0(t) and λ1(t) we can evaluate a and b using
Equation 87 and 88. We find

a =

∫ tf

t0

λT1G

[

(

∂L
∂u

)T

+GTλ0

]

dt

= 2

∫ tf

t0

λT1Gudt = 2k1

∫ tf

t0

λ1udt = −k
2
1µT

2

(

1− e
2(t0−tf)

T

)

b =

∫ tf

t0

λT1GG
Tλ1dt = k21

∫ tf

t0

λ21dt = k21
T

2

(

1− e
2(t0−tf)

T

)

.

Note that a 6= 0 as is required. Now that we know the functional form for u(t) we can put
this expression into Equation 104 and then solve for x1(t). When we do this we find (see the
Mathematica code sect 5 prob 3.nb)

x1(t) = xair + (x0 − xair)e
− t−t0

T − µk21T

4

(

e−
tf−t

T + e−
t+tf−2t0

T

)

.

Then since our pointwise constraint is ψ = x1(tf)− xd = 0 we can evaluate the above at tf
where we find

x1(tf) = xair + (x0 − xair)e
− tf−t0

T − µk21T

4

(

1 + e−
2(t0−tf)

T

)

,

as this expression must equal xd we can use the above to compute the value of µ. Using
the numbers given in the book in the Matlab script sect 5 prob 3.m we find µ = −24.9382.

77

0 2 4 6 8 10 12
45

50

55

60

65

70

time

x
1
(
t)

state

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

time

u

control

Figure 13: Left: The state estimate x1(t) for Chapter 3 Section 5 Problem 3 (single room
temperature control: hard end constraints). Note that x1(t) goes from the initial temper-
ature of 45 to the final value x∗1f which is exactly equal to (as it should be) to the desired
temperature xd = 70. Right: The control u(t) for the same problem. Note that we steadily
apply more and more heat as time progress to heat the room.

This script also plots the optimal control u(t) and the corresponding state x1(t) in Figure 13.

Since x1(0) = 45 and x1(tf) = 70 we know that u > 0 since we must add heat to increase
the temperature. Thus if we want to original optimality condition

J =

∫ tf

t0

|u|dt =
∫ tf

t0

udt .

The Hamilton for this problem is

H = L+ λTf = u+ λ(− 1

T
(x1 − xair) + k1u)

since H is linear in u the control dose not appear in Hu thus convexity cannot be established.
Thus we must use the minimization principle to find u. If λ > 0 we pick u = 0. If λ < 0 we
pick u = umax.

Problem 3.5.4 (single room temperature control: soft end constraint)

This is a direct application of the Euler-Lagrange equations from the earlier section with the
“integrated” cost of L[x(t), u(t), t] = c2u

2 and with an “end point” cost of φ = c1(x1f −xd)
2.

We thus need to solve for λ(t) in

λ̇(t) = −F T (t)λ(t)−
(

∂L
∂x

)T

with λ(tf) =
∂φ

∂x

∣

∣

∣

∣

t=tf

.

78

For this problem where the state dynamics are given by

ẋ1 = − 1

T
(x1 − xair) + k1u ,

we have F = − 1
T
, G = k1,

∂L
∂x

= 0, ∂L
∂u

= 2c2u. Using these the above equations becomes

λ̇(t) =
1

T
λ(t) and λ(tf) = 2c1(x1f − xd) (105)

ẋ1(t) = − 1

T
(x1 − xair) + k1u and x1(t0) = x10 (106)

∂L
∂u

T

+GTλ = 0 or 2c2u+ k1λ = 0 . (107)

The solution to Equation 105 is λ(t) = 2c1(x1f − xd)e
t−tf
T . The solution to Equation 107 for

u(t) in terms of λ(t) is

u(t) = − k1
2c2

λ(t) = −k1c1
c2

(x1f − xd)e
t−tf
T .

The dynamic equation for x1(t) or Equation 105 with this control is then

ẋ1(t) = − 1

T
(x1 − xair)−

k21c1
c2

(x1f − xd)e
t−tf
T .

Which gives for x1(t) the following (see the Mathematica code sect 5 prob 4.nb)

x1(t) = xair + (x0 − xair)e
− t+t0

T − k21T (x1f − xd)c1
2c2

(

e
t−tf
T + e

2t0−t−tf
T

)

.

When we put t = tf in the above we find we then get a single equation for x1f given by

x1f = xair + (x0 − xair)e
− t0+tf

T − k21T (x1f − xd)c1
2c2

(

1 + e
2(t0−tf)

T

)

. (108)

which we can solve for the unknown state end point x1f in terms of numbers from the
problem like k2, c1, c2 etc. We do this in the MATLAB script sect 5 prob 4.m where we
find the solution for x1f above given by x∗1f = 67.7324 where the star denotes that we have
the optimal value. In the same MATLAB script we plot x1(t) and u(t) for t0 ≤ t ≤ tf and
get the results shown in Figure 14.

Problem 3.5.5 (single room temperature control: a penalty when x1 6= xd)

If we change the Lagrangian from the previous problem to now be L = c1(x1(t)−xd)2+c2u2,
we now have the x and u partial derivatives given by

∂L
∂x

= 2c1(x1(t)− xd)

∂L
∂u

= 2c2u .

79

0 2 4 6 8 10 12
45

50

55

60

65

70

time

x
1
(
t)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

time

u
(
t)

Figure 14: Left: The state estimate x1(t) for Chapter 3 Section 5 Problem 4 (single room
temperature control: soft end constraint). Here we imposed soft end point constraints and
as such note that x1(t) goes from the initial room temperature of 45 to the final value x∗1f
which is close but not exactly equal to the desired temperature xd = 70 (as it should be).
How close x1f gets to xd depends on the relative size of c1 and c2. Right: The control u(t)
for the same problem. Note that we steady apply more and more heat as time progress.

Keeping the “end point” cost of φ = c1(x1f − xd)
2 as was present in the previous problem,

the Euler-Lagrange equations we must solve are given by

λ̇ =
1

T
λ(t)− 2c1(x1(t)− xd) with λ(tf) = 2c1(x1f − xd)

ẋ1 = − 1

T
(x1(t)− xair) + k1u(t) with x1(t0) = x10

2c2u+ k1λ = 0 or u = − k1
2c2

λ .

We can put this last equation into the equation for x1 to get the coupled system of equations
which we must solve

ẋ1 = − 1

T
(x1(t)− xair)−

k21
2c2

λ(t) with x1(t0) = x10

λ̇ =
1

T
λ(t)− 2c1(x1(t)− xd) with λ(tf) = 2c1(x1f − xd) .

Since these equations are linear there are analytic solutions to the above mixed two-point
boundary value problem, see Problem 3.5.6 on Page 82 where that method is discussed and
used. For this problem however, we will try to solve it numerically using the “neighboring
extremal method”. This is a type of shooting method that can solve two-point nonlinear
boundary value problems. In it we will guess a value for the initial condition for the function
λ(t) and then solve the two ordinary differential equations forward in time for t0 ≤ t ≤ tf .
This gives us a value for the function λ(t) at the time tf . The correct value to assign to the

80

0 2 4 6 8 10 12
45

50

55

60

65

70

75

t

x
1
(
t)

0 2 4 6 8 10 12
0

10

20

30

40

50

60

t

u
(
t)

Figure 15: Left: The state estimate x1(t) for Chapter 3 Section 5 Problem 5 single room
temperature control: a penalty when x1 6= xd. Note that due to the term in the Lagrangian
of c1

∫ tf
t0
(x1(t)− xd)

2dt the function x1(t) very quickly moves to a level close to xd and then
does not change for much of the remaining time. The system This penalty is an effective way
to make the system reach its desired state quickly. Right: The control u(t) for the same
problem. The system effectively inputs a heat delta function and then maintains a constant
heat supply.

initial condition for λ(t0) = λ0 is the one that matches the known end point condition at
t = tf . This means we want λ(tf) = 2c1(x1f − xd). Thus we will try to pick different values
of λ0 such that the best one selected minimizes a measure of the error in the final value of
λ(t) or

J̃ =
1

2
[λ(tf)− 2c1(x(tf)− xd)]

2 .

This procedure is implemented in the MATLAB files:

• sect 5 prob 5.m

• sect 5 prob 5 J min fn.m

• sect 5 prob 5 ode fn.m.

When we run the main script function we calculate that λ0 ≈ −111.1111 and then plots of
x1(t) and u(t) are given in Figure 15.

81

Problem 3.5.6 (heating a two-room building)

From what I understand the problem suggested is for the system dynamics given by

ẋ1 = − 1

T1
(x1 − xair) + k1(x2 − x1) + k2u

ẋ2 = − 1

T2
(x2 − xair) + k1(x1 − x2) ,

with x1(t0) = xair, x2(t0) = xair (to match an earlier problem), a Lagrangian given by

L = c1(x1(t)− xd)
2 + c2u

2 , (109)

and the desired final condition
φ = c1(x1f − xd)

2 .

I’m not sure if there is a typo in the book at this point. A motivation for this comment
comes from the fact that the suggested Lagrangian L above does not depend on the state
x2(t) in anyway. If the control u is to modify the temperature of the second room x2(t)
optimally I would expect to see the function x2(t) in the Lagrangian. If it really does not
appear there than it seems we could just effectively “drop” the dynamic equation for x2(t).
If we are to really control the temperature in the second room, I can see two alternative
(perhaps better) Lagriangians to consider.

L = c1(x2(t)− xd)
2 + c2u

2

L = c1
(

(x1(t)− xd)
2 + (x2(t)− xd)

2
)

+ c2u
2 ,

We would use the first form if we had to heat the second room to the desired temperature xd
“though” the first room, and the second Lagrangian if we wanted both rooms at the desired
temperature xd. The same comments hold for the end point constraint φ. Since I was not
able to get the given Lagrangian to work “as is” I will try the second Lagrangian formulation
above with a similar end point condition

φ = c1(x1f − xd)
2 + c1(x2f − xd)

2 .

In this case we have the partial derivatives of L given by

∂L
∂x1

= 2c1(x1(t)− xd)

∂L
∂x2

= 2c1(x2(t)− xd)

∂L
∂u

= 2c2u .

The system dynamics ẋ = f [x(t), u(t), t] give expressions for the Jacobian matrices F and
G of

F =
∂f

∂x
=

[− 1
T1

− k1 k1
k1 − 1

T2
− k1

]

G =
∂f

∂u
=

[

k2
0

]

.

82

0 2 4 6 8 10 12
45

50

55

60

65

70

t

x
(
t)

x
1
(t)

x
2
(t)

0 2 4 6 8 10 12
−5

0

5

10

15

20

25

30

35

40

t

u
(
t)

Figure 16: Left: The state estimates for x1(t) and x2(t) for Chapter 3 Section 5 Problem 6
heating a two-room building. Right: The control u(t) for the same problem.

From these the Euler-Lagrange equations we must solve are then given by

d

dt

[

λ1(t)
λ2(t)

]

= −
[− 1

T1
− k1 k1
k1 − 1

T2
− k1

] [

λ1
λ2

]

−
[

2c1(x1 − xd)
2c1(x2 − xd)

]

.

∂L
∂u

T

+GTλ = 0 or 2c2u+
[

k2 0
]

[

λ1
λ2

]

= 0 or 2c2u+ k2λ1 = 0 .

The final conditions on λ1 and λ2 are

λ1(tf) = 2c1(x1f − xd) and λ2(tf) = 2c1(x2f − xd) ,

due to the chosen φ function.

As in the previous problem we can solve for u(t) in terms of λ1(t) and then put this expression
into the differential equation for x1. We then have a coupled system of ordinary differential
equations for the unknown functions x1(t), x2(t), λ1(t), and λ2(t). Since we don’t know the
initial conditions of the two functions λ1 and λ2 (we do however know their final conditions at
t = tf) we will find initial conditions for these two functions that minimize the error between
their computed final conditions and the known desired final conditions as well as possible. To
do that we will find initial conditions that minimize the functional J̃ = 1

2
(λ1(tf)

2 + λ2(tf)
2)

numerically. We do this in the MATLAB files sect 5 prob 6.m, sect 5 prob 6 J min fn.m,
and sect 5 prob 6 ode fn.m. When we run the main script function we calculate that
λ1(t0) ≈ −70.654 and λ2(t0) ≈ −77.0126 then plots of x1(t), x2(t) and u(t) are given in
Figure 16. If the mixed boundary value problem is linear then it can be solved exactly
by the principle of superposition. Taken from the book “Optimal Control Theory: An
Introduction” by Donald E. Kirk the procedure for this is as follows, we consider

ẋ(t) = a11(t)x(t) + a12(t)p(t) + e1(t)

ṗ(t) = a21(t)x(t) + a22(t)p(t) + e2(t) .

83

We assume that this linear problem has split boundary conditions where

x(t0) = x0 and p(tf) = pf ,

We first solve the homogeneous problem obtained by dropping e1(t) and e2(t) from the above
system to get xH(t) and pH(t) for t ∈ [t0, tf]. With arbitrary initial conditions say xH(t0) = 0
and pH(t) = 1. We next define the particular solution to the above full system with xp(t)
and pp(t) with with the initial conditions

xp(t0) = x0 and pp(tf) = 0 .

Then since the equations are linear we have

x(t) = c1x
H(t) + pP (t)

p(t) = c1x
H(t) + pP (t) . (110)

is a solution for all c1. To make this match p(tf) = pf or

c1p
H(tf) + pp(tf) = pf .

So we pick

c1 =
pf − pp(tf)

pH(tf)
.

we have the required solution.

84

Optimal State Estimation

Notes on the text

Notes on least squares estimate of constant vectors

For the objective function J(z) given by

J(z) =
1

2
(z −Hx̂)T (z −Hx̂) =

1

2
(zT z − zTHx̂− x̂THT z + x̂THTHx̂) , (111)

with x̂ = HLz where the left pseudoinverse, HL, given by Equation 10 or

HL = (HTH)−1HT . (112)

Then note that the transpose of this matrix is

(HL)T = H(HTH)−1 . (113)

Using this we can write J(z) in terms of z only as

J(z) =
1

2
(zT z − zTH(HTH)−1HTz − zTH(HTH)−1HT z + zTH(HTH)−1HTH(HTH)−1HTz

=
1

2
(zT z − zTH(HTH)−1HTz) . (114)

Since our measurement z is related to the state x via z = Hx+ n we can replace z with an
expression in x in J(z) with an expression in terms of x. We find that the two terms in the
above expression for J(z) transform as

zT z = (Hx+ n)T (Hx+ n)

= xTHTHx+ xTHTn+ nTHx+ nTn and

zTH(HTH)−1HT z = (xTHT + nT)H(HTH)−1HT (Hx+ n)

= (xTHT + nT)(H(HTH)−1HTHx+H(HTH)−1HTn)

= xTHTHx+ xTHTn+ nTHx+ nTH(HTH)−1HTn .

Then the difference zT z − zTH(HTH)−1z needed to evaluate J(z) is given by

J(z) =
1

2

[

nTn− nTH(HTH)−1HTn
]

=
1

2
nT [Ik1 −H(HTH)−1HT]n . (115)

Another expression for J can be obtained by taking z = Hx+ n and x̂ = HLz and putting
them into J = 1

2
(x− x̂)T (x− x̂). To evaluate this we consider the difference x− x̂

x− x̂ = x−HLz = x− (HTH)−1HT (Hx+ n) = x− x− (HTH)−1HTn

= −(HTH)−1HTn ,

85

so J then becomes

J(x) =
1

2
nTH(HTH)−1(HTH)−1HTn . (116)

To evaluate these two we consider a simple example where we are evaluating a random
constant x from k1 noisy measurements zi = x + ni. If we take k1 = 2 as a vector system
our two measurements are

[

z1
z2

]

=

[

1
1

]

x+

[

n1

n2

]

.

To make this match the matrix notation z = Hx + n we have the H matrix given by

H =

[

1
1

]

. Then HTH = 2 and HL = (HTH)−1HT = 1
2

[

1 1
]

. The best estimate of x is

then

x = HLz =
1

2
(z1 + z2) .

To evaluate J(z) using Equation 115 we need

H(HTH)−1HT =

[

1
1

]

1

2

[

1 1
]

so

I2 −H(HTH)−1HT =

[

1 0
0 1

]

− 1

2

[

1 1
1 1

]

=
1

2

[

1 −1
1 −1

]

,

so that

J(z) =
1

2

[

n1 n2

] 1

2

[

1 −1
1 −1

] [

n1

n2

]

=
1

4

[

n1 n2

]

[

n1 − n2

n1 + n2

]

=
1

4
(n2

1 − n1n2 − n1n2 + n2
2) =

1

4
(n1 − n2)

2 .

To evaluate J(x) using Equation 116 since (HTH)−1HT = 1
2

[

1 1
]

its matrix transpose is

given by H(HTH)−1 = 1
2

[

1
1

]

and the matrix product needed is

H(HTH)−1(HTH)−1HT =
1

4

[

1
1

]

[

1 1
]

=
1

4

[

1 1
1 1

]

.

Using this we find J(x) given by

J(x) =
1

8

[

n1 n2

]

[

1 1
1 1

]

[

n1 n2

]

=
1

8

[

n1 n2

]

[

n1 + n2

n1 + n2

]

=
1

8
(n2

1 + n1n2 + n1n2 + n2
2) =

1

8
(n1 + n2)

2 .

We can generalize the above expressions where k1 = 2 to that with a general k1 > 0. In this
case H is a column vector of all ones with k1 elements. The matrix HTH = k1 and HHT is
a k1 × k1 matrix of all ones. Then the two parts of J(z) given by Equation 115 are

nTn =

k1
∑

k=1

n2
k and HTn =

k1
∑

k=1

nk so

nTHHTn =

(

k1
∑

k=1

nk

)2

=

k1
∑

i=1

ni

(

k1
∑

j=1

nj

)

.

86

Thus we have

J(z) =
1

2

k1
∑

k=1

n2
k −

1

2k1

k1
∑

i=1

ni

(

k1
∑

j=1

nj

)

.

In the same way we find for J(x) using Equation 116

J(x) =
1

2k21
nTHHTn =

1

2k21

(

k1
∑

k=1

nk

)2

.

To introduce weighted least squares (WLS) we define the normalized error in our pre-
dicted measurement ŷ relative to the actual measurement or ǫ′z as

ǫ′z = N−1ǫz = N−1(z − ŷ) = N−1(z −Hx̂) .

With this we have J ′(z) given by

J ′(z) =
1

2
ǫ′Tz ǫz =

1

2
(z −Hx̂)TN−TN−1(z −Hx̂)

=
1

2

[

zTS−1z − zTS−1Hx̂− x̂THTS−1z + x̂THTS−1Hx̂
]

. (117)

We define S−1 as the matrix in the inner product or S−1 ≡ N−TN−1 so S = NNT . To pick
the optimal x̂ we take the derivative of the above with respect to x̂, set the result equal to
zero, and solve for x̂. The first derivative is given by

(

∂J ′(z)

∂x̂

)T

= HTS−1Hx̂− 1

2
HTS−T z − 1

2
HTS−1z = HTS−1Hx̂−HTS−1z , (118)

since S is symmetric. Setting this equal to zero and solving for x̂ gives

x̂ = (HTSH)−1HTS−1z . (119)

This is the procedure used to solve the weighted least squares problem. It involves the
weighted left pseudoinverse matrix HWL defined by

HWL = (HTSH)−1HTS−1 . (120)

Having introduced how to solve the weighed least squares problem the book then introduces
two possible matrices for use as S the matrix that represents the squares of the measurement
errors in each component of z − ŷ. The first choice for S, denoted as S1, is based on the
measurement error covariance as

S1 ≡ E[(z − y)(z − y)T] = R . (121)

This version of S incorporates only error randomness that comes from the measurements we
take i.e. measurement errors that arise from the term n. The second choice for S or S2, is
the expected measurement residual covariance and is based on the variance in the predicted

error z − Hx̂. This form for S incorporates errors in both the measurement (from n) and

87

errors that come from our estimate of the state x̂. When we use z = Hx + n we have that
S2 can be written as

S2 ≡ E[(z −Hx̂)(z −Hx̂)T] = E[(Hǫx + n)(Hǫx + n)T] , (122)

since ǫx ≡ x− x̂. Expanding the quadratic above we get that S2 can be written as

S2 = HE[ǫxǫ
T
x]H

T +HE[ǫxn
T] + E[nǫTx]H

T + E[nnT]

= HPHT +HM +HMT +R . (123)

Where we have defined P ≡ E[ǫxǫ
T
x] and M ≡ E[ǫxn

T], which we now need to evaluate.
Using z = y + n and x̂ = HWLz with HWL given by Equation 120 we have

x̂ = HWLy +HWLn = (HTSH)−1HTS−1Hx+HWLn

= x+ (HTSH)−1HTS−1n , (124)

and we have computed ǫx = x− x̂. Using this we have that P is given by

P ≡ E[(x− x̂)(x− x̂)T] = E[(HTSH)−1HTS−1nnTS−1H(HTS−1H)−1]

= (HTSH)−1HTS−1RS−1H(HTS−1H)−1 . (125)

While M is given by

M ≡ E[(x− x̂)nT] = −E[(HTSH)−1HTS−1nnT]

= −(HTSH)−1HTS−1R . (126)

In the above formulas we have expressed a set of relationships that must hold between the
matrices P , M , and S. The relationships are more or less coupled depending on the choice
for S. In the simplest case S = S1 = R and P and M become

P = (HTR−1H)−1HTR−1H(HTR−1H)−1 = (HTR−1H)−1 (127)

M = −(HTR−1H)−1HT . (128)

When S = S2 then S depends on P and M via Equation 123 so we have to find values for
all three matrices that are consistent. These three matrices must satisfy Equations 123, 125,
and 126 and in general there maybe only a numerical solution to this problem. To obtain a
numerical solution put Equation 125 (the expression for P) into Equation 126 (the expression
for M) into Equation 123 (the expression for S2). We find

S2 = H
[

(HTS−1
2 H)−1HTS−1

2 RS−1
2 H(HTS−1

2 H)−1
]

HT

−H(HTS2H)−1HTS−1
2 R−RS−1

2 H(HTS2H)−1HT +R

= [H(HTS−1
2 H)−1HTS−1

2 − Ik1]R[H(HTS−1
2 H)−1HTS−1

2 − Ik1]
T

= L(S2)RL(S2)
T . (129)

Where we have defined L(·) a function of S2 as

L(S2) ≡ H(HTS−1
2 H)−1HTS−1

2 − Ik1 . (130)

Using this representation we can iteratively compute estimates for S2 by first picking an
initial value for S2, say R = S1, computing L via Equation 130, and computing a new
estimate of S2 using Equation 129.

88

Notes on a least squares parameter estimation problem example

For the system given in this example we can create a vector containing all the parameters

by taking p equal to p ≡





p1
p2
p3



 =





ω2
n

2ζωn

g



, then given the two unknowns x1, x2, and the

forcing u, the exact measurement of ẋ2, is given by

ẋ2 = −ω2
nx1 − 2ζωnx2 + gu .

In terms of the components of the parameter vector p this is

ẋ2 = −p1x1 − p2x2 + p3u .

If was assume that we now measure noise values x2 we can write this single constraint in the
form z = hp+ n for a row vector h given by h =

[

−x1 −x2 u
]

. Since this hold for only
a single time point we assemble all h’s by way of stacking to get a H matrix of

H =











−x11 −x21 u1
−x12 −x22 u2
...

...
...

−x1n −x2n un











.

Then as a system our parameter estimate for p will satisfy z = Hp+ n, for a column vector
z containing all measurements. The least-squares solution for this system for p is then
p̂ = (HTH)−1HT z.

Notes on recursive least squares estimation

In this section we derive a form for recursive estimation of our unknown state x. We assume
that have k1 measurements in the vector z1 and k2 measurements in the vector z2, where the
vector z1 is observed first and then the vector z2 is observed. Our first set of measurements
are related to our state x in the usual way with z1 = H1x+ n1, with E[n1n

T
1] = R1, and the

optimal estimate of x is given by

x̂1 = (HT
1 R

−1
1 H1)

−1HT
1 R

−1
1 z1 . (131)

Then given a new set of k2 measurements in the vector z2 we can derive a recursive update
formula used to process these measurements by asking what the optimal estimator, x̂2, would

be after we processed the single vector containing all the measurements or z =

[

z1
z2

]

. To

determine this we can form a criterion function to determine optimality or J(z1, z2) as

J(x̂2; z1, z2) ≡
1

2

[

z1 −H1x̂2 z2 −H2x̂2
]

[

R−1
1 0
0 R−1

2

] [

z1 −H1x̂2
z2 −H2x̂2

]

.

Notice how the variable x̂2 is located in both coordinate positions in the block vectors in the
above inner product. This is because we want to find the vector that will optimally predict

89

both sets of measurements z1 and z2. Expanding the block inner product in the quadratic
above into two other inner products gives

J(x̂2) =
1

2
(z1 −H1x̂2)R

−1
1 (z1 −H1x̂2) +

1

2
(z2 −H2x̂2)R

−1
2 (z2 −H2x̂2) .

Taking the derivative with respect to x̂2 and setting the result equal to 0 gives

HT
1 R

−1
1 H1x̂2 −HT

1 R
−1
1 z1 +HT

2 R
−1
2 H2x̂2 −HT

2 R
−1
2 z2 = 0 .

When we solve for x̂2 we find

x̂2 = (HT
1 R

−1
1 H1 +HT

2 R
−1
2 H2)

−1(HT
1 R

−1
1 z1 +HT

2 R
−1
2 z2) . (132)

This is the non-recursive form of the estimator for x̂2, since any work we did to compute
x̂1 must be “redone” when we compute the above expression. We next introduce P1 as in
Equation 127 as

P−1
1 ≡ HT

1 R
−1
1 HT

1 , (133)

by which we see that the estimate x̂1 from Equation 131 in terms of P1 is given by

x̂1 = P1H
T
1 R

−1
1 z1 . (134)

This functional form for x̂1 when we consider Equation 132 (in that we have a matrix inverse
times expressions in zi to compute our estimate x̂) leads us to introduced a matrix P2 defined
as

P2 ≡ (HT
1 R

−1
1 H1 +HT

2 R
−1
2 H2)

−1 . (135)

Next using the matrix inversion lemma Equation 18 we can write P2 as

(P−1
1 +HT

2 R
−1
2 H2)

−1 = P1 − P1H
T
2 (H2P1H

T
2 +R2)

−1H2P1 .

Using this in Equation 132 and the estimate of x̂1 from x̂1 = P1H
T
1 R

−1
1 z1 the expression for

x̂2 derived above can be written

x̂2 = x̂1 − P1H
T
2 (H2P1H

T
2 +R2)

−1H2x̂1 + P1H
T
2 [Ik2 − (H2P1H

T
2 +R2)

−1H2P1H
T
2]R

−1
2 z2 .

We replace the identity matrix Ik2 in the above with the expression

Ik2 = (H2P1H
T
2 +R2)

−1(H2P1H
T
2 +R2) ,

so that we get for x̂2 the following

x̂2 = x̂1 − P1H
T
2 (H2P1H

T
2 +R2)

−1
[

H2x̂1 +
(

(H2P1H
T
2 +R2)−H2P1H

T
2

)

R−1
2 z2

]

= x̂1 + P1H
T
2 (H2P1H

T
2 +R2)

−1(z2 −H2x̂1) . (136)

Often we define the coefficient matrix in front of the vector z2 −H2x̂2 as K2 the recursive
weighted-least-squares gain matrix

K2 = P1H
T
2 (H2P1H

T
2 +R2)

−1 . (137)

90

Notes on recursive estimation of a scalar constant

Returning to the scalar estimation example on Page 85, where we have k1 noisy measurements
of a scalar zi = x + ni, for i = 1, 2, · · · , k1 followed by one new measurement. Then in
the notation of the previous section the matrix H1 is a column vector of all 1’s and the
measurement noise covariance R1 is given by R1 = Ik1 . Then P1 = (HT

1 R
−1
1 H1)

−1 = 1
k1

our
estimate of x after the first set of k1 measurements is

x̂1 = (HT
1 R

−1
1 H1)

−1HT
1 R

−1
1 z1 =

1

k1

k1
∑

k=1

zk .

When a single new measurement zk1+1 is observed we have H2 = 1 with R2 = 1. Thus using
Equation 135 and 133 we have

P2 = (P−1
1 +HT

2 R
−1
2 H2)

−1 = (k1 + 1)−1 .

Finally Equation 137 gives

k2 =

(

1

k1

)

(1)

(

1

k1
+ 1

)−1

=
1

k1 + 1
,

so that the updated estimate of x or x̂2 is

x̂2 = x̂1 + k2(zk1+1 − x̂1) .

Notes on propagation of the state estimate and its uncertainty

When n = 2 the matrices P , Φ, Λ and Q′ in terms of their components, are given by

P =

[

p11 p12
p12 p22

]

, Φ =

[

φ11 φ12

φ21 φ22

]

, Λ =

[

λ11 λ12
λ21 λ22

]

, Q′ =

[

q11 0
0 q22

]

.

Thus we can compute the right-hand-side of the covariance update equation or the right-
hand-side of

Pk = Φk−1Pk−1Φ
T
k−1 + Λk−1Q

′
k−1Λ

T
k−1 . (138)

In the Mathematica file direct propagation of state uncertainty.nb we perform the
matrix multiplications above to get three equations for the (1, 1), (1, 2) and (2, 2) spots (by
symmetry the equation for (2, 1) is a duplicate of the equation for (1, 2))

p11φ
2
11 + 2p12φ11φ12 + p22φ

2
22 + λ211q11 + λ212q22

p11φ11φ21 + p12(φ12φ21 + φ11φ22) + p22φ12φ22 + λ11λ21q11 + λ12λ22q22

p11φ
2
21 + 2p12φ21φ22 + p22φ

2
22 + λ221q11 + λ222q22 .

When these equations are place in a linear system with input vectors
[

p11 p12 p22
]T

and
[

q11 q22
]T

(evaluated at tk−1) we get the linear system given in the book.

91

Notes on autocorrelated process noise: state augmentation

We consider the original discrete state update equation

xk = Φk−1xk−1 + Γk−1uk−1 + Λk−1wk−1 , (139)

with the Markov model for the noise wk given by

wk = Ak−1wk−1 + ηk−1 .

To fit this situation into the Kalman filtering framework we have developed thus far we will

extend the original state xk to include the noise wk to get the expanded state Xk =

[

xk
wk

]

.

For this enlarged state we find that the state dynamics propagate with
[

xk
wk

]

=

[

Φk−1 Λk−1

0 Ak−1

] [

xk−1

wk−1

]

+

[

Γk−1

0

]

uk−1 +

[

0
Is

]

ηk−1 (140)

Thus this augmented system has process noise vector of the form ηk−1 multiplied by the

augmented Λ matrix

[

0
Is

]

. Then using Equation 138 on this augmented system the matrix

propagation equation is given by

[

P 0
0 W

]

k

=

[

Φ Λ
0 A

]

k−1

[

P 0
0 W

]

k−1

[

Φ Λ
0 A

]T

k−1

+

[

0
Is

]

Qk−1

[

0 Is
]

. (141)

Notes on sampled-data representation of continuous time systems

From the theory of linear systems we can represent the solution at tk in terms of the state
at tk−1 using the state propagation matrix, the control u(τ), and the noise w(τ) as

xk = Φk−1xk−1 +

∫ tk

tk−1

Φ(tk, τ)[G(τ)u(τ) + L(τ)w(τ)]dτ . (142)

Taking the expectation of this expression the mean mk ≡ E[xk] propagates according to

mk = Φk−1mk−1 +

∫ tk

tk−1

Φ(tk, τ)G(τ)u(τ)dτ .

So the difference xk −mk is

xk −mk = Φk−1(xk−1 −mk−1) +

∫ tk

tk−1

Φ(tk, τ)L(τ)w(τ)dτ .

Using this we can “square” this vector and compute its expectation. By defining Pk to be
Pk ≡ E[(xk −mk)(xk −mk)

T] we find

Pk = Φk−1Pk−1Φ
T
k−1 + E

[

∫ tk

tk−1

∫ tk

tk−1

Φ(tk, τ)L(τ)w(τ)w
T (α)LT (α)ΦT (tk, α)dαdτ

]

. (143)

92

Now using E[w(τ)wT (α)] = Q′
C(τ)δ(τ − α) we can evaluate the α integral in the above. We

define the resulting expression to be Qk−1 and get

Qk−1 =

∫ tk

tk−1

Φ(tk, τ)L(τ)Q
′
C(τ)L

T (τ)ΦT (tk, τ)dτ . (144)

This expression is how we obtain the discrete noise covariance matrix given its continuous
system. We now consider a couple of examples.

For the scalar system ẋ(t) = fx(t) + w(t) our state-transition matrix is given by φ(t, t0) =
ef(t−t0). Then using Equation 144 to compute the discrete time state propagation covariance
matrix qk−1 we have

qk−1 =

∫ tk

tk−1

ef(tk−τ) 1 qC 1 ef(tk−τ)dτ = qC

∫ tk

tk−1

e2f(tk−τ)dτ = qCe
2ftk

∫ tk

tk−1

e−2fτdτ

=
qC
2f
e2ftk(e−2ftk−1 − e−2ftk) =

qC
2f

(e−2f∆t − 1) .

For the two dimensional system

dx

dt
=

[

0 1
a b

]

x+

[

0
w

]

,

with E[w(t)2] = qCδ(t − τ). To use Equation 144 to evaluate Qk−1 in forming the discrete

model from the continuous model we note that L(τ) = I, Q′
C =

[

0 0
0 qC

]

, and because our

system matrix F =

[

0 1
a b

]

is independent of time that the state-transition matrix Φ(t, τ)

is given by Φ(t, τ) = eF (t−τ), thus we see that

Qk−1 =

∫ tk

tk−1

eF (tk−τ)

[

0 0
0 qC

]

eF
T (tk−τ)dτ .

If we let ξ = tk − τ so that dξ = −dτ and the above becomes

Qk−1 =

∫ ∆t

0

eFξ

[

0 0
0 qC

]

eF
T ξdξ . (145)

Note that we could factor qC out of this integral to make the inner most matrix a zero matrix
with only a single 1 at the (2, 2) position. To evaluate this expression further we need to be
able to compute the matrix exponential eFt in some way. Since the functional form from F

is known to be

[

0 1
a b

]

and is independent of t, this can be done in several ways (probably

more). These include

• Using the definition of eFt as n solutions to the original differential equation system
with the n initial conditions given by the n columns of the identity matrix.

93

• Using a Taylor series representation to evaluate eFt.

• Inverse Laplace transforms of the inverse of sIn − F in that

L−1((sIn − F)−1) = eFt = Φ(t, 0) ,

if the inverse Laplace transform of the elements of (sIn − F)−1 are easy to compute.

• Evaluate the expression eFt numerically for any needed t. In computing Φ(t, τ) nu-
merically we could use any of several methods aimed at solving the original differential
equation or to make things simple we could simply use the MATLAB function expm.

Using the last method in the MATLAB script sect 2 dup example 4 2 2.m we call the
function example 4 2 2 compute qkm1.m to compute the value of Qk−1 for several numerical
values of a, b, and ∆t. We specify the value of a, b, and ∆t we want to compute Qk−1 for
so that we can duplicate the table presented in the book. When the above MATLAB script
we get the following table of results (these match the book’s results quite nicely)

a b dt: q11 q12 q22

-1.0000 -2.0000 0.0100: 0.0000 0.0000 0.0098

-1.0000 -2.0000 0.1000: 0.0003 0.0041 0.0822

-1.0000 -2.0000 1.0000: 0.0808 0.0677 0.2162

-1.0000 2.0000 0.0100: 0.0000 0.0001 0.0102

-1.0000 2.0000 0.1000: 0.0004 0.0061 0.1225

-1.0000 2.0000 1.0000: 1.5975 3.6950 8.9870

1.0000 -2.0000 0.0100: 0.0000 0.0000 0.0098

1.0000 -2.0000 0.1000: 0.0003 0.0041 0.0827

1.0000 -2.0000 1.0000: 0.1122 0.1267 0.2912

1.0000 2.0000 0.0100: 0.0000 0.0001 0.0102

1.0000 2.0000 0.1000: 0.0004 0.0061 0.1234

1.0000 2.0000 1.0000: 2.4975 6.9186 19.5292

Notes on Example 4.2-3 the weathervane angle rate uncertainty

Since the system matrix F is of the same type as we have seen earlier (Page 93) we can use
the MATLAB code developed earlier in example 4 2 2 compute qkm1.m to duplicate this
example. Here we take the matrix L as the identity and the process noise vector w(t) in

terms of the scalar function w(t) as w(t) =

[

0
ω2
n

]

w(t) =

[

0
ω2
nw(t)

]

. Thus we get that

L(τ)Q′
C(τ)L(τ)

T =

[

0 0
0 ω4

n × 1

]

= ω4
n

[

0 0
0 1

]

,

which indicates that when we compute Qk−1 = Q(∆t) using Equation 144 we can factor out
a leading ω4

n as discussed around Equation 145 to get

Qk−1 = ω4
n

∫ ∆t

0

eFξ

[

0 0
0 1

]

eF
T ξdξ .

94

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

p
11

 and p
12

 scaled

seconds
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
22

 scaled

seconds

Figure 17: Left: Plots of p11 and p12 for ∆t = 0.1 and ∆t = 0.01. Right: Plots of p22 for
∆t = 0.1 and ∆t = 0.01. The × correspond to the larger value for ∆t.

We can evaluate this by calling the routine example 4 2 2 compute qkm1.m. In the MAT-
LAB script sect 2 dup example 4 2 3.m we do just that and get

Q(0.1) =

[

0.0002 0.0030
0.0030 0.0626

]

,

and Φ(0.1) is given by

Φ(0.1) = eF 0.1 =

[

0.8309 0.0780
−3.0747 0.5372

]

,

these match the results from the book. We can perform the same calculations using a smaller
value for ∆t say 0.01. When we plot the evolution of p11, p12 and p22 under the two we obtain
the plots given in Figure 17.

Notes on the Kalman filter

Using the symmetric matrix inversion lemma given by Equation 18 we can derive an alter-
native expression for Pk(+). We have

Pk(+) = [Pk(−) +HT
k R

−1
k Hk]

−1

= Pk(−)− Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1HkPk(−) . (146)

But from the expression

Kk = Pk(−)HT
k (HkPk(−)HT

k +Rk)
−1 , (147)

95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (sec)

a
n
g
l
e

(
d
e
g
)

true angle
angle estimate: H

1

angle measurement

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (sec)

a
n
g
l
e

(
d
e
g
)

true angle
angle estimate: H

2

angle estimate: H
3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−15

−10

−5

0

5

10

15

20

time (sec)

a
n
g
l
e

(
d
e
g
)

true angle rate
angle rate estimate: H

2

Figure 18: Left: Angle estimates with two measurements. Center: Angle estimates with
one measurement. Right: Angular rate measurements with angle measurement. The truth
is plotted in green, measurements in black. Estimates with H = H1 are plotted in blue,
estimates with H = H2 in cyan, with H = H3 with magenta.

for Kk derived earlier, the second term in the above expression for Pk(+) can be written as

Pk(+) = Pk(−)−KkHkPk(−) = (In −KkHk)Pk(−) . (148)

From the iterative expression for Kk (Kk is on both sides of the equals sign) derived in the
book and given by

Kk = (In −KkHk)Pk(−)HT
k R

−1
k , (149)

we can use this expression by post-multiplying both sides of Equation 148 by HT
k R

−1
k to

which the resulting right-hand-side then becomes Kk to obtain

Kk = Pk(+)HT
k R

−1
k . (150)

Notes on Example 4.3-1 the weathervane angle rate estimation

In the MATLAB script sect 3 dup example 4 3 1.m we duplicate the example from this
section. Plots of the corresponding images are given in Figure 18. We can also look at the
steady-state Kalman estimates of P (+). If we consider the default parameter case we get

p11 p12 p22

H1: 0.066717 0.001547 0.099826

H2: 0.089934 0.725597 61.163986

H3: 1.060471 0.001881 0.099907

96

The book then states if we divide Q by ω4
n we get a “low-signal-to-noise” case. Since I found

ω4
n = 1555 when one divides Q by this the process noise actually decreases so I would expect

the signal-to-noise to increase. In any case for this case we get the following steady-state
covariance

p11 p12 p22

H1: 0.001737 0.000347 0.047826

H2: 0.003137 0.000471 0.127672

H3: 0.001806 0.000255 0.048111

Both of these numbers agree quite well with the numbers given in the book.

Notes on Alternative forms of the linear-optimal filter

We want to use the measurement update equation given by

x̂k(+) = (In −KkHk)x̂k(−) +Kkzk , (151)

to derive an alternative estimate of the filtering error covariance Pk(+). We begin by defining

ǫk(−) ≡ xk − x̂k(−) (152)

ǫk(+) ≡ xk − x̂k(+) . (153)

Which when put into Equation 151 gives

xk − ǫk(+) = (In −KkHk)(xk − ǫk(−)) +Kkzk ,

or
ǫk(+) = KkHKxk + (In −KkHk)ǫk(−)−Kkzk .

But our measurement is given by zk = Hkxk + nk so the above becomes

ǫk(+) = KkHkxk + (In −KkHk)ǫk(−)−KkHkxk −Kknk ,

or
ǫk(+) = (In −KkHk)ǫk(−)−Kknk . (154)

Using this expression we can obtain the Joseph form for Pk(+) ≡ E[ǫk(+)ǫk(+)T] given by

Pk(+) = (In −KkHk)Pk(−)(In −KkHk)
T +KkRkK

T
k . (155)

This expression assumes uncorrelated disturbance and measurement noise i.e. E[wk−1n
T
k] =

0. See Page 98 for the case where the disturbance and measurement noise are correlated.

97

Correlation of Disturbance Input and Measurement Noise i.e. E[wk−1n
T
k] ≡Mk 6= 0

In this section of these notes we want to consider the situation where the disturbance noise
wk−1 in going from tk−1 to tk and the measurement noise nk at time tk are cross-correlated.
This means that E[wk−1n

T
k] ≡ Mk 6= 0. We start with ǫk(−) given by Equation 152 which

we write as

ǫk(−) = xk − x̂k(−) = Φk−1xk−1 + wk−1 − Φk−1x̂k−1(+)

= Φk−1ǫk−1(+) + wk−1 , (156)

and ǫk(+) given by using Equation 154 which we write as

ǫk(+) = ǫk(−)−Kk[Hkǫk(−) + nk] . (157)

Now when we use Equation 157 to compute Pk(+) = E[ǫk(+)ǫk(+)T] there will be terms
E[ǫk(−)nT

k] which by Equation 156 and the fact that E[wk−1n
T
k] 6= 0 will not vanish. For

example, we find Pk(+) given by

Pk(+) ≡ E[(ǫk(−)−KkHkǫk(−)−Kknk)(ǫk(−)−KkHkǫk(−)−Kknk)
T]

= E[ǫk(−)ǫk(−)T − ǫk(−)ǫk(−)THT
k K

T
k − ǫk(−)nT

kK
T
k

−KkHkǫk(−)ǫk(−)T +KkHkǫk(−)ǫk(−)THT
k K

T
k +KkHkǫk(−)nT

kK
T
k

−Kknkǫk(−)T +Kknkǫk(−)THT
k K

T
k +Kknkn

T
kK

T
k]

= Pk(−)− Pk(−)HT
k K

T
k − E[ǫk(−)nT

k]K
T
k

−KkHkPk(−) +KkHkPk(−)HT
k K

T
k +KkHkE[ǫk(−)nT

k]K
T
k

−KkE[nkǫk(−)T] +KkE[nkǫk(−)T]HT
k K

T
k +KkRkK

T
k .

The first, second, fourth, and fifth terms in the above combine to give

(In −KkHk)Pk(−)(In −KkHk)
T ,

as can be seen by expanding this last expression out. Thus we have for Pk(+) the following

Pk(+) = (In −KkHk)Pk(−)(In −KkHk)
T +KkRkK

T
k

−E[ǫk(−)nT
k]K

T
k +KkHkE[ǫk(−)nT

k]K
T
k −KkE[nkǫk(−)T] +KkE[nkǫk(−)T]HT

k K
T
k .

Now we use the fact that ǫk(−) = Φk−1ǫk−1(+) + wk−1 to evaluate the above. We get

E[ǫk(−)nT
k] = Φk−1E[ǫk−1(+)nT

k] + E[wk−1n
T
k] ≡ Mk ,

because E[ǫk−1(+)nT
k] = 0 since the new measurement error or nk, at time step k is inde-

pendent of any error (a priori or a posteriori) we have in our filtering at the previous time
step k − 1. When we use this fact to take the expectation of these last four terms in Pk(+)
we get

−MkK
T
k −KT

k M
T
k +KkHkMkK

T
k +KkM

T
k H

T
k K

T
k = −MkK

T
k −KkM

T
k +Kk(HkMk+M

T
k H

T
k)K

T
k .

Thus we finally end with Pk(+) taking the following form

Pk(+) = (In −KkHk)Pk(−)(In −KkHk)
T +KkRkK

T
k

+Kk(HkMk +MT
k H

T
k)K

T
k −MkK

T
k −KkM

T
k . (158)

98

To evaluate the optimal gain Kk, we form the objective function Jk ≡ Tr[E[ǫk(+)ǫk(+)T]] =
Tr[Pk(+)] and pick the Kalman gain Kk so that we minimize Jk. To do this we need to recall
the following matrix derivatives of traces

∂

∂A
Tr(ABAT) = 2AB and

∂

∂A
Tr(ABT) = B and

∂

∂A
Tr(BAT) = B . (159)

To use these derivatives most easily it will be helpful to write Pk(+) as

Pk(+) = Pk(−) +Kk[HkPk(−)HT
k + Rk +HkMk +MT

k H
T
k]K

T
k

− (Pk(−)HT
k +Mk)K

T
k −Kk(HkPk(−)−MT

k) . (160)

Taking the trace of this expression and then the Kk derivative we have

∂Jk
∂Kk

= 2Kk[HkPk(−)HT
k +Rk +HkMk +MT

k H
T
k]− 2Pk(−)HT

k − 2Mk . (161)

When we set this equal to zero and then solve for Kk we get

Kk = [Pk(−)HT
k +Mk][HkPk(−)HT

k +Rk +HkMk +MT
k H

T
k]

−1 . (162)

For notational simplicity in the next derivation, lets denote the symmetric matrixHkPk(−)HT
k +

Rk +HkMk +MT
k H

T
k as Ak. Now using the optimal value for Kk given by Equation 162 in

the expression for Pk(+) given by Equation 160 we find

Pk(+) = Pk(−) + (Pk(−)HT
k +Mk)A

−1
k AkA

−1
k (HkPk(−) +MT

k)

− (Pk(−)HT
k +Mk)A

−1
k (HkPk(−) +MT

k)− (Pk(−)HT
k +Mk)A

−1
k (HkPk(−) +MT

k)

= Pk(−)− (Pk(−)HT
k +Mk)A

−1
k (HkPk(−) +MT

k)

= Pk(−)−Kk(HkPk(−) +MT
k) , (163)

for the a posteriori covariance matrix in the case where we have correlated disturbance and
measurement noise.

Notes on time-correlated measurement noise

In this section we derive some of the Kalman filtering expressions presented in the book. We
don’t derive all of the results presented in the book, since several of the results are simply
quoted from various papers. The book states that in the case of time-correlated measurement
noise state-augmentation by appending the measurement noise nk is not a good idea. Instead
we frame the problem in terms of the measurement difference ζk−1 defined as

ζk−1 ≡ zk −Ψk−1zk−1 , (164)

where we assume that our measurement noise nk, is given by the first order Markov process

nk = Ψk−1nk−1 + νk−1 , (165)

99

with E[νkν
T
k] = Qνk . Then we can write ζk−1 using Equation 139 assuming no control

Γk−1 = 0 and Λk−1 = I as

ζk−1 = zk −Ψk−1zk−1

= Hkxk + nk −Ψk−1[Hk−1xk−1 + nk−1]

= Hk(Φk−1xk−1 + wk−1) + (Ψk−1nk−1 + νk−1)−Ψk−1(Hk−1xk−1 + nk−1)

= (HkΦk−1 −Ψk−1Hk−1)xk−1 +Hkwk−1 + νk−1 , (166)

since the terms Ψk−1nk−1 cancel. Motivated by this we define derived measurement mapping
coefficients Dk−1 and derived noise nDk−1

as

Dk−1 ≡ HkΦk−1 −Ψk−1Hk−1 (167)

nDk−1
≡ Hkwk−1 + νk−1 , (168)

so that in terms of these derived variables we have

ζk−1 = Dk−1xk−1 + nDk−1
. (169)

It is this derived measurement equation that we would then work with. It is helpful to state
the connection to the results from the previous section. To do that we note that this derived
measurement noise nDk−1

is now cross-correlated with the original process noise wk−1, since

E

[[

wk−1

nDk−1

]

[

wT
k−1 nT

Dk−1

]

]

=

[

Qk−1 E[wk−1w
T
k−1]H

T
k + E[wk−1ν

T
k−1]

HkQk−1 E[(Hkwk−1 + νk−1)(Hkwk−1 + νk−1)
T]

]

=

[

Qk−1 Qk−1H
T
k

HkQk−1 HkQk−1H
T
k +Qνk−1

]

,

which has non-zero off diagonal elements since Qk−1H
T
k 6= 0. At this point we should

take a step back from the derivations that we have been performing to try to look at the
bigger picture. By formulating the time-correlated measurement noise problem in terms of
the difference zk − Ψk−1zk−1 we have reduced this problem to the case of cross-correlated
disturbance noise which we have already seen how to solve on Page 98. Thus we could now
implement a filter designed with cross-correlated disturbance and measurement noise and
have the full solution to our problem.

Notes on the continuous Kalman-Bucy filter

In this section of these notes we start with the discrete Kalman filtering results derived
above and then take limits as the sampling interval ∆t shrinks to zero to derive continuous

versions of the Kalman filtering equations. To begin, first note that when ∆t ≪ 1 we have
that Φk−1 ≈ I + Fk−1∆t so that the discrete covariance propagation Equation 138 when
Λk−1 = I becomes

Pk(−) = [I + Fk−1∆t]Pk−1(+)[I + Fk−1∆t]
T +Qk−1 .

100

Using the a posteriori covariance Equation 148 to replace Pk−1(+) in the above we have that

Pk(−) = [I + Fk−1∆t](I −Kk−1Hk−1)Pk−1(−)[I + Fk−1∆t]
T +Qk−1

= (I −Kk−1Hk−1 + Fk−1∆t− Fk−1Kk−1Hk−1∆t)[Pk−1(−) + Pk−1(−)F T
k−1∆t] +Qk−1

= Pk−1(−) + Pk−1(−)F T
k−1∆t−Kk−1Hk−1Pk−1(−)−Kk−1Hk−1Pk−1(−)F T

k−1∆t

+ Fk−1Pk−1(−)∆t +O(∆t2)− Fk−1Kk−1Hk−1Pk−1(−)∆t− O(∆t2) +Qk−1 ,

when we expand all products. If we form the first difference in time of Pk(−) we get

Pk(−)− Pk−1(−)

∆t
= Fk−1Pk−1(−) + Pk−1(−)F T

k−1 +
Qk−1

∆t

− Kk−1

∆t
Hk−1Pk−1(−)− Fk−1Kk−1Hk−1Pk−1(−)

−Kk−1Hk−1Pk−1(−)F T
k−1 +O(∆t) . (170)

We now need to evaluate the how the discrete variables Qk−1 and Kk−1 are related to the
continuous spectral densities Q′

C(t) and RC(t) as ∆t shrinks to zero.

From Equation 144 (and dropping the prime on QC found there) we can write

Qk−1 ≈ L(tk−1)QC(tk−1)L
T (tk−1)∆t ,

and when we have a constant error spectral density RC in the interval tk−1 < t < tk we have

Rk−1 =
RC(tk−1)

∆t
, (171)

so R−1
k−1 = R−1

C (tk−1)∆t. The optimal expression for the discrete Kalman gain Kk−1 is given
by Equation 150 and gives

Kk−1 ≈ Pk−1(+)HT
k−1R

−1
C (tk−1)∆t .

Lets define the continuous Kalman gain KC(t) as

KC(tk−1) ≡
Kk−1

∆t
= P (tk−1)H

T
k−1R

−1
C (tk−1) .

Now as ∆t → 0 we have Pk−1(−) ≈ Pk−1(+) then the fifth Fk−1Kk−1Hk−1Pk−1(−) and sixths
terms Kk−1Hk−1Pk−1(−)F T

k−1 on the right-hand-side of Equation 170 vanish and we are left
with

Ṗ (t) = F (t)P (t) + P (t)F (t)T + L(t)QC(t)L(t)
T −KC(t)H(t)P (t)

= F (t)P (t) + P (t)F (t)T + L(t)QC(t)L(t)
T − P (t)H(t)TRC(t)

−1H(t)P (t) , (172)

with the initial condition P (0) = P0 for the continuous covariance estimation equation. Note
we have used the definition of the continuous Kalman gain KC(t) given by

KC(t) = P (t)HT (t)R−1
C (t) . (173)

To derive the continuous state estimation equation we start with

x̂k(+) = (Φk−1x̂k−1(+) + Γk−1uk−1) +Kk {zk −Hk[Φk−1x̂k−1(+) + Γk−1uk−1]} . (174)

101

Then for small ∆t we have Φk−1 ≈ In + Fk−1∆t so the above becomes

x̂k(+) ≈ x̂k−1(+) + ∆tFk−1x̂k−1(+) + Γk−1uk−1

+Kk {zk −Hkx̂k−1(+)−∆tHkFk−1x̂k−1(+)−HkΓk−1uk−1} .

Recall that in going from the continuous system to the discrete system the product Γk−1uk−1

can be approximated as

Γk−1uk−1 ≡
∫ tk

tk−1

Φ(tk, τ)G(τ)u(τ)dτ ≈ Φ(tk, tk−1)G(tk−1)u(tk−1)∆t

≈ (I + Fk−1∆t)G(tk−1)u(tk−1)∆t = (I + Fk−1∆t)Gk−1uk−1∆t .

So that just the matrix Γk−1 can be represented with

Γk−1 = (I + Fk−1∆t)Gk−1∆t = Gk−1∆t +O(∆t2) .

Using this in the expression we have for x̂k(+) we get

x̂k(+) = x̂k−1(+) + [Fk−1x̂k−1(+) +Gk−1uk−1]∆t

+Kk {zk −Hk[x̂k−1(+) + (Fk−1x̂k−1(+) +Gk−1uk−1)∆t]} . (175)

Thus
x̂k(+)− x̂k−1(+)

∆t
= Fk−1x̂k−1(+) +Gk−1uk−1 +

Kk

∆t
[zk − · · ·] .

As ∆t→ 0 we get

dx̂(t)

dt
= F (t)x̂(t) +G(t)u(t) + P (t)HT (t)R−1(t)[z(t)−H(t)x̂(t)] , (176)

with x̂(0) = x̂0.

Notes on alternative forms of the linear-optimal filter

In this section we will derive an alternative way to compute KC(t) rather than using Equa-
tions 172 and 173. We start with a decomposition of P (t) in that we can write it in terms
of two other matrices Λ(t) and X(t) as

P (t) = Λ(t)X−1(t) . (177)

This of means that
Λ(t) = P (t)X(t) . (178)

Writing Equation 172 but expressed in terms of the matrices Λ(t) and X(t) we get

Ṗ = FΛX−1 + ΛX−1F T + LQCL
T − ΛX−1HTR−1

C HΛX−1 . (179)

From Equation 177 the time derivative of P (t) is given by

Ṗ = Λ̇X−1 − ΛX−1ẊX−1 .

102

so post-multiplying both sides by X gives

ṖX = Λ̇− ΛX−1Ẋ (180)

We can also post-multiply Equation 179 by X to get another expression for ṖX namely

ṖX = FΛ + ΛX−1F TX + LQCL
TX − ΛX−1HTR−1

C HΛ .

We set this equal to the right-hand-side of Equation 180 we get

Λ̇− ΛX−1Ẋ = FΛ+ ΛX−1F TX + LQCL
TX − ΛX−1HTR−1

C HΛ .

One way the above equation can hold true if we set Λ̇ equal to the first and third terms on
the right-hand-side or

Λ̇ = FΛ+ LQCL
TX . (181)

If this equation is to be true then we must set the second term −ΛX−1Ẋ equal the second

and fourth terms or

−ΛX−1Ẋ = ΛX−1F TX − ΛX−1HTR−1
C HΛ .

If we pre-multiply by −Λ−1X we get

Ẋ = −F TX +HTR−1
C HΛ , (182)

Combining Equations 181 and 182 into one system we have

[

Λ̇

Ẋ

]

=

[

F LQCL
T

HTR−1
C H −F T

] [

Λ
X

]

≡ A(t)

[

Λ
X

]

. (183)

Where we have defined the matrix A in the above expression. To determine initial conditions
for this larger system, since Λ(t) = P (t)X(t) when t = 0 we have Λ(0) = P (0)X(0) so if
we take the initial conditions for X to be X(0) = In then we must have Λ(0) = P (0). By

solving this larger system for the vector

[

Λ
X

]

we can compute P (t) for all time.

If all of the matrices F, L,QC , H,RC found in Equation 183 are constant then we can compute
the state transition matrix Θ(∆t) as

Θ(∆t) = eA∆t =

[

Θ11 Θ12

Θ21 Θ22

]

.

The state transition matrix, eA∆t, by definition satisfies

[

Λ(t+∆t)
X(t +∆t)

]

=

[

Θ11 Θ12

Θ21 Θ22

] [

Λ(t)
X(t)

]

.

or in component form

Λ(t+∆t) = Θ11Λ(t) + Θ12X(t) (184)

X(t+∆t) = Θ21Λ(t) + Θ22X(t) . (185)

103

Since all of the system matrices F, L,QC , H,RC time independent the matrices Θij are also
time independent (constant). Using Equation 178 evaluated at t + ∆t or Λ(t + ∆t) =
P (t+∆t)X(t+∆t) in the left-hand-side of Equation 184 we get

P (t+∆t)X(t+∆t) = Θ11Λ(t) + Θ12X(t) .

Then putting Equation 185 into X(t + ∆t) on the left-hand-side and Λ(t) = P (t)X(t) into
the right-hand-side gives

P (t+∆t) [Θ21Λ(t) + Θ22X(t)] = Θ11P (t)X(t) + Θ12X(t) .

Post-multiply this expression by X(t)−1 to get

P (t+∆t)
[

Θ21Λ(t)X(t)−1 +Θ22

]

= Θ11P (t) + Θ12 .

or solving for P (t+∆t) we get

P (t+∆t) = [Θ11P (t) + Θ12] [Θ21P (t) + Θ22]
−1 . (186)

Which is a recursive relationship one could use to compute P (t) starting at P (0) = P0.

Notes on the Chandrasekhar Type Algorithms

This sequence of algorithms provides an alternative to finding the expression for KC(t) that
can be used when all of the system matrices are time independent. If we assume there is no
control u(t) then the continuous state propagation equation is given by

˙̂x = F x̂(t) +KC(t)[z(t)−Hx̂(t)] = [F −KC(t)H]x̂(t) +KC(t)z(t) , (187)

with x̂(0) = x0 as the initial condition. This means that the state propagation matrix Φ(t, 0)
for our estimate must satisfy

Φ̇(t, 0) = [F −KC(t)H]Φ(t, 0) with Φ(0, 0) = In . (188)

This result will be used below. Taking the time derivative of Equation 172 and using the
fact that F, L,QC , H,RC are constant we have

P̈ = FṖ + ṖF T − ṖHTR−1HP − PHTR−1HṖ , (189)

Since KC(t) = P (t)HTR−1
C the above is

P̈ = FṖ + ṖF T − ṖHTKC(t)
T −KC(t)HṖ

= [F −KC(t)H]Ṗ + Ṗ [F −KC(t)]
T . (190)

In the same way that x(t) = Φ(t, 0)x(0) the value of the time derivative of the covariance
matrix Ṗ (t) can be computed from its initial condition Ṗ (0) using the state transition matrix
Φ(t, 0) as follows

Ṗ (t) = Φ(t, 0)Ṗ (0)Φ(t, 0)T . (191)

104

Next using Equation 172 evaluated at t = 0 we have

Ṗ (0) = FP (0) + P (0)F T + LQCL
T − P (0)HTR−1

C HP (0) ≡ D ,

where we have defined the symmetric matrix D. Using the LDU decomposition we can write
D as a product like

D = [M1M2]S[M
T
1 M

T
2] =M1M

T
1 −M2M

T
2 ,

where S is a special diagonal matrix, with elements ±1, as

S = Diag[1, 1, · · · , 1,−1,−1, · · · ,−1] .

Let the number of positive ones initially be denoted as β which also equals the number of
positive eigenvalues of D. The number of negative ones is then α− β where α is the rank of
D. With this special difference for Ṗ (0) using Equation 191 we see that Ṗ (t) is given by

Ṗ (t) = Φ(t, 0)Ṗ (0)Φ(t, 0)T = Φ(t, 0)[M1M
T
1 −M2M

T
2]Φ(t, 0)

T

= Φ(t, 0)M1M
T
1 Φ(t, 0)

T − Φ(t, 0)M2M
T
2 Φ(t, 0)

T

≡ Y1(t)Y1(t)− Y2(t)Y2(t) , (192)

where we have defined Y1(t) and Y2(t) as

Y1(t) ≡ Φ(t, 0)M1 = Φ(t, 0)Y1(0)

Y2(t) ≡ Φ(t, 0)M2 = Φ(t, 0)Y2(0) .

Taking the derivative of these two expressions and using Equation 188 for Φ̇(t, 0) gives

Ẏ1(t) = [F −KC(t)H]Φ(t, 0)Y1(0) = [F −KC(t)H]Y1(t) with Y1(0) =M1 (193)

Ẏ2(t) = [F −KC(t)H]Φ(t, 0)Y2(0) = [F −KC(t)H]Y2(t) with Y1(0) =M2 . (194)

Taking the time derivative of KC(t) = P (t)HR−1
C and using Equation 192 gives

K̇C(t) = Ṗ (t)HTR−1
C = [Y1(t)Y1(t)

T − Y2(t)Y2(t)
T]HTR−1

C . (195)

with the initial condition KC(0) = P (0)HR−1
C . This is a differential equation forKC(t) which

depends on Y1(t) and Y2(t) both of which have differential equations of their own (given by
Equation 193 and 194). A Chandrasekhar type algorithm is then to solve the differential
Equations 193, 194 and 195 with their various initial conditions.

Notes on the square-root formulation

In the case when the state covariance matrix P (t) is ill-conditioned (has eigenvalues of very
different magnitudes) we can introduce “square-root filtering” which is a more numerically
stable way to compute P (t). We start with the Cholesky decomposition of P (t) as P (t) =
S(t)S(t)T where S(t) is an upper triangular matrix. Then the time-derivative of P is given
by

Ṗ = ṠST + SṠT .

105

Using Equation 172 and our expression for P in terms of S we get

ṠST + SṠT = FSST + SSTF T + LQCL
T − SSTHTR−1

C HSST . (196)

Now premultiply by S−1 and postmultiply by S−T this expression to get

S−1Ṡ + ṠTS−T = S−1FS + STF TS−T + S−1LQCL
TS−T − STHTR−1

C HS . (197)

Since S is upper triangular so are S−1 and S−1Ṡ. In the same way ṠTS−T is lower triangular.
Thus the left-hand-side is the sum of two matrices the first one is upper triangular and the
second one is lower triangular. If we do the same thing with the right-hand-side of the above
expression in that after we sum everything into one matrix RHS =M(t), we split this matrix
up into its upper and a lower triangular parts as M(t) =MLT(t) +MUT(t) or

(mij)UT =







mij i < j
1
2
mij i = j
0 i > j

.

We can then equate the upper triangular parts of both sides to solve

S−1Ṡ =MUT so Ṡ =MUTS .

This last differential equation would have to be solved for S(t) with the initial conditions on
S related to those of P in S(0)ST (0) = P (0). Once one has S(t) one can compute P (t) or
KC(t) = S(t)S(t)TH(t)TRC(t)

−1 as needed.

Notes on the correlation in disturbance inputs and measurement noise

In this section of these notes we extend the Kalman-Bucy filter to include cases where we
have correlations in disturbance inputs and measurement noise. We derive the continuous
time results by studying the corresponding discrete time results obtained earlier. We begin
by considering the case where we have cross-correlated disturbance inputs and measurement
noise. First consider Equation 163 evaluated at k → k − 1 which is

Pk−1(+) = Pk−1(−)−Kk−1[M
T
k−1 +Hk−1Pk−1(−)] . (198)

Next Equation 138 with Λ the identity matrix where we have

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1

≈ (I + Fk−1∆t)Pk−1(+)(I + Fk−1∆t)
T +Qk−1 . (199)

Using Equation 198 into the right-hand-side of Equation 199 to get for Pk(−)

= (I + Fk−1∆t)[Pk−1(−)−Kk−1(M
T
k−1 +Hk−1Pk−1(−))](I + Fk−1∆t)

T +Qk−1

= [Pk−1(−)−Kk−1(M
T
k−1 +Hk−1Pk−1(−)) + ∆tFk−1Pk−1(−)−∆tFk−1Kk−1(M

T
k−1 +Hk−1Pk−1(−))]

× (I + Fk−1∆t)
T +Qk−1

= Pk−1(−)−Kk−1(M
T
k−1 +Hk−1Pk−1(−)) + ∆tFk−1Pk−1(−)−∆tFk−1Kk−1(M

T
k−1 +Hk−1Pk−1(−))

+ Pk−1(−)F T
k−1∆t−Kk−1(M

T
k−1 +Hk−1Pk−1(−))F T

k−1∆t

+∆t2Fk−1Pk−1(−)F T
k−1 −∆t2Fk−1Kk−1(M

T
k−1 +Hk−1Pk−1(−))F T

k−1 +Qk−1 .

106

From this the first difference of Pk(−) is given by

Pk(−)− Pk−1(−)

∆t
= Fk−1Pk−1(−) + Pk(−)F T

k−1 +
1

∆t
Qk−1

− Kk−1

∆t
(MT

k−1 +Hk−1Pk−1(−))− Fk−1Kk−1(M
T
k−1 +Hk−1Pk−1(−))

−Kk−1(M
T
k−1 +Hk−1Pk−1(−))F T

k−1

+∆tFk−1Pk−1(−)F T
k−1 −∆tFk−1Kk−1(M

T
k−1 +Hk−1Pk−1(−))F T

k−1

Changing the order of some of the terms above gives

= Fk−1Pk−1(−) + Pk(−)F T
k−1 + Fk−1Pk−1(−)F T

k−1∆t +
Qk−1

∆t

− Kk−1

∆t
MT

k−1 −Kk−1M
T
k−1F

T
k−1 −

Kk−1

∆t
Hk−1Pk−1(−)−Kk−1Hk−1Pk−1(−)F T

k−1

− Fk−1Kk−1M
T
k−1 − Fk−1Kk−1M

T
k−1F

T
k−1∆t

− Fk−1Kk−1Hk−1Pk−1(−)− Fk−1Kk−1Hk−1Pk−1(−)F T
k−1∆t . (200)

We will now evaluate various terms in the above in the limit as ∆t→ 0.

To start we will evaluate the expression Mk−1 in this limit. Note that in the continuous
filtering problem we are considering here

ẋ(t) = F (t)x(t) +G(t)u(t) + L(t)w(t) ,

where we have included an L(t) matrix, when we turn this into the model used in the section
on discrete cross-correlated disturbance inputs and measurement noise

xk = Φk−1xk−1 + Γk−1u3k−1 + wk−1 ,

note that here there is no Λk−1 coefficient in front of the discrete process noise wk−1 or
Λk−1 = I. Using Equation 142 we have the discrete process noise in terms of the continuous
system given by

wk−1 ≈
∫ tk

tk−1

Φ(tk, τ)L(τ)w(τ)dτ ≈ Φ(tk, tk−1)L(tk−1)w(tk−1)∆t = L(tk−1)w(tk−1)∆t+O(∆t2) .

Using this and Equation 171 to argue that under squared expectation nk−1 ≈ RC(tk−1)

∆t
we

are now ready to derive the limit of Mk−1 as ∆t → 0. In this case as Mk−1 = E[wk−2n
T
k−1]

and using the above two components we find

lim
∆t→0

Mk−1 ≈ E

[

L(tk−2)w(tk−2)∆t

(

RC(tk−1)

∆t

)T
]

= L(t)E[w(t)n(t)T] = L(t)MC(t) ,

a limit independent of ∆t.

We will now evaluate the limit of Kk−1 as ∆t → 0. To do this recall Equation 162 for Kk

now evaluated at k − 1 which gives

Kk−1 = [Pk−1(−)HT
k−1 +Mk−1][Hk−1Pk−1(−)HT

k−1 +Hk−1Mk−1 +MT
k−1H

T
k−1 +Rk−1]

−1 .

107

Using Equation 171 the second factor in the expression for Kk−1 is given by

[

Hk−1Pk−1(−)HT
k−1 +Hk−1Mk−1 +MT

k−1Hk−1 +
1

∆t
R(tk−1)

]−1

,

Factoring out ∆t we get

∆t
[

(Hk−1Pk−1(−)HT
k−1 +Hk−1Mk−1 +MT

k−1Hk−1)∆t+R(tk−1)
]−1

,

which as ∆t → 0 gives ∆tRC(tk−1)
−1 to first order. Combining what we have seen thus far

we have shown that

KC(t) ≡ lim
∆t→0

Kk−1

∆t
= [P (t)HT (t) + L(t)MC(t)]R

−1
C (t) . (201)

Thus for the differential equation for P (t) from Equation 200 we find

Ṗ (t) = FP + PF T + LQCL
T −KC(t)[MC(t)

TL(t)T +H(t)P (t)]

= FP + PF T + LQCL
T

− [P (t)HT (t) + L(t)MC(t)]R
−1
C [MC(t)

TL(t)T +H(t)P (t)] . (202)

The desired expression.

Notes on continuous time-correlated measurement error

In this section we treat the problem where we have time-correlated measurement errors. We
begin by assuming a model for their time correlation

ṅ(t) = N(t)n(t) + ν(t) , (203)

and then introduce the derived measurement ζ(t)

ζ(t) = ż(t)−N(t)z(t) . (204)

From the measurement equation z(t) = H(t)x(t) + n(t) we find its time derivative given by

ż(t) = Ḣ(t)x(t) +H(t)ẋ(t) + ṅ(t) ,

thus using this and the model for the measurement noise Equation 203 ζ(t) can be written

ζ(t) = Ḣx+Hẋ+ ṅ−N(Hx+ n) = Ḣx+H(Fx+ Lw) + ṅ−NHx−Nn

= (Ḣ +HF −NH)x+HLw + ν(t) ,

since −Nn+ ṅ = ν(t) and ẋ = Fx+Gw. Lets introduce the functions D(t) and η(t) in the
mapping of the state x(t) into the measurement ζ(t) (the measurement equation) as

D(t) = Ḣ(t) +H(t)F (t)−N(t)H(t)

η(t) = H(t)L(t)w(t) + ν(t) .

108

Then this system with state x(t) and measurement ζ(t) has cross-correlated measurement
and disturbance noise. Thus the results just derived can be used to filter this signal. The
cross-correlated component is given by

MCC(t) ≡ E[w(t)η(τ)T] = E[w(t)(H(τ)L(τ)w(τ) + ν(τ))T]

= E[w(t)w(τ)]LT (τ)HT (τ) + E[w(t)ν(τ)T]

= QC(t)L
T (t)HT (t)δ(t− τ) .

since we assume that E[w(t)ν(τ)T] = 0. This new systems measurement spectral density
RCC(t) is given by

RCC(t) ≡ E[η(t)η(τ)T] = H(t)L(t)E[w(t)w(τ)T]LT (τ)HT (τ)

+H(t)L(t)E[w(t)ν(τ)T] + E[ν(t)w(τ)T]LT (τ)HT (τ)

+ E[ν(t)ν(τ)T]

= [H(t)L(t)QC(t)L
T (t)HT (t) + VC(t)]δ(t− τ) . (205)

With these definitions forMCC , RCC and takingQCC = QC (the typical process noise spectral
density function) we can compute KC(t) and P (t) for this problem by using Equations 201
and 202 but with the substitutions

MC → MCC , RC → RCC , QC → QCC , and H → D .

To compute the estimate of the state x̂(t) we integrate the ordinary differential equation

˙̂x(t) = F (t)x̂(t) +KC(t)[ζ(t)−D(t)x̂(t)]

= F (t)x̂(t) +KC(t)[ż(t)−N(t)z(t) −D(t)x̂(t)] . (206)

As seen in Equation 204 the measurement ζ(t) depends on ż which might not be desirable
to compute directly from z(t) since z(t) contains noise which might make the expression for
ż relatively unstable. Note that we can get an expression with ż(t) as in Equation 206 as

KC(t)ż(t) =
d

dt
[KC(t)z(t)]− K̇C(t)z(t) . (207)

If we put this into the second term on the right-hand-side of Equation 206 and then bring
d
dt
[KC(t)z(t)] over to the left-hand-side we get

d

dt
x̂− d

dt
[KC(t)z(t)] = F (t)x̂(t)− K̇C(t)z(t)−KC(t)[N(t)z(t) +D(t)x̂(t)] ,

or

d

dt
[x̂(t)−KC(t)z(t)] = [F (t)−KC(t)D(t)]x̂(t)− [KC(t)N(t) + K̇C(t)]z(t) . (208)

Introduce χ̂(t) so that
χ̂(t) ≡ x̂(t)−KC(t)z(t) ,

which has the initial conditions χ̂(0) = x̂(0)−KC(0)z(0). Thus for state estimation we will
integrate Equation 208 which has K̇C(t) rather than ż(t). The the expression K̇C(t) is found
from the expression obtained via integration for KC(t) which hopefully is more stable than
taking the derivative of z(t). Now K̇C(t) needed above is easy to calculate if H and RC are
constant for then

K̇C(t) = Ṗ (t)HTR−1
C ,

and Ṗ (t) is given by the right-hand-side of Equation 202.

109

Notes on Quasilinear Filter

We want to minimize the distance between f(x) and a0 + a1(x − x0) = a0 + a1x̃, where
x̃ ≡ x− x0. To do this we consider the cost function J(a0, a1) given by

J(a0, a1) = E{[f(x)− a0 − a1x̃]
2} .

Then the needed derivatives of J become

∂J

∂a0
= E{2[f(x)− a0 − a1x̃](−1)} = 0 ,

or
a0 = E[f(x)]− a1E[x̃] . (209)

and
∂J

∂a1
= E[2(f(x)− a0 − a1x̃)x̃(−1)] = 0 ,

or
E[f(x)x̃]− a0E[x̃]− a1E[x̃

2] = 0 .

As a system these two equation are

a0 + E[x̃]a1 = E[f(x)]

E[x̃]a0 + E[x̃2]a1 = E[f(x)x̃] .

We can solve for a0 and a1 using Crammers rule. We need

D =

∣

∣

∣

∣

1 E[x̃]
E[x̃] E[x̃2]

∣

∣

∣

∣

= E[x̃2]− E[x̃]2 .

Then we have

a0 =
1

D

∣

∣

∣

∣

E[f] E[x̃]
E[fx̃] E[x̃2]

∣

∣

∣

∣

=
E[f]E[x̃2]− E[x̃]E[fx̃]

E[x̃]2 − E[x̃2]

a1 =
1

D

∣

∣

∣

∣

1 E[f]
E[x̃] E[fx̃]

∣

∣

∣

∣

=
E[fx̃]−E[x̃]E[f]

E[x̃]2 − E[x̃2]
.

Warning: This solution is somewhat different than the what the book presents, but I don’t
see any problems with the above derivation. If anyone sees anything wrong with what I have
done please contact me. If E[x̃] = 0 and E[f] = 0 then we get

a0 = 0 and a1 =
E[f(x)x̃]

E[x̃2]
.

We will now consider the multidimensional generalization of the above approximation. We
will approximate f(x) using the Taylor series like approximation given by

f(x) ≈ b+D(x− x̂) ,

110

where x̂ is some “centering value” (often taken to be the mean of x). If we assume that f is
a r×1 vector and x is a n×1 vector then b is an r×1 bias vector and D is an r×n matrix.
With this approximation we form the objective function J we want to minimize given by

J = E[(f(x)− b−D(x− x̂))T (f(x)− b−D(x− x̂))] ,

and we need to find the minimum of the above expression as a function of b and D. Taking
the partial derivative of this expression with respect to b we get

∂J

∂b
= 2E[f(x)− b−Dx̃] = 0 ,

or
E[f(x)]− b−DE[x̃] = 0 .

If we take x̂ to be the mean of x then E[x̃] = 0 and we have

b = E[f(x)] . (210)

With b specified we now minimize J with respect to D. To do this we need to compute ∂J
∂D

.
Taking the D derivative of the above expression is made easier if we write J as

J = E[(f − b)T (f − b)]− E[(f − b)TD(x− x̂)]

− E[(x− x̂)TDT (f − b)] + E[(x− x̂)TDTD(f − b)] .

To evaluate the matrix derivatives we recall

∂

∂X
(aTXb) = abT , (211)

and
∂

∂X
(aTXTb) = baT . (212)

To evaluate the fourth term which has a product of DTD we use the product rule with the
above identities. First taking a = (x− x̂) and b = D(x− x̂) and the taking a = (x − x̂)DT

and b = (x− x̂). With these we find

∂J

∂D
= −E[(f − b)(x− x̂)T]− E[(f − b)(x− x̂)T]

+ E[D(x− x̂)(x− x̂)T] + E[D(x− x̂)(x− x̂)T]

= −2E[(f − b)(x− x̂)T] + 2DE[(x− x̂)(x− x̂)T] .

When we set this last expression equal to zero and solve for D we find

D = E[(f − b)(x− x̂)T]E[(x− x̂)(x− x̂)T]−1 . (213)

Introducing P = E[(x− x̂)(x− x̂)T] and noting that

E[(f − b)(x− x̂)T] = E[fxT]− E[fx̂T]− E[bxT] + E[bx̂T]

= E[fxT]− bx̂T − bx̂T + bx̂T

= E[fxT]− bE[x]T ,

so when we replace b = E[f] we get

D = (E[fxT]− E[f]E[x]T)P−1 . (214)

This result is some what different than that presented in the book but it matches that found
in [1] so I believe it is correct.

111

Example 4.7-1 the extended Kalman filter to estimate a random constant

For this example our true system state is given by the weathervane example where the
dynamics are

[

ẋ1
ẋ2

]

=

[

0 1
−ω2

n −2ζωn

] [

x1
x2

]

+

[

0
ω2
n

]

w . (215)

We specify truth parameters ζ = 0.1 and ωn = 2 radians/second and take a measurement
equation given by

[

z1
z2

]

=

[

x1
x2

]

+

[

n1

n2

]

. (216)

We simulated a system like this for Example 4.3-1 on Page 96.

Let QC = E[w2] = q = 1000. We assume that the estimate of ωn is unknown and thus
introduce an additional state component denoted a and defined by

a = −ω2
n .

Since the weathervane dynamics depends on the parameter −2ζωn we technically don’t know
this value either. For the ease of this example we will assume that we know its value and
take

b = −2ζωn = −2(0.1)(2) = −0.4 .

Then since we would like to estimate a, a constant, its dynamics are ȧ = 0. The fully
augmented (with the additional state element a) system dynamics looks like





ẋ1
ẋ2
ȧ



 =





0 1 0
a b 0
0 0 0









x1
x2
a



+





0
−a
0



w . (217)

To “solve” this, we will use the “Hybrid Extended Kalman” filter. To duplicate the sim-
ulation presented in the book we will generate data and measurements from Equation 215
and Equation 216. Then starting at t0 = 0 and for 20 seconds with a fixed time step we
will start with given estimates of the state components (x̂1(0), x̂2(0), â(0)) and estimates of
their uncertainties (p11(0), p22(0), p33(0)). This information corresponds to what we know
at the time step index k = 0. Then we iterate for k = 1, 2, 3, · · · the following

• First, state estimation propagation to get the state x̂[tk(−)]. We do this by numerically
solving the coupled Equations 217 (with no noise w = 0) to the time tk(−) starting with
x(0) = x̂[tk−1(+)]. Second, state covariance propagation to get the matrix P [tk(−)].
We do this by numerically solving the Riccati equation

Ṗ (t) = FAP + PF T
A + LAQAL

T
A − PHT

AR
−1
A HAP ,

starting with P (0) = P [tk−1(+)] to the time tk(−). Here we have

FA =





0 1 0
â b x̂1
0 0 0



 , HA =

[

1 0 0
0 1 0

]

, LA =





0
−â
0



 , QA = 1000, RA =

[

10 0
0 10

]

.

112

0 5 10 15 20 25 30 35 40
−150

−100

−50

0

50

100

150

time (sec)

a
n
g
l
e

(
d
e
g
)

true angle

angle measurement

estimate

0 5 10 15 20 25 30 35 40
−400

−300

−200

−100

0

100

200

300

time (sec)

a
n
g
l
e

r
a
t
e

(
d
e
g
/
s
)

true angle

angle measurement

estimate

0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

time (sec)

e
s
t
i
m

a
t
e

o
f

a

true value a

estimate of a

Figure 19: The Hybrid Extended Kalman filter state estimate for Example 4.7-1. Left:
Estimates of x1. Center: Estimates of x2. Right: Estimates of a = −ω2

n each with 95%
error bounds.

• Given these new values of the state and covariance at the time tk(−) we perform the
filter gain calculation

K(tk) = P [tk(−)]HT (tk(−))
{

H(tk(−))P [tk(−)]H(tk(−))T +R(tk(−))
}−1

,

• Using this filter gain we update the state estimate

x̂[tk(+)] = x̂[tk(−)] +K(tk) {zk − h[x̂[tk(−)], tk(−)]} ,

• and update the covariance estimation update

P [tk(+)] = (In −K(tk)H(tk))P (tk(−)) ,

to get the information needed to process the next iteration.

Since we are assuming that we don’t know the true value of the constant a we start with
the incorrect value of a(0) = −6.0 (the true value is −4.0). It is amazing how well the
system works at computing the correct value of a one should try to run the following codes
with different (and incorrect) starting values of â(0) and observe the convergence of â to the
correct value.

See the MATLAB codes sect 7 dup example 4 7 1.m, example 4 7 1 extended kf.m, and
example 4 7 1 extended kf fn.m for an implementation of this problem. When these are
run they product the plots given in Figure 19. The same qualitative comments the book
makes apply here also.

113

Example 4.7-2 estimation of a constant parameter using parallel filters

In this section we duplicate the multiple model estimation results presented in the book.
To that end we implement a function weathervane system.m to compute Φ and Q for the
weathervane example. For all values of ω2

n suggested by the book this routine gives the same
Φ as presented in the book. For the value of ω2

n = 4.0 this routine gives the same value of Q
presented in the book. For the different values of ω2

n (6= 4) and suggested in this section this
routine gives a different expression for Q than presented in the book. For example, when we
take ωn = 4.4 the routine weathervane system.m gives

Φ =

[

0.9784 0.0972
−0.4277 0.9376

]

and Q =

[

6.2 91.5
91.5 1830.3

]

.

This makes me wonder if there is a typo in the presentation of Q2 and Q3 in the book.
Proceeding by using the above MATLAB routine we implemented the multiple model appli-
cation discussed in the book. I choose to consider four hypothesis for the value of ω2

n rather
than three. These correspond to

ωn ∈ {
√
3.6 , 2 ,

√
4.4 ,

√
4.8} .

The multiple mode is implemented in the MATLAB code sect 7 dup example 4 7 2.m. For
one random seed the running of the previous code gives the results shown in Figure 20.

Problem Solutions

Section 4.1 Problem 1 (least squares estimates to fit polynomial models)

This problem is worked in the MATLAB script sect 1 1.m

Section 4.1 Problem 2 (polynomial models with different variances)

This problem is worked in the MATLAB script sect 1 2.m

Section 4.1 Problem 3 (fitting polynomial models with one more data point)

This problem is worked in the MATLAB script sect 1 3.m

Section 4.1 Problem 5 (least square mapping of an input/output relationship)

For this problem we stack the individual matrices H “on top of each other” and then use
the left pseudo inverse to produced the globally best estimate. This problem is worked in

114

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phi_1

Phi_truth

Phi_3

Phi_4

0 5 10 15 20 25 30
1.9

1.95

2

2.05

2.1

2.15

time (sec)

e
s
ti
m

a
te

 o
f
o
m

e
g
a

n

true value omega
n

mean estimate of omega
n

0 5 10 15 20 25 30
−150

−100

−50

0

50

100

150

200

time (sec)

a
n
g
le

 (
d
e
g
)

true angle

angle measurement

average estimate

0 5 10 15 20 25 30
−300

−200

−100

0

100

200

300

time (sec)

a
n
g
le

 r
a
te

 (
d
e
g
/s

)

true angle

angle measurement

average estimate

Figure 20: Top Left: Estimates of the probability of each model. The correct model (the
green line) eventually asymptotes to 1. Top Right: Average estimates of the true value of
ωn using probabilities from each model. Again ωn → 2 the truth value as we process more
measurements. Bottom: Plots of x1 and x2 the truth and the estimate. One cannot tell
the difference between the truth and the estimates.

115

the MATLAB script sect 1 5.m.

Section 4.1 Problem 6 (fitting a nonlinear input/output relationship)

Rather than implement the suggested Newton-Raphson minimization routine for the objec-
tive function

J(x1, x2) =
1

2

10
∑

i=1

{

(zi1 − x21 − x2 − 5)2 + (zi2 −
1

4
x32 − 4)2

}

,

we instead use the built-in MATLAB function fmins. This problem is worked in the MAT-
LAB script sect 1 6.m.

Section 4.2 Problem 1 (when is the expected state a constant)

The expected value of a state takes a constant value when there is no system dynamics
Φk−1 = 0 and no process noise wk−1 = 0. The covariance matrix Pk can in general be a
constant when Φ is time independent and non-zero, since constant steady state solutions to
the covariance Kalman filtering equations exist in this case.

Section 4.2 Problem 2 (simulating a discrete-time system)

We are given a time-independent discrete dynamical system of the form

xk = Φxk−1 + Λwk−1 ,

with Φ =

[

1 1
−1 0.4

]

and Λ =

[

0
1

]

. We want to simulate this discrete dynamical system

with x0 = 0. We are told to assume that wk is has a mean of zero and a variance of 1. In
this case the state’s mean value mk propagates according to

mk = Φmk−1 .

This equation is very easy to simulate since in the case when m0 = E[x0] = 0 we have mk = 0
for all k. The states covariance Pk is updated using Equation 138. With this background
this problem is worked in the MATLAB script sect 2 prob 2.m, where we simulate a true
state trajectory (including noise) for xk for 20 time steps (in green), plot the mean mk (in
red), and plot confidence intervals around the mean (in red). When we run that script we
get the results shown in Figure 21.

116

0 2 4 6 8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

10

20

30

40

50

timestep

s
ta

te
 v

a
lu

e

x1

x1 mean

x1 upper limit

x1 lower limit

0 2 4 6 8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

10

20

30

40

timestep

s
ta

te
 v

a
lu

e

x2

x2 mean

x2 upper limit

x2 lower limit

Figure 21: Left: The state component x1, its mean and interval of uncertainty for 20 time
steps. Right: The state component x2, its mean and interval of uncertainty for 20 time
steps.

Section 4.2 Problem 3 (computing sampled-data disturbance covariance)

For the given continuous system

ẋ(t) = Fx(t) + Lw(t) ,

the discrete system is given by

xk = Φk−1xk−1 + Λk−1wk−1 ,

when F and L are constants with Φk−1 given by

Φk−1 = Φ(∆t) = eF∆t ≈ In +∆tF =

[

1 1
−1 0.4

]

,

to first order and with ∆t = 1. In addition, we have Λk−1 given by

Λk−1 = Λ(∆t) = Φ(∆t)[In − Φ−1(∆t)]F−1L .

The book does not say what order this expression is. If we want a first order approximation
since Φ−1(∆t) = e−F∆t ≈ I − F∆t we have

Λk−1 = (I + F∆t)[I − (I − F∆t)]F−1L = ∆t(I + F∆t)L = ∆tL .

If ∆t = 1 we have Λk−1 = L =

[

0
1

]

and our discrete approximation is then

xk =

[

1 1
−1 0.4

]

xk−1 +

[

0
1

]

wk−1 .

117

This verifies the discrete dynamical system presented in the previous problem. To com-
pute the sampled-data disturbance matrix Qk−1 we use Equation 144 which is discussed
on Page 92. We compute this in the MATLAB file sect 2 prob 3.m, where we use the
routine example 4 2 2 compute qkm1.m. When we run that script we get the sampled-data
disturbance covariance Qk−1 given by

Qk−1 =

[

0.1801 0.2006
0.2006 0.4515

]

.

Section 4.2 Problem 4 (a continuous system)

One way to view this problem would be to note that if we sample this system to first order
with ∆t = 1 we have the discrete system given by Problem (2) in this section. This later
system is simulated there. As an alternative we could use a higher order Runge-Kutta
algorithm to generate x(tk) for 0 ≤ tk ≤ 20, but the results would be qualitatively similar to
that from Problem 2.

Section 4.2 Problem 5 (the Cholesky decomposition)

The Cholesky decomposition ofQ is the factorization ofQ as SST where S is lower triangular.
This can be computed with the MATLAB command chol.

Section 4.3 Problem 1 (codes to perform discrete time Kalman filtering)

Rather than implement a Kalman filter ourselves we will use the MATLAB implementation
provided in the Bayes Network Toolbox by Kevin Murphy. This package can be down-
loaded at http://code.google.com/p/bnt/ and provides a large number of useful auxiliary
routines.

Section 4.3 Problem 2-4 (a third-order continuous-time system)

For this continuous-time problem since F (t), G(t) = 0, and L(t) = I are independent of time
i.e. the discrete-time matrix coefficients Φ, Γ, and Λ for the discretized system Equation 139
are given by Equations 23, 31, and 32 or

Φ = Φ(∆t) = eF∆t

Γ = Φ(∆t)[In − Φ−1(∆t)]F−1G = 0 since G = 0

Λ = Φ(∆t)[In − Φ−1(∆t)]F−1L ,

all of which can be computed. Then the discrete-time model then is

xk = Φxk−1 + Λwk−1 .

118

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

15

time (sec)

x
1

state 1

measurment 1

state 1 Kalman estimate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

15

time (sec)

x
1

state 1

measurment 1

state 1 Kalman estimate

Figure 22: Left: The state component x1 for t ∈ [0, 10] when R = 0.25 and Q = I. Right:
The state component x2 for t ∈ [0, 10] when R = 10.25 and Q = 11I, the addition of 10 to
the uncertainties of the previous problem.

We assume that expressions for E[wkw
T
k] and R given in the text correspond to the discrete

time noise process. We then formulate the discrete-time Kalman filtering equations and
estimate the first state x1(t) at the discrete times tk = 0.1k. This is done in in the MATLAB
function sect 3 prob 3 N 4.m. When we run that function we obtain the results given in
Figure 22 (left). Then if we increase the the process and measurement noise we get the plot
given in Figure 22 (right).

Section 4.3 Problem 5 (the UD decomposition)

The UD decomposition of a matrix P is writing P as P = UDUT and is equivalent to an
eigendecomposition of the matrix P .

Section 4.3 Problem 6 (the matrix condition number)

Assume that σmax is supposed to represent the variable λmax introduced in the text and
which represents the maximum eigenvalue of PP T (the same comment holds for the variable
σmin). Then the condition number of the matrix P κ(P) is defined as

κ(P) ≡
(

λmax

λmin

)1/2

. (218)

This expression can be easily computed with MATLAB.

119

Section 4.3 Problem 7 (sequential processing to compute the Kalman gain)

I’ll assume that for this problem we are asked to estimate P (+) given P (−) using the
sequential measurement processing algorithm. We can use this algorithm directly since we
have uncorrelated measurements. If we didn’t have uncorrelated measurements we would
have to find a transformation C, that makes R diagonal i.e. CRCT = D. In the case
given, for each row of H we compute a column vector that we store in a matrix K and then
using this vector we can compute an update to P (+), where P (+) starts initialized as P (−).
Each update incorporates another measurement. It should be noted that the final matrix K
computed by storing each Kik column as the algorithm progress is not the same matrix as
when we compute the Kalman gain “all at once” (see the next problem). We print the final
K matrix obtained by saving each column in the manner described below. We implement
this procedure in the MATLAB function sect 3 prob 7.m and find when finished that

K =





0.9524 0.2128
0.4762 0.5532
0.1429 0.2553



 ,

and

P (+) =





0.8511 0.2128 0.0213
0.2128 0.5532 0.2553
0.0213 0.2553 0.4255



 .

Section 4.3 Problem 8 (the Joseph form of the a posteriori covariance update)

For this problem we that the book means to use the Joseph form for the covariance update
in computing P (+) which is given by Equation 155 with K given by Equation 147. In the
MATLAB function sect 3 prob 8.m we implement this procedure and find when finished
that

K =





0.8511 0.2128
0.2128 0.5532
0.0213 0.2553



 ,

and

P (+) =





0.8511 0.2128 0.0213
0.2128 0.5532 0.2553
0.0213 0.2553 0.4255



 .

Notice that the expressions for K in this problem and the previous one are different, while
the expressions for P (+) are the same as they should be.

120

Section 4.4 Problem 1 (correlated disturbance and measurement errors)

As suggested, we consider the discrete-time second order dynamic and measurement equa-
tions given by

xk = axk−1 + bxk−2 + wk−1 for k ≥ 1 and x0 , p0 given and

zk = cxk + nk for k ≥ 1 ,

where everything in these expressions is a scalar. We will form a matrix system for these
equations by defining the vector state, xk, as

xk =

[

xk
xk−1

]

.

Then the vector xk state satisfied the dynamic equation

[

xk
xk−1

]

=

[

axk−1 + bxk−2 + wk−1

xk−1

]

=

[

a b
1 0

] [

xk−1

xk−2

]

+

[

1
0

]

wk−1 .

In the discrete-time framework of

xk = Φk−1xk−1 + Γk−1uk−1 + Λk−1wk−1 ,

we have matrices for this problem given by Φk−1 =

[

a b
1 0

]

, Γk−1 = 0, Λk−1 =

[

1
0

]

,

and Hk =
[

c 0
]

. Let the vector disturbance noise be given by wk−1 =

[

wk−1

0

]

so that

Qk−1 =

[

q 0
0 0

]

. Here q is the variance of the scalar process noise wk−1. As suggested for

this problem we assume that the disturbance noise and measurement noise are correlated so
that

E

{[

wk−1

nk

]

[

wT
k−1 nT

k

]

}

=

[

Qk−1 Mk

MT
k Rk

]

,

where Qk−1 =

[

q 0
0 0

]

, Rk = r and

Mk = E[wk−1n
T
k] = E

[[

wk−1

0

]

nk

]

=

[

E[wk−1nk]
0

]

=

[

m
0

]

,

is not the zero vector. The filtering equations for this type of problem are discussed on
Page 98 of these notes. We have a state propagation step when there is no control Γk−1 = 0
given by

x̂k(−) = Φk−1x̂k−1(+) ,

or in component form this becomes

[

x̂k,1(−)
x̂k,2(−)

]

=

[

a b
1 0

] [

x̂k−1,1(+)
x̂k−1,2(+)

]

,

121

and a state measurement update step given by x̂k(+) = x̂k(−) + Kk[zk − Hkx̂k(−)] or in
component form

[

x̂k,1(+)
x̂k,2(+)

]

=

[

x̂k,1(−)
x̂k,2(−)

]

+Kk[zk − cx̂k,1(−)] .

These updates depend on the Kalman gain matrixKk which is computed from the covariance
estimates Pk(±). We start with the state propagation covariance matrix

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 for k ≥ 1

=

[

a b
1 0

]

Pk−1(+)

[

a 1
b 0

]

+

[

1 0
0 0

]

,

with P0(+) given. The Kalman gain Kk is given by Equation 162 where since Hk =
[

c 0
]

we get

Kk =

(

Pk(−)

[

c
0

]

+

[

m
0

])(

[

c 0
]

Pk(−)

[

c
0

]

+
[

c 0
]

[

m
0

]

+
[

m 0
]

[

c
0

]

+ r

)−1

=

(

Pk(−)

[

c
0

]

+

[

m
0

])(

[

c 0
]

Pk(−)

[

c
0

]

+ 2cm+ r

)−1

.

Note that Kk is of dimension 2×1. Once we have computed Kk the a posteriori measurement
covariance matrix Pk(+) is given by Equation 163 which in this case is given by

Pk(+) = Pk(−)−Kk

([

c 0
]

Pk(−)−
[

m 0
])

.

Section 4.4 Problem 2 (cross-correlated disturbance and measurement noise)

Consider the first-order system

xk = 0.8xk−1 + wk−1 for k ≥ 1 and x0 , p0 given and

zk = xk + nk for k ≥ 1 .

Here x0 is our initial state estimate and p0 is its variance. Assume we have cross-correlated
disturbance noise and measurement noise such that

E

{[

wk−1

nk

]

[

wk−1 nk

]

}

=

[

Q M
M R

]

,

where Q, M , and R are known numerical scalars with M 6= 0. Our measurement equation
specifies that Hk = 1. To simulate this system we must now generate wk−1 and nk at the
same time with the given cross-correlation matrix given above for k = 1, 2, . . . , 50. Starting
with “initial conditions” on the initial state and it uncertainty of x̂0(+) = 0 and p0(+) = 0
for k = 1, 2, . . . 50 we iterate the Kalman filtering equation for cross-correlated disturbance
and measurement noise given by

x̂k(−) = φx̂k−1(+)

pk(−) = φ2pk−1(+) +Q

Kk = (pk(−) +M)(pk(−) + 2M +R)−1

x̂k(+) = x̂k(−) +Kk(zk − x̂k(−))

pk(+) = pk(−)−Kk(pk(−) +M) ,

122

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

4

timestep

s
t
a
t
e
/
m

e
a
s
u
r
e
m

e
n
t

truth

measurement

xhat(+)

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3

4

timestep

s
t
a
t
e
/
m

e
a
s
u
r
e
m

e
n
t

truth

measurement

xhat(+)

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

4

timestep

s
t
a
t
e
/
m

e
a
s
u
r
e
m

e
n
t

truth

measurement

xhat(+)

Figure 23: Plots of the state xk and the a posteriori estimate x̂k(+) for the cross-correlated
process and measurement noise. M measures the cross correlation value/amount. Left:
M = 0.25 Center: M = 0 Right: M = −0.25. Notice that the truth (green line) is always
between the confidence bands as it should be.

with φ = 0.8, Q, R, and M specified scalars. We implement this procedure in the the
MATLAB functions sect 4 2 gen xz.m, sect 4 2 kfilter z.m, and sect 4 2.m. When we
run these scripts we can change the value of M and observe the affects on the results. We
obtain the plots shown in Figure 23. Notice that when implemented correctly, meaning the
correlation between measurement and process noise and is taken into account, the numerical
value of M does not affect the estimation accuracy.

Section 4.4 Problem 3 (time-correlated measurement noise)

We assume that for this problem we don’t have cross-correlated disturbance and measure-
ment noise but instead only have time-correlated measurement noise, given by the dynamics

nk = 0.2nk−1 + 0.8νk−1 = 0.2nk−1 + ν̃k−1 , (219)

where the scalar ν̃k−1 has been introduced with statistics

E[ν̃k−1] = 0

E[ν̃2k−1] = 0.82E[νk−1] = 0.82(0.1) = 0.064 .

Where we have combined the expression 0.8νk−1 into a single noise term (with only one
factor) denoted ν̃k−1 and a different numerical variance value. From this point on we will
drop the tilde notation and just assume that our noise term has the statistics given above.
Now to fit Equation 219 into the time-correlated measurement noise equation

nk = Ψk−1nk−1 + νk−1 ,

123

we take Ψk−1 = 0.2 and Qνk = 0.064. As in the previous problem Φk−1 = 0.8, Q = 1, and
Hk = 1. To use the optimal filter for this problem we introduced the derived measurement
ζk−1, defined as

ζk−1 = zk −Ψk−1zk−1 ,

which can be shown equivalent (see Equation 166) to

ζk−1 = Dk−1xk−1 + nDk−1
,

with Dk−1 given in this case by

Dk−1 = HkΦk−1 −Ψk−1Hk−1 = 0.8− 0.2(1) = 0.6 .

Then with this derived measurement ζk−1 the process noise wk−1 and the derived measure-
ment noise nDk−1

are now cross-correlated

E

{[

wk−1

nDk−1

]

[

wk−1 nDk−1

]

}

=

[

Qk−1 Qk−1H
T
k

HT
k Qk−1 HkQk−1H

T
k +Qνk−1

]

=

[

1 1
1 1 + 0.064

]

=

[

1 1
1 1.064

]

.

These components are assigned new values of Qk−1, Mk−1 and Rk−1 for which we can use
the cross-correlated Kalman algorithm to compute our estimates x̂k and P . This leads to
the following algorithm.

Kalman filtering with time-correlated measurement noise

We start our Kalman filtering iterations with x̂1(−) and P1(−) given and the first two
measurements z1 and z2 measured and are then working on computing the update at x1.
Based on the algorithm presented in the book for k = 2, 3, . . . , N we need to repeatedly
iterate

ζk−1 = zk −Ψk−1zk−1

Dk−1 = HkΦk−1 −Ψk−1Hk−1

Kk−1 = Pk−1(−)DT
k−1[Dk−1Pk−1(−)DT

k−1 +Rk−1]
−1

Ck−1 =Mk−1[Dk−1Pk−1(−)DT
k−1 +Rk−1]

−1

x̂k−1(+) = x̂k−1(−) +Kk−1[ζk−1 −Dk−1x̂k−1(−)]

x̂k(−) = Φk−1x̂k−1(+) + Ck−1[ζk−1 −Dk−1x̂k−1(+)]

Pk−1(+) = (I −Kk−1Dk−1)Pk−1(−)(I −Kk−1Dk−1)
T +Kk−1Rk−1K

T
k−1

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 − Ck−1M

T
k−1 − Φk−1Kk−1Mk−1 −MT

k−1K
T
k−1Φ

T
k−1 .

The steps above are roughly: given x̂k(−) and Pk(−) and an infinite sequence of measure-
ments zk we first compute x̂k(+) and Pk(+) and then from these compute x̂k+1(−) and
Pk+1(−). We implement this procedure in the the MATLAB functions sect 4 3 gen xz.m,
sect 4 3 kfilter z.m, and sect 4 3.m. When we run these scripts we obtain the plot
shown in Figure 24.

124

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

4

timestep

st
at

e/
m

ea
su

re
m

en
t

truth

measurement

xhat(−)

xhat(+)

Figure 24: Kalman filtering a scalar problem with correlated measurement noise.

Section 4.4 Problem 4 (more time-correlated measurement errors)

This problem has to deal with time-correlated measurement noise and thus we want to write
our system function as

xk = Φk−1xk−1 + w̃k−1 ,

where the process noise w̃k−1 has known second order statistics. From the expressions given
we see that E[w̃k−1] = 0 and

E[w̃k−1w̃
T
k−1] =

[

0.15
0.21

]

(1)
[

0.15 0.21
]

=

[

0.0225 0.0315
0.0315 0.0441

]

.

This last matrix we take to be Qk−1 the process noise covariance. We also require our
measurement noise dynamics to be given by nk = Ψk−1nk−1 + νk−1. From the form of the
equations given in the book we have that Ψk−1 = 0.5I and Qνk−1

= 0.05I. We implement
this procedure in the the MATLAB functions sect 4 4 gen xz.m, sect 4 4 kfilter z.m,
and sect 4 4.m. When we run these scripts we obtain the plot shown in Figure 25.

Section 4.4 Problem 5 (time correlated process noise)

For this problem we have time-correlated process noise with independent measurement noise.
To filter measurements for this problem we append to the original state vector x the value

125

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

timestep

s
ta

te
 x

(
1

)
/m

e
a

s
u

r
e

m
e

n
t

truth

measurement

xhat(+)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

timestep

s
ta

te
 x

(
2

)
/m

e
a

s
u

r
e

m
e

n
t

truth

measurement

xhat(+)

Figure 25: Kalman filtering a 2×2 problem with correlated measurement noise. Left: Plots
of xk,1 the truth in green, zk,1 the measurements as a black x and x̂k,1(+) our approximation
in red. Right: Plots of xk,2 the truth in green, zk,2 the measurements as a black x and
x̂k,2(+) our approximation in red.

of the process noise wk at time tk to get the augmented state vector x̃k given by

x̃k =





xk,1
x2,k
wk



 =





0.7xk−1,1 − 0.15xk−1,2 + 0.15wk−1

0.03xk−1,1 + 0.79xk−1,2 + 0.21wk−1

0.5wk−1



+





0
0

0.5vk−1





=





0.7 −0.15 0.15
0.03 0.79 0.21
0 0 0.5









xk−1,1

xk−1,2

wk−1



+





0
0
0.5



 vk−1 .

This expression defines new system matrix Φ̃k−1 and process noise term Λk−1vk−1 for the
augmented system. Note that the process noise for this augmented system is given by

Qk−1 =





0
0
0.5





[

0 0 0.5
]

=





0 0 0
0 0 0
0 0 0.25



 .

In this formulation our problem is now in the normal Kalman filtering framework. Dropping
the tilde notation for simplicity, we assume we are given x0 the initial mean of our state and
its initial uncertainty in the matrix P0. We use these to initialize our initial estimates x̂0(+)

126

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

timestep

s
t
a
t
e

x
(
1
)
/
m

e
a
s
u
r
e
m

e
n
t

truth

measurement

xhat(+)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

timestep

s
t
a
t
e

x
(
2
)
/
m

e
a
s
u
r
e
m

e
n
t

truth

measurement

xhat(+)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

timestep

s
t
a
t
e

x
(
3
)
=

w
k

truth

xhat(+)

Figure 26: Kalman filtering a 2 × 2 problem with correlated process noise. This problem
can be solved with state augmentation. Left: Plots of xk,1 the truth in green, zk,1 the
measurements as a black x and x̂k,1(+) our approximation in red. Center: Plots of xk,2 the
truth in green, zk,2 the measurements as a black x and x̂k,2(+) our approximation in red.
Right: Plots of the true value of xk,3 in green (note that this is the same as the value of
the process noise wk) and our estimate of it x̂k,2(+) in red. Notice that since the state x3 is
not observable the error in our estimate of it is significant. The error boundaries (in cyan)
emphasis this.

and P0(+). Then for k = 1, 2, · · · we iterate

x̂k(−) = Φk−1x̂k−1(+)

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)]

Pk(+) = (In −KkHk)Pk(−)(In −KkHk)
T +KkRkK

T
k .

This is implemented in the MATLAB functions sect 4 5 gen xz.m, sect 4 5 kfilter z.m,
and sect 4 5.m. When we run these scripts we obtain the plot shown in Figure 26.

Section 4.5 Problem 1 (filtering robot arm measurements)

I’ll assume that the dynamics for this problem are similar to the weathervane example (and
Problem 3 Section 3.4) and take the form

ẋ1 = x2

ẋ2 = −ω2
nx1 − 2ζωnx2 + w ,

127

Here x1 is the arm position and x2 is the arm velocity. The variable ωn is the systems
natural frequency of 10 Hz. The variable ζ is the systems natural damping of 0.3. Fitting
this system into the general continuous time framework of

ẋ(t) = F (t)x(t) +G(t)u(t) + L(t)w(t) ,

We see that F (t) =

[

0 1
−ω2

n −2ζωn

]

, G(t) = 0, and L(t) =

[

0
1

]

, and E[w(t)w(τ)] =

QC(t)δ(t− τ) = qδ(t− τ) = 10δ(t− τ). The continuous time measurements for this system
take the form

z(t) = H(t)x(t) + n(t) ,

where H(t) is the time-independent matrix
[

0 1
]

,
[

1 0
]

, and

[

1 0
0 1

]

, for Parts a,

b, and c respectively. In the first two cases we have n(t) a scalar and measurement noise
statistics given by

E[n(t)n(τ)] = RC(t)δ(t− τ) = Rδ(t− τ) = δ(t− τ) ,

since R = 1, while in the second case n(t) is a 2× 1 vector and we have

E[n(t)n(τ)T] = RC(t)δ(t− τ) =

[

r11 0
0 r22

]

δ(t− τ) =

[

1 0
0 1

]

δ(t− τ) .

With this background for this problem we want to solve Equation 172 with P (0) = 0 from
the time range t = 0 until t = ∆t = 0.2. Once we have P (t) we can use Equation 173
to compute KC(t). Notice that in all three cases to consider the first three terms on the
right-hand-side of Equation 172 are the same. They are given by

FP + PF T + LQCL
T =

[

0 1
−ω2

n −2ζωn

] [

p11 p12
p12 p22

]

+

[

p11 p12
p12 p22

] [

0 −ω2
n

1 −2ζωn

]

+ 10

[

0 0
0 1

]

=

[

2p12 −ω2
np11 − 2ζωnp12 + p22

−ω2
np11 − 2ζωnp12 + p22 −2ω2

np12 − 4ζωnp22 + 10

]

.

The fourth term −PHTR−1
C HP is different depending on what H is. For each of the above

parts a-c above we have that HTR−1
C H given by

[

0 0
0 1

]

,

[

1 0
0 0

]

,

[

1 0
0 1

]

.

When we compute −PHTR−1
C HP from these and get

−
[

p212 p12p22
p12p22 p222

]

, −
[

p211 p11p12
p11p12 p212

]

, −
[

p212 + p211 p12p22 + p11p12
p12p22 + p11p12 p222 + p212

]

.

This problem is further worked in the MATLAB function sect 5 1.m where the function
ode45 is used to integrate the above ordinary differential equation for p11(t), p12(t), and
p22(t). The ode45 function needs a function to compute ẋ given (t, x). The common part of
the ordinary differential equation for P (t) is implemented in the function sect 5 1 ode fn.m.
The specific parts are implemented in the three functions:

sect 5 1 ode fn part a.m, sect 5 1 ode fn part b.m, and sect 5 1 ode fn part c.m

which call this common function. When the above script is run it produces the plots shown
in Figure 27.

128

0 0.5 1
0

1

2

3

4

5

6

7

8

x 10
−3 p11

0 0.5 1
0

0.005

0.01

0.015

0.02

p12

Part (a)

Part (b)

Part (c)

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p22

Figure 27: The evolution of elements of the covariance for Problem 1 Section 5. The plots
from left-to-right are of p11(t), p12(t), and p22(t) respectively. The elements of the covariance
matrix for Part a are plotted in red, for Part b in green and for Part c are in blue.

Section 4.5 Problem 2 (the prediction covariance)

In this case we integrate the equation for P (t) up until the time tcalc = 0.2 and then using
this value P (tcalc) as the initial condition solve Equation 172 but without the −PHTR−1

C HP
term. This means that we integrate the following differential equation

Ṗ = FP + PF T + LQCL
T ,

from tcalc until the desired prediction time test = 0.4. This problem is worked in the MATLAB
script sect 5 2.m and uses many of the same functions as in the previous problem. When
this script is run it produces the plots shown in Figure 28. See the caption for additional
details.

Section 4.5 Problem 3 (using a Chandrasekhar-type algorithm)

Since P (0) = 0 we can use the special case discussed in the book at the end of the section
on the Chandrasekhar-type algorithms where

D ≡ FP (0) + P (0)F T + LQCL
T − P (0)HTR−1

C HP (0) = LQCL
T =

[

0 0
0 10

]

.

Note that D is positive semidefinite with rank α = 1, and the number of positive eigenvalues
is β = 1. We have to write the matrix D above as M1M

T
1 where M1 is of dimension

n×α = 2× 1. We can do this if we take M1 =

[

0√
10

]

. Then Y2(t) ≡ 0 and the system we

129

0 0.2 0.4
0

1

2

3

4

5

6

7

x 10
−3

0 0.2 0.4
0

0.005

0.01

0.015

0.02

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Part (a)

(a)−pred

Part (b)

(b)−pred

Part (c)

(c)−pred

Figure 28: The evolution of elements of the covariance for Problem 2 Section 5. The plots
from left-to-right are of p11(t), p12(t), and p22(t) respectively. The elements of the covariance
matrix for Part a are plotted in red, for Part b in green and for Part c are in blue. We
have measurements up until the time tcalc = 0.2 and then have no measurements from this
point onwards. The curves for times greater than tcalc are drawn as dashed lines. Notice
that without measurements our state estimation errors grow as would be expected.

need to solve to compute the continuous Kalman gain KC(t) is

Ẏ1(t) = [F −KC(t)H]Y1(t) with Y1(0) =M1

K̇C(t) = Y1(t)Y1(t)
THTR−1

C with KC(0) = P (0)HTR−1
C .

When we write our unknowns as vectors say Y1(t) =

[

y1(t)
y2(t)

]

and KC(t) =

[

k1(t)
k2(t)

]

then

the various expressions needed are given by

Part (a): Where H =
[

0 1
]

so

F −KC(t)H =

[

0 1− k1(t)
−ω2

n −2ζωn − k2(t)

]

,

and

Y1(t)Y1(t)
THTR−1

C =

[

y1(t)
y2(t)

]

[

y1(t) y2(t)
]

[

0
1

]

=

[

y1(t)y2(t)
y2(t)

2

]

.

Thus the Chandrasekhar-type ordinary differential equation system is given by

d

dt

[

y1(t)
y2(t)

]

=

[

(1− k1(t))y2(t)
−ω2

ny1(t) + (−2ζωn − k2(t))y2(t)

]

with

[

y1(0)
y2(0)

]

=

[

0√
10

]

d

dt

[

k1(t)
k2(t)

]

=

[

y1(t)y2(t)
y2(t)

2

]

with

[

k1(0)
k2(0)

]

=

[

0
0

]

.

130

We can of course lump these two systems together and integrate a single system of di-
mension 4 × 1. This ordinary differential equation is computed in the MATLAB function
sect 5 3 ode fn part a.m.

Part (b): Where H =
[

1 0
]

so

F −KC(t)H =

[

−k1(t) 1
−ω2

n − k2(t) −2ζωn

]

,

and

Y1(t)Y1(t)
THTR−1

C =

[

y1(t)
y2(t)

]

[

y1(t) y2(t)
]

[

1
0

]

=

[

y1(t)
2

y1(t)y2(t)

]

.

Thus the Chandrasekhar-type ordinary differential equation system is given by

d

dt

[

y1(t)
y2(t)

]

=

[

−k1(t)y1(t) + y2(t)
(−ω2

n − k2(t))y1(t)− 2ζωny2(t)

]

with

[

y1(0)
y2(0)

]

=

[

0√
10

]

d

dt

[

k1(t)
k2(t)

]

=

[

y1(t)
2

y1(t)y2(t)

]

with

[

k1(0)
k2(0)

]

=

[

0
0

]

.

This ordinary differential equation is computed in the MATLAB function sect 5 3 ode fn part b.m.

Part (c): When H =

[

1 0
0 1

]

the matrix KC(t) is now 2× 2 and we find

F −KC(t)H =

[

−k11(t) 1− k12(t)
−ω2

n − k21(t) −2ζωn − k22(t)

]

,

and

Y1(t)Y1(t)
THTR−1

C =

[

y1(t)
y2(t)

]

[

y1(t) y2(t)
]

=

[

y1(t)
2 y1(t)y2(t)

y1(t)y2(t) y2(t)
2

]

.

Thus the Chandrasekhar-type ordinary differential equation system is given by

d

dt

[

y1(t)
y2(t)

]

=

[

−k11(t)y1(t) + (1− k12(t))y2(t)
(−ω2

n − k21(t))y1(t) + (−2ζωn − k22(t))y2(t)

]

d

dt

[

k11(t) k12(t)
k21(t) k22(t)

]

=

[

y1(t)
2 y1(t)y2(t)

y1(t)y2(t) y2(t)
2

]

,

with initial conditions given by

[

y1(0)
y2(0)

]

=

[

0√
10

]

with

[

k1(0)
k2(0)

]

=

[

0 0
0 0

]

.

This ordinary differential equation is computed in the MATLAB function sect 5 3 ode fn part c.m.

When the MATLAB script sect 5 3.m is run we numerically integrate each of the above
systems and then compare the corresponding results with KC(t) found from Problem 1 in
this section. In each case the between KC(t) computed in two different ways is quite good.

131

0 0.5 1
0

1

2

3

4

5

6

7

8
x 10

−3 P(1,1)

0 0.5 1
−0.005

0

0.005

0.01

0.015

0.02

0.025
P(1,2)

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P(2,2)

Figure 29: The evolution of elements of the covariance for Problem 4 Section 5. The plots
from left-to-right are of p11(t), p12(t), and p22(t) respectively. The black curves are computed
using the square root algorithm, while the red curves are computed using the Kalman-Bucy
filter.

Section 4.5 Problem 4 (using a square-root algorithm)

In this formulation we must solve the ordinary differential equation

Ṡ(t) = S(t)MUT(t) with S(0)S(0)T = P (0) ,

and S is upper triangular S(t) =

[

s11(t) s12(t)
0 s22(t)

]

andMUT(t) given by the upper triangular

part of the right-hand-side of Equation 197. In this expression when only H changes three
terms are the same

S−1FS + STF TS−T + S−1LQCL
TS−T ,

and only one term is different −STHTR−1
C HS. Recall that the matrix product LQCL

T =
[

0 0
0 10

]

. Then with the upper triangular form of S given above, in the Mathematica file

evaluate MUT.nb we compute the three common terms above needed to compute MUT(t),
S(t)MUT(t) for the three common terms and then −SSTHTR−1

C HS. The three common
terms are coded in the MATLAB function sect 5 4 ode fn.m, while each of the the specific
matrix forms for H in the parts above are coded in function with names that denote the part
(a,b, or c) in which they are derived. For example sect 5 4 ode fn part a.m. The driver
script for this problem is sect 4 5.m and when that is run we produce plots of the elements
of the covariance matrix p11(t), p12(t) and p22(t). An example plot generated for Part (c) is
shown in Figure 29. The black curves are computed using the square root algorithm, while
the red curves are computed using the Kalman-Bucy filter. While the curves don’t agree
exactly this difference may be due to the fact that in the square root formulation we are
expecting to start with a positive definite matrix P (0) to decompose as S(0)S(0)T . Since our

132

P (0) in this problem is 0 and is there for not positive definite we might expect the numerical
approximation to be suboptimal.

Section 4.5 Problem 5 (estimation of drug content in the blood)

The dynamic system and measurement equations for this problem are given by

ẋ1 = −k1x1 + u

ẋ2 = k1x1 − k2x2

z = x2 + n .

Where the constants k1 > 0 and k2 > 0. Here x1 is the mass of drug in the gastrointestinal
track and must be less than or equal to another constant x1,max, x2 is the mass of the drug
in the blood stream, while u is our control. We desire to measure x2. For this problem we
see that this

F =

[

−k1 0
k1 −k2

]

, G =

[

1
0

]

, L =

[

0
0

]

, and H =
[

0 1
]

.

with RC(t) = r a scalar constant. In this formulation of the problem there is no process
noise. We will modify this system to add scalar noise terms wi to each equation. Then in
that case L = I and Q = Diag

[

q1 q2
]

. Then to use the Kalman-Bucy filter we need to
first solve for P (t) the following ordinary differential equation

Ṗ = FP + PF T +Q− P

[

0 0
0 r−1

]

P ,

with a given initial condition on P (t), say P (0) = 0 if the initial state is known with
certainty. Once we have solved this system for P (t) the continuous Kalman gain KC(t) is

given by KC(t) = P (t)HTR−1
C = P (t)

[

0
r−1

]

.

Section 4.6 Problem 1 (oven temperature)

We are told to consider the dynamic system

ẋ(t) = −k1x(t)− k2x(t)
4 + k3u+ k4 ,

with measurements given by
z(t) = x(t) + n(t) .

Now since the process noise k4 has a nonzero mean (it has the mean value of 1) we will
remove that mean value from k4 and write k4 = 1 + k̃4, where k̃4 has the same variance as
k4 but with a mean of 0.0. When we do this our nonlinear dynamical system becomes

ẋ(t) = −k1x(t)− k2x(t)
4 + k3u+ 1 + k̃4 .

133

from which we see that our nonlinear system ẋ = f(·) has f = −k1x(t)− k2x(t)
4 + k3u+ 1,

and the new “control” term is k3u+ 1.

Part (a): The book has discussed how to convert a linear continuous time system into a
discrete system. Since the given system is nonlinear the techniques presented in the book do
not seem to be directly applicable for this problem. Thus the way I choose to simulate this
system is using a method similar to the hybrid extended Kalman filter discussed in the book.
We first break up the interval of simulation into segments where the measurements occur
t0 < t1 < · · · < tk−1 < tk < · · · < tN = tfinal. Assume we know the state at the beginning
of this interval x(tk−1). Then over an internal interval say tk−1 < t < tk we integrate the
nonlinear equation ẋ(t) = f [x, u, w, p, t] (with zero noise) over that time

x(tk) = x(tk−1) +

∫ tk

tk−1

f [x(τ), u(τ), 0, p(τ), τ]dτ ,

using a general purpose integration routine. At the time tk we then will apply a “jump” in the
state x due to the process noise which was neglected in the above integration. This process
noise will be a random variable drawn from a Gaussian with zero mean and a variance given
by what we would compute for the linearized problem which in this case is ẋ(t) = −k1x(t)+k̃4.
Note we drop the control terms k3u + 1 here. Based on the results derived on Page 93 for
the same linear system we have that the covariance of the discrete-time process noise for this
system should be given by

q =
qC

2(−k1)
(e2(−k1)∆t − 1) =

qC
2k1

(1− e−2k1∆t) .

Where ∆t = tk − tk−1. Then with the process noise added to the state we then generate a
measurement using z(tk) = x(tk)+n where n is a random draw from a Gaussian distribution
with mean 0 and variance R.

The above procedure is implemented in the MATLAB code sect 6 1 gen xz.m.

Warning: As this system is in fact nonlinear, the above approach may not in fact be the
correct way to simulate from this system. If anyone sees anything wrong with this approach
and knows of a better method please contact me.

Part (b): For this part we drop the k2x
4 term from the dynamic equation which gives

ẋ(t) = −k1x(t) + k3u+ 1 + k̃4

z(t) = x(t) + n(t) .

We could solve this in the continuous Kalman-Bucy framework if desired. To that end note
that the state equation has F = −k1, Gu = k3u, Lw = k4. To compute the filter gain KC(t)
using the Kalman-Bucy filter we must first solve

Ṗ = FP + PF T + LQCL
T − PHTR−1

C HP ,

which in this case becomes

ṗ = −2p+ 1− p2 with p(0) = 0 .

134

Note that everything is a scalar. Once we have p(t) then KC(t) = P (t)HTR−1
C = p(t) in this

case.

Since we will be comparing these linearized results with the results when we use the extended
Kalman filter we will instead discretize the above system and the perform Kalman filtering
on that system. For the time independent continuous system like we have above

ẋ(t) = Fx(t) +Gu(t) + Lw(t) ,

the discrete-time formulation of the mean propagation looks like

xk = Φxk−1 + Γ(k3u+ 1) for k ≥ 0 ,

with

Φ(∆t) = eF∆t = e−k1∆t

Γ = Φ(∆t)[In − Φ−1(∆t)]F−1G =
1

k1
(1− e−k1∆t) .

The uncertainty added at each time step is given by the variance of the discrete-time process
noise which is q as calculated above. See the notes around Page 10. With this formulation
and since Hk = 1 and the state dimension is 1 the discrete-time Kalman equations are

x̂k(−) = Φx̂k−1(+) + Γ(k3u+ 1)

Pk(−) = ΦPk−1(+)ΦT + q

Kk = Pk(−)(Pk(−) +R)−1

x̂k(+) = x̂k(−) +Kk[zk − x̂k(−)]

Pk(+) = (1−Kk)Pk(−) .

This is implemented in the MATLAB code sect 6 1 linear kf.m.

Part (c): To use the hybrid Extended Kalman-Bucy Filter for each interval tk−1 < t < tk
we let the estimates of the mean state and its uncertainty at the start of the interval tk−1 be
given by x̂[tk−1(+)] and P [tk−1(+)] we then integrate the coupled nonlinear system

ẋ(t) = −k1x(t)− k2x
4(t) + k3u+ 1

Ṗ (t) = F (t)P (t) + P (t)F (t)T + qC

= 2(−k1 − 4k2x(t)
3)P (t) + qC ,

to the time t = tk starting with the initial conditions on x and P of x̂[tk−1(+)] and P [tk−1(+)].
This gives the new state estimate and uncertainty x̂[tk(−)] and P [tk(−)]. Once we have these
two values we compute the filter gain (since H ≡ 1)

K(tk) = P [tk(−)](P [tk(−)] +R)−1 ,

and then the state and covariance measurement update according to

x̂[tk(+)] = x̂[tk(−)] +K(tk){zk − x̂[tk(−)]} (220)

P [tk(+)] = (1−K(tk))P [tk(−)] . (221)

135

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7

8

time

tr
u
e
 s

ta
te

truth

measurement z

linear KF

extended KF

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

3

4

5

time

tr
u
e
 s

ta
te

truth

measurement z

linear KF

extended KF

Figure 30: Plots of the true state xk (in green) and two Kalman filtered estimates of its
value x̂k (in black). The first Kalman filter estimate corresponds to dropping the x4 term
(denoted as “linear”) and the second corresponds to filtering with the extended Kalman filter
(denoted as “extended”). In addition, around each state estimate we plot its 95% confidence
interval (in red). Measurements are shown in cyan (purple). Left: When the forcing term
is “large” i.e. k3u = 10. Right: When the forcing term is “large” i.e. k3u = 1. See the text
for more details.

Then this process repeats over the next time interval tk < t < tk+1. This is implemented in
the MATLAB code sect 6 1 extended kf.m.

The above routines are driven using the MATLAB script sect 6 1.m. We first performed
the numerical computations as suggested with k3u = 10. The resulting plot is given in
Figure 30 (left). We next performed the numerical computations but k3u = 1. The resulting
plot is given in Figure 30 (right). Notice that for both values of k3u extended Kalman filter
does a good job at representing the true state. When the value of k3u is small the limiting
value of x is not that large and thus the linear Kalman filter does a good job filtering. When
the value of k3u is large (say 10) the linear Kalman filter does not do a good job representing
the true state. The nonlinearity in this case appears to the user as a bias to the true state.
This shows what type of trouble that filtering with the wrong differential equation for the
physical process can appear. This is often called the “model mismatch” problem.

As an example of how the term k2x
4 can affect the final solution x if we take ẋ = 0 to

consider the steady-state solution (denoted x∗) we get

0 = −k1x∗ − k2x
∗4 + k3u+ 1 .

For the case where we don’t include x∗4 and the two values of k3u of 10 and 1 we find

x∗ =
k3u+ 1

k1
= 11 , and 2 .

136

While when we do include x∗4 using a root finding algorithm we find

x∗ = 2.991492 , and 1.497336 .

This simple calculation shows how different the results can be when we drop the x4 term or
not. These computations are done in the R code sect 6 1 roots.R.

Section 4.6 Problem 2 (a nonlinear measurement mapping)

For the given system given to match the continuous time dynamic process model

ẋ(t) = F (t)x(t) +G(t)u(t) + L(t)w(t) ,

we have a state x given by x =









x1
x2
x3
x4









and system matrices

F (t) =









0 0 1 0
0 0 0 1
0 0 −1/τ 0
0 0 0 −1/τ









, G(t)u(t) =









0 0
0 0

1/τ 0
0 1/τ









[

u3
u4

]

, L(t)w(t) =









w1

w2

w3

w4









,

with τ = 30 seconds. In the book the vector L(t)w(t) seems to have two components equal
to w4. I’m going to assume this is a typo. Coupled with this linear system we have the
nonlinear measurement mapping

z(t) = h[x(t), t] + n(t) ,

where the functional form for h[x(t), t] is given in the book. To implement the extended
Kalman filter for this problem we will need to linearize this measurement equation. To do
this we will need to evaluate ∂h

∂x
. To this end recall that

d

dx
sin−1(x) =

1√
1− x2

.

If we define the variable Θ = Θ(x3, x4) as

Θ(x3, x4) =
x4

(x23 + x24)
1/2

,

then we have that

∂Θ

∂x3
= − x3x4

(x23 + x24)
3/2

∂Θ

∂x4
=

1

(x23 + x24)
1/2

− x24
(x23 + x24)

3/2
,

137

both of which are functions of the current state x. For the extended Kalman filter we will
need to compute the linearization of the measurement equation or

Hk =
∂h[x, t]

∂x(t)

∣

∣

∣

∣

x=x̂k(−),t=tk(−)

=











2(x1 − rn1) 2(x2 − re1) 0 0
2(x1 − rn2) 2(x2 − re2) 0 0

0 0 x3

(x2
3+x2

4)
1/2

x4

(x2
3+x2

4)
1/2

0 0 1√
1−Θ2

∂Θ
∂x3

1√
1−Θ2

∂Θ
∂x4











∣

∣

∣

∣

∣

∣

∣

∣

∣

x=x̂k(−),t=tk(−)

,

where the reference points are given by (rn1, re1) = (0, 0) and (rn2, re2) = (105, 0).

Part (a): A time-independent continuous system (like we have here)

ẋ(t) = Fx(t) +Gu(t) + w(t) ,

transforms into the discrete-time formulation

xk = Φxk−1 + Γuk−1 + wk−1 , (222)

with

Φ(∆t) = eF∆t

Γ(∆t) = Φ(∆t)[In − Φ−1(∆t)]F−1G ,

or since in this case F is not invertible one must use the expression that uses the Taylor
series approximation to Γ(∆t) given in Equation 35. We assume that the discrete-time noise
wk has E[wk−1w

T
k−1] = Q, with Q given in the problem. We are assuming we are given Q in

the discrete-time formulation. With this background starting at an initial state x̂0(+) and
uncertainty P0(+) the extended Kalman filtering equations are

x̂k(−) = Φx̂k−1(+) + Γuk−1

Pk(−) = ΦPk−1(+)ΦT +Q

Hk =
∂

∂x(t)

∣

∣

∣

∣

x=x̂k(−),t=tk(−)

= using the above expression

Kk = Pk(−)HT
k {HkPk(−)HT

k +R}−1

x̂k(+) = x̂k(−) +Kk{z(tk)− h[x̂k(−), tk]}
Pk(+) = [In −KkHk]Pk(−) .

Part (b-d): For this part of the problem, we compute a truth trajectory using Equation 222
and iterate the extended Kalman filtering equations above. This procedure requires several
codes all of which are called from the main MATLAB script sect 6 2.m. When this main
driver script is run it produces the plots for each of the states given in Figure 31.

138

0 50 100 150 200 250 300
−1000

0

1000

2000

3000

4000

5000

6000

time

tr
u
e
 s

ta
te

 x
(
1
)

truth

extended KF

95% confidence bounds

0 50 100 150 200 250 300
2.495

2.5

2.505

2.51

2.515

2.52

2.525

2.53
x 10

4

time

tr
u
e
 s

ta
te

 x
(2

)

0 50 100 150 200 250 300
6

8

10

12

14

16

18

20

22

24

time

tr
u

e
 s

ta
te

 x
(3

)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

time

tr
u

e
 s

ta
te

 x
(4

)

Figure 31: Plots of the true state xk for k = 1, 2, 3, 4 (in green) and the extended Kalman
filtered estimate x̂k (in black). In addition, around each state estimate we plot its 95%
confidence interval (in red). Since the measurements are nonlinear mappings of the state
they are not shown. Top Left: The state x1. Top Right: The state x2. Bottom Left:
The state x3. Bottom Right: The state x4. See the text for more details. Notice that
the estimation is so good with the states x1(t) and x2(t) that the estimates and the truth
coincide.

139

Section 4.6 Problem 3 (another ships initial condition)

For this problem we used the same MATLAB script sect 6 2.m but with modified initial
conditions and a forcing of u3 = 0 and u4 = 20 rather than u3 = 20 and u4 = 0. When we
run with these initial conditions we get the plots given in Figure 32.

Section 4.6 Problem 4 (increasing the sizes of Q and R)

For this problem we used the same MATLAB script sect 6 2.m but with modified versions
of Q and R. When we increase each term of Q by 10. When we do that, we expect our
system state to possibly possess more movement in each time step since the random vector
drawn now comes from a distribution with a larger variance and can therefore itself be of a
larger magnitude. As the original Q matrix was

Q = diag(4, 4, 0.25, 0.25) ,

we expect that this increase to affect the states x3 and x4 most since 10 is a larger percentage
of 0.25. Plotting x3(t) in this case in Figure 33 (left) demonstrates this.

When we increase each term of Q by 10 we get the result for x3(t) shown in Figure 33 (right).
In this case the change in the truth or state estimate is hard to observe.

Section 4.6 Problem 5 (a describing function)

For the nonlinear function f(x) defined by

f(x) =







−D x < −a
0 −a ≤ x ≤ a
D x > a

,

we want to compute the describing function. Note the book considers the case where D = 1.
Note that E[f(x)] = 0, thus a0 = 0, E[x̃] = σ2, and so

a1 =
1

σ2
E[f(x)x̃] =

1

σ2
E[f(x)x] ,

140

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

time

tr
u
e
 s

ta
te

 x
(
1
)

truth

extended KF

95% confidence bounds

0 50 100 150 200 250 300
2.5

2.6

2.7

2.8

2.9

3

3.1
x 10

4

time

tr
u
e
 s

ta
te

 x
(2

)

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

10

12

time

tr
u

e
 s

ta
te

 x
(3

)

0 50 100 150 200 250 300
0

5

10

15

20

25

time

tr
u

e
 s

ta
te

 x
(4

)

Figure 32: The same four states as in Problem 2 and given in Figure 31 but with a different
initial condition and forcing. Note that the qualitative behavior of x1 and x2 and x3 and x4
seems to have switched between these two runs.

141

0 50 100 150 200 250 300
−30

−20

−10

0

10

20

30

40

time

tr
u

e
 s

ta
te

 x
(
3

)

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

10

12

time

tr
u

e
 s

ta
te

 x
(3

)

Figure 33: The state x3(t) as in Problem 3 and given in Figure 32 but with modified Q (left)
and R (right) matrices. We see that modifying Q gives a more volatile time series while
there seems to be less of an effect on the state and its estimate when we modify R.

when we assume that E[x] is zero. For a zero mean Gaussian density recall that p(x) =
1√
2πσ

e−
x2

2σ2 and we compute

a1 =
1

σ2

∫

xf(x)p(x)dx

= −D

σ2

∫ −a

−∞
x

1√
2πσ

e−
x2

2σ2 dx+
D

σ2

∫ ∞

a

x
1√
2πσ

e−
x2

2σ2 dx

= −D

σ2

1√
2πσ

(−σ2) e−
x2

2σ2

∣

∣

∣

∣

−a

−∞
+
D

σ2

1√
2πσ

(−σ2) e−
x2

2σ2

∣

∣

∣

∣

∞

a

=
D

σ
√
2π

(e−
a2

2σ2 − 0)− D

σ
√
2π

(0− e−
a2

2σ2) =

√

2

π

D

σ
e−

a2

2σ2 .

Section 4.7 Problem 1 (the parameter-adaptive filter)

Part (a-b): See the MATLAB script sect 7 prob 1.m where we work this problem. When
we run that script we find that the Kalman estimate with the error in the (2, 1) element of
Φ seems to be a very good approximation to the true state.

Part (c): For this part of the problem we augment the original state

[

x1
x2

]

with the value

of the (2, 1) element of Φ. If we denote this element as a, then our augmented dynamical

142

system is thus given by




x1
x2
a





∣

∣

∣

∣

∣

∣

k+1

=





0.9 1 0
a 0.8 0
0 0 1









x1
x2
a





∣

∣

∣

∣

∣

∣

k

+





1 0
0 1
0 0





[

w1

w2

]

.

These dynamic equations are coupled with a measurement equation given by

zk =

[

1 0 0
0 1 0

]





x1
x2
a





∣

∣

∣

∣

∣

∣

k

+ nk .

Our system above is nonlinear as it has an ax1 term. We must use the extended Kalman
filter to perform inference on this system. The state propagation is done using the above
nonlinear mapping of the augmented state. The covariance propagation step needs the
linearized coefficient matrix FA. For the above system we find that

FA =





0.9 1 0
a 0.8 x1
0 0 1



 .

Using these we can formulate the extended Kalman filter for this problem. This is imple-
mented in the the MATLAB script sect 7 prob 1.m, and the associated subroutines. When
we run that script we get the plots given in Figure 34.

Section 4.7 Problem 2 (tests for whiteness)

This problem is implemented in the R function sect 7 prob 2.R. When that script is run it
produces a plot like that seen in Figure 35.

Section 4.7 Problem 3 (a simple example of noise adaptive filtering)

Warning: These results do not look like what I would expect. I’m not sure that what I have
done is wrong, I have tried techniques like this in other context and have not had much luck
getting them to work. I’m not sure where the discrepancy lies between theory and practice.
If anyone sees anything wrong with what I have done please contact me.

The true system has wk ∼ N(0, 10) and nk ∼ N(0, 1) and we will be changing the values
of R and Q used in filtering to experiment with noise adaptive filtering. We first discuss
how to obtain a better approximation of R the noise covariance matrix. At each step in the
filtering we compute the measurement residual rk given by

rk = zk −Hx̂k(−) . (223)

Then if our filtering is optimal E[x̂kn
T
k] = E[xkn

T
k] = 0 and we have

E[rkr
T
k] = HPk(−)HT +R . (224)

143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

0

1000

2000

3000

4000

5000

time (sec)

x
1

x
1

measurement

x
1
 estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−500

0

500

1000

1500

2000

2500

3000

3500

time (sec)

x
2

x
2

measurement

x
2
 estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

time (sec)

a

true value a

estimate of a

Figure 34: Estimation of a parameter using extended Kalman filtering and state augmenta-
tion. Left: Plots of xk,1 the truth in green, zk,1 the measurements as a black x and x̂k,1(+)
our approximation in red. Center: Plots of xk,2 the truth in green, zk,2 the measurements
as a black x and x̂k,2(+) our approximation in red. Right: Plots of the true value of the
(2, 1) denoted as a in green and our estimate over time of it x̂k,3(+) in red. Notice that our
estimate of the (2, 1) component of Φ starts at the value of 0.6 and converges to 0.5. See the
text for additional details.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series u_t

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series x_t

Figure 35: Left: Plots of the autocorrelation function for uk (Gaussian white noise). Note
that the autocovariance function at all lags are insignificant. This sequence is most certainly
white. Right: Plots of the autocorrelation function for the sequence zk = 0.7zk−1 + uk a
first order AR model. Note that the autocovariance function has an exponential type decay
starting at the lag of k = 0. This is a characteristics of AR time series. This sequence is
most not certainly white.

144

We assume that we have processed N measurements and can compute the sample mean of
rk in the normal way

r̄ =
1

N

N
∑

k=1

rk . (225)

Under optimal filtering rk is zero mean but if we filter with incorrect estimates of measure-
ment and noise covariance Q and R to compute an estimate of E[rkr

T
k] we must subtract

the sample mean. This using Equation 224 to get an approximation of R (denoted R̂) as

1

N − 1

N
∑

k=1

(rk − r̄)(rk − r̄)T =
1

N

N
∑

k=1

HPk(−)HT + R̂ .

Our estimate of R depends on N the number of processed measurements. Solving for R̂ we
can write it under one summation as

R̂ =
1

N − 1

{

N
∑

k=1

(rk − r̄)(rk − r̄)T − N − 1

N
HPk(−)HT

}

, (226)

or as two summations as

R̂ =
1

N − 1

N
∑

k=1

(rk − r̄)(rk − r̄)T − 1

N

N
∑

k=1

HPk(−)HT . (227)

If our filter has been operating for a long time and has reached steady-state Pk(−) has
become constant denoted by PSS(−) and the above estimate of R becomes

R̂ = Ŝ −HPSS(−)HT . (228)

We note that in the above we are neglecting state-noise correlation i.e. we assume that
E[x̂kn

T
k] = 0. Since when we have incorrect values for Q or R this will not necessarily

be true. In that case its not clear how good of an approximation the above will be. One
approach would be to use the initial value of R for a while and once non-optimal steady-state
filtering has been achieved update it using the approximation R̂ given by Equation 228. This
could be performed several times as needed.

We now discuss how to obtain a better approximation of the process noise covariance matrix
Q. Unlike the measurement residual rk = zk − x̂k(−), where we have observed or computed
every variable in that expression, in the process residual qk given by

qk = xk+1 − Φx̂k(+) , (229)

we don’t have access to the hidden variable xk+1. In process noise covariance filtering we
have to approximate it with x̂k+1(+) thus we will take for qk the approximation

qk ≈ x̂k+1(+)− Φx̂k(+) .

The theoretical forcing residual qk can be shown to equal

qk = Φ[xk − x̂k(+)] + wk ,

145

which under optimal steady-state filtering again requires that

QSk
≡ E[(qk − q̄)(qk − q̄)T] = ΦPk(+)ΦT +Q , (230)

Solving for Q in the above expression and denoting this as Q̂ and using a sample based
approach to estimate E[(qk − q̄)(qk − q̄)T] we have

Q̂ =
1

N − 1

N
∑

k=1

(qk − q̄)(qk − q̄)T − 1

N

N
∑

k=1

ΦPk(+)ΦT . (231)

In steady-state this estimate becomes

Q̂ = QS − ΦPSS(+)ΦT . (232)

With this background we are ready to implement this problem. This problem is worked in
the MATLAB codes sect 7 prob 3.m and sect 7 prob 3 noise adaptive filtering.m.
When these scripts are run they generate the plots shown in Figure 36. Notice that both
r̄ and q̄ approach 0 as we take more measurements for all filtering both with and without
the correct model parameters. Note that the estimate of R when filtering with the correct
model R̂ eventually limits to the input measurement noise covariance R = 1 which shows
consistency of this estimation technique. The estimate of Q when filtering with the correct
model does not limit to the correct value of 10 but seems to limit to something less. Neither
of the estimates of R or Q when filtering with the incorrect model gives estimates of Q or
R that are very close to the values used to generate the data Q = 10 and R = 1. In fact for
the incorrect model (Q,R) = (20, 0.5) the estimate of R is negative.

Again I’m not sure where the difficulty with this technique lies. If anyone has any insight
into this please let me know.

Section 4.7 Problem 4 (a simple example of multiple-model estimation)

This problem is worked in the MATLAB code sect 7 prob 4.m. When that code is run it
generates the plots shown in Figure 37.

146

0 500 1000 1500 2000 2500
−0.5

0

0.5

1

1.5

2

time

rb
a

r
e

s
ti
m

a
te

rbar

rbar (Q,R)=(10,1)

rbar (Q,R)=(20,0.5)

rbar (Q,R)=(8,2)

0 500 1000 1500 2000 2500
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

time

R
h

a
t

(m
e

a
s
u

re
m

e
n

t
c
o

v
a

ri
a

n
c
e

)
e

s
ti
m

a
te

Rhat

Rhat (Q,R)=(10,1)

Rhat (Q,R)=(20,0.5)

Rhat (Q,R)=(8,2)

0 500 1000 1500 2000 2500
−0.5

0

0.5

1

1.5

2

time

q
b

a
r

e
s
ti
m

a
te

qbar

qbar (Q,R)=(10,1)

qbar (Q,R)=(20,0.5)

qbar (Q,R)=(8,2)

0 500 1000 1500 2000 2500
−2

0

2

4

6

8

10

12

time

Q
h

a
t

(p
ro

c
e

s
s
 n

o
is

e
 c

o
v
a

ri
a

n
c
e

)
e

s
ti
m

a
te

Qhat

Qhat (Q,R)=(10,1)

Qhat (Q,R)=(20,0.5)

Qhat (Q,R)=(8,2)

Figure 36: Top Left: Plots of r̄(N) the mean measurement residual as a function of time N .
Top Right: Plot of R̂(N) the estimate of the measurement noise covariance as a function
of time N . Bottom Left: Plots of q̄(N) the mean process noise residual as a function of
time N . Bottom Right: Plot of Q̂(N) the estimate of the process noise covariance as a
function of time N .

147

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

p
r
o
b
a
b
il
it
y

Phi_1

Phi_truth

Phi_3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

time (sec)

e
s
ti
m

a
te

 o
f
a

true value (2,1) element

mean estimate of (2,1) element

Figure 37: Left: Plots of the posteriori probability of various models. Each model is a
different value for the (2, 1) component of Φ. The correct model wins as time goes on.
Right: Plots of the probability blended estimate of the (2, 1) element of Φ. Eventually the
element goes to 0.5 the correct value.

148

References

[1] A. Gelb. Applied optimal estimation. MIT Press, 1974.

149

