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Nonlinear Equations

By the Dawn’s Early Light

In the example considered in this chapter we are trying to find a value for 6 that satisfies

the equation
2V sin(0) cos(6)

g
Consider writing this slightly differently using the identity

—d=0.

2sin(f) cos(0) = sin(20) ,

sin(20) (VF) .

Since we know that sin(26) is less than 1. Thus the above product must take the expression

as

Ve and make it smaller (to equal d) by multiplying by sin(26). If this fraction is already to
small i.e. if V2

L < d,

g

then there will be no solution for 9.
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Newton’s Method

The book argues using geometry and Taylor’s theorem that Newton’s method can be ex-
pressed as the difference equation

Tpi1 = T — }f’ixxz)) , for k=1,2,---. (1)

If we want to use this to calculate the reciprocal of a number a we can look for the root of
a function f(z) given by

1
flx) = ——a.
Then we have the first derivative given by
1
/
f (l’) = _; )

and Newton’s iteration given by Equation 1 gives

(-

2 2
Tpp1 = Tp — ———— = T} + T}, — ax, = 273 — axj, . (2)
As as an aside we wonder if given the Newton’s iteration expression can we determine what

function f(x) we are looking for a zero of. Thus given the iterations xy1 = ¢(xy) if we take

@
Fi) @

olx) =z
by solving for f(z) we have

fl(x) 1 v dx’
flx) = —o(x) /

fo)=eo ([ ) (@)

We can test this idea on Equation 2 where ¢(z) = 2x — ax?, then the denominator in the

or

above integral is given by z — (22 — ax?) = —z + ax? and we need to evaluate the integral of
1 1 A B
—Z +az? 21— az) Tz 1-az’
If we multiply by = and let x = 0 we see that A = —1. If we multiply by 1 — ax and let
r = % we get that B = —a and so have the partial fraction expansion of
1 1 a
—7+ar? 7 1l—az’

Integrating these gives

z 1 1—azx

Then using Equation 4 we see that f(z) is given by

_1—ax_1

fx) = =

T T

—a.



Notes on Local convergence analysis

The book derives that the error convergence for a fixed point method xy.1 = ¢(xy) is given
by
€1 = ¢/<§k)€ka (5)

where e, = xp — x, and & is a point between x and z,. If |¢/(x)] < C < 1 in a region
around z, then this method will converge. As we are considering Newton’s iterations as the
formula used to determine the functional form for ¢(x) via Equation 3 we have that

/ " "
R N €3V 5 D Vi ) o
f'e) =~ () /()
Since x, is a root of f(z) we have f(x,) = 0 and from the above ¢'(z.) = 0. Thus by
continuity we expect there to be a region around x, such that the needed convergence
inequality |¢'(z)| < C < 1 holds.

We can consider how fast this iterative algorithm converges to x, by Taylor expanding ¢(x)
about z,. We have

Blan) — 6(22) = (@) (w — w) + 50" () ox — 27,

where 7, is a point between xp and x,. Since xpi; = ¢(xk), . = ¢(xy), ¢'(z.) = 0, and
using the definition of e; the above becomes

1
Chp1 = §¢”(77k)6z :

Thus we need to evaluate ¢”. Using Equation 6 we have

_ f'@) ") | f@) ) f) ()

i -2 ) 7
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When we evaluate this at © = z, using that z, is a root we find that
f" ()
& (x,) = )
() =)

Since as we iterate, assuming that we are converging we will have z;, — z, and thus

i (45 ) = i (G0 ) = 50w = £

k—o0 €L k— N 2f’<x*) ’
It is this constant number that determine how our error e; changes from time step to time
step
S ()
Chpl N e .
T ()t

As another way to derive this expression, consider Newton’s iterations where we assume that
T = X4 + €, and we Taylor expand everything about x,. Then in that case we have that the



Newton iterations have

€kr1 = T4l — T = T — Ty — f(xk)
f'(xr)
o flata)  Pledet 37@)E 4 i )€
’ f/<€k‘ + I*) ‘ f’(l’*) + f”(x*>€k + %f’”(fk)ei

T ()

- ;f/((:;i)) Gi + 0(52) )

the same results as before.

(f@9%+§ﬂ@ai+éﬂwm§)(y_W@0 1fW&>ﬁ
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As a summary, we recall that the number of significant digits n in the approximation
xk to z, can be given by
log(|lz, —
2.

Notes on a quasi-Newton method

As another comment, note that we could use any method to approximate the derivative
f'(xy). Namely many of the methods presented in [?] could be used.

Notes on iterating a fixed point

For the fixed point z, that satisfies x, = ¢(x,) we can derive a recursion relationship for the
error e = Iy — T, using Taylor’s theorem with a remainder. To do this we expand ¢(zy)
about the point x, where we have

(T — )2+ -+ T (g, — )P

where & is a point between x; and z,. If the first p — 1st derivative of ¢ vanish at x, then
the above becomes
¢ (&)

d(rr) = T4 + p (T — )P

Since x4 = ¢(xy) this gives

(p)

Ck+1 =

our desired recurrence relationship for ey.



Notes on Newton’s method with multiple zeros

When z, is a zero of f(z) of multiplicity m then using Taylor’s theorem we can show that
f(z) = (x — z,)"g(x) with g(z.) # 0. For such a function Newton’s iteration function ¢

becomes
f@) o (w—w)gl)

M) =T B T ga) — (e - g @)

To study convergence to the root x, we need ¢'(x,). We find the first derivative given by

N g g9(x)
PO = @ — o — ) @)

(z — .)g(x) (
(mg(z) — (x — z.)g'(x))?
We could simplify that expression but since we only want to evaluate it at x, we don’t need
to. At the point z, we find

my'(x) —g' () = (x — 2.)g"(x)) .

gz) _ 1

mg(z.) m

# ) =1-

You might recall Equation 6 and argue that ¢'(z,.) = 0 since f(z.) = 0. Showing that
Newton’s method must have at least quadratic convergence. These statements are true only
in the case where f’'(z,) # 0 which unfortunately when we have multiple roots is not true.
Thus using Equation 9 we have that

e~ ¢ (Ee)er = (1 B %> "

Notes on the secant method: convergence

Consider the two dimensional function ¢(u,v) given by the secant method fixed point map-

ping
o Fu—v) _ uf(w) —uf()

R T (O R O (O 1o

If v = x, then since z, is a root of f we have
w. L) = v, f(u) —
and if u = x, then in the same way
. _x*f(v) o
O(z4,v) = T(U) =1,. (12)

To prove convergence we will need the expression for the two-dimensional Taylor series of ¢
with error term, which states that ¢(x, + p, z. + q) is equal to

O(T4; i) + GulTs, T)P + Du(Ts, T4)q
1
+ 5 [QZ)UU("E* + 0p, z. + QQ)pQ + 2000 (T4 + Op, T + 0q)pq + Do (T4 + Op, T4 + QQ)QQ] )

bt



where 6 € [0, 1]. From Equation 11 we can take the u derivative and we see that ¢, (u, z,) = 0.
In the same way using Equation 12 we can take the v derivative and get ¢,(z.,v) = 0. Thus
the u and v derivatives at the point (z.,x,) are zero

(bu(x*,x*) = ¢v($*,$*) = O,

and the second and third terms of the Taylor expansion of ¢(x, + p, . + ¢q) vanish. Now
consider the uu derivative of ¢ that is the coefficient of the p? term. By a linear Taylor
expansion in its second argument we have

Gun(Ts + Op, T + 09) = Gu(Ts + Op, 2.) + Py (T4 + Op, 22 + 7,00)0q
= ¢uuv<x* + 9p, Ty + Tqﬁq)ﬁq .

Where we have used Equation 11 to argue that ¢, (z.« + 0p,z.) = 0. Now consider the vv
derivative of ¢ that is the coefficient of the ¢ term. By a linear Taylor expansion in its first
argument and using Equation 12 we have

(bvv(x* + Hp, T + GCD = ¢vv<x*7 Ty + GCD + ¢vvu<x* + Tpep7 L + ‘9(])9}7
= ¢vvu(x* + Tpepa Ty + TqHQ)ep .

In both case 7, and 7, are in [0, 1]. With these expressions we have that ¢(z. + p,x, + q) is
equal to x, plus the expression

]g [Pue (T4 + O, 2 + 7400)0p + 2000 (2 + Op, 4 + 04) + Goou(@s + 10D, 2 + Teq)0q]
(13)
We now derive the recursion relationship between the errors at various timesteps. Let ey =
xo— x4 and e; = z1 — z, and take p = e; and g = eq, then ¢(z, + p, x« +q) = (21, 20) = 2,
since given x; and x the secant fixed point function ¢ is how we get the next iterate. The
error in the point x5 using the Taylor series computed above to evaluate the increment gives

ey = O(x, + €1, T + €p) — X

= % [bracketed term in 13 with ¢ replaced with ey and p with e;]

= %T(Gl, 60) . (14)

Where we have defined r(ey,ep) in the above expression. We can evaluate r at one point
namely (0,0). Where from Equation 13 we find

7(0,0) = 2040 (T, T4) - (15)

This expression may or may not be zero but it is a constant number. Thus we can make the
product vr(u, v) as small as we need if v is taken small by keeping v close to the origin. Thus
we can find a region in (u,v) around (0,0) where vr(u,v) is still “small”. What we mean is
that we can find a § such that when |ul, |v] < § we have

lor(u,v)| < C < 1.

We start our iterations with ey and e; such that |egl, |e1| < ¢ and then find
1 C
leo| = §|61||60’F(61,60)| < §|61| <le1| < 6.

6



Thus e, is inside this § region as well. Because of this we have that
lerr(eg,e1)| < C < 1.

So the bound on ej is given by
1 C
les| = =|ea|lerr (e, e1)| < —=ea] < Clea] < C?ey].
2 2
Continuing this for arbitrary k& we have
lex] < C* e,

and since 0 < C' < 1 we have |ex| — 0 and the secant method converges.

We now consider the convergence rate of the secant method. Since the secant method has
errors that satisfy Equation 14 or for general k

€rCh_
€1 = k; 17’(ek,ek,1) ) (16)

We claim that we have super linear convergence of order p where p = # This means that

we need to show
lim |6k+1| =
k—o00 |6k|p

)

for some constant C' and the numerical value of p specified. To show this define the sequence

Si as S = % Then solving for |eg 1| in terms of s we get

lert1] = sklex|”.

Decrementing k by one and putting the result into the right-hand-side of this last expression
we get
2
|exr1| = splsu-1]er—1|"|" = susi_ylex—1]" .
We now have expressed |ex41| and |ex| in terms of |eg_;| thus
2
20enia] _ 2spsilenal”

= _ — 96, 5P e, L [PPP-1
|T<€k,€k 1)| ‘ekHek71| 3k71|€k71‘p‘€k—1‘ Sksk—1|€k 1‘

For the value of p suggested one can show p* — p — 1 = 0 and we end with
1
_|7~
2
We still want to prove that the limit of s, is finite. It seems like if s limits to a constant s
then it must satisfy

(er,er_1)| = sksij ) (17)

1 1 1/p
§|7’(0,0)\ =s so s= (§|7’(0,0)\) )

Using Equation 15 we can relate this limit to the function ¢ and the fixed point x,. This
seems to be enough to show that a limit to s, exists. We can still discuss the method
presented in the book however. If we take the logarithm of Equation 17 we get

1
log <§|T(ekv 6k—1)|) = log(sk) + (p = 1)log(sp—1) or pp =0+ (p—1)ok,
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using the definitions of the sequence p; and oj. Assuming limits as k — oo exist we must
have p, = 0, + (p — 1)p.. Subtracting these two equations gives
Pk —ps =0k —0u+ (p—1)(0h-1 — o) .

or changing the order of the terms

Ok = 0x = (pr = px) = (p = D(0h1 — 04).

Then to use the theorem in the book we make the association n = 1, a1 = —(p — 1),
€ = O — 0y, and 1, = pr — p«. Then the difference equation above will converge to zero
€, — 0 if the roots of

z+(p—1)=0,

are inside the unit circle. Since this root is x = —p+ 1 ~ —0.618 we see that it is inside the
unit circle, showing that a limit to o} exists.



