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Nonlinear Equations

By the Dawn’s Early Light

In the example considered in this chapter we are trying to find a value for θ that satisfies
the equation

2V 2
0 sin(θ) cos(θ)

g
− d = 0 .

Consider writing this slightly differently using the identity

2 sin(θ) cos(θ) = sin(2θ) ,

as

sin(2θ)

(

V 2
0

g

)

= d .

Since we know that sin(2θ) is less than 1. Thus the above product must take the expression
V 2
0

g
and make it smaller (to equal d) by multiplying by sin(2θ). If this fraction is already to

small i.e. if
V 2
0

g
< d ,

then there will be no solution for θ.

∗
wax@alum.mit.edu

1



Newton’s Method

The book argues using geometry and Taylor’s theorem that Newton’s method can be ex-
pressed as the difference equation

xk+1 = xk −
f(xk)

f ′(xk)
, for k = 1, 2, · · · . (1)

If we want to use this to calculate the reciprocal of a number a we can look for the root of
a function f(x) given by

f(x) =
1

x
− a .

Then we have the first derivative given by

f ′(x) = −
1

x2
,

and Newton’s iteration given by Equation 1 gives

xk+1 = xk −

(

1
xk

− a
)

− 1
x2
k

= xk + xk − ax2
k = 2xk − ax2

k . (2)

As as an aside we wonder if given the Newton’s iteration expression can we determine what
function f(x) we are looking for a zero of. Thus given the iterations xk+1 = φ(xk) if we take

φ(x) ≡ x−
f(x)

f ′(x)
, (3)

by solving for f(x) we have

f ′(x)

f(x)
=

1

x− φ(x)
so ln(f(x)) =

∫ x dx′

x′ − φ(x′)

or

f(x) = exp

(
∫ x dx′

x′ − φ(x′)

)

. (4)

We can test this idea on Equation 2 where φ(x) = 2x − ax2, then the denominator in the
above integral is given by x− (2x− ax2) = −x+ ax2 and we need to evaluate the integral of

1

−x+ ax2
= −

1

x(1− ax)
=

A

x
+

B

1− ax
.

If we multiply by x and let x = 0 we see that A = −1. If we multiply by 1 − ax and let
x = 1

a
we get that B = −a and so have the partial fraction expansion of

1

−x+ ax2
= −

1

x
−

a

1− ax
.

Integrating these gives
∫ x 1

−x+ ax2
= − ln(x) + ln(1− ax) = ln

(

1− ax

x

)

.

Then using Equation 4 we see that f(x) is given by

f(x) =
1− ax

x
=

1

x
− a .

2



Notes on Local convergence analysis

The book derives that the error convergence for a fixed point method xk+1 = φ(xk) is given
by

ek+1 = φ′(ξk)ek , (5)

where ek ≡ xk − x∗ and ξk is a point between xk and x∗. If |φ′(x)| ≤ C < 1 in a region
around x∗ then this method will converge. As we are considering Newton’s iterations as the
formula used to determine the functional form for φ(x) via Equation 3 we have that

φ′(x) = 1−
f ′(x)

f ′(x)
+

f(x)f ′′(x)

f ′(x)2
=

f(x)f ′′(x)

f ′(x)2
. (6)

Since x∗ is a root of f(x) we have f(x∗) = 0 and from the above φ′(x∗) = 0. Thus by
continuity we expect there to be a region around x∗ such that the needed convergence
inequality |φ′(x)| ≤ C < 1 holds.

We can consider how fast this iterative algorithm converges to x∗ by Taylor expanding φ(x)
about x∗. We have

φ(xk)− φ(x∗) = φ′(x∗)(xk − x∗) +
1

2
φ′′(ηk)(xk − x∗)

2 ,

where ηk is a point between xk and x∗. Since xk+1 = φ(xk), x∗ = φ(x∗), φ
′(x∗) = 0, and

using the definition of ek the above becomes

ek+1 =
1

2
φ′′(ηk)e

2
k .

Thus we need to evaluate φ′′. Using Equation 6 we have

φ′′(x) =
f ′(x)f ′′(x)

f ′(x)2
+

f(x)f ′′′(x)

f ′(x)2
− 2

f(x)f ′′(x)

f ′(x)3
. (7)

When we evaluate this at x = x∗ using that x∗ is a root we find that

φ′′(x∗) =
f ′′(x∗)

f ′(x∗)
.

Since as we iterate, assuming that we are converging we will have xk → x∗ and thus

lim
k→∞

(

ek+1

e2k

)

= lim
k→∞

(

1

2
φ′′(ηk)

)

=
1

2
φ′′(x∗) =

f ′′(x∗)

2f ′(x∗)
.

It is this constant number that determine how our error ek changes from time step to time
step

ek+1 ≈
f ′′(x∗)

2f ′(x∗)
e2k .

As another way to derive this expression, consider Newton’s iterations where we assume that
xk = x∗+ ǫk and we Taylor expand everything about x∗. Then in that case we have that the
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Newton iterations have

ǫk+1 = xk+1 − x∗ = xk − x∗ −
f(xk)

f ′(xk)

= ǫk −
f(ǫk + x∗)

f ′(ǫk + x∗)
= ǫk −

f ′(x∗)ǫk +
1
2
f ′′(x∗)ǫ

2
k +

1
6
f ′′′(ηk)ǫ

3
k

f ′(x∗) + f ′′(x∗)ǫk +
1
2
f ′′′(ξk)ǫ2k

≈ ǫk −
1

f ′(x∗)

(

f ′(x∗)ǫk +
1

2
f ′′(x∗)ǫ

2
k +

1

6
f ′′′(ηk)ǫ

3
k

)(

1−
f ′′(x∗)

f ′(x∗)
ǫk −

1

2

f ′′′(ξk)

f ′(x∗)
ǫ3k

)

=
f ′′(x∗)

2f ′(x∗)
ǫ2k +O(ǫ3k) ,

the same results as before.

As a summary, we recall that the number of significant digits n in the approximation
xk to x∗ can be given by

n = −
log(|x∗ − xk|)

|x∗|
(8)

Notes on a quasi-Newton method

As another comment, note that we could use any method to approximate the derivative
f ′(xk). Namely many of the methods presented in [?] could be used.

Notes on iterating a fixed point

For the fixed point x∗ that satisfies x∗ = φ(x∗) we can derive a recursion relationship for the
error ek ≡ xk − x∗, using Taylor’s theorem with a remainder. To do this we expand φ(xk)
about the point x∗ where we have

φ(xk) = φ(x∗) + φ′(x∗)(xk − x∗) +
φ′′(x∗)

2
(xk − x∗)

2 + · · ·+
φ(p−1)(x∗)

(p− 1)!
(xk − x∗)

p−1

+
φ(p)(ξk)

p!
(xk − x∗)

p ,

where ξk is a point between xk and x∗. If the first p− 1st derivative of φ vanish at x∗ then
the above becomes

φ(xk) = x∗ +
φ(p)(ξk)

p!
(xk − x∗)

p .

Since xk+1 = φ(xk) this gives

ek+1 =
φ(p)(ξk)

p!
e
p
k , (9)

our desired recurrence relationship for ek.
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Notes on Newton’s method with multiple zeros

When x∗ is a zero of f(x) of multiplicity m then using Taylor’s theorem we can show that
f(x) = (x − x∗)

mg(x) with g(x∗) 6= 0. For such a function Newton’s iteration function φ

becomes

φ(x) = x−
f(x)

f ′(x)
= x−

(x− x∗)g(x)

mg(x)− (x− x∗)g′(x)
.

To study convergence to the root x∗ we need φ′(x∗). We find the first derivative given by

φ′(x) = 1−
g(x)

mg(x)− (x− x∗)g′(x)

−
(x− x∗)g(x)

(mg(x)− (x− x∗)g′(x))2
(mg′(x)− g′(x)− (x− x∗)g

′′(x)) .

We could simplify that expression but since we only want to evaluate it at x∗ we don’t need
to. At the point x∗ we find

φ′(x∗) = 1−
g(x∗)

mg(x∗)
= 1−

1

m
.

You might recall Equation 6 and argue that φ′(x∗) = 0 since f(x∗) = 0. Showing that
Newton’s method must have at least quadratic convergence. These statements are true only
in the case where f ′(x∗) 6= 0 which unfortunately when we have multiple roots is not true.
Thus using Equation 9 we have that

ek+1 ≈ φ(1)(ξk)ek =

(

1−
1

m

)

ek .

Notes on the secant method: convergence

Consider the two dimensional function φ(u, v) given by the secant method fixed point map-
ping

φ(u, v) = u−
f(u)(u− v)

f(u)− f(v)
=

vf(u)− uf(v)

f(u)− f(v)
. (10)

If v = x∗ then since x∗ is a root of f we have

φ(u, x∗) =
x∗f(u)

f(u)
= x∗ , (11)

and if u = x∗ then in the same way

φ(x∗, v) =
−x∗f(v)

−f(v)
= x∗ . (12)

To prove convergence we will need the expression for the two-dimensional Taylor series of φ
with error term, which states that φ(x∗ + p, x∗ + q) is equal to

φ(x∗, x∗) + φu(x∗, x∗)p+ φv(x∗, x∗)q

+
1

2

[

φuu(x∗ + θp, x∗ + θq)p2 + 2φuv(x∗ + θp, x∗ + θq)pq + φvv(x∗ + θp, x∗ + θq)q2
]

,
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where θ ∈ [0, 1]. From Equation 11 we can take the u derivative and we see that φu(u, x∗) = 0.
In the same way using Equation 12 we can take the v derivative and get φv(x∗, v) = 0. Thus
the u and v derivatives at the point (x∗, x∗) are zero

φu(x∗, x∗) = φv(x∗, x∗) = 0 ,

and the second and third terms of the Taylor expansion of φ(x∗ + p, x∗ + q) vanish. Now
consider the uu derivative of φ that is the coefficient of the p2 term. By a linear Taylor
expansion in its second argument we have

φuu(x∗ + θp, x∗ + θq) = φuu(x∗ + θp, x∗) + φuuv(x∗ + θp, x∗ + τqθq)θq

= φuuv(x∗ + θp, x∗ + τqθq)θq .

Where we have used Equation 11 to argue that φuu(x∗ + θp, x∗) = 0. Now consider the vv

derivative of φ that is the coefficient of the q2 term. By a linear Taylor expansion in its first
argument and using Equation 12 we have

φvv(x∗ + θp, x∗ + θq) = φvv(x∗, x∗ + θq) + φvvu(x∗ + τpθp, x∗ + θq)θp

= φvvu(x∗ + τpθp, x∗ + τqθq)θp .

In both case τp and τq are in [0, 1]. With these expressions we have that φ(x∗ + p, x∗ + q) is
equal to x∗ plus the expression

pq

2
[φuuv(x∗ + θp, x∗ + τqθq)θp+ 2φuv(x∗ + θp, x∗ + θq) + φvvu(x∗ + τpθp, x∗ + τqθq)θq] ,

(13)
We now derive the recursion relationship between the errors at various timesteps. Let e0 =
x0−x∗ and e1 = x1−x∗ and take p = e1 and q = e0, then φ(x∗+ p, x∗+ q) = φ(x1, x0) = x2,
since given x1 and x0 the secant fixed point function φ is how we get the next iterate. The
error in the point x2 using the Taylor series computed above to evaluate the increment gives

e2 = φ(x∗ + e1, x∗ + e0)− x∗

=
e1e0

2
[bracketed term in 13 with q replaced with e0 and p with e1]

≡
e1e0

2
r(e1, e0) . (14)

Where we have defined r(e1, e0) in the above expression. We can evaluate r at one point
namely (0, 0). Where from Equation 13 we find

r(0, 0) = 2φuv(x∗, x∗) . (15)

This expression may or may not be zero but it is a constant number. Thus we can make the
product vr(u, v) as small as we need if v is taken small by keeping v close to the origin. Thus
we can find a region in (u, v) around (0, 0) where vr(u, v) is still “small”. What we mean is
that we can find a δ such that when |u|, |v| ≤ δ we have

|vr(u, v)| ≤ C < 1 .

We start our iterations with e0 and e1 such that |e0|, |e1| ≤ δ and then find

|e2| =
1

2
|e1||e0r(e1, e0)| ≤

C

2
|e1| < |e1| < δ .
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Thus e2 is inside this δ region as well. Because of this we have that

|e1r(e2, e1)| ≤ C < 1 .

So the bound on e3 is given by

|e3| =
1

2
|e2||e1r(e2, e1)| ≤

C

2
|e2| < C|e2| < C2|e1| .

Continuing this for arbitrary k we have

|ek| < Ck−1|e1| ,

and since 0 < C < 1 we have |ek| → 0 and the secant method converges.

We now consider the convergence rate of the secant method. Since the secant method has
errors that satisfy Equation 14 or for general k

ek+1 =
ekek−1

2
r(ek, ek−1) . (16)

We claim that we have super linear convergence of order p where p = 1+
√
5

2
. This means that

we need to show

lim
k→∞

|ek+1|

|ek|p
= C ,

for some constant C and the numerical value of p specified. To show this define the sequence
sk as sk ≡

|ek+1|
|ek|p . Then solving for |ek+1| in terms of sk we get

|ek+1| = sk|ek|
p .

Decrementing k by one and putting the result into the right-hand-side of this last expression
we get

|ek+1| = sk|sk−1|ek−1|
p|p = sks

p
k−1|ek−1|

p2 .

We now have expressed |ek+1| and |ek| in terms of |ek−1| thus

|r(ek, ek−1)| =
2|ek+1|

|ek||ek−1|
=

2sks
p
k−1|ek−1|

p2

sk−1|ek−1|p|ek−1|
= 2sks

p−1
k−1|ek−1|

p2−p−1 .

For the value of p suggested one can show p2 − p− 1 = 0 and we end with

1

2
|r(ek, ek−1)| = sks

p−1
k−1 . (17)

We still want to prove that the limit of sk is finite. It seems like if sk limits to a constant s
then it must satisfy

1

2
|r(0, 0)| = sp so s =

(

1

2
|r(0, 0)|

)1/p

.

Using Equation 15 we can relate this limit to the function φ and the fixed point x∗. This
seems to be enough to show that a limit to sk exists. We can still discuss the method
presented in the book however. If we take the logarithm of Equation 17 we get

log

(

1

2
|r(ek, ek−1)|

)

= log(sk) + (p− 1) log(sk−1) or ρk = σk + (p− 1)σk−1 ,
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using the definitions of the sequence ρk and σk. Assuming limits as k → ∞ exist we must
have ρ∗ = σ∗ + (p− 1)ρ∗. Subtracting these two equations gives

ρk − ρ∗ = σk − σ∗ + (p− 1)(σk−1 − σ∗) .

or changing the order of the terms

σk − σ∗ = (ρk − ρ∗)− (p− 1)(σk−1 − σ∗) .

Then to use the theorem in the book we make the association n = 1, a1 = −(p − 1),
ǫk = σk − σ∗, and ηk = ρk − ρ∗. Then the difference equation above will converge to zero
ǫk → 0 if the roots of

x+ (p− 1) = 0 ,

are inside the unit circle. Since this root is x = −p+ 1 ≈ −0.618 we see that it is inside the
unit circle, showing that a limit to σk exists.
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