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Introduction

A Note on Notation

In these notes, I use the symbol ⇒ to denote the results of elementary elimination matrices
used to transform a given matrix into its reduced row echelon form. Thus when looking for
the eigenvectors for a matrix like

A =





0 0 2
0 1 0
0 0 2





rather than say, multiplying A on the left by

E33 =





1 0 0
0 1 0
−1 0 1





produces

E33A =





0 0 2
0 1 0
0 0 0





we will use the much more compact notation

A =





0 0 2
0 1 0
0 0 2



⇒





0 0 2
0 1 0
0 0 0



 .
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Derivation of the decomposition (Page 170)

Combining the basis for the row space and the basis for the nullspace into a common matrix

to assemble a general right hand side x =
[

a b c d
]T

from some set of components

c =
[

c1 c2 c3 c4
]T

we must have

A









c1
c2
c3
c4









=









1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

















c1
c2
c3
c4









=









a
b
c
d









Inverting the coefficient matrix A by using the teaching code elim.m or augmentation and
inversion by hand gives

A−1 =
1

2









1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1









.

So the coefficients of c1, c2, c3, and c4 are given by









c1
c2
c3
c4









= A−1









a
b
c
d









=
1

2









a + c
b+ d
a− c
b− d









As verified by what is given in the book.

Chapter 1 (Introduction to Vectors)

Section 1.1 (Vectors and Linear Combinations)

Problem 16 (dimensions of a cube in four dimensions)

We can generalize Problem 15 by stating that the corners of a cube in four dimensions are
given by

n(1, 0, 0, 0) +m(0, 1, 0, 0) + l(0, 0, 1, 0) + p(0, 0, 0, 1) ,

for indices n,m, l, p taken from {0, 1}. Since the indices n,m, l, p can take two possible values
each the total number of such vectors (i.e. the number of corners of a four dimensional cube)
is given by 24 = 16.

To count the number of faces in a four dimensional cube we again generalize the notion
of a face from three dimensions. In three dimensions the vertices of a face is defined by
a configuration of n,m, l where one component is specified. For example, the top face is



specified by (n,m, 1) and the bottom face by (n,m, 0), where m and n are allowed to take
all possible values from {0, 1}. Generalizing to our four dimensional problem, in counting
faces we see that each face corresponds to first selecting a component (either n, m, l, or p)
setting it equal to 0 or 1 and then letting the other components take on all possible values.
The component n, m, l, or p can be chosen in one of four ways, from which we have two
choices for a value (0 or 1). This gives 2 × 4 = 8 faces.

To count the number of edges, remember that for a three dimensional cube an edge is
determined by specifying (and assigning to) all but one elements of our three vector. Thus
selecting m and p to be 0 we have (n, 0, 0) and (n, 0, 0), where n takes on all values from
{0, 1} as vertices that specify one edge. To count the number of edges we can first specifying
the one component that will change as we move along the given edge, and then specify a
complete assignment of 0 and 1 to the remaining components. In four dimensions, we can
pick the single component in four ways and specify the remaining components in 23 = 8,
ways giving 4 · 8 = 32 edges.

Problem 17 (the vector sum of the hours in a day)

Part (a): Since every vector can be paired with a vector pointing in the opposite direction
the sum must be zero.

Part (b): We have
∑

i6=4

vi =

(

∑

all i

vi

)

− v4 = 0 − v4 = −v4 ,

with v4 denoting the 4:00 vector.

Part (c): We have

∑

i6=1

vi +
1

2
v1 =

(

∑

all i

vi

)

− v1 +
1

2
v1 = 0 − v1

2
= −v1

2
,

with v1 denoting the 1:00 vector.

Problem 18 (more clock vector sums)

We have from Problem 17 that the vector sum of all the vi’s is zero,
∑

i∈{1,2,...12}
vi = 0 .

Adding twelve copies of (0,−1) = −ĵ to each vector gives
∑

i∈{1,2,...12}
(vi − ĵ) = −12ĵ .



But if in addition to the transformation above the vector 6:00 is set to zero and the vector
12:00 is doubled, we can incorporate those changes by writing out the above sum and making
the terms summed equivalent to the specification in the book. For example we have





∑

i6={6,12}
(vi − ĵ)



+ (v6 − ĵ) + (v12 − ĵ) = −12ĵ





∑

i6={6,12}
(vi − ĵ)



+ (0 − ĵ) + (2v12 − ĵ) = −v6 + v12 − 12ĵ





∑

i6={6,12}
(vi − ĵ)



+ (0 − ĵ) + (2v12 − ĵ) = −(0, 1) + (0,−1) − 12(0, 1) = −10(0, 1) .

The left hand side now gives the requested sum. In the last equation, we have written out
the vectors in terms of their components to perform the summations.

Problem 26 (all vectors from a collection )

Not if the three vector are not degenerate, i.e. are not all constrained to a single line.

Problem 27 (points in common with two planes)

Since the plane spanned by u and v and the plane spanned by v and w intersect on the line
v, all vectors cv will be in both planes.

Problem 28 (degenerate surfaces)

Part (a): Pick three vectors collinear, like

u = (1, 1, 1)

v = (2, 2, 2)

w = (3, 3, 3)

Part (b): Pick two vectors collinear with each other and the third vector not collinear with
the first two. Something like

u = (1, 1, 1)

v = (2, 2, 2)

w = (1, 0, 0)



Problem 29 (combinations to produce a target)

Let c and d be scalars such that combine our given vectors in the correct way i.e.

c

[

1
2

]

+ d

[

3
1

]

=

[

14
8

]

which is equivalent to the system

c + 3d = 14

2c+ d = 8

which solving for d using the second equation gives d = 8 − 2c and inserting into the first
equation gives c + 3(8 − 2c) = 14, which has a solution of c = 2. This with either of the
equations above yields d = −2.

Section 1.2 (Lengths and Dot Products)

Problem 1 (simple dot product practice)

We have

u · v = −.6(3) + .8(4) = 1.4

u · w = −.6(4) + .8(3) = 0

v · w = 3(4) + 4(3) = 24

w · v = 24 .

Chapter 2 (Solving Linear Equations)

Section 2.2 (The Idea of Elimination)

Problem 1

We should subtract 5 times the first equation. After this step we have

2x+ 3y = 11

−6y = 6

or the system
[

2 3
0 −6

]

The two pivots are 2 and -6.



Problem 2

the last equation gives y = −1, then the first equation gives 2x− 3 = 1 or x = 2. Lets check
the multiplication

[

2
10

]

(2) +

[

3
9

]

(−1) =

[

1
11

]

(1)

If the right hand changes to
[

4
44

]

(2)

then -5 times the first component added to the second component gives 44 − 20 = 24.

Chapter 3 (Vector Spaces and Subspaces)

Section 3.1

Problem 5

Part (a): Let M consist of all matrices that are multiples of

[

1 0
0 0

]

.

Part (b): Yes, since the element 1 · A+ (−1) · B = I must be in the space.

Part (c): Let the subspace consist of all matrices defined by

a

[

1 0
0 0

]

+ b

[

0 0
0 1

]

Problem 6

We have h(x) = 3(x2) − 4(5x) = 3x2 − 20x.

Problem 7

Rule number eight is no longer true since (c1 + c2)x is interpreted as f((c1 + c2)x) and
c1x+ c2x is interpreted as f(c1x)+ f(c2x), while in general for arbitrary functions these two
are not equal i.e. f((c1 + c2)x) 6= f(c1x) + f(c2x).



Problem 8

• The first rule x+ y = y + x is broken since f(g(x)) 6= g(f(x)) in general.

• The second rule is correct.

• The third rule is correct with the zero vector defined to be x.

• The fourth rule is correct if we define −x to be the inverse of the function f(·), because
then the rule f(g(x)) = x states that f(f−1(x)) = x, assuming an inverse of f exists.

• The seventh rule is not true in general since c(x+y) is cf(g(x)) and cx+cy is cf(cg(x))
which are not the same in general.

• The eighth rule is not true since the left hand side (c1 + c2)x is interpreted as (c1 +
c2)f(x), while the right hand side c1x+ c2x is interpreted as c1f(c2f(x)) which are not
equal in general.

Problem 9

Part (a): Let the vector
[

x
y

]

=

[

1
1

]

+ c

[

1
0

]

+ d

[

0
1

]

.

For c ≥ 0 and d ≥ 0. Then this set is the upper right corner in the first quadrant of the
xy plane. Now note that the sum of any two vectors in this set will also be in this set but
scalar multiples of a vector in this set may not be in this set. Consider

1

2

[

1
1

]

=

[

1
2
1
2

]

,

which is not be in the set.

Part (b): Let the set consist of the x and y axis (all the points on them). Then for any
point x on the axis cx is also on the axis but the point x+ y will almost certainly not be.

Problem 10

Part (a): Yes

Part (b): No, since c(b1, b2, b3) = c(1, b2, b3) is not in the set if c = 1
2
.

Part (c): No, since if two vectors x and y are such that x1x2x3 = 0 and y1y2y3 = 0 there is
no guarantee that x+ y will have that property. Consider

x =





0
1
1



 and y =





1
0
1







Part (d): Yes, this is a subspace.

Part (e): Yes, this is a subspace.

Part (f): No this is not a subspace since if

b =





b1
b2
b3



 ,

has this property then cb should have this property but cb1 ≤ cb2 ≤ cb3 might not be true.
Consider

b =





−100
−10
−1



 and c = −1 .

Then b1 ≤ b2 ≤ b3 but cb1 ≤ cb2 ≤ cb3 is not true.

Problem 11

Part (a): All matrices of the form
[

a b
0 0

]

for all a, b ∈ R.

Part (b): All matrices of the form
[

a a
0 0

]

for all a ∈ R.

Part (c): All matrices of the form
[

a 0
0 b

]

or diagonal matrices.

Problem 12

Let the vectors v1 =





1
1
−2



 and v2 =





4
0
0



, then v1 + v2 =





5
1
−2



 but 5 + 1 − 2(−2) =

10 6= 4 so the sum is not on the plane.



Problem 13

The plane parallel to the previous plane P is x + y − 2z = 0. Let the vectors v1 =





1
1
1





and v2 =





1
0
1
2



, which are both on P0. Then v1 + v2 =





2
1
3
2



. We then check that this

point is on our plane by computing the required sum. We find that 2 + 1 − 2
(

3
2

)

= 0, and
see that it is true.

Problem 14

Part (a): Lines, R
2 itself, or (0, 0, 0).

Part (b): R
4 itself, hyperplanes of dimension four (one linear constraining equation among

four variables) that goes through the origin like the following

ax1 + bx2 + cx3 + dx4 = 0 .

Constraints involving two linear equation like toe above (going through the origin)

ax1 + bx2 + cx3 + dx4 = 0

Ax1 +Bx2 + Cx3 +Dx4 = 0 ,

which is effectively a two dimensional plane. In addition, constraints involving three equa-
tions like above and going through the origin (this is effectively a one dimensional line).
Finally, the origin itself.

Problem 15

Part (a): A line.

Part (b): A point (0, 0, 0).

Part (c): Let x and y be elements of S ∩ T . Then x + y ∈ S ∩ T and cx ∈ S ∩ T since x
and y are both in S and in T , which are both subspaces and therefore x+ y and cx are both
in S ∩ T .

Problem 16

A plane (if the line is in the plane to begin with) or all of R
3.



Problem 17

Part (a): Let

A =

[

1 0
0 1

]

and B =

[

−1 0
0 −1

]

,

which are both invertible. Now A + B =

[

0 0
0 0

]

, which is not. Thus the set of invertible

matrices is not a subspace.

Part (b): Let

A =

[

1 3
2 6

]

and B =

[

6 3
2 1

]

,

which are both singular. Now A+B =

[

7 6
4 6

]

, which is not singular, showing that the set

of invertible matrices is not a subspace.

Problem 18

Part (a): True, since if A and B are symmetric then (A + B)T = AT + BT = A + B is
symmetric. Also (cA)T = cAT = cA is symmetric.

Part (b): True, since if A and B are skew symmetric then (A+B)T = AT +BT = −A−B =
−(A + b) and A + B is skew symmetric. Also if A is skew symmetric then cA is also since
(cA)T = cAT = −cA.

Part (c): False since if A =

[

1 3
2 5

]

which is unsymmetric and B =

[

0 −1
0 0

]

, which is

also unsymmetric then A +B =

[

1 2
2 5

]

should be unsymmetric but its not. Thus the set

of unsymmetric matrices is not closed under addition and therefore is not a subspace.

Problem 19

If A =





1 2
0 0
0 0



, then the column space is given by





1 2
0 0
0 0





[

x1

x2

]

=





x1 + 2x2

0
0



 ,



which is a line in the x-axis (i.e. all combinations of elements on the x-axis. If B =





1 2
0 2
0 0





then the column space of B is





x1

2x2

0



 or the entire xy plane. If C =





1 0
2 0
0 0



 then Cx is

given by





x1

2x2

0



 or a line in the xy plane.

Problem 20

Part (a): Consider the augmented matrix





1 4 2 b1
2 8 4 b2
−1 −4 −2 b3





Let E21 be given by

E21 =





1 0 0
−2 1 0
1 0 1



 ,

Then we find that

E21





1 4 2 b1
2 8 4 b2
−1 −4 −2 b3



 =





1 4 2 b1
0 0 0 b2 − 2b1
0 0 0 b3 + b+ 1



 ,

so that b2 = 2b1 and b1 = −b3.

Part (b):




1 4
2 9
−1 −4





[

x1

x2

]

=





b1
b2
b3





Let E21 and E31 be given by

E21 =





1 0 0
−2 1 0
0 0 1



 and E31 =





1 0 0
0 1 0
1 0 1



 ,

Then we see that

E31E21





1 4 b1
2 9 b2
−1 −4 b3



 =





1 4 b1
0 1 b2 − 2b1
0 0 b3 + b+ 1



 ,

which requires that b1 + b3 = 0, or b1 = −b3.



Problem 21

A combination of the columns of B and C are also a combination of the columns of A. Those
two matrices have the same column span.

Problem 22

For the first system




1 1 1
0 1 1
0 0 1









x1

x2

x3



 =





b1
b2
b3



 ,

we see that for any values of b the system will have a solution. For the second system





1 1 1 b1
0 1 1 b2
0 0 0 b3





we see that we must have b3 = 0. For the third system





1 1 1 b1
0 0 1 b2
0 0 1 b3





which is equivalent to




1 1 1 b1
0 0 1 b2
0 0 0 b3 − b2



 ,

so we must have b2 = b3.

Problem 23

Unless b is a combination of the previous columns of A. If A =





1 0
0 1
0 0



 with b =





0
0
1





has a large column space. But if A =





1 0
0 1
0 0



 with b =





2
0
0



 the column space does not

change. Because b can be written as a linear combination of the columns of A and therefore
adds no new information to the column space.



Problem 24

The column space of AB is contained in the and possibly equals the column space of A. If

A =

[

1 0
0 1

]

and B =

[

0 1
0 0

]

, then AB =

[

0 1
0 0

]

which is of a smaller dimension than

the original column space of A.

Problem 25

If z = x+ y is a solution to Az = b+ b∗. If b and b∗ are in the column space of A then so is
b+ b∗.

Problem 26

Any A that is a five by five invertible matrix has R
5 as its column space. Since Ax = b

always has a solution then A is invertible.

Problem 27

Part (a): False. Let A =

[

1 2
1 2

]

then x1 =

[

1
0

]

and x2 =

[

0
1

]

are each not in the

column space but x1 + x2 =

[

1
1

]

is in the column space. Thus the set of vectors not in the

column space is not a subspace.

Part (b): True.

Part (c): True.

Part (d): False, the matrix I can add a full set of pivots (linearly independent rows). Let

A =

[

0 0
0 0

]

, with I =

[

1 0
0 1

]

, then A has a column space consisting of the zero vector

and

A− I =

[

−1 0
0 −1

]

,

has all of R
2 as its column space.



Problem 28





1 1 2
1 0 0
0 1 2



 or





1 1 2
1 0 1
0 1 1





Section 3.2

Problem 1

Fpr the matrix (a) i.e




1 2 2 4 6
1 2 3 6 9
0 0 1 2 3





let E21 be given by

E21 =





1 0 0
−1 1 0
0 0 1



 ,

so that

E21A =





1 2 2 4 6
0 0 1 2 3
0 0 1 2 3



 .

Now let E33 be given by

E21 =





1 0 0
0 1 0
0 −1 1



 .

So that

E33E21A =





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0



 .

Which has pivot variables x1 and x3 and free variables x2, x4 and x5. For the matrix (b)

A =





2 4 2
0 4 4
0 8 8





let E32 be given by

E32 =





1 0 0
0 1 0
0 −2 1



 ,

so that

E32A =





2 4 2
0 4 4
0 0 0



 = U .

Then the free variables are x3 and the pivot variables are x1 and x2.



Problem 2

Since the ordinary echelon form for the matrix in (a) is

U =





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0



 ,

we find a special solution that corresponds to each free vector by assigning ones to each free
variable in turn and then solving for the pivot variables. For example, since the free variables
are x2, x4, and x5 we begin by letting x2 = 1, x4 = 0, and x5 = 0. Then our system becomes





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

















x1

1
x3

0
0













= 0

or




1 2
0 1
0 0





[

x1

x3

]

=





−2
0
0





which has a solution x3 = 0 and x1 = −2. So our special solution in this case is given by













−2
1
0
0
0













.

For the next special solution let x2 = 0, x4 = 1, and x5 = 0. Then our special solution solves





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

















x1

0
x3

1
0













= 0

or




1 2
0 1
0 0





[

x1

x3

]

=

[

−4
−2

]

Which requires x3 = −2 and x1 + 2(−2) = −4 or x1 = 0. Then our second special solution
is given by













0
0
−2
1
0













.



Our final special solution is obtained by setting x2 = 0, x4 = 0, and x5 = 1. Then our
system is





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

















x1

0
x3

0
1













= 0

which reduces to solving




1 2
0 1
0 0





[

x1

x3

]

=

[

−6
−3

]

So that x3 = −3 and x1 = −6 − 2(−3) = 0 is given by












0
0
−3
0
1













.

Lets check our calculations. Create a matrix N with columns consisting of the three special
solutions found above. We have

N =













−2 0 0
1 0 0
0 −2 −3
−2 1 0
0 0 1













,

And then the product of A times N should be zero. We see that

AN =





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

















−2 0 0
1 0 0
0 −2 −3
−2 1 0
0 0 1













=





0 0 0
0 0 0
0 0 0



 ,

as it should. For the matrix in part (b) we have that

U =





2 4 2
0 4 4
0 0 0





then the pivot variables are x1 and x2 while the free variables are x3. Setting x3 = 1 we
obtain the system

[

2 4
0 4

] [

x1

x2

]

=

[

−2
−4

]

,

so that x2 = −1 and x1 = −2−(4)(−1)
2

= 1, which gives a special solution of




1
−1
1



 .



Problem 3

From Problem 2 we have three special solutions

v1 =













−2
1
0
0
0













, v2 =













0
0
−2
1
0













, v3 =













0
0
−3
0
1













,

then any solution to Ax = 0 can be expressed as a linear combination of these special
solutions. The nullsapce of A contains the vector x = 0 only when there are no free variables
or there exist n pivot variables.

Problem 4

The reduced echelon form R has ones in the pivot columns of U . For Problem 1 (a) we have

U =





1 2 2 4 6
0 0 1 2 3
0 0 0 0 0



 ,

then let E13 =





1 −2 0
0 1 0
0 0 1



, so that

E13U =





1 2 0 0 0
0 0 1 2 3
0 0 0 0 0



 ≡ R

The nullspace of R is equal to the nullspace of U since row opperations don’t change the
nullspace. For Problem 1 (b) our matrix U is given by

U =





2 4 2
0 4 4
0 0 0





so let E12 =





1 −1 0
0 1 0
0 0 1



, so that

E12U =





2 0 −2
0 4 4
0 0 0



 .

Now let D =





1/2 0 0
0 1/4 0
0 0 1



, then

DE12U =





1 0 −1
0 1 1
0 0 0



 .



Problem 5

For Part (a) we have that

A =

[

−1 3 5
−2 6 10

]

,

then letting E21 =

[

1 0
−2 1

]

we get that

E21A =

[

−1 3 5
0 0 0

]

.

Then since E−1
21 =

[

1 0
2 1

]

we have that

A = E−1
21 U =

[

1 0
2 1

] [

−1 3 5
0 0 0

]

.

Where we can define the first matrix on the right hand side of the above to be L. For
Part (b) we have that

A =

[

−1 3 5
−2 6 7

]

,

then letting E21 be the same as before we see that

E21A =

[

−1 3 5
0 0 −3

]

.

so that a decoposition of A is given by

A = E−1
21 U =

[

1 0
2 1

] [

−1 3 5
0 0 −3

]

.

Problem 6

For Part (a) since we have that U =

[

−1 3 5
0 0 0

]

so we see that x1 is a pivot variable and

x2 and x3 are free variables. Then two special solutions can be computed by setting x2 = 1,
x3 = 0 and x2 = 0, x3 = 1 and solving for x1. In the first case we have −x1 +3 = 0 or x1 = 3
giving a special vector of

v1 =





3
1
0



 .

In the second case we have −x1 + 5 = 0 giving x1 = 5, so that the second special vector is
given by

v2 =





5
0
1



 .



Thus all special solutions to Ax = 0 are contained in the set

c1





3
1
0



+ c2





5
0
1



 .

For Part (b) since we have that U =

[

−1 3 5
0 0 −3

]

so we see that x1 and x3 are pivot

variable while x2 is a free variables. To solve for the vector in the nullspace set x2 = 1 and
solve for x1 and x3. This gives

[

−1 3 5
0 0 −3

]





x1

1
x3



 = 0 ,

or the system
[

−1 5
0 −3

] [

x1

x3

]

=

[

−3
0

]

.

This gives x3 = 0 and x1 = 3. So we have a special vector given by





3
1
0



 .

For an mxn matrix the number of free variables plus the number of pivot variables equals n.

Problem 7

For Part (a) the nullspace of A are all points (x, y, z) such that





3c1 + 5c2
c1
c2



 =





x
y
z



 ,

or the plane x = 3y+ 5z. This is a plane in the xyz space. This space can also be described
as all possible linear combinations of the two vectors





3
1
0



 and





5
0
1



 .

For Part (b) the nullspace of A are all points that are multiples of the vector





3
1
0



 which is

a line in R
3. Equating this vector to a point (x, y, z) we see that our line is given by x = 3c,

y = c, and z = 0 or equivalently x = 3y and z = 0.



Problem 8

For Part (a) since we have that U =

[

−1 3 5
0 0 0

]

. Let D =

[

−1 0
0 1

]

then we have that

DU =

[

1 −3 −5
0 0 0

]

,

which is in reduced row echelon form. The identity matrix in this case is simply the scalar
1 giving

DU =

[ [

1
]

−3 −5
0 0 0

]

where we have put a box around the “identity” in this case. For Part (b) since we have that

U =

[

−1 3 5
0 0 −3

]

so that defining D =

[

−1 0
0 −1

3

]

we then have that

DU =

[

1 −3 −5
0 0 1

]

.

The let E13 =

[

1 5
0 1

]

and we then get that

E13DU =

[

1 −3 0
0 0 1

]

,

for our reduced row echelon form. Our box around the identinty in the matrix R is around
the pivot rows and pivot columns and is given by

[ [

1
0

]

−3
0

[

0
1

] ]

Problem 9

Part (a): False. This depends on what the reduced echelon matrix looks like. Consider

A =

[

1 1
1 1

]

. Then the reduced echelon matrix R is

[

1 1
0 0

]

, which has x2 as a free

variable.

Part (b): True. An invertible matrix is defined as one that has a complete set of pivots i.e.
no free variables.

Part (c): True. Since the number of free variables plus the number of pivot variables equals
n in the case of no free variables we have the maximal number of pivot variables n.

Part (d): True. If m ≥ n, then by Part (c) the number of pivot variables must be less
than n and this is equivalent to less than m. If m < n then we have fewer equations than
unknowns and when our linear system is reduced to echelon form we have a maximal set of
pivot variables. We can have at most m, corresponding to the block identity in the reduced
row echelon form in the mxm position. The remaining n−m variables must be free.



Problem 10

Part (a): This is not possible since going from A to U involves zeroing elements below
the diagonal only. Thus if an element is nonzero above the diagonal it will stay so for all
elimination steps.

Part (b): The real requirement to find a matrix A is that A have three linearly independent

columns/rows. Let A =





1 2 3
−1 −1 −3
−1 −2 −2



, then with E =





1 0 0
1 1 0
1 0 1



 we find that

EA =





1 2 3
0 1 0
0 0 1



 .

Continuing this process let E ′ =





1 −2 −3
0 1 0
0 0 1



 then

E ′EA =





1 0 0
0 1 0
0 0 1



 = I .

Part (c): This is not possible and the reason is as follows. R must have zeros above each

of its pivot variables. What about the matrix A =

[

1 1 1
2 2 2

]

which has no zero entries.

Then

U =

[

1 0
−2 1

]

A =

[

1 1 1
0 0 0

]

,

which also equals R.

Part (d): If A = U = 2R, then R = 1
2
A = 1

2
U so let

R =

[

1 0
0 1

]

=
1

2

[

2 0
0 2

]

=
1

2
A =

1

2
U .

so take A =

[

2 0
0 2

]

.

Problem 11

Part (a): Consider








0 1 x x x x x
0 0 0 1 0 x x
0 0 0 0 1 x x
0 0 0 0 0 0 0











Part (b): Consider








1 x 0 x x 0 0
0 0 1 x x 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1









Part (c): Consider








0 0 0 1 x x x
0 0 0 0 0 1 x
0 0 0 0 0 0 0
0 0 0 0 0 0 0









Problem 12

Part (a): Consider

R =









0 1 x x x x x x
0 0 0 1 x x x x
0 0 0 0 1 x x x
0 0 0 0 0 1 x x









,

this is so that the pivot variables are x2, x4, x5, and x6. For the free variables to be x2, x4,
x5, and x6 we we have

R =









1 x 0 x x x 0 0
0 0 1 x x x 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1









,

Part (b): Consider

R =









0 1 x 0 0 x x x
0 0 0 1 0 x x x
0 0 0 0 1 x x x
0 0 0 0 0 0 0 0









.

Problem 13

x4 is certainly a free variable and the special solution is x = (0, 0, 0, 1, 0).

Problem 14

Then x5 is a free variable. The special solution is x = (1, 0, 0, 0,−1).



Problem 15

If an mxn matrix has r pivots the number of special solutions is n−r. The nullspace contains
only zero when r = n. The column space is R

m when r = m.

Problem 16

When the matrix has five pivots. The column space is R
5 when the matrix has five pivots.

Since m = n then Problem 15 demonstrates that the rank must equal m = n.

Problem 17

If A =
[

1 −3 −1
]

and x =





x
y
z



, the free variables are y and z. Let y = 1 and z = 0

then x = 3 giving the first special solution of





3
1
0



. The second special solution is given by

setting y = 0 and z = 1, then x − 1 = 0 or x = 1, so we have a second special solution of




1
0
1



.

Problem 18

If x− 3y − z = 12, then expressing the vector (x, y, z) in iterms of y and z we find





x
y
z



 =





12
0
0



+ y





3
1
0



+ z





1
0
1



 .

Problem 19

For x in the nullspace of B means that Bx = 0 thus ABx = A0 = 0 and thus x is in
the nullspace of AB. The nullspace of B is contained in the nullspace of AB. An obvious
example when the nullspace of AB is larger than the nullspace of B is when

B =

[

1 0
1 0

]

,



which has a nullspace given by the span of the vector

[

0
1

]

. If A =

[

0 0
0 0

]

then AB =
[

0 0
0 0

]

, and has a nullspace given by the span of

[

1
0

]

and

[

0
1

]

,

which is larger than the nullspace of B.

Problem 20

If A is invertible then the nullspace of AB equals the nullspace of B. If v is an element of
the nullspace of AB then ABv = 0 of Bv = 0 by multiplying both sides by A−1. Thus v is
an element of the nullspace of B.

Problem 21

We see that x3 and x4 are free variables. To determine the special solutions we consider the
two assignments (x3, x4) = (1, 0), and (x3, x4) = (0, 1). Under the first we have

[

1 0
0 1

] [

x1

x2

]

=

[

2
2

]

which give
[

1 0 −2
0 1 −2

]





x1

x2

1



 = 0 .

In the same way under the second assignment we have

[

1 0 −3
0 1 1

]





x1

x2

x4



 = 0 .

when we combine these two results we find that

[

1 0 −2 −3
0 1 −2 1

]









x1

x2

x3

x4









= 0 ,

so that A is given by

A =

[

1 0 −2 −3
0 1 −2 1

]

.



Problem 22

If x4 = 1 and the other variables are solved for we have





1 0 0
0 1 0
0 0 1









x1

x2

x3



 =





4
3
2



 (1)

or




1 0 0 −4
0 1 0 −3
0 0 1 −2













x1

x2

x3

x4









= 0

so that A is given by

A =





1 0 0 −4
0 1 0 −3
0 0 1 −2



 .

Problem 23

We have three equations with a rank of two which means that the nullity must be one. Let

A =





1 0 a
1 3 b
5 1 c



 for some a, b, and c. Then if





1
1
2



 is to be in the nullity of A we must

have

A





1
1
2



 =





1 0 a
1 3 b
5 1 c









1
1
2



 =





1 + 2a
1 + 3 + 2b
5 + 1 + 2c



 = 0 .

Which can be made true if we take a = 1
2
, b = −2, and c = −3. Thus our matrix A in this

case is

A =





1 0 −1/2
1 3 −2
5 1 −3



 .

Problem 24

The number of equations equals three and the rank is two. We are requiring that the nullspace
be of dimension two (i.e. spanned by two linearly independent vectors), thus m = 3 and
n = 4. But the dimension of the vectors in the null space is three which is not equal to four.
Thus it is not possible to find a matrix with such properties.



Problem 25

We ask will the matrix A =





1 −1 0 0
1 0 −1 0
1 0 0 −1



, work? Then if the column space contains

(1, 1, 1) then m = 3. If the nullspace is (1, 1, 1, 1) then n = 4. Reducing A we see that

A⇒





1 −1 0 0
0 1 −1 0
0 1 0 −1



⇒





1 0 −1 0
0 1 −1 0
0 0 1 −1



⇒





1 0 0 −1
0 1 0 −1
0 0 1 −1



 .

So if Av = 0, then




1 0 0 1
0 1 0 −1
0 0 1 −1













x
y
z
w









= 0

Implying that x− w = 0, y − w = 0, and z − w = 0, thus our vector v is given by

v =









x
y
z
w









= w









1
1
1
1









,

and our matrix A does indeed work.

Problem 26

A key to solving this problem is to recognize that if the column space of A is also its nullspace
then AA = 0. This is because AA represents A acting on each column of A and this produces
zero since the column space is the nullspace. Thus we need a matrix A such that A2 = 0. If

A =

[

a b
c d

]

, the requirement of A2 = 0 means that

[

a2 + bc ab+ bd
ac+ cd cb+ d2

]

=

[

0 0
0 0

]

.

This gives four equations for the unknowns a,b,c, and d. To find one solution let a = 1 then
d = −1 by considering the (1, 2) element. Our matrix equation then becomes

[

1 + bc 0
0 cb+ 1

]

=

[

0 0
0 0

]

.

Now let 1 + bc = 0, which we can satisfy if we take b = 1 and c = −1. Thus with all of these
unknowns specified we have that our A is given by

A =

[

1 1
−1 −1

]

.



r n-r=3-r
1 2
2 1
3 0

Table 1: All possible combinations of the dimension of the column space and the row space
for a three by three matrix.

We can check this result. It is clear that A’s row space is spanned by

[

1
−1

]

and its nullity

is given by computing the R matrix

R =

[

1 1
0 0

]

,

giving n =

[

1
−1

]

.

Problem 27

In a three by three matrix we have m = 3 and n = 3. If we say that the column space has
dimension r the nullity must then have dimension n− r. Now r can be either 1, 2, or 3. If
we consider each possibility in tern we have Table 1, from which we see that we never have
the column space equal to the row space.

Problem 28

If AB = 0 then the column space of B is contained in the nullity of A. For example the
product AB can be written by recognizing this as the action of A on the columns of B. For
example

AB = A
[

b1|b2| · · · |bn
]

=
[

Ab1|Ab2| · · · |Abn
]

= 0 ,

which means that Abi = 0 for each i. Let A =

[

1 −1
1 −1

]

which has nullity given by the

span of

[

1
1

]

. Next consider B =

[

1 2
1 2

]

. From which we see that AB = 0.



Problem 29

Almost sure to be the identity. With a random four by three matrix one is most likely to
end with

R =









1 0 0
0 1 0
0 0 1
0 0 0









.

Problem 30

Part (a): Let A =

[

1 1
−1 −1

]

then A has

[

1
−1

]

as its nullspace, but AT =

[

1 −1
1 −1

]

has

[

1
1

]

as its nullspace.

Part (b): Let A =

[

1 1 1
0 0 2

]

, then x2 is a free variable. Now

AT =





1 0
1 0
1 2



⇒





1 0
0 0
1 2



⇒





1 0
0 2
0 0



⇒





1 0
0 1
0 0



 ,

which has no free variables. A similar case happens with

A =





1 1 1
0 0 2
0 0 0



 ,

Then A has x2 as a free variable and AT has x3 as a free variable.

Part (c): let A be given by

A =





1 1 1
0 0 0
0 2 0



 .

Then




1 1 1
0 0 0
0 2 0



⇒





1 1 1
0 2 0
0 0 0



 .

Which has x1 and x2 as pivot columns. While

AT =





1 0 0
1 0 2
1 0 0



 ,

has x1 and x3 as pivot columns.



Problem 31

If A = [II], then the nullspace for A is

[

I
−I

]

. If B =

[

I I
0 0

]

, then the nullspace for B

is

[

I
−I

]

. If C = I, then the nullspace for C is 0.

Problem 32

x = (2, 1, 0, 1) is four dimensional so n = 4. The nullspace is a single vector so n− r = 1 or
4 − r = 1 giving that r = 3 so we have three pivots appear.

Problem 33

We must have RN = 0. If N =





2 3
1 0
0 1



, then let R =
[

1 −2 −3
]

. The nullity has

dimension of two and n = 3 therefore using n− r = 2, we see that r = 1. Thus we have only

one nonzero in R. If N =





0
0
1



 the nullity is of dimension one and n = 3 so from n− r = 1

we conclude that r = 2. Therefore we have two nonzero rows in R.

R =

[

1 0 0
0 1 0

]

.

If N = [], we assume that this means that the nullity is the zero vector only. Thus the nullity
is of dimension zero and n = 3 still so n − r = 0 means that r = 3 and have three nonzero
rows in R

R =





1 0 0
0 1 0
0 0 1



 .

Problem 34

Part (a):

R =

[

1 0
0 0

]

,

[

1 1
0 0

]

,

[

1 0
0 1

]

,

[

0 1
0 0

]

,

[

0 0
0 0

]

.

Part (b):
[

1 0 0
]

,
[

0 1 0
]

,
[

0 0 1
]

,



and
[

0 0 0
]

,
[

1 1 1
]

,

and
[

1 1 0
]

,
[

1 0 1
]

,
[

0 1 1
]

.

They are all in reduced row echelon form.

Section 3.3 (The Rank and the Row Reduced Form)

Problem 1

Part (a): True

Part (b): False

Part (c): True

Part (d): False

Problem 5

If R =

[

A B
C D

]

, then B is the rxr identity matrix, C = D = 0 and A is a r by n − r

matrix of zeros, since if it was not we would make pivot variables from them. The nullspace

is given by N =

[

I
0

]

.

Problem 13

Using the expression proved in Problem 12 in this section we have that

rank(AB) ≤ rank(A) .

By replacing A with BT , and B with AT in the above we have that

rank(BTAT ) ≤ rank(AT ) .

Now since transposes don’t affect the value of the rank i.e. rank(AT ) = rank(A), by the
above we have that

rank(BTAT ) = rank((AB)T ) = rank(AB) ≤ rank(AT ) = rank(A)

proving the desired equivalence.



Problem 14

From problem 12 in this section we have that rank(AB) ≤ rank(A) but AB = I so

rank(AB) = I = n

therefore we have that n ≤ rank(A), so equality must hold or rank(A) = n. A then is
invertible and B must be its two sided inverse i.e. BA = I.

Problem 15

From problem 12 in this section we know that rank(AB) ≤ rank(A) ≤ 2, since A is 2x3.
This means that BA cannot equal the identity matrix I, which has rank 3. An example of
such matrices are

A =

[

1 0 1
0 1 0

]

and B =





1 0
0 1
0 0





Then BA is

BA =





1 0
0 1
0 0





[

1 0 1
0 1 0

]

=





1 0 1
0 1 0
0 0 0



 6= I .

Problem 16

Part (a): Since R is the same for both A and B we have

A = E−1
1 R

B = E−1
2 R

for two elementary elimination matrices E1 and E2. Now the nullspace of A is equivalent to
the nullspace of R (they are related by an invertible matrix E1), thus A and R have the same
nullspace. This can be seen to be true by the following argument. If x is in the nullspace of
A then

Ax = 0 = E−1
1 Rx

so multiplying by E1 on the left we have

Rx = E10 = 0

proving that x is in the nullspace of R. In the same way if x is in the nullspace of R it must
be in the nullspace of A. Therefore

nullspace(A) = nullspace(B)



The fact that E1A = R and E2A = R imply that A and B have the same row space. This
is because E1 and E2 perform invertible row operations and as such don’t affect the span of
the rows. Since

E1A = R = E2B

each matrix A and B has the same row space.

Part (b): Since E1A = R = E2B we have that A = E−1
1 E2B and A equals an invertible

matrix times B.

Problem 17

We first find the rank of the matrix A,

A =





1 1 0
1 1 4
1 1 8



⇒





1 1 0
0 0 4
0 0 8



⇒





1 1 0
0 0 1
0 0 1



⇒





1 1 0
0 0 1
0 0 0



 ,

from which we can see that A has rank 2. The elimination matrices used in this process were

E21 =





1 0 0
−1 1 0
−1 0 1



 D =





1 0 0
0 1/4 0
0 0 1/8



 E33 =





1 0 0
0 1 0
0 −1 1





so

E33DE21A = R =





1 1 0
0 0 1
0 0 0





Then A can be reconstructed as

A = E−1
21 D

−1E−1
33 R =





1 0 0
1 1 0
1 0 1









1 0 0
0 4 0
0 0 8









1 0 0
0 1 0
0 1 1



R

=





1 0 0
1 4 0
1 0 8









1 0 0
0 1 0
0 1 1



R

=





1 0 0
1 4 0
1 8 8



R = E−1R

Then A can be written by taking the first r = 2 columns of E−1 and the first r = 2 rows of
R giving





1 0
1 4
1 8





[

1 1 0
0 0 1

]



Our results we can check as follows

=





1
1
1





[

1 1 0
]

+





0
4
8





[

0 0 1
]

=





1 1 0
1 1 0
1 1 0



+





0 0 0
0 0 4
0 0 8



 =





1 1 0
1 1 4
1 1 8





The above is the sum of two rank one matrices. Now for B = [AA], concatenating the matrix
A in this way does not change the rank. Thus the (COL)((ROW )T decomposition would
take the first r = 2 columns of E−1 with the first r = 2 rows of R . When we concatenate
matrices like this we find the reduced row echelon form for B to be that for A concatenated
i.e.

RB = [RR] ,

and the elimination matrix is the same. Thus our two columns of E−1 are the same




1 0
1 4
1 8





and our two rows of RB are the concatenation of the two rows in R or

[

1 1 0 1 1 0
1 1 0 1 1 0

]

As before one can verify that

[AA] =





1 0
1 4
1 8





[

1 1 0 1 1 0
1 1 0 1 1 0

]

Section 3.4 (The Complete Solution to Ax = b)

Problem 1

Let our augmented matrix A be,

A =





1 3 3 1
2 6 9 5
1 −3 3 5





then with

E21 =





1 0 0
−2 1 0
1 0 1







we have

E21A =





1 3 3 1
0 0 3 3
0 0 6 6





continuing by dividing by the appropriate pivots and eliminating the elements below and
above each pivot we have

E21A =





1 3 3 1
0 0 3 3
0 0 6 6



⇒





1 3 0 −5
0 0 0 0
0 0 1 1



⇒





1 3 0 −5
0 0 1 0
0 0 0 0





From this expression we recognize the pivot variables of x1 and x3. The particular solution
is given by x1 = −5, x2 = 0, and x3 = 1. A homogeneous solution, is given by setting the
free variable x2, equal to one and solving for the pivot variables x1, and x3. When x2 = 1
we have the system

[

1 0
0 1

] [

x1

x3

]

=

[

−5
1

]

−
[

3
0

]

=

[

−8
0

]

,

so x1 = −8 and x3 = 0. Thus our total solution is given by

x =





−5
0
1



+ x2





−8
1
0





Problem 2

Our system is given by




1 3 1 2
2 6 4 8
0 0 2 4













x
y
z
t









=





1
3
1





Let our augmented system be

[A|b] =





1 3 1 2 1
2 6 4 8 1
0 0 2 1 4



⇒





1 3 1 2 1
0 0 2 4 1
0 0 2 4 1





⇒





1 3 1 2 1
0 0 1 2 1/2
0 0 1 2 1/2



⇒





1 3 1 2 1
0 0 1 2 1/2
0 0 0 0 0





⇒





1 3 0 0 1/2
0 0 1 2 1/2
0 0 0 0 0



 .

Which we see has rank 2. Thus since n = 4 the dimension of the null space is 2. The pivot
variables are x1 and x3, and the free variables are x2 and x4. A particular solution can be



obtained by setting x2 = x4 = 0 and solving for x1 and x3. Performing this we have the
system

[

1 0
0 1

] [

x1

x3

]

=

[

1/2
1/2

]

so our particular solution is given by

xp =









1/2
0

1/2
0









.

Now we have two special solutions to find for Ax = 0.

Problem 10

Part (a): False. The combination c1xp + c2xn is not a solution unless c1 = 1. E.g.

A(c1xp + c2xn) = c1Axp + c2Axn = c1b 6= b

Part (b): False. The system Ax = b has an infinite number of particular solutions (if
A is invertible then there is only one solution). For a general A this particular solution
corresponds to a point on the space obtained by assigning values to the free variables.
Normally, the zero vector is assigned to the free variables to obtain one particular solution.
Any other arbitrary vector maybe assigned in its place.

Part (c): False. Let our solution be constrained to lie on the line passing through the points
(0, 1) and (−1, 0), given by the equation x− y = −1. As such consider the system

[

1 −1
2 −2

] [

x
y

]

=

[

−1
−2

]

,

this matrix has the row reduced echelon form of

R =

[

1 −1
0 0

]

,

thus x is a pivot variable and y is a free variable. Setting the value of y = 0 gives the
particular solution x = −1, which has norm ||xp|| = 1. A point on this line exists that is
closer to the origin, however, consider

||xp||2 = x2 + y2 = x2 + (x+ 1)2

or the norm of all points on the given line. To minimize this take the derivative with respect
to x and set this expression equal to zero,

||xp||2
dx

= 2x+ 2(x+ 1) = 0 .



Which has a solution given by x = −1
2

and y = 1
2
. Computing the norm at this point we

have

||xp||2 =
1

4
+

1

4
=

1

2
< 1 ,

which is smaller than what was calculated before. Thus showing that selecting the free
variables set to zero does not necessary give a minimum norm solution.

Part (d): False. The point xn = 0 is always in the nullspace. It happens that if A is
invertible x = 0 is the only element of the nullspace.

Section 3.6 (Dimensions of the Four Subspaces)

Problem 3 (from ER find basis for the four subspaces)

Since we are given A in the decomposition ER we can begin by reading the rank of A from R
which we see is two since R has two independent rows. We also see that the pivot variables
are x2 and x4 while the free variables are x1, x3, and x5. Thus a basis for the column space
is given by taking two linearly independent column vectors from A. For example, we can
take





1
1
0



 and





3
4
1



 ,

as a basis for the column space. A basis for the row space is given by two linearly independent
rows. Two easy rows to take are the first and the second. Thus we can take













0
1
2
3
4













and













0
0
0
1
2













,

as a basis for the row space. A basis for the nullspace is given by finding the special solution
when the free variables are sequentially assigned ones and then solving for the pivot variables.
For example our first element of the nullspace is given by letting (x1, x3, x5) = (1, 0, 0), and
solving for (x2, x4). We find x2 = 0 and x4 = 0 giving the first element in the nullspace of













1
0
0
0
0













.



Our second element of the nullspace is given by letting (x1, x3, x5) = (0, 1, 0), and solving
for (x2, x4). We find x2 = −2 and x4 = 0 giving the second element in the nullspace of













0
−2
1
0
0













.

Finally, our third element of the nullspace is given by letting (x1, x3, x5) = (0, 0, 1), and
solving for (x2, x4). We find x2 = 0 and x4 = −1 giving the third element in the nullspace of













0
0
0
−1
1













.

These three vectors taken together comprise a basis for the nullspace. A basis for the left
nullspace can be obtained by the last m = 3 minus r = 2 (or one) rows of E−1. Since

E =





1 0 0
1 1 0
0 1 1



, we have that E−1 =





1 0 0
−1 1 0
0 −1 1



 from which we see that the last row

of E−1 is given by




1
−1
1



 .

We can check that this element is indeed in the left nullspace of A by computing vTA. We
find that

[

1 −1 1
]





0 1 2 3 4
0 1 2 4 6
0 0 0 1 2



 =
[

0 0 0 0 0
]

,

as it should.

Problem 4

Part (a): The matrix




1 0
1 0
0 1



 ,

has the two given vectors as a column space and since the row space is R
2 both

[

1
2

]

and
[

2
5

]

.



Part (b): The rank is one (r = 1) and the dimension of the nullspace is one. Since the rank
plus the dimension of the nullspace must be n we see that n = 1 + 1 = 2. The number of
components in both the column space vectors and the nullspace vector is three, which is not
equal to two, we see that this is not possible.

Part (c): The dimension of the nullspace n − r equals one plus the dimension of the left
nullspace or 1 + (m − r) which must be held constant. We see that we need a matrix with
a rank of one, m = 1, and n = 2. Lets try the matrix

A =
[

1 2
]

.

Which has m = 1, r = 1, and n = 2 as required. The dimenion of the nullity is 2 − 1 = 1
and the dimension of the left nullspace is 1 − 1 = 0 as required, thus everything is satisfied.

Part (d): Consider
[

1
3

]





3 1
a
b



 =
[

3 + 3a 1 + 3b
]

= 0 .

Thus a = −1 and b = −1
3

so the matrix A =

[

3 1
−1 −1

3

]

satisfies the required conditions.

Part (e): If the row space equals the column space then m = n. Then since the dimension
of the nullspace is n − r and the dimension of the left nullspace is also n − r then these
two spaces have equal dimension and don’t contain linearly independent rows (equivalently
columns).

Problem 5

Let V =

[

1 1 0
2 1 0

]

. For B to have V as its nullspace we must have

B





1
0
1



 = 0 and B





2
1
0



 = 0 .

Which imposes two constraints on B. We can let B =
[

1 a b
]

then the first condition
requires that

B





1
1
1



 = 1 + a+ b = 0 ,

and the second constraint requires that

B





2
1
0



 = 2 + a = 0 ,



or a = −2, which when used in the first constraint gives that b = −(1 + a) = 1. Thus our
matrix B is given by





1
−2
1



 .

Problem 6

Now A has rank two, m = 3, and n = 4. The dimension of its column space is two. The
dimension of its row space is two, the dimension of its nullspace is n− r = 2. The dimension
of its left nullspace is m − r = 3 − 2 = 1. To find basis for each of these spaces we simply
need to find enough linearly independent vectors. For the column space we can take the
vectors





3
0
1



 and





3
0
0



 .

For the row space pick








0
3
3
3









and









0
1
0
1









.

For the left nullspace pick




0
1
0



 .

For B we have r = 1, m = 3, and n = 1. The dimension of its column space is one. The
dimension of its row space is one, the dimension of its nullspace is n− r = 0. The dimension
of its left nullspace is m − r = 2. For the column space we can take a basis given by the
span of





1
4
5



 .

For the row space pick
[

1
]

.

For the left nullspace pick the empty set (or only the zero vector). For the left nullspace pick





−4
1
0



 and





−5
0
1



 .



Problem 7

For A we have m = n = r = 3 then the dimension of the column space is three and has a
basis given by





1
0
0



 ,





0
1
0



 ,





0
0
1



 .

The dimension of the row space is also three and has the same basis. The dimension of the
nullspace is zero and contains on the zero vector. The dimension of the left nullspace is zero
and contains only the zero vector.

For b we have m = 3, n = 6, and r = 3 then the dimension of the column space is three and
has the same basis as above. The dimension of the row space is still three and has a basis
given by

















1
0
0
1
0
0

















,

















0
1
0
0
1
0

















,

















0
0
1
0
0
1

















.

The dimension of the nullspace is 6 − 3 = 3 and a basis can be obtained from
















1
0
0
−1
0
0

















,

















0
1
0
0
−1
0

















,

















0
0
1
0
0
−1

















.

The dimension of the left nullspace is m− r = 3 − 3 = 0 and contains only the zero vector.

Problem 8

For A we have m = 3, n = 3 + 2 = 5, and r = 3. Thus

dim((C)(A)) = 3

dim((C)(AT )) = 3

dim((N)(A)) = n− r = 5 − 3 = 2

dim((N)(AT )) = m− r = 0 .

For B we have m = 3 + 2 = 5, n = 3 + 3 = 6, and r = 3. Thus

dim((C)(A)) = 3

dim((C)(AT )) = 3

dim((N)(A)) = n− r = 3

dim((N)(AT )) = m− r = 5 − 3 = 2 .



For C we have m = 3, n = 2, and r = 0. Thus

dim((C)(A)) = 0

dim((C)(AT )) = 0

dim((N)(A)) = n− r = 2

dim((N)(AT )) = m− r = 3 .

Problem 9

Part (a): First lets consider the equivalence of the ranks. The rank of A alone is equivalent

to the rank of B ≡
[

A
A

]

because we can simply subtract each row of A from the corre-

sponding newly introduced row in the concatenated matrix B. Effectively, this is applying
the elementary transformation matrix

E =

[

I 0
−I I

]

,

to the concatenated matrix

[

A
A

]

to produced

[

A
0

]

. Now for the matrix C ≡
[

A A
A A

]

we can again multiply by E above obtaining

EC =

[

I 0
−I 0

] [

A A
A A

]

=

[

A A
0 0

]

.

Continuing to perform row operations on the top half of this matrix we can obtain

[

R R
0 0

]

where R is the reduced row echelon matrix for A. Since this has the same rank as R the
composite matrix has the same rank as the original. If A is m by n then B is 2m by n and
A and B have the same row space and the same nullity.

Part (b): If A is m by n then B is 2m by n and C is 2m by 2n. Then B and C have the
same column space and left nullspace.

Problem 10

If a matrix with m = 3 and n = 3 with random entries it is likely that the matrix will be
non-singular so its rank will be three and

dim((C)(A)) = 3

dim((C)(AT )) = 3

dim((N)(A)) = 0

dim((N)(AT )) = 0 .

If A is three by five then m = 3 and n = 5 it is more likely that dim((C)(A)) = 3 and
dim((C)(AT )) = 3, while dim((N)(A)) = n−r = 2, and dim((N)(AT )) = m−r = 3−3 = 0.



Problem 11

Part (a): If there exits a right hand side with no solution then when we perform elementary
row operations on A we are left with a row of zeros in R (or U) that does not have the
corresponding zero elements in Eb. Thus r < m (since we must have a row of zeros). As
always r ≤ m.

Part (b): Because letting y be composed of r zeros stacked atop vectors with ones in each
component i.e. in the case r = 2 and m = 4 consider the vectors

y1 =









0
0
1
0









and y2 =









0
0
0
1









.

Then yT
1 R = 0 and yT

2 R = 0 so that yT (EA) = 0 or equivalently (ETy)TA = 0. Therefore
ETy is a nonzero vector in the left nullspace. Alternatively if the left nullspace is nonempty
it must have a nonzero vector. Since the left nullspace dimension is given by m − r which
we know is greater than zero we have the existence of a non-zero element.

Problem 12

Consider the matrix A which I construct by matrix multiplication as

A =





1 1
0 2
1 0





[

1 0 1
1 2 0

]

=





2 2 1
2 4 0
1 0 1



 .

If (1, 0, 1) and (1, 2, 0) are a basis for the row space then dim(AT ) = 2 = r. To also be a
basis for the nullspace means that n− r = 2 implying that n = 4. But these are vectors in
R

3 resulting in a contradiction.

Problem 13

Part (a): False. Consider the matrix

A =

[

1 0
2 0

]

.

Then the row space is spanned by

[

1
0

]

and the column space by

[

1
2

]

which are different.

Part (b): True. −A is a trivial linear transformation of A and as such cannot alter the
subspaces.



Part (c): If A and B share the same four spaces then E1A = R and E2B = R and we see
that A and B are related by a linear transformation i.e. A = E−1

1 E−1
2 B. As an example pick

A =

[

1 0
0 2

]

and B =

[

2 0
0 3

]

.

Then the subspaces are the same but A is not a multiple of B.

Problem 14

The rank of A is three and a basis for the column space is given by




1 0 0
6 1 0
9 8 1









1
0
0



 =





1
6
9



 ,

and




1 0 0
6 1 0
9 8 1









2
1
0



 = 2





1
6
9



+





0
1
8



 =





2
13
26



 ,

and lastly





1 0 0
6 1 0
9 8 1









3
2
1



 = · · ·

Equivalently the three by three block composing the first three pivots of U is invertible so
that an additional basis can be taken from the standard basis. A basis for the row space of
dimension three is given by

(1, 2, 3, 4) , (0, 1, 2, 3) , (0, 0, 1, 2) .

Problem 15

The row space and the left nullspace will not change. If v = (1, 2, 3, 4) is in the column space
of the original matrix the vector in the column space of the new matrix is (2, 1, 3, 4).

Problem 16

If v = (1, 2, 3) was a row of A then when we multiply by v this row would give the product
of











1 2 3
x x x
...

...
...

x x x















1
2
3



 =











12 + 22 + 32

x
...
x











=











14
x
...
x











,



which cannot equal zero.

Problem 17

For the matrix A given by A =





0 1 0
0 0 1
0 0 0



, our matrix is rank two. The column span is

all vectors





x
y
0



, the row space is all vectors





0
y
z



, the nullspace is all vectors





x
0
0



, and

finally, the left nullspace is all vectors





0
0
z



. For the matrix I + A =





1 1 0
0 1 1
0 0 1



. The

rank is three and the row space is given by all vectors





x
y
z



, the column space is all vectors





x
y
z



, and the left nullspace and the nullspace both contain only the zero vector.

Problem 18

We have

[

A b
]

=





1 2 3 b1
4 5 6 b2
7 8 9 b3



⇒





1 2 3 b1
0 −3 −6 b2 − 4b1
0 −6 −12 b3 − 7b1



 ,

using the elimination matrix E1 =





1 0 0
−4 1 0
−7 0 1



. This matrix then reduces to





1 2 3 b1
0 −3 −6 b2 − 4b1
0 0 −3 b3 − 7b1 − 2(b2 − 4b1)



 =





1 2 3 b1
0 −3 −6 b2 − 4b1
0 0 −3 b3 − 2b2 + b1



 ,

using the elimination matrix E2 =





1 0 0
0 1 0
0 −2 1



. The combination of the rows that produce

the zero row is given by one times row one, minus two times the second row, one times the
third row. Thus the vector





1
−2
1





is in the null space of AT . A vector in the nullspace is given by setting x3 = 1 and solving
for x1 and x2. This gives the equation x1 + 2(−2) + 3(1) = 0 or x1 = 4 − 3 = 1. The vector



then is




1
−2
1





which is the same vector space as the left nullspace.

Problem 19

Part (a): Reducing our matrix to upper triangular form we have





1 2 b1
3 4 b2
4 6 b3



 ⇒





1 2 b1
0 −2 b2 − 3b1
0 −2 b3 − 4b1





⇒





1 2 b1
0 −2 b2 − 3b1
0 0 b3 − 4b1 − b2 + 3b1





=





1 2 b1
0 −2 b2 − 3b1
0 0 b3 − b2 − b1



 .

Thus the vector (−1,−1, 1) is in the left nullspace which has a dimension given by m− r =
3 − 2 = 1.

Part (b): Reducing our matrix to upper triangular form we have









1 2 b1
2 3 b2
2 4 b3
2 5 b4









⇒









1 2 b1
0 −1 b2 − 2b1
0 0 b3 − 2b1
0 1 b4 − 2b1









⇒









1 2 b1
0 −1 b2 − 2b1
0 0 b3 − 2b1
0 0 b4 − 2b1 + b2 − 2b1









=









1 2 b1
0 −1 b2 − 2b1
0 0 b3 − 2b1
0 0 b4 + b2 − 4b1









.

Thus the vectors in the left nullspace are given by









−2
0
1
0









and









−4
1
0
1









,

which has a dimension of m− r = 4 − 2 = 2.



Problem 20

Part (a): We must have Ux = 0 which has two pivot variables x1 and x3 and free variables
x2 and x4. To find the nullspace we set (x2, x4) = (1, 0) and solve for x1 and x3. Thus we
get 4x1 + 2 = 0 or x1 = −1

2
which gives a vector in the nullspace of









−1
2

1
−3
0









.

Now setting (x2, x4) = (0, 1) and solving for x1 and x3 we need to solve 4x1 +2(0)+0+1 = 0
or x3 = −3 which gives a vector in the nullspace of









1
4

0
−3
1









.

Part (b): The number of independent solutions of ATy are given by m− r = 3 − 2 = 1

Part (c): The column space is spanned by





1 0 0
2 1 0
3 4 1









4
0
0



 =





4
8
12



 ,

and




1 0 0
2 1 0
3 4 1









0
1
0



 =





0
1
4



 .

Problem 21

Part (a): The vectors u and w.

Part (b): The vectors v and z.

Part (c): u and w are multiples of each other or are linearly dependent or v and z are
multiples of each other or are linearly dependent.

Part (d): u = z = (1, 0, 0) and v = w = (0, 0, 1). Then

uvT =
[

1 0 0
]





0
0
1



 =





0 0 0
0 0 0
1 0 0







and

wzT =
[

0 0 1
]





1
0
0



 =





0 0 1
0 0 0
0 0 0





So that

A = uvT + wzT =





0 0 1
0 0 0
1 0 0



 ,

which has rank two.

Problem 22

Consider A decomposed as

A =





1 2
2 2
4 1





[

1 0 0
0 1 1

]

=





1
2
4





[

1 0 0
]

+





2
2
1





[

0 1 1
]

=





1 0 0
2 0 0
4 0 0



+





0 2 2
0 2 2
0 1 1





=





1 2 2
2 2 2
4 1 1





Problem 23

A basis for the row space is (3, 0, 3) and (1, 1, 2) which are independent. A basis for the
column space is given by (1, 4, 2) and (2, 5, 7) which are also independent. A is not invertible
because it is the product of two rank two matrices and therefore rank(AB) ≤ rank(B) = 2.
To be invertible we must have rank(AB) = 3 which it is not.

Problem 24

d is in the span of its rows. The solution is unique when the left nullspace contains only the
zero vector.



Problem 25

Part (a): A and AT have the same number of pivots. This is because they have the same
rank they must have the same number of pivots.

Part (b): False. Let A =

[

1 0
2 0

]

, then yT =
[

−2 1
]

is in the left nullspace of A but

yTAT =
[

−2 1
]

[

1 2
0 0

]

=
[

−2 −4
]

6= 0 ,

and therefore is not in the left nullspace of AT .

Part (c): False. Pick an invertible matrix say of size m by m then the row and column
spaces are the entirety of R

m. It is easy to imagine an invertible matrix such that A 6= AT .

For example let A =

[

1 2
3 4

]

.

Part (d): True, since if AT = −A then the rows of A are the negative columns of A and
therefore have exactly the same span.

Problem 26

The rows of C are combinations of the rows of B. The rank of C cannot be greater than the
rank of B, so the rows of CT are the rows of AT , so the rank of CT (which equals the rank
of C) cannot be larger than the rank of AT (which equals the rank of A).

Problem 27

To be of rank one the two rows must be multiples of each other and the two columns must
be multiples of each other. To make the rows multiples of each other assume row two is a
multiple (say k) of row one i.e. ka = c and kb = d. Thus we have k = c

a
and therefore

d = c
a
b. A basis for the row space is then given by the vector

[

a
b

]

and a basis for the

nullspace is given by
[

− b
a

1

]

∝
[

−b
a

]

.



Problem 28

The rank of B is two and has a basis of the row space given by the first two rows in its
representation, The reduced row echelon matrix looks like

























1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























which is obtained by EA = R where E is given by

E =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1



























Chapter 4 (Orthogonality)

Section 4.1 (Orthogonality of the Four Subspaces)

Problem 1

For this problem A is 2x3 so m = 2 and n = 3 and r = 1. Then the row and column space
has dimension 1. The nullspace of A has size n− r = 3− 1 = 2. The left nullspace of A has
size m− r = 2 − 1 = 1.

Problem 2

For this problem m = 3, n = 2, and r = 2. So the dimension of the nullspace of A is given
by 2 − 2 = 0, and the dimension of the left nullspace of A is given by 3 − 2 = 1. The two
components of x are xr which is all of R

2 and xn which is the zero vector.

Problem 3

Part (a): From the given formulation we have that m = 3 and n = 3, obtained from the
size (number of elements) of the column and nullspace vectors respectively. Then n − r =
3 − r = 1, we have a r = 2. This matrix seems possible and to obtain it, consider a matrix
A as

A =





1 2 −3
2 −3 1
−3 5 −2



 ,

which will have the requested properties.

Part (b): From the definition of the vectors in the row space we have m = 3, and r = 2
since there are only two vectors in the row space. Then the size of the nullspace imply that
n − r = n − 2 = 1, so n = 3. Having the dimensions worked out we remember that for all
matrices, the row space must be orthogonal to the nullspace. Checking for consistency in
this example we compute these inner products. First we have

[

1 2 −3
]





1
1
1



 = 0

which holds true but the second requirement

[

2 −3 5
]





1
1
1



 = 4 ,



is not equal to zero, so the required matrix is not possible.

Part (c): To see if this might be possible let x be in the nullspace of A. Then to also be
perpendicular to the column space requires ATx = 0. So A and AT must have the same
nullspace. This will trivially be true if A is symmetric. Also we know that A cannot be
invertible since the nullspace for A and AT would then be trivial, consisting of only the zero
vector. So we can try for a potential A the following

A =

[

4 2
2 1

]

Then N(A) = N(AT ) is given by the span of the vector

[

1
−2

]

,

which by construction is perpendicular to every column in the column space of A.

Part (d): This is not possible since from the statements given the vector
[

1 1 1
]T

must
be an element of the left nullspace of our matrix A and as such is orthogonal to every element

of the column space of A. If the column space of A contains the vector
[

1 2 3
]T

then
checking orthogonality we see that

[

1 1 1
]





1
2
3



 = 6

and the two vector are not orthogonal.

Part (e): The fact that the columns of add to the zero column means that the vector of all
ones must be in the nullspace of our matrix. We can see if a two by two matrix of this form
exists. We first investigate if we can construct a 2x2 example matrix that has the desired
properties. The first condition given is that

[

a b
c d

] [

1
1

]

= 0

or in equations

a + b = 0

c+ d = 0

The second condition is that

[

1 1
]

[

a b
c d

]

=
[

1 1
]

or
[

a+ c b+ d
]

=
[

1 1
]

. (3)



So our total system of requirements on our unknown 2x2 system A is given by

a + b = 0

c+ d = 0

a+ c = 1

b+ d = 1

which in matrix form is given by








1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

















a
b
c
d









=









0
0
1
1









.

Performing row reduction on the augmented matrix we have








1 1 0 0 0
0 0 1 1 0
1 0 1 0 1
0 1 0 1 1









⇒









1 1 0 0 0
0 0 1 1 0
0 −1 1 0 1
0 1 0 1 1









⇒









1 0 1 0 0
0 0 1 1 0
0 −1 1 0 1
0 0 1 1 2









⇒









1 0 1 0 1
0 −1 1 0 1
0 0 1 1 0
0 0 1 1 2









.

Since the last two equations contradict each other, one can conclude that this is not possible.
Another way to see this same result is to notice that a row of all ones will be in the nullspace
but also in the row space. Since the only vector in both these spaces must be the zero vector,
we have a contradiction, showing that no such matrix exists.

Problem 4 (can the row space contain the nullspace)

It is not possible for the row space to contain the nullspace. To show this let x 6= 0 be a
member of both, then from the second fundamental theorem of linear algebra (that the row
space and the nullspace are orthogonal) we have xTx = 0, which is not true unless x = 0.

Problem 5

Part (a): We have that y is perpendicular to b, since b is in the column space of A and y
is in the left nullspace.

Part (b): If Ax = b has no solution, then b is not in the column space of A and therefore
ybT 6= 0 and y is not perpendicular to b.

Problem 6

If x = xr + xn, then Ax = Axr + Axn = Axr + 0 = Axr. So x is in the column space of A
because Axr is a linear combination of the columns of A.



Problem 7

For Ax to be in the nullspace of AT , it must be in the left nullspace of A. But Ax is in
the column space of A and these two spaces are orthogonal. Because Ax is in both spaces it
must be the zero vector.

Problem 8

Part (a): For any matrix A, the column space of is perpendicular to its left nullspace. By
the symmetry of A the left nullspace of A is the same as its nullspace.

Part (b): If Ax = 0 and Ax = 5z, then zTAT = 5zT or zTAx = 5zTx. Since Ax = 0, we
have that 5zTx = 0 or zTx = 0. In terms of subspaces, x is in the nullspace and the left
nullspace of A, while z is in the column space of A and therefore since the column space and
the left nullspace are perpendicular we must have that x and z perpendicular.

Problem 9

The matrix

A =

[

1 2
3 6

]

,

has rank one. A row space given by the span of [1, 2]T , a column space given by the span
of [1, 3]T , a nullspace given by [−2, 1]T , and a left nullspace given by the span of [−3, 1]T .
With these vectors Figure 4.2 from the book would look like that seen in Figure XXX. We
can verify the mapping properties of the matrix A by selecting a nonzero component along
the two orthogonal spaces spanning the domain of A (its row space and its nullspace). For
example, take xn = [1, 2]T , and xr = [2,−1]T , two be vectors in the nullspace and row space
of A respectively then define x ≡ xn + xr = [3, 1]T . We compute that

Ax =

[

1 2
3 6

] [

3
1

]

=

[

5
15

]

and as required

Axn =

[

1 2
3 6

] [

2
−1

]

=

[

0
0

]

and Axr =

[

1 2
3 6

] [

1
2

]

=

[

5
15

]

.

The matrix

B =

[

1 0
3 0

]

,

has rank one. A row space given by the span of [1, 0]T , a column space given by the span of
[1, 3]T , a nullspace given by [0, 1]T , and finally a left nullspace given by the span of [−3, 1]T .
With these vectors Figure 4.2 from the book would look like that seen in Figure XXX. We



can verify the mapping properties of the matrix B by selecting a nonzero component along
the two orthogonal spaces spanning the domain of B (its row space and its nullspace). For
example, take xn = [0, 2]T , and xr = [1, 0]T , be two vectors in the nullspace and row space
of B respectively then define x ≡ xn + xr = [1, 2]T . We compute that

Bx =

[

1 0
3 0

] [

1
2

]

=

[

1
3

]

and as required (the component in the direction of the nullspace contributes nothing)

Bxn =

[

1 0
3 0

] [

0
2

]

=

[

0
0

]

and Bxr =

[

1 0
3 0

] [

1
2

]

=

[

1
3

]

.

Problem 10 (row and nullspaces)

The matrix

A =





1 −1
0 0
0 0



 ,

has rank two. A row space given by the span of [1,−1]T , a column space given by the span
of [1, 0, 0]T , a nullspace given by [1, 1]T , and a left nullspace given by the span of [0, 1, 0]T

and [0, 0, 1]T . With these vectors Figure 4.2 from the book would look like that seen in
Figure XXX. We can verify the mapping properties of the matrix A by considering the
vector x provided. Since x has components along the two orthogonal spaces spanning the
domain of A (its row space and its nullspace) we have, since xn = [1, 1]T , and xr = [1,−1]T .
We compute that

Ax =





1 −1
0 0
0 0





[

2
0

]

=





2
0
0





and as required

Axn =





1 −1
0 0
0 0





[

1
1

]

=

[

0
0

]

and Axr =





1 −1
0 0
0 0





[

1
−1

]

=





2
0
0



 .

Problem 11

Let y ∈ N (AT ), then ATy = 0, now yTAx = (yTAx)T , since yTAx is a scalar and taking the
transpose of a scalar does nothing. But we have that (yTAx)T = xTATy = xT 0 = 0, which
proves that y is perpendicular to Ax.



Problem 12

The Fredholm alternative is the statement that exactly one of these two problems has a
solution

• Ax = b

• ATy = 0 such that bT y 6= 0

In words this theorem can be stated that either b is in the column space of A or that there
exists a vector in the left nullspace of A that is not orthogonal to b. To find an example
where the second situation holds let

A =

[

1 0
2 0

]

and b =

[

2
1

]

Then Ax = b has no solution (since b is not in the column space of A). We can also show
this by considering the augmented matrix [Ab] which is

[

1 0 2
2 0 1

]

⇒
[

1 0 2
0 0 −3

]

,

since the last row is not all zeros, Ax = b has no solution. For the second part of the
Fredholm alternative, we desire to find a y such that ATy = 0 and bT y 6= 0. Now ATy is
given by

[

1 2
0 0

] [

y1

y2

]

=

[

0
0

]

Then we have that the vector y can be any multiple of the vector [−2 1]T . Computing bT y
we have bTy = 2(−2) + 1(1) = −3 6= 0, and therefore the vector y = [−2, 1]T is a solution to
the second Fredholm’s alternative.

Problem 13

If S is the subspace with only the zero vector then S⊥ = R
3. If S = span{(1, 1, 1)} then S⊥

is all vectors y such that

yT





1
1
1



 = 0

or y1 + y2 + y3 = 0. Equivalently the nullspace of the matrix A defined as

A =
[

1 1 1
]

which has a nullspace given by the span of y1 and y2

y1 =





−1
1
0



 and y2 =





−1
0
1







If S is spanned by the two vectors [2, 0, 0]T and [0, 0, 3]T , then S⊥ consists of all vectors y
such that

yT





2
0
0



 = 0 and yT





0
0
3



 = 0

So 2y1 = 0 and 3y3 = 0 which imply that y1 = y3 = 0, giving S⊥ = span{[0, 1, 0]T}.

Problem 14

S⊥ is the nullspace of

A =

[

1 5 1
2 2 2

]

Therefore S⊥ is a subspace of A even if S is not.

Problem 15

L⊥ is the plane perpendicular to this line. Then (L⊥)⊥ is a line perpendicular to L⊥, so
(L⊥)⊥ is the same line as the original.

Problem 16

V ⊥ contains only the zero vector. Then (V ⊥)⊥ contains all of R
4, and (V ⊥)⊥ is the same as

V .

Problem 17

Suppose S is spanned by the vectors [1, 2, 2, 3]T and [1, 3, 3, 2]T , then S⊥ is spanned by the
nullspace of the matrix A given by

A =

[

1 2 2 3
1 3 3 2

]

⇒
[

1 2 2 3
0 1 1 −1

]

⇒
[

1 0 0 5
0 1 1 −1

]

.

Which has a nullspace given by selecting a basis for the free variables x3 and x4 and then
solving for the pivot variables x1 and x2. Using the basis [1, 0]T and [0, 1]T , if x3 = 1, x4 = 0,
then x1 = 0 and x2 = −1, while if x3 = 0 and x4 = 1 then x1 = −5 and x2 = 1 and in vector
form is spanned by









0
−1
1
0









and









−5
1
0
1









.



Problem 18

If P is the plane given then A =
[

1 1 1 1
]

has this plane as its nullspace. Then P⊥ are
composed of the the elements of the left nullspace of A i.e. the nullspace of AT . Since

AT =









1
1
1
1









⇒









1
0
0
0









Thus the nullspace of AT equivalently P⊥ is given by the span of the vectors









0
1
0
0









,









0
0
1
0









,









0
0
0
1









Problem 19

We are asked to prove that if S ⊂ V then S⊥ ⊃ V ⊥. To do this, let y ∈ V ⊥. Then for every
element x ∈ V , we have xTy = 0. But we can also say that for every element x ∈ S it is also
in V by the fact that S is a subspace of V and therefore xTy = 0 so y ∈ S⊥. Thus we have
V ⊥ ⊂ S⊥.

Problem 20

The first column of A−1 is orthogonal to the span of the second through the last.

Problem 21 (mutually perpendicular column vectors)

ATA would be I.

Problem 22

ATA must be a diagonal matrix since it represents every column of A times every row of A.
When the two columns are different the result is zero. When they are the same the norm
(squared) of that column results.



Problem 23

The lines 3x+y = b1 and 6x+2y = b2 are parallel. They are the same line if 2b1 = b2. Then
[b1, b2]

T is perpendicular to the left nullspace of

A =

[

3 1
6 2

]

or

[

−2
1

]

. Note we can check that this vector is an element of the left nullspace by computing

[

−2 1
]

[

b1
b2

]

= −2b1 + b2 = −2b1 + 2b2 = 0

The nullspace of the matrix is the line 3x+ y = 0. One vector in this nullspace is [−1, 3]T .

Problem 24

Part (a): As discussed in the book if two subspaces are orthogonal then they can only meet
at the origin. But for the two planes given we have many intersections. To find them we
solve the system given by

[

1 1 1
1 1 −1

]





x
y
z



 = 0 ,

then the point (x, y, z) will be on both planes. Performing row reduction we obtain

[

1 1 0
0 0 1

]





x
y
z



 = 0

so we see that z = 0 and x + y = 0, giving the fact that any vector that is a multiple of




1
−1
0



 is in both planes and these two spaces cannot be orthogonal.

Part (b): The two lines specified are described as the spans of the two vectors





2
4
5



 and





1
−3
2





respectively. For their subspaces to be orthogonal, the subspace generating vectors must be

orthogonal. In this case
[

2 4 5
]T





1
−3
2



 = 2 − 12 + 10 = 0 and they are orthogonal.

We still need to show that they are not orthogonal components. To do so it suffices to find



a vector orthogonal to one space that is not in the other space. Consider
[

2 4 5
]

, which
as a nullspace given by setting the free variables equal to a basis and solving for the pivot
variables. Since the free variables are x2 and x3 we have a first vector in the nullspace given
by setting x2 = 1,x3 = 0, which implies that x1 = −2. Also setting x2 = 0, x3 = 1, we have
that x1 = −5

2
, giving two vector of





−2
1
0



 and





−5/2
0
1





Now consider the vector





−2
1
0



 it is orthogonal to





2
4
5



 and thus is in its orthogonal

complement. This vector however is not in the span of





1
−3
2



. Thus the two spaces are

not the orthogonal complement of each other.

Part (c): Consider the subspaces spanned by the vectors

[

0
1

]

, and

[

1
1

]

, respectively.

They meet only at the origin but are not orthogonal.

Problem 25

Let

A =





1 2 3
2 4 5
3 6 7



 ,

then A has [1 , 2 , 3]T in both its row space and its nullspace. Let B be defined by

B =





1 1 −1
2 2 −2
3 3 −3



 ,

then B has [1 , 2 , 3]T in the column space of B and

B





1
2
3



 =





0
0
0



 .

Now v could not be both in the row space of A and in the nullspace of A. Also v could not
both be in the column space of A and in the left nullspace of A. It could however be in the
row space and the left nullspace or in the nullspace and the left nullspace.

Problem 26

A basis for the left nullspace of A.



Section 4.2 (Projections)

Problem 1 (simple projections)

Part (a): The coefficient of projection x̂ is given by

x̂ =
aT b

aTa
=

1 + 2 + 2

1 + 1 + 1
=

5

3

so the projection is then

p = a

(

aT b

aTa

)

=
5

3





1
1
1





and the error e is given by

e = b− p =





1
2
2



−





1
1
1



 =
1

3





−2
1
1



 .

To check that e is perpendicular to a we compute eTa = 1
3
(−2 + 1 + 1) = 0.

Part (b): The projection coefficient is given by

x̂ =
aT b

aTa
=

−1 − 9 − 1

1 + 9 + 1
= −1 .

so the projection p is then

p = x̂a = −a =





1
3
1



 .

The error e = b− p = 0 is certainly orthogonal to a.

Problem 2 (drawing projections)

Part (a): Our projection is given by

p = x̂a =
aT b

aTa
a = cos(θ)

[

1
0

]

=

[

cos(θ)
0

]

Part (b): From Figure XXX of b onto a is zero. Algebraically we have

p = x̂a =
aT b

aTa
a =

(

1 − 1

2

)[

1
−1

]

=

[

0
0

]



Problem 3 (computing a projection matrix)

Part (a): The projection matrix P equals P = aaT

aT a
, which in this case is

P =





1
1
1





[

1 1 1
]

3
=

1

3





1 1 1
1 1 1
1 1 1



 .

For this projection matrix note that

P 2 =
1

9





3 3 3
3 3 3
3 3 3



 =
1

3





1 1 1
1 1 1
1 1 1



 = P .

The requested product Pb is

Pb =
1

3





1 1 1
1 1 1
1 1 1









1
2
2



 =
1

3





5
5
5



 .

Part (b): The projection matrix P equals P = aaT

aT a
, which in this case is

P =





−1
−3
−1





[

−1 −3 −1
]

1 + 9 + 1
=

1

11





1 3 1
3 9 3
1 3 1



 .

For this projection matrix note that P 2 is given by

P 2 =
1

112





1 3 1
3 9 3
1 3 1









1 3 1
3 9 3
1 3 1



 =
1

112





11 33 11
33 99 33
11 33 11



 =
1

11





1 3 1
3 9 3
1 3 1



 = P .

The requested product Pb is then given by

Pb =
1

11





1 3 1
3 9 3
1 3 1









1
3
1



 =
1

11





11
33
11



 =





1
3
1



 .

Problem 4 (more calculations with projection matrices)

Part (a): Our first projection matrix is given by P1 = aaT

aT a
which in this case is

P1 =

[

1
0

]

[

1 0
]

=

[

1 0
0 0

]



Calculating P 2
1 we have that

P 2
1 =

[

1 0
0 0

]

= P1 ,

as required.

Part (b): Our second projection matrix is given by P2 = aaT

aT a
which in this case is

P2 =
1

2

[

1
−1

]

[

1 −1
]

=
1

2

[

1 −1
−1 1

]

Calculating P 2
2 we have that

P 2
2 =

1

4

[

2 −2
−2 2

]

=
1

2

[

1 −1
−1 1

]

= P2 ,

as required. In each case, P 2 should equal P because the action of the second application of
our projection will not change the vector produced by the action of the first application of
our projection matrix.

Problem 5 (more calculations with projection matrices)

We compute for the first project matrix P1 that

P1 =
aaT

aTa
=

1

(1 + 4 + 4)





−1
2
2





[

−1 2 2
]

=
1

9





1 −2 −2
−2 4 4
−2 4 4



 ,

and compute the second projection matrix P2 by

P2 =
aaT

aTa
=

1

(4 + 4 + 1)





2
2
−1





[

2 2 −1
]

=
1

9





4 4 −2
4 4 −2
−2 −2 +1



 .

With these two we find that the product P1P2 is then given by

P1P2 =
1

81





1 −2 −2
−2 4 4
−2 4 4









4 4 −2
4 4 −2
−2 −2 +1





=
1

81





4 − 8 + 4 4 − 8 + 4 −2 + 4 − 2
−8 + 16 − 8 −8 + 16 − 8 4 − 8 + 4
−8 + 16 − 8 −8 + 16 − 8 4 − 8 + 4



 = 0 .

An algebraic way to see this same result is to consider the multiplication of P1 and P2 in
terms of the individual vectors i.e.

P1P2 =
a1a

T
1

aT
1 a1

a2a
T
2

aT
2 a2

=
1

aT
1 a1

1

aT
2 a2

a1a
T
1 a2a

T
2

=
1

aT
1 a1

1

aT
2 a2

a1(a
T
1 a2)a

T
2 = 0 ,



since for the vectors given we can easily compute that aT
1 a2 = 0. Conceptually this result

is expected since the vectors a1 and a2 are perpendicular and when we project a given
vector onto a1 we produce a vector that will still be perpendicular to a2. Projecting this
perpendicular vector onto a2 will result in a zero vector.

Problem 6

From Problem 5 we have that P1 given by

P1 =
1

9





1 −2 −2
−2 4 4
−2 4 4



 so P1





1
0
0



 =
1

9





1
0
0





and P2 given by

P2 =
1

9





4 4 −2
4 4 −2
−2 −2 1



 so P2





1
0
0



 =
1

9





4
4
−2





and finally P3 given by

P3 =
a3a

T
3

aT
3 a3

=
1

4 + 1 + 4





2
−1
2





[

2 −1 2
]

=
1

9





4 −2 4
−2 1 −2
4 −2 4



 so P3





1
0
0



 =
1

9





4
−2
4



 .

Then we have that

p1 + p2 + p3 =
1

9





1 + 4 + 4
−2 + 4 − 2
−2 − 2 + 4



 =





1
0
0



 .

We are projecting onto three orthogonal axis a1, a2, and a3, since aT
3 a1 = −2 − 2 + 4 = 0,

aT
3 a2 = 4 − 2 − 2 = 0, and aT

1 a2 = −2 + 4 − 2 = 0.

Problem 7

From Problem 6 above we have that P3 is given by

P3 =
1

9





4 −2 4
−2 1 −2
4 −2 4





So adding all three projection matrices we find that

P1 + P2 + P3 =
1

9





1 + 4 + 4 −2 + 4 − 2 −2 − 2 + 4
−2 + 4 − 2 4 + 4 + 1 4 − 2 − 2
−2 − 2 + 4 4 − 2 − 2 4 + 1 + 4



 =





1 0 0
0 1 0
0 0 1



 ,

as expected.



Problem 8

We have

x̂1 =
aT

1 b

aT
1 a1

= 1 so p1 = x̂1a1 =

[

1
0

]

x̂2 =
aT

2 b

aT
2 a2

=
3

5
so p2 = x̂2a2 =

3

5

[

1
2

]

This gives

p1 + p2 =

[

1
0

]

+
3

5

[

1
2

]

=
2

5

[

4
3

]

Problem 9

The projection onto the plane a1 and a2 is the full R
2 so the projection matrix is the identity

I. Since A is a two by two matrix with linearly independent columns ATA is invertible. This
product is given by

ATA =

[

1 0
1 2

] [

1 1
0 2

]

=

[

1 1
1 5

]

so that (ATA)−1 is given by

(ATA)−1 =
1

4

[

5 −1
−1 1

]

.

The product A(ATA)−1AT can be computed. We have

A(ATA)−1AT =

[

1 1
0 2

]

1

4

[

5 −1
−1 1

] [

1 0
1 2

]

=
1

4

[

1 1
0 2

] [

4 −2
0 2

]

=
1

4

[

4 0
0 4

]

= I ,

as claimed.

Problem 10

When we project b onto a the coefficients are given by x̂ = aT b
aT a

, so to project a1 onto a2 we
would have coefficients and a projection given by

x̂ =
aT

2 a1

aT
2 a2

=
1

5

p = x̂a2 =
1

5

[

1
2

]

.



The projection matrix is given by P1 =
a2aT

2

aT
2

a2

and equals

P1 =
1

5

[

1
2

]

[

1 2
]

=
1

5

[

1 2
2 4

]

.

Then to project this vector back onto a1 we obtain a coefficient and a projection given by

x̂ =
pTa1

aT
1 a1

=
1

5

1

1
=

1

5

p̃ = x̂a1 =
1

5

[

1
0

]

.

The projection matrix is given by P2 =
a1aT

1

aT
1

a1

and equals

P2 =

[

1 0
0 0

]

.

So that P2P1 is given by

P2P1 =

[

1 0
0 0

]

1

5

[

1 2
2 4

]

=
1

5

[

1 2
0 0

]

.

Which is not a projection matrix since it would have to be written proportional to a row
which it can’t be.

Problem 11

Remembering our projection theorems ATAx̂ = AT b and p = Ax̂ we can evaluate the various
parts of this problem.

Part (a): We find that ATA is given by

ATA =

[

1 0 0
1 1 0

]





1 1
0 1
0 0



 =

[

1 1
1 2

]

,

and AT b is given by

AT b =

[

1 0 0
1 1 0

]





2
3
4



 =

[

2
5

]

.

With this information the system for the coefficients x̂ i.e. ATAx̂ = AT b is given by
[

1 1
1 2

] [

x̂1

x̂2

]

=

[

2
5

]

which has a solution given by
[

x̂1

x̂2

]

=
1

1

[

2 −1
−1 1

] [

2
5

]

=

[

−1
3

]

.



so that p = Ax̂ is given by

p = Ax̂ =





1 1
0 1
0 1





[

−1
3

]

=





2
3
0



 .

With this projection vector we can compute its error. We find that e = b− p is given by

e = b− p =





2
3
4



−





2
3
0



 =





0
0
−1



 .

Part (b): We have for ATA the following

ATA =

[

1 1 0
1 1 1

]





1 1
1 1
0 1



 =

[

2 2
2 3

]

.

also we find that AT b is given by

AT b =

[

1 1 0
1 1 1

]





4
4
6



 =

[

8
14

]

.

So that our system of normal equations ATAx̂ = AT b, becomes

[

2 2
2 3

] [

x̂1

x̂2

]

=

[

8
14

]

.

This system has a solution given by

[

x̂1

x̂2

]

=
1

2

[

3 −2
−2 2

] [

8
14

]

=

[

−2
6

]

.

With these coefficients our projection vector p becomes

p = Ax̂ =





1 1
1 1
0 1





[

−2
6

]

=





4
4
6



 .

and our error vector e = b− p is then given by

e = b− p =





4
4
6



−





4
4
6



 = 0 .



Problem 12

The projection matrix is given by P1 = A(ATA)−1AT . Computing P1 we find that

P1 =





1 1
0 1
0 0









[

1 0 0
1 1 0

]





1 1
0 1
0 0









−1
[

1 0 0
1 1 0

]

=





1 1
0 1
0 0





[

2 −1
−1 1

] [

1 0 0
1 1 0

]

=





1 0
−1 1
0 0





[

1 0 0
1 1 0

]

=





1 0 0
0 1 0
0 0 0



 .

We can check that P 2
1 = P1 as required by projection matrices. We have

P 2
1 =





1 0 0
0 1 0
0 0 0









1 0 0
0 1 0
0 0 0



 =





1 0 0
0 1 0
0 0 0



 = P1 .

Now consider P1b from which we have

P1b =





1 0 0
0 1 0
0 0 0









2
3
4



 =





2
3
0



 .

For the second part we again have P2 = A(ATA)−1AT , which is given by

P2 =





1 1
1 1
0 1





(

1

2

[

3 −2
−2 2

])[

1 1 0
1 1 1

]

=
1

2





1 1
1 1
0 1





[

1 1 −2
0 0 2

]

=
1

2





1 1 0
1 1 0
0 0 2



 .

Then P 2
2 is given by

P 2
2 =

1

4





1 1 0
1 1 0
0 0 2









1 1 0
1 1 0
0 0 2



 =
1

4





2 2 0
2 2 0
0 0 4



 =
1

2





1 1 0
1 1 0
0 0 2



 = P2 .

Now consider P1b from which we have

P2b =
1

2





1 1 0
1 1 0
0 0 2









4
4
6



 =
1

2





8
8
12



 =





4
4
6



 .



Problem 13

With A =









1 0 0
0 1 0
0 0 1
0 0 0









, we will compute the projection matrix A(ATA)−1AT . We begin by

computing ATA. We find that

ATA =





1 0 0 0
0 1 0 0
0 0 1 0













1 0 0
0 1 0
0 0 1
0 0 0









=





1 0 0
0 1 0
0 0 1



 .

Then

A(ATA)−1AT =









1 0 0
0 1 0
0 0 1
0 0 0













1 0 0 0
0 1 0 0
0 0 1 0



 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









.

So P is four by four and we have that Pb =









1
2
3
0









.

Problem 14

Since b is in the span of the columns of A the projection will be b itself. Also P 6= I since
for vectors not in the column space of A their projection is not themselves. As an example
let

A =





0 1
1 2
2 0



 ,

Then the projection matrix is given by A(ATA)−1AT . Computing ATA we find

ATA =

[

0 1 2
1 2 0

]





0 1
1 2
2 0



 =

[

5 2
2 5

]

.

And then the inverse is given by

(ATA)−1 =
1

21

[

5 −2
−2 5

]

.



Which gives for the projection matrix the following

P =





0 1
1 2
2 0





(

1

21

[

5 −2
−2 5

])[

0 1 2
1 2 0

]

=
1

21





0 1
1 2
2 0





[

−2 1 10
5 8 −4

]

=
1

21





5 8 −4
8 17 2
−4 2 20



 .

So that p = Pb is the given by

p = Pb =
1

21





5 8 −4
8 17 2
−4 2 20









0
2
4



 =
1

21





0
42
84



 =





0
2
4



 = b .

Problem 15

The column space of 2A is the same as that of A, but x̂ is not the same for A and 2A since
pA = Ax̂ and p2A = 2Ax̂ while pA = p2A since the column space of A and 2A are the same
so the projections must be the same. Thus we have that

x̂A = 2x̂2A .

This can be seen by writing the equation for x̂A and x̂2A in terms of A. For example the
equation for x̂A is given by

ATAx̂A = AT b .

While that for x̂2A is given by
4ATAx̂2A = 2AT b .

This latter equation is equivalent to ATA(2x̂2A) = AT b. Comparing this with the first
equation we see that x̂A = 2x̂2A.

Problem 16

We desire to solve for x̂ in ATAx̂ = AT b. With A =





1 1
2 0
−1 1



 we have that

ATA =

[

1 2 −1
1 0 1

]





1 1
2 0
−1 1



 =

[

6 0
0 2

]

.



So that x̂ is then given by

x̂ = (ATA)−1AT b

=

[

1
6

0
0 1

2

] [

1 2 −1
1 0 1

]





2
1
1



 =

[

1
6

0
0 1

2

] [

3
3

]

=

[

1
2
3
2

]

.

Problem 17 (I − P is an idempotent matrix)

We have by expanding (and using the fact that P 2 = P ) that

(I − P )2 = (I − P )(I − P ) = I − P − P + P 2 = I − 2P + P = I − P .

So when P projects onto the column space of A, I −P projects onto the orthogonal comple-
ment of the column space of A. Or in other words I −P projects onto the the left nullspace
of A.

Problem 18 (developing an intuitive notion of projections)

Part (a): I − P is the projection onto the vector spanned by [−1, 1]T .

Part (b): I−P is the projection onto the plane perpendicular to this line, i.e. x+y+z = 0.
The projection matrix is derived from the column of

A =





1
1
1





which has x+ y + z = 0 as its left nullspace.

Problem 19 (computing the projection onto a given plane)

Consider the plane given by x − y − 2z = 0, by setting the free variables equal to a basis
(i.e. y = 1; z = 0 and y = 0; z = 1) we derive the following two vectors in the nullspace





1
1
0



 and





2
0
1



 .

These are two vectors in the plane which we make into columns of A as

A =





1 2
1 0
0 1







with this definition we can compute ATA as

ATA =

[

1 1 0
2 0 1

]





1 2
1 0
0 1



 =

[

2 2
2 5

]

.

Then (ATA)−1 is given by

(ATA)−1 =
1

6

[

5 −2
−2 2

]

,

and our projection matrix is then given by P = A(ATA)−1AT or

A(ATA)−1AT =
1

6





1 2
1 0
0 1





[

5 −2
−2 2

] [

1 1 0
2 0 1

]

=
1

6





1 2
5 −2
−2 2





[

1 1 0
2 0 1

]

=
1

6





5 1 2
1 5 −2
2 −2 2



 .

Problem 20 (computing the projection onto the same plane ... differently)

A vector perpendicular to the plane x− y − 2z = 0 is the vector

e =





1
−1
−2





since then eT





x
y
z



 = 0 for every x, y, and z in the plane. The projection onto this vector

is given by

Q =
eeT

eT e

=
1

1 + 1 + 4





1
−1
−2





[

1 −1 −2
]

=
1

6





1 −1 −2
−1 1 2
−2 2 4



 .

Using this result the projection onto the given plane is given by I −Q or

1

6





6 − 1 1 2
1 6 − 1 −2
2 −2 6 − 4



 =
1

6





5 1 2
1 5 −2
2 −2 2



 ,

which is the same as computed earlier in Problem 19.



Problem 21 (projection matrices are idempotent)

If P = A(ATA)−1AT then

P 2 = (A(ATA)−1AT )(A(ATA)−1AT ) = A(ATA)−1AT = P .

Now Pb is in the column space of A and therefore its projection is itself.

Problem 22 (proving symmetry of the projection matrix)

Given the definition of the projection matrix P = A(ATA)−1AT , we can compute its trans-
pose directly as

P T = (A(ATA)−1AT )T = A(ATA)−TAT = A((ATA)T )−1AT = A(ATA)−1AT .

which is the same definition as P proving that P is a symmetric matrix.

Problem 23

When A is invertible the span of its columns is equal to the entire space from which we are
leaving i.e. R

n, so the projection matrix should be the identity I. Therefore, since b is in R
n

its projection into R
n must be itself. The error of this projection is then zero.

Problem 24

the nullspace of AT is perpendicular to the column space C(A), by the second fundamental
theorem of linear algebra. If AT b = 0, the projection of b onto C(A) will be zero. From the
expression for the projection matrix we can see that this is true because

Pb = A(ATA)−1AT b = A(ATA)−10 = 0 .

Problem 25

The projection Pb fill the subspace S so S is the basis of P .

Problem 26

Since A2 = A, we have that A(A− I) = 0. But since the rank of A is m, A is invertible we
can therefore multiply both sides by A−1 to obtain A− I = 0 or A = I.



Problem 27

The vector Ax is in the nullspace of AT . But Ax is always in the column space of A. To be
in both spaces (since they are perpendicular) we must have Ax = 0.

Problem 28

From the information given Px is the second column of P . Then its length squared is given
by (Px)T (Px) = xTP TPx = xTP 2x = xTPx = p22, or the (2, 2) element in P .

Section 4.3 (Least Squares Approximations)

Problem 1 (basic least squares concepts)

If our mathematical model of the relationship between b and t is a line given by b = C +Dt,
then the four equations through the given points are given by

0 = C +D · 0
8 = C +D · 1
8 = C +D · 3

20 = C +D · 4

If the measurements change to what is given in the text then we have

1 = C +D · 0
5 = C +D · 1

13 = C +D · 3
17 = C +D · 4

Which has as an analytic solution given by C = 1 and D = 4.

Problem 2 (using the normal equations to solve a least squares problem)

For the b and the given points our matrix A is given by

A =









1 0
1 1
1 3
1 4









and b =









0
8
8
20











The normal equations are given by ATAx̂ = AT b, or

[

1 1 1 1
0 1 3 4

]









1 0
1 1
1 3
1 4









=

[

1 1 1 1
0 1 3 4

]









0
8
8
20









or
[

4 8
8 26

] [

C
D

]

=

[

36
112

]

which has as its solution [C,D]T = [1, 4]T . So the four heights with this x̂ are given by

Ax̂ =









1
5
13
17









.

With this solution by direct calculation the error vector e = b− Ax̂ is given by

e =









0
8
8
20









−









1 0
1 1
1 3
1 4









[

1
4

]

=









−1
3
−5
3









The smallest possible value of E = 1 + 9 + 25 + 9 = 44.

Problem 3

From problem 2 we have p =









1
5
13
17









, so that e = b − p is given by e =









−1
3
−5
3









. Now

consider eTA which is given by

eTA =
[

−1 3 −5 3
]









1 0
1 1
1 3
1 4









=
[

0 0
]

So the shortest distance is given by ||e|| = E = 44.

Problem 4 (the calculus solution to the least squares problem)

We define E = ||Ax− b||2 as

E = (C +D · 0 − 0)2 + (C +D · 1 − 8)2 + (C +D · 3 − 8)2

+ (C +D · 4 − 20)2



so that taking derivatives of E we have

∂E

∂C
= 2(C +D · 0 − 0) + 2(C +D · 1 − 8)

+ 2(C +D · 3 − 8) + 2(C +D · 4 − 20)

∂E

∂D
= 2(C +D · 0 − 0) · 0 + 2(C +D · 1 − 8) · 1
+ 2(C +D · 3 − 8) · 3 + 2(C +D · 4 − 20) · 4 .

where the strange notation used in taking the derivative above is to emphases the relationship
between this procedure and the one obtained by using linear algebra. Setting each equation
equal to zero and then dividing by two we have the following

(C +D · 0) + (C +D · 1) +

(C +D · 3) + (C +D · 4) = 0 + 8 + 8 + 20 = 36

(C +D · 0) · 0 + (C +D · 1) · 1 +

(C +D · 3) · 3 + (C +D · 4) · 4 = 0 · 0 + 8 · 1 + 8 · 3 + 20 · 4 = 112 .

Grouping the unknowns C and D we have the following system
[

4 8
8 26

] [

C
D

]

=

[

36
112

]

Problem 5

The best horizontal line is given by the function y = C. By least squares the coefficient A is
given by

Ax̂ =









1
1
1
1









c =









0
8
8
20









Which has normal equations given by ATAx = AT b or 4C = 16 + 20 = 36, or C = 9. This
gives an error of

e = b− Ax̂ =









0
8
8
20









−









1
1
1
1









9 =









−9
−1
−1
11









Problem 6

We have x̂ = aT b
aT a

= 8+8+20
4

= 9. Then

p = x̂a =









9
9
9
9











and

e = b− p =









0 − 9
8 − 9
8 − 9
20 − 9









so that eTa =
[

−9 −1 −1 +11
]









1
1
1
1









= 0 as expected. Our error norm is given by

||e|| = ||b− p|| =
√

81 + 1 + 1 + 121 =
√

204.

Problem 7

For the case when b = Dt our linear system is given by Ax̂ = b with x̂ = [D] and

A =









0
1
4
4









and b =









0
8
8
20









.

With these definitions we have that ATA = [1 + 9 + 16] = [26], and AT b = [0+8+24+80] =
[112], so that

x̂ =
112

26
=

56

13
,

then Figure 1.9 (a) would look like

Problem 8

We have that

x̂ =
aT b

aTa
=

0 + 8 + 24 + 80

1 + 9 + 16
=

56

13
.

so that p is given by

p =
56

13









0
1
3
4









.

In problems 1-4 the best line had coefficients (C,D) = (1, 4), while in the combined problems
5-6 and 7-8 we found C and D given by (C,D) = (9, 56

13
). This is because (1, 1, 1, 1) and

(0, 1, 3, 4) are not perpendicular.



Problem 9

Our matrix and right hand side in this case is given by

A =









1 0 0
1 1 1
1 3 9
1 4 16









and b =









0
8
8
20









.

So the normal equations are given by

ATA =





1 1 1 1
0 1 3 4
0 1 9 16













1 0 0
1 1 1
1 3 9
1 4 16









=





4 8 26
8 26 92
26 92 338



 .

and AT b is given by

AT b =





1 1 1 1
0 1 3 4
0 1 9 16













0
8
8
20









=





36
112
400



 .

In figure 4.9 (b) we are computing the best fit to the span of three vectors where “best” is
measured in the least squared sense.

Problem 10

For the A given

A =









1 0 0 0
1 1 1 1
1 3 9 27
1 4 16 64









.

The solution to the equation Ax = b is given by performing Gaussian elimination on the
augmented matrix [A; b] as follows

[A; b] =









1 0 0 0 0
1 1 1 1 8
1 3 9 27 8
1 4 16 64 20









⇒









1 0 0 0 0
0 1 1 1 8
0 3 9 27 8
0 4 16 64 20









⇒









1 0 0 0 0
0 1 1 1 8
0 0 6 24 −16
0 0 12 60 −12









⇒









1 0 0 0 0
0 1 1 1 8
0 0 6 24 −16
0 0 0 −84 XXX









.

Given

x̂ =
1

3









0
47
−28
5









,



then p = b and e = 0.

Problem 11

Part (a): The best line is 1 + 4t so that 1 + 4t̂ = 1 + 4(2) = 9 = b̂

Part (b): The first normal equation is given by Equation 9 in the text and is given by

mC +
∑

i

ti ·D =
∑

bi ,

by dividing by m gives the requested expression.

Problem 12

Part (a): For this problem we have atax̂ = atb given by

mx̂ =
∑

i

bi ,

so x̂ is then given by

x̂ =
1

m

∑

i

bi ,

or the mean of the bi

Part (b): We have

e = b− x̂











1
1
...
1











=











b1 − x̂
b2 − x̂

...
bm − x̂











Then ||e|| =
√
∑m

i=1(bi − x̂)2

Part (c): If b = (1, 2, 6)T , then x̂ = 1
3
(1 + 2 + 6) = 3 and p = (3, 3, 3)T , so the error e is

given by

e =





1
2
6



−





3
3
3



 =





−2
−1
3



 .

We can check pT e = 3(−2− 1 + 3) = 0 as it should. Computing our projection matrix P we
have

P =
aaT

aTa
=

1

3





1
1
1





[

1 1 1
]

=
1

3





1 1 1
1 1 1
1 1 1



 .



Problem 13

We will interpret this question as follows. For each instance the residual will be one of the
values listed (±1,±1,±1). Considering b − Ax = (±1,±1,±1) we have by multiplying by
(ATA)−1AT the following

(ATA)−1AT (b−Ax) = (ATA)−1AT b− (ATA)−1ATAx = x̂− x .

If the residual can equal any of the following vectors




1
1
1



 ,





−1
−1
−1



 ,





−1
1
1



 ,





1
−1
1



 ,





1
1
−1



 ,





−1
−1
1



 ,





1
−1
−1



 ,





−1
1
−1



 .

We first note that the average of all of these vectors is equal to zero. In the same way the
action of (ATA)−1AT on each of these vectors would produce (each of the following should
be multiplied by 1/3)

3 ,−3 , 1 , 1 , 1 ,−1 ,−1 ,−1 ,

which when summed gives zero.

Problem 14

Consider (b− Ax)(b− Ax)T and multiply by (ATA)−1AT on the left and A(ATA)−1 on the
right, to obtain

(ATA)−1AT (b− Ax)(b−Ax)TA(ATA)−1 .

Now since BTC = (CTB)T the above becomes remembering the definition of x̂

(x̂− x)(
[

A(ATA)−1
]T

(b−Ax))T = (x̂− x)((ATA)−1AT (b− Ax))T

= (x̂− x)(x̂− x)T .

so that if the average of (b−Ax)(b−Ax)T is σT I we have that the average of (x̂−x)(x̂−x)T

is (ATA)−1AT (σ2I)A(ATA)−1, to obtain σ2(ATA)−1ATA(ATA)−1 = σ2(ATA)−1.

Problem 15

The expected error (x̂ − x)2 is σ2(ATA)−1 = σ2

m
, so the variance drops significantly (as

O(1/m)).

Problem 16

We have
1

100
b100 +

99

100
x̂99 =

1

100

∑

i

bi .



Problem 17

Our equations are given by

7 = C +D(−1)

7 = C +D(1)

21 = C +D(2) .

Which as a system of linear equations matrix are given by




1 −1
1 1
1 2





[

C
D

]

=





7
7
21



 .

The least squares solution is given by ATAx = AT b which in this case simplify as follows

[

1 1 1
−1 1 2

]





1 −1
1 1
1 2





[

C
D

]

=

[

1 1 1
−1 1 2

]





7
7
21



 or

[

3 2
2 6

] [

C
D

]

=

[

35
42

]

.

Which gives for [C,D]T the following
[

C
D

]

=

[

9
4

]

,

so the linear line is b = 9 + 4t.

Problem 18

We have p given by

p = Ax̂ =





1 −1
1 1
1 2





[

9
4

]

=





5
13
17





that gives the values on the closest line. The error vector e is then given by

e = b− p =





7
7
21



−





5
13
17



 =





2
−6
4



 .

Problem 19

Our matrix A is still given by A =





1 −1
1 1
1 2



, but now let b =





2
−6
4



, so that x̂ =

(ATA)−1AT b = 0. Each column of A is perpendicular to the error in the least squares
solution and as such has AT b = 0. Thus the projection is zero.



Problem 20

When b =





5
13
17



, we have

x̂ = (ATA)−1AT b

= (ATA)−1

[

1 1 1
−1 1 2

]





5
13
17





= (ATA)−1

[

35
42

]

.

Or inserting the value of (ATA)−1 we have

x̂ =
1

14

[

6 −2
−2 3

] [

35
42

]

=

[

9
4

]

.

Thus the closest line is given by b = 9 + 4t and the error is given by

e = b− Ax̂ =





5
13
17



−





5
13
17



 = 0 .

Now e = 0 because this b is in the column space of A.

Problem 21 (the subspace containing the components of projections)

The error vector e must be perpendicular to the column space of A and therefore is in the
left nullspace of A. The projection vector p must be in the column space of A, the projected
basis x̂ must be in the row space of A. The nullspace of A is the zero vector assuming that
the columns of A are linearly independent which is generally true for least squares problems
if m > n.

Problem 22

With A given by

A =













1 −2
1 −1
1 0
1 1
1 2















we should form ATAx̂ = AT b and solve for x̂. Note that for this problem we have that
∑

ti = 0 and our line has coefficients given by

C =
1

m

∑

i

bi =
1

5
5 = 1

D =
b1T1 + . . .+ bmTm

T 2
1 + T 2

2 + . . .+ T 2
m

=
4(−2) + 2(−1) + −1(0) + 0(1) + 0(2)

4 + 1 + 0 + 1 + 4
= . . . .

Then the least squares line is C +Dt.

Problem 23

With P = (x, x, x) and Q = (y, 3y,−1) then

||P −Q||2 = (x− y)2 + (x− 3y)2 + (x+ 1)2 .

Then to find the minimum of this we set the x and y derivatives equal to zero

∂||P −Q||2
∂x

= 0

∂||P −Q||2
∂y

= 0 ,

and solve for the unknowns x and y.

Problem 24

Now e is orthogonal to anything in the column space of A so that would be p = Ax̂, so
eTp = 0. We have for our error e the following

||e||2 = (b− p)T (b− p) = eT (b− p) = eT b = (b− p)T b = bT b− bTp .

Problem 25

Since ||Ax− b||2 can be expressed as

||Ax− b||2 = (Ax− b)T (Ax− b)

= (Ax)T (Ax) − (Ax)T b− bT (Ax) + bT b

= ||Ax||2 − 2bT (Ax) + ||b||2 .
So the derivatives of ||Ax− b||2 will be zero when

2ATAx− 2AT b = 0 ,

or
ATAx = AT b .

These equations we recognized as the normal equations.



Section 4.4 (Orthogonal Bases and Gram-Schmidt)

Problem 1

Part (a): We check the dot product
[

1 0
]

[

−1
1

]

= −1 6= 0, and the second vector does

not have norm equal to one so these vectors are only independent.

Part (b): We check the dot product
[

0.6 0.8
]

[

0.4
−0.3

]

= 0.24 − 0.24 = 0, so they are

othogonal. The norm of each is given by

||v1|| =
√

0.36 + 0.64 = 1

||v2|| =
√

0.16 + 0.09 =
√

0.25 = 0.5 .

Part (c): Here we have that

vT
1 v2 = − cos(θ) sin(θ) + sin(θ) cos(θ) = 0 ,

and ||v1|| = ||v2|| = 1 so the vectors are orthonormal.

Problem 2

We have

q1 =
1

3





2
2
−1



 and q2 =
1

3





−1
2
2





so that the matrix obtained by concatonating q1 and q2 as column is given by

Q =





2/3 −1/3
2/3 2/3
−1/3 2/3





Then QTQ is given by

QTQ =

[

1 0
0 1

]

and the symmetric product QQT is given by

QQT =
1

9





5 2 −4
2 8 2
−4 2 5







Problem 3

Part (a): Here ATA would be the three by three identity matrix times 42 = 16.

Part (b): Here ATA would be




12 0 0
0 22 0
0 0 32



 =





1 0 0
0 4 0
0 0 9





Problem 4

Part (a): Let Q =





1 0
0 1
0 0



, then QQT is given by

QQT =





1 0
0 1
0 0





[

1 0 0
0 1 0

]

=





1 0 0
0 1 0
0 0 0



 .

Part (b): Let v1 =

[

1
0

]

and v2 =

[

0
0

]

.

Part (c): Let the basis be composed of








1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 1/2
−1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 −1/2









Problem 5

All vectors that lie in the plane must be in the nullspace of

A =
[

1 1 2
]

,

which has a basis given by the span of v1 and v2 given by

v1 =





−1
1
0



 and v2 =





−2
0
1



 .

These two vectors are not orthogonal. Now let w1 be given by

w1 =
1√
2





−1
1
0







and W2 = v2 − (vT
2 w1)w1. Now as vT

2 w1 = 1√
2
2 =

√
2 and ||w1||2 = 1, we have the ratio

above given by

(vT
2 w1)

||w1||2
w1 =

√
2

1√
2





−1
1
0



 =





−1
1
0



 .

So with this subcalculation we have W2 given by

W2 =





−2
0
1



−





−1
1
0



 =





−1
−1
1



 .

Therefore when we normalize we get w2 equal to

w2 =
1

||w2||





−1
−1
1



 =
1√
3





−1
−1
1





Problem 6

To show that a matrixQ is orthogonal we must show thatQTQ = I. For the requested matrix
Q1Q2 consider the product (Q1Q2)

T (Q1Q2). Since this is equal to QT
2Q

T
1Q1Q2 = QT

2Q2 = I,
showing that Q1Q2 is orthogonal.

Problem 7

The projection matrix P is given by P = Q(QTQ)−1QT = QI−1QT = QQT , so the projection
onto b will be

p = Pb = QQT b = Q











qT
1 b
qT
2 b
...
qT
mb











= (qT
1 b)q1 + (qT

2 b)q2 + . . .+ (qT
mb)qm

Problem 8

Part (a): For Q given by

Q =





0.8 −0.6
0.6 0.8
0 0





we have

QQT =





0.8 −0.6
0.6 0.8
0 0





[

0.8 0.6 0
−0.6 0.8 0

]

=





1 0 0
0 1 0
0 0 0



 .



Then our projection matrix is given by

P =





1 0 0
0 1 0
0 0 0





so that P 2 is then

P 2 =





1 0 0
0 1 0
0 0 0









1 0 0
0 1 0
0 0 0



 =





1 0 0
0 1 0
0 0 0



 = P .

Part (b): Since (QQT )(QQT ) = QQTQQT = QQT , we have that P = QQT = (QQT )(QQT )
so that P which equals QQT is the projection matrix onto the columns of the the matrix Q.

Problem 9 (orthonormal vectors are linearly independent)

Part (a): Assuming that c1q1+c2q2+c3q3 = 0 and taking the dot product of both sides with
q1 gives c1q

T
1 q1 = 0 implying that c1 = 0. The same thing holds when we take the dot product

with q2 and q3 showing that all ci’s must be zero and the qi’s are linearly independent.

Part (b): Defining Q = [q1 q2 q3], then to prove linearly dependence we are looking for an
x 6= 0 such that Qx = 0. From Qx = 0 multiply on the left by QT to get QTQx = 0. Since
QTQ = I by the orthogonality of the qi’s we have that x = 0 showing that no nonzero x
exists and the qi’s are linearly independent.

Problem 10

Part (a): To be in both planes we are looking for a variable

[

x
y

]

has

A =













1 −6
3 6
4 8
5 0
7 8













Let v1 =
[

1 3 4 5 7
]T

so that normalized we have

v1 =
1√

1 + 9 + 16 + 25 + 49













1
3
4
5
7













=
1

10













1
3
4
5
7















then

v̂2 =













−6
6
8
0
8













−
[

1 3 4 5 7
]













−6
6
8
0
8













1

102













1
3
4
5
7













=













−6
6
8
0
8













−













1
3
4
5
7













=













−7
3
4
−5
1













Normalizing we then have

v2 =
1√

49 + 9 + 16 + 25 + 1













−7
3
4
−5
1













=
1

10













−7
3
4
−5
1













Part (b): The vector closes to [1 , 0 , 0 , 0 , 0]T is given by p = q1(q
T
1 b) + q2(q

T
2 b) or

1

10













1
3
4
5
7













1

10
+

1

10













−7
3
4
−5
1













(−7

10

)

=
1

50













25
−9
−12
20
0













.

Problem 11

This is (qT
1 b)q1 + (qT

2 b)q2.

Problem 12

Part (a): If the ai’s are orthogonal then Ax = b is [a1 a2 a3]x = b, and multiplying by AT

(which is the inverse of A) gives ATAx = AT b or

x =





aT
1 b
aT

2 b
aT

3 b





Part (b): If the a’s are orthogonal then

ATA =





aT
1

aT
2

aT
3





[

a1a2a3

]

=





aT
1 a1 aT

1 a2 aT
1 a3

aT
2 a1 aT

2 a2 aT
2 a3

aT
3 a1 aT

3 a2 aT
3 a3



 =





aT
1 a1 0 0
0 aT

2 a2 0
0 0 aT

3 a3







so from ATAx = AT b =





aT
1 b
aT

2 b
aT

3 b



 we obtain

x =









aT
1

b

aT
1

a1

aT
2

b

aT
2

a2

aT
3

b

aT
3

a3









Part (c): If the a’s are independent then x1 is the first row of A−1 times b.

Problem 13

We would let

A = a

B = b− aT b

aTa
a =

[

4
0

]

− 4

2

[

1
1

]

=

[

4
0

]

−
[

2
2

]

=

[

2
−2

]

We need to subtract two times a to make the result orthogonal to a.

Problem 14

We have

q1 =
a

||a|| =
1√
2

[

1
1

]

q2 =
B

||B|| =
1√

4 + 4

[

2
−2

]

=
1√
2

[

1
−1

]

Then we have
[

1 4
1 0

]

=

[

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [ √
2 qT

1 b

0 2
√

2

]

with qT
1 b = 1√

2

[

1 1
]

[

4
0

]

= 4√
2
, which implies that the above matrix decomposition is

given by
[

1 4
1 0

]

=

[

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [ √
2 4/

√
2

0 2
√

2

]

.

We can check this result by multiplying the above matrices together. Performing the multi-
plication of the two matrices on the right together we have

[

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [ √
2 4/

√
2

0 2
√

2

]

=

[

1 4/2 + 2
1 4/2 − 2

]

=

[

1 4
1 0

]

,

verifying the decomposition.



Problem 15

Part (a): With the matrix A given by

A =





1 1
2 −1
−2 4





we will let a =





1
2
−2



, so that q1 = 1
3





1
2
−2



. Now let b =





1
−1
4



, then B is given by

B = b− aT b

aTa
a

=





1
−2
4



− (1 − 2 − 8)

(1 + 4 + 4)





1
2
−2



 =





2
1
2





Then q2 is the normalized version of B and is given by

q2 =
B

||B|| =
1√

4 + 1 + 4





2
1
2



 =
1

3





2
1
2





Now to compute q3 we pick a third vector say





1
0
0



, that is linearly independent from a

and b, we then have

C =





1
0
0



− cTa

aTa
a− cT b

bT b
b

=





1
0
0



− 1

9





1
2
−2



− 1

18





1
−1
4



 =
1

6





5
−1
0



 .

Which gives for q3 the following

q3 =
1√
26





5
−1
0





Part (b): q3 must be orthogonal to the columns and therefore is in the left nullspace.

Part (c): We have that p is given by

p =
[

1 2 7
]T





2/3
1/3
2/3









2/3
1/3
2/3



+
[

1 2 7
]T





1/3
2/3
−2/3









1/3
2/3
−2/3





= 2





2
1
2



+ (−1)





1
2
−2



 =





3
0
6



 ,



is one method, another would be by solving the normal equations ATAx̂ = AT b which in
this case turn out to be

ATA =

[

1 2 −2
1 −1 4

]





1 1
2 −1
−2 4



 = 9

[

1 1
1 2

]

.

and AT b is given by

AT b =

[

1 + 4 − 14
1 − 2 + 28

]

=

[

15
27

]

Then x̂ is given by

x̂ =
1

9

1

(2 − 1)

[

2 1
1 1

] [

15
27

]

=
1

3

[

19
14

]

Problem 16

Find the projection of b onto a. We have that our coefficient x̂ is given by

x̂ =
bTa

aTa
=

4 + 10

16 + 25 + 4 + 4
=

2

7
.

To find orthonormal vectors let

q1 =
1√

16 + 25 + 4 + 4









4
5
2
2









=
1

7









4
5
2
2









.

and define B to be

B =









1
2
0
0









− bTa

aTa









4
5
2
2









=









1
2
0
0









− 14

49









4
5
2
2









=
1

7









−1
4
−4
−4









.

Normalizing this vector we then have

q2 =
1

√

1 + 3(16)









−1
4
−4
−4









=
1

4
√

3









−1
4
−4
−4









Problem 17

We have

p =
bTa

aTa
a =

1 + 3 + 5

3





1
1
1



 = 3





1
1
1



 .



with an error given by

e = b− p =





1
3
5



−





3
3
3



 =





−2
0
2



 .

Normalizing we have

q1 =
1√
3





1
1
1



 and q2 =
1

2





−2
0
2



 =





−1
0
1



 .

Problem 18

If A = QR then ATA = (RTQT )(QR) = RTR which we recognize as a lower triangular
matrix times a upper triangular matrix. Therefore Gram-Schmidt on A corresponds to
elimination on ATA. If A is as given in this problem then

ATA =

[

3 9
9 35

]

,

which reduces as

ATA⇒
[

3 9
0 35 − 27

]

=

[

3 9
0 8

]

.

Which has pivots equal to ||a||2 and ||e||2 respectively.

Problem 19

Part (a): True, since the inverse of an orthogonal matrix is its transpose.

Part (b): Yes, if Q has orthonormal columns then

||Qx||2 = (Qx)T (Qx) = xTQTQx = xTx = ||x||2 .



Problem 20

Let q1 = 1√
4









1
1
1
1









= 1
2









1
1
1
1









. Then B is given by

B =









−2
0
1
3









− (−2 + 1 + 3)

4









1
1
1
1









=









−2
0
1
3









− 1

2









1
1
1
1









=
1

2









−5
−1
1
5









.

so that q2 = B
||B|| or

q2 =
1√

25 + 1 + 1 + 25









−5
−1
1
5









=
1√
52









−5
−1
1
5









.

The projecting b onto the column space of A is equivalent to computing

p = (qT
1 b)q1 + (qT

2 b)q2

=
(−4 − 3 + 3)

2

(

1

2

)









1
1
1
1









+
(20 + 3 + 3)√

52

(

1√
52

)









−5
−1
1
5









=
1

2









−7
−3
−1
3









.

So that the error vector e = b− p is given by

e = b− p =
1

2









−8 + 7
−6 + 3
6 + 1
−3









=
1

2









−1
−3
7
−3









,



and then computing the inner product of e with each column of A we find (using Matlab
notation that)

eTA(:, 1) =
1

2
(−1 − 3 + 7 − 3) = 0 and

eTA(:, 2) =
1

2
(2 + 0 + 7 − 9) = 0 ,

as required.

Problem 21

If A =





1
1
2



 so that q1 = 1√
6





1
1
2



, we have B given by

B =





1
−1
0



− ATv

ATA
A

=





1
−1
0



− (1 − 1)

ATA
A

=





1
−1
0



 .

The next vector C is given by removing the projections along A and B. We find

C = v − ATv

ATA
A− BTv

BTB
B

=





1
0
4



− 9

6





1
1
2



− 1

2





1
−1
0



 =





−1
−1
1



 .

Problem 22

One could do this by performing elimination on ATA as in Problem 18 or just simply per-
forming Gram-Schmidt on the columns of the matrix A. We have

A =





1
0
0



 and q1 = A .

With v =
[

2 0 3
]T

we have that

B = v − vTA

ATA
A =





2
0
3



− 2

1





1
0
0



 =





3
0
0



 ,



so that q2 =





0
0
1



. then in v =
[

4 5 6
]T

we have a third orthogonal vector C as

C = v − ATv

ATA
A− BTv

BTB
B

=





4
5
6



− 4

1





1
0
0



− 6





0
0
1



 =





0
5
0



 .

So that A is given by

A =





1 0 0
0 0 1
0 1 0









1 2 4
0 3 6
0 0 5



 .

Problem 23

Part (a): We desire to compute a basis for the subspace for the plane given by

x1 + x2 + x3 − x4 = 0 .

Consider the matrix A defined as A =
[

1 1 1 −1
]

, then since we want to consider the
nullspace of A we will assign ones to each free variables in succession and zeros to the other
variables and then solve for the pivot variables. This will give us a basis for the nullspace.
We find

x2 = 1, x3 = 0, x4 = 0 ⇒ x =
[

−1 1 0 0
]T

x2 = 0, x3 = 1, x4 = 0 ⇒ x =
[

−1 0 1 0
]T

x2 = 0, x3 = 0, x4 = 1 ⇒ x =
[

1 0 0 1
]T

.

Part (b): The orthogonal complement to S are all vectors that are orthogonal to each

component of the nullspace of A. This is the vector
[

1 1 1 − 1
]T

.

Part (c): If b =
[

1 1 1 1
]T

, then to decompose b into b1 and b2 consider the unit vector
of the vector that spans the orthogonal complement i.e.

q2 =
1

2









1
1
1
−1









,

then b2 given by

b2 = (qT
2 b)q2 =

1

2
(2)

1

2









1
1
1
−1









=
1

2









1
1
1
−1









.



Then

b1 = b− b2 =









1
1
1
1









− 1

2









1
1
1
−1









=
1

2









1
1
1
3









.

Problem 24

We would like to perform A = QR when A =

[

a b
c d

]

. We begin by computing q1. We find

q1 =
1√

a2 + c2

[

a
c

]

.

and then B is given by

B =

[

b
d

]

−
(

[

b d
]

· 1√
a2 + c2

[

a
c

])

1√
a2 + c2

[

a
c

]

=

[

b
d

]

− ab+ dc

a2 + c2

[

a
c

]

=
ad − bc

a2 + c2

[

−c
a

]

.

which is orthogonal to

[

a
c

]

, and has a unit vector given by

1√
a2 + c2

[

−c
a

]

.

So the matrix Q in the QR decomposition of A is given by

Q =
1√

a2 + c2

[

a −c
c a

]

.

Then R is given by (using Matlab notation)

R =

[

qT
1 A(:, 1) qT

1 A(:, 2)
0 qT

2 A(:, 2)

]

=
1√

a2 + c2

[

a2 + c2 ab+ cd
0 −cb+ ad

]

.

To the decomposition of A is then given by

A =

(

1√
a2 + c2

[

a −c
c a

])(

1√
a2 + c2

[

a2 + c2 ab+ cd
0 −cb + ad

])

.

If (a, b, c, d) = (2, 1, 1, 1) then we obtain

A =

(

1√
5

[

2 −1
1 2

])(

1√
5

[

5 3
0 1

])

,

while if (a, b, c, d) = (1, 1, 1, 1) we obtain

A =

(

1√
2

[

1 −1
1 1

])(

1√
2

[

2 2
0 0

])

,

From which we see that the (2, 2) element of R in this case is zero.



Problem 25

Equation 8 is given by

C = c− AT c

ATA
A− BT c

BTB
B

The first equation in 12 is given by

rkj =

m
∑

i=1

aikaij ,

is the expression for the dot product between the kth column of Q and the jth column of
A. Then aij = aij − qikrkj subtracts the projection onto the basis functions.

Problem 26

a and b may not be orthogonal so by subtracting projections along non-orthogonal vectors
one would be double counting.

Problem 27

See the Matlab code chap4 sect 4 4 prob 27.m.

Problem 28

Equation 11 involves m multiplications from the summation and m divisions for the calcu-
lations of qik = aik

rkk
giving a total of O(2m) calculations. Each of these multiplications are

performed multiple times. Thus we have

n
∑

k=1

2m+

n
∑

j=k+1

2m = 2mn +

n
∑

k=1

2m(n− k − 1 + 1)

= 2mn + 2m
n
∑

k=1

(n− k)

= 2mn + 2m
n−1
∑

k=1

k

= 2mn + 2m

(

n(n− 1)

2

)

= mn2 +mn ,

which is the required number of flops.



Problem 29

Part (a): We desire to check that QTQ = I, when computing this product we have

QTQ = c2









1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

















1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









= c2









4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4









= I ,

by picking c = 1
2
.

Part (b): We know that Q defined by

Q = c









1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









,

which will be orthogonal if c = 1
2

as in Part (a).

Problem 30

Projecting onto the first column of Q we have a coefficient given by qT
1 b = 1

2
(−2) = −1, so

that we have a projection of

p =
−1

2









1
−1
−1
−1









.

To project onto the first two columns of the matrix A we give

qT
1 b = −1

qT
2 b =

1

2
(−2) = −1 .

So that p is now given by

p = −1

2









1
−1
−1
−1









− 1

2









−1
1
−1
−1









=









0
0
1
1









.



Problem 31

Now Q = I − 2uuT is a reflection matrix. If u = [0, 1]T then

uuT =

[

0
1

]

[

0 1
]

=

[

0 0
0 1

]

so that Q is given by

Q = I −
[

0 0
0 2

]

=

[

1 0
0 −1

]

.

If r =

[

x
y

]

then Qr =

[

x
−y

]

. If u = (0, 1/
√

2, 1/
√

2) then

uuT =





0

1/
√

2

1/
√

2





[

0 1/
√

2 1/
√

2
]

=





0 0 0
0 1/2 1/2
0 1/2 1/2





so that Q is given by

Q = I − 2uuT =





1 0 0
0 0 −1
0 −1 0



 .

If r =





x
y
z



 then Qr =





x
−z
−y



.

Problem 32

Part (a): From the definition of Q we have

Qu = u− 2uuTu = u− 2u = −u .

Part (b): If uTv = 0 then we have

Qv = v − 2uuTv = v .

Problem 33

What is special about the columns of W is that they are orthonormal. The inverse of W is
then its transpose i.e.

W−1 = W T =
1

2









1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2









.



Chapter 5 (Determinants)

Section 5.1 (The Properties of Determinants)

Problem 1 (examples of properties of the determinant)

If det(A) = 2, and A is 4 by 4 we then have

det(2A) = 24det(A) = 24 2 = 32

det(−A) = (−1)4det(A) = 2

det(A2) = det(A)2 = 4

det(A−1) =
1

det(A)
=

1

2

Problem 2 (more examples with the determinant)

If det(A) = −3, and A is 3 by 3 we then have

det(
1

2
A) =

(

1

2

)3

det(A) = −3

8

det(−A) = (−1)3det(A) = −(−3) = 3

det(A2) = det(A)2 = 9

det(A−1) =
1

det(A)
= −1

3

Problem 3 (true/false propositions with determinants)

Part (a): False. If we define A as

A =

[

1 2
3 4

]

,

then det(A) = −2 and we have I + A given by

I + A =

[

2 2
3 5

]

,

so det(I + A) = 10 − 6 = 4, while 1 + det(A) = 1 − 2 = −1, which are not equal.

Part (b): True

Part (c): True



Part (d): False, let A = I then

4A = 4I =

[

4 0
0 4

]

,

so det(4A) = 16 6= 4det(A) = 4 det(I) = 4.

Problem 4 (row exchanges of the identity)

If

J3 =





0 0 1
0 1 0
1 0 0





then J3 is obtained from I by exchanging rows one and three from the three by three identity
matrix. If J4 is given by

J4 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









then J4 is obtained from the four by four identity matrix by exchanging the second and third
rows and the first and fourth rows.

Problem 5 (more row exchanges of the identity)

We will propose an inductive argument to express the number of row exchanges needed
to permute the reverse identity matrix Jn to the identity matrix In. From problem 4, we
have the number of row exchanges needed when n = 3 and n = 4 is given by one and two
respectively. For n = 5 the reverse identity matrix is given by

J5 =













0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0













and can be converted into the identity matrix with two exchanges; by exchanging rows one
and five, and rows two and four. So we have that the determinant of J5 is given by (−1)2 = 1.
For n = 6 the identity and the reverse identity are given by

I6 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















and J6 =

















0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



















n number of row exchanges
3 1
4 2
5 2
6 3
7 3

Table 2: The number of row exchanges needed to convert the identity matrix into the reverse
identity matrix.

From which we can see that the reverse identity in this case has three row exchanges; row
one and six, row two and five, row three and four. So we have that the determinant of J6

is given by (−1)3 = −1. For n = 7 we will have three row exchanges to obtain the reverse
identity matrix, so the determinant of J7 will be given by (−1)3 = −1. A summary of our
results thus far can be given in Table 2. From Table 2, the general rule seems to be that
the number of exchanges required for transforming the n by n identity matrix to the n by
n reverse identity matrix involves floor(n

2
) row exchanges. So to produce the J101 matrix

we have floor(101
2

) = 50 row exchanges from the 101 × 101 identity matrix. From this the
determinant of J101 is given by (−1)50 = 1.

Problem 6 (a row of all zeros gives a zero determinant)

If a matrix has a row of all zeros, we can replace that row with a row of non-zeros times a
multiplier which is zero i.e. in the notation of the book take t = 0. Then part of rule number
three, says that the determinant of this matrix is equal to t times the determinant of the
matrix with the non-zero row. Since 0 times anything gives zero, the original determinant
must be zero.

Problem 7 (determinants of orthogonal matrices)

An orthogonal matrix has the property that QTQ = I. Taking the determinant of both
sides of this equation we obtain |Q||QT | = 1. Since |Q| = |QT | we have that |Q|2 = 1, or
|Q| = ±1. Also from the above we have that for orthogonal matrices Q−1 = QT . By taking
determinants of both sides we have that |Q−1| = |QT | = |Q|.

Problem 8 (determinants of rotations and reflections)

If Q is a two-dimensional rotation, then

Q =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]



Then |Q| = cos(θ)2 + sin(θ)2 = +1. For a reflection Q is given by

Q =

[

1 − 2 cos(θ)2 −2 cos(θ) sin(θ)
−2 cos(θ) sin(θ) 1 − 2 sin(θ)2

]

so that

|Q| = (1 − 2 cos(θ)2)(1 − 2 sin(θ)2) − 4 cos(θ)2 sin(θ)2

= 1 − 2(cos(θ)2 + sin(θ)2) = 1 − 2 = −1

Problem 9

If A = QR, then AT = RTQT so the |AT | = |RT ||QT |, and since R is upper triangular
|RT | = |R| since both expressions are the product of the diagonal elements in each matrix.
Also from the problem above we have that QT = Q for an orthonormal matrix thus

|AT | = |RT ||QT | = |R||Q| = |Q||R| = |QR| = |A| .

Problem 10

If the entries of every row of A add to zero, then from the determinant rule that |AT | = |A|,
and the fact that by subtracting a multiple of one row from another leaves the determinant
unchanged we see that by subtracting a multiple of a column from another column leaves
the determinant unchanged. Thus by repeatedly adding a multiple (one) of each column to
each other (say accumulating the sum in the first column) we will obtain a column of zeros
and therefore show that the determinant is zero.

If every row of A adds to one we can prove that det(A− I) = 0 by recognizing that because
of this fact every row of A− I adds to zero and therefore the determinant must be zero by
the previous part of this problem. This does not imply that det(A) = 1 since if we let

A =

[

2 0
−1 1

]

has every row adding to one but det(A) = 2 6= 1.

Problem 11

If CD = −DC, then the determinant of the left hand side is given by |CD| = |C||D| and
the determinant of the right hand side is given by | − DC| = (−1)n|DC| = (−1)n|D||C|.
This shows that (1 − (−1)n)|D||C| = 0, so |D| = 0, or |C| = 0, or 1 − (−1)n = 0, i.e. n is
even.



Problem 12

The correct calculation is given by the following

det(A−1) = det

(

1

ad− bc

[

d −b
−c a

])

=
1

(ad− bc)2
det

([

d −b
−c a

])

=
1

(ad− bc)2
(ad− cb) =

1

ad− bc
.

Problem 13

We have by applying row operations to the first example the following

det









1 2 3 0
2 6 6 1
−1 0 0 3
0 2 0 5









= det









1 2 3 0
0 2 0 1
0 0 3 3
0 2 0 5









= det









1 2 3 0
0 2 0 1
0 0 3 2
0 0 0 4









= 1 · 2 · 3 · 4 = 24 .

The second example is given by

det









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2









= det









2 −1 0 0
0 3/2 −1 0
0 −1 2 −1
0 0 −1 2









= det









2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 −1 2









= det









2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 0 5/4









= 2 · 3

2
· 4

3
· 5

4
= 4 .



Problem 14

We have using row operations to simplify the determinant

det





1 a a2

1 b b2

1 c c2



 = det





1 a a2

0 b− a b2 − a2

0 c− a c2 − a2



 .

Continuing in this fashion when we eliminate the element b − a we obtain a (3, 3) element
of the above give by

(c2 − a2) − (c− a)

(b− a)
(b2 − a2) = c2 − cb− ca+ ab = c(c− a) + b(a− c) = (c− b)(c− a)

so our determinant above becomes equal to

det





1 a a2

0 b− a b2 − a2

0 0 (c− b)(c− a)



 = (b− a)(c− b)(c− a) ,

as expected.

Problem 15

For the matrix A we know that its determinant must equal zero since it will be a three by
three matrix but of rank one and therefore will not be invertible. Because it is not invertible
its determinant must be zero. Another way to see this is to recognize that this matrix can
be easily reduced (via elementary row operations) to a matrix with a row of zeros.

For the matrix K we see that KT = −K, so that |KT | = |K| from Proposition 10 from this
section of the book. We also know that |−K| = (−1)3|K| since K is a three by three matrix.
Thus the determinant of K must satisfy |K| = (−1)3|K| = −|K|, which when solved for for
|K|, gives |K| = 0.

Problem 16

From the problem above we have shown that for a matrix K that is skew symmetric with m
odd we have that |K| = 0. If m can be even giving a non zero determinant. For a four by
four example consider the matrix K defined by

K =









0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0











then we would have |K| equal to (using elementary row operations)

(−1)det









−1 0 1 1
0 1 1 1
−1 −1 0 1
−1 −1 −1 0









= (−1)det









−1 0 1 1
0 1 1 1
0 −1 −1 0
0 −1 −2 −1









= (−1)det









−1 0 1 1
0 1 1 1
0 0 0 1
0 0 −1 0









= (−1)2det









−1 0 1 1
0 1 1 1
0 0 −1 0
0 0 0 1









= (−1) · 1 · (−1) = 1 .

Where the last equality is obtained by exchanging rows three and four.

Problem 17

The determinant of the first matrix (denoted A in this solution manual) the solution is
formally,

det(A) = det





101 201 301
102 202 302
103 203 303



 ,

which by subtracting the second row from the third gives

det(A) = det





101 201 301
102 202 302
1 1 1



 ,

continuing we now subtract the first row from the second to obtain

det(A) = det





101 201 301
1 1 1
1 1 1



 ,

from which since our matrix has two identical rows requires that its determinant must be
zero.

For the second matrix (denoted by B in this solution manual) we have for the expression for
the determinant the following

det(A) = det





1 t t2

t 1 t
t2 t 1



 .



Now by multiplying the first row by t and subtracting from the second and multiplying the
first row by t2 and subtracting from the third we have

det(A) = det





1 t t2

0 1 − t2 t− t3

0 t− t3 1 − t4



 .

Continuing using elementary row operations we have

det(A) = det





1 t t2

0 1 − t2 t− t3

0 0 1 − t4 − t(t− t3)



 .

The (3, 3) element of this matrix simplifies to 1 − t2, which gives for the determinant of B
the product of the diagonal elements or

1 · (1 − t2) · (1 − t2) .

This expression will vanish if t = ±1.

Problem 18

For the first U given by

U =





1 2 3
0 4 5
0 0 6





from which we have |U | = 1 · 4 · 6 = 24. From this we have that |U−1| = 1
|U | = 1

24
, and

|U2| = |U | · |U | = |U |2 = 242 = 416.

For the second U given by

U =

[

a b
0 d

]

we have |U | = ad, |U−1| = 1
|U | = 1

ad
and |U2| = |U |2 = a2d2.

Problem 19 (multiple row operations in a single step)

One cannot do multiple row operations at one time and get the same value of the determinant.
The correct manipulations are given by

det(A) = det

[

a b
c d

]

= det

[

a b
c− la d− lb

]

= det

[

a− L(c− la) b− L(d− lb)
c− la d− lb

]

= det

[

a− Lc+ Lla b− Ld+ Llb
c− la d− lb

]

.



The proposed matrix in the book is missing the terms Lla and Llb. Another way to show
that the two determinants are not equal is to compute the second one directly. Which is
given by

(a− Lc)(d− lb) − (b− Ld)(c− la) = ad− alb− Lcd+ Llcb− (bc− lba− Ldc+ Llad)

= ad− bc + Llcb− Llad

= ad− bc− Ll(ad− cb)

= (ad− bc)(1 − Ll)

Problem 20

Following the instructions given and the matrix A we see that

det(A) = det

[

a b
c d

]

= det

[

a b
c+ a d+ b

]

= det

[

−c −d
c+ a d+ b

]

= det

[

−c −d
a b

]

= (−1)det

[

c d
a b

]

= (−1)det(B)

where in the transformations above we have used two rules. The first is that subtracting
a multiple of one row from another row does not change the determinant and the second
being that factoring a multiplier of a row out of the matrix multiples the determinant by an
appropriate factor.

Problem 21

We have |A| = 4 − 1 = 3, |A−1| = 1
32 (4 − 1) = 1

3
, and |A − λI| = (2 − λ)2 − 1. Thus for

|A− λI| = 0 we must have
(2 − λ) = ±1

or λ = 1 or λ = 3. If λ = 1 then A− λI is given by

A− I =

[

1 1
1 1

]

If λ = 3 then A− λI is given by

A− 3I =

[

−1 1
1 −1

]

.



Problem 22

If A is given by

A =

[

4 1
2 3

]

.

so we have that |A| = 12 − 2 = 10 and A2 is given by

A2 =

[

18 7
14 11

]

.

with a determinant given by |A2| = 100, now A−1 is given by

A−1 =
1

10

[

3 −1
−2 4

]

.

so that |A−1| = 1
10

. We now compute A− λI which gives

A− λI =

[

4 − λ 1
2 3 − λ

]

.

so that |A − λI| = (4 − λ)(3 − λ) − 2. Now by setting this equal to zero and solving for λ
we have that |A− λI| = 0 is equivalent to (λ− 2)(λ− 5) = 0 giving that λ = 2 or λ = 5.

Problem 23

Since |L| = 1, we have that |U | = 3(2)(−1) = −6, so |A| = |L| · |U | = −6. Then since
A = LU we have that A−1 = U−1L−1, so

|A−1| = |U−1||L−1| =
1

|U |
1

|L| = −1

6
.

Since U−1L−1A = I we have the obvious identity that |U−1L−1A| = 1.

Problem 24

If Aij = i · j, then the A matrix is m by m and is given by the outer product

A =











1
2
...
m











[

1 2 . . . m
]

.

Which is a rank one matrix and therefor has a determinant equal to zero, since it is not
invertible. Multiple rows are multiples of a single row.



Problem 25

We are asked to prove that if Aij = i+ j then det(A) = 0. Lets consider the case when A is
m by m and consider the first second and third rows of A. These rows are given by

1 + 1 1 + 2 1 + 3 1 + 4 . . . 1 +m
2 + 1 2 + 2 2 + 3 2 + 4 . . . 2 +m
3 + 1 3 + 2 3 + 3 3 + 4 . . . 3 +m

Now the determinant is unchanged if we subtract the second row from the first. Doing this
gives for the first three rows the following

1 + 1 1 + 2 1 + 3 1 + 4 . . . 1 +m
2 + 1 2 + 2 2 + 3 2 + 4 . . . 2 +m

1 1 1 1 . . . 1

Now subtracting the first row from the second row gives

1 + 1 1 + 2 1 + 3 1 + 4 . . . 1 +m
1 1 1 1 . . . 1
1 1 1 1 . . . 1

Since this matrix has two repeated rows, the determinant must be zero.

Problem 26

For A we have

det(A) = det





0 a 0
0 0 b
c 0 0



 = (−1)det





c 0 0
0 0 b
0 a 0



 = (−1)2det





c 0 0
0 a 0
0 0 b



 = abc .

For B we have

det(B) = det









0 a 0 0
0 0 b 0
0 0 0 c
d 0 0 0









= (−1)det









d 0 0 0
0 0 b 0
0 0 0 c
0 a 0 0









= (−1)2det









d 0 0 0
0 a 0 0
0 0 0 c
0 0 b 0









= (−1)3det









d 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c









= −abcd .



Finally for C we have

det(C) = det





a a a
a b b
a b c



 =





a a a
0 b− a b− a
0 b− a c− a





=





a a a
0 b− a b− a
0 0 c− a− (b− a)





=





a a a
0 b− a b− a
0 0 c− b



 = a(b− a)(c− b) .

Problem 27

Part (a): True. We know from a previous problem that rank(AB) ≤ rank(A) and since
rank(A) < m, the product must have ran(AB) ≤ rank(A) < m, and therefore AB cannot
be invertible.

Part (b): True. Since elementary row operations change A into U and the determinant of
U is the product of the pivots.

Part (c): False. Let A =

[

2 0
0 2

]

and B =

[

1 0
0 1

]

, then A− B =

[

1 0
0 1

]

, so det(A−
B) = 1, but det(A) − det(B) = 4 − 1 = 3.

Part (d): True. If the product of A and B is defined in that way.

Problem 28

If f(A) = ln(det(A)), then for a two by two system our f is given by f(A) = ln(ad − bc).
Defining ∆ = ad− bc, we have that

∂f

∂a
=

d

∆
∂f

∂b
= − c

∆
∂f

∂c
=

b

∆
∂f

∂d
=

a

∆

so that
[

∂f
∂a

∂f
∂c

∂f
∂b

∂f
∂d

]

=
1

∆

[

d −b
−c a

]

= A−1 .



Section 5.2 (Permutations and Cofactors)

Problem 1 (practice computing determinants)

For the matrix A using the formula |A| =
∑±a1αa2β · · ·anω, we have

|A| = 1

∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

− 2

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

1 0
1 1

∣

∣

∣

∣

= 1(−1) − 2(−1) + 3(1) = −1 + 2 + 3 = 4 6= 0

Since the determinant is not zero the columns are independent. For the matrix B we have

|B| = 1

∣

∣

∣

∣

4 4
6 7

∣

∣

∣

∣

− 2

∣

∣

∣

∣

4 4
5 7

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

4 4
5 6

∣

∣

∣

∣

= 1(28 − 24) − 2(28 − 20) + 3(24 − 20) = 4 − 16 + 12 = 0 .

Since the determinant is zero the columns are not independent.

Problem 2 (more practice computing determinants)

For the matrix A using the formula |A| =
∑±a1αa2β · · ·anω, we have

|A| = 1

∣

∣

∣

∣

0 1
1 1

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

+ 0

= −1 − 1 = −2 6= 0 ,

Since the determinant is not zero the columns are independent. For the matrix B we have

|B| = 1

∣

∣

∣

∣

5 6
8 9

∣

∣

∣

∣

− 2

∣

∣

∣

∣

4 6
7 9

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

4 5
7 8

∣

∣

∣

∣

= (45 − 48) − 2(36 − 42) + 3(32 − 35) = −3 + 12 − 9 = 0 .

Since the determinant is zero the columns are not independent.

Problem 3

We have that

|A| = x

∣

∣

∣

∣

0 x
0 x

∣

∣

∣

∣

= 0 ,

since an entire column is zero. The rank of A is at most two, since the second column has
no pivot.



Problem 4

Part (a): Since the rank of A is at most two, there can only be two linearly independent
rows. As such this matrix must have a zero determinant.

Part (b): Formula 7 in the book is det(A) =
∑

det(P )a1αa2β · · ·anω. In this expression
every term will be zero because when we select columns we eventually have to select a zero in
the three by three block in the lower left of the matrix A. These zeros in the multiplication
is what makes every term zero.

Problem 5

For A we can expand the determinant about the first row giving

|A| = 1

∣

∣

∣

∣

∣

∣

1 1 1
1 0 1
0 0 1

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

∣

0 1 1
1 1 0
1 0 0

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

0 1
0 1

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

− 1

(

−1

∣

∣

∣

∣

1 1
0 0

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

)

= −1(1) − 1(−1) = −1 + 1 = 0 .

We can also compute |A| by expanding about the last row of A given by

|A| = −1

∣

∣

∣

∣

∣

∣

0 0 1
1 1 1
1 0 1

∣

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 1
1 1 0

∣

∣

∣

∣

∣

∣

= −1(1)

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1(−1) − 1 = 1 − 1 = 0 .

For the matrix B we can compute the determinant in the same way as with A. Expanding
about the first row gives

|B| = 1

∣

∣

∣

∣

∣

∣

3 4 5
4 0 3
0 0 1

∣

∣

∣

∣

∣

∣

− 2

∣

∣

∣

∣

∣

∣

0 3 4
5 4 0
2 0 0

∣

∣

∣

∣

∣

∣

,

followed by expanding each of the remaining determinants along the bottom row gives

|B| = 1

∣

∣

∣

∣

3 4
4 0

∣

∣

∣

∣

− 2(2)

∣

∣

∣

∣

3 4
4 0

∣

∣

∣

∣

= −16 − 4(−16) = 48 .



Problem 6

By creating a matrix with no zeros we have certainly used the smallest number. One such
matrix could be

A =









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









,

then certainly det(A) = 0. To create a matrix with as many zeros as possible and still
maintain det(A) = 0, consider the diagonal matrix

A =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d









,

with a, b, c, d all nonzero. This matrix is certainly not singular but by setting any of a, b,
c, or d equal to zero a singular matrix results.

Problem 7

Part (a): Our expression for the determinant is given by |A| =
∑±a1αa2β · · ·anω. Assuming

our matrix has elements a11 = a22 = a33 = 0, we can reason which of the 3! terms in the
determinant sum will be zero as follows. Obviously all permutations with a11 in them i.e.
(1, 2, 3), and (1, 3, 2) will have a zero in them. Additionally, all permutations with a22 in
them i.e. (1, 2, 3), (3, 2, 1) will be zero. The term a33 = 0 will cause the two permutations
(1, 2, 3) and (2, 1, 3) to be zero. Since the permutation (1, 2, 3) is counted three times in total
we have four zero elements in the determinant sum.

Problem 8

To have det(P ) = +1 we must have an even number of row exchanges. Now the total number
of five by five permutation matrices is given 5! = 120. Half of this number are permutation
matrices with an odd number of row exchanges and the other half have an even number of
row exchanges so 60 have det(P ) = −1. Now

P =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0













,

will require four exchanges to obtain the identity using row exchanges. Specifically, exchang-
ing the first and the last row, then the second and the last row, and finally the third and



1 2 3 4 + 3 1 2 4 +
1 2 4 3 - 3 1 4 2 -
1 3 2 4 - 3 2 1 4 -
1 3 4 2 + 3 2 4 1 +
1 4 2 3 + 3 4 1 2 +
1 4 3 2 - 3 4 2 1 -
2 1 3 4 - 4 1 2 3 -
2 1 4 3 + 4 1 3 2 +
2 3 1 4 + 4 2 3 1 -
2 3 4 1 - 4 2 1 3 +
2 4 1 3 - 4 3 2 1 +
2 4 3 1 + 4 3 1 2 -

Table 3: An enumeration of the possible 4! permutations with + denoting a even permutation
and − denoting an odd permutation.

the last row we have that J transforms under these row operations as follows

J =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0













⇒













1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0













⇒













1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0













⇒













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0













⇒













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

Problem 9

Since we have that det(A) 6= 0 then say a1αa2β · · ·anν 6= 0, for some specification of the
variables (α, β, · · · , ν). Construct the permutation that takes (α, β, · · · , ν) = (1, 2, 3, · · · , n),
i.e. the inverse permutation. Then in this case AP will have a1α in position (1, 1), a a2β in
position (2, 2), a a3· in position (3, 3), etc ending with anν in position (n, n). This is because
AP permutes the columns of A and will move a1α to (1, 1), etc.

Problem 10

Part (a): A systematic wave to do this problems would be to enumerate all of the possible
permutations and separate them into positive and negative permutations. Consider the
Table 3 for this enumeration.



Part (b): An odd permutation times an odd permutation is an even permutation.

Problem 11

For A given by

A =

[

2 1
3 6

]

,

we have that c11 = 6, c12 = −3, c21 = −1, and c22 = 2 so our C is given by

C =

[

6 −3
−1 2

]

For the matrix B given by

C =





1 2 3
4 5 6
7 0 0





we have c11 =

∣

∣

∣

∣

5 6
0 0

∣

∣

∣

∣

= 0, c12 = −
∣

∣

∣

∣

4 6
7 0

∣

∣

∣

∣

= 42, c13 =

∣

∣

∣

∣

4 5
7 0

∣

∣

∣

∣

= −35, c21 = −
∣

∣

∣

∣

2 3
0 0

∣

∣

∣

∣

=

0, c22 =

∣

∣

∣

∣

1 3
7 0

∣

∣

∣

∣

= −21, c23 = −
∣

∣

∣

∣

1 2
7 0

∣

∣

∣

∣

= 14, c31 =

∣

∣

∣

∣

2 3
5 6

∣

∣

∣

∣

= −3, c32 = −
∣

∣

∣

∣

1 3
4 6

∣

∣

∣

∣

= 6,

and finally c33 = −
∣

∣

∣

∣

1 2
4 5

∣

∣

∣

∣

= 3. Thus the cofactor matrix C is given by

C =





0 42 −35
0 −21 14
−3 6 3



 .

The determinant of B is given by (expanding about the third row)

det(B) = 7

∣

∣

∣

∣

2 3
5 6

∣

∣

∣

∣

= −21 .

Problem 12 (the second derivative matrix)

For A given by Strang’s “favorite” matrix

A =





2 −1 0
−1 2 −1
0 −1 2





we compute for the various cofactors the following: c11 = +

∣

∣

∣

∣

2 −1
−1 2

∣

∣

∣

∣

= 3, c12 = −
∣

∣

∣

∣

−1 −1
0 2

∣

∣

∣

∣

=

2, c13 =

∣

∣

∣

∣

−1 2
0 −1

∣

∣

∣

∣

= 1, c21 = −
∣

∣

∣

∣

−1 0
−1 2

∣

∣

∣

∣

= 2, c22 =

∣

∣

∣

∣

2 0
0 2

∣

∣

∣

∣

= 4, c23 = −
∣

∣

∣

∣

2 −1
0 −1

∣

∣

∣

∣

= 2,



c31 =

∣

∣

∣

∣

−1 0
2 −1

∣

∣

∣

∣

= 1, c32 = −
∣

∣

∣

∣

2 0
−1 −1

∣

∣

∣

∣

= 2, and finally c33 =

∣

∣

∣

∣

2 −1
−1 2

∣

∣

∣

∣

= 3. Thus the

cofactor matrix C is given by

C =





3 2 1
2 4 2
1 2 3



 so CT =





3 2 1
2 4 2
1 2 3





since C is symmetric. We then have for CTA the following

CTA =





3 2 1
2 4 2
1 2 3









2 −1 0
−1 2 −1
0 −1 2



 =





4 0 0
0 4 0
0 0 4





or four times the identity matrix. Note that

det(A) = 2

∣

∣

∣

∣

2 −1
−1 2

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

−1 −1
0 2

∣

∣

∣

∣

= 4 .

so we see that A−1 = 1
det(A)

CT , as we know must be true.

Problem 13

As suggested in the text expanding |B4| using cofactors in the last row of B4 we have

|B4| = 2

∣

∣

∣

∣

∣

∣

1 −1 0
−1 2 −1
0 −1 2

∣

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

∣

1 −1 0
−1 2 0
0 −1 −1

∣

∣

∣

∣

∣

∣

= 2|B3| + (−1)

∣

∣

∣

∣

1 −1
−1 2

∣

∣

∣

∣

= 2|B3| − |B1| .

Continuing our expansion we have that |B2| = 2 − 1 = 1 and that

|B3| =

∣

∣

∣

∣

∣

∣

1 −1 0
−1 2 −1
0 −1 2

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

2 −1
−1 2

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

−1 −1
0 2

∣

∣

∣

∣

= 1 .

So we see that |B4| = 1.



Problem 14

Part (a): We see that

C1 = |0| = 0

C2 =

∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

= −1

C3 =

∣

∣

∣

∣

∣

∣

0 1 0
1 0 1
0 1 0

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

1 0
1 0

∣

∣

∣

∣

= 0

C4 =

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

1 1 0
0 0 1
0 1 0

∣

∣

∣

∣

∣

∣

= (−1)2

∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

= 1 .

Part (b): We desire to compute the determinant of a matrix Cn of size n× n with all ones
on the super and sub-diagonal as

|Cn| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 0 0 · · · 0
1 0 1 0 0 · · · 0
0 1 0 1 0 · · · 0
0 0 1 0 1 · · · 0
...

. . .
...

0 0 0 1 0 1
0 0 . . . 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By expanding this determinant about the first row we have that

|Cn| = (−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 1 0 1 0 · · · 0
0 0 1 0 1 · · · 0
...

. . .
...

0 0 0 1 0 1
0 0 . . . 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which by further expanding about the first column gives

|Cn| = (−1)(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 0 0 · · · 0
1 0 1 0 0 · · · 0
0 1 0 1 0 · · · 0
0 0 1 0 1 · · · 0
...

. . .
...

0 0 0 1 0 1
0 0 . . . 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)|Cn−2| ,



since we have removed two rows from the original Cn matrix. So since |C1| = 0 we see
from the above that |C3|, |C5|, |C7|, · · · are all zero. Now |C2| will determine all even terms
i.e. |C4|, |C6|, |C8|, · · · . We therefore have |C4| = 1, |C8| = 1, |C12| = 1, · · · and |C6| =
−1, |C10| = −1, |C14| = −1, · · · , so |C10| = −1.

Problem 15

In Problem 14 (above) we have shown the desired relationships.

Problem 16

Part (a): We see that computing a few determinants that

|E1| = 1

|E2| = 0

|E3| = 1

∣

∣

∣

∣

1 1
1 1

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

= 0 − 1(1) = −1 .

To derive a recursive relationship consider define |En| as

|En| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 · · ·
1 1 1 0 0 · · ·
0 1 1 1 0 · · ·
0 0 1 1 1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now expand about the first row and we have that

|En| = +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 · · ·
1 1 1 0 0 · · ·
0 1 1 1 0 · · ·
0 0 1 1 1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 1 1 1 0 · · ·
0 0 1 1 1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |En−1| −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 · · ·
1 1 1 0 0 · · ·
0 1 1 1 0 · · ·
0 0 1 1 1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |En−1| − |En−2| ,

as we were reqested to show.



Part (b): With E1 = 1 and E2 = 0 we can iterate the above equation to find that

E3 = E2 − E1 = −1

E4 = E3 − E2 = −1 − 0 = −1

E5 = E4 − E3 = −1 − (−1) = 0

E6 = E5 − E4 = 0 − (−1) = 1

E7 = E6 − E5 = 1 − 0 = 1

E8 = E7 − E6 = 1 − 1 = 0

E9 = E8 − E7 = 0 − 1 = −1 .

From these the pattern looks like

E2,5,8,··· = 0 or E3n+2 = 0 for n = 0, 1, 2, · · ·
and

E3,4,9,10,15,16,··· = −1 ,

or E3+6n = −1 and E4+6n = −1 for n = 0, 1, 2, · · · . Finally we hypothesis that

E6,7,12,13,18,19,··· = 1 ,

or E6n = 1 and E1+6n = 1 for n = 0, 1, 2, · · · . Then E100 can be written as E16×6+4 so looking
at these patterns we see that E6n+4 = −1 so E100 = −1.

Problem 17

We define Fn to be

Fn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0 0 · · ·
1 1 −1 0 0 · · ·
0 1 1 −1 0 · · ·
0 0 1 1 −1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

so that expanding about the first row we find Fn to be

Fn = 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0 0 · · ·
1 1 −1 0 0 · · ·
0 1 1 −1 0 · · ·
0 0 1 1 −1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0 0 · · ·
0 1 −1 0 0 · · ·
0 1 1 −1 0 · · ·
0 0 1 1 −1 · · ·
...

...
...

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Fn−1 + Fn−2

Problem 18

Thus linearity gives |Bn| = |An| − |An−1| = (n + 1) − (n − 1 + 1) = 1, where we have used
the discussion in this section to evaluate |An| and |An−1|.



Problem 19

The 4 × 4 Vandermonde determinant containings x3 and not x4 because a third degree
polynomical requires four points to fit to. Thus a n×n Vandermonde determinant will have
xn−1 in it. This determinant is zero if x = a, b or c. The cofactor of x3 is given by

∣

∣

∣

∣

∣

∣

1 a a2

1 b b2

1 c c2

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

b b2

c c2

∣

∣

∣

∣

− a

∣

∣

∣

∣

1 b2

1 c2

∣

∣

∣

∣

+ a2

∣

∣

∣

∣

1 b
1 c

∣

∣

∣

∣

= bc2 − cb2 − a(c2 − b2) + a2(c− b)

= bc(c− b) − a(c− b)(c + b) + a2(c− b)

= (c− b)(c− a)(b− a) .

Thus since V4 is a polynomial with roots a,b, and c and the coefactor of x3 represents the
leading coefficient of the x3 term in the total determinant. Thus

V4 = (c− b)(c− a)(b− a)(x− b)(x− a)(x− c) .

Problem 20

We have that G4 is defined by G4 =









0 1 1 1
1 0 1 1
1 1 0 1
0 1 1 0









. Then |G4| is given by

|G4| =

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 1
0 1 1 1
0 1 −1 0
0 1 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 1
0 1 1 1
0 1 −2 −1
0 0 −1 −2

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 1
0 1 1 1
0 0 −2 −1
0 0 0 −3/2

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(1)(1)(−2)(−3/2) = −3 .

We find

det(G2) =

∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

= −1 .

and

det(G3) =

∣

∣

∣

∣

∣

∣

0 1 1
1 0 1
1 1 0

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

1 0
1 1

∣

∣

∣

∣

= (−1)(−1) + 1(1) = 2 .

So by the induction hypothesis we have that det(Gn) = (−1)n−1(n− 1).



Problem 21

Part (a): The first statement is true since by applying elementary row opperations to the

matrix

[

A B
0 D

]

the pivots obtained will be determined from the matrices A and D only.

Since the determinant is the product of the pivots it is equal to the products of the pivots
from A and D.

Part (b): Let our large block matrix be









1 0 3 2
0 1 2 3
1 1 −1 2
1 2 2 1









.

which has submatrices given by A =

[

1 0
0 1

]

, B =

[

3 2
2 3

]

, C =

[

1 1
1 2

]

, and D =
[

−1 2
2 1

]

. These have individual determinats given by |A| = 1, |B| = 5, |C| = 1, and

|D| = −5. The determinant of the large block matrix is given by 15, while the product of
|A||D| = 1 · (−5) = −5 6= 15. In addition, the expression

|A||D| − |C||B| = 1(−5) − 1(5) = −10 ,

which is not equal to the true determinant 15 either.

Part (c): Computing AD − CB we have

[

1 0
0 1

] [

−1 2
2 1

]

−
[

1 1
1 2

] [

3 2
2 3

]

=

[

−1 2
2 1

]

−
[

5 5
7 8

]

=

[

−6 −3
−5 −7

]

,

which has a determinant given by 42 − 15 = 27, which is not equal to the true value either.

Problem 22

Part (a): Assuming that the index k refers to how many rows and columns the matrix
Lk/Uk) subsumes i.e. L1/U1 are 1 × 1, L2/U2 are 2 × 2, etc. Then since the matrix L is
lower triangular and constructed to have ones on its diagonal |Lk| = 1, for k = 1, 2, 3. The
determinant of Uk wil then be |U1| = 2, |U2| = 2 · 3 = 6, and |U3| = 2(3)(−1) = −6. In the
same way |Ak| = |Uk|.

Part (b): If A1, A2 and A3 have determinants given by 2, 3 and −1 the pivots are given by

p1 = 2 , p2 =
3

2
, p3 =

−1

2
(

3
2

) = −1

3
.



Problem 23

Taking the determinant of the left hand side of the and using the determinant rule that
row opperations don’t change the the value of the determinant or the fact that the matrix
[

I 0
−CA−1 I

]

is lower triangular with ones on the diagonal we have that

LHS =

∣

∣

∣

∣

[

A B
C D

]∣

∣

∣

∣

=

∣

∣

∣

∣

[

I 0
−CA−1 I

] [

A B
C D

]∣

∣

∣

∣

=

∣

∣

∣

∣

[

A B
0 D − CA−1B

]∣

∣

∣

∣

= |A||D − CA−1B| ,

which is valid if A−1 exists. The above equals

|AD − ACA−1B| ,

by distributing |A| into the determinant |D − CA−1B|. If AC = CA then this is equivalent
to

|AD − CAA−1B| = |AD − CB| .

Problem 24

Now

det(M) = det

([

AB A
0 I

] [

I 0
−B I

])

= det

([

AB A
0 I

])

det

([

I 0
−B I

])

.

Noiw since det

([

I 0
−B I

])

= 1 so that the above is give by

det

([

AB A
0 I

])

= det(AB) ,

From Problem 21. If A is a single row and B is a single column then AB is a scalar and
equals its own determinant. So we have that det(M) = AB. For a 3 × 3 let A =

[

1 2
]

and B =

[

1
1

]

, so that M is given by

M =





0 1 2
−1 1 0
−1 0 1



 =









[

1 2
]

[

1
1

]

1 2

0 1 0
0 0 1











Chapter 6 (Eigenvalues and Eigenvectors)

Section 6.1 (Introduction to Eigenvalues)

Problem 1

For the matrix A given

A =

[

0.8 0.3
0.2 0.7

]

we have λ1 = 1 and x1 = (0.6, 0.4) and λ2 = 1/2 and x2 = (1,−1). For the square of A i.e.
A2 given by

A2 =

[

0.7 0.45
0.3 0.55

]

we have λ1 = 1 and x1 = (0.6, 0.4) and λ2 = (1/2)2 and x2 = (1,−1). For A∞ (given by)

A∞ =

[

0.6 0.6
0.4 0.4

]

we have λ1 = 1 and x1 = (0.6, 0.4) and λ2 = 0 and x2 = (1,−1). To show why A2 is halfway
between A and A∞ consider the common eigenvalues of all of them i.e.

x1 =

[

0.6
0.4

]

and x2 =

[

1
−1

]

.

These two vectors are linearly independent and thus span R
2, that is they are a basis for R

2.
Consider the action of A2 and 1

2
(A+ A∞) on this particular basis of R

2. We have that

A2x1 = 1x1 = x1

1

2
(A+ A∞)x1 =

1

2
(1 + 1)x1 = x1

and

A2x2 =
1

4
x2

1

2
(A+ A∞)x2 =

1

2
(
1

2
+ 0)x2 =

1

4
x2

Thus the action of A2 and 1
2
(A + A∞) is the same on a basis of R

2 and therefore the two
matrices must be identical.

Part (a): If we exchange two rows of A we obtain

Â =

[

0.2 0.7
0.8 0.3

]

,

which has eigenvalues given by
∣

∣

∣

∣

0.2 − λ 0.7
0.8 0.3 − λ

∣

∣

∣

∣

= 0



which when expanded can be factored into (λ− 1)(2λ + 1) = 0 and therefore has solutions
given by λ = 1, and λ = −1/2. These are not the same as the eigenvalues of the original
matrix A which were 1, and 1/2.

Part (b): A zero eigenvalue means that A is not invertible. This property would not be
changed by elimination.

Problem 2

For the matrix A given

A =

[

1 4
2 3

]

we have eigenvalues given by the solutions λ of
∣

∣

∣

∣

1 − λ 4
2 3 − λ

∣

∣

∣

∣

= 0 ,

which when expanded gives (λ − 5)(λ + 1) = 0, so the two eigenvalues are given by λ = 5
and λ = −1. The eigenvectors for A are given by the nullspace for (first for λ = 5)

[

−4 4
2 −2

] [

x1

x2

]

= 0 ⇒ v1 =

[

1
1

]

.

In a similar way for λ = −1 we have
[

2 4
2 4

] [

x1

x2

]

= 0 ⇒ v2 =

[

−2
1

]

.

The eigenvalues of A + I are the eigenvalues of A plus 1 or λ = 6 and λ = −1. The
eigenvectors of A + I are the same as the eigenvectors of A.

Problem 3

For A defined by

A =

[

0 2
2 3

]

,

the eigenvalues are given by solving
∣

∣

∣

∣

−λ 2
2 3 − λ

∣

∣

∣

∣

= 0 ,

which simplifies to (λ−4)(λ−1) = 0, so λ = 4 and λ = −1. The eigenvectors of A are given
by the nullspaces of the following matrices (for λ = −4 first and then λ = 1)

[

−4 2
2 −1

] [

x1

x2

]

= 0 ⇒ v1 =

[

1
2

]

,



and
[

1 2
2 4

] [

x1

x2

]

= 0 ⇒ v2 =

[

−2
1

]

,

The eigenvalues of A−1 are the inverses of the eigenvalues of A. When A has eigenvalues λ1

and λ2 its inverse has eigenvalues 1/λ1 and 1/λ2. The eigenvectors of A−1 are given by the
nullspace of the following operators (for λ = 1/4 first and then for λ = 1)

[

−3
4
− 1

4
1
2

1
2

−1
4

]

=

[

−1 1
2

1
2

−1
4

]

⇒ v1 =

[

1
2

]

,

and
[

−3
4

+ 1 1
2

1
2

1

]

=

[

1
4

1
2

1
2

1

]

⇒ v2 =

[

−2
1

]

,

These eigenvectors are the same as the eigenvectors of A. That A and A−1 have the same
eigenvectors can be seen from the simple expression Ax = λx, which when we divide both
sides by λ and multiply by A−1 gives

1

λ
x = A−1x ,

showing that x is an eigenvector of A−1 with eigenvalue 1
λ
.

Problem 4

For A given by

A =

[

−1 3
2 0

]

we have eigenvalues given by the solutions to

∣

∣

∣

∣

−1 − λ 3
2 −λ

∣

∣

∣

∣

= 0

or λ2 + λ+ 6 = 0, which factors into (λ+ 3)(λ− 2) = 0, giving the two values of λ = −3 or
λ = 2. The eigenvectors are then given by the nullspaces of the following operators.

[

2 3
2 3

]

or x =

[

−3
2

]

and
[

−3 3
2 −2

]

or x =

[

1
1

]

From these, the eigenvalues of A2 are given by (−3)2 = 9 and 22 = 4, with the same

eigenvectors as A. This is because when A has eigenvalues λi, A
2 will have eigenvalues λ2

i .



Problem 5

For A we have eigenvalues given by

∣

∣

∣

∣

1 − λ 0
1 1 − λ

∣

∣

∣

∣

= 0 ⇒ (1 − λ)2 = 0 ⇒ λ = 1 .

For B we have eigenvalues given by

∣

∣

∣

∣

1 − λ 1
0 1 − λ

∣

∣

∣

∣

= 0 ⇒ (1 − λ)2 = 0 ⇒ λ = 1 .

For the matrix A+B we have eigenvalues given by

∣

∣

∣

∣

2 − λ 1
1 2 − λ

∣

∣

∣

∣

= 0 ⇒ (2 − λ)2 − 1 = 0 ⇒ λ = 1 , 3 .

So the eigenvalues of A+B are not equal to the eigenvalues of A plus the eigenvalues of B.
This would be true if A and B has the same eigenvectors which will happen if and only if A
and B commute, i.e. AB = BA. Checking this fact for the matrices given here we have

AB =

[

1 0
1 1

] [

1 1
0 1

]

=

[

1 1
1 2

]

while

BA =

[

1 1
0 1

] [

1 0
1 1

]

=

[

2 1
1 1

]

which are not equal so consequently A and B can’t have the same eigenvectors.

Problem 6

From Problem 5 the eigenvalues of A and B are 1. The eigenvalues of the product AB are
given by

|AB − λI| =

∣

∣

∣

∣

1 − λ 1
1 2 − λ

∣

∣

∣

∣

= (1 − λ)(2 − λ) − 1 = 0 ,

which has roots given by

λ =
3 ±

√
5

2
.

The eigenvalues of BA are given by

|BA− λI| =

∣

∣

∣

∣

2 − λ 1
1 1 − λ

∣

∣

∣

∣

= (1 − λ)(2 − λ) − 1 = 0 ,

which has the same roots as before and therefore BA has the same eigenvalues as AB. We
note that the eigenvalues of AB/BA are not equal to the product of the eigenvalues of A
and B. For this to be true A and B would need to have the same eigenvectors which they
must not.



Problem 7

The eigenvalues of U are on its diagonal. They are also the pivots of A. The eigenvalues
of L are on its diagonal, they are all ones. The eigenvalues of A are not the same as either
the eigenvalues of U or L or the product of the eigenvalues of U and L (which would be the
same as the product of the eigenvalues of U since the eigenvalues of L are all ones).

Problem 8

Part (a): If we know that x is an eigenvector one way to find λ is to multiply by A and
“factor” out x.

Part (b): If we know that λ is an eigenvalue one way to find x is to determine the nullspace
of A− λI.

Problem 9

Part (a): Multiply Ax = λx by A on the left to obtain

A2x = λAx = λ2x

Part (b): Multiply by 1
λ
A−1 on both sides to get

1

λ
x = A−1x

Part (c): Add Ix on both sides of Ax = λx to get

(A+ I)x = λx+ Ix = (λ+ 1)x ,

which shows that λ+ 1 is an eigenvalue of A+ I.

Problem 10

For A the eigenvalues are given by

|A− λI| =

∣

∣

∣

∣

0.6 − λ 0.2
0.4 0.8 − λ

∣

∣

∣

∣

= 0 ⇒ (0.6 − λ)(0.8 − λ) − 0.08 = 0 .

which gives λ2 − 1.4λ + 0.4 = 0. To solve this we know that λ = 1 because A is a Markov
matrices. The other root can be found by using the quadratic equation or factoring out the



known root λ = 1 from the above quadratic. When that is done one finds that the second
root is given by λ = 2

5
= 0.4. The eigenvectors for λ = 1 are given by considering the

nullspace of the operator

A− I =

[

−0.4 0.2
0.4 −0.2

]

,

which has a nullspace given by the span of
[

1
2

]

.

For λ = 0.4 we have A− λI given by
[

0.2 0.2
0.4 0.4

]

,

which has a nullspace given by the span of
[

−1
1

]

.

For the matrix A∞ our eigenvalues are given by λ1 = 1 and λ =
(

2
5

)∞
= 0 and the same

eigenvectors as A. Now A∞ is obtained from the diagonalization of A i.e. A = SΛS−1.
Which given the specific matrices involved is

A =

[

1 −1
2 1

] [

1 0
0 2

5

](

1

1 + 2

)[

1 1
−2 1

]

.

So that A∞ is given by

A∞ =

[

1 −1
2 1

] [

1 0
0 0

](

1

3

)[

1 1
−2 1

]

=
1

3

[

1 0
2 0

] [

1 1
−2 1

]

=
1

3

[

1 1
2 2

]

=

[

1
3

1
3

2
3

2
3

]

.

So A100 is then given by A100 = SΛ100S−1 or

A100 =

[

1 −1
2 1

] [

1100 0

0
(

2
5

)100

](

1

3

)[

1 1
−2 1

]

=
1

3

[

1 −1
2 1

] [

1 0

0
(

2
5

)100

] [

1 1
−2 1

]

=
1

3

[

1 −
(

2
5

)100

2
(

2
5

)100

]

[

1 1
−2 1

]

=
1

3

[

1 + 2
(

2
5

)100
1 −

(

2
5

)100

2 − 2
(

2
5

)100
2 +

(

2
5

)100

]

=

[

1
3

1
3

2
3

2
3

]

+

(

2

5

)100 [ 2
3

−1
3

−2
3

1
3

]

,

which we see is a slight perturbation of A∞



Problem 11

Now P is a block diagonal matrix and as such has eigenvalues given by the eigenvalues of
the block matrices on its diagonal. Since λ = 1 is the eigenvalue of the lower right block

matrix and the upper right block is given by

[

0.2 0.4
0.4 0.8

]

, which has eigenvalues given by

solving for the roots of

∣

∣

∣

∣

0.2 − λ 0.4
0.4 0.8 − λ

∣

∣

∣

∣

= 0 ⇒ (0.2 − λ)(0.8 − λ) − 0.16 = 0

Multiplying this polynomial out we obtain λ2 − λ = 0 or λ = 0 and λ = 1 as its roots. Now
the eigenvectors for λ = 1 are given by computing an appropriate null space. We find





−0.8 0.4 0
0.4 −0.2 0
0 0 0



⇒





1 −0.5 0
1 −0.5 0
0 0 0



⇒





1 −0.5 0
0 0 0
0 0 0



 ,

so one eigenvector is given by





0
0
1



, and another is given by





1
2
0



. For the eigenvalue

given by λ = 0 we have





0.2 0.4 0
0.4 0.8 0
0 0 1



⇒





1 2 0
1 2 0
0 0 1



⇒





1 2 0
0 0 0
0 0 1



 ,

so the final eigenvector is given by





−2
1
0



. For P 100 we have the same eigenvectors as for

P and the eigenvalues given by 0100 = 0 and 1100 = 1. Thus everything for P 100 is the same
as for P . If two eigenvectors share the same λ then so do all linear combinations of the

eigenvectors. Thus since v1 =





0
0
1



 and v2 =





1
2
0



 share the same eigenvalue of λ = 1

so will their sum v1 + v2 =





1
2
1



, which has no zero components. We can check this by

computing

P





1
2
1



 =





0.2 + 0.8
0.4 + 1.6

1



 =





1
2
1







Problem 12

The rank one projection matrix is given by P = uuT , so P is given by

P =
1

6









1
1
3
5









· 1

6

[

1 1 3 5
]

=
1

36









1 1 3 5
1 1 3 5
3 3 9 15
5 5 15 25









Part (a): Now Pu is given by

Pu =
1

36









1 1 3 5
1 1 3 5
3 3 9 15
5 5 15 25

















1 1 3 5
1 1 3 5
3 3 9 15
5 5 15 25









· 1

6









1
1
3
5









=
1

63









1 + 1 + 9 + 25
1 + 1 + 9 + 25
3 + 3 + 27 + 75
5 + 5 + 45 + 125









=
1

63









36
36
108
180









=
1

6









1
1
3
5









.

Thus u is an eigenvector with eigenvalue one.

Part (b): If v is perpendicular to u then uTv = vTu = 0 and Pv = u(uTv) = u · 0 = 0 so v
is an eigenvector with eigenvalue λ = 0.

Part (c): To find three independent eigenvectors of P all with eigenvalues equal to zero we
need to find three vectors perpendicular to u which means that each of these vectors must
satisfy

[

1 1 3 5
]









x1

x2

x3

x4









= 0

or the three vectors that span the nullspace ofA (where A is defined to beA =
[

1 1 3 5
]

.
Three vectors in the nullspace are given by “assigning a basis” to the variables x2, x3, and
x4 and computing x1 from these. We find

x2 = 1 , x3 = 0 , x4 = 0 ⇒ x1 = −1

x2 = 0 , x3 = 1 , x4 = 0 ⇒ x1 = −3

x2 = 0 , x3 = 0 , x4 = 1 ⇒ x1 = −5 .

Which gives the three vectors









−1
1
0
0









,









−3
0
1
0









, and









−5
0
0
1









.



Problem 13

We find that

det(Q− λI) =

∣

∣

∣

∣

cos(θ) − λ − sin(θ)
sin(θ) cos(θ) − λ

∣

∣

∣

∣

= 0 ,

or when expanding the above determinant we find the characteristic equation for Q is given
by

(cos(θ) − λ)2 + sin2(θ) = 0

or when expanding the quadratic we find that

λ2 − 2 cos(θ)λ+ 1 = 0 ,

which using the quadratic equation gives for λ

λ =
2 cos(θ) ±

√

4 cos2(θ) − 4

2

= cos(θ) ±
√

cos2(θ) − 1

= cos(θ) ± i sin(θ) .

To find the eigenvectors we solve (Q− λI)x = 0, which is given by

Q− λI =

[

cos(θ) − (cos(θ) ± i sin(θ)) − sin(θ)
sin(θ) cos(θ) − (cos(θ) ± i sin(θ))

]

=

[

∓i sin(θ)) − sin(θ)
sin(θ) ∓i sin(θ))

]

= sin(θ)

[

∓i −1
1 ∓i

]

.

which has eigenvectors given by v1,2 =

[

±i
1

]

i.e.

v1 =

[

i
1

]

and v2 =

[

−i
1

]

.

Problem 14

The matrix

P =





0 1 0
0 0 1
1 0 0



 ,

will have eigenvalues given by the solution to

∣

∣

∣

∣

∣

∣

−λ 1 0
0 −λ 1
1 0 −λ

∣

∣

∣

∣

∣

∣

= 0 .



This simplifies to −λ3 +1 = 0 and has solutions given by λ = e
2π
3

ik for k = 0, 1, 2. This gives

λ1 = 1

λ2 = ei 2π
3 = −1

2
+ i

√
3

2

λ3 = ei 4π
3 = −1

2
− i

√
3

2

For the matrix

P =





0 0 1
0 1 0
1 0 0



 ,

will have eigenvalues given by the solution to
∣

∣

∣

∣

∣

∣

−λ 0 1
0 1 − λ 0
1 0 −λ

∣

∣

∣

∣

∣

∣

= 0 .

This simplifies to −λ3 + λ2 + λ − 1 = 0, which has λ = 1 as a root. Long division gives a
factorization of −(λ− 1)2(λ+ 1) = 0.

Problem 15

Consider the polynomial det(A− λI) factored into its n factors as suggested in the text, ie.

det(A− λI) =

n
∏

i=1

(λi − λ) .

Evaluating this polynomial at λ = 0 we obtain

det(A) =
n
∏

i=1

λi .

Problem 16

If A has λ1 = 3 and λ2 = 4 then

det(A− λI) = (λ1 − λ)(λ2 − λ)

= λ1λ2 − (λ1 + λ2)λ+ λ2 .

so let
det(A− λI) = 12 − 7λ+ λ2 .

The quadratic formula gives then

λ1 =
a+ d+

√

(a+ d)2 − 4(ad− bc)

2

λ2 =
a+ d−

√

(a+ d)2 − 4(ad− bc)

2
.



Then λ1 + λ2 = 2(a+d)
2

= a + d, which is the linear term in the determinant equation i.e.
a+ d = λ1 + λ2.

Problem 17

We can always generate matrices with any specified eigenvalues by constructing them from

S

[

4 0
0 5

]

S−1 ,

with different choices for the eigenvector matrices S. For example pick eigenvectors given by

[

1
2

]

and

[

−1
1

]

.

Then our matrix A is given by

A =

[

1 −1
2 1

] [

4 0
0 5

]

1

(1 + 2)

[

1 1
−2 1

]

=
1

3

[

4 −5
8 5

] [

1 1
−2 1

]

=
1

3

[

14 −1
−2 13

]

.

Note that other matrices can be generated in the same manner.

Problem 18

Part (a): the rank of A cannot be determined from the given information. For example,
let A be given by

A =





0 0 0
0 1 0
0 0 2



 ,

then A is diagonal and has eigenvalues as given and A has rank of two. Also consider A
given by A = SΛS−1 as

A =





1 −1 1
1 0 1
2 1 0









0 0 0
0 1 0
0 0 2









1/2 −1/2 1/2
−1 1 0
−1/2 3/2 −1/2





=





0 2 −1
−1 3 −1
−1 1 0







This matrix has rank of three as can be seen by the following transformations




0 2 −1
−1 3 −1
−1 1 0



 ⇒





−1 3 −1
0 2 −1
−1 1 0



⇒





1 3 1
0 2 −1
−1 1 0





⇒





1 3 1
0 2 −1
0 −2 −1



⇒





1 3 1
0 2 −1
0 0 −2



 ,

which has rank three.

Part (b): We find |BTB| = |BT ||B| = |B|2 = (0 · 1 · 2)2 = 0.

Part (c): The eigenvalues of BTB are given by 02, 11, and 22 or 0, 1, and 4.

Part (d): The eigenvalues of B + I are the eigenvalues of B plus one, which gives 1, 2, and
3. The eigenvalues of (B + I)−1 are the inverses of the eigenvalues of B + I and are given
by 1, 1

2
, and 1

3
.

Problem 19

Let our matrix A be given by

A =

[

0 1
c d

]

then the trace of A must equal 0 + d = d = λ1 + λ2 = 4 + 7 = 11, giving that d = 11.
Also the determinant of A must equal |A| = −c = λ1λ2 = 28, so c = −28. Thus we have
determined A and it is

A =

[

0 1
−28 11

]

.

Problem 20

Let A be given by

A =





0 1 0
0 0 1
a b c



 .

Then if the eigenvalues are −3, 0, and 3 we must have trace(A) = 0+0+c = c = λ1+λ2+λ3 =
0 (or c = 0) and

det(A) = −
∣

∣

∣

∣

0 1
a 0

∣

∣

∣

∣

= a = λ1λ2λ3 = 0 .

Now from what we know about A we can now conclude that

A =





0 1 0
0 0 1
0 b 0



 .



Now computing the characteristic equation for A we have that

|A− λI| =

∣

∣

∣

∣

∣

∣

−λ 1 0
0 −λ 1
0 b −λ

∣

∣

∣

∣

∣

∣

= −λ
∣

∣

∣

∣

−λ 1
b −λ

∣

∣

∣

∣

= −λ(λ2 − b) = −λ3 − bλ ,

so we have that b = 9 and our matrix A is given by

A =





0 1 0
0 0 1
0 9 0



 .

Problem 21

We have that det(A − λI) = det(AT − λI), since IT = I. Now let A =

[

1 0
1 1

]

and

B = AT =

[

1 1
0 1

]

, these are the examples from Problem 5 in this section. Then both A

and B have λ = 1 with algebraic multiplicity of two. The eigenvectors of A can be computed
by computing a basis for the nullspace of the operator A− λI. We have that

A− λI =

[

0 0
1 0

]

,

or the span of

[

0
1

]

. The eigenvectors of AT are given by a basis for the nullspace of AT −λI.
We find that

AT − λI =

[

0 1
0 0

]

,

or the span of

[

1
0

]

. Since these vectors are obviously not equivalent the eigenvectors of A

and AT are different.

Problem 22

We have

M =





0.6 0.8 0.1
0.2 0.1 0.4
0.2 0.1 0.5



 .

so that we find MT





1
1
1



 given by

MT





1
1
1



 =





0.6 0.2 0.2
0.8 0.1 0.1
0.1 0.4 0.5









1
1
1



 =





1
1
1



 .



So we know that MT has an eigenvalue given by λ = 1, therefore M must have an eigenvalue
λ = 1. Since a three by three singular Markov matrix must have two eigenvalues equal to
zero and one and also must have trace(M) = 1

2
we know that our third eigenvalue must

satisfy

0 + 1 + λ =
1

2
,

showing that λ = −1
2

as the third eigenvalue. To assemble M construct it from its eigenvalues
by assigning random eigenvectors i.e. use the relationship M = SΛS−1. Now we can simplify
things some by working with MT which has the same eigenvalues and where we know that




1
1
1



 is the eigenvector corresponding to λ = 1. Thus

MT =





1 −1 0
1 0 1
1 1 0









1 0 0
0 −1

2
0

0 0 0



 .

To compute the inverse of S we augment MT with the identity matrix and reduce the left
hand side to the identity. We find





1 −1 0 1 0 0
1 0 1 0 1 0
0 0 1 0 0 1



 ⇒





1 −1 0 1 0 0
0 1 1 −1 1 0
0 2 0 −1 0 1





⇒





1 0 1 0 1 0
0 1 1 −1 1 0
0 0 −2 1 −2 1





⇒





1 0 1 0 1 0
0 1 1 −1 1 0
0 0 1 −1

2
1 −1

2





⇒





1 0 1 1
2

0 1
2

0 1 0 −1
2

0 1
2

0 0 1 −1
2

1 −1
2



 .

Thus our inverse is given by

S−1 =
1

2





1 0 1
−1 0 1
−1 2 −1





So that we find that

MT =





1 −1 0
1 0 1
1 1 0









1 0 0
0 −1

2
0

0 0 0





1

2





1 0 1
−1 0 1
−1 2 −1





=
1

2





1 1
2

0
1 0 0
1 −1

2
0









1 0 1
−1 0 1
−1 2 −1





=
1

2





1
2

0 3
2

1 0 1
3
2

0 1
2



 =





1
4

0 3
4

1
2

0 1
2

3
4

0 1
4



 ,

which is a valid Markov matrix.



Problem 23

Let A1 =

[

0 1
0 0

]

, A2 =

[

0 0
1 0

]

, and A3 =

[

a b
c d

]

a general matrix where we would

like to determine a, b, c, and d. To do this, since λ1 = λ2 = 0 we have that from the trace
and determinant identities that

0 = a+ d⇒ a = −d
0 = ad− cd ⇒ 0 = −d2 − cb ⇒ d2 = −cb .

We can find a solution that satisfies this by letting a = 1, d = −1, so that −cb = 1 and we
can take c = −1 and b = 1 obtaining

A3 =

[

1 1
−1 −1

]

Then checking that the eigenvalues of A3 are as they should be we find that setting |A3−λI| =
0 that

|A3 − λI| =

∣

∣

∣

∣

1 − λ 1
−1 −1 − λ

∣

∣

∣

∣

= (1 − λ)(−1 − λ) + 1

= −1 + λ2 + 1 = λ2

Now for each Ai we will check that A2
i = 0. For A1 we have that

[

0 1
0 0

] [

0 1
0 0

]

=

[

0 0
0 0

]

.

For A2 we have that
[

0 0
1 0

] [

0 0
1 0

]

=

[

0 0
0 0

]

.

For A3 we have that
[

1 1
−1 −1

] [

1 1
−1 −1

]

=

[

0 0
0 0

]

.

In general when a = −d and d2 = −cb then we have
[

−d b
c d

] [

−d b
c d

]

=

[

d2 + bc −db+ bd
−cd+ dc cb+ d2

]

=

[

0 0
0 0

]

.

Problem 24

We know since A is singular that at least one eigenvalue is zero. A corresponding eigenvector
is given by any vector x such that

[

2 1 2
]





x1

x2

x3



 = 0 .



Two such vectors are




−1
2
0



 and





−1
0
1



 .

A third eigenvector/eigenvalue combination in the rank one case (like we have here) is




1
2
1



 .

This is because with this vector we have that

Ax =





1
2
1





[

2 1 2
]





1
2
1



 =





1
2
1



 (2 + 2 + 2) = 6





1
2
1



 .

So x =





1
2
1



 is an eigenvector with eigenvalue six.

Problem 25

Note that Ax = A(
∑

i cixi) =
∑

i ciAxi =
∑

i ciλixi, and Bx =
∑

i ciλixi by the same logic.
Since A and B have the same action on any vector x, they must represent the same linear
transformation thus A = B.

Problem 26

Consider the expression |A− λI| we have
∣

∣

∣

∣

[

B C
0 D

]

−
[

λI 0
0 λI

]∣

∣

∣

∣

=

∣

∣

∣

∣

[

B − λI C
0 D − λI

]∣

∣

∣

∣

= |B − λI| |D − λI| ,

since the lower left hand corner of A − λI is the zero matrix. We see that this expression
vanishes whenever |B − λI| = 0 or |D − λI| = 0 which happen when λ = 1, 2 or λ = 5, 7
respectively. Thus the eigenvalues of A are given by 1, 2, 5 and 7.

Problem 27

For our A since A =





1
1
1





[

1 1 1 1
]

we see that A is rank one with three eigenvalues

given by zero (counted according to multiplicity) and one eigenvalue given by

[

1 1 1 1
]





1
1
1



 = 4 .



For rank one metrics we can easily compute the eigenvectors since they are given by the null
vectors of the operator

[

1 1 1 1
]

.

these are given by








−1
1
0
0









,









−1
0
1
0









and









−1
0
0
−1









,

each with eigenvalue zero and the vector









1
1
1
1









with eigenvalue four. For C we see that it

has a rank of two and thus is not invertible and so one eigenvalue is zero. Since the sum of
the rank plus the nullity of C must equal to four we know that the nullspace is of dimension
two. Two vectors that span this space are given by









1
0
−1
0









and









0
1
0
−1









.

The other vectors with eigenvalues of two are given by









1
0
1
0









and









0
1
0
1









.

Problem 28

Since the eigenvalues of A were given by 0 with algebraic multiplicity 3 and 4 with algebraic
multiplicity 1, the eigenvalues of A−I are -1 with algebraic multiplicity 3 and 3 with algebraic
multiplicity 1. If A is a 5x5 matrix of all ones, then A has eigenvalue 0 with multiplicity 4
and a single eigenvalue with value 5. A− I will have 4 eigenvalues with value -1 and a single
eigenvalue with value 4. The determinant of B is given by (−1)33 = −3. The determinant
of B with it is five by five is given by (−1)44 = 4.



Problem 29

For A =





1 2 3
0 4 5
0 0 6



 (an upper triangular matrix) the eigenvalues can be read off of the

diagonal and are given by 1, 4, and 6. For B computing the characteristic equation we have

|B − λI| =

∣

∣

∣

∣

∣

∣

−λ 0 1
0 2 − λ 0
3 0 −λ

∣

∣

∣

∣

∣

∣

= −λ
∣

∣

∣

∣

2 − λ 0
0 −λ

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

0 2 − λ
3 0

∣

∣

∣

∣

= −λ(−λ(2 − λ)) − 3(2 − λ)

= −λ3 + 2λ2 + 3λ− 6 .

From the expression for the determinant we see that λ = 2 must be a root of the above cubic
equation. Factoring our λ−2 from the above we see that the characteristic equation is equal
to (λ − 2)(−λ2 + 3), so the other two roots are λ = ±

√
3. For C we recognize it as a rank

one matrix like

C =





2
2
2





[

1 1 1
]

,

which has an eigenvalue/eigenvector combination given by

λ = 0 with





−1
1
0



 and





−1
0
1





and

λ = 6 with





2
2
2





Problem 30

Consider A

[

1
1

]

=

[

a+ b
c+ d

]

= (a + b)

[

1
1

]

, and we see that the vector

[

1
1

]

is an

eigenvector of A with eigenvalue a + b. Computing the characteristic equation of A i.e.
|A− λI| we find that

|A− λI| =

∣

∣

∣

∣

a− λ b
c d− λ

∣

∣

∣

∣

= (a− λ)(d− λ) − bc

= λ2 − (a+ d)λ+ (ad− bc) .



Setting this to zero and solving using the quadratic equation we find that

λ =
(a + d) ±

√

(a+ d)2 − 4(ad− bc)

2

=
(a + d) ±

√
a2 + 2ad+ d2 − 4ad+ 4bd

2

=
(a + d) ±

√
a2 − 2ad+ d2 + 4bd

2
.

From our one relationship among a, b, c, and d replace a with a = c+ d− b to obtain

λ =
c + 2d− b±

√

(c+ d− b)2 − 2(c+ d− b)d+ d2 + 4bc

2
.

When we expand the terms in the under the radical in the above we find that they simplify
to (c+ b)2, and our expression for λ then becomes

λ =
c+ 2d± (c+ b)

2
=

{

2c+2d
2

= c+ d
2d−2b

2
= d− b

The first expression c+d is what we found before. The second eigenvalue is given by d−b. A
much easier way to calculate this value is to recognize that tr(A) = λ1+λ2 = a+b+λ2 = a+d,
so solving for λ2 we find that λ2 = d− b.

Problem 31

To exchange the first two rows and columns of A let P =





0 1 0
1 0 0
0 0 1



. Considering the

nullspace of

A− 11I =





−10 2 1
3 −5 3
4 8 −7



⇒





1 −1
5

− 1
10

3 −5 3
4 8 −7





⇒





1 −1
5

− 1
10

0 −22
5

33
10

0 44
5

−33
5



⇒





1 −1
5

− 1
10

0 1 −3
4

0 1 −3
4





⇒





1 −1
5

− 1
10

0 1 −3
4

0 0 0



⇒





1 0 −1
4

0 1 −3
4

0 0 0



 ,

which has a nullspace given by





1
3
4



. For the matrix PAP we have

PAP − 11I =





−5 3 3
2 −10 1
8 4 −7



 ,

which would be worked in the same way as earlier.



Problem 32

Part (a): A basis for the nullspace is given by the span of u. A basis for the column space
is is given by a span of {v, w}

Part (b): Let x = 1
3
v + 1

5
w, then

Ax =
1

3
Av +

1

5
Aw =

3

3
v +

5

5
w = v + w .

Then all solutions are given by

x = Cu+
1

3
v +

1

5
w .

Part (c): Ax = u will have a solution if and only if u is in the same column space as A.
This means that u ∈ Span{v, w}, or that

u = C1v + C2w .

This implies that u, v, and w are linearly independent in contradiction to the assumed
independence of u, v, and w.

Section 6.2 (Diagonalizing a Matrix)

Problem 1

To factor A = SΛS−1 we first compute the eigenvalues and eigenvectors of A. The eigenvalues
are given by finding the roots of the characteristic equation |A− λI| = 0, which in this case
becomes

|A− λI| =

∣

∣

∣

∣

1 − λ 2
0 3 − λ

∣

∣

∣

∣

= (1 − λ)(3 − λ) = 0 .

or λ = 1 or λ = 3. Then the eigenvectors associated with eigenvalue λ = 1 is given by the

nullspace of A− I or the matrix

[

0 2
0 2

]

, which is

[

1
0

]

. The eigenvector associated with

eigenvalue λ = 3 is given by the nullspace of the matrix A−3I or

[

−2 2
0 0

]

or

[

1
1

]

. Thus

the matrix whos columns are given by the eigenvectors is given by

S =

[

1 1
0 1

]

so that S−1 is given by

S−1 =

[

1 −1
0 1

]

.

Thus A is given by

A =

[

1 1
0 1

] [

1 0
0 3

] [

1 −1
0 1

]

.



This can easily be checked by multiplying the matrices above. For the matrix

A =

[

1 1
2 2

]

,

Computing its eigenvalues we have to consider

|A− λI| =

∣

∣

∣

∣

1 − λ 1
2 2 − λ

∣

∣

∣

∣

= 0 .

Expanding the determinant of the above we have this equal to

λ(λ− 3) = 0 ,

so we see that λ = 0 or λ = 3. The eigenvalue associated with λ = 0 is given by the nullspace

of A or the matrix

[

1 1
2 2

]

which is

[

1
−1

]

. The eigenvector associated with λ = 3 is given

by the nullspace of A − 3I i.e. the matrix

[

−2 1
2 −1

]

. This matrix has a nullspace given

by the span of

[

1
2

]

. Thus the matrix S whos columns are the eigenvectors of A is given by

S =

[

1 1
−1 2

]

so S−1 =
1

3

[

2 −1
1 1

]

.

Then we see that we can decompose A into the product SΛS−1 as

A = SΛS−1 =

[

1 1
−1 2

] [

0 0
0 3

] [

2
3

−1
3

1
3

1
3

]

,

which again can be checked by multiplying the matrices above together.

Problem 2

If A = SΛS−1 then

A3 = (SΛS−1)(SΛS−1)(SΛS−1) = SΛ2ΛS−1 = SΛ3S−1 ,

and
A−1 = (SΛS−1)−1 = SΛ−1S−1 .

Problem 3

Then A can be assembled from its eigenvectors and eigenvalues by A = SΛS−1. We have

S =

[

1 1
0 1

]

so S−1 =

[

1 −1
0 1

]

, and then A is given by

A =

[

1 1
0 1

] [

2 0
0 5

] [

1 −1
0 1

]

=

[

2 5
0 5

] [

1 −1
0 1

]

=

[

2 3
0 5

]

.



Problem 4

If A = SΛS−1 the the eigenvalue matrix for A is Λ. The eigenvalue matrix for A + 2I is
given by Λ + 2I. The eigenvector matrix for A+ 2I is the same as that for A i.e. the matrix
S. These are shown by the manipulations

S(Λ + 2I)S−1 = SΛS−1 + 2SS−1 = A+ 2I .

Problem 5

Part (a): False, A can still have an eigenvalue equal to zero.

Part (b): True, the matrix of eigenvectors S has an inverse.

Part (c): True, S has full rank and is therefore invertible.

Part (d): False, since S could have repeated eigenvalues and therefore possibly a non
complete set of eigenvectors.

Problem 6

Then A is a diagonal matrix since S = I = S−1 and A = SΛS−1 = Λ. If the eigenvector
matrix S is triangular then S−1 is also triangular. Forming the product A = SΛS−1 we see
that left multiplying a triangular matrix S−1 onto Λ is multiplication of the the rows of S−1

by the diagonal elements of Λ the product S−1Λ is also triangular. Since S and ΛS−1 are
both triangular their product is triangular and therefore A is triangular.

Problem 7

if A =

[

4 0
1 2

]

then A has eigenvectors given by

|A− λI| =

∣

∣

∣

∣

4 − λ 0
1 2 − λ

∣

∣

∣

∣

= (4 − λ)(2 − λ) = 0 .

Which has solutions λ = 2 or λ = 4. The eigenvector associated with the eigenvalue λ = 2

is given by the nullspace of A− 2I or the matrix

[

2 0
1 0

]

which is

[

0
1

]

. The eigenvector

associated with λ = 4 is given by the nullspace of A− 4I i.e. the matrix

[

0 0
1 −2

]

. Which

has a nullspace given by the span of

[

2
1

]

. Thus all matrices that diagonalize A are given



by

S =

[

0 2β
α β

]

so S−1 =
1

(−2αβ)

[

β −2β
−α 0

]

=

[ − 1
2α

1
α

1
2β

0

]

.

The matrices that diagonalized A are the same ones that diagonalize A−1 so the S and S−1

above apply to the diagonalization of A−1 also.

Problem 8

We can assemble A from its eigenvectors using SΛS−1. We find

A = SΛS−1 =

[

1 1
1 −1

] [

λ1 0
0 λ2

](−1

2

)[

−1 −1
−1 1

]

=

[

λ1 λ2

λ1 −λ2

](−1

2

)[

−1 −1
−1 1

]

=
1

2

[

λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

]

Problem 9

If A =

[

1 1
1 0

]

then

A2 =

[

1 1
1 0

] [

1 1
1 0

]

=

[

2 1
1 1

]

.

In addition, A3 is given by

A3 = AA2 =

[

1 1
1 0

] [

2 1
1 1

]

=

[

3 2
2 1

]

,

and A4 is given by

A4 = AA3 =

[

1 1
1 0

] [

3 2
2 1

]

=

[

5 3
3 2

]

.

Since F0 = 0, F1 = 1, F2 = 1, · · · we have that if we define the vector un as

un =

[

Fn+1

Fn

]

,

Then

un+1 =

[

Fn+2

Fn+1

]

=

[

Fn+1 + Fn

Fn+1

]

=

[

1 1
1 0

] [

Fn+1

Fn

]

= Aun .

With u0 =

[

F1

F0

]

=

[

1
0

]

and iterating un+1 = Aun we see that un = Anu0. If we want to

compute F20 we extract the second component from u20. Since u20 = A20u0, it will help to
have u0 written in terms of the eigenvectors of A. Doing this gives

u0 =
x1 − x2

λ1 − λ2
,



with x1 =

[

λ1

1

]

and x2 =

[

λ2

1

]

, so that u20 becomes

u20 =
λ20

1 x1 − λ20
2 x2

λ1 − λ2
.

Now is since for the Fibonacci matrix

[

1 1
1 0

]

we have

λ1 =
1 +

√
5

2
and λ2 =

1 −
√

5

2
,

the value of F20 is given by

λ20
1 − λ20

2

λ1 − λ2
=

1√
5





(

1 +
√

5

2

)20

−
(

1 −
√

5

2

)20


 .

Problem 10

If Gk+2 = 1
2
(Gk +Gk+1) then defining

uk =

[

Gk+1

Gk

]

,

we have that

uk+1 =

[

Gk+2

Gk+1

]

=

[

1
2
(Gk +Gk+1)

Gk+1

]

=

[

1
2

1
2

1 0

]

.

so that we have A given by

A =

[

1/2 1/2
1 0

]

.

The eigenvalues and eigenvectors of A are given by

|A− λI| =

∣

∣

∣

∣

1/2 − λ 1/2
1 −λ

∣

∣

∣

∣

= −λ
(

1

2
− λ

)

− 1

2
= 0

Thus we have solving for λ that λ = −1
2

and λ = 1. The eigenvectors are given by the
nullspace of the operator A− λI. For λ = −1

2
this is the matrix

[

1 1/2
1 1/2

]

,

which has a nullspace given by the span of

[

1
−2

]

. For λ = 1 the matrix A− λI is

[

−1/2 1/2
1 −1

]

,



which has a nullspace given by the span of

[

1
1

]

.

Part (b): Powers of A can be obtained by An = SΛnS−1, with

S =

[

1 1
−2 1

]

and S−1 =
1

3

[

1 −1
2 1

]

.

We then compute that An is given by

An =

[

1 1
−2 1

] [ (

−1
2

)n
0

0 1

]

1

3

[

1 −1
2 1

]

1

3

[ (

−1
2

)n
1

−2
(

−1
2

)n
1

] [

1 −1
2 1

]

1

3

[ (

−1
2

)n
+ 2 −

(

−1
2

)n
+ 1

−2
(

−1
2

)n
+ 2 −

(

−1
2

)n
+ 1

]

.

From which we see that

A∞ =
1

3

[

2 1
2 1

]

.

Part (c): If G0 = 0 and G1 = 1 then u0 =

[

G1

G0

]

=

[

1
0

]

, so that u∞ = A∞u0 = 1
3

[

2
2

]

=

2
3

[

1
1

]

. Thus G∞ = 2
3

the Gibonacci numbers approach 2
3
.

Problem 11

From the given pieces of the eigenvector decomposition A = SΛS−1 we recognize

S =

[

λ1 λ2

1 1

]

and S−1 =
1

λ1 − λ2

[

1 −λ2

−1 λ1

]

,

so we have the decomposition of
[

1 1
1 0

]

=

[

λ1 λ2

1 1

] [

λ1 0
0 λ2

]

1

λ1 − λ2

[

1 −λ2

−1 λ1

]

.

Then powers of A are easy to compute. We find that
[

1 1
1 0

]k

=

[

λ1 λ2

1 1

] [

λk
1 0
0 λk

2

]

1

λ1 − λ2

[

1 −λ2

−1 λ1

]

.

From which we recognize that the requested multiplication is given by

SΛkS−1

[

1
0

]

= SΛk 1

λ1 − λ2

[

1
−1

]

= S
1

λ1 − λ2

[

λk
1

−λk
2

]

=
1

λ1 − λ2

[

λk+1
1 − λk+1

2

λk
1 − λk

2

]

.



Which has a second component given by Fk =
λk
1
−λk

2

λ1−λ2
.

Problem 12

The original equation for the λ’s is the characteristic equation given by

λ2 − λ− 1 = 0 ,

Since solutions to the quadratic equation we see that multiplying by λk this equation can be
written as

λk+2 − λk+1 − λk = 0 ,

or
λk+2 = λk+1 + λk .

Then the linear combination of λk
1 and λk

2 must satisfy this. Thus

Fk =
λk

1 − λk
2

λ1 − λ2
,

So Fk will satisfy this recurrence relation and has values F0 = 0 and F1 = λ1−λ2

λ1−λ2
= 1.

Problem 13

Defining u0 =

[

F1

F0

]

=

[

1
2

]

= x1 + x2, then

u20 = A20u0 = A20(x1 + x2) = λ20
1 x1 + λ20

2 x2

= λ20
1

[

λ1

1

]

+ λ20
2

[

λ2

1

]

So the second component of this vector is given by λ20
1 + λ20

2 . Thus

F20 =

(

1 +
√

5

2

)20

+

(

1 −
√

5

2

)20

.

Problem 14

Given Fn+2 = Fn + Fn+1 with initial conditions F0 = 0 and F1 = 1, we would like to
prove that F3n is an even number. One might be able to prove this by using the explicit
representation of the Fibonacci numbers but it will probably be easier to prove by induction.
Sine F3 = 2 we have a starting condition of an induction proof to be true. Then assuming



that F3k is an even number for k ≤ n we desire to show that it is even for F3(n+1). Now
consider F3(n+1) we have using the Fibonacci recurrence that

F3(n+1) = F3n+3

= F3n+2 + F3n+1

= F3n+1 + F3n + F3n+1

= F3n + 2F3n+1 .

Thus since F3n is even (by the induction hypothesis and 2F3n+1 is even we see that F3(n+1)

is even. Thus our result is proven.

Problem 15

Part (a): True, λ 6= 0 and therefore A is invertible.

Part (b): This is possible but not definite. If the repeated eigenvalue has enough eigenvec-
tors which is not in general true.

Part (c): It is possible if the λ = 2 eigenvalue does not have enough eigenvectors.

Problem 16

Part (a): False, the multiple eigenvector could correspond to a nonzero eigenvalue.

Part (b): This must be true of else if not we would have another distinct eigenvector.

Part (c): This is true. There are not enough eigenvectors to fill the eigenvector matrix S.

Problem 17

For the first matrix A =

[

8 b
c 2

]

since det(A) = λ1λ2 = 25 we have that

16 − bc = 25 ,

or that bc = −9. Pick b = 1 and c = −9 giving A =

[

8 1
9 2

]

. Then

|A− λI| =

∣

∣

∣

∣

8 − λ 1
−9 2 − λ

∣

∣

∣

∣

= (8 − λ)(2 − λ) + 9 = (λ− 5)2 .



An eigenvector for λ = 5 is given by the nullspace of the operator A−5I which is the matrix
[

3 1
9 −3

]

or

[

1
−3

]

. This matrix has only one eigenvector as requested. For the matrix
[

9 4
c 1

]

we must have Tr(A) = 10 = λ1 +λ2 = 10 (which is true) and det(A) = 9− 4c = 25

or c = −4. Thus our matrix A is given by

A =

[

9 4
−4 1

]

,

then the characteristic equation for A is given by

|A− λI| =

∣

∣

∣

∣

9 − λ 4
−4 1 − λ

∣

∣

∣

∣

(9 − λ)(1 − λ) + 16

= (λ− 5)2 ,

as expected. We also have the eigenvectors for this matrix A given by the nullspace of A−5I,

which in this case is the matrix

[

4 4
−4 −4

]

or the vector

[

1
−1

]

. Finally, for the matrix

A =

[

10 5
−5 d

]

the determinant requirement gives

10d+ 25 = 25 ,

or d = 0 so A =

[

10 5
−5 0

]

. Then the characteristic equation for A is given by

|A− λI| =

∣

∣

∣

∣

10 − λ 5
−5 −λ

∣

∣

∣

∣

(λ2 − 10λ+ 25) = (λ− 5)2 ,

An the eigenvectors are given by the nullspace of A − 5I or the matrix

[

5 5
−5 −5

]

or the

vector

[

1
−1

]

Problem 18

The rank of A− 3I is one and therefore since the rank plus the dimension of the nullspace
must equal two we see that the nullspace has a dimension of 2 − 1 = 1 and therefore there
does not exist a complete set of eigenvectors for the λ = 3 eigenvalue. If we changed the (1, 1)
or the (2, 2) element to 3.01 then the eigenvalues of A are given by 3 and 3.01 and since they
are different we are guaranteed to have independent eigenvectors and A is diagonalizable.



Problem 19

If every λ has a magnitude less than one. Since A is a Markov matrix it has eigenvalues
equal to one and therefore will not iterate to zero. For B it has eigenvalues given by solving
|B − λI| = 0 or

∣

∣

∣

∣

0.6 − λ 0.9
0.1 0.6 − λ

∣

∣

∣

∣

= (0.6 − λ)2 − 0.09 = 0 ,

or λ = 0.3 or λ = 0.9. Since |λi| < 1 we have Ak → 0 as k → ∞.

Problem 20

For A in Problem 19 we know since it is a Markov matrix that one eigenvalue is equal to
one. Thus from the trace/determinant formulas its eigenvalues must satisfy

λ1 + λ2 = 1.2 and λ1λ2 = 0.36 − 0.16 = 0.2 .

Thus we see that if λ1 = 1 then λ2 = 0.2. The eigenvector for λ1 = 1 is given by the nullspace

of A − I =

[

−0.4 0.4
0.4 −0.4

]

or the span of the vector

[

1
1

]

. For λ2 = 0.2 the eigenvector

is given by the nullspace of the matrix A − 0.2I =

[

0.4 0.4
0.4 0.4

]

or the span of the vector
[

1
−1

]

. Thus our matrix of eigenvectors is given by

S =

[

1 1
1 −1

]

,

with S−1 given by

S−1 =
1

−1 − 1

[

−1 −1
−1 1

]

=

[

1/2 1/2
1/2 −1/2

]

,

so that we have our eigenvalue decomposition given by A = SΛS−1

A =

[

1 1
1 −1

] [

1 0
0 0.2

] [

1/2 1/2
1/2 −1/2

]

.

Thus since

Λk =

[

1k 0
0 0.2k

]

=

[

1 0
0 0.2k

]

→
[

1 0
0 0

]

ask → ∞ ,

the limit of Ak as k → ∞ is given by

[

1 1
1 −1

] [

1 0
0 0

] [

1/2 1/2
1/2 −1/2

]

=

[

1 1
1 −1

] [

1/2 1/2
0 0

]

=
1

2

[

1 1
1 1

]

,

which has the eigenvector corresponding to the λ = 1 eigenvalue in its columns.



Problem 21

The eigenvalues for B in Problem 19 are given by λ1 = 0.3 and λ2 = 0.9. For λ = 0.3 the

eigenvectors are given by the nullspace of

[

0.3 0.9
0.1 0.3

]

or the span of

[

−3
1

]

. For λ2 = 0.9

the eigenvectors are given by the nullspace of

[

−0.3 0.9
0.1 −0.3

]

or the span of

[

3
1

]

. Thus to

evaluate B10u0 we decompose u0 in a basis provided by the eigenvectors of B. Doing this in
matrix form we have

[

3 3 6
1 −1 0

]

=

[

−3 3
1 1

] [

c11 c21 c31
c12 c22 c32

]

,

where I have concatenated the coefficient vectors used to expand each u0. For example
[

3
1

]

= c11

[

−3
1

]

+ c12

[

3
1

]

.

Then this matrix of coefficients is given by
[

c11 c21 c31
c12 c22 c32

]

=
1

(−3 − 3)

[

1 −3
−1 −3

] [

3 3 6
1 −1 0

]

=

[

0 −1 −1
1 0 1

]

or
[

3
1

]

= 1x1

[

3
−1

]

= −x1

[

6
0

]

= −x1 + x2 .

Which could have been obtained by inspection. Thus since B10 = SΛ10S−1, we have that

since S =

[

−3 3
1 1

]

and S−1 = −1
6

[

1 −3
−1 −3

]

that

B10 =

[

−3 3
1 1

] [

0.310 0
0 0.910

] [

−1/6 1/2
1/6 1/2

]

=

[

−30.310 3(0.9)10

(0.3)10 0.910

] [

−1/6 1/2
1/6 1/2

]

=

[

1
2
(0.3)10 + 1

2
0.910 −3

2
(0.3)10 + 3

2
(0.9)10

−1
6
(0.3)10 + 1

6
0.910 1

2
(0.3)10 + 1

2
(0.9)10

]

.

And more specifically we find that

B10

[

3
1

]

= B10x2 = λ10
2 x2 = (0.9)10x2 = (0.9)10

[

−3
1

]

,

B10

[

3
−1

]

= B10(−x1) = −B10x1 = −λ10
1 x1 = −(0.3)10

[

−3
1

]

= (0.3)10

[

3
−1

]

,



and finally that

B10

[

6
0

]

= B10(−x1 + x2) = −B10x1 +B10x2

= −λ10
1 x1 + λ10

2 x2

= −(0.3)10

[

−3
1

]

+ (0.9)10

[

3
1

]

.

Problem 22

A has eigenvalues given by the roots of

∣

∣

∣

∣

2 − λ 1
1 2 − λ

∣

∣

∣

∣

= 0 .

Expanding the determinant above we find that the characteristic equation for A is given by

(2 − λ)2 − 1 = 0 ,

which has λ = 1, and λ = 3 as solutions. For the eigenvalue λ1 = 1 the corresponding
eigenvector is given by the nullspace of the matrix

[

1 1
1 1

]

,

or the span of the vector

[

1
−1

]

. The eigenvalue λ2 = 3 the corresponding eigenvector is

given by the nullspace of the matrix

[

−1 1
1 −1

]

,

or the span of the vector

[

1
1

]

. Thus our matrix S and S−1 are given by

S =

[

1 1
−1 1

]

and S−1 =
1

2

[

1 −1
1 1

]

.

With these we see that Ak is given by

Ak = SΛkS−1

=

[

1 1
−1 1

] [

1 0
0 3k

](

1

2

[

1 −1
1 1

])

=

[

1 3k

−1 3k

](

1

2

[

1 −1
1 1

])

=
1

2

[

1 + 3k −1 + 3k

−1 + 3k 1 + 3k

]



Problem 23

Since B is upper triangular the eigenvalues of B are given by the elements on the diagonal
and are therefore 3 and 2. The eigenvector for λ = 2 is given by the nullspace of

[

1 1
0 0

]

or

[

1
−1

]

.

The eigenvector for λ = 3 is given by the nullspace of

[

0 1
0 −1

]

or

[

1
0

]

.

Thus our matrix S and Λ are given by

S =

[

1 1
−1 0

]

so S−1 =

[

0 −1
1 1

]

and

Λ =

[

2 0
0 3

]

.

Thus Bk is given by SΛkS−1 which in this case is

Bk =

[

1 1
−1 0

] [

2k 0
0 3k

] [

0 −1
1 1

]

=

[

2k 3k

−2k 0

] [

0 −1
1 1

]

=

[

3k 3k − 2k

0 2k

]

Problem 24

If A = SΛS−1, then |A| = |SΛS−1| = |S||Λ||S−1| = |Λ|. But since Λ is a diagonal matrix its
determinant is the product of its diagonal elements. Thus we see that |A| =

∏n
i=1 λi. This

quick proof works only when A is diagonalizable.

Problem 25

We have the product of A and B given by

AB =

[

a b
c d

] [

q r
s t

]

=

[

aq + bs ar + bt
cq + sd cr + st

]

,

so the trace of AB is given by Tr(AB) = aq+bs+cr+dt. The product in the other direction
is given by

AB =

[

q r
s t

] [

a b
c d

]

=

[

qa+ rc qb+ rd
sa+ tc sb+ td

]

,



Thus we have Tr(BA) = aq + rc+ sb+ td, which is the same as we had before.

Now choose A as S and B as ΛS−1. Then the product S(ΛS−1) has the same trace as the
product in the reverse order i.e. (ΛS−1)S = Λ. The later matrix Λ, has its trace given by
∑m

i=1 λi. This argument again assumes that A is diagonalizable. For a general m×m matrix
the product AB has elements given by

∑m
k=1 aikbkj and the product BA has terms given by

∑m
k=1 bikakj, so the trace of AB is given by summing the diagonal terms of AB or

Tr(AB) =
m
∑

i=1

(

m
∑

k=1

aikbki

)

.

while the trace of BA is given by summing the diagonal terms of BA or

Tr(BA) =
m
∑

i=1

(

m
∑

k=1

bikaki

)

.

We can see that these expressions are equal to each other, showing that the two traces are
equal.

Problem 26

Now to have AB −BA = I is impossible since the trace of the left hand side id given by

Tr(AB) − Tr(BA) = 0 ,

while the trace of the right hand side equals the trace of the m ×m identity matrix or m.
Let

A = E =

[

1 0
−1 1

]

and B =

[

1 −1
0 1

]

,

so that the products AB and BA are given by

AB =

[

1 −1
−1 2

]

and BA =

[

2 −1
−1 1

]

.

With these two matrices we see that the difference AB − BA is given by

[

−1 0
0 1

]

, which

has a trace of zero as required.

Problem 27

If A = SΛS−1 and B in block form is given by B =

[

A 0
0 2A

]

then we can decompose

(factor) B as

B =

[

SΛS−1 0
0 S(2Λ)S−1

]

=

[

S 0
0 S

] [

Λ 0
0 2Λ

] [

S−1 0
0 S−1

]

.



We can easily check that this is indeed a factorization of B by explicitly multiplying the
matrices on the right hand side together. We find multiplying the two right most matrices
together that the above is equal to

[

S 0
0 S

] [

ΛS−1 0
0 (2Λ)S−1

]

.

Finally multiplying these two matrices together we have
[

SΛS−1 0
0 S(2Λ)S−1

]

=

[

A 0
0 2A

]

,

proving that we have found the decomposition for B. Thus the eigenvalue matrix for the

block matrix

[

A 0
0 2A

]

is given by

[

Λ 0
0 2Λ

]

and the eigenvector matrices are given by

S =

[

S 0
0 S

]

and S−1 =

[

S−1 0
0 S−1

]

.

Problem 28

Let our set S be defined as all four by four matrices such that

S = {A|∗ = S−∞AS} ,
for a fixed given S. Then if A1 and A2 are in S we have that

A1 + A2 = SΛ1S
−1 + SΛS−1 = S(Λ1 + Λ2)S

−1 ,

so we see that A1 + A2 is in S. If A1 ∈ S then cA1 = S(cΛ1)S
−1 so cA1 ∈ S. Thus S is a

subspace. If S = I then the only possible A’s in S are the diagonal ones. This space has
dimension four.

Problem 29

Suppose A2 = A, then the column space of A must contain eigenvectors with λ = 1. In fact
all columns of A are eigenvectors with eigenvalue equal to one. Thus all vectors in the column
space are eigenvectors with eigenvalue λ = 1. The vectors with λ = 0 lie in the nullspace
and from the first fundamental theorem of linear algebra the dimension of the column space
plus the dimension of the nullspace equals n. Thus A will be diagonalizable since we are
guaranteed to have enough (here n) eigenvectors.

Problem 30

When A has a nonempty nullspace we do indeed get n−r linearly independent eigenvectors.
If x is not in the nullspace of A there is no guarantee that Ax = λx for any constant λ. Thus



the r vectors in the column space of A may have no basis (of the column space) such that
Ax = λx. In addition, the nullspace and the column space can overlap if for instance one of
the nullspace vectors is in fact a column of the original A.

Problem 31

The eigenvectors of A for λ = 1 are given by the nullspace of
[

4 4
4 4

]

or the span of
[

1
−1

]

The eigenvectors of A for λ = 9 are given by the nullspace of
[

−4 4
4 −4

]

or the span of
[

1
1

]

.

Thus S =

[

1 1
−1 1

]

so that S−1 = 1
2

[

1 −1
1 1

]

and therefore

R = S
√

ΛS−1 =

[

1 1
−1 1

] [

1 0
0 3

] [

1/2 −1/2
1/2 1/2

]

=

[

2 1
1 2

]

.

Note that the product RR is given by

RR =

[

2 1
1 2

] [

2 1
1 2

]

=

[

5 5
5 5

]

,

which should be A, since if R = S
√

ΛS−1 then

RR = S
√

ΛS−1S
√

ΛS−1 = SΛS−1 .

The square root of Λ would require the square roots of the numbers 9 and −1. The latter is
imaginary and the product R = S

√
ΛR−1 could not be real, since S and S−1 are both real

but the matrix
√

Λ is not. Therefore the product S
√

ΛS−1 could not be real.

Problem 32

We have for xTx the following

xTx = xT Ix = xT (AB −BA)x = xTABx− xTBAx

= (Ax)T (Bx) + (Bx)T (Ax) = 2(Ax)T (Bx) ≤ 2||Ax||||Bx|| ,



where we have used the fact that AT = A and BT = −B to simplify the inner products

xTABx = (Ax)T (Bx) and xTBAx = −(Bx)T (Ax) .

Thus ||x||2 ≤ 2||Ax||||Bx|| so that

1

2
≤ ||Ax||

||x||
||Bx||
||x|| .

Problem 33

If A and B have the same independent eigenvectors and the same eigenvalues then A =
SΛS−1 and B = SΛS−1 so we see that A = B.

Problem 34

If S is such that A = SΛ1S
−1 and B = SΛ2S

−1 then

AB = SΛ1S
−1 · SΛ2S

−1 = S(Λ1Λ2)S
−1 = S(Λ2Λ1)S

−1 ,

since diagonal matrices commute and therefore

AB = SΛ2S
−1 · SΛ1S

−1 = BA .

Problem 35

If A is diagonalizable then A = SΛS−1 and the product matrix

P ≡ (A− λ1I)(A− λ2I) · · · (A− λnI) ,

can be simplified as

P = (SΛS−1 − λ1SS
−1)(SΛS−1 − λ2SS

−1) · · · (SΛS−1 − λnSS
−1)

= S(Λ − λ1I)S
−1S(Λ − λ2I)S

−1S · · ·S(Λ − λnI)S
−1

= S(Λ − λ1I)(Λ − λ2I) · · · (Λ − λnI)S
−1 .



If we consider the product (Λ − λ1I)(Λ − λ2I) · · · (Λ − λnI), we recognize it as the product
of diagonal matrices and we see that it is given by















0
λ2 − λ1

λ3 − λ1

. . .

λn − λ1















×















λ1 − λ2

0
λ3 − λ2

. . .

λn − λ2















× · · · ×















λ1 − λn

λ2 − λn

λ3 − λn

. . .

0















.

This matrix product simplifies to a diagonal matrix Z who’s diagonal elements are given by

d11 = 0(λ1 − λ2) · · · (λ1 − λn) = 0

d22 = (λ2 − λ1)0(λ2 − λ3) · · · (λ2 − λn) = 0

d33 = (λ3 − λ1)(λ3 − λ2)0 · · · (λ3 − λn) = 0
...

dnn = (λn − λ1)(λn − λ2) · · · (λn − λn−1)0 = 0 .

Since each diagonal element of a diagonal matrix is zero, the total product must also be zero
i.e.

(A− λ1I)(A− λ2I) · · · (A− λnI) = 0 .

Problem 36

If A =

[

−3 4
−2 3

]

then the characteristic polynomial of A is given by

|A− λI| =

∣

∣

∣

∣

−3 − λ 4
−2 3 − λ

∣

∣

∣

∣

= (−3 − λ)(3 − λ) + 8 = λ2 − 1 .

Now the matrix expression A2 − I which we compute equals

[

−3 4
−2 3

] [

−3 4
−2 3

]

−
[

1 0
0 1

]

=

[

9 − 8 −12 + 12
6 − 6 −8 + 9

]

−
[

1 0
0 1

]

= 0 .



Thus A2 = I and it looks like A−1 = A. To check this directly we can explicitly compute
A−1 we find that

A−1 =
1

−9 + 8

[

3 −4
2 −3

]

=

[

−3 4
−2 3

]

= A ,

as claimed.

Problem 37

Part (a): Always. A vector in the nullspace of A is automatically an eigenvector with
eigenvalue zero.

Part (b): The eigenvectors with λ 6= 0 will span the column space if there are r independent
vectors.

Section 6.3 (Applications to Differential Equations)

Problem 1

Let

A =

[

4 3
0 1

]

,

to find the eigenvalues and eigenvectors. From the eigenvalue trace and determinant identity
we have

λ1 + λ2 = 5 and λ1λ2 = 4

From which we can see that two eigenvalues are given by λ = 1 and λ = 4. For λ = 1 the
eigenvector is given by the nullspace of the following matrix

[

3 3
0 0

]

,

which has
[

1
−1

]

,

as an eigenvector. For λ = 4, the eigenvector is given by the nullspace of the following matrix
[

0 3
0 −3

]

,

which has
[

1
0

]

,

as an eigenvector. Thus the two solutions to the given differential equation is given by

x1(t) =

[

1
−1

]

et and x2(t) =

[

1
0

]

e4t



The general solution is then a linear combination of the above solutions. To have the general
solution equal the given initial condition we have that

[

5
−2

]

= c1

[

1
−1

]

+ c2

[

1
0

]

which gives c1 = 2 and c2 = 3. Thus the entire solution is given by

x(t) = 2

[

1
−1

]

et + 3

[

1
0

]

e4t .

Problem 2

Solving dz
dt

= z with z(0) = −2 gives z(t) = −2et. Then using this in the equation for y we
have

dy

dt
= 4y + 3z = 4y − 6et .

To solve this equation we solve the homogeneous part dy
dt

= 4y and then find a particular
solution to the inhomogeneous part. The homogeneous solution is given by y(t) = C2e

4t and a
particular solution can be found by substituting a solution that looks like the inhomogeneous
term. We try a solution of the form y(t) = Aet. When this is put into our inhomogeneous
term we obtain

Aet − 4Aet = −6et ,

which gives A = 2. Thus we have a total solution for y(t) given by

y(t) = C2e
4t + 2et .

To satisfy the initial condition of y(0) = 5 we have that C2 must be given by the equation
C2 + 2 = 5 or C2 = 3. Thus the solution to our full system is then

z(t) = −2et

y(t) = 3e4t + 2et .

Problem 3

If we define v = y′ we see that y′′ = 5v+4y so our differential equation becomes the following
system

d

dt

[

y
y′

]

=

[

y′

5y′ + 4y

]

=

[

0 1
4 5

] [

y
y′

]

.

In this case, our coefficient matrix A is given by

[

0 1
4 5

]

. The two eigenvalues of this A

must satisfy the trace determinant identities

λ1 + λ2 = 5 and λ1λ2 = −4 .



From the first condition we see that λ1 = 5 − λ2 which when we put this into the second
condition gives a quadratic for λ2. Solving this gives

λ2 =
5 ±

√
41

2
.

We can verify these results by substituting eλt directly into the differential equation y′′ =
5y′ + 4y and solving for λ. When we do this we find that λ must satisfy

λ2 − 5λ− 4 = 0 ,

the same characteristic equation we found earlier.

Problem 4

From the problems statement the functions r(t) and w(t) must satisfy

dr

dt
= 6r − 2w

dw

dt
= 2r + w .

In matrix form our system is given by

d

dt

[

r
w

]

=

[

6 −2
2 1

] [

r
w

]

.

The coefficient matrix above has eigenvalues λ1 and λ2 that must satisfy

λ1λ2 = 10 and λ1 + λ2 = 7 ,

Thus by inspection λ1 = 2 and λ2 = 5 are the two eigenvalues. For λ = 2 the eigenvector is
given by the nullspace of the following matrix

[

4 −2
2 −1

]

⇒
[

2 −1
0 0

]

,

which has

x =

[

1
2

]

,

as an eigenvector. For λ = 5, the eigenvector is given by the nullspace of the following matrix

[

1 −2
2 −4

]

⇒
[

1 −2
0 0

]

which has

x =

[

2
1

]

,



as an eigenvector. Thus the total solutions to the given differential equation is given by a
linear combination of the two solutions x1 and x2 given by

x1(t) =

[

1
2

]

e2t and x2(t) =

[

2
1

]

e5t .

That is u(t) has the following form

u(t) = c1

[

1
2

]

e2t + c2

[

2
1

]

e5t .

The initial condition of u(0) forces c1 and c2 to satisfy the following

[

30
30

]

= c1

[

1
2

]

+ c2

[

2
1

]

=

[

1 2
2 1

] [

c1
c2

]

.

Solving this linear system for c1 and c2 gives

[

c1
c2

]

=

[

10
10

]

.

Thus the entire solution is given by

u(t) = 10

[

1
2

]

e2t + 10

[

2
1

]

e5t ,

so the population of rabbits and wolves is given by

r(t) = 10e2t + 20e5t

w(t) = 20e2t + 10e5t .

After a long time the ratio of rabbits to wolves is given by

r(t)

w(t)
=

10e2t + 20e5t

20e2t + 10e5t
→ 2 ,

as t→ ∞.

Problem 5

Our differential equations become

dw

dt
= v − w

dv

dt
= w − v .

Now consider the variable y defined as y = v + w. Taking the derivative of y we see that

dy

dt
=
dv

dt
+
dw

dt
= w − v + v − w = 0 .



So the function y(t) = v(t) + w(t) is a constant for all time. This means that y(t) is always
equal to its initial condition y(t) ≡ y(0). The constant value of y is easilty computed

y(0) = v(0) + w(0) = 30 + 10 = 40 .

Defining the vector of unknowns u as u =

[

v(t)
w(t)

]

then we have that u satisfies

du

dt
=

[

w − v
v − w

]

=

[

−1 1
1 −1

] [

v
w

]

.

In the above system of differential equations the coefficient matrix is given byA =

[

−1 1
1 −1

]

,

which has eigenvalues λ given by the solution of

∣

∣

∣

∣

−1 − λ 1
1 −1 − λ

∣

∣

∣

∣

= 0

Expanding this determinant we have λ2 + 2λ = 0 or λ = 0 and λ = −2. The eigenvectors of

A for λ = −2 are given by the nullspace of

[

1 1
1 1

]

, or the span of

[

1
−1

]

. The eigenvectors

of A for λ = 0 are given by the nullspace of

[

−1 1
1 −1

]

, or the span of

[

1
1

]

. The total

solutions to the given differential equation is given by

u(t) = c1

[

1
−1

]

e−2t + c2

[

1
1

]

.

Given the initial conditions of v(0) = 30 and w(0) = 10 to find c1 and c2 we regonize that
they have to satisfy the initial condition requirement of u at 0. That is

[

30
10

]

= c1

[

1
−1

]

+ c2

[

1
1

]

,

which has a solution given by c1 = 10 and c2 = 20. In this case u(t) is given by

u(t) = 10

[

1
−1

]

e−2t + 20

[

1
1

]

.

We can check that v(t) + w(t) = 40 for all time by adding the two functions found above.
When we do this we find

10e−2t + 20 − 10e−2t + 20 = 40 ,

as required. When t = 1 we have that

u(1) =

[

v(1)
u(1)

]

=

[

10e−2 + 20
−10e−2 + 20

]

.



Problem 6

Now our coefficient matrix is −1 times A means that the eigenvectors of Ax = λx becomes
−Ax = −λx. From which we see that the eigenvectors of −A are the same as the eigenvectors
of A, and the eigenvalues of −A are the negative of the eigenvalues of A. Thus the two

eigenvalues of −A are given by λ = 0 and λ = 2, with eigenvectors given by

[

1
1

]

and
[

1
−1

]

, so again the solution is given by

[

v(t)
w(t)

]

= 10

[

1
−1

]

e2t + 20

[

1
1

]

.

Thus v(t) = 10e2t + 20 → ∞ as t→ ∞.

Problem 7

Let the vector u be defined as u(t) =

[

y
y′

]

then du
dt

=

[

y′

y′′

]

=

[

0 1
0 0

] [

y
y′

]

, which has

as its solution
[

y(t)
y′(t)

]

= eAt

[

y(0)
y′(0)

]

.

We can evaluate eAt using the definition in terms of a Taylor series, that is

eAt = I + At+
1

2
A2t2 +

1

6
A3t3 + · · ·

Now

A2 =

[

0 1
0 0

] [

0 1
0 0

]

=

[

0 0
0 0

]

,

so that

eAt = I + At =

[

1 0
0 1

]

+

[

0 1
0 0

]

t =

[

1 t
0 1

]

.

From this we see that
[

y(t)
y′(t)

]

=

[

1 t
0 1

] [

y(0)
y′(0)

]

=

[

y(0) + y′(0)t
y′(0)

]

,

The first component gives y(t) = y(0) + y′(0)t.

Problem 8

Substituting y = eλt into our differential equation gives

λ2 = 6λ− 9 .



When we solve this for λ we find that λ = 3 is a double root. The matrix representation for
y′′ = 6y′ − 9y is given by

d

dt

[

y(t)
y′(t)

]

=

[

0 1
−9 6

] [

y(t)
y′(t)

]

.

This coefficient matrix has eigenvalues given by the solution of (λ − 3)2 = 0 as earlier. To
look for the eigenvectors consider

[

−3 1
−9 3

]

,

which has

[

1
3

]

as the only eigenvector. To show that y = te3t is a second solution, evaluate

the differential equation for this value of y. We compute

y = te3t

y′ = e3t + 3te3t

y′′ = 3e3t + 3e3t + 9te3t = 6e3t + 9te3t .

Then
6y′ − 9y = 6e3t + 18te3t − 9te3t = 6e3t + 9te3t ,

which is y∗ showing how y(t) satisfies the differential equation.

Problem 9

Part (a): We have

d

dt
(u2

1 + u2
2 + u2

3) = 2u1u
′
1 + 2u2u

′
2 + 2u3u3

= 2u1(cu2 − bu3) + 2u2(au3 − cu1) + 2u3(bu1 − au2)

= 0 .

Since u2
1 + u2

2 + u2
3 = ||u||2, we see that ||u|| must be a constant.

Part (b): ||eAtu(0)|| = ||u(0)|| so eAt is an orthogonal matrix. When A is skew symmetric
Q = eAt is an orthogonal matrix.

Problem 10

Part (a): When A =

[

0 1
−1 0

]

we have two eigenvectors. The first

[

1
i

]

with eigenvalue

λ = i, and the second

[

1
−i

]

with eigenvalue λ = −i. To superimpose these two vectors

into

[

1
0

]

we have
[

1
0

]

= c1

[

1
i

]

+ c2

[

1
−i

]

,



so our constants c1 = 1
2

and c2 = 1
2
.

Part (b): Thus the solution to

du

dt
=

[

0 1
−1 0

] [

u1(t)
u2(t)

]

,

is given by

u(t) = c1e
it

[

1
i

]

+ c2e
−it

[

1
−i

]

,

with c1 = c2 = 1/2 this becomes

u(t) =
1

2
eit

[

1
i

]

+
1

2
e−it

[

1
−i

]

.

Using Euler’s formula of

eit = cos(t) + i sin(t)

e−it = cos(t) − i sin(t) .

we have that u(t) becomes

u(t) =
1

2
(cos(t) + i sin(t))

[

1
i

]

+
1

2
(cos(t) − i sin(t))

[

1
−i

]

=
1

2

[

2 cos(t)
− sin(t) − sin(t)

]

=

[

cos(t)
sin(t)

]

.

Problem 11

Part (a): The equation d2y
dt2

= −y is solved by y(t) = A cos(t) +B sin(t). To have y(0) = 1
and y′(0) = 0 we must have y(t) = cos(t).

Part (b): We write the matrix form for the differential equation y′′ = −y, by defining the

vector u to be u =

[

y(t)
y′(t)

]

so that

du

dt
=

[

y′(t)
y′′(t)

]

=

[

0 1
−1 0

] [

y(t)
y′(t)

]

.

From Part (a) we have that y(t) = cos(t), so y′(t) = − sin(t), then

u =

[

cos(t)
− sin(t)

]

and
du

dt
=

[

− sin(t)
− cos(t)

]

,

which equals

[

0 1
−1 0

] [

cos(t)
− sin(t)

]

=

[

− sin(t)
− cos(t)

]

and u(0) =

[

1
0

]

, showing that this

vector solution u solves the differential equation and has the correct initial conditions.



Problem 12

If A is invertible then a particular solution to

du

dt
= Au− b ,

will be u a constant if and only if du
dt

= 0 or 0 = Au− b or u = A−1b.

Part (a): For du
dt

= 2u− 8. The particular solution is given by 2u = 8 (or u = 4), and the
homogeneous solution is given by du

dt
= 2u⇒ u = Ce2t. Thus the complete solution is given

by u(t) = 4 + Ce2t.

Part (b): For du
dt

=

[

2 0
0 3

]

u −
[

8
6

]

. Then a particular solution is given by (again

assuming u is a constant)
[

2 0
0 3

]

u =

[

8
6

]

⇒
[

u1

u2

]

=

[

4
2

]

a particular solution is given by the solution to

du

dt
=

[

2 0
0 3

]

u .

The coefficient matrix A is then given by

[

2 0
0 3

]

, which has eigenvalues 2 and 3, with

eigenvectors

[

1
0

]

and

[

0
1

]

, then the total solution is then

c1

[

1
0

]

e2t + c2

[

0
1

]

e3t ,

so that the total solution (particular plus the homogeneous) is given by

u = c1

[

1
0

]

e2t + c2

[

0
1

]

e3t +

[

4
2

]

.

Problem 13

Assume that c is not an eigenvalue of A. Let u = ectv, where v is a constant vector. Then
du
dt

= cectv and
Au = Aectv = ectAv ,

so that the equation du
dt

= Au− ectb becomes

cectectAv − ectb

cv = Av − b

(A− cI)v = b

v = (A− cI)−1b .



Since c is not an eigenvector of A A−cI is invertible, showing that u = ectv = ect(A−cI)−1b
is a particular solution to the differential equation

du

dt
= Au− ectb .

If c is an eigenvector of A, then A−cI is not invertible and there exists a nonzero v such that
Av = cv, so that when ectv is substituted into our differential equation we have cv = Av− b
or 0 = −b a contradiction.

Problem 14

For a differential equation to be stable we require that u→ 0 as t→ ∞. For the differential
equation du

dt
= Au, when A is a matrix, this will happen when all the eigenvalues of A have

negative real parts. For a two by two systems, this eigenvalue condition breaks down into
conditions on the trace (T ) and determinant (D) of A. The conditions are that T ≡ a+d < 0

and D ≡ ad− bc > 0. Since the eigenvalues of a two by two system A =

[

a b
c d

]

are given

by the characteristic equation or

∣

∣

∣

∣

a− λ b
c d− λ

∣

∣

∣

∣

= 0 .

This becomes

(a− λ)(d− λ) − bc = 0

λ2 − (a+ d)λ+ ad− bc = 0

λ2 − Tλ+D = 0 ,

when expressed in terms of T and D. From which using the quadratic equation we find the
roots given by

λ =
T ±

√
T 2 − 4D

2
.

So the value of the expression T 2 − 4D separates real from complex eigenvalues. Plotting
T 2 − 4D = 0 on the determinant D v.s. trace axis T gives the following plot

Defining λ1 and λ2 as

λ1 =
T −

√
T 2 − 4D

2
and λ2 =

T +
√
T 2 − 4D

2
.

Part (a): For λ1 < 0 and λ2 > 0 let A be given by

A =

[

−1 0
0 1

]

or A′ =

[

−1 2
0 1

]

.



Part (b): For λ1 > 0 and λ2 > 0 let A be given by

A =

[

0 0
0 1

]

.

Part (c): For complex λ with real part we need a > 0. To find a matrix A that works we
know that the components of A must satisfy

a+ d = λ1 + λ2

ad− bc = λ1λ2 .

From which we might try λ1 = 1 + i and λ2 = 1 − i. Then λ1 + λ2 = 2 and λ1λ2 = 2. Now
to obtain the required A we recall that A = SΛS−1 in this case would be given by

A =

[

1 −1
1 1

] [

1 + i 0
0 1 − i

](

1

2

)[

1 1
−1 1

]

=
1

2

[

1 + i −1 + i
1 + i 1 − i

] [

1 1
−1 1

]

=

[

1 i
i 1

]

,

which is not real and this experiment did not work. As another attempt consider A defined

as A =

[

2 2
−1 0

]

then |A| = 2 and Tr(A) = 2. Lets verify that indeed the eigenvalues are

given by 1 ± i. The characteristic equation for this A is given by

∣

∣

∣

∣

2 − λ 2
−1 −λ

∣

∣

∣

∣

= 0 ⇒ λ2 − 2λ+ 2 = 0 ,

which has solutions given by

λ =
2 ±

√

4 − 4(2)

2
= 1 ± i ,

and thus this A works.

Problem 15

Consider the definition of the matrix exponential

eAt = I + At+
1

2
A2t2 +

1

6
A3t3 +

1

24
A4t4 +

1

5!
A5t5 + · · ·

taking the time derivative of both sides of this expression we compute

d

dt
eAt = A + A2t+

1

2
A3t2 +

1

6
A4t3 +

1

4!
A5t4 + · · ·

= A(I + At+
1

2
A2t2 +

1

6
A3t3 +

1

4!
A4t4 + · · · )

= AeAt .



Problem 16

For the matrix B =

[

0 −1
0 0

]

, we see that the square of B is given by

B2 =

[

0 −1
0 0

] [

0 −1
0 0

]

=

[

0 0
0 0

]

,

and thus all higher powers of B are also the zero matrix. Because of this property of the
powers of B the matrix exponential is also simple to calculate

eBt = I +Bt+
1

2
B2t2 +

1

6
B3t3 + · · ·

= I +Bt =

[

1 −t
0 1

]

.

Then
d

dt
eBt =

d

dt

[

1 −t
0 1

]

=

[

0 −1
0 0

]

.

Problem 17

The solution at time t+ T can also be written as eA(t+T )u(0) and since we can view this as
the solution at time T propagated for t more time we have

eAteATu(0) = eA(t+T )u(0) ,

so that we see
eAteAT = eA(t+T ) .

Problem 18

From the trace determinant identity for the eigenvalues for A =

[

1 1
0 0

]

we have that

λ1 + λ2 = 1 and λ1λ2 = 0. From which by trial and error we see that λ1 = 0 and λ2 = 1.

The first eigenvector (for λ1 = 0) is

[

1
−1

]

, and the second eigenvector (for λ2 = 1) is
[

1
0

]

. Thus S =

[

1 1
−1 0

]

so that S−1 =

[

0 −1
1 1

]

and the matrix of eigenvalues is

Λ =

[

0 0
0 1

]

. Thus A is given by

A = SΛS−1 =

[

1 1
0 0

]

=

[

1 1
−1 0

] [

0 0
0 1

] [

0 −1
1 1

]

.



Then we have

eAt = I + A+
A2t2

2
+
A3t3

3!
+ · · ·

= I + SΛS−1 + SΛ2S−1 t
2

2
+ SΛ3S−1 t

3

6
+ · · ·

= S

[

Λ + Λ2 t
2

2
+ Λ3 t

3

6
+ · · ·

]

S−1

= S

[

1 0

0 1 + t+ t2

2
+ t3

3!
+ · · ·

]

S−1

= S

[

1 0
0 et

]

S−1

=

[

1 1
−1 0

] [

1 0
0 et

] [

0 −1
1 1

]

=

[

et −1 + et

0 1

]

Note also that eAt = SeΛtS−1 which may have been a quicker way of deriving the above.

Problem 19

For the general case if A2 = A, then

eAt = I + At+
A2t2

2
+
A3t3

6
+ · · ·

= I + At+
At2

2
+
At3

6
+ · · ·

= I + A(t+
t2

2
+
t3

6
+ · · · )

= I + A(et − 1) .

For the specific case were A =

[

1 1
0 0

]

we see that indeed A2 = A as

A2 =

[

1 1
0 0

] [

1 1
0 0

]

=

[

1 1
0 0

]

= A ,

so the above formula gives for eAt

eAt =

[

1 0
0 1

]

+

[

1 1
0 0

]

(et − 1) =

[

et et − 1
0 1

]

,

the same as we had before.



Problem 20

For A =

[

1 1
0 0

]

, we have that eA =

[

e e− 1
0 1

]

using Problem 18. For B =

[

0 −1
0 0

]

we have eB = I + B =

[

1 −1
0 1

]

, since B2 = 0 and all higher order terms in the Taylor

expansion definition of eB are zero. For the matrix A +B =

[

1 0
0 0

]

we have

eA+B = I + (e− 1)(A+B) .

since (A+B)2 = A+B. Thus eA+B is

[

1 0
0 1

]

+ (e− 1)

[

1 0
0 0

]

=

[

e 0
0 1

]

.

Now consider the product of two matrices eAeB which is given by

eAeB =

[

e e− 1
0 1

] [

1 −1
0 1

]

=

[

e −1
0 1

]

6= eA+B =

[

e 0
0 1

]

.

And the product in the opposite order

eBeA =

[

1 −1
0 1

] [

e e− 1
0 1

]

=

[

e e− 2
0 1

]

6= eAeB .

Problem 21

For the matrix A =

[

1 1
0 3

]

, we have eigenvalues given by λ = 1 and λ = 3. The eigenvector

for λ = 1 is given by the nullspace of

[

0 1
0 2

]

, or the span of

[

1
0

]

. The eigenvectors for

λ = 3 are given by the nullspace of

[

−2 1
0 0

]

, or the span of

[

1
2

]

. Then S =

[

1 1
0 2

]

so

that S−1 = 1
2

[

2 −1
0 1

]

with a matrix of eigenvalues given by Λ =

[

1 0
0 3

]

. Thus we have

that eAt is given by

eAt = SeΛtS−1

=

[

1 1
0 2

] [

et 0
0 e3t

](

1

2

[

2 −1
0 1

])

=
1

2

[

2et −et + e3t

0 2e3t

]

=

[

et −1
2
et + 1

2
e3t

0 e3t

]

.

When t = 0 we have eA·0 = e0 = I and the right hand side of the above gives the same (the
identity matrix).



Problem 22

If A =

[

1 3
0 0

]

then A2 =

[

1 3
0 0

] [

1 3
0 0

]

=

[

1 3
0 0

]

= A, so from Problem 19 we have

that

eAt = I + (et − 1)A

=

[

1 0
0 1

]

+ (et − 1)

[

1 3
0 0

]

=

[

et 3(et − 1)
0 1

]

.

Problem 23

Part (a): Since (eAt)−1 = e−At, them matrix eAt is never singular.

Section 6.4 (Symmetric Matrices)

Problem 1

A =





1 2 4
4 3 0
8 6 5



 = M +N , with MT = M and NT = −N . For a square matrix

M =
1

2
(A+ AT ) =

1

2





1 2 4
4 3 0
8 6 5



+
1

2





1 4 8
2 3 6
4 0 5



 =





1 3 6
3 3 3
6 3 5



 .

Then N must be given by

N = A−M = A− 1

2
(A+ AT ) =

1

2
(A−AT ) .

In this case we find that N is given by

N =





0 −1 −2
1 0 −3
2 3 0



 .

Thus A = M +N is decomposed as





1 2 4
4 3 0
8 6 5



 =





1 3 6
3 3 3
6 3 5



+





0 −1 −2
1 0 −3
2 3 0



 .



Problem 2

If C is symmetric then ATCA is also symmetric since

(ATCA)T = ATCTA = ATCA .

When A is 6 × 3, AT is 3 × 6 and C must be 6 × 6, so that finally ATCA is 3 × 3.

Problem 3

The dot product of Ax with y equals

(Ax)T y = xTATy = xTAy ,

which is the dot product of x with Ay. If A is not symmetric then

(Ax)T y = xTATy .

Problem 4

Note that since A is symmetric so that it has real eigenvalues and orthogonal eigenvectors.
The eigenvalues of A are given by

∣

∣

∣

∣

−2 − λ 6
6 7 − λ

∣

∣

∣

∣

= 0 ⇒ λ2 − 5λ− 50 = 0 ,

This has solutions given by λ = −5 and λ = 10. The eigenvectors for λ = −5 are given by

the nullspace of

[

3 6
6 12

]

, or the span of

[

2
−1

]

. The eigenvector for λ = 10 is given by

the nullspace of

[

−12 6
6 −3

]

, or the span of

[

1
2

]

, which is orthogonal to the previously

computed eigenvector as it must be. To obtain an orthogonal matrix we need to normalize
each vector giving

Q =
1√
5

[

2 1
−1 2

]

so Q−1 = QT =
1√
5

[

2 −1
1 2

]

Thus

A = QΛQT =
1√
5

[

2 1
−1 2

] [

−5 0
0 10

]

1√
5

[

2 −1
1 2

]



Problem 5

For A =





1 0 2
0 −1 −2
2 −2 0



 since A = AT the eigenvalues must be real and the eigenvectors

will be othogonol. To find the eigenvalues we find the roots of the characteristic polinomial

∣

∣

∣

∣

∣

∣

1 − λ 0 2
0 −1 − λ −2
2 −2 −λ

∣

∣

∣

∣

∣

∣

= 0 .

Expanding the determinant we find that it equals λ(λ2 − 9) = 0 or λ = 0 and λ = ±3. For
λ1 = −3 the eigenvector is given by the nullspace of





4 0 2
0 2 −2
2 −2 3



⇒





1 0 1/2
0 1 −1
1 −1 3/2



⇒





1 0 1/2
0 1 −1
0 −1 1



⇒





1 0 1/2
0 1 −1
0 0 0



 .

Which has a nullspace given by the span of





−1
2
2



. For λ2 = 0 the eigenvector is given by

the nullspace of





1 0 2
0 −1 −2
2 −2 0



⇒





1 0 1/2
0 1 2
0 −2 −4



⇒





1 0 2
0 1 2
0 0 0



 .

Which has a nullspace given by the span of





2
2
−1



. For λ3 = 3 the eigenvector is given by

the nullspace of





−2 0 2
0 −4 −2
2 −2 −3



⇒





1 0 −1
0 1 1/2
1 −1 −3/2



⇒





1 0 −1
0 1 1/2
0 −1 −1/2



⇒





1 0 −1
0 1 1/2
0 0 0





Which has a nullspace given by the span of





2
−1
2



. Thus the matrix with columns of our

eigenvectors is given by

Q̂ =





−1 2 2
2 2 2
2 −1 2



 .

To make Q̂ an orthogonal matrix we need to normalize each vector by its length. Thus we
have that

Q =
1√

4 + 4 + 1





−1 2 2
2 2 2
2 −1 2



 =
1

3





−1 2 2
2 2 2
2 −1 2







So that

Q−1 = QT =
1

3





−1 2 2
2 2 −1
2 −1 2





and Λ =





−3 0 0
0 0 0
0 0 3



, so that A = QΛQT with the definitions of Q and Λ given above.

Problem 8

If A3 = 0, then λ = 0 must be an eigenvalue of A. This is because we can recognize A3 as
A operating on the columns of A2, which we are told results in the zero matrix. Thus each
column of A2 is an eigenvector of A with eigenvalue zeros. It is easy to find a 2 × 2 matrix

that has A2 = 0. One such matrix is A =

[

0 1
0 0

]

. I don’t in general see why all of the

eigenvalues of A must be zero. If |A3| = 0, since |A3| = |A|3, we see that |A3| = 0 is the
same as (

∏

i λi)
3 = 0 so it seems that all is to be required is that we have one eigenvalue

of A zero and the product will be zero. In the case when A is symmetric we know that it
has an eigenvector decomposition with real eigenvalues and orthogonal eigenvectors. Thus
A = QΛQT . In this case, from the third power of A we see that

A3 = QΛ3QT = 0 ⇒ Λ3 = 0 ⇒ Λ = 0 ,

so that A must have all zero eigenvalues and in fact must be the zero matrix.

Problem 9

The characteristic equation of a 3 × 3 matrix A is a third order polynomial. As such, it
can have at most two complex roots (which must be complex conjugates) and still be a real
polynomial. Thus A must have at least one real eigenvalue. Another way to see this is to
consider the trace of A. This must be real since it is a sum of the diagonal elements of A.
By the trace, eigenvalue identity we have that Trace(A) = λ1 + λ2 + λ3, if all three of these
λ’s were complex then Tr(A) would be complex. Thus at least one eigenvalue of A is real.

Problem 10

It is not stated the x must be real. For example consider the matrix A =

[

0 −1
1 0

]

then

the characteristic equation is λ2 + 1 = 0 or λ = ±i. For λ1 = −i, we have eigenvalues given
by the nullspace of

[

i −1
1 i

]

⇒
[

i 1
0 0

]

,



or the span of

[

i
1

]

. For the eigenvalue λ2 = +i the second eigenvector x2 will be the

complex conjugate of x1, or

[

−i
1

]

. Then the expression xT Ax
xT x

will be complex (since the

eigenvectors x are).

Problem 11

For A =

[

3 1
1 3

]

the spectral theorem requires calculating QΛQT . We begin by computing

the eigenvalues of A. We have

∣

∣

∣

∣

3 − λ 1
1 3 − λ

∣

∣

∣

∣

= 0 ⇒ (3 − λ)2 − 1 = 0 .

The roots of this quadratic are given by λ = 2 and λ = 4. For λ = 2 the eigenvectors are
given as the nullspace of

[

1 1
1 1

]

or x1 =

[

1
−1

]

.

For λ = 4 we have the eigenvectors given by the vectors in the nullspace of

[

−1 1
1 −1

]

or x2 =

[

1
1

]

.

Then Q = 1√
2

[

1 1
−1 1

]

and Q−1 = QT = 1√
2

[

1 −1
1 1

]

. Thus we have that

A = QΛQT =
1

2

[

1 1
−1 1

] [

2 0
0 4

] [

1 −1
1 1

]

=
1

2

[

1 1
−1 1

] [

2 −2
4 4

]

.

From which we see that our spectral decomposition of A is given by

A =
1

2

[

1
−1

]

[

2 −2
]

+
1

2

[

1
1

]

[

4 4
]

= 2

(

1√
2

[

1
−1

])(

1√
2

[

2 −2
]

)

+ 4

(

1√
2

[

1
1

])(

1√
2

[

4 4
]

)

.

For the matrix B we perform the same manipulations as for A. First computing the eigen-
values we have

∣

∣

∣

∣

9 − λ 12
12 16 − λ

∣

∣

∣

∣

= 0 ⇒ (9 − λ)(16 − λ) − 144 = 0 .

The roots of this quadratic are given by λ = 0 and λ = 25. From the spectral theorem for
A we have the following decomposition

A = λ1x1x
T
1 + λ2x2x

T
2 + · · ·+ λnxnx

T
n .



This means that all eigenvalues with λ = 0 don’t contribute to the decomposition above.
Thus we only need to the calculate the eigenvector for λ = 25. This is given by the nullspace
of

[

9 − 25 12
12 16 − 25

]

=

[

−16 12
12 −9

]

⇒
[

−4 3
4 −3

]

⇒
[

−4 3
0 0

]

.

From which we see that the second eigenvector is given by x2 = 1
5

[

3
4

]

. Thus the spectral

decomposition of B is given by

B = 25

(

1

5

[

3
4

])(

1

5

[

3 4
]

)

.

Problem 12

For the matrix A =

[

0 6
−6 0

]

, because AT = −A, A must have imaginary eigenvalues.

These are given by the characteristic equation or

∣

∣

∣

∣

−λ 6
−6 −λ

∣

∣

∣

∣

= 0 ⇒ λ2 + 62 = 0 ⇒ λ = ±6i .

Consider the following 3 × 3 skew-symmetric matrix

B =





0 1 2
−1 0 3
−2 −3 0



 ,

which has eigenvalues given by its characteristic equation

∣

∣

∣

∣

∣

∣

−λ 1 2
−1 −λ 3
−2 −3 −λ

∣

∣

∣

∣

∣

∣

= 0 .

Expanding the above determinant by cofactors we see that above is equivalent to

−λ
∣

∣

∣

∣

−λ 3
−3 −λ

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

1 2
−3 −λ

∣

∣

∣

∣

− 2

∣

∣

∣

∣

1 2
−λ 3

∣

∣

∣

∣

= 0 .

or
−λ(λ2 + 9) + 1(−λ+ 6) − 2(3 + 2λ) = 0 .

or simplifying
λ(λ2 + 14) = 0 .

So finally we see that λ = 0 or λ = ±i
√

14.



Problem 15

For Bx = λx is given by
[

0 A
AT 0

] [

y
z

]

= λ

[

y
z

]

.

Which in components gives

Az = λy

ATy = λz .

Part (a): Multiplying the first equation n by AT gives

ATAz = λATy = λ2z ,

is an eigenvalue of ATA.

Part (b): If A = I then λ2 is an eigenvalue I which are only ones. Thus λ = ±1, are the
eigenvalues of B. Since B is of of size four by four we need four eigenvalues and they are
1, 1,−1,−1. The eigenvectors of B can be obtained from the system of above. Thus z must

be on eigenvalues of I and therefore is

[

1
0

]

and
[

0 1
]

. In this same way ATy = λz gives

four systems for y (providing the four eigenvectors of B) the (since AT = I we can drop this
obtaining).

y = −
[

1
0

]

and λ = −1 and z =

[

1
0

]

y = −
[

0
1

]

and λ = −1 and z =

[

0
1

]

y = 1

[

1
0

]

and λ = 1 and z =

[

1
0

]

y = 1

[

1
0

]

and λ = 1 and z =

[

0
1

]

.

Thus the eigenvector/eigenvalue system is given by

Q =









−1 0 1 0
0 −1 0 1
1 0 1 0
0 1 0 1









,

with Diag = diag(−1,−1, 1, 1).



Problem 16

If A =

[

1
1

]

, then from ATAz = λ2z we have that
[

1 1
]

[

1
1

]

z = λ2z , or

2z = λ2z

λ2 = 2

λ = ±
√

2 ,

If z 6= 0 any vector. Now 1 is 1 × 1 from the definition of B. Also z = 0 with any λ will
work. To evaluate y consider ATy = −

√
2 or

[

1 1
]

y = −
√

2 .

so that

y = −
√

2

2

[

1
1

]

.

and consider
[

1 1
]

y = +
√

2, for λ = +
√

2 so

y =

√
2

2

[

1
1

]

.

Finally consider if z = 0 and λ unknown to obtain

[

1 1
]

y = 0 .

so that y =

[

1
−1

]

. Then the eigensystem for B is given by

Q =





− 1√
2

1√
2

1

− 1√
2

1√
2

−1

1 1 0





with Q−1 = QT as required and Λ = diag(−
√

2,+
√

2, 0), where I have taken λ3 = 0 since

B





1
−1
0



 = 0 ·





1
−1
0





Problem 17

Every 2 by 2 symmetric system can be written as

A = λ1x1x
T
1 + λ2x2x

T
2 = λ1P1 + λ2P2 .

here P1 and P2 are projection matrices (when ||x1|| = 1 and ||x2|| = 2).



Part (a): Now we have

P1 + P2 = x1x
T
1 + x2x

T
2 = [x1x2]

[

xT
1

xT
2

]

= QQT = I

since Q is an orthogonal matrix.

Part (b): Also we have

P1P2 = x1x
T
1 (x2x

T
2 ) = x1(x

T
1 x2)x

T
2 = 0

since xT
1 x2 = 0 as x1 and x2 can be made orthogonal (since A is symmetric).

Problem 18

Suppose Ax = λx and Ay = 0y with λ = 0, here y is in the nullspace and x is in the column
space.

xTA = λxT

xTAy = λxT y ,

since Ay = 0 then λxT y = 0 since λ 6= 0, then xTy = 0. Also y in the nullspace and x in
the column space but since A = AT , x in the column space means x in the row space but
the row space and the nullspace are orthogonal so xTy = 0. If the second eigenvector is not
zero say B, then we have Ay = By and Ax = λx so we consider the matrix B = A− βI, so

Bx = (A− βI)x = Ax− βx = λx− βx = (λ− β)x

so
By = (A− βI)y = Ay − βy = λy − βy = 0 .

So we see that x is an eigenvector of B with eigenvalues λ− β, and y is an eigenvector or B
with eigenvalue 0), so x and y are orthogonal by the previous arguments.

Problem 19

For B =





−1 0 1
0 1 0
0 0 d



 which is not symmetric. It has eigenvalues given by

∣

∣

∣

∣

∣

∣

−1 − λ 0 1
0 1 − λ 0
0 0 d− λ

∣

∣

∣

∣

∣

∣

= 0 .

On expanding we have

(−1 − λ)

∣

∣

∣

∣

1 − λ 0
0 d− λ

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

0 1 − λ
0 0

∣

∣

∣

∣

= −(1 + λ)(1 − λ)(d− λ) = 0 .



So λ = −1, d,+1, which has eigenvectors given by (for λ = −1) the nullspace of the following
matrix





0 0 1
0 2 0
0 0 d+ 1



 .

Problem 27

See the Matlab file prob 6 4 27.m. There since A does not have linearly independent
columns, the direct calculation of ATA will not be invertible. Since the projection ma-
trix will project onto the columns of A we can take any set of linearly independent columns
from A and construct the projection matrix using A(ATA)−1AT with A now understood
to contain only linearly independent columns. When this is done Matlab gives computed
eigenvectors with a dot product of exactly 1.0. Maybe there is an error somewhere?

Section 6.5 (Positive Definite Matrices)

Problem 15

Consider xT (A + B)x which by the distributive law equals xTAx+ xTBx. Since both both
A and B are positive definite we know that xTAx > 0 and xTBx > 0 for all x 6= 0. Since
each term individually is positive, the sum xTAx+ xTBx must be positive for all x 6= 0. As
this is the definition of positive definite, A+B is positive definite.

Problem 19

If x is an eigenvector of A then

xTAx = xT (λx) = λxTx .

If A is positive definite then xTAx > 0. From the above we have that

λxTx > 0 or λ > 0

so the eigenvalues of a positive definite matrix must be positive.

Problem 20

Part (a): All the eigenvalues are positive so λ = 0 is not possible, therefore A is invertible



Part (b): To be positive definite a matrix must have positive (non-zero) diagonal elements.
To achieve this for a permutation of the identity we must put all the ones on the diagonal
giving the identity matrix.

Part (c): To be a positive definite projection matrix one must have

xTPx > 0 ,

for every x 6= 0. If P 6= I, there exist non-zero x’s that are in the orthogonal complement
of the column space of P . These x’s give Px = 0. Thus P will only be positive definite if it
has a trivial column space orthogonal complement or P = I.

Part (d): A diagonal matrix as described gives

xTDx > 0

for all x 6= 0 so D would be positive definite.

Part (e): Let A be give by
[

−1 1
1 −2

]

Then |A| = 2 − 1 = 1 > 0, but a = −1 < 0 so A is not positive definite.

Section 6.6 (Similar Matrices)

Problem 1

If B = M−1AM and C = N−1BN we then have that

C = N−1(M−1AM)N = (MN)−1A(MN)

So defining T = MN we have C = T−1AT . This states that if B is similar to A and C is
similar to B then C is similar to A.

Problem 2

If C = F−1AF and also C = G−1BG then F−1AF = G−1BG which gives

B = GF−1AFG−1 = (FG−1)−1A(FG−1)

Defining M = FG−1 we see that B = M−1AM , so if C is similar to A and C is similar to B
then A is similar to B.



Problem 3

We are looking for a matrix M such that A = M−1BM or MA = BM . To find such a
matrix let

M =

[

a b
c d

]

.

then MA = BM is given by

[

a b
c d

] [

1 0
1 0

]

=

[

0 1
0 1

] [

a b
c d

]

or upon multiplying both sides we have

[

a 0
c 0

]

=

[

c d
c d

]

,

which to be satisfied imposes that d = 0 and a = c. If we let a = 1 and b = 2 the selected

matrix becomes M =

[

1 2
1 0

]

. For the next pair of A and B we have that MA = BM or

[

a b
c d

] [

1 1
1 1

]

=

[

1 −1
−1 1

] [

a b
c d

]

or upon multiplying together the matrices on each side we have

[

a+ b a+ b
c+ d c+ d

]

=

[

a− c b− d
−a + c −b+ d

]

,

which after we set each component of the above equal gives the following system of equations

a = −d
b = −c
c = −b
d = −a

Thus we have the restriction that b = −c and a = −d. Picking a = 1 and b = 2 gives

M =

[

1 2
−2 −1

]

For the next pair of A and B we have that MA = BM or

[

a b
c d

] [

1 2
3 4

]

=

[

4 3
2 1

] [

a b
c d

]

or upon multiplying together the matrices on each side we have

[

a+ 3b 2a + 4b
c+ 3d 2c+ 4d

]

=

[

4a+ 3c 4b+ 3d
2a+ c 2b+ d

]

,



which after we set each component of the above equal gives the following system of equations

−3a + 3b− 3c = 0

2a− 3d = 0

2a− 3d = 0

2b− 2c− 3d = 0

This gives the following system for the coefficients a, b, c, and d





−3 3 −3 0
2 0 0 −3
0 2 −2 −3













a
b
c
d









= 0

Performing Gaussian elimination on our coefficient matrix produces




−3 3 −3 0
2 0 0 −3
0 2 −2 −3



 ⇒





2 0 0 −3
−3 3 −3 0
0 2 −2 −3



⇒





2 0 0 −3
0 3 −3 −9/2
0 2 −2 −3





⇒





2 0 0 −3
0 1 −1 −3/2
0 0 0 −6



⇒





2 0 0 0
0 1 −1 0
0 0 0 1



 .

Which implies that d = 0, a = 0, and c = b. If we take b = 1, our matrix M becomes

M =

[

0 1
1 0

]

.

Problem 4

If A has eigenvalues 0 and 1 it has two linearly independent eigenvectors and therefore can be
factorized into A = SΛS−1, which says that A and Λ are similar. Now from Problem 2, since

every matrix with eigenvalues 0 and 1 are similar to Λ =

[

1 0
0 0

]

, then they themselves are

similar.

Problem 5

A1 =

[

1 0
0 1

]

has λ = 1 only.

A2 =

[

0 1
1 0

]

has λ = −1 and λ = +1.

A3 =

[

1 1
0 0

]

has λ = 1 and λ = 0.



A4 =

[

0 0
1 1

]

has λ = 1 and λ = 0.

A5 =

[

1 0
1 0

]

has λ = 1 and λ = 0.

A6 =

[

0 1
0 1

]

has λ = 1 and λ = 0. Thus A3, A4, A5, and A6 are similar.

Problem 7

Part (a): If x is in the nullspace of A, then Ax = 0 so M−1x when multiplied on the left
by M−1AM gives

M−1AM(M−1x) = M−1Ax = M−10 = 0 .

so M−1x is in the nullspace of M−1AM .

Part (b): Since for every vector x in the nullspace of A there exists a vector M−1x in
the nullspace of M−1AM and for every vector x in the nullspace of M−1AM there exists a
vector Mx in the nullspace of A (since M−1AMx must then equal zero). Thus the nullspace
of A and M−1AM have the same number of elements and therefore the dimension of the
nullspace is the same.

Problem 8

No, the order or association of eigenvectors to eigenvalues could be different among the two
matrices. If the association is the same I would think that A = B. With n independent
eigenvectors again the answer is no to the question of A = B. The logic from the previous
discussion still holds. If A has a double eigenvalue of 0 with a single eigenvector proportional
to (1, 0), then

[

0 1
0 0

]

= M−1AM

or

A = M

[

0 1
0 0

]

M−1

with M a matrix the first column of which is the vector [1, 0]T and the second column of
which must be linearly independent from the first column. This gives many possible A’s.
Consider two different M ’s

M1 =

[

1 0
0 1

]

and M2 =

[

1 a
0 b

]

then the inverses are given by

M−1
1 =

[

1 0
0 1

]

and M−1
2 =

1

b

[

b −a
0 1

]



Thus A1 =

[

0 1
0 0

]

and A2 is given by

A2 = M2

[

0 1
0 0

]

M−1
2

=

[

1 a
0 b

] [

0 1
0 0

]

1

b

[

b −a
0 1

]

=
1

b

[

1 a
0 b

] [

0 1
0 0

]

=
1

b

[

0 1
0 0

]

which does not equal A1 unless b = 1. Thus in this case also there is the possibility of two
different matrices with this property.



Chapter 8 (Applications)

Section 8.2 (Markov Matrices and Economic Models)

Problem 13

Since the rows/columns of B are linearly dependent we know that λ = 0 is an eigenvalue.
The other eigenvalue can be obtained by the eigenvalue trace theorem or

−.2 − .3 = 0 + λ2 ⇒ λ2 = −0.5 .

Since λ1 = 0 when eλ1t multiplies x1 we have only a multiplication by 1 to the eigenvector
x1. The factor eλ2t will decay to zero since λ2 < 0 and therefore the steady state for this
ODE is given by the eigenvector x1 corresponding to λ1 = 0, which in this case is give by

x =

[

0.3
0.2

]

.

Therefore the solution, when decomposed in terms of its initial condition, will approach c1x1.

Problem 14

The matrix B = A− I has each column summing to 0. The steady state is the same as that
of A, but with λ1 = 0 and therefore eλ1t = 1.

Problem 15

If each row of a matrix adds to a constant value (say C) this means that the vector
[1, 1, . . . , 1]T is an eigenvector of A, with the corresponding sum, C, the eigenvalue.

Problem 16

The required product is given by

(I −A)(I + A + A2 + A3 + . . .) = I + A + A2 + A3 + . . .−A−A2 − A3 − A4 − . . .

= I

Problem 20

If A is a Markov matrix then λ = 1 is an eigenvalue of A and therefore (I − A)−1 does not
exist, so the given sum cannot sum to (I − A)−1.



Chapter 9 (Numerical Linear Algebra)

Section 9.1 (Gaussian Elimination in Practice)

Problem 5

We wish to count the number of operations required to solve the following banded system
Ux = c with semiband width w/2 or













u1,1 u1,2 u1,3 . . . u1,w/2

u2,2 u2,3 . . . u2,w/2 u2,w/2+1

un−1,n−1 un−1,n

un,n













x = c

so at row i we have non-zero elements in columns j = i, i+1, i+2, . . . i+w/2, assuming that
i+w/2 is less than n. Then a pseudo-code implementation of row-oriented back substitution
would look something like the following

Counting the number of flops this requires, we have approximately two flops for every exe-
cution of the line c(j) = c(j) − U(i, j) ∗ c(j), giving the following expression for the number
of flops

1
∑

i=n









i+1
∑

j=min(n,i+w/2)

2



+ 1



 .

Now since
i+1
∑

j=min(n,i+w/2)

2 = O(2(w/2)) = O(w)

the above sum simplifies (using order notation) to

O(n+ wn) = O(wn) ,

as requested.

Problem 6

If one knows L and U to solve LUx = b requires one forward and one back solve. The back
solve requires O(1/2n2) flops and the forward solve requires the same flop count O(1/2n2).
Thus to solve Ax = b when one has both L and U requires O(n2) operations. To solve for x
when one has A = QR one could first multiply by Q−1 = QT to get Rx = QT b. The product
of QT with b requires O(n2) flops, in addition to the back solve requires to “invert” R. Thus
to solve Ax = b when A = QR requires O((1 + 1/2)n2) = O(3/2n2) flops. Thus it is better
to use the LU decomposition.



Problem 7

To invert an upper triangular matrix R we could repeatedly solve Rx = ei where ei is
the vector of all zeros with a 1 in the i-th component. When i = 1, Rx = e1 requires
only 1 flop, since x2, x3, through xn are all zero. When i = 2, Rx = e2 requires solving
a 2x2 upper triangular matrix and as such requires O(22/2) = O(2) operations. This is
because in this case x3, x4, through xn are all zero. Effectively the leading zeros in the back
substitutions allow many of the unknown xi’s to be explicitly determined. In the same way
solving Rx = e3 requires O(32/2) flops. So in general to solve Rx = ei requires O(i2/2) flops.
Thus to compute the entire inverse of a triangular system R requires

n
∑

i=1

i2

2
=

1

2

n
∑

i=1

i2 =
1

2
O(
n3

3
) = O(

n3

6
) .

Problem 8

To solve Ax = b for x with partial pivoting when,

A =

[

1 0
2 2

]

we would first exchange the first two rows with a permutation matrix P to obtain
[

0 1
1 0

]

A =

[

2 2
1 0

]

⇒
[

2 2
0 −1

]

where we have multiplied PA by E21 defined as

E21 =

[

1 0
−1/2 1

]

so that we now have

E21PA =

[

2 2
0 −1

]

.

Thus we have for our requested factorization of PA = LU the following

PA =

[

0 1
1 0

] [

1 0
2 2

]

=

[

1 0
1/2 1

] [

2 2
0 −1

]

= LU .

For the second example where A is given by

A =





1 0 1
2 2 0
0 2 0





we begin by exchanging the first two rows with a permutation P1 to obtain

P1A =





0 1 0
1 0 0
0 0 1



A =





2 2 0
1 0 1
0 2 0



⇒





2 2 0
0 −1 1
0 2 0



 .



where the last transformation is obtained by multiplying the above matrix by the elementary
elimination matrix E21 given by

E21 =





1 0 0
−1/2 1 0

0 0 1





giving the following result for the matrix product thus far

E21P1A =





2 2 0
0 −1 1
0 2 0



 .

To continue our elimination with partial pivoting we next exchange rows 2 and 3 with a
permutation matrix P2 defined as

P2 =





1 0 0
0 0 1
0 1 0





then our chain of matrix products becomes

P2E21P1A =





2 2 0
0 2 0
0 −1 1



⇒





2 2 0
0 2 0
0 0 1



 .

Which can be obtained from P2E21P1A by multiplying on the left by the elementary elimi-
nation matrix E32 defined by

E32 =





1 0 0
0 1 0
0 1/2 1



 .

In total we then have E32P2E21P1A = U , which in matrix form is the following




1 0 0
0 1 0
0 1/2 1









1 0 0
0 0 1
0 1 0









1 0 0
−1/2 1 0

0 0 1









0 1 0
1 0 0
0 0 1



A =





2 2 0
0 2 0
0 0 1



 .

The next step is to pass the permutation matrices “through” the elementary elimination
matrices so that we can get all elimination matrices on the left and all permutation matrices
on the right. Something like E32Ê21P2P1A = U . This can be performed by recognizing that
the product of P2 and E21 can be factored as

P2E21 =





1 0 0
0 0 1

−1/2 1 0



 =





1 0 0
0 1 0

−1/2 0 1









1 0 0
0 0 1
0 1 0



 = Ê21P2 .

Thus the initial factorization of E32P2E21P1A = U , can be written as E32Ê21P2P1A = U ,
and we then have that P2P1A = Ê−1

21 E
−1
32 U , which in matrix form is given by





1 0 0
0 0 1
0 1 0









0 1 0
1 0 0
0 0 1



A =





1 0 0
0 1 0

1/2 0 1









1 0 0
0 1 0
0 −1/2 1



U .



which after we multiply all matrices in the above we can obtain our final PA = LU decom-
position as





0 1 0
0 0 1
1 0 0



A =





1 0 0
0 1 0

1/2 −1/2 1









2 2 0
0 2 0
0 0 1



 .

This can easily be checked for correctness by multiplying the matrices on both sides and
showing that they are the same.

Problem 9

For the A given

A =









1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1









we can compute specific elements of A−1 from the cofactor expansion formula, which is

A−1 =
1

Det(A)
CT with Cij = (−1)i+jDet(Mij)

with Mij the minor (matrix) of the (i, j)-th element. Then based on the A above we can
investigate if the (1, 3), (1, 4), (2, 4), (3, 1), (4, 1), and (4, 2) elements of A−1 are zero. These
are the elements of A which are zero and one might hope that a zero element in A would
imply a zero element in A−1. We can compute each element in tern. First (A−1)1,3,

(A−1)1,3 =
1

Det(A)
C31 =

1

Det(A)
(−1)3+1Det(M31)

Since every term in the inverse will depend on the value of Det(A) we will compute it now.
We find

Det(A) = +1

∣

∣

∣

∣

∣

∣

1 1 0
1 1 1
0 1 1

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

∣

1 0 0
1 1 1
0 1 1

∣

∣

∣

∣

∣

∣

= 1

[

1

∣

∣

∣

∣

1 1
1 1

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

]

− 1

[

1

∣

∣

∣

∣

1 1
1 1

∣

∣

∣

∣

]

= −
∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

= −1

Then we have that

Det(M31) =

∣

∣

∣

∣

∣

∣

1 0 0
1 1 0
0 1 1

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

1 0
1 1

∣

∣

∣

∣

= 1

so that (A−1)1,3 = 1
−1

(1) = −1 6= 0.



Problem 10

We first find the LU factorization of the given A

A =

[

ǫ 1
1 1

]

obtained without partial pivoting. Note that in a realistic situation on would want to use
partial pivoting since we assume that ǫ≪ 1. Now our A can be reduced to

A =

[

ǫ 1
1 1

]

⇒
[

ǫ 1
0 1 − 1

ǫ

]

,

by multiplying A by the elementary elimination matrix E21 defined as

E21 =

[

1 0
−1

ǫ
1

]

.

Thus we have the direct LU factorization (without partial pivoting) given by

A =

[

ǫ 1
1 1

]

=

[

1 0
1
ǫ

1

] [

ǫ 1
0 1 − 1

ǫ

]

.

Thus our system Ax = b is given by

[

1 0
1
ǫ

1

] [

ǫ 1
0 1 − 1

ǫ

] [

x1

x2

]

=

[

1 + ǫ
2

]

.

Note that for this simple system we could solve Ly = b and then solve Ux = y exactly.
Doing so would not emphasis the rounding errors that are present in this particular exam-
ple. Thus we have chosen to solve this system by Gaussian elimination without pivoting
using the teaching code slu.m. Please see the Matlab file prob 9 1 10.m for the requested
computational experiments. There we see that without pivoting when ǫ is near 10−15 (near
the unit round for double precision numbers) the error in the solution can be on the order
of 10%. When one introduces pivoting (by switching the first two rows in this system) this
error goes away and the solution is computed at an accuracy of O(10−16).

Problem 14

To directly compute QijA would require two steps. First multiplying row i of A by cos(θ)
by row j of A by − sin(θ) and adding these two rows. This step requires 2n multiplications
and n additions. Second, multiply row i by sin(θ) and adding to cos(θ) multiplied by row j.
Again requiring the same number of multiplications and additions as the first step. Thus in
total we require 4n multiplications and 2n additions to compute QijA.



Section 9.2 (Norms and Condition Numbers)

Problem 4

Since the condition number is defined as κ(A) = ||A||||A−1|| from ||AB|| ≤ ||A||||B|| with
B = A−1 we have

||I|| ≤ ||A||||A−1|| = κ(A) ,

but ||I|| = 1 so κ(A) ≥ 1 for every A.

Problem 5

To be symmetric implies the matrix is diagonalizable and A = SΛS−1 becomes A = QΛQT .
Since every eigenvalue must be 1 we have Λ = I and A = QQT = I, so A is actually the
identity matrix.

Problem 6

If A = QR then we have ||A|| ≤ ||Q||||R|| = ||R||. We also have R = QTA so ||R|| ≤
||QT ||||A|| = ||A||. Thus ||A|| = ||R||. To find an example of A = LU such that ||A|| <
||L||||U ||. Let

L =

[

1 0
−2 1

]

and U =

[

2 1
0 2

]

.

then we have

LTL =

[

1 −2
0 1

] [

1 0
−2 1

]

=

[

5 −2
−2 5

]

and

UTU =

[

2 0
1 2

] [

2 1
0 2

]

=

[

4 2
2 5

]

Problem 7

Part (a): The triangle inequality gives ||(A+B)x|| ≤ ||Ax|| + ||Bx||

Part (b): It is easier to prove this with definition three from this section, that is

||A|| = Maxx 6=0
||Ax||
||x|| .



Thus we have

||A+B|| = Maxx 6=0
||(A+B)x||

||x||

≤ Maxx 6=0

( ||Ax|| + ||Bx||
||x||

)

≤ Maxx 6=0
||Ax||
||x|| + Maxx 6=0

||Bx||
||x||

≤ ||A|| + ||B||

Problem 8

From Ax = λx we have that ||Ax|| = ||λx|| = |λ|||x||, but since ||Ax|| ≤ ||A||||x|| we then
have that |λ|||x|| ≤ ||A||||x|| or |λ| ≤ ||A|| as requested.

Problem 9

Defining ρ(A) = |λmax| to find counter examples to the requested norm properties we will
note that from previous discussions A and B cannot have the same eigenvectors or else
λA + λB = λA+B. The requirement of not having the same eigenvalues can be simplified to
the requirement that AB 6= BA. Thus diagonal matrices won’t work for finding a counter
example. Thus we look to the triangular matrices for counter examples. Consider A and B
defined as

A =

[

1 10
0 1

]

and B =

[

1 0
10 1

]

Then since each matrix is triangular the eigenvalues are easy to calculate (they are the
elements on the diagonal) and we have ρ(A) = ρ(B) = 1. Also note that

AB =

[

101 10
10 101

]

6=
[

1 10
10 101

]

= BA

so A and B don’t share the same eigenvectors and ρ(A + B) 6= ρ(A) + ρ(B). Now the sum
of A and B is given by

A+B =

[

1 10
10 1

]

which has eigenvalues given by the solution to λ2 − Tr(A + B)λ + Det(A + B) = 0, which
for this problem has λ1 = −9 and λ2 = 11 so ρ(A +B) = 11. Thus we see that

ρ(A+B) = 11 > ρ(A) + ρ(B) = 1 + 1 = 2

and we have a counterexample for the first condition (the triangle inequality for matrix
norms). For the second condition we have the product AB given by

AB =

[

101 10
10 101

]



which has eigenvalues given by λ1 = 91 and λ2 = 111, thus we have

ρ(AB) = 111 > ρ(A)ρ(B) = 1 ,

providing a contradiction to the second triangle like inequality (this time for matrix multi-
plication). These eigenvalue calculations can be found in the Matlab file prob 9 2 9.m.

Problem 10

Part (a): The condition number of A is defined by κ(A) = ||A||||A−1||, while the condition
number of A−1 is defined by κ(A−1) = ||A−1||||(A−1)−1|| = ||A−1||||A|| = κ(A)

Part (b): The norm of A is given by λmax(A
TA)1/2, and the norm of AT is given by

λmax((A
T )TAT )1/2 = λmax(AA

T )1/2. From the SVD of A we have that ATA = V Σ2V T and
AAT = UΣ2UT , so both ATA and AAT have the same eigenvalues, i.e. the singular values
of A and therefore λmax(A

TA) = λmax(AA
T ), showing that A and AT have the same matrix

norm.

Problem 11

From the definition of the condition number of a matrix κ(A) = ||A||||A−1||, since A is
symmetric ||A|| = Max(|λ(A)|) and A−1 will be symmetric so

||A−1|| = Max(λ(A−1)) = Max

∣

∣

∣

∣

1

λ(A)

∣

∣

∣

∣

=
1

Min(|λ(A)|)

From the A given we will have eigenvalues given by the solution of

λ2 − Tr(A)λ+ Det(A) = 0

which for this problem has solutions given by (these are computed in the Matlab file
prob 9 2 11.m) λ1 = 0.00004999, and λ2 = 2.00005. Thus an estimate of the condition
number is given by

κ(A) =
|λmax|
|λmin|

=
2.00005

0.00004999
= 40000 .

Section 9.3 (Iterative Methods for Linear Algebra)

Problem 15 (eigenvalues and vectors for the 1,-2,1 matrix)

In general, for banded matrices, where the values on each band are constant, explicit formulas
for the eigenvalues and eigenvectors can be obtained from the theory of finite differences. We
will demonstrate this theory for the 1,-2,1 tridiagonal matrix considered here. Here we will



change notation from the book and let the unknown vector, usually denoted by x be denoted
by w. In addition, because we will use the symbol i for the imaginary unit (

√
−1), rather

than the usual “i” subscript convention we will let our independent variable (ranging over
components of the vector x or w) be denoted t. Thus notationally xi ≡ w(t). Converting our
eigenvector equation Aw = λw into a system of equations we have that w(t), must satisfy

w(t− 1) − 2w(t) + w(t+ 1) = λw(t) for t = 1, 2, . . . , N ,

with boundary conditions on w(t) taken such that w(0) = 0 and w(N + 1) = 0. Then the
above equation can be written as

w(t− 1) − (2 + λ)w(t) + w(i+ 1) = 0 .

Substituting w(t) = mt into the above we get

m2 − (2 + λ)m+ 1 = 0 .

Solving this quadratic equation for m gives

m =
(2 + λ) ±

√

(2 + λ)2 − 4

2

From this expression if |2 + λ| ≥ 2 the expression under the square root is positive and the
two roots are both real. With two real roots, the only solution that satisfies the boundary
conditions is the trivial one (w(t) = 0). If |2 + λ| < 2 then m is a complex number and
the boundary conditions can be satisfied non-trivially. To further express this, define θ such
that

2 + λ = 2 cos(θ)

then the expression for m (in terms of θ) becomes

m =
2 cos(θ) ±

√

4 cos(θ)2 − 4

2
= cos(θ) ±

√

cos(θ)2 − 1

or
m = cos(θ) ± i sin(θ) = e±iθ

from the theory of finite differences the solution w(t) is a linear combination of the two
fundamental solutions or

w(t) = Aeiθt +Be−iθt . (4)

Imposing the two homogeneous boundary condition we have the following system that must
be solved for A and B

A +B = 0

Aeiθ(N+1) +Be−iθ(N+1) = 0

Putting the first equation into the second gives

B(eiθ(N+1) − e−iθ(N+1)) = 0

Since B cannot be zero (else the eigenfunction w(t) is identically zero) we must have θ satisfy

sin(θ(N + 1)) = 0



Thus θ(N + 1) = πn or

θ =
πn

N + 1
for n = 1, 2, . . . , N

Tracing θ back to the definition of λ we have that

λ = −2 + 2 cos(θ) = −2 + 2 cos(
πn

N + 1
)

Using the trigonometric identity

1 − cos(ψ) = 2 sin(
ψ

2
)2

we get

λn = −4 sin(
πn

2(N + 1)
)2 for n = 1, 2, 3, . . . , N

For the eigenvalues of the 1,−2, 1 discrete one dimensional discrete Laplacian. To evaluate
the eigenvectors we go back to Eq. 4 using our new definition of θ. We get that

w(t) ∝ eiθt − e−iθt

∝ sin(θt)

∝ sin(
πn

N + 1
t) for n = 1, 2, 3, . . . , N

Here the range of t is given by t = 1, 2, . . . , N . These are the results given in the book when
n = 1 i.e. we are considering only the first eigenvalue and eigenvector.

Problem 18 (an example of the QR method)

If A is given by

A =

[

cos(θ) sin(θ)
sin(θ) 0

]

= QR

with a QR decomposition given by

QR =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

1 x
0 y

]

Then expanding the matrix product above we must have for x and y the following equations
to hold

x cos(θ) − y sin(θ) = sin(θ)

x sin(θ) + y cos(θ) = 0 .

Then solving the second equation for x we have x = −y cos(θ)
sin(θ)

, which when put into the first
equation gives

(−y cos(θ)

sin(θ)

)

cos(θ) − y sin(θ) = sin(θ)



which gives for y the solution of y = − sin(θ)2. Thus we have for x that x = sin(θ) cos(θ).
With these two values our QR decomposition is given by

QR =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

1 sin(θ) cos(θ)
0 − sin(θ)2

]

This gives for RQ product the following

RQ =

[

1 sin(θ) cos(θ)
0 − sin(θ)2

] [

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

=

[

cos(θ) + sin(θ)2 cos(θ) − sin(θ) + sin(θ) cos(θ)2

− sin(θ)3 − cos(θ) sin(θ)2

]

Showing that the (2, 1) entry is now − sin(θ)3 as expected.

Problem 19

If A is an orthogonal matrix itself then the QR decomposition for A has Q = A and R = I
so RQ = IA = A. Thus the QR method for computing the eigenvalues of A will fail.

Problem 20

If A− cI = QR, then let A1 = RQ+ cI, and by multiplying this equation by Q on the left
we obtain

QA1 = QRQ+ cQ .

Next since QR = A− cI, the above QA1 becomes

QA1 = (A− cI)Q+ cQ = AQ

Now multiplying by QT = Q−1 on the left of the above we obtain A1 = Q−1AQ, so A1 is a
similarity transformation of A and therefore has the same eigenvalues as A.

Problem 21

From the given decomposition Aqj = bj−1qj−1 + ajqj + bjqj+1, since the qj are orthogonal
then qT

j qi = δij so multiplying on the left by qT
j gives

qT
j Aqj = 0 + ajq

T
j qj + 0

so we have that aj =
qT
j Aqj

qT
j qj

. Our equation says that AQ = QT where T is a tridiagonal

matrix with main diagonal given by the aj and b on the sub and super diagonal.



Problem 22

See the Matlab code prob 9 3 21.m and lanczos.m.

Problem 23

If A is symmetric, from the shifted QR method and Problem 20 we know that A1 is related
to A by A1 = Q−1AQ. Since Q−1 = QT we have that A1 = QTAQ, so the transpose of this
expression gives

AT
1 = QTATQ = QTAQ = A1

so A1 is symmetric. Next let A1 = RAR−1 an show that A1 is tridiagonal. Since R is
upper triangular R−1 is upper triangular. Then A1 is the product of an upper triangular
matrix times a tridiagonal matrix times an upper triangular matrix. Now a tridiagonal
matrix A, times an upper triangular matrix R−1 gives a matrix that is upper triangular with
an additional nonzero subdiagonal. Such a matrix is called an upper Hessenberg matrix.
Now an upper triangular matrix R times an upper Hessenberg matrix (AR−1) will be upper
Hessenberg, so the entire product RAR−1 is upper Hessenberg. From the first part of this
problem A1 is symmetric and therefore since (A1)ij = 0 for i > j+1 we must have (A1)ij = 0
for j > i+ 1 and A1 is therefore triangular.

Problem 24

Following the hint in the book if |xi| ≥ |xj | for all j, then we have

|
∑

j

aijxj | = |xi||
∑

j

aij
xj

xi

| ≤ |xi|
∑

j

|aij|
∣

∣

∣

∣

xj

xi

∣

∣

∣

∣

≤ |xi|
∑

j

|aij| < |xi| .

Since the sum
∑

j |aij| < 1. Thus if x is an eigenvector with eigenvalue λ we have that the
i-th component of Ax = λx is given by

λxi =
∑

j

aijxj

so taking the absolute value of both sides and using the above we obtain |λxi| < |xi| which
by dividing by |xi| on both sides give |λ| < 1.

Problem 25

For the first A we have that (from the Gershgorin circle theorem) that

|λ− 0.3| ≤ 0.5

|λ− 0.2| ≤ 0.7

|λ− 0.1| ≤ 0.6



Since the sum of the absolute values of the elements along every row is less than 1, from
problem 24 in this book we know that |λ| < 1, and therefore that |λ|max < 1. The three
Gershgorin circles for the first A are given by the above. Thus incorporating the above we
can derive that

−0.2 ≤ λ ≤ 0.8

−0.5 ≤ λ ≤ 0.9

−0.5 ≤ λ ≤ 0.7

Thus all eigenvalues must satisfy −0.5 ≤ λ0.9.

For the second matrix the rows don’t add to something less than 1, so we can’t conclude
that |λ| < 1. But the Gershgorin circle theorem still holds and we can conclude that

|λ− 2| ≤ 1

|λ− 2| ≤ 2

|λ− 2| ≤ 1

Thus the most restrictive condition holds and we have only that the eigenvalues of A can be
bounded by 1 ≤ λ ≤ 3.


