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Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.
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Classifiers Based on Bayes Decision Theory

Notes on the text

Minimizing the average risk

The symbol rk is the expected risk associated with observing an object from class k. This
risk is divided up into parts that depend on what we then do when an object from class k
with feature vector x is observed. Now we only observe the feature vector x and not the true
class label k. Since we must still perform an action when we observe x let λki represent the
loss associated with the event that the object is truly from class k and we decided that it is
from class i. Define rk as the expected loss when an object of type k is presented to us. Then

rk =
M
∑

i=1

λkiP (we classify this object as a member of class i)

=

M
∑

i=1

λki

∫

Ri

p(x|ωk)dx ,

which is the books equation 2.14. Thus the total risk r is the expected value of the class
dependent risks rk taking into account how likely each class is or

r =

M
∑

k=1

rkP (ωk)

=
M
∑

k=1

M
∑

i=1

λki

∫

Ri

p(x|ωk)P (ωk)dx

=

M
∑

i=1

∫

Ri

(

M
∑

k=1

λkip(x|ωk)P (ωk)

)

dx . (1)

The decision rule that leads to the smallest total risk is obtained by selecting Ri to be the
region of feature space in which the integrand above is as small as possible. That is, Ri

should be defined as the values of x such that for that value of i we have

M
∑

k=1

λkip(x|ωk)P (ωk) <

M
∑

k=1

λkjp(x|ωk)P (ωk) ∀j .

In words the index i, when put in the sum above gives the smallest value when compared to
all other possible choices. For these values of x we should select class ωi as our classification
decision.
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Bayesian classification with normal distributions

When the covariance matrices for two classes are the same and diagonal i.e. Σi = Σj = σ2I
then the discrimination functions gij(x) are given by

gij(x) = wT (x− x0) = (µi − µj)
T (x− x0) , (2)

since the vector w is w = µi − µj in this case. Note that the point x0 is on the decision
hyperplane i.e. satisfies gij(x) = 0 since gij(x0) = wT (x0 − x0) = 0. Let x be another point
on the decision hyperplane, then x− x0 is a vector in the decision hyperplane. Since x is a
point on the decision hyperplane it also must satisfy gij(x) = 0 from the functional form for
gij(·) and the definition of w is this means that

wT (x− x0) = (µi − µj)
T (x− x0) = 0 .

This is the statement that the line connecting µi and µj is orthogonal to the decision hy-
perplane. In the same way, when the covariance matrices of each class are not diagonal but
are nevertheless the Σi = Σj = Σ the same logic that we used above states that the decision
hyperplane is again orthogonal to the vector w which in this case is Σ−1(µi − µj).

The magnitude of P (ωi) relative to P (ωj) influences how close the decision hyperplane is
to the respective class means µi or µj , in the sense that the class with the larger a priori
probability will have a “larger” region of Rl assigned to it for classification. For example, if

P (ωi) < P (ωj) then ln
(

P (ωi)
P (ωj)

)

< 0 so the point x0 which in the case Σi = Σj = Σ is given

by

x0 =
1

2
(µi + µj)− ln

(

P (ωi)

P (ωj)

)

µi − µj

||µi − µj||2Σ−1

, (3)

we can write as

x0 =
1

2
(µi + µj) + α(µi − µj) ,

with the value of α > 0. Since µi − µj is a vector from µj to µi the expression for x0 above
starts at the midpoint 1

2
(µi + µj) and moves closer to µi. Meaning that the amount of Rl

assigned to class ωj is “larger” than the amount assigned to class ωi. This is expected since
the prior probability of class ωj is larger than that of ωi.

Notes on Example 2.2

To see the final lengths of the principal axes we start with the transformed equation of
constant Mahalanobis distance of dm =

√
2.952 or

(x′
1 − µ′

11)
2

λ1
+

(x′
2 − µ′

12)
2

λ2
= (

√
2.952)2 = 2.952 .

Since we want the principal axis about (0, 0) we have µ′
11 = µ′

12 = 0 and λ1 and λ2 are the
eigenvalues given by solving |Σ − λI| = 0. In this case, we get λ1 = 1 (in direction v1) and
λ2 = 2 (in direction v2). Then the above becomes in “standard form” for a conic section

(x′
1)

2

2.952λ1
+

(x′
2)

2

2.952λ2
= 1 .
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From this expression we can read off the lengths of the principle axis

2
√

2.952λ1 = 2
√
2.952 = 3.43627

2
√

2.952λ2 = 2
√

2.952(2) = 4.85962 .

Maximum A Posteriori (MAP) Estimation: Example 2.4

We will derive the MAP estimate of the population mean µ when given N samples xk

distributed as p(x|µ) and a normal prior on µ i.e. N(µ0, σ
2
µI). Then the estimate of the

population mean µ given the sample X ≡ {xk}Nk=1 is proportional to

p(µ|X) ∝ p(µ)p(X|µ) = p(µ)

N
∏

k=1

p(xk|µ) .

Note that we have written p(µ) on the outside of the product terms since it should only
appear once and not N times as might be inferred by had we written the product as
∏N

k=1 p(µ)p(xk|µ). To find the value of µ that maximized this we take begin by taking
the natural log of the expression above, taking the µ derivative and setting the resulting
expression equal to zero. We find the natural log of the above given by

ln(p(µ)) +
N
∑

k=1

ln(p(xk|µ)) = −1

2

||µ− µ0||2
σ2
µ

− 1

2

N
∑

k=1

(xk − µ)TΣ−1(xk − µ) .

Then taking the derivative with respect to µ, setting the result equal to zero, and calling
that solution µ̂ gives

− 1

σ2
µ

(µ̂− µ0) +
1

σ2

N
∑

k=1

(xk − µ̂) = 0 ,

were we have assumed that the density p(x|µ) is N(µ,Σ) with Σ = σ2I. When we solve for
µ̂ in the above we get

µ̂ =

1
σ2
µ
µ0 +

1
σ2

∑N
k=1 xk

N
σ2 +

1
σ2
µ

=
µ0 +

σ2
µ

σ2

∑N
k=1 xk

1 +
σ2
µ

σ2N
(4)

Maximum Entropy Estimation

As another method to determine distribution parameters we seek to maximize the entropy
H or

H = −
∫

X
p(x) ln(p(x))dx . (5)

This is equivalent to minimizing its negative or
∫

X p(x) ln(p(x))dx. To incorporate the con-
straint that the density must integrate to one, we form the entropy Lagrangian

HL =

∫ x2

x1

p(x) ln(p(x))dx− λ

(
∫ x2

x1

p(x)dx− 1

)

,
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where we have assumed that our density is non-zero only over [x1, x2]. The negative of the
above is equivalent to

−HL = −
∫ x2

x1

p(x)(ln(p(x))− λ)dx− λ .

Taking the p(x) derivative and setting it equal to zero

∂(−HL)

∂p
= −

∫ x2

x1

[(ln(p)− λ) + p

(

1

p

)

]dx

= −
∫ x2

x1

[ln(p)− λ + 1]dx = 0 .

Solving for the integral of ln(p(x)) we get
∫ x2

x1

ln(p(x))dx = (λ− 1)(x2 − x1) .

Take the x2 derivative of this expression and we find x

ln(p(x2)) = λ− 1 ⇒ p(x2) = eλ−1, .

To find the value of λ we put this expression into our constraint of
∫ x2

x1
p(x)dx = 1 to get

eλ−1(x2 − x1) = 1 ,

or λ− 1 = ln
(

1
x2−x1

)

, thus

p(x) = exp

{

ln

(

1

x2 − x1

)}

=
1

x2 − x1

,

a uniform distribution.

Problem Solutions

Problem 2.1 (the Bayes’ rule minimized the probability of error)

Following the hint in the book, the probability of correct classification Pc is given by

Pc =

M
∑

i=1

P (x ∈ Ri, ωi) ,

since in order to be correct when x ∈ Ri the sample that generated x must come from the
class ωi. Now this joint probability is given by

P (x ∈ Ri, ωi) = P (x ∈ Ri|ωi)P (ωi)

=

(
∫

Ri

p(x|ωi)dx

)

P (ωi) .
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So the expression for Pc then becomes

Pc =

M
∑

i=1

(∫

Ri

p(x|ωi)dx

)

P (ωi)

=
M
∑

i=1

(
∫

Ri

p(x|ωi)P (ωi)dx

)

. (6)

Since this is a sum of M different terms to maximize Pc we will define Ri to be the region
of x where

p(x|ωi)P (ωi) > p(x|ωj)P (ωj) ∀j 6= i . (7)

If we do this, then since in Ri from Equation 7 the expression
∫

Ri
p(x|ωi)P (ωi)dx will be as

large as possible. As Equation 6 is the sum of such terms we will have also maximized Pc.
Now dividing both sides of Equation 7 and using Bayes’ rule we have

P (ωi|x) > P (ωj|x) ∀j 6= i ,

as the multi-class decision boundary, what we were to show.

Problem 2.2 (finding the decision boundary)

Using the books notation where λki is the loss associated with us deciding an object is from
class i when it in fact is from class k we need to compare the expressions given by Equation 1.
Since this is a two class problem M = 2 and we need to compare

l1 = λ11p(x|ω1)P (ω1) + λ21p(x|ω2)P (ω2)

l2 = λ12p(x|ω1)P (ω1) + λ22p(x|ω2)P (ω2) .

Under zero-one loss these become

l1 = λ21p(x|ω2)P (ω2)

l2 = λ12p(x|ω1)P (ω1) .

When l1 < l2 we will classify x as from class ω1 and from class ω2 otherwise. The decision
boundary will be the point x0 where l1 = l2. This later equation (if we solve for the likelihood
ratio) is

p(x|ω1)

p(x|ω2)
=

λ21P (ω2)

λ12P (ω1)
. (8)

If we assume that p(x|ω1) ∼ N (0, σ2) and p(x|ω2) ∼ N (1, σ2) then

p(x|ω1)

p(x|ω2)
=

e−
1
2

x2

σ2

e−
1
2

(x−1)2

σ2

= exp

{

−1

2

1

σ2
(2x− 1)

}

.

Setting this equal to λ21P (ω2)
λ12P (ω1)

and solving for x gives

x =
1

2
− σ2 ln

(

λ21P (ω2)

λ12P (ω1)

)

,

as we were to show.
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Problem 2.3 (an expression for the average risk)

We are told to define the errors ε1,2 as the class conditional error or

ε1 = P (x ∈ R2|ω1) =

∫

R2

p(x|ω1)dx

ε2 = P (x ∈ R1|ω2) =

∫

R1

p(x|ω2)dx .

Using these definitions we can manipulate the average risk as

r = P (ω1)

(

λ11

∫

R1

p(x|ω1)dx+ λ12

∫

R2

p(x|ω1)dx

)

+ P (ω2)

(

λ21

∫

R1

p(x|ω2)dx+ λ22

∫

R2

p(x|ω2)dx

)

= P (ω1)

(

λ11

(

1−
∫

R2

p(x|ω1)dx

)

+ λ12

∫

R2

p(x|ω1)dx

)

+ P (ω2)

(

λ21

∫

R1

p(x|ω2)dx+ λ22

(

1−
∫

R1

p(x|ω2)dx

))

= λ11P (ω1)− λ11ε1P (ω1) + λ12ε1P (ω1) + λ21ε2P (ω2) + λ22P (ω1)− λ22ε2P (ω2)

= λ11P (ω1) + λ22P (ω2) + (λ12 − λ11)ε1P (ω1) + (λ12 − λ22)ε2P (ω2) ,

resulting in the desired expression.

Problem 2.4 (bounding the probability of error)

We desire to show that

Pe ≤ 1− 1

M
.

To do this recall that since
∑M

i=1 P (ωi|x) = 1 at least one P (ωi|x) must be larger than 1
M

otherwise the sum
∑M

i=1 P (ωi|x) would have to be less than one. Now let P (ωi∗|x) be the
Bayes’ classification decision. That is

P (ωi∗|x) = max
i

P (ωi|x) .

From the above discussion P (ωi∗|x) ≥ 1
M
. From this we see that

Pe = 1−max
i

P (ωi|x) ≤ 1− 1

M
=

M − 1

M
,

the desired expression.
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Problem 2.5 (classification with Gaussians of the same mean)

Since this is a two-class problem we can use the results from the book. We compute l12 the
likelihood ratio

l12 =
p(x|ω1)

p(x|ω2)
=

σ2
2

σ2
1

exp

{

−x2

2

(

1

σ2
1

− 1

σ2
2

)}

. (9)

and compare this to the threshold t defined by

t ≡ P (ω2)

P (ω1)

(

λ21 − λ22

λ12 − λ11

)

.

Then if l12 > t, then we classify x as a member of ω1. In the same way if l12 < t then we
classify x as a member of ω2. The decision point x0 where we switch classification is given
by l12(x0) = t or

exp

{

−x2
0

2

(

σ2
2 − σ2

1

σ2
1σ

2
2

)}

=
σ2
1

σ2
2

t .

Solving for x0 we get

x0 = ± 2σ2
1σ

2
2

(σ2
2 − σ2

1)
ln

(

σ2
1P (ω2)

σ2
2P (ω1)

(

λ21 − λ22

λ12 − λ11

))

.

For specific values of the parameters in this problem: σ2
i , P (ωi), and λij the two values for

x0 above can be evaluated. These two values x0 differ only in their sign and have the same
magnitude. For these given values of x0 we see that if |x| ≤ |x0| one class is selected as
the classification decision while if |x| > |x0| the other class is selected. The class selected
depends on the relative magnitude of the parameters σ2

i , P (ωi), and λij and seems difficult
to determine a priori. To determine the class once we are given a fixed specification of these
numbers we can evaluate l12 in Equation 9 for a specific value of x such that |x| ≤ |x0| (say
x = 0) to determine if l12 < t or not. If so the region of x’s given by |x| ≤ |x0| will be
classified as members of class ω1, while the region of x’s where |x| > |x0| would be classified
as members of ω2.

Problem 2.6 (the Neyman-Pearson classification criterion)

Warning: I was not able to solve this problem. Below are a few notes I made while
attempting it. If anyone sees a way to proceed please contact me.

For this problem we want to fix the value of the error probability for class one at a particular
value say ε1 = ε and then we want to minimize the probability of error we make when
classifying the other class. Now recall the definitions of the error probability εi

ε1 =

∫

R2

p(x|ω1)P (ω1)dx ,

and

ε2 =

∫

R1

p(x|ω2)P (ω2)dx .
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We want to find a region R1 (equivalently a region R2) such that ε2 is minimized under the
constraint that ε1 = ε. We can do this using the method of Lagrange multipliers. To use
this method first form the Lagrangian q defined as

q = θ(ε1 − ε) + ε2 .

To determine the classification decision region boundary x0 that minimizes this Lagrangian
let R1 = (−∞, x0) and R2 = (x0,+∞) to get for q

q = θ

(

P (ω1)

∫ +∞

x0

p(x|ω1)dx− ε

)

+ P (ω2)

∫ x0

−∞
p(x|ω2)dx .

To minimized q with respect to x0 requires taking ∂
∂x0

of the above expression and setting
this derivative equal to zero. This gives

∂q

∂x0
= −θP (ω1)p(x0|ω1) + P (ω2)p(x0|ω2) = 0 .

Solving for θ in the above expression we see that it is given by

θ =
P (ω2)p(x0|ω2)

P (ω1)p(x0|ω1)
=

P (ω2|x0)

P (ω1|x0)
.

Problem 2.9 (deriving an expression for PB)

If P (ω1) = P (ω2) =
1
2
, then the zero-one likelihood ratio given by Equation 8 when λ12 =

λ21 = 1, becomes
p(x|ω1)

p(x|ω2)
= 1 .

Taking logarithms of both sides of this expression gives

ln(p(x|ω1))− ln(p(x|ω2)) = 0 .

If we define this scalar difference as u we see that when both class condition densities are
multi-dimensional normal with the same covariance Σ (but with different means µi) that u
becomes

u ≡ ln

(

1

(2π)d/2|Σ|1/2 exp
{

−1

2
(x− µ1)

TΣ−1(x− µ1)

})

− ln

(

1

(2π)d/2|Σ|1/2 exp
{

−1

2
(x− µ2)

TΣ−1(x− µ2)

})

= −1

2
(x− µ1)

TΣ−1(x− µ1) +
1

2
(x− µ2)

TΣ−1(x− µ2)

= −1

2

[

xTΣ−1x− 2µT
1Σ

−1x+ µT
1Σ

−1µ1 − xTΣ−1x+ 2µT
2Σ

−1x− µT
2Σ

−1µ2

]

= (µ1 − µ2)
TΣ−1x− 1

2
µ1Σ

−1µ1 +
1

2
µT
2Σ

−1µ2 .
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Now if x is a sample from class ω1 then from the class density assumptions and the above
expression (it is linear in x) we see that the variable u will be a Gaussian random variable
with a mean m1 given by

m1 = (µ1 − µ2)Σ
−1µ1 −

1

2
µT
1Σ

−1µ1 +
1

2
µT
2Σ

−1µ2

=
1

2
µT
1Σ

−1µ1 − µ2Σ
−1µ1 +

1

2
µT
2Σ

−1µ2

=
1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2) , (10)

and a variance given by

(µ1 − µ2)
TΣ−1ΣΣ−1(µ1 − µ2) = (µ1 − µ2)

TΣ−1(µ1 − µ2) . (11)

In the same way, if x is from class ω2 then u will be Gaussian with a mean m2 given by

m2 = (µ1 − µ2)Σ
−1µ2 −

1

2
µT
1Σ

−1µ1 +
1

2
µT
2Σ

−1µ2

= µT
1Σ

−1µ2 −
1

2
µ1Σ

−1µ1 −
1

2
µT
2Σ

−1µ2

= −1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2) = −m1 , (12)

and the same variance as in the case when x is from ω1 and given by Equation 11. Note that
in terms of the Mahalanobis distance dm between the means µi defined as

d2m ≡ (µ1 − µ2)
TΣ−1(µ1 − µ2) ,

we have m1 = 1
2
d2m = −m2. Also note that the variance of p(u|ωi) given in Equation 11

in terms of the Mahalanobis distance is d2m and so the common standard deviation would
be dm. Thus an expression for the Bayesian error probability, PB, for this classification
problem, can be computed based on the one-dimensional random variable u rather than the
multidimensional random variable x. Since u is a scalar expression for which we know its
probability density we can compute the probability of error for a classification procedure on
x by using u’s density. As just computed the densities p(u|ω1) and p(u|ω2) are Gaussian with
symmetric means (m1 = −m2) and equal variances so the the optimal Bayes classification
threshold value (where classification decisions change) is 0. This makes it easy to calculate
PB the optimal Bayes error estimate using

PB =

∫ 0

−∞
p(u|ω1)P (ω1)du+

∫ ∞

0

p(u|ω2)P (ω2)du .

Since P (ω1) = P (ω1) = 1
2
, and the integrals of the conditional densities are equal (by

symmetry) we can evaluate just one. Specifically, from the discussion above we have

p(u|ω1) =
1√
2πdm

exp

{

−1

2

(

u− 1
2
d2m

dm

)}

,

and we find

PB =
1√
2π

1

dm

∫ 0

−∞
e
− 1

2

(

u−1
2 d2m

dm

)

du .
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Let z =
u− 1

2
d2m

dm
so dz = 1

dm
du and PB becomes

PB =
1√
2π

dm
dm

∫ − 1
2
dm

−∞
e−

z2

2 dz =
1√
2π

∫ +∞

1
2
dm

e−
z2

2 dz , (13)

the result we were to show. Using the cumulative distribution function for the standard
normal, denoted here in the notation of the Matlab function, normcdf, defined as

normcdf(x;µ, σ) =
1√
2πσ

∫ x

−∞
e−

1
2

(t−µ)2

σ2 dt , (14)

we can write the above expression for PB as

PB = 1− normcdf

(

1

2
dm; 0, 1

)

, (15)

which is easier to implement in Matlab.

Problem 2.10-11 (Mahalanobis distances and classification)

Taking the logarithm of the likelihood ratio l12 gives a decision rule to state x ∈ ω1 (and
x ∈ ω2 otherwise) if

ln(p(x|ω1))− ln(p(x|ω2)) > ln(θ) . (16)

If our conditional densities, p(x|ωi), are given by a multidimensional normal densities then
they have functional forms given by

p(x|ωi) = N (x;µi,Σi) ≡
1

(2π)d/2|Σi|1/2
exp

{

−1

2
(x− µi)

tΣ−1
i (x− µi)

}

. (17)

Taking the logarithm of this expression as required by Equation 16 we find

ln(p(x|ωi)) = −1

2
(x− µi)

tΣ−1
i (x− µi)−

d

2
ln(2π)− 1

2
ln(|Σi|)

= −1

2
dm(µi, x|Σi)

2 − d

2
ln(2π)− 1

2
ln(|Σi|) ,

where we have introduced the Mahalanobis distance dm in the above. Our decision rule given
by 16 in the case when p(x|ωi) is a multidimensional Gaussian is thus given by

−1

2
dm(µ1, x|Σ1)

2 − 1

2
ln(|Σ1|) +

1

2
dm(µ2, x|Σ2)

2 +
1

2
ln(|Σ2|) > ln(θ) .

or

dm(µ1, x|Σ1)
2 − dm(µ2, x|Σ2)

2 + ln

( |Σ1|
|Σ2|

)

< −2 ln(θ) . (18)

We will now consider some specializations of these expressions for various possible values of
Σi. If our decision boundaries are given by Equation 18, but with equal covariances, then we

have that ln
(

|Σ1|
|Σ2|

)

= 0 and for decision purposes the left-hand-side of Equation 18 becomes

dm(µ1, x|Σ1)
2 − dm(µ2, x|Σ2)

2 =
(

xTΣ−1x− 2xTΣ−1µ1 + µT
1Σ

−1µ1

)

−
(

xTΣ−1x− 2xTΣ−1µ2 + µT
2Σ

−1µ2

)

= −2xTΣ−1(µ1 − µ2) + µT
1Σ

−1µ1 − µ2Σ
−1µ2 .

11



Using this in Equation 18 we get

(µ1 − µ2)
TΣ−1x > ln(θ) +

1

2
||µ1||2Σ−1 − 1

2
||µ2||2Σ−1 , (19)

for the decision boundary. I believe the book is missing the square on the Mahalanobis norm
of µi.

Problem 2.12 (an example classifier design)

Part (a): The optimal two class classifier that minimizes the probability of error is given
by classifying a point x depending on the value of the likelihood ratio

l12 =
p(x|ω1)

p(x|ω2)
.

When the class conditional probability densities, p(x|ωi), are multivariate Gaussian with
each feature dimension having the same variance σ2

1 = σ2
2 = σ2 the above likelihood ratio l12

becomes

l12 = exp{− 1

2σ2
((x− µ1)

T (x− µ1)− (x− µ2)
T (x− µ2))} .

The value of l12 is compared to an expression involving the priori probabilities P (ωi), and
loss expressions, λki, where

• λki is the loss associated with classifying an object from the true class k as an object
from class i.

The classification decision is then made according to

x ∈ ω1 if l12 =
p(x|ω1)

p(x|ω2)
>

P (ω2)

P (ω1)

(

λ21 − λ22

λ12 − λ11

)

, (20)

and x ∈ ω2 otherwise. To minimize the error probability requires we take λki = 1 − δki
where δki is the Kronecker delta. In this case, and when the priori probabilities are equal the
constant on the right-hand-side of Equation 20 evaluates to 1. Thus our classification rules
is to select class 1 if l12 > 1 and otherwise select class 2. This rule is equivalent to select
x ∈ ω1 if p(x|ω1) > p(x|ω2). Using the above expression the decision rule l12 > 1 simplifies
as follows

(x− µ1)
T (x− µ1)− (x− µ2)

T (x− µ2) < 0 or

−2(µ1 − µ2)
Tx < µT

2 µ2 − µT
1 µ1 or

(µ1 − µ2)
Tx >

µT
1 µ1 − µT

2 µ2

2
.

This is equivalent to Equation 19 when we take θ = 1 and equal features covariances.

12



Part (b): In this case, from the given loss matrix, Λ, we see that λ11 = 0, λ12 = 1, λ21 = 0.5,
λ22 = 0 and the right-hand-side of Equation 20 becomes 1

2
. Then the requirement on the

likelihood ratio is then l12 >
1
2
, which when we take the logarithm of both sides becomes

− 1

2σ2
[(x− µ1)

T (x− µ1)− (x− µ2)
T (x− µ2)] > − ln(2) ,

which simplifies in exactly the same was as before to

(µ1 − µ2)
Tx >

µT
1 µ1 − µT

2 µ2

2
+ σ2 ln(2) .

Experiments at generating and classifying 10000 random feature vectors from each class
using the previous expressions and then estimating the classification error probability can
be found in the Matlab script chap 2 prob 12.m. For Part (a) we can also use the results
of Problem 2.9 on Page 9 namely Equation 15 to exactly compute the error probability PB

and compare it to our empirically computed error probability. When we run that script we
get the following results

empirical P_e= 0.215950; analytic Bayes P_e= 0.214598

showing that the empirical results are quite close to the theoretical. For Part (b) we can
compute the empirical loss associated with using this classifier in the following way. Let
L12 be the number of samples from the first class that are misclassified as belonging to the
second class, L21 be the number of samples from the second class that are misclassified as
belonging to the first class, and N be the total number of samples we classified. Then an
empirical estimate of the expected loss r̂ given by

r̂ =
L12 + 0.5L21

N
.

Problem 2.13 (more classifier design)

Note that since for this problem since the functional form of the class conditional densities,
p(x|ωi), have changed, to construct the decision rule in terms of x as we did for Problem 2.12,
we would need to again simplify the likelihood ratio expression Equation 20. If all we care
about is the classification of a point x we can skip these algebraic transformations and simply
compute l12 = p(x|ω1)

p(x|σ2)
, directly and then compare this to the simplified right-hand-sides of

Equation 20, which for Part (a) is 1 and for Part (b) is 1
2
. Again for Part (a) we can exactly

compute the Bayes error rate using Equation 15. This procedure is implemented in Matlab
script chap 2 prob 13.m. When we run that script we get

empirical P_e= 0.374650; analytic Bayes P_e= 0.373949

again showing that the empirical results are quite close to the theoretical.
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Problem 2.14 (orthogonality of the decision hyperplane)

We want to show that the decision hyperplane at the point x0 is tangent to the constant
Mahalanobis distance hyperellipsoid dm(x, µi) = ci. If we can show that the vector v defined
by

v ≡ ∂dm(x, µi)

∂x

∣

∣

∣

∣

x=x0

.

is orthogonal to all vectors in the decision hyperplane, then since v is normal to the surfaces
dm(x, µi) = ci, we will have a tangent decision hyperplane. The Mahalanobis distance
between µi and a point x is given by

dm(µi, x) =
(

(x− µi)
TΣ−1(x− µi)

)1/2
.

The gradient of dm(µi, x) considered as a function of x is given by

∂dm(µi, x)

∂x
=

1

2

(

(x− µi)
TΣ−1(x− µi)

)−1/2 ∂

∂x

(

(x− µi)
TΣ−1(x− µi)

)

=
1

2
(d2m)

−1/2
(

2Σ−1(x− µi)
)

=
1

dm(µi, x)
Σ−1(x− µi) .

Consider this expression evaluated at x = x0, we would have to evaluate x0 − µi. From the
expression for x0 this is

x0 − µi =
1

2
(−µi + µj)− ln

(

P (ωi)

P (ωj)

)

µi − µj

||µi − µj||Σ−1

,

which is a vector proportional to µi − µj. Thus we see that for a point x on the decision
hyperplane we have that

vT (x− x0) =
1

dm(µi, x0)

(

Σ−1(x0 − µi)
)T

(x− x0)

∝
(

Σ−1(µi − µj)
)T

(x− x0) = 0 ,

since for the case of multidimensional Gaussians with equal non-diagonal covariance matrices,
Σ, the points x on the decision hyperplanes are given by

gij(x) =
(

Σ−1(µi − µj)
)T

(x− x0) = 0 .

The decision hyperplane is also tangent to the surfaces dm(x, µj) = cj. Since to show that
we would then need to evaluate 1

dm(µj ,x)
Σ−1(x− µj) at x = x0 and we would again find that

x0 − µj is again proportional to µi − µj .

Problem 2.15 (bounding the probability of error)

We are told to assume that

p(x|ω1) ∼ N (µ, σ2)

p(x|ω2) ∼ U(a, b) =
{

1
b−a

a < x < b

0 otherwise

14



The minimum probability of error criterion is to classify a sample with feature x as a member
of the class ω1 if

p(x|ω1)

p(x|ω2)
>

P (ω2)

P (ω1)
,

and classify x as from the class ω2 otherwise. Since p(x|ω2) is zero for some values of x we
should write this expression as

p(x|ω1) >
P (ω2)

P (ω1)
p(x|ω2) .

Note that from the above if x /∈ [a, b] since p(x|ω2) = 0 the above expression will be true
and we would classify that point as from class ω1. It remains to determine how we would
classify any points x ∈ [a, b] as. Since p(x|ω2) is a uniform distribution the above inequality
is given by

p(x|ω1) >
P (ω2)

P (ω1)

1

b− a
. (21)

Given that the density p(x|ω1) is a Gaussian we can find any values x0 such that the above
inequality is an equality. That is x0 must satisfy

1√
2πσ

e−
1
2

(x0−µ)2

σ2 =
P (ω2)

P (ω1)

1

b− a
.

When we solve for x0 we find

x0 = µ± σ

√

√

√

√−2 ln

(√
2πσ

b− a

P (ω2)

P (ω1)

)

. (22)

There are at most two real solutions for x0 in the above expression which we denote by
x−
0 and x+

0 , where x−
0 < x+

0 . Depending on the different possible values of x−
0 and x+

0 we
will evaluate the error probability Pe. If neither x−

0 and x+
0 are real then the classification

decision regions in this case become

R1 = (−∞, a) ∪ (b,+∞)

R2 = (a, b) .

Then Pe is given by

Pe = P (ω1)

∫

R2

p(x|ω1)dx+ P (ω2)

∫

R1

p(x|ω2)dx

= P (ω1)

∫ b

a

p(x|ω1)dx <

∫ b

a

p(x|ω1)dx , (23)

since
∫

R1
p(x|ω2)dx = 0 for the R1 region.

Next consider the case where x±
0 are both real. From the expression for x0 given by Equa-

tion 22 this means that

− ln

(√
2πσ

b− a

P (ω2)

P (ω1)

)

> 0 ,
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or
1√
2πσ

>
P (ω2)

P (ω1)

1

b− a
.

What we notice about this last expression is that it is exactly Equation 21 evaluated at
x = µ. Since µ ∈ (x−

0 , x
+
0 ) this means that all points in the range (x−

0 , x
+
0 ) are classified as

belonging to the first class. Thus we have shown that in the case when x±
0 are both real we

have

R1 = (−∞, a) ∪ (b,+∞) ∪ (x−
0 , x

+
0 )

R2 = (a, b) \ (x−
0 , x

+
0 ) .

With these regions Pe is given by

Pe = P (ω1)

∫

R2

p(x|ω1)dx+ P (ω2)

∫

R1

p(x|ω2)dx

= P (ω1)

∫

(a,b)\(x−

0 ,x+
0 )

p(x|ω1)dx+ P (ω2)

∫

(a,b)∩(x−

0 ,x+
0 )

p(x|ω2)dx .

Now for any x between x−
0 and x+

0 we have argued using Equation 21 that P (ω1)p(x|ω1) >
P (ω2)p(x|ω2) and thus we can bound the second term above as

P (ω2)

∫

(a,b)∩(x−

0 ,x+
0 )

p(x|ω2)dx ≤ P (ω1)

∫

(a,b)∩(x−

0 ,x+
0 )

p(x|ω1)dx .

Thus the above expression for Pe is bounded as

Pe ≤ P (ω1)

∫

(a,b)\(x−

0 ,x+
0 )

p(x|ω1)dx+ P (ω1)

∫

(a,b)∩(x−

0 ,x+
0 )

p(x|ω1)dx

= P (ω1)

∫ b

a

p(x|ω1)dx <

∫ b

a

p(x|ω1)dx .

This last expression is exactly like the bound presented for Pe in Equation 23. The next step
is to simplify the expression

∫ b

a
p(x|ω1)dx. Since p(x|ω1) is N (µ, σ2) to evaluate this integral

we make the change of variable from x to z defined as z = x−µ
σ

to get

∫ b

a

p(x|ω1)dx =

∫ b−µ
σ

a−µ
σ

1√
2π

e−
1
2
z2dz

=

∫ b−µ
σ

−∞

1√
2π

e−
1
2
z2dz −

∫ a−µ
σ

−∞

1√
2π

e−
1
2
z2dz

= G

(

b− µ

σ

)

−G

(

a− µ

σ

)

,

the expression we were to show.
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Problem 2.16 (the mean of the expression ∂ ln(p(x;θ))
∂θ

)

We compute this directly

E

[

∂ ln(p(x; θ))

∂θ

]

= E

[

1

p(x; θ)

∂p(x; θ)

∂θ

]

=

∫
(

1

p(x; θ)

∂p(x; θ)

∂θ

)

p(x; θ)dx =

∫

∂p(x; θ)

∂θ
dx

=
∂

∂θ

∫

p(x; θ)dx =
∂

∂θ
1 = 0 ,

as claimed.

Problem 2.17 (the probability of flipping heads)

We have a likelihood (probability) for the N flips given by

P (X ; q) =
N
∏

i=1

qxi(1− q)1−xi .

The loglikelihood of this expression is then

L(q) ≡ ln(P (X ; q)) =

N
∑

i=1

(xi ln(q) + (1− xi) ln(1− q)) .

To find the ML estimate for q, we will maximize ln(P (X ; q)) as a function of q. To do this
we compute

dL

dq
=

N
∑

i=1

(

xi

q
− 1− xi

1− q

)

= 0 .

When we solve for q in the above we find

q =
1

N

N
∑

i=1

xi .

Problem 2.18 (the Cramer-Rao bound)

When we consider the ML estimate of the mean µ of a Gaussian multidimensional random
variable with known covariance matrix Σ we are lead to consider the loglikelihood L(µ) given
by

L(µ) = −N

2
ln((2π)l|Σ|)− 1

2

N
∑

k=1

(xk − µ)TΣ−1(xk − µ) , (24)
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with l = 1 and Σ = σ2 we have the loglikelihood, L(µ), given by

L(µ) = −N

2
ln(2πσ2)− 1

2

N
∑

k=1

(xk − µ)2

σ2
.

To discuss the Cramer-Rao lower bound we begin with the assumption that we have a density
for our samples x that is parametrized via the elements of a vector θ such that x ∼ p(x; θ).
We then consider any unbiased estimator of these density parameters, θ, denoted as θ̂. If
the estimator is unbiased, the Cramer-Rao lower bound then gives us a lower bound on the
variance of this estimator. The specific lower bound on the variance of θ̂ is given by forming
the loglikelihood

L(θ) ≡ ln

(

N
∏

k=1

p(xi; θ)

)

,

and then taking the expectation over partial derivatives of this expression. Namely, construct
the Fisher Matrix which has i, jth element given by

Jij ≡ −E

[

∂2L(θ)

∂θi∂θj

]

.

Then the variance of the θ̂i must be larger than the value of J−1
ii . As an equation this

statement is that
E[(θ̂i − θi)

2] ≥ J−1
ii .

If we happen to find an estimator θ̂i where the above inequality is satisfied as an equality
then our estimator is said to be efficient.

From the above discussion we see that we need to evaluate derivatives of L with respect
to the parameters of the density. We find the first two derivatives of this expression with
respect to µ are given by

∂L

∂µ
=

1

σ2

N
∑

k=1

(xk − µ)

∂2L

∂µ2
=

1

σ2

N
∑

k=1

−1 = −N

σ2
.

Thus we get

−E

[

∂2L

∂µ2

]

=
N

σ2
=

1
σ2

N

=
1

var(µ̂ML)
.

Since we have shown that −E
[

∂2L
∂µ2

]

= µ̂−1
ML the ML estimator for the mean µ̂ML is efficient.

Now consider the case where the unknown parameter of our density is the variance σ2 then
we have

∂L

∂σ2
= −N

2

1

σ2
+

1

2

N
∑

k=1

(xk − µ)2

(σ2)2

∂2L

∂(σ2)2
=

N

2

1

(σ2)2
−

N
∑

k=1

(xk − µ)2

(σ2)3
.
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Recall that E[(xk − µ)2] = σ2 since xk ∼ N(µ, σ2) and we can evaluate the expectation of
the second derivative of L with respect to σ2 as

E

[

∂2L

∂(σ2)2

]

=
N

2

1

(σ2)2
−

N
∑

k=1

σ2

(σ2)3
= −N

2

1

(σ2)2
.

Thus

−E

[

∂2L

∂(σ2)2

]

=
N

2

1

(σ2)2
=

1
(σ2)2

N/2

.

To consider whether the ML estimator of the variance is efficient (i.e. satisfied the Cramer-
Rao lower bound) we need to determine if the above expression is equal to

1

var(σ̂2
ML)

.

Then from Problem 2.19 below the ML estimator of σ2 in the scalar Gaussian case is given
by

σ̂2
ML =

1

N

N
∑

i=1

(xi − µ̂ML)
2 ,

where µ̂ML is the ML estimate of the mean or 1
N

∑N
k=1 xk. Then it can be shown 1 that σ̂2

ML

has a chi-squared distribution with N − 1 degrees of freedom, in the sense that

σ̂2
ML ∼ σ2

N
χ2
N−1

Thus since the expectation and variance of a chi-squared distribution with N − 1 degrees of
freedom is N − 1 and 2(N − 1) respectively we have that

E[σ̂2
ML] =

σ2

N
(N − 1) =

N − 1

N
σ2

var(σ̂2
ML) =

σ4

N2
2(N − 1) =

2(N − 1)

N2
σ4 .

From the given expression for var(σ̂2
ML) we see that

1

var(σ̂2
ML)

6= −E

[

∂2L

∂(σ2)2

]

,

and thus the ML estimate of σ2 is not efficient.

Problem 2.19 (ML with the multidimensional Gaussian)

We recall that the probability density function for the multidimensional Gaussian is given
by

p(x|µ,Σ) = 1

(2π)l/2|Σ|1/2 exp{−
1

2
(x− µ)tΣ−1(x− µ)} .

1http:en.wikipedia.orgwikiNormal distribution
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So the loglikelihood L when given N samples from the above distribution is given by

L = ln(

N
∏

k=1

p(xk|µ,Σ)) =
N
∑

k=1

ln(p(xk|µ,Σ)) .

The logarithm of the probability density function for a multidimensional Gaussian is given
by

ln(p(xk|µ,Σ)) = −1

2
(x− µ)tΣ−1(x− µ)− 1

2
ln((2π)d|Σ|) ,

so that the above becomes

L = −1

2

N
∑

k=1

(xk − µ)tΣ−1(xk − µ)− N

2
ln((2π)d|Σ|) .

To evaluate the maximum likelihood estimates for µ and Σ we would notionally take the
derivative with respect to these two parameters, set the resulting expression equal equal to
zero, and solve for the parameters. To do this requires some “vector” derivatives. Remem-
bering that

∂

∂x
xtMx = (M +M t)x ,

we see that the derivative of L with respect to µ is given by

∂L

∂µ
=

N
∑

k=1

Σ−1(xk − µ) = 0 ,

since Σ−1 is a symmetric matrix. On multiplying by the covariance matrix Σ on both sides
of the above we have

N
∑

k=1

xk − µ ·N = 0 or µ =
1

N

N
∑

k=1

xk .

So the maximum likelihood estimate of µ is just the sample mean as claimed. To evaluate the
maximum likelihood estimate for Σ, we begin by instead computing the maximum likelihood
estimate for Σ−1. In terms of M ≡ Σ−1 we have L given by

L(M) = −1

2

N
∑

k=1

(xk − µ)tM(x− µ)− N

2
ln((2π)d) +

N

2
ln(|M |) .

To evaluate the derivative of the above it is helpful to recall two identities regarding matrix
derivatives. The first involves the logarithm of the determinant and is

∂ ln(|M|)
∂M

= (M−1)t = (Mt)−1 = M−1 ,

since M and M−1 are both symmetric. The second involves the matrix derivative of scalar
form xtMx. We recall that

∂

∂M
(atMb) = abt .

Using these two identities we have that the M derivative of L is given by

∂L

∂M
= −1

2

N
∑

k=1

(xk − µ)(xk − µ)t +
N

2
M−1 .
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When we set this equal to zero and then solve for M−1 we get

M−1 =
1

N

N
∑

k=1

(xk − µ)(xk − µ)t .

Since M−1 = Σ and we evaluate µ at the maximum likelihood solution given above, the
previous expression is what we were to show.

Problem 2.20 (the ML estimate in an Erlang distribution)

The likelihood function for θ given the N measurements xi from the Erlang distribution is

P (X ; θ) =

N
∏

i=1

θ2xie
−θxiu(xi) .

Since u(xi) = 1 for all i this factor is not explicitly needed. From this expression the
loglikelihood of X is given by

L(θ) ≡ ln(P (X ; θ)) =
N
∑

i=1

(2 ln(θ) + ln(xi)− θxi)

= 2 ln(θ)N +
N
∑

i=1

ln(xi)− θ
N
∑

i=1

xi .

To find this maximum of this expression we take the derivative with respect to θ, set the
expression to zero, and solve for θ. We find

dL

dθ
= 0 ,

means
2N

θ
−

N
∑

i=1

xi = 0 .

Which has a solution for θ given by

θ =
2N

∑N
i=1 xi

,

as we were to show.

Problem 2.21 (the ML estimate occurs at a maximum)

When we consider the ML estimate of the mean µ of a Gaussian multidimensional random
variable with known covariance matrix Σ we are lead to consider the loglikelihood L(µ) given
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by Equation 24. We have shown that the first derivative of L(µ) with respect to µ is given
by

∂L(µ)

∂µ
= Σ−1

N
∑

k=1

(xk − µ) = Σ−1
N
∑

k=1

xk −NΣ−1µ .

The second derivative of L(µ) with respect to µ is then

∂2L(µ)

∂µ2
= −NΣ−1 .

Since the matrix Σ is positive definite, we have that Σ−1 is positive definite, and so −NΣ−1

is negative definite. That the matrix second derivative is negative definite is the condition
for the solution to ∂L(µ)

∂µ
= 0 to be a maximum of the objective function L(µ).

Problem 2.22 (p(x|X) is normal with a given mean and covariance)

We assume that once we know the mean µ the sample x is drawn from p(x|µ) ∼ N (µ, σ2)
and that the true mean µ is random itself and given by a random draw from another normal
distribution p(µ) ∼ N (µ0, σ

2
0). Then using Bayes’ rule we can compute what the a posteriori

distribution of µ is after having observed the data set X as

p(µ|X) =
p(X|µ)p(µ)

p(X)
.

As a function of µ the expression p(X) is a constant. Assuming independence of the data
samples xi in X we conclude

p(X|µ) =
N
∏

k=1

p(xk|µ) .

Thus combining all of these expressions we see that

p(µ|X) = αp(µ)
N
∏

k=1

p(xk|µ)

= α

(

1√
2πσ0

exp

{

−1

2

(µ− µ0)
2

σ2
0

}) N
∏

k=1

(

1√
2πσ

exp

{

−1

2

(xk − µ)2

σ2

})

= α′ exp

[

−1

2

(

N
∑

k=1

(

µ2

σ2
− 2xkµ

σ2
+

x2
k

σ2

)

+
µ2 − 2µµ0 + µ2

0

σ2
0

)]

= α′ exp

[

−1

2

(

µ2N

σ2
− 2µ

σ2

N
∑

k=1

xk +
1

σ2

N
∑

k=1

x2
k +

µ2

σ2
0

− 2
µµ0

σ2
0

+
µ2
0

σ2
0

)]

= α′′ exp

[

−1

2

[

(

N

σ2
+

1

σ2
0

)

µ2 − 2

(

1

σ2

N
∑

k=1

xk +
µ0

σ2
0

)

µ

]]

. (25)

Note that we have written p(µ) on the outside of the product terms since it should only
appear once and not N times as might be inferred by had we written the product as
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∏N
k=1 p(µ)p(xk|µ). From Equation 25 we see that the density p(µ|X) is Gaussian, due to

the quadratic expression for µ in the argument of the exponential To find the values of the
mean and variance of this Gaussian define σ2

N to be such that

1

σ2
N

=
N

σ2
+

1

σ2
0

⇒ σ2
N =

1
N
σ2 +

1
σ2
0

=
σ2σ2

0

Nσ2
0 + σ2

, (26)

Now defining x̄ as 1
N

∑N
k=1 xk and take µN as the value that makes the ratio µN/σ

2
N equal

to the coefficient of µ in the argument of the exponential above or

µN

σ2
N

=
Nx̄

σ2
+

µ0

σ2
0

,

or solving for µN we get

µN =

(

σ2σ2
0

Nσ2
0 + σ2

)(

Nx̄

σ2
+

µ0

σ2
0

)

=
Nx̄σ2

0 + µ0σ
2

Nσ2
0 + σ2

=

(

Nσ2
0

Nσ2
0 + σ2

)

x̄+
σ2

Nσ2
0 + σ2

µ0 .

Once we have defined these variables we see that p(µ|X) is given by

p(µ|X) = α′′ exp

{

−1

2

(

µ2

σ2
N

− 2µNµ

σ2
N

)}

= α′′′ exp

{

−1

2

(

µ2 − 2µNµ+ µ2
N

σ2
N

)}

= α′′′ exp

{

−1

2

(µ− µN)
2

σ2
N

}

,

showing that p(µ|X) is a Gaussian with mean µN and variance σ2
N . Next we are asked to

compute p(x|X) where using the above expression for p(µ|X) we find

p(x|X) =

∫

p(x, µ|X)dµ

=

∫

p(x|µ,X)p(µ|X)dµ =

∫

p(x|µ)p(µ|X)dµ

=

∫ ∞

−∞

(

1√
2πσ

e−
1
2

(x−µ)2

σ2

)

(

1√
2πσN

e
− 1

2

(x−µN )2

σ2
N

)

dµ

=
1

2πσσN

∫ ∞

−∞
exp

{

−1

2

[

x2 − 2xµ+ µ2

σ2
+

µ2 − 2µµN + µ2
N

σ2
N

]}

dµ .

Grouping terms in the argument of the exponent gives the expression

−1

2

[(

1

σ2
N

+
1

σ2

)

µ2 − 2

(

x

σ2
+

µN

σ2
N

)

µ+

(

x2

σ2
+

µ2
N

σ2
N

)]

.

In prob 2 22 integration.nb we integrate the above to get

p(x|X) =
1

2πσσN





√
2π

1
√

1
σ2 +

1
σ2
N

e
− 1

2

(x−µN )2

σ2+σ2
N





=
1√

2π
√

σ2 + σ2
N

e
− 1

2

(x−µN )2

σ2+σ2
N ,
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or a Gaussian distribution with mean µN and variance σ2 + σ2
N .

Problem 2.23 (the MAP estimate of µ for a Rayleigh distribution)

The likelihood of observing all N measurements xi from a normal N (µ, σ2), where µ is from
a Rayleigh distribution probability density function is given by

l(µ) =

(

N
∏

i=1

p(xi|µ, σ2)

)

p(µ) ,

where p(µ) is the Rayleigh density p(µ) =
µ exp(−µ2/(2σ2

µ))

σ2
µ

. Then the loglikelihood becomes

L(µ) = ln(l(µ)) = ln(p(µ)) +
N
∑

i=1

ln(p(xi|µ, σ2))

= ln(µ)− µ2

2σ2
µ

− ln(σ2
µ) +

N
∑

i=1

[

ln(
1√
2πσ

)− (xi − µ)2

2σ2

]

= ln(µ)− µ2

2σ2
µ

− ln(σ2
µ) +N ln(

1√
2πσ

)− 1

2σ2

N
∑

i=1

(xi − µ)2 .

Now to maximize L(µ) take the derivative with respect to µ, set the result equal to zero and
solve for µ. We find

dL

dµ
=

1

µ
− µ

σ2
µ

+
1

σ2

N
∑

i=1

(xi − µ) = 0 .

or
(

1

σ2
µ

+
N

σ2

)

µ2 −
(

1

σ2

)

(

1

N

N
∑

i=1

xi

)

µ− 1 = 0 .

Defining the coefficient of µ2 to be R and the coefficient of µ to be Z we have using the
quadratic equation that the ML solution for µ is given by

µ =
Z ±

√
Z2 + 4R

2R
=

Z

2R

(

1±
√

1 +
4R

Z

)

,

the desired result since we must take the positive sign in the above expression since µ > 0.

Problem 2.24 (ML with the lognormal distribution)

For the lognormal distribution the density is given by

p(x) =
1

σx
√
2π

exp

(

−(ln(x)− θ)2

2σ2

)

x > 0 , (27)
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so the loglikelihood of observing N specific samples xi is given by

L(θ) =

N
∑

i=1

ln(p(xi))

= −
N
∑

i=1

(

ln(σxi

√
2π) +

(ln(xi)− θ)2

2σ2

)

.

Then dL
dθ

= 0 is given by

dL

dθ
= −

N
∑

i=1

(ln(xi)− θ)

σ2
= 0 .

Solving for θ we get

θ =
1

N

N
∑

i=1

ln(xi) .

Problem 2.25 (maximum entropy estimation of p(x) with known mean and vari-
ance)

We want to maximize −
∫

p(x) ln(p(x))dx subject to the following constraints

∫

p(x)dx = 1
∫

xp(x)dx = µ
∫

(x− µ)2p(x)dx = σ2 .

This is the same as minimizing the negative of the above entropy expression. Adding the
constraints to form the Lagrangian, our constrained minimization problem becomes

HL =

∫

p(x) ln(p(x))dx− λ1

(
∫

p(x)dx− 1

)

− λ2

(
∫

xp(x)dx− µ

)

− λ3

(
∫

(x− µ)2p(x)dx− σ2

)

.

Taking the p derivative of this expression and setting the result equal to zero gives

∂HL

∂p
=

∫

ln(p(x))dx+

∫

dx− λ1

∫

dx

− λ2

∫

xdx− λ3

∫

(x− µ)2dx = 0 .

We next solve for the expression,
∫

ln(p(x))dx, and then take the derivative of the resulting
expression to get

ln(p(x)) = −(1− λ1 − λ2x− λ3(x− µ)2) .
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Thus p(x) is given by

p(x) = e−(1−λ1−λ2x−λ3(x−µ)2) .

We now need to evaluate the Lagrangian multipliers λ1, λ2, and λ3. To do this we use the
three known constraints which we write in terms of the known functional form for our density
p(x) as

∫

e−(1−λ1−λ2x−λ3(x−µ)2)dx = 1
∫

xe−(1−λ1−λ2x−λ3(x−µ)2)dx = µ
∫

(x− µ)2e−(1−λ1−λ2x−λ3(x−µ)2)dx = σ2 .

We next perform the integrations on the left-hand-side of the above expressions in the Math-
ematica file prob 2 25.nb. We then solve the resulting three equations for λ1, λ2, and λ3.
When we do that we find

λ1 =
1

4
ln

(

e4

4π2σ4

)

= 1− 1

2
ln(2πσ2)

λ2 = 0

λ3 = − 1

2σ2
.

Thus with these values for λ the form of p(x) is

p(x) = e−(1−λ1−λ3(x−µ)2) = e−
1
2
ln(2πσ2)e−

(x−µ)2

2σ2

=
1√
2πσ

e−
(x−µ)2

2σ2 ,

or a Gaussian distribution, N (µ, σ2), as claimed.

Problem 2.26 (the derivation the EM algorithm)

Continuing the discussion in the book on the EM algorithm we will present the derivation of
the algorithm in the case where the density of our samples xk is given by a multidimensional
Gaussian. That is we assume that

p(xk|j; θ) = N(xk|µj, Cj) .

Then following the book, for the E-step of the EM algorithm we take the expectation over
the unobserved sample cluster labels which we denote as P (jk|xk; Θ(t)) as

Q(Θ;Θ(t)) =
N
∑

k=1

J
∑

jk=1

P (jk|xk; Θ(t)) ln(p(xk|jk, θ)Pjk)

=

N
∑

k=1

J
∑

j=1

P (j|xk; Θ(t)) ln(p(xk|j, θ)Pj) . (28)
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From the assumed form for p(xk|j; θ), its natural logarithm is given by

ln(p(xk|j; θ)) = −1

2
ln((2π)l|Cj|)−

1

2
(xk − µj)

TC−1
j (xk − µj) .

With this expression and dropping constants that won’t change the value of the subsequent
maximization, for Q(Θ;Θ(t)) we get the following expression

N
∑

k=1

J
∑

j=1

P (j|xk; Θ(t))

[

−1

2
ln(|Cj|)−

1

2
(xk − µj)

TC−1
j (xk − µj) + ln(Pj)

]

.

For the M-step we maximize over the parameters µj, Cj and Pj the above expression, subject
to the constraint that

∑

j Pj = 1. The classical way to solve this maximization is using the
method of Lagrange multipliers. In that method we would extend Q(Θ;Θ(t)), creating a new
objective function Q′(Θ;Θ(t)), to include a Lagrange multiplier (denoted by λ) to enforce
the constraint that

∑

j Pj = 1 as

Q′(Θ;Θ(t)) =

N
∑

k=1

J
∑

j=1

[P (j|xk; Θ(t)) ln(N(xk|µj, Cj)) + P (j|xj; Θ(t)) ln(Pj)]

− λ

(

J
∑

j=1

Pj − 1

)

. (29)

We then proceed to maximize this expression by taking derivatives with respect to the
variables µj, Cj, and Pj , setting the resulting expressions equal to zero, and solving the
resulting equations for them. We begin by taking ∂

∂µj
of Q′(Θ;Θ(t)). We find

∂

∂µj

Q′(Θ;Θ(t)) =
N
∑

k=1

P (j|xk; Θ(t))

(

1

N(xk|µj, Cj)

)(

∂

∂µj

N(xk|µj, Cj)

)

.

The derivative required in the above is given by

∂

∂µj
N(xk|µj, Cj) = N(xk|µj, Cj)

∂

∂µj

(

−1

2
(xk − µj)

TC−1
j (xk − µj)

)

=
1

2
N(xk|µj, Cj)

(

C−1
j + C−T

j

)

(xk − µj)

= N(xk|µj, Cj)C
−1
j (xk − µj) . (30)

Thus
∂

∂µj
Q′(Θ;Θ(t)) =

N
∑

k=1

P (j|xk; Θ(t))C−1
j (xk − µj) . (31)

Setting this expression equal to zero and solving for µj we have

µj =

∑N
k=1 P (j|xk; Θ(t))xk
∑N

k=1 P (j|xk; Θ(t))
. (32)

Next we take the derivative of Q′(Θ;Θ(t)) with respect to Cj . Which we will evaluate using
the chain rule transforming the derivative with respect to Cj into one with respect to C−1

j .
We have

∂

∂Cj

Q′(Θ;Θ(t)) =
∂

∂Cj
−1Q

′(Θ;Θ(t))
∂Cj

−1

∂Cj

.
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Thus if ∂
∂Cj

−1Q
′(Θ;Θ(t)) = 0, we have that ∂

∂Cj
Q′(Θ;Θ(t)) = 0 also. From this we can look

for zeros of the derivative by looking for values of Cj where the derivative of the inverse of
Cj vanishes. Taking the derivative of Q′(Θ;Θ(t)) with respect to Cj

−1 we find

∂

∂Cj
−1Q

′(Θ;Θ(t)) =

N
∑

k=1

P (j|xk; Θ(t))
∂

∂Cj
−1 ln(N(xk|µj, Cj))

=

N
∑

k=1

P (j|xk; Θ(t))

(

1

N(xk|µj, Cj)

)

∂

∂Cj
−1N(xk|µj, Cj) .

From which we see that as a sub problem we need to compute ∂
∂Cj

−1N(xk|µj, Cj), which we

now do

∂

∂Cj
−1N(xk|µj, Cj) =

∂

∂Cj
−1

(

1

(2π)l|Cj|1/2
exp

{

−1

2
(xk − µj)

TCj
−1(xk − µj)

})

=
1

(2π)l
∂

∂Cj
−1

(

1

|Cj|1/2
)

exp

{

−1

2
(xk − µj)

TCj
−1(xk − µj)

}

+
1

(2π)l
1

|Cj|1/2
∂

∂Cj
−1 exp

{

−1

2
(xk − µj)

TCj
−1(xk − µj)

}

,

using the product rule. To evaluate the first derivative in the above we note that

∂

∂Cj
−1

(

1

|Cj|1/2
)

=
∂

∂Cj
−1 |Cj

−1|1/2

=
1

2
|Cj

−1|−1/2 ∂

∂Cj
−1 |Cj

−1| ,

but using the following matrix derivative of a determinant identity

∂

∂X
|AXB| = |AXB|(X−1)T = |AXB|(XT )−1 , (33)

with A = B = I we have ∂
∂X

|X| = |X|(X−1)T and the derivative ∂
∂Cj

−1

(

1
|Cj |1/2

)

becomes

∂

∂Cj
−1

(

1

|Cj|1/2
)

=
1

2
|Cj

−1|−1/2|Cj
−1|Cj

T

=
1

2

1

|Cj|1/2
Cj .

Next using the matrix derivative of an inner product is given by

∂

∂X
(aTXb) = abT , (34)

we have the derivative of the inner product expression

∂

∂Cj
−1

{

−1

2
(xk − µj)

TCj
−1(xk − µj)

}

= −1

2
(xk − µj)(xk − µj)

T .
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Putting everything together we find that

∂

∂Cj
−1N(xk|µj, Cj) =

1

2

1

(2π)l
1

|Cj|1/2
exp

{

−1

2
(xk − µj)

TCj
−1(xk − µj)

}

Cj

− 1

2
N(xk|µj, Cj)(xk − µj)

T (xk − µj)

=
1

2
N(xk|µj, Cj)

(

Cj − (xk − µj)(xk − µj)
T
)

. (35)

So combining these subproblems we finally find

∂

∂Cj
−1 ln(N(xk|µj, Cj)) =

1

2

(

Cj − (xk − µj)(xk − µj)
T
)

. (36)

Using this in the expression for ∂
∂Cj

−1Q′(Θ;Θ(t)) = 0, we find the equation

N
∑

k=1

P (j|xk; Θ(t))Cj −
N
∑

k=1

P (j|xk; Θ(t))(xk − µj)(xk − µj)
T = 0 .

Which when we solve for Cj we find

Cj =

∑N
k=1 P (j|xk; Θ(t))(xk − µj)(xk − µj)

T

∑N
k=1 P (j|xk; Θ(t))

. (37)

Warning: The above has µj meaning the old value of µj rather than µj(t + 1) the newly
computed value via Equation 32. I’m a bit unclear hear as to whether or not this matters,
is a typo, or something else. If anyone has any information on this please contact me.
Chapter 14 of this book also discusses the expectation maximization algorithm and has an
equivalent formulation to the one above. In situations like this if we replace µj with µj(t+1)
we get faster convergence.

To complete a full maximization of Q′(Θ;Θ(t)) with we still need to determine Pj the priori

probabilities of the k-th cluster. Setting ∂Q′(Θ;Θ(t))
∂Pj

= 0 gives

N
∑

k=1

P (j|xk; Θ(t))

Pj
− λ = 0 ,

or

λPj =

N
∑

k=1

P (j|xk; Θ(t)) .

Summing this equation over j for j = 1 to J since
∑J

j=1 Pj = 1 we have

λ =
J
∑

j=1

N
∑

j=1

P (j|xk; Θ(t)) .

This can be simplified by observing that

λ =

J
∑

j=1

N
∑

k=1

P (j|xk; Θ(t)) =

N
∑

k=1

J
∑

j=1

P (j|xk; Θ(t)) =

N
∑

k=1

1 = N .
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Where we have used the fact that P (j|xk; Θ(t)) is a probability that the sample xk is from
cluster j. Since there are 1, 2, . . . , J clusters summing this probability gives one. Thus

Pj =
1

N

N
∑

k=1

P (j|xk; Θ(t)) . (38)

Combining this expression with Equations 32 and 37 gives the EM algorithm.

Problem 2.27 (consistency of the counting density)

We are told that k is distributed as a binomial random variable with parameters (P,N).
This means that the probability we observe the value of k samples in our interval of length
h after N trials is given by

p(k) =

(

N
k

)

P k(1− P )N−k for 0 ≤ k ≤ N .

We desire to estimate the probability of success, P , from the measurement k via the ratio k
N
.

Lets compute the expectation and variance of this estimate of P . The expectation is given
by

E

[

k

N
|P
]

=
1

N
E[k|P ] .

Now since k is drawn from a binomial random variable with parameters (N,P ), the expec-
tation of k is PN , from which we see that the above equals P (showing that our estimator
of P is unbiased). To study the conditional variance of our error (defined as e = P̂ − P )
consider

σ2
e(P ) = E[(e− E[e])2|P ]

= E[

(

1

N
k − P

)2

|P ] =
1

N2
E[(k −NP )2|P ]

=
1

N2
(NP (1− P )) =

P (1− P )

N
. (39)

In the above we have used the result that the variance of a binomial random variable with
parameters (N,P ) is NP (1−P ). Thus we have shown that the estimator k

N
is asymptotically

consistent.

Problem 2.28 (experiments with the EM algorithm)

See the MATLAB file chap 2 prob 28.m for an implementation of this problem. When that
code is run we get the following output

mu_true = 1.000000; 3.000000; 2.000000;
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mu_j = 1.016347; 2.993095; 2.040666;

s2_true = 0.100000; 0.100000; 0.200000;

sigma2_j= 0.096464; 0.106047; 0.256857;

p_true = 0.250000; 0.500000; 0.250000;

P_j = 0.239808; 0.499241; 0.260951;

Note that when we run the EM algorithm, and it converges to the true solution, the actual
ordering of the elements in the estimated vectors holding the estimated values of µ, σ2,
and Pj does not have to match the ordering of the “truth”. Thus in the above output we
explicitly permute the order of the estimated results to make the estimates line up with the
true values.

Problem 2.30 (nearest neighbors classification)

See the MATLAB file chap 2 prob 30.m for an implementation of this problem. When that
code is run and we classify the test samples using the nearest neighbor classifier and for
various numbers of nearest neighbors we get the following probability of error output

P_e 1NN= 0.360000;

P_e 2NN= 0.320000;

P_e 3NN= 0.300000;

P_e 4NN= 0.320000;

P_e 5NN= 0.310000;

P_e 6NN= 0.330000;

P_e 7NN= 0.310000;

P_e 8NN= 0.300000;

P_e 9NN= 0.260000;

P_e 10NN= 0.320000;

P_e 11NN= 0.310000;

P_B= 0.214598

It can be shown that
P3NN ≈ PB + 3P 2

B , (40)

and thus since PB ≈ 0.21 we see that P3NN ≈ 0.35275 using the above formula. This value
is in the same ballpark as the empirical value obtained above.
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Figure 1: Left: Parzen window probability density estimation with N = 32 points. Center:
Parzen window probability density estimation with N = 256 points. Right: Parzen window
probability density estimation with N = 5000 points.

Problem 2.31 (Parzen window density estimation)

Parzen window density estimation with N (0, 1) for a kernel function, φ, means that we take

φ(x) = 1√
2π
e−

x2

2 and then estimate our density p(x) for l dimensional features vectors using

p̂(x) =
1

hl

(

1

N

N
∑

i=1

φ

(

xi − x

h

)

)

. (41)

In this problem l, the dimension of the feature vectors, is 1. See the MATLAB file chap 2 prob 31.m

for an implementation of this problem. When that code is run we get the plots shown in
Figure 1. Each plot is the density estimate based on N points where N is 32, 256, or 5000
and for h given by 0.05 and 0.2.

Problem 2.32 (k nearest neighbor density estimation)

For k-nearest neighbor density estimation we approximate the true density p(x) using sam-
ples via

p̂(x) =
k

NV (x)
, (42)

where in this expression k and N are fixed and V (x) is the volume of a sphere around
the point x such that it contains the k nearest neighbors. For 1-dimensional densities this
“volume” is a length. Thus the procedure we implement when given a point x where we
want to evaluate the empirical density is to

1. Find the k nearest neighbors around the point x.
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Figure 2: k nearest neighbor density estimation with k = 32, 64, and 256 points.

2. Compute V (x) as the length between the largest and smallest points in the above set.

See the MATLAB file chap 2 prob 32.m for an implementation of this problem. When that
code is run we get the plots shown in Figure 2. Note that these density estimates seems very
noisy and this noise decreases as we take more and more neighbors.
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Linear Classifiers

Notes on the text

Notes on Linear Discriminant Functions: the derivation of d

In two-dimensions, our weight vector and feature vectors have two components so wT =
(w1, w2) and our discriminant function g(x) is given by

g(x) = g(x1, x2) = w1x1 + w2x2 + w0 .

Then g(x) = 0 is a line that will intersect the x1 axis at

x2 = 0 ⇒ w1x1 + w0 = 0 or x1 = −w0

w1
,

and the x2 axis at

x1 = 0 ⇒ w2x2 + w0 = 0 or x2 = −w0

w2
.

Plotting a line that goes though the points (0,−w0

w2
) and (−w0

w1
, 0) and assuming w0 < 0 gives

Figure 3.1 presented in the book. We now want to derive the expressions for d and z given
in this section. To do that lets denote P be the point on the decision line that is closest to
the origin and then d be the distance from the origin to this point P . Since P is the closest
point to (0, 0) the vector from (0, 0) to P must be orthogonal to the decision line i.e. parallel
to the vector wT = (w1, w2). Thus we seek to determine the value of d such that the point
that is d away from (0, 0) and in the direction of of w i.e.

dŵ = d

(

w1
√

w2
1 + w2

2

,
w2

√

w2
1 + w2

2

)

,

is on the discriminant line g(x1, x2) = 0. When we put in the above two components for this
point into g(x1, x2) = 0 we get that

dw2
1

√

w2
1 + w2

2

+
dw2

2
√

w2
1 + w2

2

+ w0 = 0 .

When we solve for d in the above expression we get

d = − w0
√

w2
1 + w2

2

.

Since we are assuming that w0 < 0 we see that d can also be written as

d =
|w0|

√

w2
1 + w2

2

. (43)

We can also obtain this formula using similar triangles. If we note that the “big” triangle

with vertices’s (0, 0),
(

−w0

w1
, 0
)

,
(

−w0

w2
, 0
)

is similar to the “small” triangle with vertices’s P ,
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(

−w0

w1
, 0
)

, and (0, 0) in that they are both right triangles and have a common acute angle

(with vertex at
(

−w0

w1
, 0
)

). The ratio of the hypotenuse to leg of the triangle opposite the

common acute angle must be equal in both triangle or

−w0

w1

d
=

√

(

0 + w0

w1

)2

+
(

0 + w0

w2

)2

−w0

w2

.

When we solve this expression for d we get

d =
w2

0

w1w2

1
√

(

w0

w1

)2

+
(

w0

w2

)2
=

|w0|
√

w2
1 + w2

2

,

the same expression as before.

Notes on Linear Discriminant Functions: the derivation of z

We now seek to derive the expression for z, the distance from any point not on the decision
surface to the decision surface. Let x be a point not on the decision hyperplane and then
define z to be the distance from x to the closest point on the decision line. In the earlier part
of these notes we derived the expression for z when the point not on the decision line was
the point (0, 0). Using this it might be easier to compute the value of z if we first translate
the decision line so that it passes thought the origin. To do that we subtract dŵ from every
point in the R

2 plane, where

d =
|w0|

√

w2
1 + w2

2

and ŵ =

(

w1
√

w2
1 + w2

2

,
w2

√

w1
1 + w2

2

)

.

Then the new coordinates, x̃, are then given by

x̃ = x− dŵ .

In the translated space where our decision surface passes though the origin the points x̃ can
be decomposed into a component in the direction of ŵ and in a direction perpendicular to
ŵ which we denote ŵ⊥. The vector ŵ⊥ has components that are related to tho of ŵ as

ŵ⊥ =

(

− w2
√

w2
1 + w2

2

,
w1

√

w1
1 + w2

2

)

.

Then given these two vectors we can decompose x̃ as

x̃ = (ŵT x̃)ŵ + (ŵT
⊥x̃)ŵ⊥ .

Then the distance from a point x̃∗ to the line wT x̃ = 0 or z will be the absolute value of
the coefficient of the vector ŵ above and (assuming it is positive meaning that x̃∗ is “to the
right” of the decision line) we find

z = ŵT x̃∗ .
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In terms of the original variables we have z given by

z = ŵT (x∗ − dŵ) = ŵTx∗ − d

=
w1x

∗
1 + w2x

∗
2

√

w2
1 + w2

2

− |w0|
√

w2
1 + w2

2

.

If w0 < 0 then |w0| = −w0 and the above becomes

z =
w1x

∗
1 + w2x

∗
2 + w0

√

w2
1 + w2

2

=
g(x)

√

w2
1 + w2

2

.

Which is the expression we wanted to show.

Notes on the Perceptron Algorithm

If x ∈ ω1 and x is misclassified by the perceptron algorithm then wTx < 0 so if we take
δx = −1 then the product δx(w

Tx) > 0. If x ∈ ω2 and is misclassified then the product
wTx > 0 so if we take δx = +1 then δx(w

Tx) > 0. In all cases, where a sample x is
misclassified, each term in the perceptron cost function

J(w) =
∑

x∈Y
δxw

Tx , (44)

is positive.

Notes on the Proof of the Perceptron Algorithm Convergence

When we begin with the gradient decent algorithm applied to the perceptron cost function
J(w) given by Equation 44. This algorithm is

w(t+ 1) = w(t)− ρt
∑

x∈Y
δxx ,

where Y is the set samples misclassified by the current weight vector w(t). Since the set Y
depends on the current weight vector w(t) we could indicate this with the notation Y (t) if
desired. We would like to now show that this algorithm converges to a vector that is parallel
to the optimal vector w∗. A vector parallel to w∗ is any vector of the form αw∗ and this is
what we subtract from w(t+ 1) above to get

w(t+ 1)− αw∗ = w(t)− αw∗ − ρt
∑

x∈Y
δxx .

Then squaring both sides of the above we get

||w(t+ 1)− αw∗||2 = ||w(t)− αw∗||2 + ρ2t ||
∑

x∈Y
δxx||2 − 2ρt

∑

x∈Y
δx(w(t)− αw∗)Tx .
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Since the vector w(t) is not optimal it will misclassify some sample points. Thus the negative
of the perceptron cost function J(w) or −∑x∈Y δxw(t)

Tx is a negative number. This gives
the upper bound on ||w(t+ 1)− αw∗||2 of

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2t ||
∑

x∈Y
δxx||2 + 2ρtα

∑

x∈Y
δxw

∗Tx .

Now since the expression only ||∑x∈Y δxx||2 depends on the training data and not on the
algorithm used to compute w(t) we can introduce β2 such that

β2 ≡ max
Y ′

||
∑

x∈Y ′

δxx||2 ,

thus β2 is largest possible value for the given sum. At this point we have

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2tβ
2 + 2ρtα

∑

x∈Y
δxw

∗Tx .

Since w∗ is a solution vector from how x is classified and the definition of δx as discussed on
Page 36 we know that

∑

x∈Y δxw
∗Tx < 0, since each term in the sum is negative. As with

the introduction of β2 the above sum is over training points so we can introduce γ as

γ ≡ max
Y ′

∑

x∈Y ′

δxw
∗Tx < 0 .

For any fixed set Y we then have

∑

x∈Y
δxw

∗Tx < γ < 0 ,

by the definition of γ. Now since γ < 0 we can write γ = −|γ| and thus have

∑

x∈Y
δxw

∗Tx < γ = −|γ| ,

Using this result we thus are able to bound ||w(t+ 1)− αw∗||2 as

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2tβ
2 − 2ρtα|γ| . (45)

Up to this point we have been studying the distance between w(t) and an arbitrary vector
αw∗ that is parallel to w∗. Lets now consider how the distance between w(t) and αw∗ behaves

when α = β2

2|γ| . Using that value in the above expression we find that

ρ2tβ
2 − 2ρtα|γ| = ρ2tβ

2 − ρtβ
2 = β2(ρ2t − ρt) ,

and the bound above become

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + β2(ρ2t − ρt) .
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Figure 3: The decision surface produced when running the script pocket algorithm.m. Note
that this data is not linearly separable.

Writing out these expressions for t = 0, 1, 2, . . . gives

||w(1)− αw∗||2 ≤ ||w(0)− αw∗||2 + β2(ρ20 − ρ0)

||w(2)− αw∗||2 ≤ ||w(1)− αw∗||2 + β2(ρ21 − ρ1)

≤ ||w(0)− αw∗||2 + β2(ρ20 − ρ0) + β2(ρ21 − ρ1)

= ||w(0)− αw∗||2 + β2

(

1
∑

k=0

ρ2k −
1
∑

k=0

ρk

)

||w(3)− αw∗||2 ≤ ||w(2)− αw∗||2 + β2(ρ22 − ρ2)

≤ ||w(0)− αw∗||2 + β2

(

1
∑

k=0

ρ2k −
1
∑

k=0

ρk

)

+ β2(ρ22 − ρ2)

≤ ||w(0)− αw∗||2 + β2

(

2
∑

k=0

ρ2k −
2
∑

k=0

ρk

)

...

||w(t+ 1)− αw∗||2 ≤ ||w(0)− αw∗||2 + β2

(

t
∑

k=0

ρ2k −
t
∑

k=0

ρk

)

. (46)

Notes on the Pocket algorithm

See the MATLAB script pocket algorithm.m for code that implements the Pocket Algo-
rithm. An example decision surface when this script is run is given in Figure 3.

38



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Kesler construction computed decision line

Figure 4: The three decision lines produced when running the script dup example 3 2.m.

Duplication of Example 3.2 (Kesler’s construction)

See the MATLAB script dup example 3 2.m for code that duplicates the numerical results
from this example. When this code is run it produces a plot like that shown in Figure 4.
The previous command also verifies that wT

j xi > wT
k xi, when xi ∈ ωj by computing these

inner products. We find

class= 1; w1^T x= 11.4449; w2^T x= -4.5025; w3^T x= -2.6150

class= 1; w1^T x= 21.7109; w2^T x= -7.8885; w3^T x= -6.2647

class= 1; w1^T x= 16.1638; w2^T x= -2.3232; w3^T x= -8.0956

class= 2; w1^T x= 0.3508; w2^T x= 6.6281; w3^T x= -6.2770

class= 2; w1^T x= -5.1963; w2^T x= 12.1934; w3^T x= -8.1079

class= 2; w1^T x= -0.4773; w2^T x= 14.3727; w3^T x= -13.5885

class= 3; w1^T x= 2.0070; w2^T x= -8.8611; w3^T x= 8.3461

class= 3; w1^T x= 7.5540; w2^T x= -14.4264; w3^T x= 10.1771

class= 3; w1^T x= -2.7120; w2^T x= -11.0404; w3^T x= 13.8267

verifying that indeed we are correctly classifying all of the training data.

Notes on Mean Square Error Estimation

Consider the objective function J(w) given by

J(w) = E[|y − xTw|2] ,
where the expectation in the above is taken with respect to the joint density (X, Y ). To
evaluate this we will use the idea of iterated expectation where

E[X ] = E[E[X|Y ]] .
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Since the Y variable is discrete Y = ±1 and once Y is chosen the x density is conditional
on the value of y we have that J(w) is given by

J(w) = E[|y − xTw|2]
= E

[

|y − xTw|2|Y = −1
]

P (Y = −1) + E
[

|y − xTw|2|Y = +1
]

P (Y = +1)

= E
[

| − 1− xTw|2|Y = −1
]

P (ω1) + E
[

|1− xTw|2|Y = +1
]

P (ω2)

= P (ω1)

∫

(1 + xTw)2p(x|ω1)dx+ P (ω2)

∫

(1− xTw)2p(x|ω2)dx . (47)

Notes on the Multiclass Generalization

The text states “lets define y = [y1, . . . , yM ] for a given vector x” but does not explicitly say
how to define it. If we assume that the sample x ∈ ωj then the vector y should be all zeros
except for a single one in the jth position. This procedure of encoding the class label as a
position in a vector is known as position encoding.

Duplication of Example 3.3

See the MATLAB script dup example 3 3.m for code that duplicates the numerical results
from this example.

Notes on support vector machines in the linearly separable case

The book discusses the motivation for the support vector machine optimization problem in
the case when the points are linearly separable. This problem is to compute the parameters,
w and w0 of the decision hyperplane wTx+ w0 = 0 such that

minimize J(w) ≡ 1

2
||w||2 (48)

subject to yi(w
Txi + w0) ≥ 1 for i = 1, 2, · · · , N . (49)

This is a minimization problem with inequality constraints. The necessary conditions for its
minimum are given by the Karush-Kuhn-Tucker (KKT) conditions. To introduce these we
need to form the Lagrangian L given by

L(w,w0, λ) =
1

2
wTw−

N
∑

i=1

λi[yi(w
Txi + w0)− 1] . (50)

Then the KKT conditions for the above problem are:

• ∂L
∂w

= 0 and ∂L
∂w0

= 0.
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• λi ≥ 0 for i = 1, 2, · · · , N
• λi(yi(w

Txi + w0)− 1) = 0 for i = 1, 2, · · · , N .

We now need to use these conditions to find the optimum. One way to do this that might
work for small problems is to assume some of the constraints are active i.e.

yi(w
Txi + w0)− 1 = 0 ,

for some set of i’s. This is equivalent to fixing/determining the support vectors. Then we
solve the resulting equations for the remaining Lagrange multipliers λi and verify that they
are in fact non-negative.

We can also solve this optimization problem if we recognize that J(w) is a strictly convex
function and apply the Wolfe Dual representation to this problem. This states that the
above minimization problem is equivalent to the following maximization problem

maximize L(w, w0, λ) (51)

subject to
∂L
∂w

= 0 and
∂L
∂w0

= 0 (52)

and λi ≥ 0 for i = 1, 2, · · · , N . (53)

To use this representation we take the form for L(w, w0, λ) given above and find that ∂L
∂w

= 0
gives

∂L
∂w

= w−
N
∑

i=1

λiyixi = 0 , (54)

while ∂L
∂w0

= 0 is

∂L
∂w0

= −
N
∑

i=1

λiyi = 0 . (55)

Putting these two constraints given by Equation 54 and 55 into Equation 50 we find

L =
1

2

(

N
∑

i=1

λiyixi

)T ( N
∑

i=1

λiyixi

)

−
N
∑

i=1

λi

[

yi

N
∑

j=1

λjyjx
T
j xi + yiw0 − 1

]

=
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj −

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
j xi − w0

N
∑

i=1

λiyi +

N
∑

i=1

λi

= −1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj +

N
∑

i=1

λi , (56)

for L. We want to maximize the above expression under the two constraints on λi that
∑N

i=1 λiyi = 0 (Equation 55) with λi ≥ 0 (Equation 53). This can be done using quadratic
programming and is an easier problem because the complicated inequality constraints from
Equation 49 have now been replaced with equality constraints via Equation 55. Once we
have computed λi with a quadratic programming algorithm we then compute w using w =
∑N

i=1 λiyixi. The computation of w0 is done by averaging the complementary slackness
conditions or

λi[yi(w
Txi + w0)− 1] = 0 for i = 1, 2, · · ·N .
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Notes on support vector machines in the non-separable case

When the data points are non-separable the optimization problem in the separable case
changes to compute the parameters, w and w0 of the decision hyperplane wTx + w0 = 0
such that

minimize J(w, w0, ξ) ≡ 1

2
||w||2 + C

N
∑

i=1

ξi (57)

subject to yi(w
Txi + w0) ≥ 1− ξi for i = 1, 2, · · · , N (58)

and ξi ≥ 0 for i = 1, 2, · · · , N . (59)

This is again a minimization problem with inequality constraints. We form the Lagrangian
L given by

L(w,w0, ξ;λ, µ) =
1

2
wTw + C

N
∑

i=1

ξi

−
N
∑

i=1

µiξi −
N
∑

i=1

λi[yi(w
Txi + w0)− 1 + ξi] .

The the necessary KKT conditions for this Lagrangian are that ∂L
∂w

= 0 or

∂L
∂w

= w−
N
∑

i=1

λiyixi = 0 , (60)

while ∂L
∂w0

= 0 is

∂L
∂w0

= −
N
∑

i=1

λiyi = 0 , (61)

while ∂L
∂ξi

= 0 is

∂L
∂ξi

= C − µi − λi = 0 , (62)

for i = 1, 2, · · · , N . Plus the conditions that the Lagrange multipliers are non-negative
λi ≥ 0, µi ≥ 0 for i = 1, 2, · · · , N and the complementary slackness conditions:

λi(yi(w
Twi + w0)− 1− ξi) = 0

µiξi = 0 for i = 1, 2, · · · , N .

To solve this we can again apply the Wolfe dual representation which states that the above
minimization problem is equivalent to the maximization problem

maximize L(w, w0, ξ;λ, µ) (63)

subject to
∂L
∂w

= 0 ,
∂L
∂w0

= 0 and
∂L
∂ξ

= 0 or

w =

N
∑

i=1

λiyixi ,

N
∑

i=1

λiyi = 0 and C − µi − λi = 0 ,

and λi ≥ 0 and µi ≥ 0 for i = 1, 2, · · · , N . (64)

42



Using these constraints into the definition of L we find

L =
1

2

(

N
∑

i=1

λiyixi

)T ( N
∑

i=1

λiyixi

)

+ C

N
∑

i=1

ξi −
N
∑

i=1

(C − λi)ξi

−
N
∑

i=1

λiyi

(

N
∑

j=1

λjyjx
T
j

)

xi − w0

N
∑

i=1

λiyi +

N
∑

i=1

λi −
N
∑

i=1

λiξi

= −1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj +

N
∑

i=1

λi , (65)

which is another quadratic programming problem to be maximized over the vectors of La-
grangian multipliers λi and µi. Since the elements µi don’t appear in the Wolfe dual objective
function above the maximization takes place over the variable λi alone just as in the separa-
ble case above. What changes however is to recognize that the constraints C − µi − λi = 0,
or µi = C − λi means that µi ≥ 0 implies C − λi ≥ 0 or the λi constraint of λi ≤ C.

Problem Solutions

Problem 3.1 (the perceptron cost function is continuous)

That the perceptron objective function

J(w) =
∑

x∈Y
δxw

Tx ,

where Y is the set of points misclassified by the weight vector w, is continuous as a function
of w can be argued as follows. If changing w does not change the set Y of misclassified
samples then we can write J(w) as

J(w) =
∑

x∈Y
δxx

Tw =

(

∑

x∈Y
δxx

)T

w = αTw ,

or the product of a fixed vector, defined here to be α and the weight vector w. This is a
continuous function. If changing w causes a point x go in or out of the misclassified set, Y ,
then around the value of w that causes this change J(w) will change by ±δx(w

Tx). The point
to note is that for a point x to go from correctly classified to incorrectly classified means that
wTx must pass thought zero, since for one sign wTx will classify the point correctly while
for the other sign it will not. The fact that this additional term ±δx(w

Tx) is continuous as
a function of w imply that the full objective function J(w) is continuous.

Problem 3.2 (if ρk = ρ the perceptron converges)

From the notes on Page 36, namely Equation 45 when ρk does not depend on k we get

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2β2 − 2ρα|γ| . (66)
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Lets observe how the distance between w(t) and αw∗ changes when α = β2

|γ| (note this is a

factor of two larger than the convergence result studied on Page 36). For this value of α we
find that

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + β2(ρ2 − 2ρ) .

Iterating this as before gives

||w(t)− αw∗||2 ≤ ||w(0)− αw∗||2 + β2(ρ2 − 2ρ)t .

Thus if ρ2 − 2ρ < 0 then as t increases in magnitude eventually the right-hand-side of the
above becomes negative or

||w(0)− αw∗||2 + β2(ρ2 − 2ρ)t < 0 . (67)

The inequality ρ2 − 2ρ < 0 requires that ρ(ρ− 2) < 0 or that 0 < ρ < 2. The step k0 where
this above inequality Equation 67 first happens and we are guaranteed convergence when

t ≥ k0 ≡
||w(0)− αw∗||2
β2ρ(2− ρ)

. (68)

Problem 3.3 (the reward and punishment form of the perceptron)

The form of the reward and punishment form of the perceptron is to start with an initial guess
w(0) at the separating hyperplane vector w∗ and some ordering of the input data vectors,
and then iterate

w(t+ 1) = w(t) + ρx(t) if x(t) ∈ ω1 and wT (t)x(t) ≤ 0

w(t+ 1) = w(t)− ρx(t) if x(t) ∈ ω2 and wT (t)x(t) ≥ 0

w(t+ 1) = w(t) otherwise , (69)

where x(t) is the data sample to consider on the tth step. Now consider how this algorithm
might approach a multiple of the optimal vector or αw∗. Since only the first two equations
above are relevant by subtracting αw∗ from both sides and squaring we get

||w(t+ 1)− αw∗||2 = ||w(t)− αw∗||2 + ρ2||x(t)||2 + 2ρxT
(t)(w(t)− αw∗)

if x(t) ∈ ω1 and wT (t)x(t) ≤ 0

||w(t+ 1)− αw∗||2 = ||w(t)− αw∗||2 − ρ2||x(t)||2 − 2ρxT
(t)(w(t)− αw∗)

if x(t) ∈ ω2 and wT (t)x(t) ≥ 0 .

Let β2 ≡ max ||x(t)||2, then the equation above become inequalities

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2β2 + 2ρxT
(t)(w(t)− αw∗)

if x(t) ∈ ω1 and wT (t)x(t) ≤ 0

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 − ρ2β2 − 2ρxT
(t)(w(t)− αw∗)

if x(t) ∈ ω2 and wT (t)x(t) ≥ 0 .
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In the first equation, since w∗ is a true solution, and x(t) ∈ ω1 we have that both terms

2ρxT
(t)w(t) and − 2αρxT

(t)w
∗ ,

are negative. In the second equation, again since w∗ is a true solution, and x(t) ∈ ω2 both
terms

−2ρxT
(t)w(t) and 2αρxT

(t)w
∗ ,

are negative. Since the terms with w(t) depend on the past iterates (and the starting
conditions of the algorithm) we will drop 2ρxT

(t)w(t) from the first and −2ρxT
(t)w(t) from the

second. That means that we now have

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2β2 − 2ραxT
(t)w

∗

if x(t) ∈ ω1 and wT (t)x(t) ≤ 0

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 − ρ2β2 + 2ραxT
(t)w

∗

if x(t) ∈ ω2 and wT (t)x(t) ≥ 0 .

From the above discussion we know −xT
(t)w

∗ and xT
(t)w

∗ are negative so lets take the largest

possible values for −xT
(t)w

∗ and xT
(t)w

∗ via

γ1 = max
x∈ω1

(−xT
(t)w

∗) < 0

γ2 = max
x∈ω2

(xT
(t)w

∗) < 0

γ = max(γ1, γ2) < 0 .

Then with the parameter γ both update lines collapse to

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2β2 + 2ραγ .

Since γ < 0 we can write it as γ = −|γ| and we get

||w(t+ 1)− αw∗||2 ≤ ||w(t)− αw∗||2 + ρ2β2 − 2ρα|γ| .
This is the same as Equation 66 and the same arguments as above show that w(t) → αw∗

as t → ∞ proving the convergence of the reward and punishment form of the perceptron
algorithm. In fact the arguments above show that we converge in a finite number of steps
i.e. when t ≥ k0 where k0 is given by Equation 68.

Problem 3.4 (iterating the perceptron algorithm by hand)

This problem is worked in the MATLAB chap 3 prob 4.m, and when it is run produces
the plot shown in Figure 5. While the reward and punishment form of the perceptron is
processing the weight w(t) iterates through the following points

w_i=[ 0.0, 0.0, 0.0]

w_i=[ 0.0, 0.0, 1.0]

w_i=[ -1.0, 0.0, 0.0]

w_i=[ -1.0, 0.0, 1.0]

w_i=[ -2.0, 0.0, 0.0]

w_i=[ -2.0, 0.0, 1.0]
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Figure 5: The decision line produced when running the script chap 3 prob 4.m.

The classification rule is then

wTx > 0 ⇒ x ∈ ω1 ,

and x ∈ ω2 otherwise. For the final decision line where w =
[

−2 0 1
]

this corresponds
to a classification rule where

x1 <
1

2
⇒ x ∈ ω1 .

Problem 3.5 (implementing the perceptron)

This problem is worked in the MATLAB chap 3 prob 5.m. When this script is run we get
the result shown in Figure 6 (left).

Problem 3.6 (implementing the LMS algorithm)

This problem is worked in the MATLAB chap 3 prob 6.m. When this script is run we get
the result shown in Figure 6 (center).

Problem 3.7 (Kesler’s construction)

Consider applying the reward and punishment form of the perceptron to the data set obtained
by using Kesler’s construction. In that case we order the Kesler’s expanded data samples
x̃(t) and present them one at a time to the following algorithm

w(t+ 1) = w(t) + ρx̃(t) if x̃(t) is misclassified by w(t) i.e. wT (t)x̃(t) ≤ 0

w(t+ 1) = w(t) otherwise .
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Figure 6: Data from two two-dimensional normals with mean vectors µ1 = [1, 1]T , µ2 =
[0, 0]T , and σ2

1 = σ2
2 = 0.2. Left: The decision region produced by the perceptron algorithm.

Center: The decision region produced by the LMS algorithm. Right: The decision region
produced by the sum of square error criterion. Visually, all three algorithms produce similar
results.

Since we are only trying to enforce wT (t)x̃(t) > 0 and x̃(t) is the Kesler’s extended vector
where the unexpanded vector x(t) is an element of ωi. Since w(t) in Kesler’s construction is
defined as w = [wT

1 , w
T
2 , · · · , wT

M ]T and since x̃(t) has a +x(t) at the block spot i and a −x(t)

at the block spot j and zeros elsewhere the equation

w(t+ 1) = w(t) + ρx̃(t) ,

will be executed/triggered if wT (t)x̃(t) ≤ 0 or when

wT
i x(t) − wT

j x(j) ≤ 0 ,

or
wT

i x(t) ≤ wT
j w(t) ,

and will update the block components of w(t) as

wi(t+ 1) = wi(t) + ρx(t)

wj(t+ 1) = wj(t)− ρx(t)

wk(t+ 1) = wk(t) ∀k 6= i, j ,

as we were to show.
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Problem 3.8 (the sum of square error optimal weight tends to MSE)

Recall that the objective functions for sum of square errors (SSE) and the mean square error
(MSE) criteria are

JSSE(w) =
N
∑

i=1

(yi − xT
i w)

2

JMSE(w) = E[(y − xTw)2] ,

respectively. Since the objective function JSSE(w) is a multiple of a sample based estimate
of the expectation we expect that as long as the sample estimate converge to the population
values we expect the SSE weight should converge to the MSE weight. Since we can write the
solution vector w under the SSE criterion (by taking the derivative of the above expression
with respect to w) as

N
∑

i=1

xi(yi − xT
i ŵ) = 0 ,

by dividing by N we get that this is equivalent to

1

N

N
∑

i=1

xiyi −
(

1

N

N
∑

i=1

xix
T
i

)

ŵ = 0 .

which as we take the limit N → ∞ and assuming sample convergence to the population
values becomes

E[xy]−E[xxT ]ŵ = 0 ,

which is the equation that the MSE solution ŵMSE must satisfy.

Problem 3.9 (the sum of square error classifier)

This problem is worked in the MATLAB chap 3 prob 9.m. When this script is run we get
the result shown in Figure 6 (right).

Problem 3.10 (the multiclass sum of square error criterion)

If we have a M classes problem then the sum of error squares estimation would be formalized
by introducing the vector yi = [y1, y2, . . . , yM ]T , where yj would take the value one, if the ith
sample, xi, was a member of class ωj and would be zero otherwise. Then we introduce M
vector weights wj in the matrix W defined as W = [w1, w2, . . . , wM ]. Thus the jth column
of W is the vector weights wj. To specify these weights we seek to minimize the square error
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over all of our training samples or

J(W ) =
N
∑

i=1

||yi −W Txi||2

=

N
∑

i=1

M
∑

j=1

(yij −wj
Txi)

2

=

M
∑

j=1

(

N
∑

i=1

(yij −wj
Txi)

2

)

.

Since this is the sum of M terms we can minimize the entire expression by picking wj for
each j = 1, 2, . . . ,M to minimize the inner summation. Thus we are doing M parallel one
dimensional problems. The jth problem find the value of wj by associating to the target, yi,
a value of one if xi ∈ ωj and zero otherwise.

Problem 3.11 (jointly Gaussian random variables)

For this problem we are told that the joint distribution of the pair (X, Y ) is given by

pX,Y (x, y) =
1

2πσxσy

√
1− α2

× exp

{

− 1

2α(1− α)

[

(

x− µx

σx

)2

+

(

y − µy

σy

)2

− 2α(x− µx)(y − µy)

σxσy

]}

.

From the expression for PX,Y (x, y) it can be shown [10], that the conditional distribution
p{X|Y } is given by

p{X|Y } = N
(

µx + α
σx

σy

(y − µy), σ
2
x(1− α2)

)

.

The book asks for the distribution of P{Y |X} which can be obtained from the above by
exchanging x and y in the expression above.

Problem 3.12 (sum of error square criterion is the same as ML)

If we have M classes, the statement that the classifier outputs vary around the corresponding
desired response values dik, according to a Gaussian distribution with a known variance,
means that we would expect that g(xi;wk) ∼ N (dik, σ

2) for k = 1, 2, · · ·M . In that case if
we group all of the M response for a given sample xi into a target vector like

yi ≡











di1
di2
...

diM











.
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The distribution of yi is a multivariate Gaussian with a mean given by yi, and a covariance
matrix given by σ2I. Thus the distribution of yi is given by











g(xi;w1)
g(xi;w2)

...
g(xi;wM)











∼ N (yi, σ
2I) .

Thus we expect from how yi is defined that











g(xi;w1)
g(xi;w2)

...
g(xi;wM)











−











di1
di2
...

diM











∼ N(0, σ2I) .

Thus the loglikelihood L of N samples xi would then be given by

L({xi}) = ln











N
∏

i=1

1

(2π)lσ2l
exp



















− 1

2σ2











g(xi;w1)− di1
g(xi;w2)− di2

...
g(xi;wM)− diM











T 









g(xi;w1)− di1
g(xi;w2)− di2

...
g(xi;wM)− diM







































= ln

(

N
∏

i=1

1

(2π)lσ2l
exp

{

− 1

2σ2

[

M
∑

k=1

(g(xi;wk)− dki )
2

]})

= ln

(

1

(2π)lNσ2lN
exp

{

− 1

2σ2

N
∑

i=1

M
∑

k=1

(g(xi;wk)− dki )
2

})

.

Since we will want to maximize the loglikelihood as a function of the vectors wk we can drop
all things that don’t depend on w and minimize the negative of what remains. We then need
to minimize as a function of wk for k = 1, 2, · · · ,M the following expression

L′({xi}) =
N
∑

i=1

M
∑

k=1

(g(xi;wk)− dki )
2 .

This is exactly the sum of squares error criterion in the multiclass case.

Problem 3.13 (approximating P (ω1|x)− P (ω2|x) in a MSE sense)

The MSE training procedure (in the two class case) computes the decision surface f(x;w)
weights w via

ŵ = argminwE
[

(f(x;w)− y)2
]

= argminw

∫ ∞

−∞

2
∑

j=1

(f(x;w)− y)2P (x, ωj)dx .
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Using p(x, ωj) = P (ωj|x)p(x) and if we code each classes response as y = +1 when x ∈ ω1

and y = −1 when x ∈ ω2 then the argument inside the integration in the above minimization
becomes

(f(x;w)− 1)2P (ω1|x) + (f(x;w) + 1)2P (ω2|x)
= (f(x;w)2 − 2f(x;w) + 1)P (ω1|x) + (f(x;w)2 + 2f(x;w) + 1)P (ω2|x)
= f(x;w)2 − 2f(x;w)[P (ω1|x)− P (ω2|x)] + 1

= f(x;w)2 − 2f(x;w)[P (ω1|x)− P (ω2|x)]
+ [P (ω1|x)− P (ω2|x)]2 − [P (ω1|x)− P (ω2|x)]2 + 1

= [f(x;w)− (P (ω1|x)− P (ω2|x))]2 − [P (ω1|x)− P (ω2|x)]2 + 1 ,

where we have used the fact that P (ω1|x)+P (ω2|x) = 1. Note that the last two terms above
namely −[P (ω1|x)−P (ω2|x)]2+1 do not depend on the the vector w and thus don’t change
the results of the minimization. Thus we are left with

ŵ = argminw

∫ ∞

−∞
(f(x;w)− {P (ω1|x)− P (ω2|x)})2p(x)dx

= argminwE
[

(f(x;w)− {P (ω1|x)− P (ω2|x)})2
]

.

Thus we are picking w to have f(x;w) approximate the decision boundary P (ω1|x)−P (ω2|x)
optimally in the mean square error sense.

Problem 3.14 (how the Bayesian and MSE classifier differ)

The Bayesian classifier in the equal class covariance case is given by Equation 19. Thus we
need to compute the MSE hyperplane we first extend each feature vector by adding the value
of 1 to get new vectors v defined by

v = [xT , 1]T .

The vector v is now of dimension l + 1. Then in this augmented space the optimal MSE
linear classifier is given by computing ŵTv. Then if ŵTv > 0 we declare v ∈ ω1 and otherwise
declare v ∈ ω2.

ŵ = R−1
v E[vy] . (70)

where ŵ is the augmented vector

[

w
w0

]

so that it includes an intercept w0 and

Rx = E[vvT ] =











E[v1v1] · · · E[v1vl+1]
E[v2v1] · · · E[v2vl+1]

...
...

E[vl+1v1] · · · E[vl+1vl+1]











. (71)

We can now evaluate several of these expectations. We have that vvT in terms of the original
x is given by

vvT =

[

x
1

]

[

xT 1
]

=

[

xxT x
xT 1

]

.
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Taking the expectation of this gives
[

R E[x]
E[x]T 1

]

.

Next we compute the expectation of vy =

[

x
1

]

y or E[vy] =

[

E[xy]
E[y]

]

. Since the response

is y = +1 when x ∈ ω1 and y = −1 when x ∈ ω2 we can compute

E[y] = 1P (ω1)− 1P (ω2) = 0 ,

when P (ω1) = P (ω2) =
1
2
. Next we find E[xy] under the same condition as

E[xy] = E[x|y = +1]P (ω1)−E[x|y = −1]P (ω2)

= µ1P (ω1)− µ2P (ω2) = µ1 − µ2 .

For completeness (and to be used later) we now compute E[x] and find

E[x] = E[x|x ∈ ω1]P (ω1) + E[x|x ∈ ω2]P (ω2) =
1

2
(µ1 + µ2) .

From these expressions we see that we need to solve Rvŵ = E[vy] or

[

R E[x]
E[x]T 1

] [

w
w0

]

=

[

1
2
(µ1 − µ2)

0

]

,

for ŵ. From the second of these equations we can solve for w0 as

E[x]Tw + w0 = 0 ⇒ w0 = −E[x]Tw , (72)

which we can put in the first of the equations above to get

(R −E[x]E[x]T )w =
1

2
(µ1 − µ2) .

To further evaluate this note that by expanding the quadratic and distributing the expecta-
tion we can show that

Σ ≡ E[(x− E[x])(x− E[x])T ]

= R−E[x]E[x]T (73)

Thus from Equation 73 we see that w is given by

w =
1

2
Σ−1(µ1 − µ2) .

When we put that expression into Equation 72 and use what we have computed for E[x] we
get

w0 = −1

4
(µ1 + µ2)

TΣ−1(µ1 − µ2) .

Thus the MSE decision line is to classify a point x as a member of ω1 if xTw + w0 > 0 or

1

2
xTΣ−1(µ1 − µ2)−

1

4
(µ1 + µ2)

TΣ−1(µ1 − µ2) > 0 ,
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Figure 7: The decision surface produced when running the script chap 3 prob 15.m.

or
(

x− 1

2
(µ1 + µ2)

)T

Σ−1(µ1 − µ2) > 0 .

or writing it like Equation 19 we have

(µ1 − µ2)
TΣ−1x >

1

2
(µ1 − µ2) .

Note that this equation is only different from Equation 19 with regard to the right-hand-side
threshold.

Problem 3.15 (the design of M hyperplanes)

An example like one requested is produced via running the MATLAB script chap 3 prob 15.m.
When this script is run we get the result shown in Figure 7. Note that no data exists in
the region where the three discriminant functions are negative which is denoted (−,−,−).
Also regions with discriminant signs like (+,+,−) exist where more than one discriminant
function is positive.

Problem 3.16 (using the KKT conditions)

To use the Karush-Kuhn-Tucker (KKT) conditions for the given data points in Example 3.4
we assume that the points are linearly separable and use the problem formulation given in
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on Page 40. Thus we start from the formulation

minimize J(w) =
1

2
||w||2 subject to

yi(w
Txi + w0) ≥ 1 for i = 1, 2, · · · , N .

The specific Lagrangian for this problem is

L(w, w0, λ) =
1

2
wTw−

N
∑

i=1

λi(yi(w
Txi + w0)− 1)

=
1

2
(w2

1 + w2
2)

− λ1(w1 + w2 + w0 − 1)− λ2(w1 − w2 + w0 − 1)

− λ3(w1 − w2 − w0 − 1)− λ4(w1 + w2 − w0 − 1) ,

since yi = +1 when xi ∈ ω1 and yi = −1 when xi ∈ ω2. The necessary Karush-Kuhn-Tucker
conditions are then given by

∂L
∂w1

= 0 ⇒ w1 − λ1 − λ2 − λ3 − λ4 = 0 (74)

∂L
∂w2

= 0 ⇒ w2 − λ1 + λ2 + λ3 − λ4 = 0 (75)

∂L
∂w0

= 0 ⇒ −λ1 − λ2 + λ3 + λ4 = 0 . (76)

The complementary slackness conditions for the four points are given by

λ1(w1 + w2 + w0 − 1) = 0

λ2(w1 − w2 + w0 − 1) = 0

λ3(−(−w1 + w2 + w0)− 1) = 0

λ4(−(−w1 − w2 + w0)− 1) = 0 ,

with λ1, λ2, λ3, λ4 ≥ 0. If we want to consider searching only for lines that pass thought the
origin we take w0 = 0 and the equations above simplify to

w1 = λ1 + λ2 + λ3 + λ4

w2 = λ1 − λ2 − λ3 + λ4

−λ1 − λ2 + λ3 + λ4 = 0

λ1(w1 + w2 − 1) = 0

λ2(w1 − w2 − 1) = 0

λ3(w1 − w2 − 1) = 0

λ4(w1 + w2 − 1) = 0 .

Put the expressions just derived for w1 and w2 into the complementary slackness conditions
and by changing the ordering of the equations we get

λ1(2λ1 + 2λ4 − 1) = 0

λ4(2λ1 + 2λ4 − 1) = 0

λ2(2λ2 + 2λ3 − 1) = 0

λ3(2λ2 + 2λ3 − 1) = 0

−λ1 − λ2 + λ3 + λ4 = 0 . (77)
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These equations have multiple solutions, but the first two will hold true if 2λ1+2λ4− 1 = 0
and the second two will be true if 2λ2 + 2λ3 − 1 = 0. Lets specify that these constraints are
active. That is we will assume that

2λ1 + 2λ4 − 1 = 0 ⇒ λ1 =
1

2
− λ4

2λ2 + 2λ3 − 1 = 0 ⇒ λ2 =
1

2
− λ3 . (78)

If we put these two expressions into Equation 77 we get

−1

2
+ λ4 −

1

2
+ λ3 + λ3 + λ4 = 0 ,

or
2λ4 + 2λ3 − 1 = 0 ,

which again has multiple solutions. If we pick λ4 ≥ 0 arbitrary then solving for λ3 we have
λ3 =

1
2
− λ4. Using Equation 78 for λ2 in terms of λ3 we have

λ2 =
1

2
−
(

1

2
λ4

)

= λ4 .

Thus we have shown all values of λi can be written in terms of λ4 as









λ1

λ2

λ3

λ4









=









1
2
− λ4

λ4
1
2
− λ4

λ4









.

Using this our weight vector w is

w =
4
∑

i=1

λiyixi

=

(

1

2
− λ4

)

(+1)

[

1
1

]

+ λ4(+1)

[

1
−1

]

+

(

1

2
− λ4

)

(−1)

[

−1
1

]

+ λ4(−1)

[

−1
−1

]

=

[

1
0

]

,

the same solution quoted in the text.
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Nonlinear Classifiers

Notes on the text

Notes on the XOR Problem
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Figure 8: The perceptron that implements the OR gate.

The perceptron that implements the OR gate is shown in Figure 8. From the given diagram
we see that this perceptron gives an output value of 1 when

x1 + x2 −
1

2
> 0 .

This expression is false for the point (0, 0) and is true for the points (1, 0), (0, 1), and (1, 1).

Algorithms based on exact classification of the training set

We documents some notes on Meza’s tiling algorithm for building a two-class neural network
that exactly classifies the given input data points. In this algorithm we will be growing a
network that depends on the training data rather than starting with a fixed network and then
determining the parameters of the fixed network. The book does a very nice job explaining
the general procedure and these are just some notes I wrote up going into more detail on the
simple example given. The example points and decision lines for this section are duplicated
in Figure 9. For this procedure we begin by first dividing the initial data set into two regions
using one of the linear algorithms discussed in the previous chapter. For example, the pocket
algorithm or a SVM like algorithm could be used to define the initial splitting of the data.
This is denoted as the decision line #1 in Figure 9. After this line is specified, we determine
that the training points are not classified with 100% certainty. We define the set X+ to be
the set of points on the “plus” side of line #1. In this set there is one misclassified vector B1.
We define the set X− as the set of points on the “minus” side of line #1. The set X− has the
misclassified vector A1. For any set X± that has misclassified vectors we then recursively
apply the previous algorithm to these sets. In the example above, we would divide the set X+
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Figure 9: The sample data points and decision regions used to explain the Meza’s tiling
procedure for generating a network that correctly classifies the given input points.

again using an algorithm that produces a separating hyperplane (like the pocket algorithm)
and produce the decision line #2 in Figure 9. For the set X− we do the same thing and
produce the separating hyperplane denoted by the decision line #3 in Figure 9. The sets on
the “plus” and “minus” side of X+ are then denoted as X++ and X+−. The same sets for the
set X− are denoted as X−+ and X−−. If any of these four new sets has misclassified vectors
it will be further reduced using a separating hyperplane. This procedure is guaranteed to
finish since each separating hyperplane we introduce is processing a smaller and smaller set
of data. Each of these separating hyperplanes is pictorially represented as a node in the
input layer horizontally located next to the master unit (or the node representing the first
data split). As each hyperplane introduced is used to split misclassified data into groups
with correct classification, no two data points, in different classes, can end up mapped to
the same point after the first layer. Meza’s algorithm next operates recursively on the set of
points computed from the first layer or X1 where X1 is given by

X1 = {y : y = f1(x), for x ∈ X} ,

and f1 is the mapping implemented in the first layer. Meza has shown that this recursive
procedure converges, while the book argues that since no two data points are mapped to the
same vertex of a hypercube correct classification may be possible with at most three layers.

Notes on backpropagation algorithm: the antisymmetric logistic

For the logistic function, f(x), given by

f(x) =
2

1 + exp(−ax)
− 1 . (79)
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We can show that this is equivalent to a hyperbolic tangent function with

f(x) =
2

1 + exp(−ax)
− 1 + exp(−ax)

1 + exp(−ax)
=

1− exp(−ax)

1 + exp(−ax)

=
e

ax
2 − e−

ax
2

e
ax
2 + e−

ax
2

=
sinh(ax

2
)

cosh(ax
2
)
= tanh

(ax

2

)

.

Notes on backpropagation algorithm: the gradients

This section are some simple notes that I took as I worked through the derivation of the
backpropagation algorithm. Much of the discussion is of the same general form as presented
in the book, but these notes helped me understand this material so I wrote them up so that
they might help others.

We will assume that we have a L layer network where L is given to us and fixed and we want
to learn the values of the parameters that will give us the smallest mean square error (MSE)
over all of the training samples. The input layer is denoted as the layer 0 and the output
layer is denoted as layer L. The notation kr, for r = 0, 1, 2, · · ·L, will denote the number of
nodes in the rth layer so for example, we will have k0 nodes in the first and input layer, and
kL nodes in the Lth or output layer. To denote the weights that will go into the summation
at the j node in the rth layer from the nodes in the r − 1th layer we will use the notation

wr
j =

[

wr
j0 , wr

j1 , · · · , wr
jkr−1

]T
. (80)

Where r = 1, 2, · · · , L. The value of wr
0j is the constant bias input used by the jth node

in the rth layer. We will update these vectors wr
j iteratively to minimize the MSE using a

gradient decent scheme. Thus we will use the weight update equation

wr
j(new) = wr

j (old) + ∆wr
j , (81)

where

∆wr
j = −µ

∂J

∂wr
j

, (82)

and J is the cost function we seek to minimize. For the application here the cost function
J we will use will be a sum of individual errors over all of the sample points in the training
set of

J ≡
N
∑

i=1

E(i) . (83)

Here E(i) is the sample error we assign to the approximate output of the Lth output layer
denoted ŷm(i). We let em(i) denote the error in the mth component of the output our
network makes when attempting to classify the sample x(i) or

em(i) ≡ ym(i)− ŷm(i) for m = 1, 2, · · · , kL . (84)

Using this definition the sample error E(i) is defined as just the mean square error of the
networks mth component output due to the ith sample or ŷm(i) against the true expected
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result or

E(i) ≡ 1

2

kL
∑

m=1

em(i)
2 =

1

2

kL
∑

m=1

(ym(i)− ŷm(i))
2 . (85)

At this point we are almost ready to derive the backpropagation algorithm but we will
need a few more definitions. In general, a neural network works by multiplying internal
node outputs by weights, summing these products, and then passing this sum through the
nonlinear activation function f(·). We can imagine that for every input-output pairing (xi, yi)
for i = 1, 2, · · · , N we have a value for all of the variables just introduced. Thus our notation
needs to depend on the sample index i. We do this by including this index on a variable, say
X , using functional notation as in X(i). To represent the other variables we will let yr−1

k (i)
represent the output the kth neuron in the r − 1th layer (for r = 2, 3, · · · , L, L+ 1). In this
notation, when r = 2 then we have y1k(i) which is the output of the first hidden layer and
when r = L + 1 we have yLk (i) which is the output from the last (or output) layer. Since
there are kr−1 nodes in the r− 1 layer we have k = 1, 2, · · · , kr−1. As introduced above, the
scalar wr

jk is the weight leading into the jth neuron of the rth layer from the kthe neuron
in the r − 1 layer. Since the rth layer has kr nodes we have j = 1, 2, · · · , kr. Note that
we assume that after sufficient training the weights will converge and there is no i index in
their notational specification. As the input to the activation function for node j in layer r
we need to multiply these weights with the neuron outputs from layer r − 1 and sum. We
denote this result vrj (i). Thus we have now defined

vrj (i) =

kr−1
∑

k=1

wr
jky

r−1
k (i) + wr

j0 =

kr−1
∑

k=0

wr
jky

r−1
k (i) , (86)

where we take yr−1
0 ≡ 1 to make the incorporation of a constant bias weight wr

j0 transparent.

With these definitions we are now ready to derive the backpropagation algorithm for learning
neural network weights wr

j . Since we assume an initial random assignment of the neural
network weights we can assume that we know values for all of the variables introduced thus
far for every sample. We seek to use derivative information to change these initial values for
wr

j into weights that make the global cost function J smaller. The backpropagation procedure
starts with the weights that feed into the last L layer, namely wL

j , and works backwards
updating the weights between each hidden layer until it reaches the weights at the first
hidden layer w1

j . Once all of the weights are updated we pass every sample (xi, yi) thought
the modified network (in the forward direction) and are ready to do another backpropagation
pass.

To use the gradient decent algorithm we will need the derivatives of the sample error function
E(i) with respect to wr

j , the weights that go into the j neuron in the rth layer. Converting
this derivative using the chain rule into the derivative with respect to the output vrj (i) we
have

∂E(i)
∂wr

j

=
∂E(i)
∂vrj (i)

∂vrj (i)

∂wr
j

. (87)

Because of the linear nature in which vrj (i) and wr
j are related via Equation 86 this second
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derivative is easily computed

∂vrj (i)

∂wr
j

=

















∂vrj (i)

∂wr
j0

∂vrj (i)

∂wr
j1

...
∂vrj (i)

∂wr
jkr−1

















=











yr−1
0 (i)
yr−1
1 (i)
...

yr−1
kr−1(i)











=











1
yr−1
1 (i)
...

yr−1
kr−1(i)











≡ yr−1(i) . (88)

In the above notation yr−1(i) is the vector of all outputs from neurons in the r− 1st layer of
the network. Notice that this value is the same for all nodes j in the rth layer. Lets define
the remaining derivative above or ∂E(i)

∂vrj (i)
as

δrj (i) ≡
∂E(i)
∂vrj (i)

, (89)

for every j in the rth layer or j = 1, 2, · · ·kr. Using these results we have ∆wr
j given by.

∆wr
j = −µ

∂J

∂wr
j

= −µ

N
∑

i=1

∂E(i)
∂wr

j

= −µ

N
∑

i=1

δrj (i)y
r−1(i) . (90)

It is these δrj (i) we will develop a recursive relationship for and the above expression will
enable us to compute the derivatives needed. Recall that we define E(i) the “error” in the
ith sample output as in Equation 85 here expressed in terms of vLm(i) as

E(i) ≡ 1

2

kr
∑

m=1

(ym(i)− ŷm(i))
2 =

1

2

kr
∑

m=1

(ym(i)− f(vLm(i)))
2 . (91)

The output layer: In this case r = L and we are at the last layer (the output layer) and

we want to evaluate δLj (i) =
∂E(i)
∂vLj (i)

when E(i) is given by Equation 91. From that expression

we see that the vLj derivative selects only the jth element from the sum and we get

∂E(i)
∂vLj (i)

= −1

2
(2)(yj(i)− f(vLj (i)))f

′(vLj (i))

= −ej(i)f
′(vLj (i)) . (92)

where we have defined the error ej(i) as in Equation 84.

The hidden layers: In this case r < L and the influence of vr−1
j on E(i) comes indirectly

through its influence on vrj . Thus using the chain rule to introduce this variable we have

∂E(i)
∂vr−1

j (i)
=

kr
∑

k=1

∂E(i)
∂vrk(i)

∂vrk(i)

∂vr−1
j (i)

. (93)

On using the definition of δrj (i) given by Equation 89 in both side of this expression we have

δr−1
j (i) =

kr
∑

k=1

δrk(i)
∂vrk(i)

∂vr−1
j (i)

. (94)
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We stop here to note that this is a expression for the previous layer’s δr−1
j showing how to

compute it given values of the current layer’s δrj . To fully evaluate that we need to compute
∂vrk(i)

∂vr−1
j (i)

. Using Equation 86 we find

∂vrk(i)

∂vr−1
j (i)

=
∂

∂vr−1
j (i)

[

kr−1
∑

m=0

wr
kmy

r−1
m (i)

]

=
∂

∂vr−1
j (i)

[

kr−1
∑

m=0

wr
kmf(v

r−1
m (i))

]

.

This derivative again selects the m = jth term in the above sum and we find

∂vrk(i)

∂vr−1
j (i)

= wr
kjf

′(vr−1
j (i)) . (95)

Thus the recursive propagation of δrj (i) the then given by using Equation 94 with the above
derivative where we find

δr−1
j (i) =

kr
∑

k=1

δrk(i)w
r
kjf

′(vr−1
j (i)) = f ′(vr−1

j (i))
kr
∑

k=1

δrk(i)w
r
kj (96)

= êr−1
j f ′(vr−1

j (i)) , (97)

with êr−1
j defined by

êr−1
j =

kr
∑

k=1

δrk(i)w
r
kj . (98)

When our activation function f(x) is the sigmoid function defined by

f(x) =
1

1 + e−ax
, (99)

we find its derivative given by

f ′(x) =
−(−a)

(1 + e−ax)2
e−ax = f(x)(a)

e−ax

1 + e−ax
= af(x)

[

1 + e−ax − 1

1 + e−ax

]

= af(x)(1− f(x)) . (100)

With all of these pieces we are ready to specify the backpropagation algorithm.

The backpropagation algorithm

• Initialization: We randomly initialize all weights in our network wr
km for all layers

r = 1, 2, · · ·L and for all internal nodes where the index k selects a node from the layer
r − 1 thus k = 1, 2, · · ·kr−1 and the index m selects a node from the layer r and thus
m = 1, 2, · · ·kr.

• Forward propagation: Once the weights are assigned values for each sample (xi, yi)
for i = 1, 2, · · ·N we can evaluate using forward propagation the variables vrj (i) using
Equation 86 and then yrj (i) via f(vrj (i)). We can also evaluate the individual errors
E(i) using Equation 85 and the total error J using Equation 83
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• Then starting at the last layer where r = L for each sample i = 1, 2, · · ·N and for each
neuron j = 1, 2, · · ·kL first compute δLj using Equation 92. Then working backwards

compute δr−1
j using Equation 97 and 98. Since we know δLj we can do this for r =

L, L− 1, · · · , 2 and for each neuron in layer r − 1 so j = 1, 2, · · ·kr−1.

• Once we have δrj computed we can now update the weights wr
j using Equation 81

and 82 with the explicit for form ∆wr
j given by Equation 90. Once we have updated

our weight vectors we are ready to apply the same procedure again, i.e. issuing a
forward propagation followed by a backwards propagation sweep.

Notes on variations on the backpropagation algorithm

Consider the backpropagation weight update equation with the momentum factor αwr
j(t−1)

given by
∆wr

j(t) = α∆wr
j(t− 1)− µg(t) . (101)

By writing out this recurrence relationship for t = T, T − 1, T − 2, · · · as

∆wr
j (T ) = α∆wr

j (T − 1)− µg(T )

= α
[

α∆wr
j(T − 2)− µg(T − 1)

]

− µg(T )

= α2∆wr
j (T − 2)− µ [αg(T − 1) + g(T )]

= α2
[

α∆wr
j (T − 3)− µg(T − 2)

]

− µ [αg(T − 1) + g(T )]

= α3∆wr
j (T − 3)− µ

[

α2g(T − 2) + αg(T − 1) + g(T )
]

...

= αT∆wr
j (0)− µ

T−1
∑

t=0

αtg(T − t) . (102)

As we require α < 1 then αT∆wr
j (0) → 0 as T → +∞. If we assume that our gradient vector

is a constant across time or g(T − t) ≈ g then we see that ∆wr
j (T ) can be approximated as

∆wr
j (T ) ≈ −µ

[

1 + α + α2 + α3 + · · ·
]

g = −µ

(

1

1− α

)

g .

Problem Solutions

Problem 4.1 (a simple multilayer perceptron)

The given points for this problem are plotted in the Figure 10 and is generated with the
MATLAB script chap 4 prob 1.m.. From that figure we see that these points are a scattering
of points around the XOR pattern, which we know are not linearly separable, these points
are also not be linearly separable. We can however separate the two classes in the same way
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Figure 10: The data points from Problem 4.1 and the two linear discriminant functions
g1(x1, x2) = 0 and g2(x1, x2) = 0, that when combined, separate the two classes.

we did for the XOR pattern. If we introduce two discriminate lines g1(x1, x2) and g2(x1, x2)
given by

g1(x1, x2) = x1 + x2 − 1.65 = 0 and g2(x1, x2) = x1 + x2 − 0.65 = 0 .

Next we introduce threshold variables, yi, that are mappings of the values taken by gi when
evaluated at a particular pair (x1, x2). For example, yi = 0 if gi < 0 and yi = 1 if gi ≥ 0.
Then we see that the entire (x1, x2) space has been mapped to one of three (y1, y2) points:
(0, 0), (0, 1), and (1, 1) depending on where the point (x1, x2) falls relative to the two lines
g1 = 0 and g2 = 0. Under the (y1, y2) mapping just discussed, only the point (0, 1) is
associated with the second class, while the other two points, (0, 0) and (1, 1), are associated
with the first class. Given the output (y1, y2) our task is now to design a linear hyperplane
that will separate the point (0, 1) from the two points (0, 0) and (1, 1). A line that does this
is

y2 − y1 −
1

2
= 0 .

Problem 4.2 (using a neural net to classify the XOR problem)

See the R script chap 4 prob 2.R where this problem is worked. When that script is run it
produces the plots shown in Figure 12. In that figure we see that after very few iterations the
neural network is able to classify the training data almost perfectly. The error on the testing
data set decreases initially and then increases as the net overfits and learns information that
is not generalizable. The degree to which this is over fitting takes place does not really
appear to be that great however.
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Problem 4.3 (multilayer perceptron based on cube vertexes)

Part (a): The given decision regions for this problem are drawn in Figure 13, which is
generated with the MATLAB script chap 4 prob 3.m. The vertex to which each region is
mapped is specified using the notation (±,±,±), where a minus is mapped to 0 and a plus
is mapped to a 1. From the discussion in the book a two layer neural network can classify
unions of polyhedrons but not unions of unions. Thus if consider class ω1 to be composed
of the points in the regions (−,−,−), (+,−,−), (−,+,−), and (+,+,−). While the class
ω2 is composed of points taken from the other polyhedrons. Then the ω1 polyhedrons map
to the four points on the (y1, y2, y3) hypercube (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0), while
the other polyhedrons map to the upper four points of this hypercube. These two sets of
points in the mapped (y1, y2, y3) space can be separated easily with the hyperplane y3 =

1
2
.

Thus we can implement the desired classifier in this case using the two-layer neural network
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shown in Figure 14.
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Figure 14: The two layer network for Problem 4.3.

Part (b): To require a three node network it is sufficient to have the mapped classes in
the (y1, y2, y3) space mapped to the XOR problem on the unit hypercube. Thus if we pick
the points in the polyhedrons (−,−,−) and (+,+,+) to be members of class ω1 and the
points in the other polyhedrons to be from class ω2 we will require a three layer network to
perform classification. In that case we can use an additional layer (the second hidden layer)
to further perform the classification. The resulting neural network is given in Figure 15. In
that figure we have denoted the output of the two neurons in the second hidden layer as
z1 and z2. To determine the weights to put on the neurons that feed from the first hidden
layer into the second hidden layer in Figure 15 since in the (y1, y2, y3) space this is the XOR
problem and we can solve it in the same way that we did in the earlier part of this chapter.
That is we will create two planes, one that “cuts off” the vertex (0, 0, 0) from the other
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Figure 15: The three layer network for Problem 4.3.

vertexes of the hypercube and the second plane that “cuts off” the node (1, 1, 1) from the
other vertexes of the hypercube. The points in between these two planes will belong to one
class and the points outside of these two planes will belong to the other class. For the first
plane and the one that cuts off the vertex (0, 0, 0) of the many possible one plane that does
this is the one that passes through the three points

(1/2, 0, 0) , (0, 1/2, 0) , (0, 0, 1/2) .

While for the second plane and the one that cuts off the vertex (1, 1, 1) of the many possible
planes that do this one plane that works is the one that passes through the three points

(1, 1, 1/2) , (1/2, 1, 1) , (1, 1/2, 1) .

We thus need to be able obtain the equation for a plane in three space that passes through
three points. This is discussed in [9] where it is shown that the equation of a plane

c1x+ c2y + c3z + c4 = 0 ,

that must pass thought the three points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) is given by
evaluating

∣

∣

∣

∣

∣

∣

∣

∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0 .

As an example of this, for the first plane we need to evaluate
∣

∣

∣

∣

∣

∣

∣

∣

x y z 1
1/2 0 0 1
1/2 0 0 1
1/2 0 0 1
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∣
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∣

∣
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∣
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or finally
x+ y + z − 1 = 0 .

The same procedure for the second plane gives

x+ y + z − 5

2
= 0 .

Thus with the above planes we have computed the weights feeding into the second hidden
layer. To finish the problem we recognized that with the first plane, only the single point
(y1, y2, y3) = (0, 0, 0) is mapped to the value of 0 while all other points are mapped to 1. With
the second plane, only the single point (y1, y2, y3) = (1, 1, 1) is mapped to the value of 1 while
all other points are mapped to 0. Thus when we threshold on the sign of the values of the
two discriminant mappings above we see map the points (0, 0, 0) → (0, 0), (1, 1, 1) → (0, 1),
and all other (y1, y2, y3) points are mapped to (1, 0). To finish our classification we need to
find a hyperplane that splits the two points (0, 0) and (0, 1) from (1, 0). Such a discriminant
surface is z1 = 1

2
, where we assume the second hidden layer maps the points (y1, y2, y3) to

the point (z1, z2). This final discrimination surface is also represented in Figure 15.

Problem 4.4 (separating the points x1 and x2 with a hyperplane)

First recall that the difference vector x1 − x2 is a vector from the vector x2 and pointing to
the vector x1, since if we add the vector x2 to this difference vector we get x1 i.e.

x2 + (x1 − x2) = x1 .

The midpoint between the two points x1 and x2 is the vector
1
2
(x1 + x2). Thus this problem

asks to find the plane with a normal vector proportional to x1 − x2 and passing through the
point x0 ≡ 1

2
(x1 + x2). This means that if we take x to be a vector in the hyperplane then

the vector x− x0 must be orthogonal to x1 − x2 or have a zero dot product

(x1 − x2)
T (x− x0) = 0 .

Using the definition for x0 we have this expression is equal to

(x1 − x2)
Tx− 1

2
(x1 − x2)

T (x1 + x2) = 0 ,

or

(x1 − x2)
Tx− 1

2
(xT

1 x1 − xT
2 x2) = (x1 − x2)

Tx− 1

2
||x1||2 +

1

2
||x2||2 = 0 .

It remains to show that x1 is on the positive side of the hyperplane. To show this consider
the above expression evaluated at x = x1. We find

(x1 − x2)
Tx− 1

2
||x1||2 +

1

2
||x2||2 = ||x1||2 − xT

2 x1 −
1

2
||x1||2 +

1

2
||x2||2

=
1

2
||x1||2 − xT

2 x1 +
1

2
||x2||2

=
1

2
(||x1||2 − 2xT

2 x1 + ||x2||2)

=
1

2
(x1 − x2)

T (x1 − x2) =
1

2
||x1 − x2||2 ,

which is positive showing that x1 is on the positive side of the above hyperplane.
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Problem 4.6 (backpropagation with cross-entropy)

The cross entropy 4.33 is

J = −
N
∑

i=1

kL
∑

k=1

yk(i) ln

(

ŷk(i)

yk(i)

)

.

Thus we see that E(i) in this case is given by

E(i) = −
kL
∑

k=1

yk(i) ln

(

ŷk(i)

yk(i)

)

.

Thus we can evaluate δLj (i) as

δLj (i) ≡
∂E(i)
∂vLj (i)

=
∂

∂vLj (i)

[

−
kL
∑

k=1

yk(i) ln

(

f(vLk )

yk(i)

)

]

.

This derivative will select the k = jth element out of the sum and gives

δLj (i) = −yj(i)
∂

∂vLj (i)

(

ln

(

f(vLj )

yk(i)

))

= −yj(i)
f ′(vLj )

f(vLj )
.

If the activation function f(·) is the sigmoid function Equation 99 then its derivative is given
in Equation 100 where we have f ′(vLj ) = −af(vLj )(1− f(vLj )) and the above becomes

δLj (i) = ayj(i)(1− f(yLj )) = ayj(i)(1− ŷj(i)) .

Problem 4.7 (backpropagation with softmax)

The softmax activation function has its output ŷk given by

ŷk ≡
exp(vLk )

∑

k′ exp(v
L
k′)

. (103)

Note that this expression depends on vLj in both the numerator and the denominator. Using
the result from the previous exercise we find

δLj (i) ≡ ∂E(i)
∂vLj (i)

=
∂

∂vLj (i)

(

−
kL
∑

k=1

yk(i) ln

(

ŷk
yk(i)

)

)

= − ∂

∂vLj (i)

(

yj(i) ln

(

ŷj
yj(i)

))

− ∂

∂vLj (i)

(

kL
∑

k=1;k 6=j

yk(i) ln

(

ŷk
yk(i)

)

)

= −yj(i)

ŷj

∂ŷj
∂vLj (i)

−
kL
∑

k=1;k 6=j

yk(i)

ŷk

∂ŷk
∂vLj (i)

.
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To evaluate this we first consider the first term or
∂ŷj

∂vLj (i)
where we find

∂ŷj
∂vLj (i)

=
∂

∂vLj (i)

(

exp(vLj )
∑

k′ exp(v
L
k′)

)

=
exp(vLj )

∑

k′ exp(v
L
k′)

− exp(vLj ) exp(v
L
j )

(
∑

k′ exp(v
L
k′))

2 = ŷj − ŷ2j .

While for the second term we get (note that j 6= k)

∂ŷk
∂vLj (i)

=
∂

∂vLj

(

exp(vLk )
∑

k′ exp(v
L
k′)

)

= −exp(vLk ) exp(v
L
j )

(
∑

k′ exp(v
L
k′))

2 = −ŷkŷj .

Thus we find

δLj = −yj(i)

ŷj
(ŷj − ŷ2j )−

kL
∑

k=1;k 6=j

yk(i)

ŷk
(−ŷkŷj)

= −yj(i)(1− ŷj) + ŷj

kL
∑

k=1;k 6=j

yk(i) .

Since ŷk(i) and yk(i) are probabilities of class membership we have

kL
∑

k=1

yk(i) = 1 ,

and thus
∑kL

k=1;k 6=j yk(i) = 1− yj(i). Using this we find for δLj (i) that

δLj (i) = −yj(i) + yj(i)ŷj + ŷj(1− yj) = ŷj − yj(i) ,

the expression we were to show.

Problem 4.9 (the maximum number of polyhedral regions)

The books equation 4.37 is

M =
l
∑

m=0

(

k
m

)

with

(

k
m

)

= 0 if m > k . (104)

where M is the maximum number of polyhedral regions possible for a neural network with
one hidden layer containing k neurons and an input feature dimension of l. Assuming that
l ≥ k then

M =

l
∑

m=0

(

k
m

)

=

k
∑

m=0

(

k
m

)

= 2k ,

where we have used the fact that

(

k
m

)

= 0 to drop all terms in the sum when m =

k + 1, k + 2, · · · , l if there are any. That the sum of the binomial coefficients sums to 2k

follows from expanding (1 + 1)k using the binomial theorem.
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Problem 4.12 (an approximation of ∂2J

∂wr
kj∂w

r′

k′j′

)

For J given by

J =
1

2

N
∑

i=1

kL
∑

m=1

(ŷm(i)− ym(i))
2 .

We will evaluate the second derivatives of this expression. First we take the wr
kj derivative

of J directly and find

∂J

∂wr
kj

=
N
∑

i=1

kL
∑

m=1

(ŷm(i)− ym(i))
∂ŷm(i)

∂wr
kj

.

Next we take the wr′

k′j′ derivative of this expression. We find

∂2J

∂wr
kj∂w

r′
k′j′

=

N
∑

i=1

kL
∑

m=1

∂ŷm(i)

∂wr′
k′j′

∂ŷm(i)

∂wr
kj

+
N
∑

i=1

kL
∑

m=1

(ŷm(i)− ym(i))
∂2ŷm(i)

∂wr
kj∂w

r′
k′j′

.

If we are near a minimum of the objective function we can assume that ŷm(i) − ym(i) ≈ 0
and can thus approximate the above derivative as

∂2J

∂wr
kj∂w

r′
k′j′

=
N
∑

i=1

kL
∑

m=1

∂ŷm(i)

∂wr
kj

∂ŷm(i)

∂wr′
k′j′

,

showing that we can approximate the second derivative by products of the first order ones.
Recall that the variable wr

kj represent the weight from neuron k in layer r− 1 to the neuron
j in layer r. We would expect that the effect of changes in wr

kj on the output ŷm(i) would
be propagated though the variables vrj (i). From the chain rule we have

∂ŷm(i)

∂wr
kj

=
∂ŷm(i)

∂vrj (i)

∂vrj
∂wr

kj

.

Using Equation 88 we see that
∂vrj
∂wr

kj
= yr−1

k and thus we get

∂ŷm(i)

∂wr
kj

=
∂ŷm(i)

∂vrj (i)
yr−1
k ,

which if we define ∂ŷm(i)
∂vrj (i)

≡ δ̂rjm is the expression we wanted to show.

Problem 4.13 (approximating the Hessian)

We will assume that the weight notation for this problem is the same as in the book where
by the expression wr

jk is the weight from the neuron k in the r− 1st layer into the neuron j
in the r-th layer.
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• Using Equation 87 and Equation 88 from the chain rule we have (dropping the i
dependence)

∂2E
(∂wr

jk)
2
=

∂vrj
∂wr

jk

∂

∂vrj

(

∂E
∂vrj

yr−1
k

)

.

Since the input yr−1
k is independent of vrj we get

∂2E
(∂wr

jk)
2
= (yr−1

k )2
∂2E

(∂vrj )
2
. (105)

• Using Equation 92 we get

∂2E
(∂vLj )

2
= −f ′′(vLj )ej −

[

∂

∂vLj
(yj − f(vLj ))

]

f ′(vLj )

= −f ′′(vLj )ej + f ′(vLj )
2 .

• Now to evaluate ∂2E
(∂vr−1

j )2
we note that from Equation 96 and Equation 89 we have

∂E
∂vr−1

j

=

[

kr
∑

k=1

δrkw
r
kj

]

f ′(vrj ) ,

Thus the vr−1
j derivative of this is given by

∂2E
(∂vr−1

j )2
= f ′(vr−1

j )

kr
∑

k=1

wr
kj

∂δrk
∂vr−1

j

+ f ′′(vr−1
j )

[

kr
∑

k=1

δrkw
r
kj

]

.

Thus we need to evaluate
∂δrk

∂vr−1
j

. To do this we will use the definition of δrk given by

Equation 89, an expression like Equation 93 and subsequent developments following
that equation, namely

∂

∂vr−1
j

(

∂E
∂vrk

)

=

kr
∑

k′=1

∂

∂vrk′

(

∂E
∂vrk

)

∂vrk′

∂vr−1
j

= f ′(vr−1
j )

kr
∑

k′=1

wr
k′j

∂2E
∂vrk′∂v

r
k

.

Dropping all off-diagonal terms in the summation above we keep only the k′ = k
element and find

∂δrk
∂vr−1

j

= f ′(vr−1
j )wr

kj

∂2E
(∂vrk)

2
.

Using this we finally get for ∂2E
(∂vr−1

j )2
the following

∂2E
(∂vr−1

j )2
= (f ′(vr−1

j ))2
kr
∑

k=1

(wr
kj)

2 ∂2E
(∂vrk)

2
+ f ′′(vr−1

j )

[

kr
∑

k=1

δrkw
r
kj

]

.

Note that this expression is different than that given in the book in that the first term
in the book has a summation with an argument of ∂2E

(∂vrj )
2 (note the j subscript) rather

than ∂2E
(∂vrk)

2 (with a k subscript). Since the first of these two expressions is independent

of k it could be taken out of the summation making me think the book has a typo in
its equation. Please contact me if anyone sees any errors in this derivation.
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Problem 4.15 (a different activation function)

When one changes the activation function in the backpropagation algorithm what changes is
the function we use to evaluate any expression with f(·) or f ′(·), for example in Equations 92
and 97. One of the nice things about the backpropagation algorithm is that calls to the
activation function f and its derivative f ′ can simply be viewed as algorithmic “subroutines”
that can be replaced and modified if needed. For the suggested hyperbolic tangent function
f(x) given by

f(x) = c tanh(bx) , (106)

we have its derivative given by

f ′(x) = c b sech2(bx) .

From the identity cosh2(x) − sinh2(x) = 1, by dividing by cosh2(x) we can conclude that
sech2(x) = 1− tanh2(x) and thus

f ′(x) = cb(1− tanh2(bx))

= b

(

1− f(x)2

c

)

. (107)

These two functions then need to be implemented to use this activation function.

Problem 4.16 (an iteration dependent learning parameter µ)

A Taylor expansion of 1
1+ t

t0

or

1

1 + t
t0

≈ 1− t

t0
+

t2

t20
+ · · · .

Thus when t ≪ t0 the fraction 1
1+ t

t0

≈ 1 to leading order and thus µ ≈ µ0. On the other

hand when t ≫ t0 we have that 1 + t
t0
≈ t

t0
and the fraction above is given by

1

1 + t
t0

≈ 1
t
t0

=
t0
t
.

Thus in this stage of the iterations µ(t) decreases inversely in proportion to t.

Problem 4.17 (using a neural net as a function approximation)

This problem is worked in the R script chap 4 prob 17.R. When that script is run it produces
a plot like that shown in Figure 16. The neural network with two hidden nodes was created
using the nnet command from the nnet package. We see that the neural network in this
case does a very good job approximating the true function.
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Figure 16: The function to fit and its neural network approximation for Problem 4.17.

Problem 4.19 (when N = 2(l + 1) the number of dichotomies is 2N−1)

We have

O(N, l) = 2

l
∑

i=0

(

N − 1
i

)

, (108)

where N is the number of points embedded in a space of dimension l and O(N, l) is the
number of groupings that can be formed by hyperplanes in R

l to separate the points into
two classes. If N = 2(l + 1) then

O(2(l + 1), l) = 2
l
∑

i=0

(

2l + 1
i

)

.

Given the identity
(

2n + 1
n− i+ 1

)

=

(

2n + 1
n+ i

)

, (109)
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by taking i = n+ 1, n, n− 1, · · · , 1 we get the following equivalences
(

2n+ 1
0

)

=

(

2n+ 1
2n+ 1

)

(

2n+ 1
1

)

=

(

2n+ 1
2n

)

(

2n+ 1
2

)

=

(

2n+ 1
2n− 1

)

...
(

2n+ 1
n− 1

)

=

(

2n+ 1
n+ 2

)

(

2n+ 1
n

)

=

(

2n+ 1
n+ 1

)

Now write O(2(l + 1), l) as

l
∑

i=0

(

2l + 1
i

)

+
l
∑

i=0

(

2l + 1
i

)

,

or two sums of the same thing. Next note that using the above identities we can write the
second sum as

l
∑

i=0

(

2l + 1
i

)

=

(

2l + 1
0

)

+

(

2l + 1
1

)

+ · · ·+
(

2l + 1
l − 1

)

+

(

2l + 1
l

)

=

(

2l + 1
2l + 1

)

+

(

2l + 1
2l

)

+ · · ·+
(

2l + 1
l + 2

)

+

(

2l + 1
l + 1

)

=
2l+1
∑

i=l+1

(

2l + 1
i

)

.

Thus using this expression we have that

O(2(l + 1), l) =

l
∑

i=0

(

2l + 1
i

)

+

2l+1
∑

i=l+1

(

2l + 1
i

)

=

2l+1
∑

i=0

(

2l + 1
i

)

= 22l+1 .

Since 2l + 1 = N − 1 we have that O(2(l + 1), l) = 2N−1 as we were to show.

Problem 4.22 (the kernel trick)

From the given mapping φ(x) we have that

yTi yj = φ(xi)
Tφ(xj)

=
1

2
+ cos(xi) cos(xj) + cos(2xi) cos(2xj) + · · ·+ cos(kxi) cos(kxj)

+ sin(xi) sin(xj) + sin(2xi) sin(2xj) + · · ·+ sin(kxi) sin(kxj) .
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Since cos(α) cos(β)+sin(α) sin(β) = cos(α−β) we can match cosigns with sines in the above
expression and simplify a bit to get

yTi yj =
1

2
+ cos(xi − xj) + cos(2(xi − xj)) + · · ·+ cos(k(xi − xj)) .

To evaluate this sum we note that by writing the cosigns above in terms of their exponential
representation and using the geometric series we can show that

1 + 2 cos(α) + 2 cos(2α) + 2 cos(3α) + · · ·+ 2 cos(nα) =
sin
((

n + 1
2

)

α
)

sin
(

x
2

) . (110)

Thus using this we can show that yTi yj is given by

1

2

sin
((

k + 1
2

)

(xi − xj)
)

sin
(

x
2

) ,

as we were to show.
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Feature Selection

Notes on the text

Notes on Data Normalization

First recall that for small y we have e−y ≈ 1− y + 1
2
y2 + · · · , thus

x̂ik =
1

1 + e−y
≈ 1

1 + 1− y + 1
2
y2

=
1

2

(

1

1− y
2
+ y2

4
+ · · ·

)

.

Next recall that for small v we have 1
1−v

=
∑∞

k=0 v
k thus we get

1

1− y
2
+ y2

4
+ · · ·

≈ 1 +

(

y

2
− y2

4
+ · · ·

)

+

(

y

2
− y2

4
+ · · ·

)2

+ · · ·

= 1 +
y

2
− y2

4
− y2

4
− y3

4
+ · · · = 1 +

y

2
· · · .

which is a linear function of y as claimed.

Notes on the Unknown Variance Case

Consider the expectation

E[(xi − µ+ µ− x̄)2] = E[(xi − µ)2 + 2(xi − µ)(µ− x̄) + (µ− x̄)2]

= σ2 + 2E[(xi − µ)(µ− x̄)] +
σ2

2
.

We can evaluate the inner expectation using

E[(xi − µ)(µ− x̄)] = E[(xi − µ)

(

1

N

N
∑

i′=1

µ− 1

N

N
∑

i′=1

xi′

)

]

= − 1

N

N
∑

i′=1

E[(xi − µ)(xi′ − µ)] = − 1

N
E[(xi − µ)2] ,

since by independence E[(xi − µ)(xj − µ)] = 0 if i 6= j. Since E[(xi − µ)2] = σ2 we get

E[σ̂2] =
1

N − 1

N
∑

i=1

(

σ2 − 2

(

σ2

N

)

+
σ2

N

)

=
N

N − 1

(

1− 1

N

)

σ2 = σ2 .
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Notes on Example 5.3

See the R script chap 5 example 5 3.R for code that duplicates the results from this example.

Notes on the derivation of the divergence for Gaussian distributions

When the conditional densities are Gaussian we have

p(x|ωi) ∼ N(µi,Σi)

p(x|ωj) ∼ N(µj ,Σj) .

Then to compute the divergence dij given by

dij =

∫ ∞

−∞
(p(x|ωi)− p(x|ωj)) ln

(

p(x|ωi)

p(x|ωj)

)

dx , (111)

we first need to compute the log term ln
(

p(x|ωi)
p(x|ωj)

)

, where we find

ln

(

p(x|ωi)

p(x|ωj)

)

= −1

2

[

(x− µi)
TΣ−1

i (x− µi)− (x− µj)
TΣ−1

j (x− µj)
]

+
1

2
ln

( |Σj|
|Σi|

)

.

When we expand the quadratics above we get

ln

(

p(x|ωi)

p(x|ωj)

)

= −1

2

[

xTΣ−1
i x− xTΣ−1

j x− 2µT
i Σ

−1
i x+ 2µT

j Σ
−1
j x
]

− 1

2

[

µT
i Σ

−1
i µi − µT

j Σ
−1
j µj

]

+
1

2
ln

( |Σj|
|Σi|

)

.

Only the first four terms depend on x while the remaining terms are independent of x and
can be represented by a constant C. Because the densities p(x|·) are normalized we note
that

∫ ∞

−∞
(p(x|ωi)− p(x|ωj))Cdx = C(1− 1) = 0 ,

and these terms do not affect the divergence. Thus we only need to worry about how to
integrate the first four terms. To do these lets first consider the integral of these terms
against p(x|ωi) (integrating against p(x|ωj) will be similar). To do these integral we will use
Equation 294 from Appendix A to evaluate the integral of the terms like xTΣ−1x, against
p(x|ωi). When we do that we find the integral of the log ratio term expressed above is given
by (multiplied by −1/2)

−2

∫ ∞

−∞
ln

(

p(x|ωi)

p(x|ωj)

)

p(x|ωi)dx = µT
i Σ

−1
i µi + trace(ΣiΣ

−1
i )− µT

i Σ
−1
j µi − trace(ΣiΣ

−1
j )

− 2µT
i Σ

−1
i µi + 2µT

j Σ
−1
j µi

= −µT
i Σ

−1
i µi − µT

i Σ
−1
j µi + 2µT

j Σ
−1
j µi

+ trace(I)− trace(ΣiΣ
−1
j ) .
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In the same way the integral of the log ratio term against p(x|ωj) is given by

2

∫ ∞

−∞
ln

(

p(x|ωi)

p(x|ωj)

)

p(x|ωj)dx = −µT
j Σ

−1
i µj − trace(ΣjΣ

−1
i ) + µT

j Σ
−1
j µj + trace(ΣjΣ

−1
j )

+ 2µT
i Σ

−1
i µj − 2µT

j Σ
−1
j µj

= −µT
j Σ

−1
j µj − µT

j Σ
−1
i µj + 2µT

i Σ
−1
i µj

+ trace(I)− trace(ΣjΣ
−1
i ) .

If we take −1 of the first and second expression and add them together we get two types of
terms. Terms involving the trace operation and terms that don’t depend on the trace. The
trace terms add to give

trace terms = −trace(I) + trace(ΣiΣ
−1
j )− trace(I) + trace(ΣjΣ

−1
i )

= −2trace(I) + trace(ΣiΣ
−1
j ) + trace(ΣjΣ

−1
i ) .

The non-trace terms add together to give

non-trace terms = µT
i Σ

−1
i µi + µT

i Σ
−1
j µi − 2µT

j Σ
−1
j µi

+ µT
j Σ

−1
j µj + µT

j Σ
−1
i µj − 2µT

i Σ
−1
i µj

= µT
i (Σ

−1
i µi + Σ−1

j µi − 2Σ−1
j µj − 2Σ−1

i µj) + µT
j (Σ

−1
i µj + Σ−1

j µj)

= µT
i ((Σ

−1
i + Σ−1

j )µi − 2(Σ−1
i + Σ−1

j )µj) + µT
j (Σ

−1
i + Σ−1

j )µj

= µT
i (Σ

−1
i + Σ−1

j )(µi − µj)− µT
i (Σ

−1
i + Σ−1

j )µj + µT
j (Σ

−1
i + Σ−1

j )µj

= µT
i (Σ

−1
i + Σ−1

j )(µi − µj)− (µT
i − µT

j )(Σ
−1
i + Σ−1

j )µj

= (µi − µj)
T (Σ−1

i + Σ−1
j )µi − (µi − µj)

T (Σ−1
i + Σ−1

j )µj

= (µi − µj)(Σ
−1
i + Σ−1

j )(µi − µj) .

In total when we divide by 2 and add together the trace and the non-trace expressions we
get

dij =
1

2
(µi − µj)(Σ

−1
i + Σ−1

j )(µi − µj) +
1

2
trace(ΣiΣ

−1
j + ΣjΣ

−1
i − 2I) , (112)

for the expression for the divergence between two Gaussians.

Notes on Example 5.4

From the expression for B derived in the book

B =
l

2
log

(

σ2
1 + σ2

2

2σ1σ2

)

,

if we consider r = σ2

σ1
and put in σ2 = rσ1 in to the above we get

B =
l

2
log

(

1 + r2

2r

)

→ +∞ ,

as r → 0. Thus
Pe ≤

√

P (ω1)P (ω2)e
−B → 0 .
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Notes on scatter matrices

Recall the definitions of the within-class scatter matrix, Sw, given by

Sw =

M
∑

i=1

PiE[(x− µi)(x− µi)
T |x ∈ ωi] , (113)

and the definition of the between-class scatter matrix, Sb, given by

Sb =

M
∑

i=1

Pi(µi − µ0)(µi − µ0)
T , (114)

The variable µ0 is the “global mean vector” or mean over all features independent of class.
We can show that this is equivalent to the expression given in the book as follows

µ0 =
1

N

N
∑

i=1

xi =
1

N

M
∑

i=1

ni
∑

j=1

xj =
1

N

M
∑

i=1

niµi =

M
∑

i=1

Piµi , (115)

Where in the second sum above we mean to sum only over those features x that are members
of class i. Here M is the number of classes. Note that means either µi (the class specific
means) and µ0 (the global mean) are linear functions of the raw features x. Thus if we
consider a linear transformation of x such as

y = ATx ,

then x “means” denoted by µx transform into y “means” in the expected manner

µy = ATµx .

From the definitions of the x based scatter matrices Swx and Sbx given above and how the x
based µ’s change under a linear transformation we see that

Syw = ATSxwA and Syb = ATSxbA . (116)

We will use these two results when we pick the transformation AT so that the transformed
vectors y are optimal in some way.

If we consider a single feature (a scalar) in the two class case where was assume with equal
class probabilities we have for Sw and Sb the following expressions

Sw =
1

2
(S1 + S2) =

1

2
(σ2

1 + σ2
2)

Sb =
1

2
((µ1 − µ0)

2 + (µ2 − µ0)
2) .

Since µ0 =
1
2
(µ1 + µ2) we find the differences needed in the expression for Sb given by

µ1 − µ0 =
1

2
(µ1 − µ2) and µ2 − µ0 =

1

2
(µ2 − µ1) ,
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and we have Sb = (µ1 − µ2)
2. Thus

J ′
2 =

|Sb|
|Sw|

∝ (µ1 − µ2)
2

(σ2
1 + σ2

2)
.

This later expression is known as Fisher’s discriminant ration or FDR. The book give a
multidimensional generalization of

FDRmd =

M
∑

i=1

M
∑

j 6=i

(µi − µj)
2

σ2
i + σ2

j

,

but I would think that one would want to incorporate the class priors as was done in the
multiclass generalization of the divergence via

FDRmd =

M
∑

i=1

M
∑

j 6=i

(µi − µj)
2

σ2
i + σ2

j

P (ωi)P (ωj) .

Notes on sequential backwards selection (SBS)

Here we derive the number of times we evaluate the class separability metric when using
sequential backwards selection to find a suboptimal collection of l features. We start with
the initial m features, and begin by evaluating the class separability measure J(·) using the
full m dimensional feature vector. This results in 1 evaluation of J . We then sequentially
remove each of the m features from the full feature set and evaluate J on using each reduced
vector. This requires m evaluations of J . We select the set of features of size m − 1 that
gives the largest value of J . Using this selection of variables we continue this process by
sequentially removing each variable to obtain a set of m−1 vectors each of dimension m−2
and evaluate J on each. This requires m− 1 evaluations. Thus now we have performed

1 +m+m− 1 ,

evaluations of J to select the vector of size m− 2. If we continue this pattern one more step
we will do

1 +m+m− 1 +m− 2 ,

evaluations of J to select the optimal set of features of size m−3. Generalizing this we need

1 +m+m− 1 +m− 2 + · · ·+ l + 1 ,

evaluations of J to select the optimal set of features of size l. This can be simplified as

1 +

m
∑

k=l+1

k = 1 +

m
∑

k=1

k −
l
∑

k=1

k

= 1 +
1

2
m(m+ 1)− 1

2
l(l + 1) .

A simple python implementation of this search procedure is given in backwards selection.py

and backwards selection run best subsets.py.
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Notes on sequential forwards selection (SFS)

In the same way as in sequential backwards selection we start by performing m evaluations
of J to pick the best single feature. After this feature is selected we then need to evaluate
J , m − 1 times to pick the set of two features that is best. After the best two features are
picked we need to evaluate J m− 2 time to pick the best set of three features. This process
continues until we have selected l features. Thus we have in total

m
∑

k=m−(l−1)

k =
m
∑

k=1

k −
m−l
∑

k=1

=
1

2
m(m+ 1)− 1

2
(m− l)(m− l + 1)

= lm− 1

2
l(l − 1) ,

when we simplify. A simple python implementation of this search procedure is given in
forward selection.py and forward selection run best subsets.py.

Notes on optimal feature generation

For J3 defined as trace(S−1
w Sm) when we perform a linear transformation of the raw input

feature vectors x as y = ATx, the scatter matrices transform as given by Equation 116 or
Syw = ATSxwA and Sym = ATSxmA the objective J3 as a function of A becomes

J3(A) = trace((ATSxwA)
−1(ATSxmA)) . (117)

We would like to pick the value of A such that when we map the input features y under AT

the value of J3(A) is maximal. Taking the derivative of the above and using the results on

Page 96 we get that the equation ∂J3(A)
∂A

= 0 imply (when we postmultiply by ATSxwA)

SxwA(A
TSxwA)

−1(ATSxbA) = SxbA .

But because the transformed scatter matrices Syw and Syb are given by ATSxwA and ATSxbA
respectively by using these expressions and premultipling the above by S−1

xw , we can write
the above expression as

AS−1
ywSyb = S−1

xwSxbA . (118)

Note that this expression has scatter matrices in terms of y on the left and x on the right.
When written in this form, this expression “hides” the Amatrices in the definition of Syw and
Syb. Since we don’t know A we can’t directly compute the matrices Syw and Syb. Assuming
for the moment that we could compute these two matrices, since they are both symmetric
we can find an invertible matrix B such that diagonalizes both Syw and Syb. This means
that there is an invertible linear transformation B such that

BTSywB = I and BTSybB = D ,
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where D is a diagonal matrix2. This means that in terms of B and D we can write S−1
yw and

Syb as
S−1
yw = (B−TB−1)−1 = BBT and Syb = B−TDB−1 .

If we use these expressions after we postmultiply Equation 118 by B we find

(S−1
xwSxb)AB = AS−1

ywSybB = ABBTB−TDB−1B

= ABD .

If we let C ≡ AB we have
S−1
xwSxbC = CD . (119)

This is an eigenvalue problem where columns of C are the eigenvectors of S−1
xwSxb and D is

a diagonal matrix with the eigenvectors on the diagonal.

To complete this discussion we now need to decide which of the eigenvectors of S−1
xwSxb we are

going to select as the columns of C. In an M class problem the rank of Sxb is at most M −1.
Thus the rank of the product matrix S−1

xwSxb is at most M − 1. Thus we can have at most
M − 1 non-zero eigenvalues and thus there can be at most M − 1 associated eigenvectors.

Question: These eigenvalues are positive, but I currently don’t see an argument why that
needs to be so. If anyone knows of one please let me know.

Since we are asked to take the m original features from the vector x and optimally (with
respect to J3) linearly transform them into a smaller set l features the largest l can be is
M − 1.

• If l = M −1 then we should take C to have columns represented by all of the non-zero
eigenvectors of S−1

xwSxb. This will have the same maximal value for J3 in that in the
original space of x J3 has the value

J3,x = trace(S−1
xwSxb) = λ1 + λ2 + · · ·+ λM−1 ,

since a matrix trace is equivalent to the sum of that matrices eigenvalues. While after
performing the CT transformation on x or ŷ = CTx we have J3 given by Equation 117
or

J3,ŷ = trace((CTSxwC)−1(CTSxbC)) .

To evaluate this expression recall that C is the matrix in Equation 119 or SxbC =
SxwCD. If we premultiply this by CT we get

CTSxbC = CTSxwCD ,

so
(CTSxwC)−1(CTSxbC) = D .

Thus
trace((CTSxwC)−1(CTSxbC)) = trace(D) = λ1 + λ2 + · · ·+ λM−1 ,

the same as J3,x obtained earlier.

• If l < M − 1 then we take the l eigenvectors associated with the l largest eigenvalues
of S−1

xwSxb.

2Note that B is not necessarily orthogonal, all we know is that it is invertible.
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Problem Solutions

Problem 5.1 ( (2N−2)s2z
σ2 is a chi-squared random variable)

To solve this problem we will use several results from Appendix A.11 (chi-squared distribu-
tion). To begin recall that when given N draws, {xi}Ni=1, from a Gaussian random variable
with variance σ2 and sample mean x̄ the expression

1

σ2

N
∑

i=1

(xi − x̄)2 ,

is given by a chi-squared distribution with N − 1 degrees of freedom. Next recall that if
χ2
1 and χ2

2 are independent random variables from chi-squared distributions with N1 and N2

degrees of freedom then
χ2 = χ2

1 + χ2
2 ,

is a random variable from a chi-squared distribution with N1+N2 degrees of freedom. Thus

when we consider the expression (2N−2)s2z
σ2 or

N
∑

i=1

(xi − x̄)2

σ2
+

N
∑

i=1

(yi − ȳ)2

σ2
,

we have the sum of two independent chi-squared random variables each of degree N − 1.
Thus this expression is another chi-squared random variable with 2N−2 degrees of freedom.

Problem 5.2 (q has a t-distribution)

Using the same arguments as in problem 5.1 above we first note that

(N1 +N2 − 2)s2z
σ2

,

is given by a χ2 random variable with N1 +N2 − 2 degrees of freedom. Next, if we consider
the random variable x̄ − ȳ − µ1 + µ2 we know that it is Gaussian with a zero mean and a
variance given by

Var[x̄− ȳ − µ1 + µ2] = Var[((x̄− µ1)− (ȳ − µ2))]

= Var[x̄− µ1]− 2Cov[(x̄− µ1), (ȳ − µ2)] + Var[ȳ − µ2]

= Var[x̄− µ1] + Var[ȳ − µ2] =
σ2

N1

+
σ2

N2

,

since we are assuming that Cov[(x̄− µ1), (ȳ − µ2)] = 0. Thus the random variable

x̄− ȳ − µ1 + µ2

σ
√

1
N1

+ 1
N2

,
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is a standard normal. Then using the results from Appendix A.12 (t-distribution) where it is
stated that the ratio of a standard normal random variable over a scaled χ2 random variable
with n degrees of freedom is a t-distributed random variable of degree n we have, forming a
ratio of the required form, that

x̄− ȳ − µ1 + µ2

σ
√

1
N1

+ 1
N2

√

(N1 +N2 − 2)s2z
σ2

(

1

N1 +N2 − 2

)

,

is a t distributed random variable with N1+N2−2 degrees of freedom. The above expression
simplifies to

x̄− ȳ − µ1 + µ2

sz
√

1
N1

+ 1
N2

.

Which shows that the desired expression is a t distributed random variable with N1+N2−2
degrees of freedom.

Problem 5.3 (A is orthonormal)

The given matrix A has components A(i, j) that can be represented as

A(1, j) =
1√
n

1 ≤ j ≤ n

A(i, i) =
i− 1

√

i(i− 1)
i ≥ 2

A(i, j) = − 1
√

i(i− 1)
i ≥ 2 and 1 ≤ j ≤ i− 1 .

Then the (p, q) element of the product AAT is given by

(AAT )(p, q) =
n
∑

k=1

A(p, k)AT (k, q) =
n
∑

k=1

A(p, k)A(q, k) .

We will evaluate this expression for all possible values of (p, q) and show that in all cases this
matrix product equals the identity matrix. Since the first row above seems different than
the general case we start there. If p = 1 then we have

(AAT )(1, q) =
1√
n

n
∑

k=1

A(q, k) .

If we then take q = 1 we get

(AAT )(1, 1) =
1√
n

n
∑

k=1

A(1, k) =
1

n

n
∑

k=1

1 = 1 .
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If q > 1 then we get

(AAT )(1, q) =
1√
n

n
∑

k=1

A(q, k) =
1√
n

[

A(q, q) +

q−1
∑

k=1

A(q, k)

]

=
1√
n

[

q − 1
√

q(q − 1)
− 1
√

q(q − 1)

q−1
∑

k=1

1

]

= 0 .

Now assume that p > 1. Then we have for (AAT )(p, q) the following

(AAT )(p, q) =
n
∑

k=1

A(p, k)A(q, k) = A(p, p)A(q, p) +

p−1
∑

k=1

A(p, k)A(q, k)

=
p− 1

√

p(p− 1)
A(q, p)− 1

√

p(p− 1)

p−1
∑

k=1

A(q, k) . (120)

To evaluate this lets first assume that q < p then A(q, k) = 0 if k > q and then Equation 120
gives

(AAT )(p, q) = 0− 1
√

p(p− 1)

q
∑

k=1

A(q, k)

= − 1
√

p(p− 1)

[

A(q, q) +

q
∑

k=1

A(q, k)

]

= − 1
√

p(p− 1)

[

q − 1
√

q(q − 1)
−

q−1
∑

k=1

1
√

q(q − 1)

]

= 0 .

If q > p then Equation 120 gives

p− 1
√

p(p− 1)

(

1
√

q(q − 1)

)

− 1
√

p(p− 1)

p−1
∑

k=1

1
√

q(q − 1)
= 0 .

Finally, if p = q then Equation 120 gives

(AAT )(p, p) =
p− 1

√

p(p− 1)

(

1
√

q(q − 1)

)

− 1
√

p(p− 1)

p−1
∑

k=1

1
√

q(q − 1)

=
1

√

p(p− 1)
√

q(q − 1)
[(p− 1)(q − 1) + (p− 1)]

=
(p− 1)q

√

p(p− 1)
√

q(q − 1)
= 1 ,

when we convert all q’s into p’s. Thus we have shown that AAT = I and A is an orthogonal
matrix.

85



Problem 5.4 (linear combinations of Gaussian random variables)

Recall [2] that the characteristic function for multidimensional Gaussian random vector x
with mean µ and covariance Σ is given by

ζX(t) = E[eit
TX ] = exp

(

itTµ− 1

2
tTΣt

)

. (121)

If our random vector y is a linear combination of the elements of the vector x then y = Ax
and the characteristic function for y is given by

ζY (t) = E[eit
T Y ] = E[eit

TAX ] = E[ei(A
T t)T x] = ζX(A

T t)

= exp

(

itTAµ− 1

2
tTAΣAT t

)

,

which is the same as the characteristic function of a multidimensional Gaussian random
vector that has a mean vector of Aµ and covariance matrix of AΣAT as we were to show. If
xi are mutually independent with identical variances say σ2 then Σ is a multiple of the identity
matrix, say Σ = σ2I. In that case AΣAT = σ2AAT . In that case if A is orthogonal the
covariance matrix for yi is σ

2I and these transformed variables are also mutually independent.

Problem 5.5 (the ambiguity function)

We define the ambiguity function as

A = −
M
∑

i=1

K
∑

j=1

P (∆j)P (ωi|∆j) logM(P (ωi|∆j)) . (122)

If the distribution of features over each class is completely overlapping, then P (∆j|ωi) is
independent of ωi. That is P (∆j|ωi) = P (∆j). In this case, then using Bayes’ rule we have

P (ωi|∆j) =
P (∆j|ωi)P (ωi)

P (∆j)
= P (ωi) .

The ambiguity function in this case then becomes

A = −
M
∑

i=1

K
∑

j=1

P (∆j)P (ωi) logM(P (ωi)) = −
M
∑

i=1

P (ωi) logM(P (ωi)) .

If we further assume that each class is equally likely then P (ωi) = 1
M
, so logM

(

1
M

)

= −1
and we find A becomes

A =
1

M

M
∑

i=1

1 = 1 .

If the distribution of features are perfectly separated, then P (ωi|∆j) = 0 if class i does not
have any “overlap” with the region ∆j, otherwise P (ωi|∆j) = 1, since in that case only class
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ωi is present. To evaluate A we break the inner sum of j into regions where class i has
feature overlap and does not have

A = −
M
∑

i=1











∑

j: class i overlaps ∆j

+
∑

j: class i does not overlap ∆j











In the first sum, since P (ωi|∆j) = 1 each term is zero and the entire sum vanishes. In the
second sum, when P (ωi|∆j) = 0 by a limiting argument one can show that

P (ωi|∆j) logM(P (ωi|∆j)) = 0 ,

and thus the entire sum also vanishes. Thus we have shown that A = 0.

Problem 5.7 (the divergence increase for Gaussian densities)

To begin this problem, we are told that when we consider the generation of original feature
vectors x of dimension m, that the two classes i and j have the same covariance matrix
Σ. If we then add an additional feature xm+1 so that we desire to consider the covariances

of vectors defined as

[

x
xm+1

]

, we will assume that these larger vectors also have equal

covariance matrices when considered from class i and j. In this case that covariance matrix
will be take of the form

Σ̂ =

[

Σ r
rT σ2

]

.

When two classes have equal covariances the trace terms in the divergence dij given by
Equation 112 vanish and dij simplifies to

dij = (µ̂i − µ̂j)Σ̂
−1(µ̂i − µ̂j) . (123)

Here µ̂i and µ̂j are the mean vectors for the larger vector with the scalar xm+1 appended to
the original x, for example

µ̂i =

[

µi

µi

]

,

where µi is the mean of xm+1 under class i. The same notation will be used for class j.
Thus to find a recursive relationship for dij we need a way of decomposing the inner product
defined above.

Since we are to assume that the covariance matrix, Σ̂, for the vector

[

x
xm+1

]

is given in

block form as

Σ̂ ≡
[

Σ r
rT σ2

]

.

Where Σ is a m ×m matrix and r is a m × 1 column vector. Thus to further simplify the
divergence we need to derive an expression for Σ̂−1. To compute this inverse we will multiply
Σ̂ on the left by a block matrix with some variable entries which we hope we can find suitable
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values for and thus derive the block inverse. As an example of this lets multiply Σ̂ on the

left by the block matrix

[

Σ−1 0
b′ d

]

, where b is a m×1 dimensional vector and d is a scalar.

Currently, the values of these two variables are unknown. When we multiply by this matrix
we desire to find b and d such that

[

Σ−1 0
b′ d

] [

Σ r
rT σ2

]

=

[

I 0
0 1

]

. (124)

Equating the block multiplication result on the left to the components of the block matrix
on the right gives

b′Σ + drT = 0 .

for the (2, 1) component. This later equation can be solved for b by taking transposes and
inverting Σ as

b = −Σ−1rd .

If we take d = 1 and b given by the solution above, the product on the left-hand-side given
by Equation 124 does not becomes the identity but is given by

[

Σ−1 0
−rTΣ−1 1

] [

Σ r
rT σ2

]

=

[

I Σ−1r
0 σ2 − rTΣ−1r

]

. (125)

Note what we have just done is the “forward solve” step in Gaussian elimination. Taking
the inverse of both sides of this later equation we find

[

Σ r
rT σ2

]−1 [
Σ−1 0

−rTΣ−1 1

]−1

=

[

I Σ−1r
0 σ2 − rTΣ−1r

]−1

.

or
[

Σ r
rT σ2

]−1

=

[

I Σ−1r
0 σ2 − rTΣ−1r

]−1 [
Σ−1 0

−rTΣ−1 1

]

.

Thus it remains to find the inverse of the block matrix

[

I Σ−1r
0 σ2 − rTΣ−1r

]

. This inverse is

the well known “backwards solve” in Gaussian elimination. Note that this inverse is given
by

[

I Σ−1r
0 1

α

]−1

=

[

I −αΣ−1r
0 α

]

,

where we have made the definition of the scalar α such that 1
α
≡ σ2 − rTΣ−1r. Using this

result we have that

[

Σ r
rT σ2

]−1

=

[

I −αΣ−1r
0 α

] [

Σ−1 0
−rTΣ−1 1

]

=

[

Σ−1 + αΣ−1rrTΣ−1 −αΣ−1r
−αrTΣ−1 α

]

. (126)

Using this expression one of the required product in the evaluation of Equation 123 is given
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by

[

Σ r
rT σ2

]−1 [
µi − µj

µi − µj

]

=

[

Σ−1 + αΣ−1rrTΣ−1 −αΣ−1r
−αrTΣ−1 α

] [

µi − µj

µi − µj

]

=

[

(Σ−1 + αΣ−1rrTΣ−1)(µi − µj)− αΣ−1r(µi − µj)
−αrTΣ−1(µi − µj) + α(µi − µj)

]

=

[

d+ αΣ−1rrTd− αΣ−1r(µi − µj)
−αrTd+ α(µi − µj)

]

.

Where since the product Σ−1(µi − µj) appears a great number of times we defined it to be
d, so d ≡ Σ−1(µi − µj). Computing the product needed to produce the full quadratic term
in dij we get

(

µ
T
i − µ

T
j , µi − µj

)

[

d+ αΣ−1rrTd− αΣ−1r(µi − µj)
−αrTd+ α(µi − µj)

]

= (µi − µj)
Td

+ α(µi − µj)
TΣ−1rrTd

− α(µi − µj)
TΣ−1r(µi − µj)

− α(µi − µj)r
Td

+ α(µi − µj)
2 .

Taking the transpose of either term we see that the third and fourth scalar products in the
above expressions are equal. Combining these we get

(µi − µj)
Td+ αdTrrTd+ α(µi − µj)

2 − 2αdT r(µi − µj) .

Completing the square of the expression with respect to µi−µj we have this expression given
by

α
[

(µi − µj)− dT r
]2−α(dT r)2+αdTrrTd+(µi−µj)

Td = α
[

(µi − µj)− dT r
]2
+(µi−µj)

Td .

Thus using this and the definition of d and α we see that dij is given by

dij(x1, x2, · · · , xm, xm+1) = (µi − µj)
TΣ−1(µi − µj) +

[

µi − µj − dT r
]2

σ2 − rTΣ−1r

= dij(x1, x2, · · · , xm) +

[

µi − µj − (µi − µj)
TΣ−1r

]2

σ2 − rTΣ−1r
.

If the new feature is uncorrelated with the original ones then we have the vector r equal zero
and the second expression follows from this one.

Problem 5.8 (the divergence sums for statistically independent features)

Consider the divergence dij defined by

dij =

∫

x

(p(x|ωi)− p(x|ωj)) ln

(

p(x|ωi)

p(x|ωj)

)

dx . (127)
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Then if the features are statistically independent in each class we have

p(x|ωi) =

l
∏

k=1

p(xk|ωi) .

Thus the logarithmic term above becomes

ln

(

p(x|ωi)

p(x|ωj)

)

dx = ln

(

l
∏

k=1

p(xk|ωi)

p(xk|ωj)

)

=

l
∑

k=1

ln

(

p(xk|ωi)

p(xk|ωj)

)

.

Then we get for dij is

dij =
l
∑

k=1

∫

x

(p(x|ωi)− p(x|ωj)) ln

(

p(xk|ωi)

p(xk|ωj)

)

dx .

Since the logarithmic term only depends on xk (and not the other k’s) we can integrate out
them by performing the

∫

x
integration for all variables but xk. This then gives

dij =
l
∑

k=1

∫

xk

(p(xk|ωi)− p(xk|ωj)) ln

(

p(xk|ωi)

p(xk|ωj)

)

dxk ,

which is the sum of l scalar divergences each one over a different variable.

Problem 5.9 (deriving the Chernoff bound)

The books equation 5.17 is given by

Pe ≤ P (ω1)
sP (ω2)

1−s

∫

p(x|ω1)
sp(x|ω2)

1−sdx for 0 ≤ s ≤ 1 . (128)

When the densities p(x|ωi) for i = 1, 2 are d-dimensional multidimensional Gaussians then

p(x|ωi) =
1

(2π)d/2|Σi|1/2
exp

{

−1

2
(x− µi)

TΣ−1
i (x− µi)

}

, (129)

so the product in the integrand in Equation 128 is given by

p(x|ω1)
sp(x|ω2)

1−s =
1

(2π)
ds
2 (2π)

d(1−s)
2 |Σ1|

s
2 |Σ2|

1−s
2

× exp

{

−s

2
(x− µ1)

TΣ−1
1 (x− µ1)−

(1− s)

2
(x− µ2)

TΣ−1
2 (x− µ2)

}

.

Expanding the terms in the exponential we find (ignoring for now the factor −1
2
)

sxTΣ−1
1 x− 2sxTΣ−1

1 µ1 + sµT
1Σ

−1
1 µ1 + (1− s)xTΣ−1

2 x− 2(1− s)xTΣ−1
2 µ2 + (1− s)µ2Σ

−1
2 µ2 .
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Grouping the quadratic, linear, and constant terms we find

xT (sΣ−1
1 + (1− s)Σ−1

2 )x− 2xT (sΣ−1
1 µ1 + (1− s)Σ−1

2 µ2) + sµT
1Σ

−1
1 µ1 + (1− s)µT

2Σ
−1
2 µ2 .

Using this expression the product we are considering then becomes

p(x|ω1)
sp(x|ω2)

1−s =
1

(2π)
d
2 |Σ1|

s
2 |Σ2|

1−s
2

exp

{

−1

2

(

sµT
1Σ

−1
1 µ1 + (1− s)µT

2Σ
−1
2 µ2

)

}

(130)

× exp

{

−1

2

(

xT (sΣ−1
1 + (1− s)Σ−1

2 )x− 2xT (sΣ−1
1 µ1 + (1− s)Σ−1

2 µ2)
)

}

.

Thus we want to integrate this expression over all possible x values. The trick to evaluating
an integral like this is to convert it into an integral that we know how to integrate. Since this
involves the integral of a Gaussian like kernel we might be able to evaluate this integral by
converting exactly it into the integral of a Gaussian. Then since it is known that the integral
over all space of a Gaussians is one we may have evaluated indirectly the integral we are
interested in. To begin this process we first consider what the argument of the exponential

(without the −1/2) of a Gaussian with mean θ and covariance A would look like

(x− θ)TA−1(x− θ) = xTA−1x− 2xTA−1θ + θTA−1θ . (131)

Using this expression to match the arguments of the quadratic and linear terms in the
exponent in Equation 130 would indicate that

A−1 = sΣ−1
1 + (1− s)Σ−1

2 and

A−1θ = sΣ−1
1 µ1 + (1− s)Σ−1

2 µ2 .

Thus the Gaussian with a mean value θ and covariance A given by

A = (sΣ−1
1 + (1− s)Σ−1

2 )−1 (132)

θ = A(sΣ−1
1 µ1 + (1− s)Σ−1

2 µ2)

= (sΣ−1
1 + (1− s)Σ−1

2 )−1(sΣ−1
1 µ1 + (1− s)Σ−1

2 µ2) , (133)

would evaluate to having exactly the same exponential terms (modulo the expression θTA−1θ).
The point of this is that with the definitions of A and θ we can write

xT (sΣ−1
1 + (1− s)Σ−1

2 )x− 2xT (sΣ−1
1 µ1 + (1− s)Σ−1

2 µ2) = (x− θ)TA−1(x− θ)− θTA−1θ ,

so that the integral we are attempting to evaluate can be written as
∫

p(x|ω1)
sp(x|ω2)

1−sdx =
1

(2π)
d
2 |Σ1|

s
2 |Σ2|

1−s
2

× exp

{

−1

2

(

sµT
1Σ

−1
1 µ1 + (1− s)µT

2Σ
−1
2 µ2

)

}

exp

{

1

2
θTA−1θ

}

×
∫

exp

{

−1

2
(x− θ)TA−1(x− θ)

}

dx .

In effect what we are doing is “completing the square” of the argument in the exponential.
Since we know that multidimensional Gaussians integrate to one, this final integral becomes

∫

exp

{

−1

2
(x− θ)TA−1(x− θ)

}

dx = (2π)d/2|A|1/2 . (134)
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In addition, the argument in the exponential in front of the (now evaluated) integral is given
by

sµT
1Σ

−1
1 µ1 + (1− s)µT

2Σ
−1
2 µ2 − θTA−1θ . (135)

When we put in the definition of A and θ given by Equations 132 and 133 we have that
θTA−1θ is equivalent to three (somewhat complicated) terms

θTA−1θ = (sµT
1Σ

−1
1 + (1− s)µT

2Σ
−1
2 )(sΣ−1

1 + (1− s)Σ−1
2 )−1(sΣ−1

1 µ1 + (1− s)Σ−1
2 µ2)

= s2µT
1Σ

−1
1 (sΣ−1

1 + (1− s)Σ−1
2 )−1Σ−1

1 µ1

+ 2s(1− s)µT
1Σ

−1
1 (sΣ−1

1 + (1− s)Σ−1
2 )−1Σ−1

2 µ2

= (1− s)2µT
2Σ

−1
2 (sΣ−1

1 + (1− s)Σ−1
2 )−1Σ−1

2 µ2 .

Given that we still have to add the terms sµT
1Σ

−1
1 µ1+(1−s)µT

2Σ
−1
2 µ2 to the negative of this

expression we now stop and look at what our end result should look like in hopes of helping
motivate the transformations to take next. Since we might want to try and factor this into
an expression like (µ1 − µ2)

TB(µ1 − µ2) by expanding this we see that we should try to get
the expression above into a three term form that looks like

µT
1Bµ1 − 2µT

1Bµ2 + µT
2Bµ2 , (136)

for some matrix B. Thus lets add sµT
1Σ

−1
1 µ1 + (1 − s)µT

2Σ
−1
2 µ2 to the negative of θTA−1θ

and write the result in the three term form suggested by Equation 136 above. We find that
Equation 135 then becomes when factored in this way

sµT
1

[

Σ−1
1 − sΣ−1

1 (sΣ−1
1 + (1− s)Σ−1

2 )−1Σ−1
1

]

µ1 (137)

− 2s(1− s)µT
1

[

Σ−1
1 (sΣ−1

1 + (1− s)Σ−1
2 )−1Σ−1

2

]

µ2 (138)

+ (1− s)µT
2

[

Σ−1
2 − (1− s)Σ−1

2 (sΣ−1
1 + (1− s)Σ−1

2 )−1Σ−1
2

]

µ2 . (139)

We now use the inverse of inverse matrix sums lemma (IIMSL) given by

(A−1 +B−1)−1 = A(A+B)−1B = B(A+B)−1A , (140)

to write the matrix products in the middle term of the above expression as

Σ−1
1 (sΣ−1

1 + (1− s)Σ−1
2 )−1Σ−1

2 = ((1− s)Σ1 + sΣ2)
−1 . (141)

Recognizing this matrix as one that looks familiar and that we would like to turn the others
into lets now “hope” that the others can be transformed into a form that looks like that. To
further see if this is possible, and to motivate the transformations done next, consider how
the desired expression would look like expanded as in Equation 136. We have without the
factor of −1

2
s(1− s) the following

(µ1 − µ2)
T ((1− s)Σ1 + sΣ2)

−1(µ1 − µ2) = µT
1 ((1− s)Σ1 + sΣ2)

−1µ1 (142)

− 2µT
1 ((1− s)Σ1 + sΣ2)

−1µ2 (143)

+ µT
2 ((1− s)Σ1 + sΣ2)

−1µ2 . (144)

Since as just shown the middle terms match as desired, looking at the terms Equation 137
and 142, to have the desired equality we want to show if we can prove

s
[

Σ−1
1 − sΣ−1

1 (sΣ−1
1 + (1− s)Σ−1

2 )−1Σ−1
1

]

= s(1− s)((1− s)Σ1 + sΣ2)
−1 , (145)
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and

(1− s)
[

Σ−1
2 − (1− s)Σ−1

2 (sΣ−1
1 + (1− s)Σ−1

2 )−1Σ−1
2

]

= s(1− s)((1− s)Σ1+ sΣ2)
−1 , (146)

the similar expression for the terms Equation 139 and 144. To show that in fact this matrix
difference is correct we will use another matrix identity lemma. This time we will use the
Woodbury identity which can be written as

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 . (147)

If we specialize this identity by taking C and V to both be identity matrices we obtain

(A+ U)−1 = A−1 − A−1U(I + A−1U)−1A−1

= A−1 − A−1(U−1 + A−1)−1A−1 .

Using this last expression with A = sΣ−1
1 and U = (1− s)Σ−1

2 we can derive that

(sΣ−1
1 + (1− s)Σ−1

2 )−1 =
1

s
Σ1 −

1

s
Σ1

(

1

1− s
Σ2 +

1

s
Σ1

)−1
1

s
Σ1

=
1

s
Σ1 −

(1− s)

s
Σ1 ((1− s)Σ1 + sΣ2)

−1Σ1 .

Multiplying this last expression by sΣ−1
1 on the left and Σ−1

1 on the right to get

sΣ−1
1 (sΣ−1

1 + (1− s)Σ−1
2 )−1Σ−1

1 = Σ−1
1 − (1− s)((1− s)Σ1 + sΣ2)

−1 .

This last expression gives that

Σ−1
1 − sΣ−1

1 (sΣ−1
1 + (1− s)Σ−1

2 )−1Σ−1
1 = (1− s)((1− s)Σ1 + sΣ2)

−1 ,

which is equivalent to the desired Equation 145. Using exactly the same steps one can prove
Equation 146. In summary then we have shown that

∫

p(x|ω1)
sp(x|ω2)

1−sdx =
|A|1/2

|Σ1|
s
2 |Σ2|

1−s
2

× exp

{

−1

2
s(1− s)(µ1 − µ2)

T ((1− s)Σ1 + sΣ2)
−1(µ1 − µ2)

}

.

It remains to evaluate the coefficient |A|1/2

|Σ1|
s
2 |Σ2|

1−s
2
. Taking the determinant of both sides of

Equation 141 and solving for the expression A defined in Equation 132 we find

|A| = |Σ1||Σ2|
|(1− s)Σ1 + sΣ2|

. (148)

When we put this into what we have found for
∫

p(x|ω1)
sp(x|ω2)

1−sdx we obtain

∫

p(x|ω1)
sp(x|ω2)

1−sdx =
|Σ1|

1−s
2 |Σ2|

s
2

|(1− s)Σ1 + sΣ2|
1
2

× exp

{

−1

2
s(1− s)(µ1 − µ2)

T ((1− s)Σ1 + sΣ2)
−1(µ1 − µ2)

}

.
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If we define the above expression equal to e−b(s) we see that b(s) is given by

b(s) =
1

2
s(1− s)(µ1 − µ2)

T ((1− s)Σ1 + sΣ2)
−1(µ1 − µ2)

+
1

2
ln

{ |(1− s)Σ1 + sΣ2|
|Σ1|1−s|Σ2|s

}

. (149)

When this is combined with Equation 128 we have finally proved the Chernoff inequality. If
we now consider the case when Σ1 = Σ2 = Σ we have

b(s) =
s(1− s)

2
(µ1 − µ2)

TΣ−1(µ1 − µ2) .

Then as 1
2
(µ1−µ2)

TΣ−1(µ1−µ2) is a scalar multiplier of the function s(1−s), its value does
not change the location of the extrema of b(s). To find the extrema of b(s) we take the first
derivative, set the result equal to zero and solve for s. We find

b′(s) = 1− s− s = 0 ⇒ s =
1

2
.

the second derivative of the function b(s) is given by b′′(s) = −2. Since this is negative s = 1
2

is a maximum of b(s) or a minimum of e−b(s).

Problem 5.10 (the mixture scatter matrix is the sum of Sw and Sb)

Consider evaluating the expectation in the definition of Sm by conditioning on each class

Sm = E[(x− µ0)(x− µ0)
T ] =

M
∑

i=1

E[(x− µ0)(x− µ0)
T |x ∈ ωi]Pi .

where Pi = P (x ∈ ωi). Then write x− µ0 = x− µi + µi − µ0 and expand the inner product
above as

(x− µ0)(x− µ0)
T = (x− µi)(x− µi)

T + 2(x− µi)(µi − µ0)
T + (µi − µ0)(µi − µ0)

T .

Then taking the conditional expectation of the above expression with respect to ωi since
E[x− µi|x ∈ ωi] = 0 the middle term in above vanishes. The last term does not depend on
x and is therefore a constant with respect to the expectation and we get for Sm

Sm =

M
∑

i=1

PiE[(x− µi)(x− µi)
T |x ∈ ωi] +

M
∑

i=1

Pi(µi − µ0)(µi − µ0)
T ,

which when we recall the definitions of Sw and Sb given by

Sw =
M
∑

i=1

PiE[(x− µi)(x− µi)
T |x ∈ ωi] (150)

Sb =
M
∑

i=1

Pi(µi − µ0)(µi − µ0)
T , (151)

we recognize as expressing Sm as Sm = Sw + Sb.
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Problem 5.11 (bounds on the cross-correlation coefficient)

When we take the vectors x and y as

x =











x1i

x2i
...

xNi











and y =











y1i
y2i
...

yNi











,

the Schwartz’s inequality |xTy| ≤ ||x||||y|| show that |ρij | ≤ 1 where ρij is defined by

ρij =

∑N
n=1 xniynj

√

∑N
n=1 xni

2
∑N

n=1 ynj
2

.

Problem 5.12 (the divergence of a two class problem)

The divergence between two Gaussians is given by Equation 112. If we assume that the
Gaussians have the same covariance then Σ1 = Σ2 = Σ and the divergence becomes

d12 = (µ1 − µ2)
TΣ−1(µ1 − µ2) = trace((µ1 − µ2)

TΣ−1(µ1 − µ2))

= trace(Σ−1(µ1 − µ2)(µ1 − µ2)
T ) .

When the classes are equiprobable P1 = P2 = 1
2
. Then the within class scatter matrix

Equation 113 becomes

Sw =
1

2
Σ1 +

1

2
Σ2 = Σ .

Now lets compute Sb using Equation 114. We have

Sb =
M
∑

i=1

Pi(µi − µ0)(µi − µ0)
T =

1

2

[

(µ1 − µ0)(µ1 − µ0)
T + (µ2 − µ0)(µ2 − µ0)

T
]

.

Since µ0 =
∑M

i=1 Piµi =
1
2
(µ1 + µ2) when we compute the needed differences to compute Sb

we calculate

Sb =
1

2

[

1

4
(µ1 − µ2)(µ1 − µ2)

T +
1

4
(µ1 − µ2)(µ1 − µ2)

T

]

=
1

4
(µ1 − µ2)(µ1 − µ2)

T .

Thus if we consider the expression trace(S−1
w Sb) we see that it equals in this case

trace(S−1
w Sb) =

1

4
trace(Σ−1(µ1 − µ2)(µ1 − µ2)

T ) .

We see that this is proportional to the expression d12 derived above.
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Problem 5.13 (the number of combinations in backwards elimination)

See the notes on Page 80 where we derive this expression.

Problem 5.14 (the derivative of a trace)

We want to evaluate
∂

∂A
trace{(ATS1A)

−1(ATS2A)}

The algebraic procedure for computing derivatives like ∂
∂A

trace{F (A)} where F (·) is a matrix
function of a matrix argument is discussed in [3]. The basic procedure is the following. We
consider the matrix derivative as several scalar derivative (one derivative for each component
akl of A). We pass the derivative of akl though the trace operation and take the scalar

derivative of various matrix expressions i.e. ∂F (A)
∂akl

. Taking these derivatives is easier if we

introduce the matrix V (k, l) which is a matrix of all zeros except for a single one at the
location (k, l). This is a helpful matrix to have since

∂

∂akl
A = V (k, l) .

Once we have computed the derivative of the argument of the trace F (A) with respect to
akl we need to write it in the form

∂F (A)

∂akl
=
∑

i

gi(A)V (k, l)hi(A) .

We can then take the trace of the above expression and use the permutability of matrices in
the argument of the trace to write

trace

{

∂F (A)

∂akl

}

= trace

{

∑

i

gi(A)V (k, l)hi(A)

}

=
∑

i

trace {gi(A)V (k, l)hi(A)}

=
∑

i

trace {hi(A)gi(A)V (k, l)} . (152)

Finally we use the property of the trace to conclude that for any n× n matrix M

MV (k, l) =















0















m1k

m2k
...

mn−1,k

mnk















0















,

or a matrix with the kth column of M in the lth column. Since the only nonzero column is
the lth, to take the trace of this matrix, we need to find what the element of the lth row in
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that column is. From the above we see that this element is mlk. Thus we have just argued
that

trace {MV (k, l)} = M(l, k) .

When we reassemble all elements, from this result, to compute the full matrix derivative of
trace{MA} we see that

∂

∂A
trace {MA} = MT .

Back to Equation 152 we can use the above to get the full matrix derivative

∂

∂A
trace{F (A)} =

∑

i

(hi(A)gi(A))
T . (153)

For this problem we now implement this procedure.

To begin we evaluate the akl derivative of (ATS1A)
−1(ATS2A). From the product rule we

have

∂

∂akl

[

(ATS1A)
−1(ATS2A)

]

=

[

∂

∂akl
(ATS1A)

−1

]

(ATS2A) + (ATS1A)
−1

[

∂

∂akl
(ATS2A)

]

.

To evaluate the akl derivative of (ATS1A)
−1 recall that if F (A) = G−1(A) then

∂F (A)

∂akl
= −G−1(A)

∂G(A)

∂akl
G−1(A) . (154)

Thus we get
∂(ATS1A)

−1

∂akl
= −(ATS1A)

−1∂(A
TS1A)

∂akl
(ATS1A)

−1 .

Thus we need to evaluate the derivative of ATS1A (a similar needed derivative is of ATS2A).
We get

∂(ATS1A)

∂akl
= V T (k, l)S1A + ATS1V (k, l) .

Combining these results we get

∂

∂akl
(ATS1A)

−1(ATS2A) = −(ATS1A)
−1
[

V T (k, l)S1A+ ATS1V (k, l)
]

(ATS1A)
−1(ATS2A)

+ (ATS1A)
−1
[

V T (k, l)S2A + ATS2V (k, l)
]

.

Then for each term (there are four of them) once we take the trace we can write each one
as gi(A)V (k, l)hi(A) for functions gi(·) and hi(·) for i = 1, 2, 3, 4 by using

trace(AT ) = trace(A) ,

if needed. We will need to use that identity for the first and third terms. We get

g1(A) = −(ATS2A)(A
TS1A)

−1ATS1 , and h1(A) = (ATS1A)
−1

g2(A) = −(ATS1A)
−1ATS1 , and h2(A) = (ATS1A)

−1(ATS2A)

g3(A) = ATS2 , and h3(A) = (ATS1A)
−1

g4(A) = (ATS1A)
−1ATS2 , and h4(A) = I .
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Once we have done this we use Equation 153 (but without the transpose yet) to get

(

∂

∂A
trace

{

(ATS1A)
−1(ATS2A)

}

)T

= −(ATS1A)
−1(ATS2A)(A

TS1A)
−1ATS1

− (ATS1A)
−1(ATS2A)(A

TS1A)
−1ATS1

+ (ATS1A)
−1ATS2

+ (ATS1A)
−1ATS2 .

Thus taking the transpose of both sides we finally find

∂

∂A
trace

{

(ATS1A)
−1(ATS2A)

}

= −2S1A(A
TS1A)

−1(ATS2A)(A
TS1A)

−1+2S2A(A
TS1A)

−1 ,

as we were to show.

Problem 5.17 (the eigenstructure for S−1
w Sb in a two class problem)

In a two class problem M = 2, P1 + P2 = 1, and we have Sb given by

Sb =
M
∑

i=1

Pi(µi − µ0)(µi − µ0)
T = P1(µ1 − µ0)(µ1 − µ0)

T + P2(µ2 − µ0)(µ2 − µ0)
T .

Since µ0 =
∑M

i=1 Piµi = P1µ1 + P2µ2 we have that

µ1 − µ0 = µ1 − P1µ1 − P2µ2 = (1− P1)µ1 − P2µ2 = P2(µ1 − µ2)

µ2 − µ0 = −P1µ1 + (1− P2)µ2 = P1(µ2 − µ1) .

Using these we see that Sb is given by

Sb = P1P
2
2 (µ1 − µ2)(µ1 − µ2)

T + P2P
2
1 (µ1 − µ2)(µ1 − µ2)

T

= P1P2(µ1 − µ2)(µ1 − µ2)
T .

Thus the matrix S−1
w Sb is

P1P2S
−1
w (µ1 − µ2)(µ1 − µ2)

T .

Since the matrix (µ1 − µ2)(µ1 − µ2)
T is rank one the matrix S−1

w Sb is rank one, and thus
we have one non-zero eigenvalue (and its corresponding eigenvector). Consider the vector
v1 ≡ S−1

w (µ1 − µ2) and observe that

S−1
w Sbv1 = P1P2S

−1
w (µ1 − µ2)(µ1 − µ2)

TS−1
w (µ1 − µ2)

= (P1P2(µ1 − µ2)
TS−1

w (µ1 − µ2))S
−1
w (µ1 − µ2)

= λ1v1 ,

where we take λ1 = P1P2(µ1 − µ2)
TS−1

w (µ1 − µ2). Thus v1 is an eigenvector of S−1
w Sb and λ1

is its corresponding eigenvalue.
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Problem 5.18 (orthogonality of the eigenvectors of S−1
1 S2)

Since S1 and S2 can be simultaneously diagonalized, there exists and invertible matrix B
such that

BTS1B = I and BTS2B = D ,

where D is a diagonal matrix. Since B is invertible we can solve for S1 and S2 in terms of
B and D as

S1 = B−TB−1 and S2 = B−TDB−1 .

Using these consider the product

S−1
1 S2 = (BBT )(B−TDB−1) = BDB−1 .

Let vi be an eigenvector of S−1
1 S2 with eigenvalue λi. Then by the definition of an eigenvector

we have
S−1
1 S2vi = λivi ,

or from the expression for S−1
1 S2 in terms of B and D

BDB−1vi = λivi .

This gives two expressions for vi

vi =
1

λi

BDB−1vi

vi = λiBD−1B−1vi .

Now consider vTi S1vj, using the first of these we will replace vi with
1
λi
BDB−1vi, S1 with

B−TB−1, and using the second expression above vj with λjBD−1B−1vj to get

vTi S1vj =
λj

λi
vTi B

−TDBTB−TB−1BD−1B−1vj

=
λj

λi
vTi B

−TB−1vj =
λj

λi
vTi S1vj .

Thus
(

1− λj

λi

)

vTi S1vj = 0 .

So if i 6= j (where we assume that λi 6= λj) then the last equation shows that viS1vj = 0 as
we were to show.
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Feature Generation I: Linear Transforms

Notes on the text

Notes on basis vectors and images

We define a separable transformation of X to be one where the transform Y is given by

Y = UHXV . (155)

A separable transformation can be thought of as two successive transformations, one over
the columns of X and another over the rows of the matrix product UHX . To see this first

define the product UHX as Z and write UH as











uH
0

uH
1
...

uH
N−1











so that considered as a block

matrix product, the expression Z = UHX is the product of a N × 1 block matrix times a
1× 1 block matrix or











uH
0

uH
1
...

uH
N−1











X =











uH
0 X

uH
1 X
...

uH
N−1X











.

This result has N rows where each one is of the form uH
i X or the inner product transform

of the N columns of X . Thus the transformation UHX is a transformation over the rows
of X . Now consider the product (UHX)V , which we can write as ZV = (V HZH)H . Notice
that V HZH is the same “type” of transformation as we just discussed i.e. inner product
transforms of the columns of ZH . Equivalently inner product transforms of the rows of
Z = UHX , proving the statement made above. Note that some of the calculations for
Example 6.1 are performed in the MATLAB script chap 6 example 6 1.m.

Notes on independent component analysis (ICA)

From the derivation in the book we have that at a stationary point

∂J(W )

∂W
W T = E[I − φ(y)yT ] = 0 . (156)

If we postmultiply by W and use W TW = I we get

∂J(W )

∂W
= E[I − φ(y)yT ]W = 0 .

The expression ∂J(W )
∂W

= E[I − φ(y)yT ]W is called the natural gradient.
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Notes on the discrete Fourier transform

We define the scalar WN as an Nth root of unity or

WN ≡ exp

(

−j
2π

N

)

, (157)

with j ≡
√
−1 and the matrix WH is given by

1√
N



















1 1 1 1 · · · 1 1
1 WN W 2

N W 3
N · · · WN−2

N WN−1
N

1 W 2
N W 4

N W 6
N · · · W

2(N−2)
N W

2(N−1)
N

...
...

...
... · · · ...

...

1 WN−2
N W

2(N−2)
N W

3(N−2)
N · · · W

(N−2)(N−2)
N W

(N−1)(N−2)
N

1 WN−1
N W

2(N−1)
N W

3(N−1)
N · · · W

(N−2)(N−1)
N W

(N−1)(N−1)
N



















. (158)

From this we see that the (i, j)th component of WH is given by

(WH)(i, j) =
1√
N
W ij

N . (159)

Using WH above and the fact that W ∗
N = W−1

N the matrix W is given by

1√
N





















1 1 1 1 · · · 1 1

1 W−1
N W−2

N W−3
N · · · W

−(N−2)
N W

−(N−1)
N

1 W−2
N W−4

N W−6
N · · · W

−2(N−2)
N W

−2(N−1)
N

...
...

...
... · · · ...

...

1 W
−(N−2)
N W

−2(N−2)
N W

−3(N−2)
N · · · W

−(N−2)(N−2)
N W

−(N−1)(N−2)
N

1 W
−(N−1)
N W

−2(N−1)
N W

−3(N−1)
N · · · W

−(N−2)(N−1)
N W

−(N−1)(N−1)
N





















. (160)

From this we see that the (i, j)th component of W is given by

W (i, j) =
1√
N
W−ij

N . (161)

These expressions will be used in the problems and derivations below.

Notes on the two-dimensional Fourier transform

The two-dimensional discrete Fourier transform is defined as

Y (k, l) =
1

N

N−1
∑

m=0

N−1
∑

n=0

X(m,n)W km
N W ln

N . (162)

Recalling via Equation 159 that the (k,m) element ofWH is 1√
N
W km

N in terms of the elements

of WH this sum is

Y (k, l) =
N−1
∑

m=0

N−1
∑

n=0

X(m,n)(WH)(k,m)(WH)(l, n) .
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Using Equation 176 to convert this double sum into a matrix product we have we have
Y = WHX(WH)T but since WH is symmetric we have

Y = WHXWH . (163)

Notes on the Haar transform

For the Haar transform, given the index n, we have 2n basis functions index by k where
k = 0, 1, 2, · · ·2n − 1 and denoted by hk(z). Given a value of the index k in the range just
specified we can convert this index k uniquely into two other nonnegative integers p and q.
The integer p (for power) is the largest natural number such that 2p ≤ k and then q − 1 is
the “remainder”. Thus let q − 1 be given by

q − 1 = k − 2p .

Thus with these two definitions of p and q we have written the index k as

k = 2p + q − 1 . (164)

This definition works for p 6= 0, where if p = 0 then q = 0 or 1. For example, if we take
n = 3 then there are 8 basis functions k = 0, 1, 2, · · · , 7 and we have the mapping described
above from k into (q, p) given by

k = 0 ⇒ p = 0 and q = 0

k = 1 ⇒ p = 0 and q = 1

k = 2 ⇒ p = 1 and q = 2− 21 + 1 = 1

k = 3 ⇒ p = 1 and q = 3− 21 + 1 = 2

k = 4 ⇒ p = 2 and q = 4− 22 + 1 = 1

k = 5 ⇒ p = 2 and q = 5− 22 + 1 = 2

k = 6 ⇒ p = 2 and q = 6− 22 + 1 = 3

k = 7 ⇒ p = 2 and q = 7− 22 + 1 = 4 .

The reason for introducing the indexes (p, q) is that it is easier to write the expression for
the basis functions hk(z) in terms of the numbers p and q. Given the above equivalence we
can convert sums over k (the number of basis functions) into a double sum over p and q as

2n−1
∑

k=0

hk(z) ≡ hp=0,q=0(z) + hp=0,q=1(z) +
n−1
∑

p=1

2p
∑

q=1

hpq(z) , (165)

since the range of p is 0 ≤ p ≤ n − 1 and q is between 1 ≤ q ≤ 2p. Note that due to the
slightly different conditions that happen when k = 0 and k = 1 in Equation 164, we have
represented these terms on their own and outside of the general summation notation.
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Notes on the two-band discrete time wavelet transform (DTWT)

Most of the notes in this section are verifications of the expressions given in the book.
While there are no real comments with this section these notes provide more details in that
they explicitly express some of the intermediate expressions which make verification of the
proposed expressions easier. We begin with the two-band filter equations, when our two
filters have impulse response functions given by h0(k) and h1(k). In that case we have

y0(k) =
∑

l

x(l) h0(n− l)|n=2k (166)

y1(k) =
∑

l

x(l) h1(n− l)|n=2k . (167)

When k = 0 for y0(k) then n = 0 and the first equation above gives

y0(0) =
∑

l

x(l)h0(0− l)

= · · ·+ x(−3)h0(3) + x(−2)h0(2) + x(−1)h0(1)

+ x(0)h0(0)

+ x(1)h0(−1) + x(2)h0(−2) + x(3)h0(−3) + · · · .

When k = 1 for y0(k) then n = 2 and we get

y0(1) =
∑

l

x(l)h0(2− l)

= · · ·+ x(−3)h0(5) + x(−2)h0(4) + x(−1)h0(3)

+ x(0)h0(2)

+ x(1)h0(1) + x(2)h0(0) + x(3)h0(2) + · · · .

The same type of expressions will hold for y1(k) but with h0 replace with h1. When we list
these equations in a matrix form we get











































...
y0(−2)
y1(−2)
y0(−1)
y1(−1)
y0(0)
y1(0)
y0(1)
y1(1)
y0(2)
y1(2)
...











































=











































...
...

...
...

...
...

...
· · · h0(−2) h0(−3) h0(−4) h0(−5) h0(−6) · · ·
· · · h1(−2) h1(−3) h1(−4) h1(−5) h1(−6) · · ·
· · · h0(0) h0(−1) h0(−2) h0(−3) h0(−4) · · ·
· · · h1(0) h1(−1) h1(−2) h1(−3) h1(−4) · · ·
· · · h0(2) h0(1) h0(0) h0(−1) h0(−2) · · ·
· · · h1(2) h1(1) h1(0) h1(−1) h1(−2) · · ·
· · · h0(4) h0(3) h0(2) h0(1) h0(0) · · ·
· · · h1(4) h1(3) h1(2) h1(1) h1(0) · · ·
· · · h0(6) h0(5) h0(4) h0(3) h0(2) · · ·
· · · h1(6) h1(5) h1(4) h1(3) h1(2) · · ·
...

...
...

...
...

...
...

































































...
x(−2)
x(−1)
x(0)
x(+1)
x(+2)

...























.

I explicitly included more terms than in the book so that the pattern of the elements is as
clear as possible. In practice, while we can tolerate a non causal impulse filters (h0(k) and
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h1(k) nonzero for negative k) but since we would like the matrix above to be of finite extent
we require that h0 and h1 have only a finite number of nonzero terms. As a matrix equation
we can write this as

y = Tix ,

where Ti is the mapping “into” the wavelet domain. Once we have constructed the two
outputs y0(k) and y1(k) we seek another pair of filters of a special form that act as an
inverse to the above mapping, in that they can synthesis the original signal, x, from the
output pair y0 and y1. In sort of the same way we split x into y0 and y1 we will process y0
and y1 independently and then combined them to get x. The two functions that we combine
are

x0(n) =
∑

k

y0(k)g0(n− 2k) (168)

x1(n) =
∑

k

y1(k)g1(n− 2k) , (169)

and the combination of x0 and x1 gives x

x(n) = x0(n) + x1(n) =
∑

k

y0(k)g0(n− 2k) + y1(k)g1(n− 2k) .

To derive the matrix representation of this mapping we again write out the above equation
for a couple of values of n to get a feel for the coefficients that result. For n = 0 we have

x(0) = · · ·+ y0(−2)g0(4) + y1(−2)g1(4) + y0(−1)g0(2) + y1(−1)g1(2)

+ y0(0)g0(0) + y1(0)g1(0)

+ y0(1)g0(−2) + y1(1)g1(−2) + y0(2)g0(−4) + y1(2)g1(−4) + · · · .

For n = 1 we have

x(1) = · · ·+ y0(−2)g0(5) + y1(−2)g1(5) + y0(−1)g0(3) + y1(−1)g1(3)

+ y0(0)g0(1) + y1(0)g1(1)

+ y0(1)g0(−1) + y1(1)g1(−1) + y0(2)g0(−3) + y1(2)g1(−3) + · · · .

Thus as a matrix we have the mapping from y to x in terms of values of g0 and g1 in great
detail as















...
x(−2)
x(−1)
x(0)
x(+1)
x(+2)

...















=















...
...

...
...

...
...

...
...

...
...

...
...

··· g0(2) g1(2) g0(0) g1(0) g0(−2) g1(−2) g0(−4) g1(−4) g0(−6) g1(−6) ···
··· g0(3) g1(3) g0(1) g1(1) g0(−1) g1(−1) g0(−3) g1(−3) g0(−5) g1(−5) ···
··· g0(4) g1(4) g0(2) g1(2) g0(0) g1(0) g0(−2) g1(−2) g0(−4) g1(−4) ···
··· g0(5) g1(5) g0(3) g1(3) g0(1) g1(1) g0(−1) g1(−1) g0(−3) g1(−3) ···
··· g0(6) g1(6) g0(4) g1(4) g0(2) g1(2) g0(0) g1(0) g0(−2) g1(−2) ···
...

...
...

...
...

...
...

...
...

...
...

...











































...
y0(−2)
y1(−2)
y0(−1)
y1(−1)
y0(0)
y1(0)
y0(1)
y1(1)
y0(2)
y1(2)

...





























.

As a matrix equation we can write this as

x = Toy ,
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where To is the mapping “out” of the wavelet domain. For good reconstructive properties
i.e. to be able to take the inverse transform of the direct transform and get the original
signal back again we must have

TiTo = ToTi = I .

This creates the biorthogonality conditions that hi and gi must satisfy.

Problem Solutions

Problem 6.1 (some properties of the transformation Y = UHXV )

Part (a): Given X = UY V H , lets write the matrix U in “block” form as columns as
U =

[

u0 u1 · · · uN−1

]

, the matrix V H in block form as rows

V H =











vH0
vH1
...

vHN−1











,

and the matrix Y as the N ×N matrix with components Y (i, j). Then viewing the product
UY V H in block form as a 1 × N matrix (the block matrix U) times a N × N matrix (the
block matrix Y ) times a N × 1 matrix (the block matrix V H) we get for X the product

[

u0 u1 · · · uN−1

]











Y (0, 0) Y (0, 1) · · · Y (0, N − 1)
Y (1, 0) Y (1, 1) · · · Y (1, N − 1)

...
...

...
...

Y (N − 1, 0) Y (N − 1, 1) · · · Y (N − 1, N − 1)





















vH0
vH1
...

vHN−1











.

Using block matrix multiplication we have that the product of the two right most matrices
is given by











Y (0, 0)vH0 + Y (0, 1)vH1 + · · ·+ Y (0, N − 1)vHN−1

Y (1, 0)vH0 + Y (1, 1)vH1 + · · ·+ Y (1, N − 1)vHN−1
...

Y (N − 1, 0)vH0 + Y (N − 1, 1)vH1 + · · ·+ Y (N − 1, N − 1)vHN−1











.

Or in summation notation










∑N−1
j=0 Y (0, j)vHj

∑N−1
j=0 Y (1, j)vHj

...
∑N−1

j=0 Y (N − 1, j)vHj











.
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Thus then X equals
[

u0 u1 · · · uN−1

]

times this result or

X =

N−1
∑

j=0

Y (0, j)u0v
H
j +

N−1
∑

j=0

Y (1, j)u1v
H
j + · · ·+

N−1
∑

j=0

Y (N − 1, j)uN−1v
H
j

=

N−1
∑

i=0

N−1
∑

j=0

Y (i, j)uiv
H
j ,

as we were to show.

Part (b): To compute the value of 〈Aij, X〉 we first recall the definition of the matrix inner
product 〈·, ·〉 of

〈A,B〉 ≡
N−1
∑

m=0

N−1
∑

n=0

A∗(m,n)B(m,n) , (170)

and the definition of Aij of Aij = uiv
H
j . Then using the rank-one decomposition of X of

X =

N−1
∑

i′=0

N−1
∑

j′=0

Y (i′, j′)ui′v
H
j′ , (171)

Equation 170 then requires us to compute the (m,n)th component of the matrix Aij and of
ui′v

H
j′ since X(m,n) is obtained by summing such elements via Equation 171. Consider the

(m,n)th component of uiv
H
j . Recall ui is the ith column of U and as vHj is the jth row of

V H we see that vj is the jth column of V . Then the product uiv
H
j looks like

uiv
H
j =











U(0, i)
U(1, i)

...
U(N − 1, i)











[

V (0, j)∗ V (1, j)∗ · · · V (N − 1, j)∗
]

=











U(0, i)V (0, j)∗ U(0, i)V (1, j)∗ · · · U(0, i)V (N − 1, j)∗

U(1, i)V (0, j)∗ U(1, i)V (1, j)∗ · · · U(1, i)V (N − 1, j)∗

...
... · · · ...

U(N − 1, i)V (0, j)∗ U(N − 1, i)V (1, j)∗ · · · U(N − 1, i)V (N − 1, j)∗











.

Thus the (m,n) element of the matrix uiv
H
j is

U(m, i)V (n, j)∗ , (172)

and the conjugate of the (m,n)th element of the matrix uiv
H
j is

U(m, i)∗V (n, j) . (173)
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Using these results we find

〈Aij , X〉 = 〈uiv
H
j ,

N−1
∑

i′=0

N−1
∑

j′=0

Y (i′, j′)ui′v
H
j′ 〉

=

N−1
∑

m=0

N−1
∑

n=0

U(m, i)∗V (n, j)

(

N−1
∑

i′=0

N−1
∑

j′=0

Y (i′, j′)U(m, i′)V (n, j′)∗

)

=

N−1
∑

i′=0

N−1
∑

j′=0

Y (i′, j′)

N−1
∑

m=0

U(m, i)∗U(m, i′)

N−1
∑

n=0

V (n, j)V (n, j′)∗ .

To evaluate these sums recall that U is a unitary matrices and thus UUH = I and UHU = I.
If we consider the (i, i′)th element of the product UHU = I we get

N−1
∑

n=0

(UH)(i, n)U(n, i′) = I(i, i′) ,

or
N−1
∑

n=0

U(n, i)∗U(n, i′) = I(i, i′) , (174)

where I(i, i′) is the Kronecker delta symbol, i.e. I(i, i′) = 1 if i = i′ and is 0 otherwise. Since
V is also a Hermitian matrix a similar result hold for sums of components of V . Sums like
this appear twice in the above expression for 〈Aij, X〉 and we have the following

〈Aij, X〉 =
N−1
∑

i′=0

N−1
∑

j′=0

Y (i′, j′)I(i, i′)I(j, j′) = Y (i, j) ,

as we were to show.

Problem 6.2 (separable transforms)

We first recall that to compute the lexicographic row ordered vector x the rows of the matrix
X are ordered sequentially in a column vector. Thus if we let X(i, :) be a row vector from
X then the lexicographically ordered row vector x is given by

x =











X(0, :)T

X(1, :)T

...
X(N − 1, :)T











.

Next recall that if A is a m×n matrix and B is a p× q matrix the Kronecker outer product
of two matrices A and B denoted as A⊗B is defined as the mn× pq matrix

A⊗ B =











a11B a12B a13B · · · a1nB
a21B a22B a23B · · · a2nB
...

...
... · · · ...

am1B am2B am3B · · · amnB











. (175)
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Thus in terms of the matrices of this problem we have U ⊗ V given by the matrix










U(0, 0)V U(0, 1)V U(0, 2)V · · · U(0, N − 1)V
U(1, 0)V U(1, 1)V U(1, 2)V · · · U(1, N − 1)V

...
...

... · · · ...
U(N − 1, 0)V U(N − 1, 1)V U(N − 1, 2)V · · · U(N − 1, N − 1)V











.

Then when we multiply this by the lexicographic ordered vector x we get










U(0, 0)V X(0, :)T + U(0, 1)V X(1, :)T + · · ·+ U(0, N − 1)V X(N − 1, :)T

U(1, 0)V X(0, :)T + U(1, 1)V X(1, :)T + · · ·+ U(1, N − 1)V X(N − 1, :)T

...
U(N − 1, 0)V X(0, :)T + U(N − 1, 1)V X(1, :)T + · · ·+ U(N − 1, N − 1)V X(N − 1, :)T











.

This is a block column matrix of size N × 1 where the blocks are N ×N matrices with the
m block element given by

N−1
∑

i=0

U(m, i)V X(i, :)T .

Since X(i, :)T is a column vector the product V X(i, :)T is another column vector and the
above is the sum of column vectors. The nth element of this column vector is given by

N−1
∑

j=0

V (n, j)X(i, j) .

Thus the nth element of the mth block in the product (U ⊗ V )x is

N−1
∑

i=0

N−1
∑

j=0

X(i, j)U(m, i)V (n, j) .

If we have the desired equality this should equal the value Y (m,n). To show this we can
simply recall that Y = UXV T and as such we can compute the (m,n)th element of this
product. Using the summation definition of a matrix product we find

Y (m,n) =
N−1
∑

i=0

(UX)(m, i)(V T )(i, n) =
N−1
∑

i=0

N−1
∑

j=0

U(m, j)X(j, i)V (n, i)

=
N−1
∑

j=0

N−1
∑

i=0

X(j, i)U(m, j)V (n, i) , (176)

which is equivalent to the expression above showing the desired equivalence.

Problem 6.3 (minimizing the MSE by using the eigenvectors of Rx)

For a fixed orthonormal basis ei for i = 0, 1, 2, · · · , N−1, a random vector x the decomposition

x =

N−1
∑

i=0

y(i)ei , (177)
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with y(i) = eTi x. Note that since x is random the y(i)’s are also random. The projection of
x in the m-dimensional subspace spanned by the vectors e0, e1, · · · , em−1 is given by

x̂ =
m−1
∑

i=0

y(i)ei . (178)

Then as in the book the expectation of the error ǫ defined as ǫ = x− x̂ can be shown to be
given by

E
[

||ǫ||2
]

=
N−1
∑

i=m

eTi Rxei , (179)

with Rx the correlation matrix of x i.e. Rx = E[xxT ]. Considering E [||ǫ||2] as the objective
function to be minimized we seek vectors ei that will achieve this minimum. Obviously
E [||ǫ||2] ≥ 0 and ei = 0 will make the right-hand-side of Equation 179 zero. To avoid this
trivial solution we need to introduced the constraint that the vectors ei are normalized or
eTi ei = 1.

Question: I’m not sure why we don’t have to also introduce the orthogonality constraint
of eTi ej = 0 for i 6= j. I think the answer might be because of the functional form for our
objective function E [||ǫ||2]. For example, if the vectors for i and j appeared together as
a product like eiAej for some matrix A in the objective function we would have to also
introduce the constraint eTi ej = 0. If anyone knows more about this or has an opinion on
this please contact me.

Part (a): Given that we have the constraint eTi ei = 1 we use the methods of constrained
optimization to seek the optimum. That is we introduce Lagrange multipliers λi and form
the Lagrangian

L =
N−1
∑

i=m

eTi Rxei −
N−1
∑

i=0

λi(e
T
i ei − 1) .

Then taking the derivative with respect to ei for i = m,m + 1, · · · , N − 1 and setting the
result equal to zero gives

2Rxei − 2λiei = 0 ⇒ Rxei = λiei .

Thus ei is the eigenvector and λi is the eigenvalue of Rx.

Part (b): In this case using the normalization properties of ei we have that

E
[

||ǫ||2
]

=
N−1
∑

i=m

λi .

Thus to make this as small as possible we want to take ei to be the eigenvectors with the
smallest eigenvalues.

Part (c): For the given approximation above consider the magnitude of the variance of x̂.

109



We find

Var(x̂) = E[x̂T x̂] = E

[(

m
∑

i=0

y(i)eTi

)(

m
∑

i=0

y(i)ei

)]

(180)

= E

[

m
∑

i=0

m
∑

i=0

y(i)y(j)eTi ej

]

= E

[

m
∑

i=0

y(i)2

]

= E

[

m
∑

i=0

(eTi x)
2

]

= E

[

m
∑

i=0

eTi xx
T ei

]

=
m
∑

i=0

eTi E
[

xxT
]

ei

=

m
∑

i=0

eTi Rxei =

m
∑

i=0

λi .

Thus since ei are chosen to be the eigenvectors of Rx ordered from largest eigenvalue to
smallest eigenvalue we see that this sum is maximal.

Problem 6.4 (Karhunen-Loeve with the covariance matrix Σx)

In the same way as earlier we have a representation of our random variable x given by
Equation 177 and now we will take our approximation of x given by

x̂ =
m−1
∑

i=0

y(i)ei +
N−1
∑

i=m

ciei , (181)

with y(i) = eTi x.

Part (a): Consider the expected square error E[||x− x̂||2]. We find

E[||x− x̂||2] = E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N−1
∑

i=m

(yi − ci)ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2




= E

[

N−1
∑

i=m

N−1
∑

j=m

(yi − ci)(yj − cj)e
T
i ej

]

= E

[

N−1
∑

i=m

(yi − ci)
2

]

=

N−1
∑

i=m

(E[y2i ]− 2E[yi]ci + c2i ) .

If we want to pick ci’s that make this as small as possible, we can take the derivative with
respect to ci set the result equal to zero and solve for ci we find

∂

∂ci
E[||x− x̂||2] = 0 ⇒ −2E[yi] + 2ci = 0 .

This gives ci = E[yi], for i = m,m+ 1, · · · , N − 1.
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Part (b): We now want to ask for an approximation to x given by

x̂ =
m−1
∑

i=0

yiei +
N−1
∑

i=m

E[yi]ei ,

how do we pick the orthonormal basis vectors ei. We do that by minimizing the square norm
of the error ǫ defined as ǫ = x − x̂. We find using the same techniques as the sequence of
steps around Equation 180 and recalling that yi = eTi x we have

E[||ǫ||2] = E

[

N−1
∑

i=m

(yi − E[yi])
2

]

= E

[

N−1
∑

i=m

(eTi x− eTi E[x])2

]

= E

[

N−1
∑

i=m

(eTi (x− E[x]))2

]

= E

[

N−1
∑

i=m

eTi (x− E[x])(x− E[x])T ei

]

=

N−1
∑

i=m

eTi E[(x− E[x])(x−E[x])T ]ei =

N−1
∑

i=m

eTi Σxei . (182)

Thus to pick the orthonormal basis that minimizes E[||ǫ||2] we minimize Equation 182 subject
to the constraint that eTi ei = 1. Introducing Lagrange multipliers like in the previous problem
we find ei are the eigenvectors of Σx.

Part (b): To make the expression for E[||ǫ||2] as small as possible we we order these
eigenvectors so that they are ranked in decreasing order of their eigenvalues, therefore the
vectors em, em+1, · · · , eN−1 will be the eigenvectors of Σx corresponding to the N−m smallest
eigenvalues.

Problem 6.5 (the eigenvalues of XHX and XXH are the same)

Let λ be a nonzero eigenvalue of XXH with eigenvector v. Then by definition XXHv = λv.
Now consider the vector v̂ defined by v̂ = XHv. Then

XHXv̂ = XHXXHv = λXHv = λv̂ .

This last expression shows that v̂ is an eigenvector of XHX with eigenvalue λ. Thus both
XXH and XHX have the same eigenvalues.

Problem 6.6 (proving ǫ2 ≡∑N
m=0

∑N
n=0 |X(m,n)− X̂(m,n)|2 =∑r−1

i=k λi)

Recall the definition of ǫ2 where we have

ǫ2 =
N−1
∑

m=0

N−1
∑

n=0

|X(m,n)− X̂(m,n)|2 . (183)
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Since we have our rank k approximate matrix X̂ given by

X̂ =

k−1
∑

i=0

√

λiuiv
H
i ,

while the full decomposition for X is

X =
r−1
∑

i=0

√

λiuiv
H
i .

We have the matrix difference X − X̂ given by

X − X̂ =
r−1
∑

i=k

√

λiuiv
H
i .

Thus the m,nth element of this matrix difference X − X̂ is given by using Equation 172

r−1
∑

i=k

√

λi U(m, i)V (n, i)∗ .

Now recall that for a complex number |x|2 = xx∗ when we “square” the above expression we
have

|X(m,n)− X̂(m,n)|2 =
r−1
∑

i=k

r−1
∑

j=k

√

λi

√

λjU(m, i)V (n, i)∗U(m, j)∗V (n, j) .

It is this expression that we will sum for m and n both running from 0 to N − 1. When we
apply this summation, then exchange the order of the sums and use Equation 174 we get

ǫ2 =

r−1
∑

i=k

r−1
∑

j=k

√

λi

√

λj

N−1
∑

m=0

U(m, i)U(m, j)∗
N−1
∑

n=0

V (n, j)V (n, i)∗

=

r−1
∑

i=k

r−1
∑

j=k

√

λi

√

λjI(i, j)I(j, i) =

r−1
∑

i=k

λi ,

as we were to show.

Problem 6.7 (an example with the SVD)

The SVD decomposition of a matrix X is given by

X =

r−1
∑

i=0

√

λiuiv
H
i ,

where ui and vi are the eigenvectors (with common eigenvalue λi) of XXH and XHX re-
spectively or

XXHui = λiui

XHXvi = λivi
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It turns out that ui and vi are related more directly as ui = 1√
λi
Xvi. In the MATLAB

script chap 6 prob 7.m we compute XXH and XHX and the eigenvector and eigenvalues
for these two matrices. We first find that XHX has ui eigenvectors (stored as columns) and
eigenvalues given by





0.8452 0.0998 0.5251
−0.1690 −0.8821 0.4397
−0.5071 0.4604 0.7286



 and 0.0 , 1.93 , 18.06 .

We next find that XXH has vi eigenvectors (again stored as columns) with eigenvalues given
by

[

−0.8649 0.5019
0.5019 0.8649

]

and 1.93 , 18.06 .

To use the SVD decomposition one has to match the eigenvectors of XXH and XHX to use
in the inner product so that their eigenvalues match. This means the decomposition of X is
given by

√
18.06





0.5251
0.4397
0.7286





[

0.5019 0.8649
]

+
√
1.937





0.0998
−0.8821
0.4604





[

−0.8649 0.5019
]

.

Problem 6.8 (the orthogonality of the DFT)

We begin by proving the following sum

1

N

N−1
∑

n=0

exp

(

j
2π

N
(k − l)n

)

=

{

1 l = k + rN r = 0,±1,±2, · · ·
0 otherwise

(184)

Since the sum above is a geometric sum from [6] we can evaluate it as

N−1
∑

n=0

exp

(

j
2π

N
(k − l)n

)

=
1− exp

(

j 2π
N
(k − l)N

)

1− exp
(

j 2π
N
(k − l)

)

=
1− exp (j2π(k − l))

1− exp
(

j 2π
N
(k − l)

) .

This is true only if the expression we are summing powers of is not identically 1 (for which the
denominator would be 0 and division is undefined). This latter will happen if the argument
of the exponential exp

(

j 2π
N
(k − l)

)

is a multiple of 2π. This means the above sum is valid if

k − l

N
6= r ,

where r is an integer. If this previous condition holds then the numerator vanishes

1− exp (j2π(k − l)) = 0 .
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since k − l is an integer. If k−l
N

is actually equal to and integer r then l = k + rN and the
sum is N and we have proven Equation 184.

Now consider the (m,n) element of the product WHW . Using Equation 159 and 161 we get

(WHW )(m,n) =
1

N

N−1
∑

k=0

Wmk
N W−kn

N

=
1

N

N−1
∑

k=0

W
k(m−n)
N =

1

N

N−1
∑

k=0

exp

(

−j
2π

N
(m− n)k

)

= δmn ,

when we use Equation 184. Here δmn is the Kronecker delta.

Problem 6.9 (an example computing a 2-d DFT)

Using Equation 163 or Y = WHXWH we can compute the two-dimensional DFT by com-
puting the required matrix product. To generate the matrix WH of order N (as defined in
the book) we can use the MATLAB command dftmtx(N)/sqrt(N). In the MATLAB script
chap 6 prob 9.m given in the input matrix X we do this and perform the required matrix
multiplications. We find that we get

Y =





3.6667 −0.3333 0.1667 + 0.8660j
−0.3333 0.1667− 0.8660j 0.1667− 0.8660j
−0.3333 0.1667 + 0.8660j −0.3333



 .

Problem 6.11 (orthogonality of the discrete cosine transform)

The discrete cosine transform (DCT) matrix C has elements C(n, k) given by

C(n, k) =
1√
N

when k = 0

C(n, k) =

√

2

N
cos

(

π(2n+ 1)k

2N

)

when k > 1 , (185)

and for 0 ≤ n ≤ N − 1. We want to show that CTC = I. To do this consider the (i, j)th
element of this product (denoted by (CTC)(i, j)) we have

(CTC)(i, j) =

N−1
∑

k=0

CT (i, j)C(k, j) =

N−1
∑

k=0

C(k, i)C(k, j) . (186)

Lets evaluate this for various values of i and j. When i = 0 and j = 0 Equation 186 gives

N−1
∑

k=0

C(k, 0)C(k, 0) =
N−1
∑

k=0

C(k, 0)2 =
N−1
∑

k=0

1

N
= 1 .
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When i = 0 and j ≥ 1 Equation 186 gives

(CTC)(0, j) =

N−1
∑

k=0

C(k, 0)C(k, j) =
1√
N

N−1
∑

k=0

C(k, j)

=

√
2

N

N−1
∑

k=0

cos

(

π(2k + 1)j

2N

)

By writing the summand above as

cos

(

π(2k + 1)j

2N

)

= cos

(

πj

2N
+

πj

N
k

)

,

we can use the following identity [5]

N−1
∑

k=0

cos(α + βk) = cos

(

α +
N − 1

2
β

)

sin
(

N
2
β
)

sin
(

β
2

) , (187)

with α = πj
2N

and β = πj
N

to evaluate it. In that case we have

β

2
=

πj

2N
, so

Nβ

2
=

πj

2
, and α +

N − 1

2
=

πj

2N
+

(

N − 1

2

)

πj

N
=

πj

2
.

Thus we have
N−1
∑

k=0

cos

(

π(2k + 1)

2N

)

= cos

(

πj

2

)

sin
(

πj
2

)

sin
(

πj
2N

) .

Since for j = 1, 2, · · · , N − 1 the value of π
2
j is a multiple of π

2
where we have cos

(

πj
2

)

= 0
thus

(CTC)(0, j) =

N−1
∑

k=0

cos

(

π(2k + 1)

2N

)

= 0 .

Next let i ≥ 1 and j = 0 and we have

(CTC)(i, 0) =

N−1
∑

k=0

C(k, i)C(k, 0) =
1√
N

N−1
∑

k=0

C(k, i)

=

√
2

N

N−1
∑

k=0

cos

(

π(2k + 1)i

2N

)

= 0 ,

since this is the same sum we evaluated earlier. Finally, let i ≥ 1 and j ≥ 1 to get

(CTC)(i, j) =

N−1
∑

k=0

C(k, i)C(k, j) =
2

N

N−1
∑

k=0

cos

(

π(2k + 1)i

2N

)

cos

(

π(2k + 1)j

2N

)

.

To evaluate this sum we could convert the trigonometric functions into exponentials and
then use the sum of a geometric series identity to evaluate each sum, or we can evaluate it
using Mathematica. In the Mathematica notebook chap 6 prob 11.nb we find it equals

1

4





sin(π(i− j))

sin
(

π(i−j)
2N

) +
sin(π(i+ j))

sin
(

π(i+j)
2N

)



 ,
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when neither of the denominators is zero, or in this case that i 6= j. When i 6= j both terms
in the numerator vanish and this expression is zero. If i = j then we want to evaluate

(CTC)(i, i) =
2

N

N−1
∑

k=0

cos

(

π(2k + 1)i

2N

)2

.

Using the following identity

N−1
∑

k=0

cos

(

π(2k + 1)i

2N

)2

=
N

2
+

sin(2πi)

4 sin
(

πi
N

) , (188)

as i is an integer the second term vanishes and we have shown that

(CTC)(i, i) = 1 .

All of these elements show that CTC = I the desired expression.

Problem 6.12 (the discrete cosign transform)

The discrete cosign transform (DCT) Y of an image X is given by computing

Y = CTXC ,

where C is the matrix with elements given by Equation 185. This matrix can be constructed
using that MATLAB function mk DCT matrix C.m. Then using the X matrix given in for
this problem in the MATLAB script chap 6 prob 12.m we find Y to be

Y =





3.6667 −0.4082 −0.2357
−0.4082 0 −1.1547
1.1785 0.5774 0.3333



 .

Problem 6.14 (orthogonality of the Hadamard transform)

To begin recall the recursive definition of Hn given by

Hn = Hn−1 ⊗H1

= Hn−1 ⊗
(

1√
2

[

1 1
1 −1

])

=
1√
2

[

Hn−1 Hn−1

Hn−1 −Hn−1

]

. (189)

We will show that HT
n = Hn and H−1

n = Hn. To do that we will use recursion, where we will
show that these two relationships are true for n = 1 and then assume that they hold up to
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and equal to some index n. We will then show that we can prove that the relationships hold
for the index n+ 1. Consider H1 we see that HT

1 = H1 and

HT
1 H1 =

1

2

[

1 1
1 −1

] [

1 1
1 −1

]

=
1

2

[

2 0
0 2

]

= I .

Then assume that HT
n = Hn and H−1

n = HT
n . Consider

HT
n+1 =

1√
2

[

HT
n HT

n

HT
n −HT

n

]

=
1√
2

[

Hn Hn

Hn −Hn

]

= Hn+1 ,

showing that Hn+1 is symmetric. Now consider

HT
n+1Hn+1 = Hn+1Hn+1 =

1

2

[

Hn Hn

Hn −Hn

] [

Hn Hn

Hn −Hn

]

=
1

2

[

2H2
n 0

0 2H2
n

]

=

[

I 0
0 I

]

= I ,

showing that H−1
n+1 = HT

n+1.

Problem 6.15 (computing the Hadamard transform)

We can use the MATLAB command hadamard to compute the Hadamard matrix Hn as
defined in the book. Specifically, we have

Hn =
1

2n/2
hadamard(2n) .

In the MATLAB script chap 6 prob 15.m given in the input matrix X we compute Y =
H1X̂H1, where X̂ is a submatrix of the original matrix X .

Problem 6.17 (the Noble identities)

Noble Downsampling Identity: Recall that downsampling by M produces a new se-
quence y(k) generated by the old sequence ŷ(k) according to

y(k) = ŷ(Mk) . (190)

The transfer function for this operation, D(z), when the input signal is ŷ(k) is given by [8].

D(z) =
1

M

M−1
∑

k=0

Ŷ
(

z1/Me−
2πj
M

k
)

, (191)

where i =
√
−1. Using that we can write the serial affect of downsampling followed by

filtering with H(z) as

1

M

M−1
∑

k=0

Ŷ
(

z1/Me−
2πj
M

k
)

H(z) .
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If we consider the combined system of filtering with H(zM ), to get H(zM)Ŷ (z), and then
downsampling we have that the combined affect is given by

1

M

M−1
∑

k=0

Ŷ
(

z1/Me
2πj
M

k
)

H

(

(

z1/Me
2πj
M

k
)M
)

=
1

M

M−1
∑

k=0

Ŷ
(

z1/Me
2πj
M

k
)

H (z) ,

the same expression as before, showing the equivalence.

Noble Upsampling Identity: Recall that upsampling by M produces the new sequence
y(k) generated by the old sample function ŷ(k) according to

y(k) =

{

ŷ
(

k
M

)

when k
M

is an integer
0 otherwise

(192)

Then the transfer function for this operation U(z) when the input signal is ŷ is given by [8]

U(z) = Ŷ (zM) . (193)

Then the affect of filtering with H(z) a signal with transfer function Ŷ (z) is H(z)Ŷ (z).
Following this by upsampling by M gives the transfer function

H(zM)Ŷ (zM) .

This is the same as taking the input Ŷ (z) upsampling by M to get Ŷ (zM ) and then passing
that output through the linear system H(zM), showing the equivalence of the two Noble
upsampling forms.

Problem 6.18 (an equivalent filter bank representation)

In figure 6.5 we have three paths to generate the outputs y0, y1, and y2. When drawn without
the traditional system box notation we get these three paths given by

· · · , x(2), x(1), x(0) → H0(z) → ↓ 2 → y0

· · · , x(2), x(1), x(0) → H1(z) → ↓ 2 → H0(z) → ↓ 2 → y1

· · · , x(2), x(1), x(0) → H1(z) → ↓ 2 → H1(z) → ↓ 2 → y2 .

The system for y0 matches the same system in Figure 6.6b for y0 when we take F̂0(z) = H0(z).
If we then use Noble’s downsampling identity we can write the output expressions for y1 and
y2 as

· · · , x(2), x(1), x(0) → H1(z) → H0(z
2) → ↓ 2 → ↓ 2 → y1

· · · , x(2), x(1), x(0) → H1(z) → H1(z
2) → ↓ 2 → ↓ 2 → y2 .

We can simplify the two downsampling procedures of size 2 on the right side of these ex-
pressions into one downsampling expression of size 4, and combine the two serial systems to
get

· · · , x(2), x(1), x(0) → H1(z)H0(z
2) → ↓ 4 → y1

· · · , x(2), x(1), x(0) → H1(z)H1(z
2) → ↓ 4 → y2 .

This matches the system drawn in Figure 6.6 when we take F̂1(z) = H1(z)H0(z
2) and

F̂2(z) = H1(z)H1(z
2) proving the equivalence.
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Feature Generation II

Notes on the text

Notes on co-occurrence matrices

The co-occurrence matrices provide a way to measure the relative position of gray levels in
an image and as such are functions of a pixel displacement d and an angle offset φ. They
rely on the joint probabilities that the given image takes gray level values at the angular
direction φ and a distance d. Typically d = 1 while φ is taken to be from {0, 45, 90, 135} in
degrees. That is for φ = 0 we need to compute

P (I(m,n) = I1, I(m± d, n) = I2) =
number of pairs of pixels with levels = (I1, I2)

total number of possible pixel pairs
.

Probability density functions can be obtained for φ = 45 where the probability we are
extracting can be written

P (I(m,n) = I1, I(m± d, n∓ d) = I2) .

To make things easier to understand assume that we have four gray levels then I(m,n) ∈
{0, 1, 2, 3} and we can define the co-occurrence matrix A (with elements P (I1, I2) above)
when given a specification of (d, φ) as

A(d, φ) =
1

R









η(0, 0) η(0, 1) η(0, 2) η(0, 3)
η(1, 0) η(1, 1) η(1, 2) η(1, 3)
η(2, 0) η(2, 1) η(2, 2) η(2, 3)
η(3, 0) η(3, 1) η(3, 2) η(3, 3)









, (194)

The book writes these A matrices with φ as a superscript as Aφ(d). Here η(I1, I2) is the
number of pixel pairs at a relative position of (d, φ) which have a gray level pair (I1, I2)
respectively and R is the total number of pixel pairs in that orientation in the given image.
Lets consider in some detail how to compute the expression R, the number of pairs of pixels
we have to consider, in the co-occurrence matrix above for some common orientations. Lets
first consider the case where d = 1 and φ = 0. Then anchored at each pixel of the image we
will try to look left and right (since φ = 0) by one (since d = 1) and consider the resulting
image values (I1, I2). For simplicity assume our input image has four rows/columns. Now
at the position (0, 0) (upper left corner) we can only look right (otherwise we are looking off
the image) which gives one pixel pair. If we are at the pixel (0, 1) we can look left and right
for two pairs of pixels. At the pixel located at (0, 2) we can look left and right giving two
pixel pairs, and finally at the pixel (0, 3) we can look only left giving one pixel pair. In total
this is

1 + 2 + 2 + 1 = 6 ,

left/right pairs per row. Since we have four rows we have R = 6 · 4 = 24 possible pairs. In
general for an image of dimension M ×N with M rows and N columns we have

1 + 2(N − 2) + 1 = 2(N − 2) + 2 = 2N − 2 ,
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pixel pairs in each row, so

R(d = 1, φ = 0) = M(2N − 2) .

If φ = 90 (again with d = 1) we have 1 + 2(M − 2) + 1 = 2M − 2 pixel pairs in each column
so with N columns we have

R(d = 1, φ = 90) = N(2M − 2) ,

pixel pairs to consider. If φ = 45 the first row has no pixel pairs in the northeast direction
or of the form (I(m,n), I(m − d, n + d)) since we would be looking off the image, but has
N − 1 pairs in the southwest direction of the form (I(m,n), I(m+ d, n− d)). All rows but
the last have 2(N − 2) + 2 = 2N − 2 pixel pairs to consider. The last row has N − 1 pixel
pairs of the form (I(m,n), I(m− d, n+ d)) and none like (I(m,n), I(m+ d, n− d)). Thus in
total we have

R(d = 1, φ = 45) = 2(N − 1) + (M − 2)(2N − 2) = 2(N − 1)(M − 1) .

The pair count for R(d = 1, φ = 135) should equal that of R(d = 1, φ = 45) but with N and
M exchanged,

R(d = 1, φ = 135) = 2(M − 1)(N − 1) .

In practice, a very simple algorithm for computing the co-occurrence matrix for given values
of d and φ is to start with η(I1, I2) = 0 and then walk the image over all pixels looking at
the image values (I1, I2) of the two pixels specified by the (d, φ) inputs and incrementing
the corresponding η(I1, I2). The value of A can then be obtained after the fact by summing
all the elements of the η array. In the MATLAB function co occurrence.m using this very
simple algorithm we compute the co-occurrence matrix for an input (d, φ). For the sample
input image

I =









0 0 2 2
1 1 0 0
3 2 3 3
3 2 2 2









,

for (d, φ) = (1, 0) this routine gives

A(1, 0) =
1

24









4 1 1 0
1 2 0 0
1 0 6 3
0 0 3 2









,

the same as in the book. In the MATLAB script dup co occurrence example.m we duplicate
all of the co-occurrence matrices from this section.

Notes on second-order statistics features

We implemented several of the summary second-order statistics discussed in this section as
MATLAB functions. In particular we implemented
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• The Angular second moment in ASM.m.

• The Contrast measure in CON.m.

• The Inverse difference moment measure in IDF.m.

• The Entropy measure in entropy.m.

In general, these routines can take additional input argument parameters d and φ that specify
the displacement and angular offset that are used in computing the given co-occurrence
matrix one uses in the feature definition. If these additional arguments are not given then
the functions above compute all four possible co-occurrence matrices, the corresponding
feature from each, and then return the average of the four feature measurements.

Notes on gray level run lengths

For these run length features we pick a direction φ as before, then the matrix QRL(φ) has its
(i, j)th element given by the number of time that the gray level i for i = 0, 1, · · ·Ng−1 appears
with a run length j = 1, 2, · · ·Nr in the direction φ. Thus QRL is a matrix of dimension Ng×
Nr. We implemented the computation of the gray level run length matrix QRL in the MAT-
LAB function Q RL.m. Using that in the MATLAB function dup run length example.m we
duplicated the examples computing QRL(0) and QRL(45). We then implemented a number
of derivative features based on QRL(φ) such as

• The short run emphasis in SRE.m.

• The long run emphasis measure in LRE.m.

• The gray level nonuniformity measure in GLNU.m.

• The run length nonuniformity measure in RLN.m.

• The run percentage measure in RP.m.

The above computations are function of the angle φ. As in the second order statistics above,
to make these features rotation invariant we compute them for each of the four possible
φ ∈ {0, 45, 90, 135} values, and then return the average of these four feature measurements.

Notes on local linear transformations

Given the three basis vectors: b1 =
[

1 2 1
]

, for a local average, b2 =
[

−1 0 1
]

for
local edge detection, and b3 =

[

−1 2 −1
]

for local spot detection then the N2 local
filters are given by all possible outer products or

b1b
T
1 , b1b

T
2 , b1b

T
3 , b2b

T
1 , b2b

T
2 , b2b

T
3 , b3b

T
1 , b3b

T
2 , b3b

T
3 .
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Figure 17: Duplicate “petasti” figures used to extract Hu invariant moments from.

For example

bT1 b1 =





1
2
1





[

1 2 1
]

=





1 2 1
2 4 2
1 2 1



 .

bT1 b2 =





1
2
1





[

−1 0 −1
]

=





−1 0 1
−2 0 2
−1 0 1



 .

All outer products are computed in the MATLAB script gen local linear transformations.m,
which duplicate the 9 matrices presented in the text.

Notes on geometric moments

In this section I attempted to duplicate the results in the book on using the Hu moments for
image features extraction. I first got a set of images of the “petasti” symbol, see Figure 17.
Then in the MATLAB code dup Hu moments.m we load in gif versions of these images and
call the function Hu moments.m. I scaled each image to the x and y ranges [−1,+1] before
computing the moments. The dynamic ranges of the higher center moments is significantly
smaller that the earlier ones (and some seem to vanish to zero), thus to compare the extracted
moments from each images we extract and plot the logarithm of the absolute value of the
direct moments this is suggested in [4]. This gives the following

phi_1 phi_2 phi_3 phi_4 phi_5 phi_6 phi_7

image a: -14.6794 -43.7024 -59.5204 -55.4081 -115.3626 -80.8707 -112.8758

image b: -15.3285 -43.7243 -60.1944 -56.1308 -118.0532 -80.5011 -114.2937
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image c: -14.6794 -43.7024 -59.5204 -55.4081 -115.3626 -80.8707 -112.8758

image d: -14.6794 -43.7024 -59.5204 -55.4081 -115.3626 -80.8707 -112.8758

image e: -14.6794 -43.7024 -59.5204 -55.4081 -115.3626 -80.8707 -112.8758

image f: -17.0347 -36.9026 -57.2860 -56.1632 -113.1657 -74.8205 -113.3142

In general these numbers look very similar for each of the images. I was, however, unable
to duplicate the exact numerical results for the value of φi from the book. If anyone sees
anything wrong with what I have done or a way that I can better match the books results
please let me know.

Notes on Zernike moments

The indices for the Zernike moments require that p = 0, 1, 2, · · · and |q| ≤ p with p − |q|
even. This means that we have the following valid combinations (for a few value of p only)

• p = 0 so q = 0 only.

• p = 1 so q = 1 only.

• p = 2 so q ∈ {−2, 0,+2}.

• p = 3 so q ∈ {−3,−1,+1,+3}.

• p = 4 so q ∈ {−4,−2, 0,+2,+4}.

• p = 5 so q ∈ {−5,−3,−1,+1,+3,+5}.

The pattern at this point seems clear.

Notes on Fourier features

Consider the complex boundary uk with the origin shifted by the index k0 or the signal uk−k0.
Then this shifted boundary has Fourier features given by

f ′
l =

N−1
∑

k=0

uk−k0e
−j 2π

N
lk =

N−1−k0
∑

k=−k0

uke
−j 2π

N
l(k+k0) = e−j 2π

N
lk0

N−1−k0
∑

k=−k0

uke
−j 2π

N
lk .

This last sum is e−j 2π
N

lk0fl, since both uk and e−j 2π
N

lk are periodic in the index k with a period
N . Thus we have shown

f ′
l = e−j 2π

N
lk0fl . (195)

Note that a shift of origin does not change the magnitude of the Fourier coefficients.

123



The book then presents an argument as to why the normalized Fourier coefficients are the
index location invariant. We present a somewhat different version of that argument here.
Since the Fourier coefficients change depending on the k origin (see Equation 195 above)
we would like to define Fourier features that are independent of this choice in origin. One
way to do that is the following. One simply computes the Fourier features directly using the
definition

fl =

N−1
∑

k=0

uke
−j 2π

N
lk , (196)

ignoring any issue of k origin. Then we explicitly write the first Fourier complex number f1
in polar form as f1 = |f1|e−jφ1 (note the negative sign in the angle). With this definition
of φ1 as the polar angle for the first Fourier feature we define the normalized Fourier
coefficients f̂l as

f̂l = fl exp(jlφ1) , (197)

that is we multiply each of the previously computed Fourier coefficient by a power of the
complex phase of f1. We claim that these normalized Fourier coefficients are invariant to
the choice of the sampling origin in k. To show this imagine that we had selected a different
origin (say k0) to evaluate uk at. Then from Equation 195 the first Fourier feature would be
transformed to f ′

1 given by the product of the old value f1 times a phase shift or

f ′
1 = f1e

−j2π
k0
N = |f1|e−jφ1e−j2π

k0
N = |f1|e−j(φ1+2π

k0
N ) .

Thus the angular phase we would extract as the polar angle from f ′
1 is given by

φ′
1 = φ1 + 2π

k0
N

.

The normalized Fourier coefficients we compute for this shifted k origin path u′
k using Equa-

tion 197 again
f̂ ′
l = f ′

l exp(jlφ
′
1) .

Again using Equation 195 to evaluate f ′
l and replacing φ′

1 by what we found above we get

f̂ ′
l = fle

−j 2π
N

lk0 exp

(

jl(φ1 + 2π
k0
N
)

)

= fl exp(jlφ1) = f̂l ,

showing that the normalized Fourier coefficients are indeed invariant with respect to where
we start sampling uk in k.

Problem Solutions

Problem 7.1 (the ASM and the CON features)

This problem is worked in the MATLAB script prob 7 1.m.
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Figure 18: Left: A plot of the books “image1.png”. Right: A plot of the books “im-
age3.png”.

Problem 7.2 (the run-length matrices)

This problem is worked in the MATLAB script prob 7 2.m.

Problem 7.3 (image contrast)

Consider the image

I =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









Then notice that this image alternates between 0 and 1 when we look along the φ = 0
direction but has the same value when we look along the φ = 45 direction. Our routines give
CON(I, 1, 0) = 1 while CON(I, 1, 45) = 0. This problem is worked in the MATLAB script
prob 7 3.m.

Problem 7.4 (feature extraction on various test images)

For this problem we use the MATLAB command imread to load in two test images from
the book. The imread command creates a “matrix” with quantized gray levels that can
be processed by the routines developed on Page 120. The two test images selected (and
converted to postscript for display in this document) are shown in Figure 18. This problem
is worked in the MATLAB script prob 7 4.m. When that script is run we get the outputs
given in Table 1.
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Feature Image #1 Image #3
ASM 0.0023 1.69 10−4

CON 25.6573 725.08
IDF 0.332 0.04
Hxy 9.6371 12.86
SRE 0.8878 0.9890
LRE 2.1792 1.0452
GLNU 269.6925 176.5214
RLN 1.0051 104 1.5680 104

Table 1: Extracted features for the two images shown in Figure 18. Note that the Image #1
has larger values for the ASM, IDF, LRE features while Image #3 has larger values for the
CON, Hxy, and SRE features. From the discussion in the book this means that Image #1
is smoother, has less contrast, and more long runs, while Image #3 has more contrast, has
more disorder, and has more short runs. All of these properties can be heuristically verified
as true by looking at the two images given in Figure 18.

Problem 7.5 (a constrained minimization problem)

This is a constrained optimization problem so to solve it we will use the method of Lagrange
multipliers. Technically this procedure is for finding unbounded optimal. Since in addition
to the summation constraint

∑N
i=1 Pi = 1 we have the constraints 0 ≤ Pi ≤ 1 we need to

make sure that the solution to the unconstrained problem also satisfies these constraints. To
use this method we first form the Lagrangian

L((P1, P2, · · · , PN);λ) ≡
N
∑

i=1

P 2
i − λ

(

N
∑

i=1

Pi − 1

)

,

and then look for stationary points with respect to P ≡ (P1, P2, · · · , PN) and λ. We have

∂L
∂Pi

= 0 ⇒ 2Pi − λ = 0 (198)

∂L
∂λ

= 0 ⇒ −
N
∑

i=1

Pi + 1 = 0 . (199)

From Equation 198 we have Pi =
λ
2
, which when we put these into Equation 199 we get

−λ

2
N + 1 = 0 .

Thus λ = 2
N
. When we put this back into Equation 198 we have

Pi =
λ

2
=

1

N
,

as we were to show. Note that these solutions also satisfy 0 ≤ Pi ≤ 1 as required.
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Problem 7.6 (moments translational and scaling invariance)

We will consider the translated image I ′ defined by I ′(x, y) = I(x− a, y − b). Then

µ′
00 =

∫ ∞

−∞

∫ ∞

−∞
I ′(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
I(x− a, y − b)dxdy =

∫ ∞

−∞

∫ ∞

−∞
I(u, v)dudv = µ00 ,

when we make the substitution u = x−a and v = y− b. The same expression holds for m00.
That is m′

00 = m00 = µ00 = µ′
00. Now for m′

10 we have

m′
10 =

∫ ∞

−∞

∫ ∞

−∞
xI(x− a, y − b)dxdy =

∫ ∞

−∞

∫ ∞

−∞
(u+ a)I(u, v)dudv = m10 + am00 .

In the same way we find
m′

01 = m01 + bm00 .

Thus the new means x̄′ and ȳ′ are given by

x̄′ =
m′

10

m′
00

=
m10

m00
+ a = x̄+ a

ȳ′ =
m′

01

m′
00

=
m01

m00

+ b = ȳ + b .

We find for µ′
pq

µ′
pq =

∫ ∞

−∞

∫ ∞

−∞
(x− x̄)p(y − ȳ)qI ′(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
(x− x̄− a)p(y − ȳ − b)qI(x− a, y − b)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
(u− x̄)p(v − ȳ)qI(u, v)dudv = µpq .

Showing that the central moments are invariant to translations. From all of this we also see
that

η′pq =
µ′
pq

(µ′
00)

γ
=

µpq

µγ
00

,

showing that the normalized central moments are invariant to translations as we were to
show.

Now consider a scaled image I ′ defined as I ′(x, y) = I(αx, αy). Then

µ′
00 =

∫ ∞

−∞

∫ ∞

−∞
I ′(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
I(αx, αy)dxdy =

1

α2

∫ ∞

−∞

∫ ∞

−∞
I(u, v)dudv =

1

α2
µ00 ,

when we make the substitution u = αx and v = αy. This also equals m′
00 and m00. Now for

m′
10 we have

m′
10 =

∫ ∞

−∞

∫ ∞

−∞
xI(αx, αy)dxdy =

1

α3

∫ ∞

−∞

∫ ∞

−∞
uI(u, v)dudv =

1

α3
m10 .
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In the same way we have

m′
01 =

1

α3
m01 .

Thus the new means x̄′ and ȳ′ are given by

x̄′ =
m′

10

m′
00

=
1

α

m10

m00
=

1

α
x̄

ȳ′ =
m′

01

m′
00

=
1

α
ȳ .

Using these we find for µ′
pq

µ′
pq =

∫ ∞

−∞

∫ ∞

−∞
I(αx, αy)(x− x̄′)p(y − ȳ′)qdxdy

=

∫ ∞

−∞

∫ ∞

−∞
I(αx, αy)

(

x− 1

α
x̄

)p(

y − 1

α
ȳ

)q

dxdy .

Let u = αx and v = αy to get

µ′
pq =

∫ ∞

−∞

∫ ∞

−∞
I(u, v)

(u

α
− x̄

α

)p ( v

α
− ȳ

α

)q du

α

dv

α

=
1

αp+q+2

∫ ∞

−∞

∫ ∞

−∞
I(u, v)(u− x̄)p(v − ȳ)qdudv =

1

αp+q+2
µpq .

Thus the central moments µ′
pq are not invariant to scaling but if we consider the normalized

central moments η′pq we see that

η′pq =
µ′
pq

(µ′
00)

γ
=

α2γ

αp+q+2

µpq

µγ
00

.

Now from the definition of γ we have 2γ = p+ q + 2 thus η′pq = ηpq as we were to show.

Problem 7.8 (rotational invariants)

If our image is rotated by and angle θ0 then when we express the image in terms of polar
coordinates we have that the new image I ′(ρ, θ) is given in terms of the old image I(ρ, θ) by

I ′(ρ, θ) = I(ρ, θ − θ0) .

Then the Zernike moments of the rotated image are given by

A′
pq =

p+ 1

π

∫ ∫

x2+y2≤1

I ′(x, y)V ∗(ρ, θ)ρdρdθ

=
p+ 1

π

∫ ∫

x2+y2≤1

I(ρ, θ − θ0)V
∗(ρ, θ)ρdρdθ .

In this integral let φ = θ − θ0 so that dφ = dθ and we get

A′
pq =

p + 1

π

∫ ∫

x2+y2≤1

I(ρ, φ)V ∗(ρ, φ+ θ0)ρdρdφ
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Since
V ∗
pq(ρ, φ+ θ0) = Rpq(ρ)e

−jq(φ+θ0) = V ∗
pq(ρ, φ)e

−jqθ0 ,

the above expression for A′
pq becomes

A′
pq =

(

p+ 1

π

∫ ∫

x2+y2≤1

I(ρ, φ)V ∗(ρ, φ)ρdρdφ

)

e−jqθ0 = Apqe
−jqθ0 .

In deriving this result we have needed the fact that both I(ρ, φ) and V ∗
pq(ρ, φ) are periodic

in φ with period 2π.

Problem 7.9 (computing the moments of Hu)

See the notes on Page 122 for a discussion on this.

Problem 7.10 (computing the Zernike moments)

See the MATLAB script dup Zernike moments.m which uses the functions Zernike moments.m

and Zernike polynomial.m to compute the Zernike moments for several values of p and q
for the petasti images. When that code is run (after some time) we find the absolute values
of the A1,1, A2,−2, A2,0 and A2,2 moments given by

A B C D E F

A_{1,1} 0.0016 0.0056 0.0016 0.0016 0.0016 0.3993

A_{2,-1} 0.0008 0.0029 0.0008 0.0008 0.0008 0.3204

A_{2,0} 0.0098 0.0351 0.0098 0.0098 0.0098 2.9708

A_{2,2} 0.0008 0.0029 0.0008 0.0008 0.0008 0.3204

all multiplied by 106. From these numbers we can see the invariance of the Zernike moments
with rotation.

Problem 7.11 (the variance of the error or σ2
η)

We can compute the desired variance σ2
η as the expectation of

(

I(m,n)−
∑

k,l

a(k, l)I(m− k, n− l)

)2

= I(m,n)2 − 2I(m,n)
∑

k,l

a(k, l)I(m− k, n− l)

+
∑

k1,l1,k2,l2

a(k1, l1)a(k2, l2)I(m− k1, n− l1)I(m− k2, n− l2) .
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Taking the expectation of the right-hand-side of the above expression gives

σ2
η = r(0, 0)− 2

∑

k,l

a(k, l)r(k, l) +
∑

k1,l1

∑

k2,l2

a(k1, l1)a(k2, l2)r(k2 − k1, l2 − l1) . (200)

The equation used to solve for a(k, l) requires that
∑

k2,l2

a(k2, l2)r(k2 − k1, l2 − l1) =
∑

k2,l2

r(k1 − k2, l1 − l2) = r(k1, l1) . (201)

Using this expression in the (k2, l2) summation in Equation 200 gives

σ2
η = r(0, 0)− 2

∑

k,l

a(k, l)r(k, l) +
∑

k1,l1

a(k1, l1)r(k1, l1)

= r(0, 0)−
∑

k,l

a(k, l)r(k, l) ,

as we were to show.

Problem 7.13 (a rotation on uk)

To compute the new point (x′, y′) when a point (x, y) is rotated counterclockwise by an angle
θ we compute

[

x′

y′

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

x
y

]

.

Thus the new complex point on the boundary u′
k is given by

u′
k = x′

k + jy′k = (cos(θ)xk − sin(θ)yk) + j(sin(θ)xk + cos(θ)yk) (202)

= (cos(θ) + j sin(θ))xk + (− sin(θ) + j cos(θ))yk

= ejθxk + j(cos(θ) + j sin(θ))yk

= ejθ(xk + jyk) = ejθuk ,

as we were to show.

Problem 7.14 (computing the Fourier series coefficients an, bn, cn and dn)

This problem is discussed motivated in more detail in the reference [7]. For the given Fourier
expansions of x(t) we can compute the coefficients a0, an, and bn by integration

a0 =
1

T

∫ T

0

x(t)dt

an =
2

T

∫ T

0

x(t) cos

(

2nπt

T

)

dt

bn =
2

T

∫ T

0

x(t) sin

(

2nπt

T

)

dt .
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The same type of expressions hold for the coefficients in the Fourier expansion of y(t). Since
we assume that x(t) is piecewise linear it might be easier to consider the t derivative of x(t)
We can express ẋ(t) in a different Fourier series as

ẋ(t) =
∞
∑

n=1

αn cos

(

2nπt

T

)

+ βn sin

(

2nπt

T

)

.

The Fourier coefficients αn and βn of ẋ(t) are given by the same type of expression used to
compute an and bn. Namely for αn we have

αn =
2

T

∫ T

0

ẋ(t) cos

(

2nπt

T

)

dt .

But since the the boundary curve in ẋ(t) is constant over the range of times ti−1 < t < ti we
can evaluate this integral by summing several smaller integrals over these segments as

αn =
2

T

m
∑

i=1

∫ ti

ti−1

ẋ(t) cos

(

2nπt

T

)

dt .

Now on the range ti−1 < t < ti we can introduce ∆xi = xi − xi−1 and ∆ti = ti − ti−1 and
then take ẋ ≈ ∆xi

∆ti
, which is independent of t and the above integral becomes

αn =
2

T

m
∑

i=1

∆xi

∆ti

∫ ti

ti−1

cos

(

2nπt

T

)

dt =
2

T

m
∑

i=1

∆xi

∆ti

(

T

2πn
sin

(

2nπt

T

)∣

∣

∣

∣

ti

ti−1

=
1

πn

m
∑

i=1

∆xi

∆ti
(sin (φi)− sin(φi−1)) ,

where we have defined φi ≡ 2πnti
T

. The coefficient βn is defined in the same way and is given
by

βn = − 1

nπ

m
∑

i=1

∆xi

∆ti
(cos (φi)− cos(φi−1)) .

Given the original Fourier expansion of x(t) we can compute the time derivative explicitly
where we get

ẋ(t) =
2π

T

∞
∑

n=1

nbn cos

(

2nπt

T

)

− nan sin

(

2nπt

T

)

.

Equating the coefficients of cos
(

2nπt
T

)

and sin
(

2nπt
T

)

with the definitions of αn and βn we get

2π

T
nbn = αn =

1

πn

m
∑

i=1

∆xi

∆ti
(sin (φi)− sin(φi−1))

−2π

T
nan = βn = − 1

nπ

m
∑

i=1

∆xi

∆ti
(cos (φi)− cos(φi−1)) .

Thus solving for an and bn we get

an =
T

2π2n2

m
∑

i=1

∆xi

∆ti
(cos (φi)− cos(φi−1))

bn =
T

2π2n2

m
∑

i=1

∆xi

∆ti
(sin (φi)− sin(φi−1)) .
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Expressions for cn and dn for n ≥ 1 can be obtained in the same way but working with the
function y(t).

Problem 7.15 (invariants of the Fourier coefficients an, bn, cn, and dn)

If we consider a rotation of the parametrically described curve z(t) then the transformed
curve z′(t) = z(t)ejθ and the real and imaginary components of z′(t) are given in terms of
the real and imaginary components of z(t) by

x′
i = cos(θ)xi − sin(θ)yi

y′i = sin(θ)xi + cos(θ)yi .

See Equation 202. Therefore the discrete changes in x′ and y′ are given by

∆x′
i = cos(θ)∆xi − sin(θ)∆yi

∆y′i = sin(θ)∆xi + cos(θ)∆yi .

From the forms of an, bn, cn and dn and how the depend on ∆xi and ∆yi given in Problem 7.14
we have that the Fourier coefficients an transforms as

a′n =
T

2π2n2

m
∑

i=1

∆x′
i

∆ti
(cos (φi)− cos(φi−1))

= cos(θ)an − sin(θ)

(

T

2π2n2

m
∑

i=1

∆yi
∆ti

(cos(φi)− cos(φi−1))

)

= cos(θ)an − sin(θ)cn .

In the same way we find that bn, cn, and dn transform as follows

b′n = cos(θ)bn − sin(θ)dn

c′n = sin(θ)an + cos(θ)cn

d′n = sin(θ)bn + cos(θ)dn .

Using these expressions we can evaluate In, Jn, and K1,n in the rotated frame. Using the
MATHEMATICA file chap 7 prob 15.nb we simplify each expression using the above re-
lationships for a′n, b

′
n etc and show that they equal the original definitions in the original

frame.

Problem 7.16 (more Fourier invariants)

If our original boundary is given in parametric form as z(t) = x(t) + jy(t) then a rotation
counter-clockwise by the angle θ produces the boundary z′(t) given by z′(t) = z(t)ejθ. This
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causes the complex Fourier coefficients an to transform as a′n = ane
jθ. Then the suggested

features bn and dmn transform as

b′n =
a′1+na

′
1−n

a′21
=

a1+na1−ne
2jθ

a21e
2jθ

=
a1+na1−n

a21
= bn

d′mn =
a′1+m

na′1−n
m

a′1
m+n =

a1+m
na1−n

mej(n+m)θ

a1m+nej(n+m)θ
= dmn ,

showing the invariance. Multiplying our boundary by a scalar say α produces the new curve
z′(t) = αz(t) which gives new Fourier coefficients of a′n = αan. The proof above again shows
scale invariance.

Problem 7.18 (derivation of the orientation angle θ)

Expand the quadratic in the expression given for I(θ) to get

I(θ) =
∑

i,j

[

(i− x̄)2 cos(θ)2 − 2(i− x̄)(j − ȳ) sin(θ) cos(θ) + (j − ȳ)2 sin(θ)2
]

= µ20 cos(θ)
2 − 2µ11 sin(θ) cos(θ) + µ02 sin(θ)

2 .

The derivative of this expression with respect to θ is given by

I ′(θ) = −2µ20 cos(θ) sin(θ)− 2µ11 cos(θ)
2 + 2µ11 sin(θ)

2 + 2µ02 sin(θ) cos(θ)

= 2(µ02 − µ20) cos(θ) sin(θ)− 2µ11(cos(θ)
2 − sin(θ)2)

= (µ02 − µ20) sin(2θ)− 2µ11 cos(2θ) .

When we set this equal to zero and then solve for θ we get

θ =
1

2
tan−1

(

2µ11

µ02 − µ20

)

.

For some reason the above representation of θ has the expression µ02 − µ20 rather than the
desired µ20 − µ02 (i.e. there is a negative sign difference) if any one sees an error in what I
have done above please contact me.
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Template Matching

Problem Solutions

Problem 8.1 (the edit distance)

The MATLAB function edit distance.m computes the edit distance between two words.
The call edit_distance(’poem’,’poten’) gives the “distance matrix” (which represents
the optimal path one would take)

0 1 2 3 4 5

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 1 1 2

4 3 2 2 2 2

The value of the corner element (here the value in the 5th row and 6th column) is the edit
distance. From the above we see that it is 2 representing the deletion of the character “t”
and the change of the “n” to an “m”.

Problem 8.2 (slopes of the Sakoe-Chiba constraints)

In the Sakoe-Chiba constraints part a we can take the transition from (i − 1, j) to (i, j)
giving a slope of

i− (i− 1)

j − j
= ∞ .

In the Sakoe-Chiba constraints part b we can take the transition from (i− 2, j − 1) to (i, j)
giving a slope of

i− (i− 2)

j − (j − 1)
= 2 .

In the Sakoe-Chiba constraints part c we can take the transition from (i− 3, j − 1) to (i, j)
giving a slope of

i− (i− 3)

j − (j − 1)
= 3 .

In the Sakoe-Chiba constraints part d we can take the transition from (i− 3, j − 2) to (i, j)
giving a slope of

i− (i− 3)

j − (j − 2)
=

3

2
.
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Problem 8.4 (a measure of image similarity)

The expression given represents the cross-correlation coefficient between the seven Hu mo-
ments of the test and the reference image. Since the Hu moments have great number of
invariants this measure of similarity might be more robust than using a direct correlation
metric.

Problem 8.5 (the Mellin transform)

Consider the scaled function f ′ defined by f ′(x, y) = f(αx, αy), where α > 0 is a real
constant. Then the Mellin transform for this function is given by

M ′(u, v) =

∫∫

f(αx, αy)x−ju−1y−jv−1dxdy .

Let x′ = αx and y′ = αy in the above to get

M ′(u, v) =

∫∫

f(x′, y′)

(

x′

α

)−ju−1(
y′

α

)−jv−1
dx′

α

dy′

α

=
1

α−ju−1α−jv−1α2

∫∫

f(x′, y′)x′−ju−1
y′

−jv−1
dx′dy′

=
1

α−juα−jv
M(u, v) ,

since α, and u, v are a real numbers we have |α−ju| = 1 and |α−jv| = 1 showing that the
magnitude of the Mellin transform is invariant to scaling.

Problem 8.6 (computational resources for correlation based matching)

In the motion compensation step we assume we have the original frame taken at the “time”
t and of size I×J that we break up into subblocks of a smaller size say M ×N . The camera
or visual recording device then records another frame at the time t + 1 of the same size
M × N . To develop a mapping of the frame at time t to the new frame at time t + 1 each
of the smaller M ×N subblocks in the first frame must be searched for in the second frame.
Since there are on order of

IJ

MN
,

smaller subblocks in the larger I × J frame we have to do this many searches for optimal
cross-correlation points. For the numbers given in this problem M = N = 16, I = 720,
J = 480, and f = 30 frames per second this number becomes 1350.

In the case where we are doing the full cross-correlation computation on every pixel (m,n)
in the test image we must compute

c(m,n) =

m+M−1
∑

i=m

n+N−1
∑

j=n

t(i, j)r(i−m, j − n) , (203)
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at each of the (2p + 1)2 pixels in the test image. Each of the sums above requires O(MN)
multiplications and additions giving a total computational cost of

(2p+ 1)2NM .

for the “full search” technique. Thus the computational resources for the full search technique
is

IJ

MN
(2p+ 1)2MNf = IJ(2p+ 1)2f = 9.96 109 ,

flops per second.

If we consider a two-dimensional logarithmic search we start with a test box of dimen-
sion [−p,+p]× [−p,+p] and in this box compute the cross-correlation at 8 points (and the
center) spaced at a distance of p

2
around this center. This means that we compute the

cross-correlation at the points

(0, 0) ,
(p

2
,
p

2

)

,
(p

2
, 0
)

,
(p

2
,−p

2

)

,
(

0,−p

2

)

,
(

−p

2
,−p

2

)

,
(

−p

2
, 0
)

,
(

−p

2
,
p

2

)

,
(

0,
p

2

)

.

From the cross-correlation computed at these points we find the point with the largest cross-
correlation. We now impose a box of size

[

−p
2
, p
2

]

×
[

−p
2
, p
2

]

on the maximal point and search
the 8 points on the perimeter of a box with edge spaced p

4
from this new center. We will

specify a new center to search about k = ⌈log2(p)⌉ times. Each new center requires 8 cross-
correlation searches thus including the cross-correlation taken at the first center we have
8k + 1 cross-correlations. Since each of these cross-correlations takes MN calculations the
total operations required using this method is

IJ

MN
(8k + 1)MNf = IJ(8k + 1)f = 0.342 109 ,

flops per second.

The linear variant of the two-dimensional logarithmic search searches the top and bottom
locations but not the diagonal locations searched in the full two-dimensional search. We
search

(

0, p
2

)

and
(

0,−p
2

)

for the vertical search and
(

−p
2
, 0
)

and
(

p
2
, 0
)

for the horizontal
search. This gives four cross-correlation calculations for every central point and again we
have k = ⌈log2(p)⌉ total computations. Since each of these cross-correlations takes MN
calculations the total operations required using this method is

IJ

MN
(4k + 1)MNf = IJ(8k + 1)f = 0.176 109 ,

flops per second.
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Context-Dependent Classification

Notes on the text

Notes on Channel Equalization

The total number of clusters will be equal to the number of possible vectors of the form

xT
k =

[

xk xk−1 xk−2 · · · xk−l+2 xk−l+1

]

,

where there are l samples of the noisy xk. The last samples is xk−l+1 and from the model of
the noisy transmission channel is given in terms of the binary inputs Ik as

xk = f(Ik, Ik−1, · · · , Ik−n+2, Ik−n+1) ,

will need a total of n samples in the past of Ik to determine the value of xk−l+1. Thus to
know the value of xk defined above we need

Ik , Ik−1 , Ik−2 , · · · , Ik−l+2 , Ik−l+1 , Ik−l , · · · , Ik−l−n+3 , Ik−l−n+2 ,

or k− (k− l−n+2)+1 = l+n−1 samples of Ik starting from Ik and working backwards to
Ik−l−n+2. If the value of Ik are binary valued then we have a total of 2l+n−1 distinct inputs
to produce 2l+n−1 distinct vectors x (this ignores the value of the noise term ηt which would
only spread the samples xk about the cluster centers).

From this discussion we can construct Table 9.1 by forming all possible sequences of three
bit patterns for the inputs Ik that we would need to know to determine the lagged vector xk

having two elements i.e. xT
k =

[

xk xk−1

]

. That is we can have (Ik, Ik−1, Ik−2) be (0, 0, 0),
(0, 0, 1), (0, 1, 0), (1, 0, 0) etc. and the observed outputs of xk and xk−1 are computed from
the model (ignoring noise)

xk = 0.5Ik + Ik−1 .

Notes on Hidden Markov Models

From the initial definition of α(ik+1) we can express it as

α(ik+1) = p(x1, . . . , xk+1, ik+1|S) (204)

=
∑

ik

α(ik)P (ik+1|ik)p(xk+1|ik+1) , (205)

by using the rule of total probability when we sum over all ways in which we can get into
the state ik+1 from states ik ∈ {1, 2, · · · ,M}.
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Problem Solutions

Problem 9.2 (self-transition probabilities)

To be in state i for d successful strategies means that we take d − 1 transitions that result
in no movement of our underlying state. That is d− 1 times we stay put (this happens with
probability P (i|i)) and on the dth transition we move somewhere else (which happens with
probability 1− P (i|i)). Thus the probability we stay in state i for d successive stages is

P (i|i)d−1(1− P (i|i)) .

Note that this expression works for d = 1 since the start state is i. This is called a geometric
distribution [10] and has an expected number of transitions needed to leave the state i given
by

1

1− P (i|i) .

If P (i|i) ≈ 1 then d̄ can be very large resulting in many self transitions.
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Chapter 10 (System Evaluation)

Notes on the text

Notes on the error counting approach

When, for a given classifier, our empirical error rate for the ith class 1 ≤ i ≤ M is given
by the frequency count P̂i =

ki
Ni
. With this, an estimate for the total error rate P̂ of this

classifier is given by

P̂ =

M
∑

i=1

P (ωi)P̂i .

Since the random variables ki (the number of misclassifications in class i) is a binomial
random variable with parameters (Pi, Ni) we have that the variance in ki given by the
standard formula

σ2
ki
= NiPi(1− Pi) . (206)

Here Pi is the true error rate in the ith class. We can estimate the variance in our estimate
of the total error probability P̂ by assuming that the ki random variables are independent.
We then have that

σ2
P̂
=

M
∑

i=1

P (ωi)
2

N2
i

σ2
ki
=

M
∑

i=1

P (ωi)
2Pi(1− Pi)

Ni

, (207)

when we put in Equation 206. Warning: I’m not sure I follow the argument that the ki
random variables are independent. I would assume that the error made in classifying class
i would influence whether or not one made an error in class j for j 6= i, even if the feature
vectors x are independent. If anyone has a better argument or explanation please contact
me.
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Problem Solutions

Problem 10.1 (the expectation and variance of a binomial RV)

For a binomial random variable (RV) with probability of success p and defining q = 1 − p
we find its expectation given by E(X)

E(K) =

N
∑

k=0

k

(

N
k

)

pkqN−k

=
N
∑

k=1

k
n!

k!(n− k)!
pkqN−k =

N
∑

k=1

n!

(k − 1)!(n− k)!
pkqN−k

= n

N
∑

k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk−1q(n−1)−(k−1)

= np
N
∑

k=1

(

n− 1
k − 1

)

pk−1q(n−1)−(k−1)

= np

N−1
∑

k=0

(

n− 1
k

)

pkq(n−1)−k

= np · 1 = np .

140



Next we need to evaluate E(K2). We find

E(K2) =
N
∑

k=0

k2

(

N
k

)

pkqN−k

=

N
∑

k=1

k
n(n− 1)!

(k − 1)!(n− k)!
pk−1+1q(n−1)−(k−1)

= np
N
∑

k=1

(k − 1 + 1)

(

n− 1
k − 1

)

pk−1q(n−1)−(k−1)

= np
N
∑

k=1

(k − 1)

(

n− 1
k − 1

)

pk−1q(n−1)−(k−1) + np
N
∑

k=1

(

n− 1
k − 1

)

pk−1q(n−1)−(k−1)

= np

N
∑

k=2

(k − 1)

(

n− 1
k − 1

)

pk−1q(n−1)−(k−1) + np

N−1
∑

k=0

(

n− 1
k

)

pkq(n−1)−k

= np
N
∑

k=2

(n− 1)(n− 2)!

(k − 2)!((n− 1)− (k − 1))!
pk−2+1q(n−2)−(k−2) + np

= n(n− 1)p2
N
∑

k=2

(

n− 2
k − 2

)

pk−2q(n−2)−(k−2) + np

= n(n− 1)p2
N−2
∑

k=0

(

n− 2
k

)

pkq(n−2)−k + np

= n(n− 1)p2 + np .

Thus the variance of a binomial random variable is given by combining these two results as

Var(K) = E(K2)− E(K)2 = n(n− 1)p2 + np− n2p2

= np(1− p) = npq . (208)
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Clustering: Basic Concepts

Notes on the text

Notes on similarity measures for real-valued vectors

The Tanimoto measure/distance is given by

sT (x, y) =
xTy

||x||2 + ||y||2 − xTy
. (209)

Since (x− y)T (x− y) = ||x||2 + ||y||2 − 2xTy we have that sT (x, y) becomes

sT (x, y) =
xT y

(x− y)T (x− y) + xT y
=

1

1 + (x−y)T (x−y)
xT y

.

If ||x|| = ||y|| = a, then we have

sT (x, y) =
xTy

2a2 − xT y
=

1

−1 + 2 a2

xT y

.

Problem Solutions

Problem 11.1

If s is a similarity measure on X with s(x, y) > 0 for all x, y ∈ X by defining d(x, y) = a
s(x,y)

with a > 0 we claim that d(x, y) is a dissimilarity measure. To be a dissimilarity measure
we need to satisfy several things. Note that since s(x, y) is a positive similarity measure we
have that 0 < s(x, y) ≤ s0 and thus

a

s0
≤ a

s(x, y)
< +∞ .

Thus d(x, y) is bounded as a
s0

≤ d(x, y) < +∞. Next for notational simplification lets define
d0 ≡ a

s0
. Note that d(x, x) is given by

d(x, x) =
a

s(x, x)
=

a

s0
= d0 .

Next the arguments of d are symmetric in that

d(x, y) =
a

s(x, y)
=

a

s(y, x)
= d(y, x) .
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Thus we have shown that d is a dissimilarity measure (DM) on X . If we have d(x, y) = d0
then this implies that s(x, y) = s0 which happens if and only if x = y, since s(x, y) is a
metric similarity measure. Finally, by the property of s(x, y) we have

s(x, y)s(y, z) ≤ [s(x, y) + s(y, z)]s(x, z) ∀x, y ∈ X . (210)

We can write this in terms of d(x, y) as

a

d(x, y)

a

d(y, z)
≤
[

a

d(x, y)
+

a

d(y, z)

]

a

d(x, z)
.

As d(x, y) > 0 this equals
d(x, z) ≤ d(y, z) + d(x, y) ,

or the final condition for a metric dissimilarity measure.

Problem 11.2

Note that if we take p = 2 in the Minkowski inequality we have

||x+ y||2 ≤ ||x||2 + ||y||2 . (211)

To make this match the normal definition of the triangle inequality lets introduce three new
vectors a, b, and c such that

x+ y = a− c

x = a− b .

These two equations require that y is given by

y = a− c− x = a− c− a+ b = b− c .

Then using Equation 211 we get

||a− c||2 ≤ ||a− b||2 + ||b− c||2 ,

or
d(a, c) ≤ d(a, b) + d(b, c) ,

which is the triangle inequality.

Problem 11.4

Consider d2(x, y) = f(d(x, y)) where d(x, y) is a metric dissimilarity measure. Then

d2(x, x) = f(d(x, x)) = f(d0) ∀x ∈ X ,

and
d2(x, y) = f(d(x, y)) = f(d(y, x)) = d2(y, x) ∀x, y ∈ X .

143



If we have d2(x, y) = f(d0) or f(d(x, y)) = f(d0) then since f is monotonic we can invert
the above equation to get d(x, y) = d0. From the properties of d we know that this happens
if and only if x = y.

Next since f(·) is increasing and d(x, z) ≤ d(x, y) + d(y, z) we have

f(d(x, z)) ≤ f(d(x, y) + d(y, z)) .

Using the stated properties of f this expression on the right is bounded above by

f(d(x, y)) + f(d(y, z)) = d2(x, y) + d2(y, z) .

These show that d2(x, y) is a dissimilarity metric.

Problem 11.5

For this problem we will look at the various properties that a dissimilarity metric must
satisfy and then show that d(x, y) ≡ f(s(x, y)) satisfies them, when f is a function that
has the properties specified. To begin note that d(x, x) = f(s(x, x)) = f(s0) for all x ∈ X .
Lets define d0 ≡ f(s0) for notational simplicity. As a second property of d note that d is
symmetric in its arguments since

d(x, y) = f(s(x, y)) = f(s(y, x)) = d(y, x) .

Now if d(x, y) = d0 = f(s0) then since f is monotone and increasing we can invert this last
equation to get s(x, y) = s0 which imply that x = y. Next consider d(x, y) + d(y, z) which
from the assumed hypothesis is greater than

f

(

1
1

s(x,y)
+ 1

s(y,z)

)

= f

(

s(x, y)s(y, z)

s(x, y) + s(y, z)

)

. (212)

Since s(x, y) is a similarity metric it must satisfy Equation 210 so that

s(x, y)s(y, z)

s(x, y) + s(y, z)
≤ s(x, z) .

Since f is monotonically increasing the right-hand-side of Equation 212 is less than f(s(x, z)) =
d(x, z). Thus we have shown that d(x, y) + d(y, z) ≤ d(x, z) so d is a dissimilarity metric.

Problem 11.6

For this problem we want to show that

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) , (213)
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when all of the weights wi in their definitions are equal to one. This is equivalent to showing

max1≤i≤l|xi − yi| ≤
(

l
∑

i=1

|xi − yi|2
)1/2

≤
l
∑

i=1

|xi − yi| .

To show this later expression consider the first inequality. In that expression let i∗ be defined
as

i∗ = argmax1≤i≤l|xi − yi| .
Then we have

(

l
∑

i=1

|xi − yi|2
)1/2

=

(

|xi∗ − yi∗|2 +
l
∑

i=1;i 6=i∗

|xi − yi|2
)1/2

= |xi∗ − yi∗|
(

1 +
1

|xi∗ − yi∗|
l
∑

i=1;i 6=i∗

|xi − yi|2
)1/2

.

Since 1
|xi∗−yi∗ |

∑l
i=1;i 6=i∗ |xi − yi|2 > 0 we see that the right-hand-side of the above equality is

greater than or equal to |xi∗ − yi∗|, showing

d2(x, y) ≥ d∞(x, y) .

Next consider d22(x, y) =
∑l

i=1 |xi − yi|2 in comparison to d21(x, y). This later expression is
equal to

d21(x, y) =

(

l
∑

i=1

|xi − yi|
)2

=
l
∑

i=1

|xi − yi|2 + 2
l
∑

i=1

l
∑

j=i+1

|xi − yi||xj − yj| .

Note that the right-hand-side of the above is larger than the sum

l
∑

i=1

|xi − yi|2 = d22(x, y) .

Thus
d21(x, y) ≥ d22(x, y) or d1(x, y) ≥ d2(x, y) ,

showing the second half of the requested identity.

Problem 11.7

Part (a): That the maximum of sqF (x, y) is l
1/q can be seen since each term in its sum has

the property 0 ≤ s(xi, yi) ≤ 1 and so

l
∑

i=1

s(xi, yi)
q ≤

l
∑

i=1

1 = l .
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Thus
sqF (x, y) ≤ l1/q (214)

Question: How show that sF (x, y) ≥ 1
2
l1/q?

Part (b): If we let i∗ = argmaxis(xi, yi) then

s(xi, yi)

s(xi∗ , yi∗)
≤ 1 for 1 ≤ i ≤ l .

Then writing sqF (x, y) as

sqF (x, y) = s(xi∗ , yi∗)

(

l
∑

i=1;i 6=i∗

(

s(xi, yi)

s(xi∗ , yi∗)

)q

+ 1

)1/q

.

Since limq→∞ xq = 0 if |x| < 1 we have

lim
q→∞

sqF (x, y) = s(xi∗ , yi∗) = max
1≤i≤l

s(xi, yi) .

Problem 11.8

Question: How to show for these similarity functions that

s(x, y)s(y, z) ≤ [s(x, y) + s(y, z)]s(x, z)

for all x, y, z ∈ X .

Problem 11.9

A proximity measure is a general notation for either a dissimilarity measure or a similar-
ity measure. Consider the definition of spsavg(x, C) which is the point-set average similarly
between the set C and the point x given by

spsavg(x, C) =
1

nC

∑

y∈C
s(x, y) .

Since dpsavg(x, C) is equal to

dpsavg(x, C) =
1

nC

∑

y∈C
d(x, y) ,

and dmax can be written as

dmax =
1

nC

∑

y∈C
dmax ,
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the difference between these two expressions gives

dmax − dpsavg(x, C) =
1

nC

∑

y∈C
dmax −

1

nC

∑

y∈C
d(x, y)

=
1

nC

∑

y∈C
(dmax − d(x, y))

=
1

nC

∑

y∈C
s(x, y) ≡ spsavg(x, C) .

Problem 11.10

Recall that dHamming(x, y) is equal to the number of places where the two vectors differ. Using
the contingency table A we can write

dHamming(x, y) =
k−1
∑

i=1

k−1
∑

j=0;j 6=i

aij ,

or the sum of the off-diagonal elements of the contingency table A. Recall that

d2(x, y) =

√

√

√

√

l
∑

i=1

(xi − yi)2 .

Now if x, y ∈ {0, 1}l then if xi = yi then (xi − yi)
2 = 0 (as always) while if xi 6= yi then

(xi−yi)
2 = 1. Thus the sum above

∑l
i=1(xi−yi)

2 equals the number of elements that differ.
This is the same definition of the Hamming distance.

Problem 11.13

In general we can determine proximity functions between a point and a set from proximity
functions between two sets by converting one of the sets to a set with a single point {x}.
For example the “max” set-set similarity measure

sssmax(Di, Dj) = max
x∈Di,y∈Dj

s(x, y) ,

would be converted to a point-set similarity function in the straight forward way as

spsmax(x,Dj) = max
y∈Dj

s(x, y) .
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Clustering Algorithms I:

Sequential Algorithms

Notes on the text

Notes on the number of possible clusterings

In this section of the text we would like to evaluate the numerical value of S(N,m) so that
we can determine if we need a clustering with m clusters from N points how many different
clusterings would we have to search over to find the optimal clustering given some clustering
criterion. We can compute S(N,m) in terms of smaller values of N and m in the following
way. Assume that we have N − 1 points and we will add another point to get a total of N .
We can add this additional point N in two ways and end up with m clusters

• If we have m clusters of N − 1 points we can add this new point as a member of any
of the m clusters to create m clusters of N points. This can be done in mS(N − 1, m)
ways.

• If we have m−1 clusters of N −1 points we can add this new point as a new singleton
cluster to create m clusters of N points. This can be done in S(N − 1, m− 1) ways.

Since each of these is exclusive we can enumerate the totality of S(N,m) ways to form m
clusters from N points as

S(N,m) = mS(N − 1, m) + S(N − 1, m− 1) .

We are told that the solution to this is given by the Stirling number of the second kind or

S(N,m) =
1

m!

m
∑

i=0

(−1)m−i

(

m
i

)

iN .

If m = 2 we can evaluate the above expression as

S(N, 2) =
1

2

2
∑

i=0

(−1)2−i

(

2
i

)

iN =
1

2

((

2
0

)

0N −
(

2
1

)

1N + 2N
)

= 2N−1 − 1 ,

or the books equation 12.3.

Notes on sequential clustering algorithms (BSAS) and (MBSAS)

In the MATLAB/Octave code BSAS.m and MBSAS.m we have implemented the basic and modi-
fied sequential algorithm schemes. To verify their correctness, in the script dup figure 12 1.m

148



−4 −3 −2 −1 0 1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

−4 −3 −2 −1 0 1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Figure 19: A duplicate of the books figure 12.1. Left: Running BSAS with q, the maximum
number of clusters, taken to be q = 3 (or larger) Right: Running BSAS with q = 2.

we duplicated data like that presented in the books figure 12.1. Next we provide Mat-
lab/Octave code that duplicates the books figure 12.2. The script dup figure 12 2.m gener-
ates a very simple two cluster data set and then calls the function estimateNumberOfClusters.m
which runs the BSAS algorithm many times each time with a randomly selected data order-
ing. When we run that script we obtain the two plots shown in Figure 20.

Notes on a two-threshold sequential scheme (TTSAS)

Next we provide Matlab/Octave code that duplicates the books figure 12.3. The script
dup figure 12 3.m creates the data suggested in example 12.3 (a very simple two cluster
data set) and then calls the function MBSAS.m and the TTSAS.m. Where the Matlab/Octave
code in TTSAS.m is an implementation of the two-threshold sequential scheme described in
the book. When we run that script we obtain the two plots shown in Figure 21. Note
that I was not able to get the MBSAS algorithm to show the three class clustering claimed
in the book. Using the suggested value of Θ = 2.5 gave the plot shown in Figure 21 (left).
Increasing the threshold value for Θ to 3 however gave the same two clustering result that
TTSAS gave shown in Figure 21 (right).

Notes on refinement stages

On the web site that accompanies this text one can find the Matlab procedure merging.m

that implements the merging procedure discussed in in section of the text. To demonstrate
the usage of the merging.m routine, in the Matlab script merging example.m we consider
the same data from Example 12.3 and clustered using the routine MBSAS.m. The results
from running this clustering are presented in Figure 22 (left) there we see four clusters
have been found. We next run the merging.m code on the resulting clusters and obtain
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Figure 20: A duplicate of the books figure 12.2. Left: The initial data chosen to run the
estimateNumberOfClusters.m function on. Right: A plot of the most frequent (mode)
number of clusters found for each value of Θ. This plot looks similar to the one presented
in the book. The long stretch of values of Θ where the mode is 2 indicates that 2 maybe a
good value for the number of clusters present.
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Figure 21: Plots duplicating the books figure 12.3. Left: The cluster labels produced using
the MBSAS algorithm on the data set of example 12.3, and using the parameters given in the
book. Note that I was not able to exactly duplicate the cluster results given in the book.
Right: The result of apply the TTSAS algorithm on the data set of example 12.3.
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Figure 22: Plots to show the results from using the merging.m routine. Left: The cluster
labels produced using the MBSAS algorithm on the data set from example 12.3. Note that we
found four clusters. Right: The result of applying the merging algorithm on the resulting
data set. We have merged two of the original clusters leaving two larger clusters.

Figure 22 (right). Note that we need to use a larger value for M1 = 2.85 than the value of
Θ = 1.5 that which we used in clustering with MBSAS.

Problem Solutions

Problem 12.1 (the number of binary divisions of N points)

In this problem we prove by induction that given a set with N points the number of binary
divisions (divisions into two non empty sets) is given by 2N−1 − 1. See also page 157 where
some alternative derivations of this same result are given. To begin note that from exam-
ple 12.1 in the book that when N = 3 the number of binary divisions S(3, 2) = 3 which also
equals the expression 2N−1 − 1 when N = 3. Thus we have shown the required base case for
an induction proof. Lets assume that

S(N, 2) = 2N−1 − 1 for N ≤ N1 ,

and consider the evaluation of S(N1 +1, 2). We can count the number of binary divisions of
a set with N1 + 1 points (and evaluate S(N1 + 1, 2)) in the following way. First we can take
each of the pairs of sets formed from N1 points (of which there are S(N1, 2) of them) and
introduce this N1 + 1-st point into either of the pairs. This would give 2S(N1, 2) sets with
N1 + 1 points. In addition, we can add this N1-st point as a singleton set (a set with only
one element) to the set with all other N1 points. This can be done in only one way. Thus
we have expressed S(N1 + 1, 2) as

S(N1 + 1, 2) = 2S(N1, 2) + 1 .
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Using the induction hypothesis we find

S(N1 + 1, 2) = 2(2N1−1 − 1) + 1 = 2N1 − 1 ,

as the number of binary divisions of a set with N1 + 1 points. As this satisfies our desired
expression for N1 + 1 points we have proven the requested expression is true.

Problem 12.2 (recursively updating the cluster mean vector)

Since the mean vector of an “old” cluster Cold
k is defined as

mCold
k

=
1

nCold
k

∑

xi∈Cold
k

xi ,

we can represent the sum over all points in Cold
k cleanly as the product nCold

k
mCold

k
. If we merge

another cluster D with nD points into Cold
k to make a new cluster such that Cnew

k = Cold
k ∪D

then the new mean vector over this merged cluster is given by

mCnew
k

=
1

nCnew
k





∑

xi∈Cold
k

xi +
∑

xi∈D
xi



 =
1

nCnew
k

(

nCold
k
mCold

k
+
∑

xi∈D
xi

)

.

If we only have one point in D denoted as x then nCnew
k

= nCold
k

+ 1 and using the above we
get

mCnew
k

=
(nCnew

k
− 1)mCold

k
+ x

nCnew
k

the requested expression.

Problem 12.3 (experiments with the BSAS and MBSAS algorithm)

Problem 12.4 (more experiments with BSAS and MBSAS)

Problem 12.5 (clustering in a square)

Problem 12.6 (estimating the number of clusters)
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Figure 23: Some examples using the MATLAB function histfit function to plot normal
densities on some “toy” data sets. Left: Center: Right:
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Figure 24: Some examples using the MATLAB function histfit function to plot normal
densities on some “toy” data sets. Left: Center: Right:
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Clustering Algorithms II:

Hierarchical Algorithms

Notes on the text

Notes on agglomerative algorithms based on matrix theory

In this section of the book some algorithms for agglomerative clustering are introduced.
These algorithms are presented in an way that involves modifications of the starting input
dissimilarity matrix P0 = P (X) by modifying this matrix as clustering proceeds in stages
from the initial singleton clusters of R0 which consist of only the points {xi} to the cluster
RN−1 that contains all points in one cluster. What is not sufficiently emphasized in this
section is that these clusters can be formed based only on the specified pairwise proximity
measure between points. In normal clustering problem we initially have access to the sample
points xi from which we can then form the initial proximity matrix P0 = P (X), which
has elements P(xi,xj) for i, j ∈ {1, 2, · · · , N}. Once this initial matrix is formed we can
effectively “forget” the original data points xi and work only with these proximity matrices
Pt. At the step t > 1, once we have decided to merge two clusters Ci and Cj into a new cluster
Cq the first step in obtaining the new proximity matrix Pt from the old Pt−1 is to remove
the ith and jth rows and columns of Pt−1. This corresponds to removing clusters Ci and Cj

since their data are now merged into the new cluster Cq. Next, a new row and column is
added to the modified proximity matrix Pt−1. This added row measures the cluster distances
between the new cluster Cq and all existing unmodified clusters Cs for s ∈ {1, 2, · · · , N − t}
and s 6∈ {i, j}. The values in the new proximity matrix Pt are created using elements derived
from

d(Cq, Cs) = f(d(Ci, Cs), d(Cj, Cs), d(Ci, Cj)) , (215)

for some function f(·, ·, ·) of three arguments. As a final comment most clustering algorithms
can be express f in a simpler form as

d(Cq, Cs) = aid(Ci, Cs) + ajd(Cj, Cs) + bd(Ci, Cj)

+ c|d(Ci, Cs)− d(Cj, Cs)| , (216)

for various values of ai, aj, b, and c. Note that in the above expression all of these cluster
distances d(·, ·) have already been computed previously and can be found in the old proximity
matrix Pt−1.

Notes on the minimum variance clustering algorithm (Ward)

In this section of these notes we derive the result that Wards linkage algorithm is equivalent
to merging the two clusters that lead to the smallest possible increase in the total variance.
We assume that the clusters Ci and Cj are to be merged at the iteration t+ 1 into a cluster
denoted Cq and all other clusters remain the same. We begin by defining the total variance
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Et over all clusters at step t by

Et =
N−t
∑

r=1

e2r , (217)

where er is the scatter around the rth cluster given by

er =
∑

r

||x−mr||2 . (218)

Then the change in the total variance denoted by Et+1 − Et where Et is the total cluster
variance at step t defined above under the merge of the clusters Ci and Cj will be

∆Eij
t+1 = e2q − e2i − e2j . (219)

Noting that we can express
∑

x∈Cr
||x−mr||2 as

∑

x∈Cr

||x−mr||2 =
∑

x∈Cr

(||x||2 − 2xTmr + ||mr||2)

=
∑

x∈Cr

||x||2 − 2

(

∑

x∈Cr

xT

)

mr + nr||mr||2

=
∑

x∈Cr

||x||2 − 2nrm
T
r mr + nr||mr||2

=
∑

x∈Cr

||x||2 − 2nr||mr||2 + nr||mr||2

=
∑

x∈Cr

||x||2 − nr||mr||2 . (220)

This last equation is the books equation 13.16. If we use expressions like this to evaluate
the three terms eq, ei and ej we have

∆Eij
t+1 =

∑

x∈Cq

||x||2 − nq||mq||2 −
∑

x∈Ci

||x||2 + ni||mi||2 −
∑

x∈Cj

||x||2 + nj ||mj||2

= ni||mi||2 + nj ||mj||2 − nq||mq||2 . (221)

Since when we merge cluster Ci and Cj into Cq we take all of the points from Ci and Cj in
forming Cq we have

∑

x∈Cq

||x||2 =
∑

x∈Ci

||x||2 +
∑

x∈Cj

||x||2 .

An equivalent statement of the above in terms of the means mi and the number of elements
summed in each mean ni is

nimi + njmj = nqmq ,

since the product nimi is just the sum of the x vectors in Ci. From this last expression we
compute

||mq||2 =
1

n2
q

||nimi + njmj ||2

=
1

n2
q

(n2
i ||mi||2 + 2ninjm

T
i mj + n2

j ||mj ||2) .
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Thus using this expression in Equation 221 we can write ∆Eij
t+1 as

∆Eij
t+1 = ni||mi||2 + nj||mj||2 −

1

nq
(n2

i ||mi||2 + 2ninjm
T
i mj + n2

j ||mj||2) .

Since we have nq = ni + nj this simplifies to

∆Eij
t+1 =

1

nq

[

n2
i ||mi||2 + ninj ||mi||2 + ninj ||mj||2 + n2

j ||mj||2

− n2
i ||mi||2 − 2ninjm

T
i mj − n2

j ||mj||2
]

=
ninj

nq

[

||mi||2 − 2mT
i mj + ||mj||2

]

=
ninj

nq
||mi −mj ||2 .

This last equation is the books equation 13.19.

Notes on agglomerative algorithms based on graph theory

In this section it can be helpful to discuss Example 13.4 in some more detail. Now in going
from the clustering R2 = {{x1, x2}, {x3}, {x4, x5}} to R3 we are looking for the smallest
value of a such that the threshold graph G(a) has the property h(k). Thus we compute
gh(k)(Cr, Cs) for all pairs (Cr, Cs) of possible merged clusters. In this case the two clusters
we would consider merging in the new clustering R3 are

{x1, x2} ∪ {x3} , {x3} ∪ {x4, x5} , or {x1, x2} ∪ {x4, x5} .

The smallest value of gh(k) using these pairs is given by 1.8 since when a = 1.8, the threshold
graph G(a) of {x3} ∪ {x4, x5} is connected (which is property h(k) for this example).

Another way to view the numerical value of the function gh(k)(Cr, Cs) is to express its meaning
in words. In words, the value of the function

gh(k)(Cr, Cs) ,

is the smallest value of a such that the threshold graph G(a) of the set Cr ∪Cs is connected
and has either one of two properties:

• The set Cr ∪ Cs has the property h(k).

• The set Cr ∪ Cs is complete.

Thus we see that the value of gh(k)({x1, x2}, {x3, x4, x5}) is 2.5 since in this example this is
where the threshold graph G(2.5) of {x1, x2} ∪ {x3, x4, x5} = X is now connected which is
property h(k) for the single link algorithm.
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Notes on divisive algorithms

The book claims the result that the number of possible partition of of N points into two sets
is given by 2N−1 − 1 but no proof is given. After further study (see Page 148) this result
can be derived from the Stirling numbers of the second kind S(N,m) by taking the number
of clusters m = 2 but we present two alternative derivations here that might be simpler to
understand.

Method 1: The first way to derive this result is to consider in how many ways could we
label each of the points xi such that each point is in one cluster. Since each point can be in
one of two clusters we can denote its membership by a 0 or a 1 depending on which cluster
a given point should be assigned. Thus the first point x1 has 2 possible labelings (a 0 or a
1) the second point x2 has the same two possible labelings etc. Thus the total number of
labeling for all N points is

2× 2 · · ·2× 2 = 2N .

This expression over counts the total number of two cluster divisions in two ways. The first
is that it includes the labeling where every point xi gets the same label. For example all
points are labeled with a 1 or a 0, of which there are two cases giving

2N − 2 .

This number also over counts the number of two cluster divisions in that it includes two

labelings for each allowable cluster. For example, using the above procedure when N = 3
we have the possible labelings

x1 x2 x3

0 0 0 X
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 3
1 0 1 2
1 1 0 1
1 1 1 X

In the above we have separated the labelings and an additional piece of information with a
vertical pipe |. We present the two invalid labelings that don’t result in two nonempty sets
with an X . Note also that the labeling 0 , 0 , 1 and 1 , 1 , 0 are equivalent in that they have the
same points in the two clusters. To emphasis this we have denoted the 3 pairs of equivalent
labelings with the integers 1, 2 and 3. Thus we see that the above counting represents twice
as many clusters. Thus the number of two cluster divisions is given by

1

2
(2N − 2) = 2N−1 − 1 ,

as we were to show.

Method 2: In this method we recognize that the total problem of counting the number
of partitions of the N points into two clusters has as a subproblem counting the number of
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ways we can partition of the N points into two sets of size k and N − k. This subproblem

can be done in

(

N
k

)

ways. Since we don’t care how many points are in the individual

clusters the total number of ways in which we can perform a partition into two sets might
be represented like

N−1
∑

k=1

(

N
k

)

.

Here we have exclude from the above sum the sets with k = 0 and K = N since they
correspond to all of the N points in one set and no points in the other set. The problem
with this last expression is that again it over counts the number of sets. This can be seen

from the identity

(

N
k

)

=

(

N
N − k

)

. Thus to correctly count these we need to divide

this expression by two to get

1

2

N−1
∑

k=1

(

N
k

)

.

We can evaluate this expression if we recall that

N
∑

k=0

(

N
k

)

= 2N , (222)

Using this the above becomes

1

2

N−1
∑

k=1

(

N
k

)

=
1

2

(

2N −
(

N
0

)

−
(

N
N

))

=
1

2
(2N − 2) = 2N−1 − 1 ,

the same expression as earlier.

Problem Solutions

Problem 13.1 (the definitions of the pattern / proximity matrix)

Part (a): The pattern matrix D(X) is the N × l matrix whos ith row is the transposed ith
vector of X . This matrix thus contains the N feature vectors as rows stacked on top of each
other. Since the proximity matrix P (X) is the N ×N with (i, j)th elements that are given
by either s(xi, xj) if the proximity matrix corresponds to a similarity matrix or to d(xi, xj)
if the proximity matrix corresponds to a dissimilarity matrix. The term “proximity matrix”
covers both cases. Thus given the pattern matrix D(X) an application of the proximity
function will determine a unique proximity matrix

Part (b): To show that a proximity matrix does not determine the pattern matrix one
would need to find two sets feature vectors that are the same under the Euclidean distance.
The scalar measurements 1, 2, 3 with the dissimilarity metric d(x, y) = |x−y| has a proximity
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matrix given by




0 1 2
1 0 1
2 1 0



 .

While the scalar values 3, 4, 5 have the same proximity matrix. These two sets have different
pattern matrices given by





1
2
3



 and





3
4
5



 .

Problem 13.2 (the unweighted group method centroid (UPGMC))

To solve this problem lets first show that

n1||m1 −m3||2 + n2||m2 −m3||2 =
n1n2

n1 + n2
||m1 −m2||2 (223)

Since n3 = n1 + n2 and C3 = C1 ∪ C2, we can write m3 as

m3 =
1

n3

∑

x∈C3

x =
1

n3

[

∑

x∈C1

x+
∑

x∈C2

x

]

=
1

n3
[n1m1 + n2m2] .

Now the left-hand-side of Equation 223 denoted by

LHS = n1||m1 −m3||2 + n2||m2 −m3||2 ,
using the above for m3 is given by

LHS = n1

∣

∣

∣

∣

∣

∣

∣

∣

(

1− n1

n3

)

m1 −
n2

n3
m2

∣

∣

∣

∣

∣

∣

∣

∣

2

+ n2

∣

∣

∣

∣

∣

∣

∣

∣

(

1− n2

n3

)

m2 −
n1

n3
m1

∣

∣

∣

∣

∣

∣

∣

∣

2

= n1

(

1− n1

n3

)2

||m1||2 − 2n1

(

1− n1

n3

)(

n2

n3

)

mT
1m2 + n1

n2
2

n2
3

||m2||2

+ n2

(

1− n2

n3

)2

||m2||2 − 2n2

(

1− n2

n3

)(

n1

n3

)

mT
1m2 + n2

n2
1

n2
3

||m2||2

=

[

n1

(

1− 2
n1

n3
+

n2
1

n2
3

)

+ n2

(

n2
1

n2
3

)]

||m1||2

− 2

[

n1

(

1− n1

n3

)(

n2

n3

)

+ n2

(

1− n2

n3

)(

n1

n3

)]

mT
1m2

+

[

n1
n2
2

n2
3

+ n2

(

1− 2
n2

n3
+

n2
2

n2
3

)]

||m2||2 .

Next consider the coefficient of ||m1||2. We see that it is equal to

n1

n2
3

(n2
3 − 2n1n3 + n2

1) + n2

(

n2
1

n2
3

)

=
n1

n2
3

(n3 − n1)
2 + n2

(

n2
1

n2
3

)

=
n1n2

n2
3

(n2 + n1) =
n1n2

n3
.
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The same type of transformation changes the coefficient of ||m2||2 into n1n2

n3
also. For the

coefficient of mT
1m2 we have

[

n1

(

1− n1

n3

)(

n2

n3

)

+ n2

(

1− n2

n3

)(

n1

n3

)]

=
n1n2

n3

[

1− n1

n3

+ 1− n2

n3

]

=
n1n2

n3

[

2− n1 + n2

n3

]

=
n1n2

n3
.

Using all three of these results we have that

LHS =
n1n2

n3

[

||m1||2 − 2mT
1m2 + ||m2||2

]

=
n1n2

n3
||m1 −m2||2 ,

which we were to show. Now we can proceed to solve the requested problem. We begin by
recalling that the recursive matrix update algorithm for UPGMC when we merge cluster Ci

and Cj into Cq is given by

dqs =

(

ni

ni + nj

)

||mi −ms||2 +
nj

ni + nj
||mj −ms||2 −

ninj

(ni + nj)2
||mi −mj ||2 . (224)

If we use Equation 223 with m1 = mi, m2 = mj and m3 = mq to express ||mi −mj ||2 in the
above as

||mi −mj ||2 =
(

ni + nj

ninj

)

[ni||mi −mq||2 + nj ||mj −mq||2]

Using this we can then write dqs as

dqs =
ni

nq
||mi −ms||2 +

nj

nq
||mj −ms||2

− ni

nq

||mi −mq||2 −
nj

nq

||mj −mq||2

=
1

nq

[

ni(||mi −ms||2 − ||mi −mq||2) + nj(||mj −ms||2 − ||mj −mq||2)
]

.

To simplify this recall that for any two vectors a and b we have

||a||2 − ||b||2 = (a− b)T (a+ b) = (a+ b)T (a− b) ,

as one can prove by expanding out the product in the right-hand-side. Using this we can
write dqs as

dqs =
1

nq

[

ni(mi −ms +mi −mq)
T (mi −ms − (mi −mq))

+ nj(mi −ms +mj −mq)
T (mj −ms − (mj −mq))

]

=
1

nq

[

ni(2mi −ms −mq)
T (mq −ms) +mj(2mj −ms −mq)

T (mq −ms)
]

=
1

nq
[ni(2mi −ms −mq) +mj(2mj −ms −mq)]

T (mq −ms)

=
1

nq
[2nimi + 2njmj − nims − nimq − njms − njmq]

T (mq −ms) .
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Since nimi + njmj = nqmq the above becomes

dqs =
1

nq

[(ni + nj)mq − nims − njms]
T (mq −ms)

=
1

nq

[ni(mq −ms) + nj(mq −ms)]
T (mq −ms)

=
1

nq

(ni + nj)(mq −ms)
T (mq −ms) = ||mq −ms||2 ,

which is the result we wanted to show.

Problem 13.3 (properties of the WPGMC algorithm)

The weighted pair group mean centroid (WPGMC) algorithm has an update equation for
dqs given by

dqs =
1

2
dis +

1

2
djs −

1

4
dij .

That there exists cases where dqs ≤ min(dis, djs) is easy to see. Consider any existing cluster
Cs that is equally distant between Ci and Cj or dis = djs = min(dis, djs). A specific example
of three clusters like this could be created from single points if needed. Then in this case
using the above WPGMC update algorithm we would have

dqs = dis −
1

4
dij ≤ dis = min(dis, djs) .

Problem 13.4 (writing the Ward distance as a MUAS update)

The Ward or minimum variance algorithm defines a distance between two clusters Ci and
Cj as

d′ij =
ninj

ni + nj
||mi −mj ||2 .

We want to show that this distance update can be written in the form of a MUAS algorithm

d(Cq, Cs) = aid(Ci, Cs) + ajd(Cj, Cs) + bd(Ci, Cj) + c|d(Ci, Cs)− d(Cj, Cs)| . (225)

In problem 3.2 we showed that

dqs =
ni

ni + nj
dis +

nj

ni + nj
djsdis −

ninj

(ni + nj)2
dij = ||mq −ms||2 .

As suggested in the hint lets multiply both sides of this expression by the expression
(ni+nj)ns

ni+nj+ns

to get

(ni + nj)ns

ni + nj + ns
||mq −ms||2 =

nins

ni + nj + ns
dis +

njns

ni + nj + ns
djs

− ninjns

(ni + nj)(ni + nj + ns)
dij .
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Writing nq = ni + nj the left-hand-side of the above becomes

nqns

nq + ns
dqs = d′qs ,

while the right-hand-side becomes

ni + ns

ni + nj + ns

(

nins

ni + nj

)

dis +
nj + ns

ni + nj + ns

(

njns

nj + ns

)

djs −
ns

ni + nj + ns

(

ninj

ni + nj

)

dij ,

or introducing thee definition of d′ and equating these two expressions we have

d′qs =
ni + ns

ni + nj + ns
d′is +

nj + ns

ni + nj + ns
d′js −

ns

ni + nj + ns
d′ij .

This is the books equation 13.13 which we were to show.

Problem 13.5 (Wards algorithm is the smallest increase in variance)

This problem is worked on Page 154 of these notes.

Problem 13.7 (clusters distances from the single link algorithm)

The single link algorithm in the matrix updating algorithmic scheme (MUAS) has a dissim-
ilarity between the new cluster Cq formed from the clusters Ci and Cj and an old cluster Cs

given by
d(Cq, Cs) = min(d(Ci, Cs), d(Cj, Cs)) . (226)

We desire to show that this distance is equal to the smallest pointwise distance for point
taken from the respective clusters or

d(Cq, Cs) = min
x∈Cq,y∈Cs

d(x, y) . (227)

At step R0 when every cluster is a single point Equation 227 is true since Cq and Cs are
singleton point sets i.e. sets with only one element in them. Assuming that at level t the
clusters at that level in Rt have clusters distances where Equation 227 holds we will now
prove that the clusters at level t + 1 will also have distances that satisfy this property.
Consider the next cluster level Rt+1, where we form the cluster Cq from the sets Ci and Cj

say picked as specified by the Generalized Agglomerative Scheme (GAS) with

g(Ci, Cj) = min
r,s

g(Cr, Cs) ,

where g is a dissimilarity measure. Thus to show that Equation 227 holds between the new
set Cq and all the original unmerged sets from Rt we use Equation 226 to write

d(Cq, Cs) = min(d(Ci, Cs), d(Cj, Cs)) ,
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Figure 25: Left: Single link clustering on the dissimilarity matrix for problem 13.10. Right:
Complete link clustering on the dissimilarity matrix for problem 13.10.

and then use the induction hypothesis to write the above as

d(Cq, Cs) = min

(

min
x1∈Ci,y1∈Cs

d(x1, y1), min
x2∈Cj ,y2∈Cs

d(x2, y2)

)

= min
x∈Ci∪Cj ,y∈Cs

d(x, y) .

This last expression is what we wanted to prove.

Problem 13.8 (clusters distances from the complete link algorithm)

All of the arguments in Problem 13.7 are still valid for this problem when we replace minimum
with maximum.

Problem 13.9 (similarity measures vs. dissimilarity measures)

For this problem one simply replaces dissimilarities d(x, y) with similarities s(x, y) and re-
places minimizations with maximizations in the two earlier problems. All of the arguments
are the same.

Problem 13.10 (some simple dendrograms)

Note that for this proximity matrix we do have ties in P (for example P (2, 3) = 1 =
P (4, 5)) and thus as discussed in the book we may not have a unique representations for the
dendrogram produced by the complete link clustering algorithm. The single link clustering
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Figure 26: Left: Single link clustering on the dissimilarity matrix for problem 13.12. Right:
Complete link clustering on the dissimilarity matrix for problem 13.12.

algorithm should produce a unique dendrogram however. We can use the R language to
plot the associated single and complete link dendrograms. See the R file chap 13 prob 10.R

for the code to apply these clustering procedures to the given proximitry matrix. Two
dendrograms for this problem that are output from the above script are shown in Figure 25.

Problem 13.12 (more simple dendrograms)

Part (a): Note that for this proximity matrix we have ties in P (for example P (2, 3) =
3 = P (4, 5)) and thus we may not have a unique representation of the dendrogram for the
complete link clustering algorithm. The histogram may depend on the order in which the two
tied results are presented to the clustering algorithm. The single link clustering algorithm
should be unique however. See the R file chap 13 prob 12.R for numerical code to perform
complete and single link clustering on the given proximity matrix. Results from running this
code are presented in Figure 26.

Problem 13.13 (a specification of the general divisive scheme (GDS))

To begin this problem, recall that in the general divisive clustering scheme the rule 2.2.1
is where given a cluster from the previous timestep, Ct−1,i, we consider all possible pairs of
clusters (Cr, Cs) that could form a partition of the cluster Ct−1,i. From all possible pairs we
search to find the pair (C1

t−1,i, C
2
t−1,i) that gives the maximum value for g(Cr, Cs) where g(·, ·)

is some measure of cluster dissimilarity. In this problem we are further restricting the general
partioning above so that we only consider pairs (C1

t−1,i, C
2
t−1,i) where Ct−1,i = C1

t−1,i ∪ C2
t−1,i

and C1
t−1,i only has one point. We can consider the total number of cluster comparisons

required by this process as follows.
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• At t = 0 there is only one cluster in R0 and we need to do N comparisons of the values
g({xi}, X − {xi}) for i = 1, 2, · · · , N to find the single point to split first.

• At t = 1 we have two clusters in R1 where one cluster a singleton (has only a single
point) and the other cluster has N − 1 points. Thus we can only possibly divide the
cluster with N − 1 points. Doing that will require N − 1 cluster comparisons to give
R2.

• In general, we see that at step t we have N − t comparisons to make to derive the new
clustering Rt+1 from Rt.

Thus we see that this procedure would require

N + (N − 1) + (N − 2) + · · ·+ 3 ,

comparisons. The above summation stops at three because this is the number of comparisons
required to find the single split point for a cluster of three points. The above sum can be
evaluated as

(

N
∑

k=1

k

)

− 1− 2 =
N(N + 1)

2
− 3 =

N2 +N − 6

2
.

The merits of this procedure is that it is not too computationally demanding since it is an
O(N2) procedure. From the above discussion we would expect that this procedure will form
clusters that are similar to that formed under single link clustering i.e. the clusters will most
likely possess chaining. Note that in searching over such a restricted space for the two sets
C1

t−1,i and C2
t−1,i this procedure will not fully explore the space of all possible partitions of

Ct−1,i and thus could result in non optimal clustering.

Problem 13.14 (the alternative divisive algorithm)

The general divisive scheme (GDS) for t > 0 procedes by consideing all clusters Ct−1,i for
i = 1, 2, · · · , t from the clustering Rt−1 and for each cluster all their 2|Ct−1,i|−1 − 1 possible
divisions into two sets. Since the procedure we apply in the GDS is the same for each
timestep t we can drop that index from the cluster notation that follows.

The alternative divisive algoithm searches over much fewer sets than 2|Ci|−1 − 1 required by
the GDS by instead performing a linear search on the |Ci| elements of Ci. Since for large
values of |Ci| we have

|Ci| ≪ 2|Ci|−1 − 1 ,

this alternative procedure has a much smaller search space and can result in significant
computational savings over the GDS.

The discription of this alternative partiioning procedure for Ci is as follows. We start with
an “empty set” C1

i = ∅ and a “full set” C2
i , where the “full set” is initialized to be Ci. As a

first step, we find the vector x in the full set, C2
i , who’s average distance with the remaining

vectors in C2
i is the largest and move that point x into the emtpy set C1

i . If we define g(x, C)
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to be a function that measures the average dissimilarity between a point x and the set C
the first point we move into C1

i will be the point x that maximizes

g(x, C2
i − {x}) ,

where C2
i − {x} means the set C2

i but without the point {x} in it. After this initial point
has been moved into C1

i we now try to move more points out of the full set C2
i and into the

empty set C1
i as follows. For all remaining x ∈ C2

i we would like to move a point x into C1
i

from C2
i if the dissimilarity of x with C1

i is smaller than that of x with C2
i (without x) or

g(x, C1
i ) < g(x, C2

i − {x}) .

Motivated by this expression we compute

D(x) ≡ g(x, C2
i − {x})− g(x, C1

i ) ,

for all x ∈ C2
i . We then take the point x∗ that makes D(x) largest but only if at x∗ the value

of D(x∗) is still positive. If no such point exists that is D(x) < 0 for all x or equivalently

g(x, C1
i ) > g(x, C2

i − {x}) ,

then we stop and return the two sets (C1
i , C

2
i ). Note that this procedure cannot gaurentee to

give the optimal partition of the set Ci since we are limiting our search of possible splits over
the much smaller space of pairwise sets than the full general divisive scheme would search
over.

Problem 13.15 (terminating the number of clusters on θ = µ+ λσ)

This problem refers to Method 1 for determining the number of clusters suggested by the
data. To use this method one needs to introduce a set function h(C) that provides a way of
measuring how dissimilar the vectors in a given set are. Common measures for h(C) might
be

h(C) = max
x,y∈C

d(x, y)

h(C) = medianx,y∈Cd(x, y) ,

where d(·, ·) is a dissimilarity measure. Then we stop clustering with Rt at level t when there
is a cluster in Rt+1 (the next level) that is so “large” that it has points that are too dissimilar
to continue. Mathematically that means that we keep the Rt clustering (and cluster farther
than the Rt+1 clustering) if

∃Cj ∈ Rt+1 such that h(Cj) > θ ,

where the threshold θ still has to be determined experimentally. To help in evaluating the
value of θ we might write it as

θ = µ+ λσ ,
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where µ is the average dissimilarity between two points in the full set X and σ is the variance
of that distance. These can be computed as

µ =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

d(xi, xj)

σ2 =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

(d(xi, xj)− µ)2 .

Thus when the choice of the value of the threshold θ is transfered to the choice of a value for
λ we are effectivly saying that we will stop clustering when we get sets that have a average
dissimilatrity greater than λ standard deviations from the average pointwise dissimilarity.
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Clustering Algorithms III:

Schemes Based on Function Optimization

Notes on the text

Notes on compact and hyperellipsoidal clusters

The equations presented in the book for estimating µj and Σj are derived earlier in these
notes, see Page 26.

Note I believe there is a typo in the books more general expression for the M-step in the ex-
pectation maximization (EM) algorithm. The book starts by defining our objective function
Q(Θ;Θ(t)) given by

Q(Θ;Θ(t)) =
N
∑

i=1

m
∑

j=1

P (Cj|xi; Θ(t)) ln(p(xi|Cj; θ)Pj) , (228)

and then argues that the parameters of the jth cluster θj are functionally independent of the
parameters of the kth cluster when k 6= j. Thus when we take the θj derivative of the above
expression to find the maximum of Q(Θ;Θ(t)) we loose any reference to any other clusters
k 6= j. Thus the sum over j falls away and we get

N
∑

i=1

P (Cj|xi; Θ(t))
∂

∂θj
ln(p(xi|Cj; θj) = 0 . (229)

The book has an additional sum over the index j which I believe should not be there.

Even though the EM algorithm for the multidimensional case is derived on Page 26. I found
the derivation given in the Appendix of this chapter informative and wanted to further
elucidate the discussion there. In this derivation we wish to consider Equation 229 where
the elements of θj are the individual elements of the jth covariance matrix Σj . To this end
we take the derivative of ln(·) with respect to the (r, s) element of the inverse of Σj , which
we denote as σrs. This means that

∂

∂σrs
ln(p(x|Cj; θj) =

∂

∂σrs

(

ln

(

|Σ−1
j |

(2π)l/2

)

− 1

2
(x− µj)

TΣ−1
j (x− µj)

)

=
1

2

1

|Σ−1
j |

∂

∂σrs

|Σ−1
j | − 1

2
(xr − µjr)(xs − µjs)

=
1

2
|Σj|

∂

∂σrs
|Σ−1

j | − 1

2
(xr − µjr)(xs − µjs) .

To evaluate the partial derivative of |Σ−1
j | with respect to one of its elements we will use one

way of computing the determinate [11]. For example with a general matrix A, by using the
cofactor expansion of the determinant about the ith row we can write

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin .
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Where Cij = (−1)i+j|Mij | is the cofactor of the (i, j)th element and Mij is the minor of the
(i, j)th element. In that case we see that the partial derivative of |A| with respect to one of
its element, say aij is given by

∂|A|
∂aij

= Cij . (230)

From this fact we see that

∂

∂σrs
ln(p(x|Cj; θj) =

1

2
|Σj |Crs −

1

2
(xr − µjr)(xs − µjs) .

Thus letting Cj be the matrix with cofactor elements Cij corresponding to the matrix Σ−1
j

we have that in matrix notation the above is

∂

∂Σ−1
j

ln(p(x|Cj; θj) =
1

2
|Σj |Cj −

1

2
(x− µj)(x− µj)

T .

The cofactor matrix Cj is special in that it is related to the inverse of the generating matrix
(here Σ−1

j ). One can show [11] that

(Σ−1
j )−1 =

CT
j

|Σ−1
j | .

Thus CT
j = |Σ−1

j |Σj and since Σj is a symmetric matrix this gives that the product |Σj |Cj

in ∂
∂σrs

ln(p(x|Cj; θj) above simplifies to |Σj|C = Σj and we have

∂

∂Σ−1
j

ln(p(x|Cj ; θj) =
1

2
Σj −

1

2
(x− µj)(x− µj)

T . (231)

Now when we put this into Equation 229 we get

1

2
Σj

N
∑

i=1

P (Cj|xi; Θ(t))− 1

2

N
∑

i=1

P (Cj|xi; Θ(t))(xi − µj)(xi − µj)
T = 0 ,

or when we solve for Σj we get

Σj =

∑N
i=1 P (Cj|xi; Θ(t))(xi − µj)(xi − µj)

T

∑N
i=1 P (Cj|xi; Θ(t))

. (232)

The expression given in the book.

Notes on Example 14.4 (hard clustering vs. fuzzy clustering)

Recall the expression for the fuzzy objective function Jq(θ, U) which is given by

Jq(θ, U) =
N
∑

i=1

m
∑

j=1

uq
ijd(xi, θj) .
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In this example for the hard clustering we take Uhard =









1 0
1 0
0 1
0 1









so that J becomes

Jhard
q (θ, U) =

4
∑

i=1

2
∑

j=1

uq
ijd(xi, θj) = d(x1, θ1) + d(x2, θ1) + d(x3, θ2) + d(x4, θ2)

= 1 + 1 + 1 + 1 = 4 ,

which has a value independent of q. Now take q = 1 and fuzzy clustering where we find

J fuzzy
1 (θ, U) = u11d(x1, θ1) + u12d(x1, θ2)

+ u21d(x2, θ1) + u22d(x2, θ2)

+ u31d(x3, θ1) + u32d(x3, θ2)

+ u41d(x4, θ1) + u42d(x4, θ2) .

From facts like d(x1, θ1) = d(x2, θ1) = 1 and d(x1, θ2) =
√
1 + 32 =

√
10 = d(x2, θ2) the

above is given by

J fuzzy
1 (θ, U) = u11 + u12

√
10 + u21 + u22

√
10 + u3

√
10 + u32 + u41

√
10 + u42

=
2
∑

i=1

(ui1 + ui2

√
10) +

4
∑

i=3

(ui1

√
10 + ui2) .

Since 0 ≤ ui1 ≤ 1 and ui2 = 1− ui2 we can write the argument of the first summation as

ui1 + ui2

√
10 =

√
10 + (1−

√
10)ui1 .

Since 1 −
√
10 < 0 to make this expression as small as possible we take ui1 as large as

possible. Thus take ui1 = 1 and we get

ui1 + ui2

√
10 ≥ 1 .

For the argument of the second summation we have

ui1

√
10 + ui2 = ui1

√
10 + (1− ui1) = 1 + (

√
10− 1)ui1 .

Since
√
10 − 1 > 0 to make this expression as small as possible we take ui1 as small as

possible. Thus take ui1 = 0 and we get

ui1

√
10 + ui2 ≥ 1 .

Thus we have shown that

J fuzzy
1 (θ, U) ≥

2
∑

i=1

1 +
4
∑

i=3

1 = 4 .

If we next take q = 2 then our fuzzy objective function is given by

J fuzzy
2 (θ, U) =

2
∑

i=1

(u2
i1 + u2

i2

√
10) +

4
∑

i=3

(u2
i1

√
10 + u2

i2) .
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Consider the argument of the first sum u2
i1 + u2

i2

√
10 as a function of ui2 or the expression

(1−ui2)
2+u2

i2

√
10. If we seek to find the extrema of this function by taking the ui2 derivative

of it we see that we need to solve

2(1− ui2)(−1) + 2ui2

√
10 = 0 ,

for ui2. A second derivative of this expression is given by

2 + 2
√
10 > 0 ,

showing that the extrema found would be a minimum. Thus the maximum of this expression
happens at the end points of the ui2 domain. If we consider the two end points ui2 = 0 and
ui2 = 0.48 we get

(1− ui2)
2 + u2

i2

√
10
∣

∣

∣

ui2=0
= 1

(1− ui2)
2 + u2

i2

√
10
∣

∣

∣

ui2=0.48
= 0.998 ,

where we see that we have a maximum value of one over the interval ui2 ∈ [0, 0.48]. If the
same expression holds for the argument of the second sum we have

J fuzzy
2 (θ, U) ≤

2
∑

i=1

1 +

4
∑

i=3

1 ≤ 4 ,

as we were to show. Thus fuzzy clustering with q = 2 produces an objective function of
lesser value that of hard clustering.

If we next take q = 3 then our fuzzy objective function is given by

J fuzzy
3 (θ, U) =

2
∑

i=1

(u3
i1 + u3

i2

√
10) +

4
∑

i=3

(u3
i1

√
10 + u3

i2) .

Consider the argument of the first sum u3
i1 + u3

i2

√
10 as a function of ui2 or the expression

(1−ui2)
3+u3

i2

√
10. If we seek to find the extrema of this function by taking the ui2 derivative

of it we see that we need to solve

3(1− ui2)
2(−1) + 3u2

i2

√
10 = 0 ,

for ui2. A second derivative of this expression is given by

6(1− ui2) + 6
√
10ui2 = 6 + 6(

√
10− 1)ui2 > 0 ,

showing that the extrema found would be a minimum. Thus the maximum of this expression
happens at the end points of the ui2 domain. If we consider the two end points ui2 = 0 and
ui2 = 0.67 we get

(1− ui2)
3 + u3

i2

√
10
∣

∣

∣

ui2=0
= 1

(1− ui2)
3 + u3

i2

√
10
∣

∣

∣

ui2=0.67
= 0.987 ,

again showing that the maximum is given by the value 1. The same expression holds for the
argument of the second sum and in the same way as before we have

J fuzzy
3 (θ, U) ≤ 4 ,

as we were to show.
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Notes on the minimization of Jq(θ, U))

Recall that the objective function Jq that we want to minimize is given by

Jq(θ;U) =

N
∑

i=1

m
∑

j=1

uq
ijd(xi, θj) . (233)

where θj are “cluster representatives” (numerical parameters that determine the type of
cluster) and U is a matrix with (i, j)th element uj(xi) or the membership of the xi sample
i = 1, 2, · · · , N in the jth cluster j = 1, 2, · · ·m. We would like to minimize this with respect
to both the cluster representatives θj and the sample memberships U . Since the cluster
memberships are constrained such that uij ∈ [0, 1] and

m
∑

j=1

uij = 1 for i = 1, 2, · · ·N ,

we must use the methods of constrained optimizing. In this direction we introduce Lagrange
multipliers λi (one for each sample) and the Lagrangian J defined by

J (θ, U) =
N
∑

i=1

m
∑

j=1

uq
ijd(xi; θj)−

N
∑

i=1

λi

(

m
∑

j=1

uij − 1

)

. (234)

With this Lagrangian we first take the derivative of J with respect to the (r, s) element of
U , set the result equal to zero and solve for urs. We find the derivative set equal to zero
given by

∂J
∂urs

= quq−1
rs d(xr, θs)− λr = 0 .

or urs given by

urs =

(

λr

qd(xr, θs)

)
1

q−1

. (235)

When we put this into the constraints

m
∑

j=1

uij = 1 ⇒
(

λr

q

) 1
q−1

m
∑

j=1

1

d(xr, θj)
1

q−1

= 1 ,

or
(

λr

q

)
1

q−1

=
1

∑m
j=1

(

1
d(xr ,θj)

)
1

q−1

, (236)

and solving for λr we get

λr =
q

(

∑m
j=1

(

1
d(xr ,θj)

)
1

q−1

)q−1 (237)
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When we put this expression for λr in the form of Equation 236 into Equation 235 we see
that urs is given by

urs =
1

d(xr, θs)
1

q−1







1

∑m
j=1

(

1
d(xr ,θj)

)
1

q−1







=
1

∑m
j=1

(

d(xr ,θs
d(xr ,θj)

)
1

q−1

(238)

which holds for r = 1, · · ·N and s = 1, 2, · · ·m. Now that we have found the optimal U
given a fixed values for θj we now search for the optimal θj given values of U . To do this we
need to solve ∂J

∂θj
= 0 for θj . We find this last equation given by

∂J
∂θj

=
N
∑

i=1

uq
ij

∂d(xi, θj)

∂θj
= 0 . (239)

Unless we specify a functional form for d(·, ·) we cannot go further.

The algorithm for finding the full solution (both U and θj for j = 1, 2, · · · , m) then becomes
to iterate between the two routines above. One way to do this is to pick initial values for the
cluster representatives θj(0) for each j and then use Equation 238 to compute uij(1). With
these new values for uij(1) we solve for θj(1) in Equation 239. This procedure is iterated by
stepping from θj(t) to uij(t) to θj(t+ 1) to uij(t+ 1) etc. until convergence.

Notes on the minimization of Jq(θ, U) with point represented clusters)

We can now specify Equation 239 to some special cluster types and representatives. As a
first case we consider θj to be a point representation of a cluster (and thus it is simply a
vector of dimension l) and take d(xi, θj) to be a typical dissimilarity metric. Two simple
cases are

• A Mahalanobis type distance for d(xi, θj)

d(xi, θj) = (θj − xi)
TA(θj − xi) . (240)

Then the derivative of d(xi, θj) with respect to θj is

∂d(xi, θj)

∂θj
= 2A(θj − xi) .

With this Equation 239 is

N
∑

i=1

uq
ij(t− 1)A(θj − xi) = 0 .
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or by multiplying by A−1 we get
(

N
∑

i=1

uq
ij(t− 1)

)

θj −
N
∑

i=1

uq
ij(t− 1)xi = 0 ,

so

θj =

∑N
i=1 u

q
ij(t− 1)xi

∑N
i=1 u

q
ij(t− 1)

. (241)

• A Minkowski distance for d(xi, θj)

d(xi, θj) =

(

l
∑

k=1

|xik − θjk|p
)

1
p

. (242)

Then the derivative of d(xi, θj) with respect to the rth component of θj is

∂d(xi, θj)

∂θjr
=

1

p

(

l
∑

k=1

(xik − θjk)
p

)
1
p
−1

p (xir − θjr)
p−1

=
(θjr − xir)

p−1

(

∑l
k=1(xik − θjk)p

)
1
p
−1

. (243)

for r = 1, 2, · · · , l. This means that using Equation 239 specified to the θjr derivative
we must solve

N
∑

i=1

uq
ij(t− 1)







(θjr − xir)
p−1

(

∑l
k=1(xik − θjk)p

)
1
p
−1






= 0 for r = 1, 2, · · · , l .

Since there are l equations above and l components of θj we expect there to be a unique
solution.

Notes on quadratic surfaces as representatives

In the quadratic surface representation

xTAx+ bTx+ c = 0 , (244)

since x is of dimension l and the matrix A is symmetric it therefore has 1
2
l(l − 1) unique

elements in its upper (or lower) triangular part. There are l additional elements on its
diagonal. Thus to specify the unique values of the matrix A we have to specify

l +
1

2
l(l − 1) =

1

2
l(l + 1) ,

numbers. There are l numbers needed to specify the vector b and 1 number needed to specify
the number c. Thus if we recast the quadratic surface representation above into the form

q(x)Tp = 0 , (245)
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the vector p must have
1

2
l(l + 1) + l + 1 ,

numbers.

Notes on computing the perpendicular distance

In this section of these notes we discuss how to evaluate the perpendicular distance between
a point x and a quadratic surface Q defined by

d2p(x,Q) = min
z

||x− z||2 , (246)

subject to the constraint on z such that zTAz + bT z + c = 0. We form the Lagrangian D

D(x,Q) = ||x− z||2 − λ(zTAz + bT z + c) . (247)

and take derivatives in the normal way. The z derivative gives

∂D
∂z

= 2(x− z)− 2λAz − λb = 0 ,

On expanding
2x− (2I + 2λA)z − λb = 0 ,

or

z = (2I + 2λA)−1(2x− λb) =
1

2
(I + λA)−1(2x− λb) . (248)

We then put this into zTAz + bT z + c = 0 to get a polynomial in λ which gives several roots
for λk. For each root λk we can evaluate zk = z(λk) using Equation 248 and then select the
value for d2p(x,Q) that gives the smallest value

d2p(x,Q) = min
λk

||x− z(λk)||2 .

Notes on adaptive fuzzy C-shells (AFCS) clustering algorithms

We start with our objective function

Jnr(θ, U) =

N
∑

i=1

m
∑

j=1

uq
ijd

2
nr(xi, Qj) , (249)
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and set derivatives equal to zero to get the equations we must solve for optimal solutions.
We start with ∂

∂cj
of d2nr(x, ; cj, Aj) where we get

∂

∂cj
d2nr(x; cj , Aj) = 2

(

((x− cj)
TAj(x− cj))

1/2 − 1
) ∂

∂cj
[(x− cj)Aj(x− cj)]

1/2

= dnr(x; cj, Aj) [(x− cj)Aj(x− cj)]
−1/2 ∂

∂cj
(x− cj)

TAj(x− cj)

=
dnr(x; cj, Aj)

[(x− cj)Aj(x− cj)]
1/2

(2Aj(cj − x))

= −2
dnr(x; cj, Aj)

φ(x; cj , Aj)
A(x− cj) . (250)

Using the definition of φ2(x; cj , Aj). Next we let ars be the (r, s) element of Aj. Then
∂

∂ars
d2nr(x; cj, Aj) is given by

∂

∂ars
d2nr(x; cj , Aj) = 2dnr(x; cj, Aj)

(

1

2

)

1

φ(x; cj, Aj)

∂

∂ars
(x− cj)Aj(x− cj)

=
dnr(x; cj, Aj)

φ(x; cj, Aj)
(xr − cjr)(xs − cjs) .

When we write this in matrix form we get

∂

∂Aj
d2nr(x; cj, Aj) =

dnr(x, cj , Aj)

φ(x; cj, Aj)
(x− cj)(x− cj)

T . (251)

We then put Equation 250 and 251 into the “parameter update” step in the Generalized
Fuzzy Algorithmic Scheme” (GFAS) which for reminder is the expression

N
∑

i=1

uq
ij(t− 1)

∂

∂θj
d(xi; θj) = 0 ,

we get the parameter update step for this algorithm quoted in the book.

Notes on the fuzzy C-ellipsoid shells (FCES) clustering algorithms

Using the definition of φ2 = (x− c)TA(x− c) with Equations 267 and 268 developed below
we have that

d2r(x; c, A) = (1− a)2||x− c||2 =
(

1− 1

φ

)2

||x− c||2 .

Using this expression we will take the derivatives needed for the parameter updating algo-
rithm. We find

∂

∂c
d2r(x; c, A) = 2

(

1− 1

φ

)(

1

φ2

)

∂φ

∂c
||x− c||2 +

(

1− 1

φ

)2

(−2(x− c))

=
2

φ2

(

1− 1

φ

)

∂φ

∂c
||x− c||2 − 2

(

1− 1

φ

)2

(x− c) .
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Now from the definition of φ we have that

∂φ

∂c
=

1

2

1

φ
(2A(c− x)) = −1

φ
A(x− c) .

Using this we get for the derivative ∂
∂c
d2r(x; c, A)

∂

∂c
d2r(x; c, A) = − 2

φ3

(

1− 1

φ

)

||x− c||2A(x− c)− 2

(

1− 1

φ

)

(x− c)

= − 2

φ4
(1− φ) ||x− c||2A(x− c)− 2

(

1− 1

φ

)

(x− c) .

Thus one of the parameter updating equations

N
∑

i=1

uq
ij(t− 1)

∂

∂c
d2r(x; c, A) = 0 ,

when we divide by 2 and put back in the index j specifying the cluster becomes

N
∑

i=1

uq
ij(t− 1)

[

||x− c||2(1− φ)

φ4
Aj −

(

1− 1

φ

)2

I

]

(x− cj) = 0 , (252)

the same equation as in the book. Next we need to evaluate ∂
∂A

d2r(x; c, A) where we find

∂

∂A
d2r(x; c, A) = 2

(

1− 1

φ

)(

1

φ2

)

∂φ

∂A
||x− c||2 .

Since
∂φ

∂A
=

1

2
(φ2)−1/2 ∂

∂A
((x− c)TA(x− c)) =

1

2

1

φ
(x− c)(x− c)T ,

we have that

∂

∂A
d2r(x; c, A) =

(

1− 1

φ

)(

1

φ3

)

||x− c||2(x− c)T (x− c)T .

Thus the second parameter updating equations

N
∑

i=1

uq
ij(t− 1)

∂

∂A
d2r(x; c, A) = 0 ,

with the index j specifying the cluster becomes

N
∑

i=1

uq
ij(t− 1)

(

φ− 1

φ4

)

||x− c||2(x− c)(x− c)T = 0 , (253)

the same equation as in the book.
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Notes on the fuzzy C-quadric shells (FCQS) algorithm

For this clustering our distance function for a point x and a cluster Q is given by the algebraic
distance

d2a(x;Q) = (xTAx+ bTx+ c)2 = pTM(x)p ,

where we have written M as a function of x since it depends on the point x where we want
to evaluate this distance. Here p is a parameter vector that determines the “shape” of the
quadric that we are considering. We want to impose the constraint on the vector pj of the
form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l
∑

k=1

p2jk +
1

2

r
∑

k=l+1

p2jk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= 1 . (254)

Since the quadratic we seek to describe is given by the equation q(x)Tp = 0 we can modify
the definitions of q and p by introducing

√
2 so that the inner product remains unchanged

and so that we can explicitly introduce the constraint Equation 254. To this end we introduce
the vector a, b, r, and t such that

p̃ =
[

aT bT
]T

and q̃ =
[

rT tT
]T

,

then qTp = q̃T p̃ = rTa + tT b and pTj Mipj = p̃jM̃ip̃j . The cost function (without any
constraint) for the FCQS algorithm can then be written as

J =

N
∑

i=1

m
∑

j=1

uq
ij p̃jM̃(xi)p̃j

=

N
∑

i=1

m
∑

j=1

uq
ij

[

aTj bTj
]

[

rir
T
i rit

T
i

tir
T
i tit

T
i

] [

aj
bj

]

. (255)

To enforce the constraint from Equation 254 we need to modify J to include this constraint
by adding

−
m
∑

j=1

λj(||aj||2 − 1) ,

to get Ja(θ, J). Expanding the block inner product in Equation 255 we get

N
∑

i=1

m
∑

j=1

uq
ij

[

aTj rir
T
i aj + bTj tit

T
i bj + 2aTj rit

T
i bj
]

.

Consider now ∂
∂bj

Ja. When we recall that for symmetric A

∂

∂x
(yTAx) = ATy and

∂

∂x
(xTAx) = 2Ax ,

we then find ∂
∂bj

Ja given by

∂

∂bj
Ja =

N
∑

i=1

uq
ij(2Tibj + 2Siaj) .
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Let

Hj ≡
N
∑

i=1

uq
ijTi and Gj ≡

N
∑

i=1

uq
ijSi ,

and setting ∂
∂bj

Ja equal to zero we get for bj

bj = −H−1
j Gjaj . (256)

Now we need to evaluate ∂
∂aj

Ja. When we recall that

∂

∂x
(xTAy) = Ay ,

we get for this derivative

∂

∂aj
Ja =

N
∑

i=1

uq
ij

[

2Riaj + 2rit
T
i bj
]

− λj(2aj) =
N
∑

i=1

uq
ij

[

2Riaj + 2ST
i bj
]

− 2λjaj .

Let

Fj ≡
N
∑

i=1

uq
ijRi ,

and set ∂
∂aj

Ja equal to zero we get Fjaj−λjaj = −GT
j bj . Since we know bj using Equation 256

we get Fjaj − λjaj = GT
j H

−1
j Gjaj or

(Fj −GT
j H

−1
j Gj)aj = λjaj . (257)

Thus λj is an eigenvalue of the matrix Fj−GT
j H

−1
j Gj and aj is the corresponding eigenvector

with length 1 due to the constraint Equation 254. We now specify how to pick λj from all
of the eigenvalues of Fj − GT

j H
−1
j Gj. Since we know that bj = −H−1

j Gjaj when we are at
the optimum solution the value of Ja will be given by the value of J at this optimal solution
where J is given by Equation 255. This is because the constraints must all be satisfied
(and therefore vanish) at the optimum solution and won’t contribute to the value of the cost
function. The argument of the summation in Equation 255 using the value for bj calculated
above is given by

aTj Riaj + bTj Tjbj + 2aTj S
T
i bj = aTj Rjaj + aTj G

T
j H

−T
j TiH

−1
j Gjaj − 2aTj S

T
i H

−1
j Gjaj .

When we multiply this by uq
ij and sum over i we get

aTj

((

N
∑

i=1

uq
ijRi

)

+GT
j H

−T
j

(

N
∑

i=1

uq
ijTi

)

H−1
j Gj − 2

(

N
∑

i=1

uq
ijS

T
i

)

H−1
j Gj

)

aj ,

or recalling our previous definitions of Fj , Gj , and Hj we have

aTj
(

Fj +GT
j H

−T
j HjH

−1
j Gj − 2GT

j H
−1
j Gj

)

aj .

Since Hj is a symmetric matrix this becomes

aTj (Fj −GT
j H

−1
j Gj)aj .
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If aj is an eigenvector (with unit norm) of the matrix Fj −GjH
−1
j Gj then this inner product

is given by
λja

T
j aj = λj .

Thus to make the sum of these terms over j as small as possible (to minimize J) we pick
λj as small as possible. This motivates picking the smallest values for the eigenvalues of
Fj −GjH

−1
j Gj in this algorithm.

Notes on hyperplane representatives (the Gustafson-Kessel algorithm)

In this formulation the distance we use is given by

d2GK(x; θj) = |Σj|1/l(x− cj)
TΣ−1

j (x− cj) , (258)

and our objective function is given by

JGK(θ;U) =
N
∑

i=1

m
∑

j=1

uq
ijd

2
GK(xi; θj) .

To find the minimum of this expression we take derivatives with respect to cj and Σj , set
the results equal to zero and solve for these expressions. Taking the derivative of JGK(θ;U)
with respect to cj we have

∂

∂cj
JGK(θ;U) =

N
∑

i=1

uq
ij

∂

∂cj
d2GK(xi; cj,Σj) .

Note in the above expression that since we are explicitly specifying the jth cluster in this
derivative (and in the subsequent Σj derivative) the derivative of the other terms with
different indices are zero. Thus we can drop the j index on c and Σ and only consider how
to evaluate ∂

∂c
d2GK(x; c,Σ). This procedure makes the notation cleaner. Thus

∂

∂c
d2GK(x; c,Σ) = |Σ|1/l(2Σ−1(c− x)) = −2|Σ|1/lΣ−1(x− c) . (259)

When we put this last expression into the previous one, equate the result to zero and cancel
common terms, we get

N
∑

i=1

uq
ij(xi − c) = 0 ,

or solving for c we find

c =

∑N
i=1 u

q
ijxi

∑N
i=1 u

q
ij

. (260)

This depends on j via the right-hand-side. We now need to evaluate the optimal value for
Σ via taking the derivative of JGK with respect to Σ. Rather than evaluate ∂

∂Σ
d2GK(x; c,Σ)

directly we will evaluate ∂
∂Σ−1d

2
GK(x; c,Σ) or the derivative of d2GK with respect to Σ−1. To

do this we first write d2GK(x; c,Σ) as

d2GK(x; c,Σ) = |Σ−1|−1/l(x− c)TΣ−1(x− c) .
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Let frs be the (r, s) element of Σ−1. Then

∂

∂frs
d2GK(x; c,Σ) = −1

l
|Σ−1|− 1

l
−1∂|Σ−1|

∂frs
(x− c)TΣ−1(x− c) + |Σ−1|−1/l(xr − cr)(xs − cs) .

As we discussed on Page 168 and expressed via Equation 230 we have

∂|Σ−1|
∂frs

= σrs ,

where σrs is the (r, s) cofactor of the matrix Σ−1. When we put this into the above and then
consider the matrix form of the above expression we get

∂

∂Σ−1
d2GK(x; c,Σ) = −1

l
|Σ−1|− 1

l
−1C(x− c)TΣ−1(x− c) + |Σ−1|−1/l(x− c)(x− c)T ,

where C is the matrix of cofactors of Σ−1 i.e. the (r, s) element of C is σrs. Then again from
earlier we know that the cofactor matrix C and the inverse of Σ−1 are related as

(Σ−1)−1 =
CT

|Σ−1| or CT = |Σ−1|Σ .

Since Σ is symmetric so is C (just take the transpose of the previous equation) and we have

∂

∂Σ−1
d2GK(x; c,Σ) = |Σ−1|−1/l

[

−1

l
(x− c)TΣ−1(x− c)Σ + (x− c)(x− c)T

]

.

Setting ∂
∂Σ−1J

2
GK(θ;U) equal to zero using this result we get

1

l

N
∑

i=1

uq
ij(xi − c)TΣ−1(xi − c)Σ =

N
∑

i=1

uq
ij(xi − c)(xi − c)T . (261)

The book then presents

Σ =

∑N
i=1 u

q
ij(xi − c)(xi − c)T
∑N

i=1 u
q
ij

, (262)

as the solution to Equation 261.

Warning: Note I was not able to derive the given expression for Σ. If anyone knows how
to get this expression please email me.

Notes on possibilistic clustering

For the cost function in the possibilistic framework of

J(θ;U) =
N
∑

i=1

m
∑

j=1

uq
ijd(xi; θj) +

m
∑

j=1

ηj

N
∑

i=1

(1− uij)
q , (263)
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setting the uij derivative equal to zero gives

∂

∂uij
J(θ;U) = quq−1

ij d(xi; θj)− qηj(1− uij)
q−1 = 0 .

Dividing this by uq−1
ij and by q we get

d(xi; θj)− ηj

(

1

uij
− 1

)q−1

= 0 . (264)

Solving for uij gives

uij =
1

1 +
(

d(xi;θj)

ηj

)
1

q−1

. (265)

When we solve Equation 264 for d(xi; θj) we get

d(xi; θj) = ηj

(

1− uij

uij

)q−1

.

When we put this into

Jj =
N
∑

i=1

uq
ijd(xi; θj) + ηj

N
∑

i=1

(1− uij)
q ,

we get

Jj = ηj

N
∑

i=1

uij(1− uij)
q−1 + ηj

N
∑

i=1

(1− uij)
q = ηj

N
∑

i=1

[uij + (1− uij)](1− uij)
q−1

= ηj

N
∑

i=1

(1− uij)
q−1 . (266)

Problem Solutions

Problem 14.1 (a known covariance matrix in the GMDAS)

If the covariance matrix is known then we don’t need to take the derivative with respect to
Σi in the M-step of the expectation maximization (EM) algorithm. Thus the Σi update step
drops away and there is only the µi update step.

Problem 14.2 (GMDAS when the covariance matrices are diagonal)

If the covariance matrix is diagonal then

|Σj | =
l
∏

k=1

σ2
jk ,
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so

ln(p(xi|Cj; Θj)) = − l

2
ln(2π)−

l
∑

k=1

ln(σjk)−
1

2

l
∑

k=1

(xik − µjk)
2

σ2
jk

.

The M-step for estimating θj (where θj is a vector representing the mean µj and the elements
of the covariance matrix) is given by (see the notes on Page 168 around the Equation 229).

N
∑

i=1

P (Cj|xi; Θ(t))
∂

∂θj
ln(p(xi|Cj; θj) = 0 .

The evaluation of ∂
∂θj

does not change for the elements of the mean vector µj from before

and we need to evaluate ∂
∂θj

for the elements of the covariance matrix. Consider just one

term ∂
∂σjk

where we get

∂

∂σjk
ln(p(xi|Cj; θj) = − 1

σjk
+

(xik − µjk)
2

σ3
jk

.

Thus in Equation 229 we get

N
∑

i=1

P (Cj|xi; Θ(t))

(

− 1

σjk

+
(xik − µjk)

2

σ3
jk

)

= 0 for 1 ≤ k ≤ l .

If we solve for σ2
jk in the above expression we get

σ2
jk =

∑N
i=1 P (Cj|xi; Θ(t))(xik − µjk)

2

∑N
i=1 P (Cj|xi; Θ(t))

for 1 ≤ k ≤ l .

Note that this gives the same result for the diagonal elements as does Equation 232 which
computes the full covariance matrix.

Problem 14.4 (running GMDAS on a given data set)

For this problem I considered the second set of points xi for i = 9, 10, · · · , 16 to be generated
by

xi = x16−i+1 + 6 for i = 9, 10, · · · , 16 .
Thus x9 = x8 + 6, x10 = x7 + 6, etc. This problem is implemented in the MATLAB script
chap 14 prob 4.m. For this problem we use MATLAB code from the NETLAB toolbox for
pattern recognition [1]. The EM algorithm finds

µ1 =

[

6.0069
−0.0053

]

µ2 =

[

0.0225
0.0052

]

,

for the means and for Σi it finds

Σ1 =

[

2.0047 −1.4131
−1.4131 2.0016

]

Σ2 =

[

2.0886 0.0232
0.0232 1.9984

]

.

If one looks at a scatter plot of the initial points one sees that the returned EM results look
like they “fit” the generated data shown in Figure 27 (left).
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Figure 27: Left: Sample data for Problem 4. Right: Sample data for Problem 5. Green
points correspond to the first eight samples while red points correspond to the remaining
eight points.

Problem 14.5 (running GMDAS on another data set)

This problem is implemented in the MATLAB script chap 14 prob 5.m. For this problem
we again use MATLAB code from the NETLAB toolbox for pattern recognition [1]. The EM
algorithm finds

µ1 =

[

0.4761
0.0

]

µ2 =

[

3.6173
0

]

.

and for Σi

Σ1 =

[

1.9393 0
0 2.1388

]

Σ2 =

[

0.0777 0
0 1.3067

]

.

The data for this problem is shown in Figure 27 (right). In this case the value found don’t
exactly correspond to the centers of the generated data. This “error” is compounded the
closer the clusters are to each other (and how much over lap they have).

Problem 14.7 (the objective function J after clustering)

See the notes on Page 169 for this exercise.

Problem 14.8 (an equivalent relationship to xTAx+ bTx+ c = 0)

When we write out in components the relationship given by Equation 244 we have

l
∑

i=1

l
∑

j=1

aijxixj +

l
∑

i=1

bixl + c = 0 .
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or factoring out the x2
i terms

l
∑

i=1

aiix
2
i +

l
∑

i,j;i 6=j

aijxixj +

l
∑

i=1

bixl + c = 0 .

If we expand the second sum by taking i = 1 with j = 2, 3, . . . l, then taking i = 2 with
j = 1, 3, · · · , l, then take i = 3 and j = 1, 2, 4, · · · , l etc we can group the sum of the terms
aijxixj where i 6= j (i.e. the second sum above) as

l
∑

i=1

l
∑

j=l+1

(aij + aji)xixj .

This gives the representation for the vector p as

p =
[

a11 a22 a33 · · · all a12 + a21 a13 + a31 · · · al−1,l + al,l−1 b1 b2 · · · bl c
]

.

Problem 14.9 (finding d2p(x,Q) via polynomial roots)

When l = 2 then A is 2 × 2 symmetric matrix A =

[

a11 a12
a12 a22

]

, b is a 2 × 1 vector, x is a

2× 1 vector and then

1

2
(I + λA)−1 =

(

1

(1 + λa11)(1 + λa22)− λ2a212

)[

1 + a22λ −a12λ
−a12λ 1 + a11λ

]

.

Thus the expression used for z given by Equation 248 is given by

z =
1

2
(I + λA)−1(2x− λb)

=

(

1

2((1 + λa11)(1 + λa22)− λ2a212)

)[

(1 + λa22)(2x1 − λb1)− λa12(2x2 − λb2)
−λa12(2x1 − λb1) + (1 + λa11)(2x2 − λb2)

]

.

When we put this into Equation 244 or zTAz+bT z+c = 0 and multiply by the denominator

(1 + λa11)(1 + λa22)− λ2a212 ,

squared (because of the quadratic term zTAz) we will obtain a fourth order polynomial in
λ.

Problem 14.10 (a relationship between d2nr(x,Q) and d2r(x,Q))

Since d2r(x,Q) = ||x−z||2 with z on a line from x to c on the hyperellipsoid i.e. z−c = a(x−c)
and (z − c)TA(z − c) = 1. When we put this first equation into the second equation we see
that

a2(x− c)TA(x− c) = 1 or a2 =
1

(x− c)TA(x− c)
. (267)
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Then since z − c = a(x− c) we have

||z − c||2 = a2||x− c||2 or ||x− c||2 = 1

a2
||z − c||2 ,

with a2 given by Equation 267. Now consider

d2r(x,Q) = ||x− z||2 = ||x− c− a(x− c)||2 = (1− a)2||x− c||2 (268)

=

(

1

a
− 1

)2

||z − c||2

= (((x− c)TA(x− c))1/2 − 1)||z − c||2 , (269)

as we were to show.

Problem 14.11 (deriving the fuzzy C-ellipsoidal shells algorithm)

See the notes on this algorithm on Page 176.

Problem 14.12 (deriving the fuzzy C-quadric shells algorithm)

See the notes on this algorithm on Page 178.

Problem 14.13 (the modified fuzzy C quadratic shells algorithm)

In this scheme the goal is to use the generalized fuzzy algorithmic scheme (GFAS) with
the perpendicular distance, dp(x, θ), for the degree of membership. Rather than use this
distance measure everywhere in the GFAS, in the parameter updating step we replace it
with a distance measure that is easier to calculate. Recall that the perpendicular distance is
computationally difficult to compute since it relies on finding roots of polynomial equations.
Due to the iterative nature of many root finding algorithms that would be used in the
parameter updating step we would need to compute dp(x, θ̃) for many values of θ̃. To avoid
this computational difficulty in the parameter updating step we will use the algebraic cluster-
point distance instead. This distance is given by

d2a(x,Q) = (xTAx+ bTx+ c)2 = pTMp .

Problem 14.14 (relationships between the radian and perpendicular distance)

In general the perpendicular distance will be the smaller distance. That is dp(x;Q) ≤ dr(x;Q)
will hold.
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Problem 14.15 (spherical clusters)

The AFCS algorithm was derived on Page 175. Here we modify the arguments there to
account for the new distance measure for the jth cluster is d2s(x; θj) = (||x− cj ||−rj)

2. Thus
the parameters θj are given by the vector cj and the scalar rj . We start with out criterion
function to minimize

J(θ;U) =
N
∑

i=1

m
∑

j=1

uq
ijd

2
s(xi; θj) .

Then to minimize this expression we take the derivatives with respect to cj and rj , set the
results equal to zero and then solve (numerically or analytically) for cj and rj . We find the
c derivative of d2s given by

∂

∂c
d2s(x; θ) = 2(||x− c|| − r)

∂

∂c
||x− c||

= 2(||x− c|| − r)
∂

∂c
((x− c)T (x− c))1/2

= 2(||x− c|| − r)
1

2
((x− c)T (x− c))−1/2 ∂

∂c
(x− c)T (x− c)

=
(||x− c|| − r)

||x− c|| (−2(x− c)) = −2
(||x− c|| − r)

||x− c|| (x− c) .

We find the r derivative of d2s given by

∂

∂c
d2s(x; θ) = 2(||x− c|| − r)(−1) = −2(||x− c|| − r) .

Then setting ∂J
∂rj

equal to zero we have to solve

N
∑

i=1

uq
ij(||xi − cj|| − rj) = 0 ,

for rj . This gives

rj =

∑N
i=1 u

q
ij||xi − cj||

∑N
i=1 u

q
ij

.

Setting ∂J
∂cj

equal to zero we need to solve

N
∑

i=1

uq
ij

[

(||xi − cj|| − rj)

||xi − cj ||

]

(xi − cj) = 0 ,

for cj and rj given the equation on rj above. Once we have solved these equations for cj
and rj we can update the value of uij(t) as in the Generalized Fuzzy Algorithmic Scheme
(GFAS).
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Problem 14.16 (the possibilistic algorithm)

If J1(θ, U) given by

J1(θ, U) =

N
∑

i=1

m
∑

j=1

uijd(xi, θj) +

m
∑

j=1

ηj

N
∑

i=1

(uij ln(uij)− uij) .

Then taking the uij derivative of J1 and setting it equal to zero gives

∂J1

∂uij

= d(xi, θj) + ηj [ln(uij) + 1− 1] = 0 .

When we solve for uij we get

uij = exp

(

−d(xi, θj)

ηj

)

. (270)

This is the update step of uij for fixed parameters θj then we update the parameters θj via
a parameter updating step by taking the ∂

∂θj
of J1(θ, J), setting the result equal to zero and

solving for θj i.e. solving
N
∑

i=1

uij(t− 1)
∂

∂θj
d(xi; θj) = 0 ,

this last set depends the type of clustering desired.

Problem 14.17 (plots of uij vs. d(xi, θj)/ηj

See the MATLAB script chap 14 prob 17_m where these expressions for uij are plotted. When
that script is run we get the plot shown in Figure 28.
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Figure 28: The plots of uij given by Equation 265 for various value of q (in blue) and by
Equation 270 (in red).
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Clustering Algorithms IV

Notes on the text

Notes on Competitive Learning-Like Algorithms

We are to consider the objective function J(W ) defined by

J(W ) =
1

2m

N
∑

i=1

m
∑

j=1

zj(xi)||xi − wj ||2 (271)

=
1

2m

N
∑

i=1

m
∑

j=1

( ||xi − wj||−2

∑m
r=1 ||xi − wr||−2

)

||xi − wj||2

=
1

2m

N
∑

i=1

(

1
∑m

r=1 ||xi − wr||−2

)

=
1

2

N
∑

i=1

(

m
∑

r=1

||xi − wr||−2

)−1

. (272)

Now to take the derivative of the above expression with respect to the vector wk we get

∂J

∂wk

=
1

2

N
∑

i=1

−1

(

m
∑

r=1

||xi − wr||−2

)−2

· ∂

∂wk

(

||xi − wk||−2
)

= −1

2

N
∑

i=1

(z2k(xi)||xi − wk||4)
∂

∂wk
(||xi − wk||−2)

= −1

2

N
∑

i=1

(z2k(xi)||xi − wk||4)(−2)||xi − wk||−3 ∂

∂wk
(||xi − wk||)

=
N
∑

i=1

zk(xi)
2||xi − wk||

∂

∂wk

||xi − wk|| .

To continue, we recall that the vector derivative of the vector norm is given by

∂

∂wk

||xi − wk|| = − (xi − wr)

||xi − wk||
,

which we can be shown by taking the derivative of ||xi−wk|| with respect to each component
one at a time. Thus we get

∂J

∂wk
= −

N
∑

i=1

z2k(xi)(xi − wk) , (273)

which is the result given in the book.
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Notes on the branch and bound clustering algorithms

We are given Cr = [c1, c2, . . . , cr] or an assignment of the first r points from the data set X
into the m clusters ci ∈ {1, 2, . . . , m}. Note that in this section there are two objects that
are denoted via the “c” character. The first, ci, represents is the cluster that the point xi

is assigned to. The second, Cr, is all assignments to clusters for the first r points from X .
With these definitions this we can define an objective function for this cluster assignment as
follows

J(Cr) =
r
∑

i=1

||xi −mci(Cr)||2 . (274)

Here mj(Cr) is defined as

mj(Cr) =
1

nj(Cr)
∑

q=1,...,r:Cq=j

xq . (275)

This is a more complicated way of writing the fact that mj(Cr) is the mean of all vectors
assigned to the jth cluster. Based on the above and assuming that we assign the point xr+1

to cluster j we can write

J(Cr+1) =
r+1
∑

i=1

||xi −mci(Cr+1)||2

=

r
∑

i=1

||xi −mci(Cr+1)||2 + ||xr+1 −mj(Cr+1)||2

=

r
∑

i=1:ci 6=j

||xi −mci(Cr+1)||2 +
r
∑

i=1:ci=j

||xi −mci(Cr+1)||2 + ||xr+1 −mj(Cr+1)||2 .

In the last step we have broken the original sum up into two additional sums. The first is
the sum over all the points xi that are not assigned to the cluster j and the second is the
sum over all the points xi that are assigned to cluster j. Now with these two new sum, in
the first sum since we are ignoring the cluster j it can be written as

r
∑

i=1:ci 6=j

||xi −mci(Cr)||2 ,

where we now have mcj (Cr) rather than mcj (Cr+1) since the means over Cr and Cr+1 are the
same for all clusters that are not equal to j. With this we now have

J(Cr+1) =
r
∑

i=1:ci 6=j

||xi −mci(Cr)||2 +
r
∑

i=1:ci=j

||xi −mj(Cr+1)||2 + ||xr+1 −mj(Cr+1)||2 . (276)
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Now lets consider the mean vector of the j cluster or mj(Cr+1) which shows up in two places
above. Since the new point xr+1 is placed in that cluster we have

mcj (Cr+1) =
1

nj(Cr) + 1





∑

q=1,··· ,r:cq=j

xq + xr+1





=
nj(Cr)

nj(Cr) + 1
mj(Cr) +

1

nj(Cr) + 1
xr+1 (277)

= mj(Cr) +
1

nj(Cr) + 1
(xr+1 −mj(Cr)) . (278)

Then with this we find xi −mj(Cr+1) can be written as

xi −mj(Cr+1) = xi −mj(Cr)−
1

nj(Cr) + 1
(xr+1 −mj(Cr)) .

Thus the norm needed in the second sum in Equation 276 is

||xi −mj(Cr+1)||2 = ||xi −mj(Cr)||2 −
2

nj(Cr) + 1
(xi −mj(Cr))(xr+1 −mj(Cr))

+
1

(nj(Cr) + 1)2
||xr+1 −mj(Cr)||2 .

Now when we sum this expression over
∑r

i=1:ci=j the middle term vanishes due to the fact
that

∑r
i=1:ci=j(xi−mj(Cr)) = 0. Thus we find for the second sum in Equation 276 the terms

r
∑

i=1:ci=j

||xi −mj(Cr)||2 +
nj(Cr)

nj(Cr) + 1)2
||xr+1 −mj(Cr)||2 .

Now for the lone term ||xr+1 −mj(Cr+1)||2 in Equation 276 we find

xr+1 −mj(Cr+1) =

(

1− 1

nj(Cr) + 1

)

xr+1 −
nj(Cr)

nj(Cr) + 1
mj(Cr) =

nj(Cr)
nj(Cr) + 1

(xr+1 −mj(Cr)) .

Thus

||xr+1 −mj(Cj+1)||2 =
nj(Cr)2

(nj(Cr) + 1)2
||xr+1 −mj(Cr)||2 .

Thus combining these we find

J(Cr+1) = J(Cr) +
nj(Cr)

nj(Cr) + 1)2
||xr+1 −mj(Cr)||2 +

nj(Cr)2
(nj(Cr) + 1)2

||xr+1 −mj(Cr)||2

= J(Cr) +
nj(Cr)

nj(Cr) + 1
||xr+1 −mj(Cr)||2 .

This last expression verifies the books expression for ∆J(Cr).
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Notes on the boundary detection algorithm

Recall that the form of J(θ) given in this section is

J(θ) =
1

N

N
∑

i=1

f 2(g(xi; θ))−
(

1

N

N
∑

i=1

f(g(xi; θ))

)2q

. (279)

Then if we consider the positive expression given in the book (denoted as E)

E =
1

N

N
∑

i=1

(

f(g(xi; θ))−
1

N

N
∑

k=1

f(g(xk; θ))

)2

,

by expanding we have

E =
1

N

N
∑

i=1



f 2g(xi; θ))−
2

N
f(g(xi; θ))

N
∑

k=1

f(g(xi; θ)) +

(

1

N

N
∑

k=1

f(g(xi; θ))

)2




=
1

N

N
∑

i=1

f 2g(xi; θ))−
2

N2

(

N
∑

k=1

f(g(xi; θ))

)2

+
1

N2

(

N
∑

k=1

f(g(xi; θ))

)2

=
1

N

N
∑

i=1

f 2g(xi; θ))−
1

N2

(

N
∑

k=1

f(g(xi; θ))

)2

. (280)

As q is a positive integer and the sum 1
N

∑N
i=1 f(g(xi; θ)) is inside [−1,+1] we have that

(

1

N

N
∑

i=1

f(g(xi; θ))

)2q

≤
(

1

N

N
∑

i=1

f(g(xi; θ))

)2

When we negate this expression and add 1
N

∑N
i=1 f

2(g(xi; θ)) to both sides we get using
Equation 280 that

1

N

N
∑

i=1

f 2(g(xi; θ))−
(

1

N

N
∑

i=1

f(g(xi; θ))

)2q

≥ 1

N

N
∑

i=1

f 2(g(xi; θ))−
(

1

N

N
∑

i=1

f(g(xi; θ))

)2

,

or
J(θ) ≥ E ,

the expression stated in the book.

Problem Solutions

Problem 15.3 (leaky learning with ηw = ηl)

In this case every cluster representative wj gets updated via

wj(t) = wj(t− 1) + η(x− wj(t− 1)) .
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Since each cluster representative wj is initialized randomly (perhaps with a random sample
from X) each of these cluster centers is a particular step in a Robbins-Monro iterations for
solving for w in EX [h(X,w)] = 0 where h(X,w) = X − w. For this h(X,w) the limiting
value of wj(t) (for all j) should be the mean of all the samples in X .

Problem 15.4 (the von Malsburg learning rule)

Part (b): If wj looses the competition for x then it does not change its value so if
∑

k wjk = 1
before the assignment of a sample it will still hold afterwards. If wj wins the competition
for x then

∑

k

wnew
jk =

∑

k

wjk + η

(

∑

k

xk

nk
−
∑

k

wjk

)

.

But
∑

k
xk

nk
= 1 and

∑

k wjk = 1 so
∑

k w
new
jk = 1.

Problem 15.5 (deriving the expression for ∆J(Cr)

See the notes on Page 191 where this problem is worked.

Problem 15.9 (a derivative)

The given expression can have the same value for g(x; θ) but with different values for wi.
This is due to the symmetry in the products xsxr. Thus it should be written as

g(x; θ) = w0 +
l
∑

i=1

wixi +
l
∑

s=1

∑

r>s

wsrxsxr .

Where we have 1
2
l(l + 1) terms in the second sum. Derivatives of this expression can then

be computed with respect to the components of w0, wi and wsr.

Problem 15.13 (time till convergence)

If we take Tmax = 5 and Tmin = 0.5 then using the equation suggested in the book we have

ln(1 + tend) =
Tmax

Tmin
=

5

0.5
= 10 .

Thus solve we find tend = 22025.46. A large number of iterations.
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Cluster Validity

Notes on the text

Notes on comparing P and C

These are some simple notes on bootstrapping statistics when imposing an external clustering
criterion. In this section we assume that we have some external clustering (represented by
P) and we desire to see if the computed clustering (represented by C) duplicates/describes
the same phenomena as P. Note that to compute the Rand statistics, Jaccard coefficient, or
the Fowlkes & Mallows index we need two clusterings C′ and P ′. For the hypothesis testing
for cluster structure discussed in this section we need to generate these two clusterings and
then construct many samples of the measure (Rand statistic, Jaccard coefficient, etc). Thus
we need C′ from our algorithm and P from our external criterion. We thus need to generate
bootstrap data samples of both C′ and P ′. From these samples we can compute a distribution
over the given measure. We can then test whether any given sample of the measure comes
from this distribution or is an outlier.

Problem Solutions

Problem 16.1 (Rand, Jaccard, Fowlkes & Mallows)

Recall that the Rand statistic is given by

R =
a + d

a + d+ b+ c
. (281)

As all of the variables a, b, c, d are nonnegative the rand statistic will be less than one if
b + c > 0. The smallest value that b + c can be is 0. In order for b + c = 0 we must have
both b = 0 and c = 0. Since b is the number points of the “same–different” (SD) category
and c is the number points in the “different–same” (DS) category both b and c cannot as
long as the number of m clusters in C and the number q partitions in P are not the same,
there must be points in at least one of these two groups. In other words not both b and c
can be zero. Thus b+ c > 0 and the rand coefficient is less than one. Because the forms for
the Jaccard coefficient

J =
a

a+ b+ c
, (282)

and the Fowlkes & Mallows index

FM =

√

a

a+ b

a

a+ c
, (283)

have fractions that are less than one if either b or c is nonzero we have that both these
expressions are less than one.
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Problem 16.2 (an expression for Γ̂)

Recall that X(i, j) = 1 if xi and xj are in the same cluster in C, and Y (i, j) = 1 if xi and xj

are in the same group in P and are zero otherwise. Now note that the definitions of µX and
µY can be simplified as

µX ≡ 1

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j) =
1

M
m1 and

µY ≡ 1

M

N−1
∑

i=1

N
∑

j=i+1

Y (i, j) =
1

M
m2 .

Using these the expressions for σ2
X and σ2

Y can be simplified as

σ2
X ≡ 1

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j)2 − µ2
X =

1

M
m1 −

1

M2
m2

1 and

σ2
Y =

1

M
m2 −

1

M2
m2

2 .

Now note that we can write the double sum in the expression for Γ̂ (denoted by E for
expression) as

E =
1

M

N−1
∑

i=1

N
∑

j=i+1

(X(i, j)− µX)(Y (i, j)− µY )

=
1

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j)Y (i, j)− µX

M

N−1
∑

i=1

N
∑

j=i+1

Y (i, j)

− µY

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j) +
µXµY

M

N−1
∑

i=1

N
∑

j=i+1

1

= Γ− µXµY − µXµY + µXµY

= Γ− µXµY .

Where we have use the definition of Hubert’s Γ statistic

Γ ≡ 1

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j)Y (i, j) . (284)

Note that since
∑N−1

i=1

∑N
j=i+1X(i, j)Y (i, j) = a we can write Γ = a

M
. Thus when we use

these expressions to evaluate Γ̂ we find

Γ̂ ≡ Γ− µXµY

σXσY
=

a
M

− 1
M2m1m2

√

(

1
M
m1 − 1

M2m2
1

) (

1
M
m2 − 1

M2m2
2

)

=
(Ma−m1m2)

√

(Mm1 −m2
1)(Mm2 −m2

2)
=

(Ma−m1m2)
√

m1m2(M −m1)(M −m2)
, (285)

the desired expression.
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Problem 16.4 (the CPCC is bounded between [−1,+1])

Note that the expression for CPCC is a correlation between two vectors. One vector has
values from the elements of the upper diagonal cophenetic matrix Pc and the other has
elements from the upper diagonal of the proximity matrix P . As correlations ρ are always
bounded |ρ| ≤ 1 so must this measure.

Problem 16.6 (The modified Hubert Γ statistics)

Recall that to define the modified Hubert statistic, we start from the samples xi directly by
first computing the proximity matrix P. From the hard clustering centers wi for i = 1, . . . , m,
we define the cluster index ci to be ci = k if the sample xi is a member of the kth cluster Ck.
Then for each of the N xi data points we define the matrix Q(i, j) to have elements equal
to d(wci, wcj) where wi is the hard cluster representative/center.

Note that if we already have a algorithm or subroutine that takes as input data samples
xi and computes proximity matrices P we can use it to create the matrix Q by creating a
surrogate derived data set. This derived set is obtained by listing the cluster centers wci

associated with each data sample xi. We then call our proximity matrix subroutine on the
derived data set. Then using P and Q the modified Γ Hubert statistic for general symmetric
matrices X(i, j) and Y (i, j) is obtained by computing

M =
1

2
N(N − 1)

µX =
1

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j) the same for µY

σ2
X =

1

M

N−1
∑

i=1

N
∑

j=i+1

X(i, j)2 − µ2
X the same for σ2

Y

Γ =
1

M

N
∑

i=1

N
∑

j=i+1

X(i, j)Y (i, j) and

Γ̂ =
1

σXσY

N
∑

i=1

N
∑

j=i+1

(X(i, j)− µX)(Y (i, j)− µY ) .

Part (a): In this part of this problem we have

ci = 1 for i ∈ {1, 2, . . . , 8}
ci = 2 for i ∈ {9, 10, . . . , 16} .
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Problem 16.7 (computing Dunn’s index)

We let the distance between two clusters be given by

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) .

and the cluster diameter as
diam(C) = max

x,y∈C
d(x, y) .

Then with these, the Dunn index for a fixed number of clusters m is given by

Dm = min
i=1,2,...,m

{

min
j=i+1,i+2,...,m

(

d(Ci, Cj)

maxk=1,2,...,m diam(Ck)

)}

. (286)

Now based on the above formula and for a fixed value of m in the numerator we see
that we need to compute d(Ci, Cj) for i = 1, 2, . . . , m (all clusters) and j = i + 1, i +
2, . . . , m (all “other” clusters). While for the denominator we need to compute diam(Ck) =
maxx,y∈Ck

d(x, y) over all m. Each of these calculations involves the pairwise distances be-
tween all the samples in the two clusters. If we extend the limit of j to include the j = i
case we will have all of the pairwise distances needed to evaluate diam(C). Thus we need
the evaluate d(Ci, Cj) for i = 1, . . . , n and j = i, i+ 1, . . . , m (note the index j starts at i).

Thus there are O(m(m+1)
2

) pairwise cluster distances we need to calculate to compute the
Dunn index for a fixed m. Each of these calculations takes O(1

2
ninj) distance calculations

between data points, where ni and nj are the number of data points in the ith and jth
cluster respectively. We assume that with m clusters there will be O(N

m
) data points in each

cluster and thus we have

O

(

N

m
· m
2
(m+ 1)

)

= O

(

N

2
(m+ 1)

)

,

distance calculations for each m. If we do this for m = 1, 2, . . . , N we need to sum these
numbers and find the total number of computations given by

N
∑

m=1

O

(

N

2
(m+ 1)

)

=
N

2
O

(

N
∑

m=1

m

)

=
N2(N + 1)

4
= O(N3) ,

which can be a large number of calculations.

Problem 16.8 (two more Dunn like indices)

In the same way that EMST
i is the minimum spanning graph (MSG) derived from the com-

plete graph Gi from on the samples in the ith cluster Ci, we define the graphs ERNG
i to be

the relative neighborhood graph (RNG) and EGG
i to be the Gabriel graph (GG) based on the

clusters complete graph Gi. Given these two graphs we will define the RNG or GG diameter
of the given cluster to be the length of the largest edge in the relative neighborhood or
Gabriel graphs respectively. Once we have defined the GG and RNG diameters as above, we
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can compute Dunn like indices using a definition similar to Equation 286. We have assumed
the dissimilarity between the two clusters Ci and Cj is related to the distance between the
cluster representatives mi and mj i.e.

d(Ci, Cj) = d(mi, mj) ,

Problem 16.9 (bounds on various Dunn indices)

Since we are told that for a cluster Ci that

EMST
i ⊂ ERNG

i ⊂ EGG
i , (287)

based on this we know that the graph diameters must satisfy a similar ordering

diamMST
i ≤ diamRNG

i ≤ diamGG
i . (288)

Thus the maximum in the denominator of the Dunn index Equation 286, will get sequentially
larger as we consider the MST, the RNG, and finally the GG graph. Thus the Dunn index
will get smaller and we have

DGG
m ≤ DRNG

m ≤ DMST
m .

Problem 16.10 (conditions C1-C5)

Part (a): Take the diameter to be the measure of dispersion or spread si around a clusters
mean value. Then we define RMST

ij as

RMST
ij =

sMST
i + sMST

j

dij
=

diamMST (Ci) + diamMST (Cj)

dij
. (289)

From this we see that C1, C2, C3 are satisfied. If sMST
i > sMST

k and dij = dik then we have

RMST
ij =

sMST
j + sMST

i

dij
>

sMST
k + sMST

i

dik
= RMST

ik ,

showing that C4 is true. Given the condition for C5 we have

RMST
ij =

sMST
i + sMST

j

dij
>

sMST
i + sMST

k

dik
= RMST

ik ,

showing C5.

Part (b): The only change to compute RRNG
ij and RGG

ij is to compute the diameter of
the graph based on the relative neighborhood graph (RNG) or the Gabriel graph (GG)
respectively and use that number to evaluate the spread of a cluster around its center. Thus
RRNG

ij and RGG
ij should satisfy C1-C5 as RMST

ij does.

199



Problem 16.11 (inequalities of DBm)

Using Equation 288 we see that when smethod
i ≡ diammethod

i for the methods MST, RNG, and
GG we have

sMST
i ≤ sRNG

i ≤ sGG
i .

So form Equation 289 we have

RMST
ij ≤ RRNG

ij ≤ RGG
i .

Finally since DBmethod
m = 1

m

∑m
i=1R

method
i we thus get

DBMST
m ≤ DBRNG

m ≤ DBGG
m ,

as we were to show.

Problem 16.12 (robustness of MST DB)

Recall that the minimum spanning tree (MST) graph looks only at the smallest tree that
we can construct from the given complete graph Gi of the points belonging to the i cluster.
Even if cluster i has some outliers if we define sMST

i to be the “diameter” (the length of
the longest edge in the MST) these outlying points will not affect the value of sMST

i , since
the MST is considering the smallest tree. In general, another form of si to be used in Rij

(not the MST version) would have its value changed due to these outliers. For example, if
we are using a direct cluster diameter diam(Ci) = maxx,y∈C d(x, y) as the definition of si we
expect outliers to affect its value. Since the values of RMST

ij are less susceptible to outliers,
minimizing DBMST

m =
∑m

i=1R
MST
i as a function of m should be also.

Problem 16.13 (PC and PE as a function of the fuzzifier q)

Part (a): As stated in the book in the chapter on fuzzy clustering as q → 1+ then no
fuzzy clustering is better than the best hard clustering. Thus uij = 1 when j = k where the
kth cluster is the one that the best hard clustering would put the sample xi into and while
uij = 0 for all other js. Based on this we see that

PC =
1

N

N
∑

i=1

m
∑

j=1

u2
ij →

1

N

N
∑

i=1

1 = 1 ,

and

PE = − 1

N

N
∑

i=1

m
∑

j=1

uij loga(uij) → − 1

N

N
∑

i=1

0 = 0 ,

since limu→0 u log(u) = 0.
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Part (b): Now as q → ∞ we have that uij → 1
m

as each sample has an equal weight in all
clusters and we thus get

PC → 1

N

N
∑

i=1

m
∑

j=1

1

m2
=

1

m

PE → − 1

N

N
∑

i=1

m
∑

j=1

1

m
loga

(

1

m

)

=
loga(m)

mN
(mN) = loga(m) .

Problem 16.14 (limits of XB with respect to q)

We are told that when q → +∞ we have limq→∞wi = w where w is the mean vector over
the set of data X . Then because of this we see that

dmin = min
i,j=1,...,m;i 6=j

||wi − wj|| → 0 .

At the same time as q → ∞ we get uij → 1
m

thus

σ2
j =

N
∑

i=1

u2
ij||xi − wj ||2 →

N
∑

i=1

(

1

m

)2

||xi − w||2 ,

which is a positive constant independent of j. Thus the total variation or the sum of the m
of these σ2

j is also a constant say C. Thus we have shown that as q → ∞ that

XB → C

0
→ ∞ .

When we want to consider the XBq case we recall that

XBq =
σq

Nddim
. (290)

We have already shown that ddim → 0 as q → ∞. Consider now the value of σq as q → ∞.
From the definitions given in the book we have

σq =

m
∑

j=1

σq
j =

m
∑

j=1

N
∑

i=1

uq
ij||xi − wj|| .

As uij → 1
m

as q → ∞ we see that uq
ij → 0 as q → ∞. Thus each term in the expression for

σq goes to zero. Thus we have XBq → 0
0
which is indeterminate.

Problem 16.15 (limits of FSq)

To begin, we first recall that FSq is given by

FSq =

N
∑

i=1

m
∑

j=1

uq
ij(||xi − wj||2A − ||wj − w||2A) . (291)
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Part (a): If q → 1+ then uij = 1 when the index j corresponds to the cluster k that xi is a
member of and uij = 0 for all other j. Thus when q → 1+ we have a hard clustering. If we
let j(i) be the cluster index that the point xi is a member of we get

FSq =

N
∑

i=1

(||xi − wj(i)||2A − ||wj(i) − w||2A) =
N
∑

i=1

||xi − wj(i)||2A −
N
∑

i=1

||wj(i) − w||2A .

Note that the first sum in the above is the sum of the data samples xi around the individual
cluster representatives wj, and the second sum is the sum of cluster representatives wj around
the global center w. If we change the sums above, which are over the points xi to sums over
the m clusters and the nj points inside each we get

FSq =

m
∑

j=1

nj
∑

i=1

||xi − wj||2A −
m
∑

j=1

nj||wj − w||2A

= N

m
∑

j=1

nj

N

(

1

nj

ni
∑

i=1

||xi − wj ||2A

)

−N

m
∑

j=1

nj

N
||wj − w||2A

= Ntrace(Sw)−Ntrace(Sb) ,

where we have introduced the within Sw and between scatter matrices Sb as

Sw ≡
m
∑

j=1

nj

N

(

1

nj

nj
∑

i=1

(xi − wj)A(xi − wj)
T

)

Sb ≡
m
∑

j=1

nj

N
(wj − w)A(wj − w)T .

From an earlier chapter in the book we can write the between scatter matrix Sb as Sb =
Sm − Sw where Sm is

Sm ≡ 1

N

N
∑

i=1

(xi − w)A(xi − w)T ,

to get

FSq = Ntrace(Sw)−Ntrace(Sb) = Ntrace(Sw)−N(trace(Sm)− trace(Sw))

= 2Ntrace(Sw)−Ntrace(Sm) ,

the result we wanted to show.

Part (b): If q → +∞ then earlier we have shown that uij → 1
m

so uq
ij → 0 and wj → w

as q → +∞. Thus FSq given by Equation 291 is the sum of terms all of which are going to
zero and is therefore equal to zero in this limit.

Problem 16.16 (distance to the closest point in a sphere)

Our sphere is defined as the points x such that ||x− cj||2 = r2j . We want to find the point
x∗ that is on the sphere and closest to some exterior point xi. Let the distance (squared)
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between xi and x∗ be denoted by d2 = ||xi − x∗||2. We can phrase this problem as a
constrained optimization problem where we want to minimize d2 as a function of x∗ subject
to ||x∗ − cj ||2 = r2j . To do this we form the Lagrangian

L = ||x∗ − xi||2 − λ(||x∗ − cj ||2 − r2j ) .

Then the two needed derivatives (and set equal to zero) are

∂L
∂x∗ = 2(x∗ − xi)− 2λ(x∗ − cj) = 0

∂L
∂λ

= ||x∗ − cj||2 − r2j = 0 .

The first equation states that the vectors x∗ − xi is a scalar multiple of the vector x∗ − cj
meaning that they two vectors are parallel. Thus x∗ is on the line between the point xi and
the center of the sphere cj . Solving the first equation for x∗ gives the point

x∗ =
1

1− λ
(xi − λcj) . (292)

If we put this point into the constraint ||x∗ − cj ||2 = r2j we get

∣

∣

∣

∣

∣

∣

∣

∣

1

1− λ
(xi − λcj)− cj

∣

∣

∣

∣

∣

∣

∣

∣

2

= r2j ,

or simplifying some
∣

∣

∣

∣

∣

∣

∣

∣

1

1− λ
xi −

1

1− λ

∣

∣

∣

∣

∣

∣

∣

∣

2

= r2j .

If we solve this equation for λ we get

λ = 1− ||xi − cj||
rj

.

Now that we know λ we can use its value in Equation 292 to compute the difference xi −x∗,
where we find

xi − x∗ = x− 1

1− λ
(xi − λcj) = − λ

1− λ
xi +

λ

1− λ
cj .

From what λ is we can also compute that

λ

1− λ
=

rj
||x− cj||

− 1 ,

so the above difference xi − x∗ equals

xi − x∗ = xi −
rj

||x− cj ||
xi − cj +

rj
||x− cj||

cj

= xi − cj −
rj

||xi − cj||
(xi − cj) , (293)

which is defined to be the vector τij and is the desired expression
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Problem 16.17 (some moments)

We are told that Σ is defined as

Σ =
1

Lφ

∫ φ/2

−φ/2

xxTdl −mmT .

With xT =
[

r cos(θ) r sin(θ)
]

, dl = rdθ and Lφ an arc length. First we have the value of
Lφ as

Lφ =
φ

2π
(2πr) = rφ .

Next we have m given by

m =
1

Lφ

∫ φ/2

−φ/2

xdl =
1

rφ

∫ φ/2

−φ/2

[

r cos(θ)
r sin(θ)

]

rdθ

=
r

φ

[

sin(θ)|φ/2−φ/2

− cos(θ)|φ/2−φ/2

]

=
r

φ

[

2 sin(φ/2)
− cos(φ/2) + cos(φ/2)

]

=
r

φ

[

2 sin(φ/2)
0

]

.

Thus

mmT =
r2

φ2

[

4 sin2(φ/2) 0
0 0

]

.

Next we compute the second moment

1

Lφ

∫ φ/2

−φ/2

xxTdl =
1

rφ

∫ φ/2

−φ/2

[

r cos(θ)
r sin(θ)

]

[

r cos(θ) r sin(θ)
]

rdθ

=
r2

φ

∫ φ/2

−φ/2

[

cos2(θ) cos(θ) sin(θ)
cos(θ) sin(θ) sin2(θ)

]

dθ

=
r2

φ

[

1
2
(φ+ sin(φ)) 0

0 1
2
(φ− sin(φ))

]

,

Thus using this, we find for Σ the following

Σ = r2

[

1
2
+ sin(φ)

2φ
0

0 1
2
− sin(φ)

2φ

]

− r2

[

4 sin2(φ/2)
φ2 0

0 0

]

= r2

[

1
2
+ 1

2
sin(φ)

φ
− 4 sin2(φ/2)

φ2 0

0 1
2
− 1

2
sin(φ)

φ

]

.

Since r2eff = trace(Σ) we get

r2eff = r2
(

1− 4 sin2(φ/2)

φ2

)

.

If S =
∑

j:xj∈X′ uj = φr then we get

δ =
S

2πreff
=

φr

2π
√

trace(Σ)
=

φ

2π
√

1− 4 sin2(φ/2)
φ2

which is the result we wanted to show. If φ = 2π then since sin2(φ/2) = sin2(π) = 0 we find
δ = 1.
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Hints from Probability and Statistics

Moments of a Quadratic Form

Suppose x is a l × 1 random vector with E[x] = µ and Cov(x) = Σ and let A be a l × l
symmetric matrix not dependent on x then the quadratic expectation E[xTAx] is given by

E[xTAx] = µTAµ+ trace(ΣA) . (294)
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Optimization for constrained problems

Notes on the text

We can show the expression ∂(Aθ)
∂θ

= AT is true, by explicitly computing the vector derivative
on the left-hand-side. We begin by considering the expression Aθ. Recall that it can be
expressed in component form as

Aθ =











a11θ1 + a12θ2 + a13θ3 + · · ·+ a1lθl
a21θ1 + a22θ2 + a23θ3 + · · ·+ a2lθl

...
am1θ1 + am2θ2 + am3θ3 + · · ·+ amlθl











.

Using the above expression the vector derivative of Aθ with respect to the vector θ is then
given by

∂(Aθ)

∂θ
=













∂(Aθ)1
∂θ1

∂(Aθ)2
∂θ1

∂(Aθ)3
∂θ1

· · · ∂(Aθ)m
∂θ1

∂(Aθ)1
∂θ2

∂(Aθ)2
∂θ2

∂(Aθ)3
∂θ2

· · · ∂(Aθ)m
∂θ2

...
...

...
...

...
∂(Aθ)1
∂θl

∂(Aθ)2
∂θl

∂(Aθ)3
∂θl

· · · ∂(Aθ)m
∂θl













=











a11 a21 a31 · · · am1

a12 a22 a32 · · · am2
...

...
...

...
...

a1l a2l a3l · · · aml











= AT . (295)

In the first equation above the notation ∂(Aθ)i
∂θj

means the θj ’s derivative of the ith row of

Aθ. Now that we have shown that the vector derivative of Aθ with respect to θ is AT we
will use this result in discussing the first order optimality conditions under minimization of
a function J(θ) subject to linear constraints on θ.

The first order optimality constraint for constrained optimization where the constraints are
linear say given by Aθ = b, states that at the optimum value of θ (denoted by θ∗) there is a
vector λ such that

∂J(θ)

∂θ

∣

∣

∣

∣

θ∗
= ATλ . (296)

Since ATλ is a linear combination of the rows of A this equation states that at the optimum
point θ∗ the vector direction of maximum increase of the objective J is in a direction spanned
by the rows of A. The rows of A (by definition) are also in the directions of the linear
constraints in Aθ = b. Since the vector θ derivative of the expression λTAθ is given by

∂(λTAθ)

∂θ
= (λTA)T = ATλ ,

we can write the first order optimality constraint expressed by Equation 296 as

∂

∂θ

(

J(θ)− λTAθ
)

= 0 .
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To this expression we can add the term λT b since it does not depend on θ and has a derivative
that is zero. With this we get

∂

∂θ

(

J(θ)− λT (Aθ − b)
)

= 0 . (297)

Now if we define a function L(θ;λ) as

L(θ;λ) ≡ J(θ)− λT (Aθ − b) ,

we see that our first order constrained optimality condition given by Equation 297 in terms
of the function L is given by

∂

∂θ
L(θ;λ)) = 0 ,

which looks like an unconstrained optimality condition. Note that because L(θ;λ) is a scalar
we can take the transpose of it to write it as

L(θ;λ) ≡ J(θ)− (Aθ − b)Tλ .

From this using Equation 295 we see that the constraint given by Aθ− b = 0 in terms of the
function L is equivalent to the vector λ derivative set equal to zero or

∂

∂λ
L(θ;λ)) = 0 ,

which is another expression that looks like a first order unconstrained optimality condition.
Thus the functional expression L(θ;λ) provides a convenient way to represent the solution
to linearly constrained optimization problem in the exact same form as an unconstrained

optimization problem but with a larger set of independent variables given by (θ, λ).

Notes on optimization with inequality constraints

In this section of these notes we document at a very high level (without much motivation
or background) how to solve constrained optimization problems. These notes can then
be referenced, as needed, when working with specific optimization problems. The general
optimization problem with inequality constraints is given by

minimize J(θ)

subject to fi(θ) ≥ 0 for i = 1, 2, · · · , m .

To solve this problem we first form the Lagrangian, L, defined by

L(θ;λ) ≡ J(θ)−
m
∑

i=1

λifi(θ) . (298)

The variables λi in the above expression are called Lagrange multipliers. Using this definition,
a set of necessary conditions for a local minimizer θ∗ to exist is the following:

1. ∂
∂θ
L(θ∗;λ) = 0.
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2. λi ≥ 0 for i = 1, 2, · · · , m.

3. λifi(θ
∗) = 0 for i = 1, 2, · · · , m.

These three conditions are called the Karush-Kuhn-Tucker or KKT conditions. The third
conditions are called the complementary slackness conditions. A given complementary slack-
ness condition say λifi(θ

∗) = 0 mean that when this product is zero and λi 6= 0 we have the
original nonlinear constraint fi(θ

∗) ≥ 0 active i.e. at the optimal point θ∗ it is the hard con-
straint fi(θ

∗) = 0. Given these conditions we next ask how to use them to actually find the
optimal point θ∗. One approach, that might work for small problems, is to explicitly specify
which nonlinear constraints we want to have active that is assume fi(θ

∗) = 0, from some set
of i. We can than solve the remaining equations for the respective Lagrange multipliers. To
verify that we indeed have a solution we would then need to check that the values computed
for these Lagrange multipliers were non-negative. This can be hard to do in general when
there are many constraints, since there are many possible sets fi(θ

∗) = 0 to consider. An
alternative approach is to express the problem in its Wolfe Dual Form. This later form
expresses the fact that in the situation where the objective function J(θ) is convex while the
constraint functions fi(θ) are concave then the above programming problem is equivalent to
a simpler convex maximization programming problem

maximizeλ≥0 L(θ;λ)

subject to
∂

∂θ
L(θ;λ) = 0

and λ ≥ 0 .

The benefit of this later formulation is that the relatively complicated nonlinear inequality
constraints of the original problem, fi(θ) ≥ 0, are replaced with the simpler equality con-
straint ∂

∂θ
L(θ;λ) = 0 and a maximization over λ ≥ 0. This later problem (if needed) can be

solved with more standard convex programming codes.
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