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Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

Special thanks (most recent comments are listed first) to Iman Bagheri, Jeong-Min Choi and
Hemant Saggar for their corrections involving chapter 2.

All comments (no matter how small) are much appreciated. In fact, if you find these notes
useful I would appreciate a contribution in the form of a solution to a problem that is not yet
worked in these notes. Sort of a “take a penny, leave a penny” type of approach. Remember:
pay it forward.

∗wax@alum.mit.edu
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Chapter 2 (Classical Detection and Estimation Theory)

Notes On The Text

Notes on the Bayes’ Criterion

Given the books Eq. 8 we have

R = P0C00

∫

Z0

p(R|H0)dR+ P0C10

∫

Z−Z0

p(R|H0)dR

= P1C01

∫

Z0

p(R|H1)dR+ P1C11

∫

Z−Z0

p(R|H1)dR . (1)

We can use
∫

Z0

p(R|H0)dR +

∫

Z−Z0

p(R|H0)dR = 1 ,

to replace all integrals over Z − Z0 with (one minus) integrals over Z0. We get

R = P0C00

∫

Z0

p(R|H0)dR + P0C10

(

1−
∫

Z0

p(R|H0)dR

)

= P1C01

∫

Z0

p(R|H1)dR + P1C11

(

1−
∫

Z0

p(R|H1)dR

)

= P0C10 + P1C11

+

∫

Z0

{P1(C01 − C11)p(R|H1)− P0(C10 − C00)p(R|H0)} dR (2)

If we introduce the probability of false alarm PF , the probability of detection PD, and the
probability of a miss PM , as defined in the book, we find thatR given via Equation 1 becomes
when we use

∫

Z0
p(R|H0)dR +

∫

Z1
p(R|H0)dR =

∫

Z0
p(R|H0)dR + PF = 1

R = P0C10 + P1C11

+ P1(C01 − C11)PM − P0(C10 − C00)(1− PF ) . (3)

Since P0 = 1 − P1 we can consider R computed in Equation 3 as a function of the prior
probability P1 with the following manipulations

R(P1) = (1− P1)C10 + P1C11 + P1(C01 − C11)PM − (1− P1)(C10 − C00)(1− PF )

= C10 − (C10 − C00)(1− PF ) + P1 [−C10 + C11 + (C01 − C11)PM + (C10 − C00)(1− PF )]

= C00 + (C10 − C00)PF + P1 [C11 − C00 + (C01 − C11)PM − (C10 − C00)PF ]

= C00(1− PF ) + C10PF + P1 [(C11 − C10) + (C01 − C11)PM − (C10 − C00)PF ] . (4)

Recall that for the Bayes decision test our decision regions Z0 and Z1 are determined via

Λ(R) >
P0(C10 − C00)

P1(C01 − C11)
,



for H1. Thus if P0 changes the decision regions Z0 and Z1 change (via the above expression)
and thus both PF and PM change since they depend on Z0 and Z1. Lets assume that we
specify a decision boundary η that then defines classification regions Z0 and Z1. These
decision regions correspond to a specific value of P1 denoted via P ∗

1 . Note that P
∗
1 is not the

true prior probability of the class H1 but is simply an equivalent prior probability that one
could use in the likelihood ratio test to obtain the same decision regions Z0 and Z1. The
book denotes RB(P1) to be the expression given via Equation 4 where PF and PM changes
in concert with P1. The book denotes RF (P1) to be the expression given by Equation 4 but
where PF and PM are fixed and are held constant as we change the value of P1.

In the case where we do not fix PF and PM we can evaluate RB(P1) at its two end points of
P1. If P1 = 0 then from Equation 4 RB(0) = C00(1 − PF ) + C10PF . When we have P1 = 0
then we see that

η ≡ P0(C10 − C00)

P1(C01 − C11)
→ +∞ ,

for all R the function Λ(R) is always less than η, and all classifications are H0. Thus Z1 is
the empty set and PF = 0. Thus we get RB(0) = C00.

The other extreme is when P1 = 1. In that case P0 = 0 so η = 0 and we would have that
Λ(R) > 0 for all R implying that all points are classified as H1. This implies that PM = 0.
The expression for RB(P1) from Equation 4 is given by

RB(1) = C00(1− PF ) + C10PF + (C11 − C00)− (C10 − C00)PF = C11 ,

when we simplify. These to values for R(0) and R(1) give the end point conditions on
RB(P1) seen in Figure 2.7. If we do not know the value of P1 then one can still design a
hypothesis test by specifying values of PM and PF such that the coefficient of P1 in the
expression for RF (P1) in Equation 4 vanishes. The idea behind this procedure is that this
will make RF a horizontal line for all values of P1 which is an upper bound on the Bayes’
risk. To make the coefficient of P1 vanish requires that

(C11 − C00) + (C01 − C11)PM − (C10 − C00)PF = 0 . (5)

This is also known as the minimax test. The decision threshold η can be introduced into the
definitions of PF and PM and the above gives an equation that can be used to determine its
value. If we take C00 = C11 = 0 and introduce the shorthands C01 = CM (the cost of a miss)
and C01 = CF (the cost of a false alarm) so we get our constant minimax risk of

RF = CFPF + P1[CMPM − CFPF ] = P0CFPF + P1CMPM . (6)

Receiver operating characteristics: Example 1 (Gaussians with different means)

Under H1 each sample Ri can be written as Ri = m+ni with ni a Gaussian random variable
(with mean 0 and variance σ2). Thus Ri ∼ N(m, σ2). The statistic l which is the sum of
individual random variables is also normal. The mean of l is given by the sum of the N
means (multiplied by the scaling factor 1√

Nσ
) or

(

1√
Nσ

)

(Nm) =

√
N

σ
m ,



and a variance given by the sum of the N variances (multiplied by the square of the scaling
factor 1√

Nσ
) or

(

1

Nσ2

)

Nσ2 = 1 .

These two arguments have shown that l ∼ N
(√

N
σ
m, 1

)

.

We now derive Pr(ǫ) for the case where we have measurements from Gaussians with different
means (Example 1). To do that we need to note the following symmetry identity about
erfc∗(X) function. We have that

erfc∗(−X) ≡
∫ ∞

−X

1√
2π

exp

(

−x2

2

)

dx

= 1−
∫ −X

−∞

1√
2π

exp

(

−x2

2

)

dx = 1−
∫ ∞

X

1√
2π

exp

(

−x2

2

)

dx

= 1− erfc∗(X) . (7)

Then using this result we can derive the given expression for Pr(ǫ) under the case when
P0 = P1 =

1
2
and η = 1. We have

Pr(ǫ) =
1

2
(PF + PM) since η = 1 this becomes

=
1

2

(

erfc∗

(

d

2

)

+ 1− PD

)

=
1

2

(

erfc∗

(

d

2

)

+ 1− erfc∗

(

−d

2

))

=
1

2

(

erfc∗

(

d

2

)

+ 1−
(

1− erfc∗

(

d

2

)))

= erfc∗

(

d

2

)

, (8)

the expression given in the book.

Receiver operating characteristics: Example 2 (Gaussians with σ2
0 6= σ2

1)

Following the arguments in the book we end up wanting to evaluate the expression PF =
Pr(r21 + r22 ≥ γ|H0). By definition this is just the integral over the region of r1 – r2 space
where r21 + r22 ≥ hold true. This is

PF =

∫ 2π

θ=0

∫ ∞

Z=
√
γ

p(R1|H0)P (R2|H0)dR1dR2 .

When we put in the expressions for p(R1|H0) and P (R2|H0) we see why converting to polar
coordinates is helpful. We have

PF =

∫ 2π

θ=0

∫ ∞

Z=
√
γ

(

1
√

2πσ2
0

e
− 1

2

R2
1

σ2
0

)(

1
√

2πσ2
0

e
− 1

2

R2
2

σ2
0

)

dR1dR2

=
1

2πσ2
0

∫ 2π

θ=0

∫ ∞

Z=
√
γ

exp

{

−1

2

R2
1 +R2

2

σ2
0

}

dR1dR2 .



When we change to polar we have the differential of area change via dR1dR2 = ZdθdZ and
thus get for PF the following

PF =
1

2πσ2
0

∫ 2π

θ=0

∫ ∞

Z=
√
γ

Z exp

{

−1

2

Z2

σ2
0

}

dθdZ =
1

σ2
0

∫ ∞

Z=
√
γ

Z exp

{

−1

2

Z2

σ2
0

}

dZ .

If we let v = Z2

2σ2
0
then dv = Z

σ2
0
dZ so PF becomes

PF =
1

σ2
0

∫ ∞

γ

2σ2
0

σ2
0e

−vdv = −e−v
∣

∣

∞
γ

2σ2
0

= e
− γ

2σ2
0 , (9)

the expression for PF given in the book. For PD the only thing that changes in the calculation
is that the normal has a variance of σ2

1 rather than σ2
0 . Making this change gives the

expression for PD in the book.

We can compute the ROC curve for this example by writing γ = −2σ2
0 ln(PF ) and putting

this into the expression for PD. Where we find

PD = exp

(

− γ

2σ2
1

)

= exp

(

σ2
0

σ2
1

ln(PF )

)

.

This gives

ln(PD) =
σ2
0

σ2
1

ln(PF ) or PD = P

σ2
0

σ2
1

F . (10)

From Equation 10 if
σ2
1

σ2
0
increases then

σ2
0

σ2
1
decreases, thus P

σ2
0/σ

2
1

F get larger (since PF is less

than 1). This in tern makes PD gets larger.

Notes on properties of ROC curves

Recall that a randomized rule applied between thresholds at two points on the ROC curve
(say A and B) allows a system designer to obtain (PF , PD) performance for all points on
the straight line between A and B. This comment allows one to argue that a ROC curve
must be concave down. For if the ROC curve were concave up, then by using a randomized
rule this linear approximation would have better performance than the ROC curve. Since
we know that the ROC curve expresses the optimal performance characteristics this is a
contradiction.

Notes on the M hypothesis decision problem

In this section we derive (with more detail) some of the results presented in the book in the
case where there are at total of M hypothesis to choose from. We start with the definition



of the Bayes’ risk R or

R =

M−1
∑

j=0

(

Pj

M−1
∑

i=0

CijP (choose i|j is true)

)

=

M−1
∑

j=0

(

Pj

M−1
∑

i=0

Cij

∫

Zi

p(R|Hj)dR

)

=
M−1
∑

i=0

M−1
∑

j=0

PjCij

∫

Zi

p(R|Hj)dR . (11)

Lets consider the case where there are three classes M = 3 and expand our R where we
replace the integration region over the “correct” regions with their complement in terms of
Z i.e.

R = P0C00

∫

Z0=Z−Z1−Z2

p(R|H0)dR + P0C10

∫

Z1

p(R|H0)dR+ P0C20

∫

Z2

p(R|H0)dR

= P1C01

∫

Z0

p(R|H1)dR + P1C11

∫

Z1=Z−Z0−Z2

p(R|H1)dR+ P1C21

∫

Z2

p(R|H1)dR

= P2C02

∫

Z0

p(R|H2)dR + P2C12

∫

Z1

p(R|H2)dR+ P2C22

∫

Z2=Z−Z0−Z1

p(R|H2)dR . (12)

If we then simplify by breaking the intervals over segments into their component pieces for
example we simplify the first integral above as

∫

Z−Z1−Z2

p(R|H0)dR = 1−
∫

Z1

p(R|H0)dR−
∫

Z2

p(R|H0)dR .

Doing this in three places gives us

R = P0C00 + P1C11 + P2C22

+

∫

Z0

{P1(C01 − C11)p(R|H1) + P2(C02 − C22)p(R|H2)}dR

+

∫

Z1

{P0(−C00 + C10)p(R|H0) + P2(C12 − C22)p(R|H2)}dR

+

∫

Z2

{P0(−C00 + C20)p(R|H0) + P2(−C11 + C21)p(R|H1)}dR

= P0C00 + P1C11 + P2C22

+

∫

Z0

{P2(C02 − C22)p(R|H2) + P1(C01 − C11)p(R|H1)}dR

+

∫

Z1

{P0(C10 − C00)p(R|H0) + P2(C12 − C22)p(R|H2)}dR

+

∫

Z2

{P0(C20 − C00)p(R|H0) + P1(C21 − C11)p(R|H1)}dR . (13)

If we define the integrands of the above integrals at the point R as I1, I2, and I3 such that

I0(R) = P2(C02 − C22)p(R|H2) + P1(C01 − C11)p(R|H1)

I1(R) = P0(C10 − C00)p(R|H0) + P2(C12 − C22)p(R|H2) (14)

I2(R) = P0(C20 − C00)p(R|H0) + P1(C21 − C11)p(R|H1) .



Then the optimal decision is made based on the relative magnitude of Ii(R). For example,
our decision rule should be

if I0(R) ≤ min(I1(R), I2(R)) decide 0

if I1(R) ≤ min(I0(R), I2(R)) decide 1 (15)

if I2(R) ≤ min(I0(R), I1(R)) decide 2 .

Based on the results above it seems that for a general M decision hypothesis Bayes test we
can write the risk as

R =
M−1
∑

i=0

PiCii +
M−1
∑

i=0

∫

Zi

(

M−1
∑

j=0;j 6=i

Pj(Cij − Cjj)p(R|Hj)

)

dR .

Note that in the above expression the first term,
∑M−1

i=0 PiCii, is a fixed cost and cannot be
changed regardless of the decision region selected. The second term in R or

M−1
∑

i=0

∫

Zi

(

M−1
∑

j=0;j 6=i

Pj(Cij − Cjj)p(R|Hj)

)

dR ,

is the average cost accumulated when we incorrectly assign a sample to the regions i =
0, 1, 2, · · · ,M − 1. Thus we should define Zi to be the points R such that the integrand
evaluated at that R is smaller than all other possible integrand. Thus if we define

Ii(R) ≡
M−1
∑

j=0;j 6=i

Pj(Cij − Cjj)p(R|Hj) ,

a point R will be classified as from Zi if it has Ii(R) the smallest from all possible values of
I·(R). That is we classify R as from Hi when

Ii(R) ≤ min(Ij(R)) for 0 ≤ j ≤ M − 1 . (16)

The book presents this decision region as the equations for the three class case M = 3 as

P1(C01 − C11)Λ1(R) > P0(C10 − C00) + P2(C12 − C02)Λ2(R) then H1 or H2 (17)

P2(C02 − C22)Λ2(R) > P0(C20 − C00) + P1(C21 − C01)Λ1(R) then H2 or H1 (18)

P2(C12 − C22)Λ2(R) > P0(C20 − C10) + P1(C21 − C11)Λ1(R) then H2 or H0 . (19)

We can determine the decision regions in Λ1 and Λ2 space when we replace all inequalities
with equalities. In that case each of the above equalities would then be a line. We can then
solve for the values of Λ1 and Λ2 that determine the intersection point by solving these three
equations for Λ1 and Λ2. In addition, the linear decision regions in Λ1 and Λ2 space can be
plotted by taking each inequality as an equality and plotting the given lines.



Notes on a degenerate test

For a three class classification problem with cost assignments given by

C12 = C21 = 0 (20)

C01 = C10 = C20 = C02 = C (21)

C00 = C11 = C22 = 0 , (22)

when we use Equation 17 we get

if P1CΛ1(R) > P0C + P2(−C)Λ2(R) then H1 or H2 else H0 or H2 ,

While Equation 18 gives

if P2CΛ2(R) > P0C + P1(−C)Λ1(R) then H2 or H1 else H0 or H1 ,

If we divide both of these by C we see that they are equivalent to

if P1Λ1(R) + P2Λ2(R) > P0 then H1 or H2 else H0 or H2

if P1Λ1(R) + P2Λ2(R) > P0 then H2 or H1 else H0 or H1 .

These two expressions combine to give the single expression

if P1Λ1(R) + P2Λ2(R) > P0 then H1 or H2 else H0 .

Notes on a dummy hypothesis test

We take P0 = 0 and then P1 + P2 = 1 with C12 = C02 and C21 = C01. Then when we put
these simplifications into the M dimensional decision problem we get

P1(C21 − C11)Λ1(R) > 0

P2(C12 − C22)Λ2(R) > 0

P2(C12 − C22)Λ2(R) > P1(C21 − C11) . (23)

The first two equations state that we should pick H1 or H2 depending on the magnitudes of
the costs.

Notes on Random Parameters: Bayes Estimation with a Uniform Cost

We start with the definition risk given a cost function C(·) and a method at estimating A
(i.e. the function â(R)) given by

Runiform =

∫ ∞

−∞
dR p(R)

∫ ∞

−∞
dAC(A− â(R))p(A|R) ,



where C(·) is the uniform cost which is 1 except in a window of size ∆ centered around
where C(·) is zero. That is

∫ ∞

−∞
dAC(A− â(R))p(A|R) = 1−

∫

|A−â(R)|≤∆
2

dAp(A|R)

= 1−
∫ â(R)+∆

2

â(R)−∆
2

p(A|R)dA , (24)

which is used to derive the equation for Runiform in the book.

Notes on Estimation Theory: Example 2

The expression for p(A|R) via the books equation 141 follow from the arguments given in
the book. Once that expression is accepted we can manipulate it by first writing it as

p(A|R) = k′(R) exp

{

−1

2

[

1

σ2
n

N
∑

i=1

R2
i −

2A

σ2
n

N
∑

i=1

Ri +
NA2

σ2
n

+
A2

σ2
a

]}

.

Note that the coefficient of A2 in the above is N
σ2
n
+ 1

σ2
a
. If we define

σ2
p ≡

(

1

σ2
a

+
N

σ2
n

)−1

=

(

σ2
n +Nσ2

a

σ2
aσ

2
n

)−1

=
σ2
aσ

2
n

Nσ2
a + σ2

n

,

then the expression for p(A|R) becomes

p(A|R) = k′(R) exp

{

− 1

2σ2
n

N
∑

i=1

R2

i

}

exp

{

−1

2

[

−2A

σ2
n

N
∑

i=1

Ri +
A2

σ2
p

]}

= k′(R) exp

{

− 1

2σ2
n

N
∑

i=1

R2

i

}

exp

{

− 1

2σ2
p

[

A2 −
2σ2

p

σ2
n

(

N
∑

i=1

Ri

)

A

]}

= k′(R) exp

{

− 1

2σ2
n

N
∑

i=1

R2

i

}

exp







− 1

2σ2
p



A2 −
2σ2

p

σ2
n

(

N
∑

i=1

Ri

)

A+

(

σ2

p

∑N

i=1
Ri

σ2
n

)2

−
(

σ2

p

∑N

i=1
Ri

σ2
n

)2










= k′(R) exp

{

− 1

2σ2
n

N
∑

i=1

R2

i

}

exp







− 1

2σ2
p

(

A−
σ2

p

∑N

i=1
Ri

σ2
n

)2






exp







− 1

2σ2
p



−
(

σ2

p

∑N

i=1
Ri

σ2
n

)2










= k′′(R) exp







− 1

2σ2
p

(

A−
σ2

p

∑N

i=1
Ri

σ2
n

)2






.

Note that the mean value of the above density can be observed by inspection where we have

âms(R) =
σ2
p

σ2
n

N
∑

i=1

Ri =

(

σ2
a

σ2
a +

σ2
n

N

)(

1

N

N
∑

i=1

Ri

)

. (25)



Notes on the optimality of the mean-square estimator

The next section of the text will answer the question, about what is the risk if we use a
different estimator, say â, rather than the one that we argue is optimal or âms. We start
with the definition of the Bayes risk in using â or

RB(â|R) = Ea[C(â− a)|R] =

∫ ∞

−∞
C(â− a)p(a|R)da

If we write this in terms of âms with z ≡ a − âms = a − E[a|R] we have a = z + âms and
since p(a|R) = p(z|R) i.e. that the densities of a and z are the same the above is given by

∫ ∞

−∞
C(â− âms − z)p(z|R)dz . (26)

If p(z|R) = p(−z|R) the above is equal to
∫ ∞

−∞
C(â− âms + z)p(z|R)dz . (27)

If the cost function is symmetric C(aε) = C(−aε) the above is equal to
∫ ∞

−∞
C(âms − â− z)p(z|R)dz . (28)

Again using symmetry of the a posteriori density p(z|R) we get
∫ ∞

−∞
C(âms − â+ z)p(z|R)dz . (29)

We now add 1/2 of Equation 27 and 1/2 of Equation 29 and the convexity of C to get

RB(â|R) =
1

2
Ez[C(z + â− âms)|R] +

1

2
Ez[C(z + âms − â)|R]

= Ez

[

1

2
C(z + (âms − â)) +

1

2
C(z − (âms − â))

∣

∣

∣

∣

R

]

≥ Ez

[

C

(

1

2
(z + (âms − â)) +

1

2
(z − (âms − â))

)
∣

∣

∣

∣

R

]

= Ez[C(z)|R] = RB(âms|R) . (30)

While all of this manipulations may seem complicated my feeling that the take away from
this is that the risk of using any estimator â 6= âms will be larger (or worse) than using âms

when the cost function is convex. This is a strong argument for using the mean-squared cost
function above others.

Notes on Estimation Theory: Example 3: a nonlinear dependence on a

Now the book’s equation 137 used to compute the MAP estimate is

∂l(A)

∂A

∣

∣

∣

∣

A=â(R)

=
∂ ln(pr|a(R|A))

∂A

∣

∣

∣

∣

A=â(R)

+
∂ ln(pa(A))

∂A

∣

∣

∣

∣

A=â(R)

= 0 . (31)



This is equivalent to finding â(R) such that

∂ ln(pa|r(A|R))

∂A

∣

∣

∣

∣

A=â(R)

= 0 . (32)

For this example from the functional form for pa|r(A|R) (now containing a nonlinear function
in a) in we have our MAP estimate given by solving the following

∂ ln(pa|r(A|R))

∂A
=

∂

∂A

[

ln(k(R))− 1

2

1

σ2
n

N
∑

i=1

[Ri − s(A)]2 − 1

2

A2

σ2
a

]

= − 1

σ2
n

N
∑

i=1

[Ri − s(A)]

(

−ds(A)

dA

)

− A

σ2
a

= 0 ,

equation for A. When we do this (and calling the solution âmap(R)) we have

âmap(R) =
σ2
a

σ2
n

(

N
∑

i=1

[Ri − s(A)]

)

∂s(A)

∂A

∣

∣

∣

∣

A=âmap(R)

(33)

which is the books equation 161.

Notes on Estimation Theory: Example 4

When the parameter A has a exponential distribution

pa(A) =

{

λe−λA A > 0
0 otherwise

,

and the likelihood is given by a Poisson distribution the posteriori distribution looks like

pa|n(A|N) =
Pr(n = N |a = A)pa(A)

Pr(n = N)
=

1

Pr(n = N)

(

AN

N !
e−A

)

λe−λA

= k(N)AN exp(−(1 + λ)A) . (34)

To find k(N) such that this density integrate to one we need to evaluate

k(N)

∫ ∞

0

AN exp(−(1 + λ)A)dA .

To do so let v = (1 + λ)A so dv = (1 + λ)dA to get

k(N)

∫ ∞

0

(

v

1 + λ

)N

e−v dv

1 + λ
=

k(N)

(1 + λ)N+1

∫ ∞

0

vNe−vdv =
k(N)N !

(1 + λ)N+1
.

To make this equal one we need that

k(N) =
(1 + λ)N+1

N !
. (35)



Now that we have the expression for k(N) we can evaluate âms(N). We find

âms(N) ≡
∫ ∞

0

Ap(A|N)dA

=
(1 + λ)N+1

N !

∫ ∞

0

AN+1e−(1+λ)AdA

=
(1 + λ)N+1

N !
· 1

(1 + λ)N+2

∫ ∞

0

vN+1e−vdv

=
N + 1

λ+ 1
. (36)

To evaluate âmap(N) we first note from Equation 34 that

ln(p(A|N)) = N ln(A)− A(1 + λ) + ln(k(N)) ,

so that setting the first derivative equal to zero we get

∂ ln(p(A|N))

∂A
=

N

A
− (1 + λ) = 0 .

Solving for A we get âmap(N)

âmap(N) =
N

1 + λ
. (37)

Nonrandom Parameter Estimation: The expression Var[â(R)− A]

We can compute an equivalent representation of Var[â(R) − A] using its definition when A
is non-random as (but R is due to measurement noise) and E[â(A)] = A+B(A) as

Var[â(R)−A] = E[(â(R)−A−E[â(R)−A])2]

= E[(â(R)−A−E[â(R)] + A)2]

= E[(â(R)−A−B(A))2]

= E[(â(R)−A)2]− 2E[â(R)− A]B(A) +B(A)2 .

Now the expectation of the second term is given by

E[â(R)− A] = E[â(R)]− A

= A+B(A)− A = B(A) ,

so using this the above becomes

Var[â(R)−A] = E[(â(R)− A)2]− 2B(A)2 +B(A)2 = E[(â(R)−A)2]− B(A)2 . (38)

which is equation 173 in the book.



Notes on The Cramer-Rao Inequality Derivation

The Schwarz inequality is

∫

f(x)g(x)dx ≤
∣

∣

∣

∣

∫

f(x)g(x)dx

∣

∣

∣

∣

≤
(
∫

f(x)2dx

)1/2(∫

g(x)2dx

)1/2

. (39)

We will have equality if f(x) = kg(x). If we take for f and g the functions

f(R) ≡ ∂ ln(pr|a(R|A))
∂A

√

pr|a(R|A)

g(R) ≡
√

pr|a(R|A)(â(R)− R) ,

as the component functions in the Schwarz inequality then we find a right-hand-side (RHS)
of this inequality given by

RHS =

(

∫
[

∂ ln(pr|a(R|A))
∂A

]2

pr|a(R|A)dR
)1/2

(
∫

pr|a(R|A)(â(R)− A)2dR

)1/2

,

and a left-hand-side (LHS) given by

LHS =

∫

∂ ln(pr|a(R|A))
∂A

pr|a(R|A)(â(R)− A)dR .

From the derivation in the book this LHS expression is on the right-hand-side is equal to
the value of 1. Squaring both sides of the resulting inequality

1 ≤
(

∫
[

∂ ln(pr|a(R|A))
∂A

]2

pr|a(R|A)dR
)1/2

(
∫

pr|a(R|A)(â(R)−A)2dR

)1/2

,

gives the books equation 186. Simply dividing by the integral with the derivative and
recognizing that these integrals are expectations gives

E[(â(R)− A)2] ≥
{

E

[

∂ ln(pr|a(R|A))
∂A

]2
}−1

, (40)

which is one formulation of the Crammer-Rao lower bound on the value of the expression
Var[â(R)−A] and is the books equation 188. From the above proof we will have an efficient
estimator (one that achieve the Cramer-Rao lower bound) and the Schwarz inequality is
tight when f = kg or in this case

∂ ln(pr|a(R|A))
∂A

√

pr|a(R|A) = k(A)
√

pr|a(R|A) (â(R)− R) .

or
∂ ln(pr|a(R|A))

∂A
= k(A)(â(R)− A) . (41)

If we can write our estimator â(R) in this form then we can state that we have an efficient
estimator.



Notes on Example 2: Using The Cramer-Rao Inequality

The expression for p(R|A) for this example is given via the books equation 139 or

pr|a(R|A) =
N
∏

i=1

1√
2πσn

exp

(

−(Ri −A)2

2σ2
n

)

. (42)

The logarithm of this is then given by

ln(pr|a(R|A)) = −N

2
ln(2π)−N ln(σn)−

1

2σ2
n

N
∑

i=1

(Ri − A)2 .

To find the maximum likelihood solution we need to find the maximum of the above expres-
sion with respect to the variable A. The A derivative of this expression is given by

ln(pr|a(R|A))
∂A

=
2

2σ2
n

N
∑

i=1

(Ri − A) =
1

σ2
n

(

N
∑

i=1

Ri − AN

)

=
N

σ2
n

(

1

N

N
∑

i=1

Ri − A

)

. (43)

Setting this equal to zero and solving for A we get

âml(R) =
1

N

N
∑

i=1

Ri . (44)

An efficient estimator (equal to the Crammer-Rao lower bound) will have

∂ ln(pr|a(R|A))
∂A

= k(A)(â(R)− A) .

we see from Equation 43 that our estimator âml(R) is of this form. As we have an efficient
estimator we can evaluate the variance of it by using the Crammer-Rao inequality as an
equality. The needed expression in the Crammer-Rao inequality is

∂2 ln(pr|a(R|A))
∂A2

= −N

σ2
n

. (45)

Thus we find

Var[âml(R)− A] =

(

−E

[

∂2 ln(pr|a(R|A))
∂A2

])−1

=

(

N

σ2
n

)−1

=
σ2
n

N
(46)

which is the books equation 201.

Notes on Example 4: Using The Cramer-Rao Inequality

The likelihood of a for Example 4 is a Poisson random variable, given by the books equa-
tion 162 or

Pr(n events|a = A) =
An

n!
exp(−A) for n = 0, 1, 2, . . . . (47)



The maximum likelihood estimate of A, after we observe the number n events, is given by
finding the maximum of the density above Pr(n events|a = A). We can do this by setting
∂ ln(p(n=N |A))

∂A
equal to zero and solving for A. This derivative is

∂

∂A
ln(Pr(n = N |A)) = ∂

∂A
(N ln(A)− A− ln(N !))

=
N

A
− 1 =

1

A
(N − A) . (48)

Setting this equal to zero and solving for A gives

âml(N) = N . (49)

Note that in Equation 48 we have written ∂ ln(p(n=N |A))
∂A

in the form k(A)(â − A) and thus
âml is an efficient estimator (one that achieves the Crammer-Rao bounds). Computing the
variance of this estimator using this method we then need to compute

∂2 ln(p(n = N |A))
∂A2

= −N

A2
.

Thus using this we have

Var[âml(N)−A] =
1

−E
{

∂2 ln(p(R|A))
∂A2

} =
1

E
(

N
A2

) =
A2

E[N ]
=

A2

A
= A . (50)

A bit of explanation might be needed for these manipulations. In the above E[N ] is the
expectation of the observation N with A a fixed parameter. The distribution of N with A
a fixed parameter is a Poisson distribution with mean A given by Equation 47. From facts
about the Poisson distribution this expectation is A.

Note that these results can be obtained from MAP estimates in the case where our prior
information is infinitely weak. For example, in example 2 weak prior information means
that we should take σa → ∞ in the MAP estimate of a. Using Equation 25 since âmap(R) =
âms(R) for this example this limit gives

âmap(R) =
σ2
a

σ2
a + (σ2

n/N)

(

1

N

N
∑

i=1

Ri

)

→ 1

N

N
∑

i=1

Ri .

which matches the maximum likelihood estimate of A as shown in Equation 44.

In example 4, since A is distributed as an exponential with parameter λ it has a variance
given by Var[A] = 1

λ2 see [1], so to remove any prior dependence in the MAP estimate we
take λ → 0. In that case the MAP estimate of A given by Equation 37 limits to

âmap =
N

1 + λ
→ N ,

which is the same as the maximum likelihood estimate Equation 49.



Notes on Example 3: Using The Cramer-Rao Inequality

Consider the expression for p(A|R) for this example given in the books equation 160

p(A|R) = k(R) exp

{

−1

2

(

1

σ2
n

N
∑

i=1

[Ri − s(A)]2 +
1

σ2
a

A2

)}

. (51)

From this expression for p(A|R) to get p(R|A) we would need to drop pa(A) ∝ exp
{

− A2

2σ2
a

}

.

When we do this and then take the logarithm of p(R|A) we get

ln(p(R|A)) = ln(k′(R))− 1

2σ2
n

N
∑

i=1

[Ri − s(A)]2 .

To compute âml(R) we compute ∂ ln(p(R|A))
∂A

, set this expression equal to zero and then solve
for âml(R). We find the needed equation to solve given by

1

σ2
n

(

∂s(A)

∂A

)

[

1

N

N
∑

i=1

Ri − s(A)

]
∣

∣

∣

∣

∣

A=âml(R)

= 0 . (52)

To satisfy this equation either ds
dA

= 0 is zero or s(A) = 1
N

∑N
i=1Ri. The second equation

has a solution for âml(R) given by

âml(R) = s−1

(

1

N

N
∑

i=1

Ri

)

, (53)

which is the books equation 209. If this estimates is unbiased we can evaluate the Kramer-
Rao lower bound on Var[âml(R)− A] by computing the second derivative

∂2 ln(p(R|A))
∂A2

=
1

σ2
n

∂2s

∂A2

(

N
∑

i=1

[Ri − s(A)]

)

+
1

σ2
n

∂s

∂A

(

−N
∂s

∂A

)

=
1

σ2
n

∂2s

∂A2

(

N
∑

i=1

[Ri − s(A)]

)

− N

σ2
n

(

∂s

∂A

)2

. (54)

Taking the expectation of the above expression and using the fact that E(Ri − s(A)) =
E(ni) = 0 the first term in the above expression vanishes and we are left with the expectation
of the second derivative of the log-likelihood given by

−N

σ2
n

(

∂s

∂A

)2

.

Using this expectation the Cramer-Rao lower bound gives

Var[âml(R)− A] ≥ −1

E
{

∂2p(R|A)
∂A2

} =
σ2
n

N
(

ds(A)
dA

)2 . (55)



We can see why we need to divide by the derivative squared when computing the variance
of a nonlinear transformation form the following simple example. If we take Y = s(A) and
Taylor expand Y about the point A = AA where YA = s(AA) we find

Y = YA +
ds

dA

∣

∣

∣

∣

A=AA

(A− AA) +O((A− AA)
2) .

Computing Y − YA we then have

Y − YA = (A−AA)
ds

dA

∣

∣

∣

∣

A=AA

.

From this we can easily compute the variance of our nonlinear function Y in terms of the
variance of the input and find

Var[Y − YA] =

(

ds(A)

dA

∣

∣

∣

∣

A=AA

)2

Var[A−AA] .

Which shows that a nonlinear transformation “expands” the variance of the mapped variable
Y by a multiple of the derivative of the mapping.

Notes on The Cramer-Rao Bound in Estimating a Random Parameter

Starting with the conditional expectation of the error given A given by

B(A) =

∫ ∞

∞
[â(R)−A]p(R|A)dR , (56)

when we multiply by the a priori density of A or p(A) we get

p(A)B(A) =

∫ ∞

∞
[â(R)−A]p(R|A)p(A)dR .

Taking the A derivative of the above gives

d

dA
p(A)B(A) = −

∫ ∞

−∞
p(R,A)dR +

∫ ∞

−∞

∂p(R,A)

∂A
[â(R)− A]dR . (57)

Next we integrate the above over all space to get

0 = −1 +

∫ ∞

−∞

∫ ∞

−∞

∂p(R,A)

∂A
[â(R)−A]dR . (58)

Then using the Schwarz inequality as was done on Page 13 we can get the stated lower bound
on the variance of our estimator â(R). The Schwarz inequality will hold with equality if and
only if

∂2 ln(p(R,A))

∂A2
= −k . (59)

Since p(R,A) = p(A|R)p(R) we have ln(p(R,A)) = ln(p(A|R)) + ln(p(R)) so Equation 59
becomes

∂2 ln(p(R,A))

∂A2
=

∂2 ln(p(A|R))

∂A2
= −k .

Then integrating this expression twice gives that p(A|R) must satisfy

p(A|R) = exp(−kA2 + c1(R)A+ c2(R)) .



Notes on the proof that σε
2
i = Var[âi(R)− Ai] ≥ J ii

Lets verify some of the elements of E[xxT ]. We find

E[x1x2] =

∫ ∞

−∞
(â1(R)− A1)

∂ ln(p(R|A))
∂A1

p(R|A)dR

=

∫ ∞

−∞
â1(R)

∂p(R|A)
∂A1

dR− A1

∫ ∞

−∞

∂p(R|A)
∂A1

dR

= 1− A1
∂

∂A1

∫ ∞

−∞
p(R|A)dR using the book’s equation 264 for the first term

= 1− A1
∂

∂A1
1 = 1− 0 = 1 . (60)

Notes on the general Gaussian problem: Case 3

The book has shown that l(R) ≡ ∆mTQR and the transformation from primed to ”un-
primed” variables looks like

∆m = W−1∆m′ and R = W−1R′ ,

thus in the primed coordinate system we have

l(R′) = ∆m′TW−TQW−1R′ .

Recall that W T is the matrix containing the eigenvectors of K as its column values, since Q
is defined as Q = K−1 we can conclude that

KW T = W TΛ is the same as Q−1W T = W TΛ ,

so inverting both sides gives W−TQ = Λ−1W−T . Multiply this last expression by W−1 on the
right gives W−TQW−1 = Λ−1W−TW−1. Since the eigenvectors are orthogonal WW T = I
so W−TW−1 = I and we obtain

W−TQW−1 = Λ−1 .

Using this expression we see that l(R′) becomes

l(R′) = ∆m′TΛ−1R′ =
N
∑

i=1

∆mi
′R′

i

λi

. (61)

In the same way we find that d2 becomes

d2 = ∆mTQ∆m = ∆m′TW−TQW−1∆w′

= ∆m′TΛ−1∆m′ =

N
∑

i=1

(∆m′
i)
2

λi
. (62)



If ρ > 0 then m′
11 = 0 and m′

12 = 1 will maximize d2. In terms of m11 and m12 this means
that

m11 +m12√
2

= 0 and
m11 −m12√

2
= 1 .

Solving for m11 and m12 we get

[

m11

m12

]

= 1√
2

[

1
−1

]

= φ2 Note that φ2 is the eigenvector

corresponding to the smaller eigenvalue (when ρ > 0).

If ρ < 0 then m′
11 = 1 and m′

12 = 0 will maximize d2. In terms of m11 and m12 this means
that

m11 +m12√
2

= 1 and
m11 −m12√

2
= 0 .

Solving for m11 and m12 we get

[

m11

m12

]

= 1√
2

[

1
1

]

= φ1 Note that φ1 is again the eigen-

vector corresponding to the smaller eigenvalue (when ρ < 0).

When m1 = m2 = m we get for the H1 decision boundary

1

2
(R−m)TQ0(R−m)− 1

2
(R−m)TQ1(R −m) > ln(η) +

1

2
ln |K1| −

1

2
ln |K0| ≡ γ∗ .

We can write the left-hand-side of the above as

1

2

[

(R−m)TQ0 − (R−m)TQ1

]

(R−m) =
1

2
(R−m)T (Q0 −Q1)(R−m) . (63)

Qn =
1

σ2
n

(

I +
1

σ2
n

Ks

)−1

=
1

σ2
n

[I −H ] ,

so
(

I +
1

σ2
n

Ks

)−1

= I −H ,

solving for H we get

H = I −
(

I +
1

σ2
n

Ks

)−1

(64)

=

(

I +
1

σ2
n

Ks

)−1 [(

I +
1

σ2
n

Ks

)

− I

]

=

(

I +
1

σ2
n

Ks

)−1(
1

σ2
n

Ks

)

=
(

σ2
nI +Ks

)−1
Ks .

Also factor the inverse out on the right of Equation 64 to get

(

1

σ2
n

)(

I +
1

σ2
n

Ks

)−1

= Ks(σ
2
nI +Ks)

−1 .



Notice that from the functional forms of Q0 and Q1 we can write this as

I −
(

I +
1

σ2
n

Ks

)−1

= σ2
nQ0 − σ2

nQ1 = σ2
n∆Q , (65)

We have

PF =

∫ ∞

γ′′
(2N/2σN

n Γ(N/2))−1LN/2−1e−L/2σ2
ndL = 1−

∫ γ
′′

0

(2N/2σN
n Γ(N/2))−1LN/2−1e−L/2σ2

ndL ,

Since the integrand is a density and must integrate to one. If we assume N is even and let
M = N

2
− 1 (an integer) then

Γ

(

N

2

)

= Γ(M + 1) = M ! .

Lets change variables in the integrand by letting x = L
2σ2

n
(so that dx = dL

2σ2
n
) and then the

expression for PF becomes

PF = 1−
∫

γ
′′

2σ2
n

0

(2N/2σN
n )−1

(

1

M !

)

(2σ2
n)

N
2
−1xMe−x(2σ2

n)dx

= 1−
∫

γ
′′

2σ2
n

0

xM

M !
e−xdx . (66)

Using the same transformation of the integrand used above (i.e. letting x = L
2σ2

n
) we can

write PF in terms of x as

PF =

∫ ∞

γ
′′′

xM

M !
e−xdx .

We next integrate this by parts M times as

PF =
1

M !

[

−xMe−x
∣

∣

∞
γ′′′ +M

∫ ∞

γ′′′
xM−1e−xdx

]

=
1

M !

[

γ
′′′M

e−γ
′′′
+M

∫ ∞

γ′′′
xM−1e−xdx

]

=
γ

′′′M

M !
e−γ

′′′
+

1

(M − 1)!

∫ ∞

γ′′′
xM−1e−xdx first integration by parts

=
γ

′′′M

M !
e−γ

′′′
+

1

(M − 1)!

[

−xM−1e−x
∣

∣

∞
γ
′′′ + (M − 1)

∫ ∞

γ
′′′
xM−2e−xdx

]

=
γ

′′′M

M !
e−γ

′′′
+

γ
′′′M−1

(M − 1)!
e−γ

′′′
+

1

(M − 2)!

∫ ∞

γ′′′
xM−2e−xdx second integration by parts

= e−γ
′′′
(

2
∑

k=M,M−1,M−2,···

γ
′′′k

k!

)

+
1

(M − (M − 1))

∫ ∞

γ′′′
xe−xdx

= e−γ
′′′
(

M
∑

k=2

γ
′′′k

k!

)

− xe−x
∣

∣

∞
γ′′′ +

∫ ∞

γ′′′
e−xdx = e−γ

′′′
(

M
∑

k=2

γ
′′′k

k!

)

+ γ
′′′
e−γ

′′′
+ e−γ

′′′
.



Thus

PF = e−γ
′′′

M
∑

k=0

γ
′′′k

k!
. (67)

If γ
′′′ ≫ 1 and M is not too large then the largest term is γ

′′′M

M !
is the largest and we can

factor it out to get

PF =
(γ

′′′
)Me−γ

′′′

M !

M
∑

k=0

(γ
′′′
)
k−M

(

M !

k!

)

=
(γ

′′′
)Me−γ

′′′

M !

(

1 +
M

γ ′′′ +
M(M − 1)

γ ′′′2 +
M(M − 1)(M − 2)

γ ′′′3 + · · ·
)

. (68)

If we drop the terms after the second in the above expansion and recall that (1+x)−1 ≈ 1−x
when x ≪ 1 we can write

PF ≈ (γ
′′′
)Me−γ

′′′

M !

(

1− M

γ ′′′

)−1

. (69)

Problem Solutions

The conventions of this book dictate that lower case letters (like y) indicate a random variable
while capital case letters (like Y ) indicate a particular realization of the random variable y.
To maintain consistency with the book I’ll try to stick to that notation. This is mentioned
because other books use the opposite convention like [1] which could introduce confusion.

Problem 2.2.1 (a Likelihood Ratio Test (LRT))

Part (1): We assume a hypothesis of

H1 : r = s + n (70)

H0 : r = n , (71)

where both s and n are exponentially distributed. For example for s we have

ps(S) =

{

ae−aS S ≥ 0
0 S < 0

. (72)

A similar expression holds for pn(N). Now from properties of the exponential distribution
the mean of s is 1

a
and the mean of n is 1

b
. We hope in a physical application that the mean of

s is larger than the mean of n. Thus we should expect that b > a. I’ll assume this condition
in what follows.

We now need to compute p(R|H0) and p(R|H1). The density is p(R|H0) is already given.
To compute p(R|H1) we can use the fact that the probability density function (PDF) of the



sum of two random variables is the convolution of the individual PDFs or

p(R|H1) =

∫ ∞

−∞
ps(R − n)pn(n)dn .

Since the domain of n is n ≥ 0 the function pn(N) vanishes for N < 0 and the lower limit on
the above integral becomes 0. The upper limit is restricted by recognizing that the argument
to ps(R−n) will be negative for n sufficiently larger. For example, when R−n < 0 or n > R
the density pS(R− n) will cause the integrand to vanish. Thus we need to evaluate

p(R|H1) =

∫ R

0

ps(R− n)fn(n)dn =

∫ R

0

ae−a(R−n)be−bndn

=
ab

b− a
(e−aR − e−bR) ,

when we integrate and simplify some. This function has a domain given by 0 < R < ∞ and
is zero otherwise. As an aside, we can check that the above density integrates to one (as it
must). We have

∫ ∞

0

ab

b− a
(e−aR − e−bR)dR =

ab

b− a

[

e−aR

−a
+

e−bR

b

∣

∣

∣

∣

∞

0

= 0− ab

b− a

(

−1

a
+

1

b

)

= 1 ,

when we simplify. The likelihood ratio then decides H1 when

Λ(R) =
ab
b−a

(e−aR − e−bR)

be−bR
> η ≡ P0(C10 − C00)

P1(C01 − C11)
,

and H0 otherwise. We can write the above LRT as

a

b− a
(e(b−a)R − 1) > η .

If we solve the above for R we get

R >
1

b− a
ln

[(

b− a

a

)

η + 1

]

≡ γ .

If R is not larger than γ we declare H0.

Part (2): We would replace η in the above expression with P0(C10−C00)
P1(C01−C11)

.

Part (3): For Neyman-Pearson test (in the standard form) we fix a value of

PF ≡ Pr(say H1|H0 is true)

say α and seek to maximize PD. Since we have shown that the LRT in this problem is
equivalent to R > γ we have

Pr(say H1|H0 is true) = Pr(R > γ|H0 is true) .



We can calculate the right-hand-side as

Pr(R > γ|H0 is true) =

∫ ∞

γ

pn(N)dN

=

∫ ∞

γ

be−bNdN = b

(

−e−bN

b

∣

∣

∣

∣

∞

γ

= e−bγ .

At this equals PF we can write γ as a function of PF as γ = −1
b
ln(PF ).

Problem 2.2.2 (exponential and Gaussian hypothesis test)

Part (1): We find

Λ(R) =
p(R|H1)

p(R|H0)
=

√
2π

2
exp

{

−|R|+ 1

2
R2

}

=

√

π

2
exp

{

1

2
(R2 − 2|R|+ 1)− 1

2

}

=

√

π

2
exp

{

1

2
(|R| − 1)2 − 1

2

}

=

√

π

2
e−

1
2 exp

{

1

2
(|R| − 1)2

}

.

Part (2): The LRT says to decide H1 when Λ(R) > η and decide H0 otherwise. From the
above expression for Λ(R) this can be written as

1

2
(|R| − 1)2 > ln

(

√

2

π
e

1
2η

)

,

or simplifying some

|R| > ±

√

√

√

√2 ln

(

√

2

π
e

1
2 η

)

+ 1 .

If we plot the two densities we get the result shown in Figure 1. See the caption on that plot
for a description.

Problem 2.2.3 (nonlinear hypothesis test)

Our two hypothesis are

H1 : y = x2

H0 : y = x3 ,

where x ∼ N(0, σ). The LRT requires calculating the ratio p(Y |H1)
p(Y |H0)

which we will do by

calculating each of the conditional densities p(Y |H0) and p(Y |H1). For this problem, the
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Figure 1: Plots of the density 1√
2π

exp
(

−1
2
R2
)

(in black) and 1
2
exp(−|R|) (in red). Notice

that the exponential density has fatter tails than the Gaussian density. A LRT where if |R|
is greater than a threshold we declare H1 makes sense since the exponential density (from
H1) is much more likely to have large valued samples.

distribution function for y under the hypothesis H0 is given by

P (Y |H0) = Pr{y ≤ Y |H0} = Pr{x2 ≤ Y |H0}

= Pr{−
√
Y ≤ x ≤

√
Y |H0} = 2

∫ +
√
Y

0

1√
2πσ2

exp

{

− ξ2

2σ2

}

dξ .

The density function for Y (under H0) is the derivative of this expression with respect to Y .
We find

p(Y |H0) =
2√
2πσ2

exp

{

− Y

2σ2

}(

1

2
√
Y

)

=
1√

2πσ2Y
exp

{

− Y

2σ2

}

.

Next the distribution function for y under the hypothesis H1 is given by

P (Y |H1) = Pr{y ≤ Y |H1} = Pr{x3 ≤ Y |H1}

= Pr{x ≤ Y 1/3|H1} =

∫ Y 1/3

−∞

1√
2πσ2

exp

{

− ξ2

2σ2

}

dξ .

Again the density function for y (under H1) is the derivative of this expression with respect
to Y . We find

p(Y |H1) =
1√
2πσ2

exp

{

−Y 2/3

2σ2

}(

1

3Y 2/3

)

=
1

3
√
2πσ2Y 2/3

exp

{

−Y 2/3

2σ2

}

.

Using these densities the LRT then gives

Λ(Y ) =

1
3Y 2/3 exp

{

−Y 2/3

2σ2

}

1
Y 1/2 exp

{

− Y
2σ2

} = Y −1/6 exp

{

− 1

2σ2
(Y 2/3 + Y )

}

.



After receiving the measurement Y , the decision as to whether H0 or H1 occurred is based
on the value of Λ(Y ) defined above. If Λ(Y ) > η ≡ P0(C10−C00)

P1(C01−C11)
then we say H1 occurred

otherwise we say H0 occurred.

Problem 2.2.4 (another nonlinear hypothesis test)

The distribution function for y|H0 can be computed as

P (Y |H0) = Pr{x2 ≤ Y |H0}

= Pr{−
√
Y ≤ x ≤

√
Y |H0} =

∫

√
Y

−
√
Y

1√
2πσ2

exp

{

−(ξ −m)2

2σ2

}

dξ .

The density function for y|H0 is the derivative of this expression. To evaluate that derivative
we will use the identity

d

dt

∫ β(t)

α(t)

f(x, t)dx =
dβ

dt
f(β, t)− dα

dt
f(x, t) +

∫ β(t)

α(t)

∂f

∂t
(x, t)dx . (73)

With this we find

p(Y |H0) =
1√
2πσ2

(

exp

{

−(
√
Y −m)2

2σ2

}

(

1

2
√
Y

)

− exp

{

−(−
√
Y −m)2

2σ2

}

(

− 1

2
√
Y

)

)

=
1√
2πσ2

(

1

2
√
Y

)

(

exp

{

−(
√
Y −m)2

2σ2

}

+ exp

{

−(
√
Y +m)2

2σ2

})

.

The distribution function for y|H1 can be computed as

P (Y |H1) = Pr{ex ≤ Y |H1}

= Pr{x ≤ ln(Y )|H1} =

∫ ln(Y )

−∞

1√
2πσ2

exp

{

−(ξ −m)2

2σ2

}

dξ .

Taking the derivative to get p(y|H1) we have

p(Y |H1) =
1√
2πσ2

exp

{

−(ln(Y )−m)2

2σ2

}(

1

Y

)

.

Using these two expressions we find the likelihood ratio test would be if p(Y |H1)
p(Y |H0)

> η then
decide H1 otherwise decide H0.

Problem 2.2.5 (testing samples with different variances)

Part (1-2): Note that this problem is exactly the same as considered in Example 2 in the
book but where we have taken K independent observations rather than N . Thus all formulas



derived in the book are valid here after we replace N with K. The LRT expressions desired
for this problem are then given by the book’s Eq. 29 or Eq. 31.

Part (3): Given the decision region l(R) > η for H1 and the opposite inequality for deciding
H0, we can write PF and PM = 1− PD as

PF = Pr(choose H1|H0 is true) = Pr

(

K
∑

i=1

R2
i > γ|H0 is true

)

PD = Pr(choose H1|H1 is true) = Pr

(

K
∑

i=1

R2
i > γ|H1 is true

)

.

The book discusses how to evaluate these expressions in section 6.

Part (5): According to the book, when C00 = C11 = 0 the minimax criterion is CMPM =
CFPF . If CM = CF then the minimax criterion reduces to PM = PF or 1− PD = PF . Since
both PD and PF are functions of γ we would solve the above expression for γ to determine
the threshold γ to use in the minimax LRT.

Problem 2.2.6 (multiples of the mean)

Part (1): Given the two hypothesis H0 and H1 to compute the LRT we need to have the
conditional probabilities p(R|H0) and p(R|H1). The density for p(R|H0) is the same as that
of pn(N). To determine p(R|H1) we note that as m1 is fixed and b ∼ N(0, σb) that the
product bm1 ∼ N(0, m1σb). Adding an independent zero mean random variable n gives
another Gaussian random variable back with a larger variance. Thus the distribution of
R|H1 given by

R|H1 = bm1 + n ∼ N

(

0,
√

σ2
bm

2
1 + σ2

n

)

.

Using the above density we have that the LRT is given by

Λ(R) ≡ p(R|H1)

p(R|H0)
=

1√
2π
√

m2
1σ

2
b+σ2

n

exp
(

− R2

2(m2
1σ

2
b+σ2

n)

)

1√
2π
√

σ2
n

exp
(

− R2

2σ2
n

)

=

√

σ2
n

m2
1σ

2
b + σ2

n

exp

{

1

2

m2
1σ

2
b

(m2
1σ

2
b + σ2

n)σ
2
n

R2

}

,

when we simplify. We pick H1 when Λ(R) > η or

R2 >

(

2(m2
1σ

2
b + σ2

n)σ
2
n

m2
1σ

2
b

)

ln

(

η

√

m2
1σ

2
b + σ2

n

σ2
n

)

.

Taking the square root we decide H1 when

|R| >

√

√

√

√

(

2(m2
1σ

2
b + σ2

n)σ
2
n

m2
1σ

2
b

)

ln

(

η

√

m2
1σ

2
b + σ2

n

σ2
n

)

≡ γ . (74)
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Figure 2: The ROC curve for Problem 2.2.6. The minimum probability of error is denoted
with a red marker.

The optimal processor takes the absolute value of the number R and compares its value to
a threshold γ.

Part (2): To draw the ROC curve we need to compute PF and PD. We find

PF =

∫

|R|>γ

p(R|H0)dR = 2

∫ ∞

R=γ

p(R|H0)dR = 2

∫ ∞

R=γ

1√
2πσn

exp

{

−1

2

R2

σ2
n

}

dR .

Let v = R
σn

so that dR = σndv and we find

PF = 2

∫ ∞

v= γ
σn

1√
2π

exp

{

−1

2
v2
}

dv = 2erfc∗

(

γ

σn

)

For PD we find

PD = 2

∫ ∞

R=γ

p(R|H1)dR = 2

∫ ∞

R=γ

1
√

m2
1σ

2
b + σ2

n

exp

{

−1

2

R2

m2
1σ

2
b + σ2

n

}

dR

= 2

∫ ∞

v= γ√
m2

1
σ2
b
+σ2

n

1√
2π

exp

{

−1

2
v2
}

dv = 2erfc∗

(

γ
√

m2
1σ

2
b + σ2

n

)

.

To plot the ROC curve we plot the points (PF , PD) as a function of γ. To show an example
of this type of calculation we need to specify some parameters values. Let σn = 1, σb = 2,
and m1 = 5. With these parameters in the R code chap 2 prob 2.2.6.R we obtain the plot
shown in Figure 2.



Part (3): When we have P0 = P1 =
1
2
we find

Pr(ǫ) = P0PF + P1PM =
1

2
PF (γ) +

1

2
(1− PD(γ)) =

1

2
+

1

2
(PF (γ)− PD(γ)) .

The minimum probability of error (MPE) rule has C00 = C11 = 0 and C10 = C01 = 1 and
thus η = 1. With this value of η we would evaluate Equation 74 to get the value of γ of the
MPE decision threshold. This threshold gives Pr(ǫ) = 0.1786.

Problem 2.2.7 (a communication channel)

Part (1): Let S1 and S2 be the events that our data was generated via the source 1 or 2
respectively. Then we want to compute PF ≡ Pr(Say S2|S1) and PD ≡ Pr(Say S1|S2). Now

all binary decision problems are likelihood ratio problems where we must compute p(R|S2)
p(R|S1)

.
We will assume that R in this case is a sequence of N outputs from the communication
system. That is an example R (for N = 9) might look like

R =
[

a a b a b b a a a
]

.

We assume that the source is held constant for the entire length of the sequence of R. Let
ri be one of the N samples of the vector R. Since each of the ri outputs are independent of
the others given the source we can evaluate p(R|S1) as

p(R|S1) =
N
∏

i=1

p(ri|S1) = p(r = a|S1)
Nap(r = b|S1)

N−Na .

Here Na is the number of a output and N − Na = Nb is the number of b output in our
sample of N total outputs. A similar type of an expression will hold for p(R|S2). Based on
these expressions we need to compute p(r|Si) which we can do from the numbers given in
the problem. Let I0 and I1 be the events that the given source emits a 0 or a 1. Then we
have

p(r = a|S1) = p(r = a|I0, S1)p(I0|S1) + p(r = a|I1, S1)p(I1|S1) = (0.4)(0.5) + (0.7)(0.5) = 0.55

p(r = b|S1) = p(r = b|I0, S1)p(I0|S1) + p(r = b|I1, S1)p(I1|S1) = (0.6)(0.5) + (0.3)(0.5) = 0.45

p(r = a|S2) = p(r = a|I0, S2)p(I0|S2) + p(r = a|I1, S2)p(I1|S2) = (0.4)(0.4) + (0.7)(0.6) = 0.58

p(r = b|S2) = p(r = b|I0, S2)p(I0|S2) + p(r = b|I1, S2)p(I1|S2) = (0.6)(0.4) + (0.3)(0.6) = 0.42 .

With what we have thus far the LRT (will say to decide S2) if

Λ(R) ≡ p(r = a|S2)
Nap(r = b|S2)

N−Na

p(r = a|S1)Nap(r = b|S1)N−Na
=

(

p(r = a|S2)

p(r = a|S1)

)Na
(

p(r = b|S1)

p(r = b|S2)

)Na
(

p(r = b|S2)

p(r = b|S1)

)N

=

(

p(r = a|S2)

p(r = b|S2)

p(r = b|S1)

p(r = a|S1)

)Na
(

p(r = b|S2)

p(r = b|S1)

)N

> η .

For the numbers in this problem we find

p(r = a|S2)

p(r = b|S2)

p(r = b|S1)

p(r = a|S1)
=

(0.58)(0.45)

(0.42)(0.55)
= 1.129870 > 1 .
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Figure 3: The ROC curve for Problem 2.2.7. Left: When N = 1. Right: When N = 10.
A vertical line is drawn at the desired value of PF = α = 0.25.

We can solve for Na (and don’t need to flip the inequality since the log is positive) to find

Na >
η
(

p(r=b|S1)
p(r=b|S2)

)N

ln
(

p(r=a|S2)
p(r=b|S2)

p(r=b|S1)
p(r=a|S1)

) ≡ γ .

Since Na can only be integer valued for Na = 0, 1, 2, · · · , N we only need to consider integer
values of γ say for γI = 0, 1, 2, · · · , N + 1. Note that at the limit of γI = 0 the LRT Na ≥ 0
is always true, so we always declare S2 and obtain the point (PF , PD) = (1, 1). The limit of
γI = N +1 the LRT of Na ≥ N +1 always fails so we always declare S1 and obtain the point
(PF , PD) = (0, 0). Since Na is the count of the number of as from N it is a binomial random
variable (under both S1 and S2) and once γI is specified, we have PF and PD given by

PF = Pr{Na ≥ γI |S1} =

N
∑

k=γI

(

N
k

)

p(r = a|S1)
kp(r = b|S1)

N−k

PD = Pr{Na ≥ γI |S2} =
N
∑

k=γI

(

N
k

)

p(r = a|S2)
kp(r = b|S2)

N−k .

To plot the ROC curve we evaluate PF and PD for various values of γI . This is done in
the R code chap 2 prob 2.2.7.R. Since the value of PF = α = 0.25 does not exactly fall on
a integral value for γI we must use a randomized rule to achieve the desired performance.
Since we are not told what N is (the number of samples observed we will consider two cases
N = 1 and N = 10.



In the case N = 1 the desired value PF = α = 0.25 falls between the two points PF (γI =
2) = 0 and PF (γI = 1) = 0.55. To get the target value of 0.25 we need to introduce the
probability that we will use the threshold γI = 2 as pγ=2. The complement of this probability
or 1− pγ=2 is the probability that we use the threshold γI = 1. Then to get the desired false
alarm rate we need to take pγ=2 to satisfy

pγ=2PF (γI = 2) + (1− pγ=2)PF (γI = 1) = 0.25 .

Putting in what we know for PF (γI = 2) = 0 and PF (γI = 1) = 0.55 this gives pγ=2 = 0.54.
The randomized procedure that gets PF = α while maximizing PD is to observe Na and then
with a probability pγ=2 = 0.54 return the result from the test Na ≥ 2 (which will always be
false causing us to returning S1). With probability 1 − pγ=2 = 0.45 return the result from
the test Na ≥ 1.

In the case where N = 10 we find that α = 0.25 falls between the two points PF (γI = 8) =
0.09955965 and PF (γI = 7) = 0.2660379. We again need a randomized rule where we have
to pick pγ=8 such that

pγ=8PF (γI = 8) + (1− pγ=8)PF (γI = 7) = 0.25 .

Solving this gives pγI=8 = 0.096336. The randomized decision to get PF = 0.25 while
maximizing PD is of the same form as in the N = 1 case. That is to observe Na and then
with a probability pγ=8 = 0.096336 return the result from the test Na ≥ 8. With probability
1− pγ=8 = 0.9036635 return the result from the test Na ≥ 7.

Problem 2.2.8 (a Cauchy hypothesis test)

Part (1): For the given densities the LRT would state that if

Λ(R) =
p(X|H1)

p(X|H0)
=

1 + (X − a0)
2

1 + (X − a1)2
=

1 +X2

1 + (X − 1)2
> η ,

we decide H1 (and H0 otherwise). We can write the above as a quadratic expression in X
on the left-hand-side as

(1− η)X2 + 2ηX + 1− 2η > 0 .

Using the quadratic formula we can find the values of X where the left-hand-side of this
expression equals zero. We find

X± =
−2η ±

√

4η2 − 4(1− η)(1− 2η)

2(1− η)
=

−η ±
√

−(1 − 3η + η2)

1− η
. (75)

In order for a real value of X above to exist we must have that the expression 1−3η+η2 < 0.
If that expression is not true then (1 − η)X2 + 2ηX + 1 − 2η is either always positive or
always negative. This expression 1− 3η + η2 is zero at the values

3±
√
9− 4

2
=

3±
√
5

2
= {0.381966, 2.618034} .

For various values of η we have



• If η < 0.381966 (say η = 0) then 1 − 3η + η2 > 0 and (1 − η)X2 + 2ηX + 1 − 2η is
always positive indicating we always choose H1. This gives the point (PF , PD) = (1, 1)
on the ROC curve.

• If η > 2.618034 (say η = 3) then 1 − 3η + η2 > 0 and (1 − η)X2 + 2ηX + 1 − 2η is
always negative indicating we always choose H0. This gives the point (PF , PD) = (0, 0)
on the ROC curve.

• If 0.381966 < η < 2.618034 (say η = 0.75) then 1 − 3η + η2 < 0 and there are two
points X , given by Equation 75, where (1− η)X2 + 2ηX + 1− 2η changes sign. Note
that from Equation 75 X− < X+ if η < 1. For example, if η = 0.75 then the two points
X− and X+ are

X− = −6.316625 and X+ = 0.3166248 .

When X < X− one finds that the expression (1 − η)X2 + 2ηX + 1 − 2η is always
positive so we choose H1, when X− < X < X+ the expression is negative so we choose
H0, and when X > X+ the expression is positive again so we choose H0.

If η > 1 say η = 1.25 then the two points X− and X+ are

X− = 9.358899 and X+ = 0.641101 .

When X < X+ one finds that the expression (1 − η)X2 + 2ηX + 1 − 2η is always
negative so we choose H0, when X+ < X < X− the expression is positive so we choose
H1, and when X > X− the expression is positive again so we choose H1.

Part (2): Using the above information we can express PF and PD as a function of η. We
will increase η from 0 to +∞ and plot the point (PF , PD) as a function of η.

For all points 0 < η < 0.381966 we get the ROC point (PF , PD) = (1, 1). After we increase η
past η > 2.618034 we get the ROC point (PF , PD) = (0, 0). For values of η between 0.381966
and 1.0 these two values we have

PF = Pr(choose H1|H0 is true) =

∫ X−

−∞
p(X|H0)dX +

∫ ∞

X+

p(X|H0)dX

= 1−
∫ X+

X−

1

π(1 +X2)
dX = 1− 1

π
tan−1(X+) +

1

π
tan−1(X−)

PD = Pr(choose H1|H1 is true) = 1−
∫ X+

X−

1

π(1 + (X − 1)2)
dX

= 1− 1

π
tan−1(X+ − 1) +

1

π
tan−1(X− − 1) .

In the case where η between 1.0 and 2.618034 we would have

PF =

∫ X−

X+

p(X|H0)dX =
1

π
tan−1(X−)−

1

π
tan−1(X+)

PD =

∫ X−

X+

p(X|H1)dX =
1

π
tan−1(X− − 1)− 1

π
tan−1(X+ − 1) .

All of these calculations are done in the R script chap 2 prob 2.2.8.R. When that script is
run we get the result shown in Figure 4.
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Figure 4: Plots of the ROC curve for Problem 2.2.8.

Problem 2.2.9 (coin flipping)

For this problem we assume that a coin is flipped N times and we are told the number of
heads NH . We wish to decide if the last flip of the coin landed heads (denoted as H1) or
tails (denoted H0). Since this is a binary decision problem we need to evaluate p(R|Hi) for
some received measurement vector R. The most complete set of information one could have
for the N coin flips would be the sequence of complete outcomes. For example in the case
where N = 9 we might observe the sequence

R =
[

h h t h t t h h h
]

.

Lets derive the LRT under the case of complete observability and then show that all that is
needed to make a decision is NH . In the same way as Problem 2.2.7 on page 28 we have

p(R|H1) = PNH
1 (1− P1)

N−NH

p(R|H0) = PNH
0 (1− P0)

N−NH .

Using these the LRT is given by

p(R|H1)

p(R|H0)
=

PNH
1 (1− P1)

N−NH

PNH
0 (1− P0)N−NH

> η ,

decide H1 (otherwise decide H0).



Problem 2.2.10 (a Poisson counting process)

Part (1): For a Poisson counting process, under the hypothesis H0 and H1, the probabilities
we have n events by the time T are given by

Pr{N(T ) = n|H0} =
e−k0T (k0T )

n

n!

Pr{N(T ) = n|H1} =
e−k1T (k1T )

n

n!
.

Part (2): In the case where P0 = P1 =
1
2
, C00 = C11 = 0, and equal error costs C10 = C01

we have η = P0(C10−C00)
P1(C01−C11)

= 1 and our LRT says to decide H1 when

Pr{N(T ) = n|H1}
Pr{N(T ) = n|H0}

= e−k1T ek0T
(

k1
k0

)n

> 1 .

If we assume that k1 > k0 indicating that the second source has events that happen more
frequently. Then the LRT can be written as

n >
T (k1 − k0)

ln
(

k1
k0

) ≡ γ .

Since n can only take on integer values the only possible values for γ are 0, 1, 2, · · · . Thus
our LRT reduces to n ≥ γI for γI = 0, 1, 2, · · · . Note we consider the case where n = γI to
cause us to state that the event H1 occurred.

Part (3): To determine the probability of error we use

Pr(ǫ) = P0PF + P1PM = P0PF + P1(1− PD) =
1

2
+

1

2
(PF − PD) .

Here we would have

PF = Pr{Say H1|H0} =

∞
∑

i=γI

e−k0T (k0T )
i

i!

PD = Pr{Say H1|H1} =
∞
∑

i=γI

e−k1T (k1T )
i

i!
.

The above could be plotted as a function of γI in the (PF , PD) plane to obtain the ROC
curve for this problem.



Problem 2.2.11 (adding up Gaussian random variables)

For a LRT we need to compute p(Y |H0) and p(Y |H1) since Y is our observed variable. For
the two hypothesis given we have

p(Y |H1) = p(Y |N ≤ 1)

= p(Y |N = 0)P (N = 0) + p(Y |N = 1)P (N = 1)

=
1√

2π
√
σ2

e−
1
2

y2

σ2 e−λ +
1√

2π
√
2σ2

e−
1
2

y2

2σ2 λe−λ .

and for p(Y |H0) we have

p(Y |H0) = p(Y |N > 1) =

∞
∑

k=2

p(Y |N = k)P (N = k)

=
∞
∑

k=2

1√
2π
√

(k + 1)σ2
e
− 1

2
y2

(k+1)σ2

(

λke−λ

k!

)

.

With these densities the LRT is simply to decide H1 if p(Y |H1)
p(Y |H0)

> η and H0 otherwise.

Problem 2.2.13 (the expectation of Λ(R))

To begin, recall that Λ(R) ≡ p(R|H1)
p(R|H0)

.

Part (1): We have

E(Λn+1|H0) =

∫

Λn+1(R)p(R|H0)dR =

∫
(

p(R|H1)

p(R|H0)

)n+1

p(R|H0)dR

=

∫
(

p(R|H1)

p(R|H0)

)n

p(R|H1)dR = E(Λn|H1) .

Part (2): We have

E(Λ|H0) =

∫

p(R|H1)

p(R|H0)
p(R|H0)dR =

∫

p(R|H1)dR = 1 .

Part (3): Recall that Var(Λ2|H0) = E(Λ2|H0)−E(Λ|H0)
2 from #1 in this problem we have

shown that E(Λ2|H0) = E(Λ|H1). From #2 of this problem E(Λ|H0) = 1 so

E(Λ|H0)
2 = 12 = 1 = E(Λ|H0) ,

thus
Var(Λ|H0) = E(Λ|H1)−E(Λ|H0) .



We can work this problem in a different way. Consider the difference

E(Λ|H1)− E(Λ|H0) =

∫

p(R|H1)

p(R|H0)
p(R|H1)dR−

∫

p(R|H1)

p(R|H0)
p(R|H0)dR

=

∫

p(R|H1)

p(R|H0)

(

p(R|H1)

p(R|H0)
− 1

)

p(R|H0)dR

=

∫

Λ(R)(Λ(R)− 1)p(R|H0)dR

= E(Λ2|H0)−E(Λ|H0) using #1 from this problem

= E(Λ|H1)− E(Λ|H0) .

Problem 2.2.14 (some mathematical results)

Part (2): From Part (3) of the previous problem we have that

Var(Λ|H0) = E(Λ|H1)−E(Λ|H0) = E(Λ|H1)− 1

=

∫

p(R|H1)

p(R|H0)
p(R|H1)dR− 1 .

Thus to evaluate Var(Λ|H0) + 1 we need to evaluate the integral

I =

∫

p(R|H1)

p(R|H0)
p(R|H1)dR .

Using the books Eq. 24 we find

I =

∫

exp

{

m

σ2

N
∑

i=1

Ri −
Nm2

2σ2

}

p(R|H1)dR

= e−
Nm2

2σ2

∫

R1,R2,··· ,RN−1,RN

e
m
σ2

∑N
i=1 Ri

(

N
∏

i=1

1√
2πσ

e−
(Ri−m)2

2σ2

)

dR1dR2 · · · dRN−1dRN

= e−
Nm2

2σ2

N
∏

i=1

∫

Ri

1√
2πσ

exp

{

m

σ2
Ri −

(Ri −m)2

2σ2

}

dRi .

The exponent can be simplified as

m

σ2
Ri −

R2
i

2σ2
+

2Rim

2σ2
− m2

2σ2
= − R2

i

2σ2
+

2Rim

σ2
− m2

2σ2

= − 1

2σ2
(Ri − 2m)2 +

3m2

2σ2
.

With this the integral above becomes

I = e−
Nm2

2σ2

N
∏

i=1

e
3m2

2σ2

∫

Ri

1√
2πσ

exp

{

− 1

2σ2
(Ri − 2m)2

}

dRi

= e−
Nm2

2σ2 e
3Nm2

2σ2 = e
Nm2

σ2 .

Taking the logarithm of this last expression gives Nm2

σ2 which is the definition of d2 showing
the requested result.



Problem 2.2.15 (bounds on erfc∗(X))

Part (1): Recall that from the definition of the function erfc∗(X) we have that

erfc∗(X) =

∫ ∞

X

1√
2π

e−x2/2dx .

We will integrate this by parts by writing it as

1√
2π

∫ ∞

X

1

x
(xe−x2/2)dx .

Then using the integration by parts lemma
∫

vdu = vu−
∫

udv with

v =
1

x
and du = xe−x2/2dx ,

where

dv = − 1

x2
dx and u = −e−x2/2 ,

we have erfc∗(X) given by

erfc∗(X) =
1√
2π

(

−1

x
e−

x2

2

∣

∣

∣

∣

∞

X

−
∫ ∞

X

1

x2
e−

x2

2 dx

)

=
1√
2π

(

1

X
e−

X2

2 −
∫ ∞

X

1

x2
e−

x2

2 dx

)

. (76)

Since the second integral term 1√
2π

∫∞
X

1
x2 e

−x2

2 dx is positive (and nonzero) if we drop this

term from the above sum we will have an expression that is larger in value that erfc∗(X) or
an upper bound. This means that

erfc∗(X) <
1√
2πX

e−
X2

2 . (77)

We can continue by integrating this second term by parts as

∫ ∞

X

1

x3
(xe−

x2

2 )dx = − 1

x3
e−

x2

2

∣

∣

∣

∣

∞

X

−
∫ ∞

X

(

− 3

x4

)

(

−e−
x2

2

)

dx

=
1

X3
e−

X2

2 −
∫ ∞

X

3

x4
e−

x2

2 dx .

Remembering the factor of 1√
2π

and combining these results we have shown that

erfc∗(X) =
1√
2πX

e−
X2

2 − 1√
2πX3

e−
X2

2 +
1√
2π

∫ ∞

X

3

x4
e−

x2

2 dx . (78)

Since the last expression is positive (and nonzero) if we drop it the remaining terms will then
sum to something smaller than erfc∗(X). Thus we have just shown

1√
2πX

e−
X2

2 − 1√
2πX3

e−
X2

2 < erfc∗(X) . (79)



Combining expressions 77 and 79 we get the desired result.

Part (2): We will sketch the solution to this part of the problem but not work it out in
full. Starting from Equation 76 we will derive a recursive expression for the second integral
which will expand to give the series presented in the book. To begin, in that integral we let
t = x2

2
, so x =

√
2t and dx = 1√

2t1/2
dt and the integral becomes

∫ ∞

X2

2

(
√
2t1/2)−2e−t 1√

2t1/2
dt = 2−3/2

∫ ∞

X2

2

t−3/2e−tdt .

Thus with this we have written erfc∗(X) as

erfc∗(X) =
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

∫ ∞

X2

2

t−(
1
2
+1)e−tdt .

We will derive an asymptotic expansion to this second integral. Define In(x) as

In(x) ≡
∫ ∞

x

t−(
1
2
+n)e−tdt .

The integral we initially have is I1(
X2

2
). We can write In(x) recursively using integration by

part as

In(x) = −t−(
1
2
+n)e−t

∣

∣

∣

∞

x
+

∫ ∞

x

−
(

1

2
+ n

)

t−(
1
2
+n+1)e−tdt

= x−(n+ 1
2)e−x −

(

1

2
+ n

)
∫ ∞

x

t−(
1
2
+n+1)e−tdt

= x−(n+ 1
2)e−x −

(

n +
1

2

)

In+1(x) . (80)

Let x̃ ≡ X2

2
. Then using this we have shown that we can write erfc∗(X) as

erfc∗(X) =
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

I1 (x̃)

=
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

[

x̃− 3

2 e−x̃ − 3

2
I2 (x̃)

]

=
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

[

x̃− 3

2 e−x̃ − 3

2

(

x̃− 5

2 e−x̃ − 5

2
I3 (x̃)

)]

=
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

[

x̃− 3

2 e−x̃ − 3

2
x̃− 5

2 e−x̃ +
3 · 5
22

I3 (x̃)

]

=
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

[

x̃− 3

2 e−x̃ − 3

2
x̃− 5

2 e−x̃ +
3 · 5
22

x̃− 7

2 e−x̃ − 3 · 5 · 7
23

I4 (x̃)

]

=
1√
2π

1

X
e−

X2

2 − 1√
2π23/2

[

N
∑

k=1

(−1)k−1 3 · 5 · 7 · · · (2k − 1)

2k−1
x̃−(k+ 1

2
)e−x̃

]

+ (−1)N+1 3 · 5 · 7 · · · (2N + 1)√
2π23/22N−1

IN+1(x̃) .

When we put in what we know for x̃ we get

erfc∗(X) =
1√
2π

1

X
e−

X2

2 − e−
X2

2

√
2πX

[

N
∑

k=1

(−1)k−1 3 · 5 · 7 · · · (2k − 1)

X2k

]

+ (−1)N
3 · 5 · 7 · · · (2N + 1)

2N−1
IN+1(x̃)

=
1√
2π

1

X
e−

X2

2

[

1 +

N
∑

k=1

(−1)k
1 · 3 · 5 · 7 · · · (2k − 1)

X2k

]

+ (−1)N
3 · 5 · 7 · · · (2N + 1)

2N−1
IN+1

(

X2

2

)

. (81)



Problem 2.2.16 (an upper bound on the complementary error function)

Part (1): From the definition of the function erfc∗(X) we have that

erfc∗(X) =

∫ ∞

X

1√
2π

e−x2/2dx ,

which we can simplify by the following change of variable. Let v = x − X (then dv = dx)
and the above becomes

erfc∗(X) =

∫ ∞

0

1√
2π

e−(v+X)2/2dv

=

∫ ∞

0

1√
2π

e−(v2+2vX+X2)/2dv

=
e−

X2

2

√
2π

∫ ∞

0

e−
v2

2 e−vXdv

≤ e−
X2

2

√
2π

∫ ∞

0

e−
v2

2 dv ,

since e−vX ≤ 1 for all v ∈ [0,∞) and X > 0. Now because of the identity

∫ ∞

0

e−
v2

2 dv =

√

π

2
,

we see that the above becomes

erfc∗(X) ≤ 1

2
e−

X2

2 ,

as we were to show.

Part (2): We want to compare the expression derived above with the bound

erfc∗(X) <
1√
2πX

e−
X2

2 . (82)

Note that these two bounds only differ in the coefficient of the exponential of −X2

2
. These

two coefficients will be equal at the point X∗ when

1√
2πX∗

=
1

2
⇒ X∗ =

√

2

π
= 0.7978 .

Once we know this value where the coefficients are equal we know that when X > 0.7978 then
Equation 82 would give a tighter bound since in that case 1√

2πX
< 1

2
, while if X < 0.7978

the bound

erfc∗(X) <
1

2
e−

X2

2 ,

is better. One can observe the truth in these statements by looking at the books Figure 2.10
which plots three approximations to erfc∗(X). In that figure one can visually observe that
1
2
e−

X2

2 is a better approximation to erfc∗X than 1√
2π
e−

X2

2 is in the range 0 < X < 0.7978.
The opposite statement holds for X > 0.7978
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Figure 5: For γ = 4, the points that satisfy Ω(γ) outside of the black curve, points that
satisfy Ωsubset(γ) outside of the green curve, and points that satisfy Ωsuper(γ) outside of the
red curve. When integrated over these regions we obtain exact, lower bound, and upper
bound values for PF and PD.

Problem 2.2.17 (multidimensional LRTs)

Part (1): For the given densities we have that when

Λ(X1, X2) =
2πσ2

0

4πσ1σ0

[

exp

{

−1

2
X2

1

(

1

σ2
1

− 1

σ2
0

)}

+ exp

{

−1

2
X2

2

(

1

σ2
1

− 1

σ2
0

)}]

=
σ0

2σ1

[

exp

{

1

2
X2

1

(

σ2
1 − σ2

0

σ2
0σ

2
1

)}

+ exp

{

1

2
X2

2

(

σ2
1 − σ2

0

σ2
0σ

2
1

)}]

> η ,

we decide H1. Solving for the function of X1 and X2 in terms of the parameter of this
problem we have

exp

{

1

2
X2

1

(

σ2
1 − σ2

0

σ2
0σ

2
1

)}

+ exp

{

1

2
X2

2

(

σ2
1 − σ2

0

σ2
0σ

2
1

)}

>
2ησ1

σ0

≡ γ (83)

For what follows lets assume that σ1 > σ0. This integration region is like a nonlinear ellipse
in that the points that satisfy this inequality are outside of a squashed ellipse. See Figure 5
where we draw the contour (in black) of Equation 83 when γ = 4. The points outside of this
squashed ellipse are the ones that satisfy Ω(γ).



Part (2): The probabilities we are looking for will satisfy

PF = Pr{Say H1|H0} =

∫

Ω(γ)

p(X1, X2|H0)dX1dX2

PD = Pr{Say H1|H1} =

∫

Ω(γ)

p(X1, X2|H1)dX1dX2 .

Here Ω(γ) is the region of the (X1, X2) plane that satisfies Equation 83. Recalling the
identity that X < eX when X > 0 the region of the (X1, X2) plane where

1

2
X2

1

(

σ2
1 − σ2

0

σ2
0σ

2
1

)

+
1

2
X2

2

(

σ2
1 − σ2

0

σ2
0σ

2
1

)

> γ , (84)

will be a smaller set than Ω(γ). The last statement is the fact that X1 and X2 need to be
larger to make their “squared sum” bigger than γ. Thus there are point (X1, X2) closer to
the origin where Equation 83 is true while Equation 84 is not. Thus if we integrate over this
new region rather than the original Ω(γ) region we will have an lower bound on PF and PD.
Thus

PF ≥
∫

Ωsubset(γ)

p(X1, X2|H0)dX1dX2

PD ≥
∫

Ωsubset(γ)

p(X1, X2|H1)dX1dX2 .

Here Ωsubset(γ) is the region of the (X1, X2) plane that satisfies Equation 84. This region
can be written as the circle

X2
1 +X2

2 >
2γσ0σ1

σ2
1 − σ2

0

.

See Figure 5 where we draw the contour (in green) of Equation 84 when γ = 4. The points
outside of this circle are the ones that belong to Ωsubset(γ) and would be integrated over to
obtaining the approximations to PF and PD for the value of γ = 4.

One might think that one could then integrate in polar coordinates to evaluate these integrals.
This appears to be true for the lower bound approximation for PF (where we integrate against
p(X1, X2|H0) which has an analytic form with the polar expression X2

1+X2
2 ) but the integral

over p(X1, X2|H1) due to its functional form (even in polar) appears more difficult. If anyone
knows how to integrate this analytically please contact me.

To get an upper bound on PF and PD we want to construct a region of the (X1, X2) plane
that is a superset of the points in Ω(γ). We can do this by considering the “internal polytope”
or the “box” one gets by taking X1 = 0 and solving for the two points X2 on Equation 83
(and the same thing for X2) and connecting these points by straight lines. For example,
when we take γ = 4 and solve for these four points we get

(1.711617, 0) , (0, 1.711617) , (−1.711617, 0) , (0,−1.711617) .

One can see lines connecting these points drawn Figure 5. Let the points in the (X1, X2)



space outside of these lines be denoted Ωsuper(γ). This then gives the bounds

PF <

∫

Ωsuper(γ)

p(X1, X2|H0)dX1dX2

PD <

∫

Ωsuper(γ)

p(X1, X2|H1)dX1dX2 .

The R script chap 2 prob 2.2.17.R performs plots needed to produce these figures.

Problem 2.2.18 (more multidimensional LRTs)

Part (1): From the given densities in this problem we see that H1 represents “the idea”
that one of the coordinates of the vector X will have a non zero mean of m. The probability
that the coordinate that has a non zero mean is given by pk. The LRT for this problem is

p(X|H1)

p(X|H0)
=

M
∑

k=1

pk exp

{

−(Xk −m)2

2σ2

}

exp

{

X2
k

2σ2

}

=
M
∑

i=1

pk exp

{

2Xkm−m2

2σ2

}

= e−
m2

σ2

M
∑

i=1

pke
m
σ2Xk .

If the above ratio is greater than some threshold η we decide H1 otherwise we decide H0.

Part (2): If M = 2 and p1 = p2 =
1
2
the above LRT becomes

1

2
e−

m2

σ2 (e
m
σ2X1 + e

m
σ2X2) > η .

Thus we decide H1 when

e
m
σ2X1 + e

m
σ2X2 > 2ηe

m2

σ2 ≡ γ . (85)

Note that γ > 0. For the rest of the problem we assume that m > 0. Based on this
expression we will decide H1 when the magnitude of (X1, X2) “is large” and the inequality
in Equation 85 is satisfied. For example, when γ = 4 the region of the (X1, X2) plane
classified as H1 are the points to the North and East of the boundary line (in black) in
Figure 6. The points classified as H0 are the points to the South-West in Figure 6. Part
(3): The exact expressions for PF and PD involve integrating over the region of (X1, X2)
space defined by Equation 85 but with different integrands. For PF the integrand is p(X|H0)
and for PD the integrand is p(X|H1).

We can find a lower bound for PF and PD by noting that for points on the decision boundary
threshold we have

e
m
σ2X1 = γ − e

m
σ2X2

Thus

e
m
σ2X1 < γ or X1 <

σ2

m
ln(γ) .
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Figure 6: For γ = 4, the points that are classified as H1 are to the North and East past
the black boundary curve. Points classified as H0 are in the South-West direction and are
“below” the black boundary curve. A lower bound for PF and PD can be obtained by
integrating to the North and East of the green curve. A upper bound for PF and PD can be
obtained by integrating to the North and East of the red curve.



The same expression holds for X2. Thus if we integrate instead over the region of X1 >
σ2

m
ln(γ) and X2 >

σ2

m
ln(γ) we will get a lower bound for PF and PD. To get an upper bound

we find the point where the line X1 = X2 intersects the decision boundary. This is given at
the location of

2e
m
σ2X1 = γ or X1 =

σ2

m
ln
(γ

2

)

.

Using this we can draw an integration region to compute an upper bound for PF and PD.
We would integrate over the (X1, X2) points to the North-East of the red curve in Figure 6.
The R script chap 2 prob 2.2.18.R performs plots needed to produce these figures.

Problem 2.2.19 (different means and covariances)

Part (1): For this problem, we have N samples from two different hypothesis each of which
has a different mean mk and variance σ2

k. Given these densities the LRT test for this problem
is given by

Λ(R) =
p(R|H1)

p(R|H0)
=

N
∏

i=1

σ0

σ1
exp

{

−(Ri −m1)
2

2σ2
1

+
(Ri −m0)

2

2σ2
0

}

=

(

σ0

σ1

)N

exp

{

− 1

2σ2
1

N
∑

i=1

(Ri −m1)
2 +

1

2σ2
0

N
∑

i=1

(Ri −m0)
2

}

=

(

σ0

σ1

)N

exp

{

− 1

2σ2
1

N
∑

i=1

(R2
i − 2m1Ri +m2

1) +
1

2σ2
0

N
∑

i=1

(R2
i − 2Rim0 −m2

0)

}

=

(

σ0

σ1

)N

exp

{

−1

2

(

1

σ2
1

− 1

σ2
0

) N
∑

i=1

R2
i +

(

m1

σ2
1

− m0

σ2
0

) N
∑

i=1

Ri −
Nm2

1

2σ2
1

+
Nm2

0

2σ2
0

}

=

(

σ0

σ1

)N

e

{

−N
2

(

m2
1

σ2
1
−m2

0
σ2
0

)}

exp

{

−1

2

(

1

σ2
1

− 1

σ2
0

)

lβ +

(

m1

σ2
1

− m0

σ2
0

)

lα

}

.

We decide H1 if the above ratio is greater than our threshold η. The above can be written

−1

2

(

1

σ2
1

− 1

σ2
0

)

lβ +

(

m1

σ2
1

− m0

σ2
0

)

lα > ln

{

η

(

σ1

σ0

)N

e

{

N
2

(

m2
1

σ2
1
−m2

0
σ2
0

)}}

. (86)

The above is the expression for a line in the (lα, lβ) space. We take the right-hand-side of
the above expression be equal to γ (a parameter we can change to study different possible
detection trade offs).

Part (2): If m0 =
1
2
m1 > 0 and σ0 = 2σ1 the above LRT, when written in terms of m1 and

σ1, becomes if
7m1

8σ2
1

lα − 3

8σ2
1

lβ > γ ,

then we decide H1. Note that this decision region is a line in (lα, lβ) space. An example of
this decision boundary is drawn in Figure 7 for m1 = 1, σ1 =

1
2
, and γ = 4.
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Figure 7: For m1 = 1, σ1 = 1
2
, and γ = 4, the points that are classified as H1 are the ones

in the South-East direction across the black decision boundary.

Problem 2.2.20 (specifications of different means and variances)

Part (1): When m0 = 0 and σ0 = σ1 Equation 86 becomes

m1

σ2
1

lα > γ .

If we assume that m1 > 0 this is equivalent to lα >
γσ2

1

m1
, which is a vertical line in the lα, lβ

plane. Points to the right of the constant
γσ2

1

m1
are classified as H1 and points to the left of

that point are classified as H0. To compute the ROC we have

PF =

∫ ∞

γσ2
1

m1

p(L|H0)dL

PD =

∫ ∞

γσ2
1

m1

p(L|H1)dL .

Recall that L in this case is lα ≡∑N
i=1Ri we can derive the densities p(L|H0) and p(L|H1)

from the densities for Ri in each case. Under H0 each Ri is a Gaussian with mean 0 and
variance σ2

1. Thus
∑N

i=1Ri is a Gaussian with mean 0 and variance Nσ2
1 . Under H1 each Ri

is a Gaussian with a mean of m1 and a variance σ2
1. Thus

∑N
i=1Ri is a Gaussian with mean
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Figure 8: Left: The ROC curve for Problem 2.2.20. Part 1. Right: The ROC curve for
Problem 2.2.20. Part 2.

Nm1 and variance Nσ2
1 . Thus we have

PF =

∫ ∞

γσ2
1

m1

1
√

2πNσ2
1

e
− 1

2
L2

Nσ2
1 dL

=

∫ ∞

γσ1√
Nm1

1√
2π

e−
1
2
V 2

dV = erfc∗

(

γσ1√
Nm1

)

PD =

∫ ∞

γσ2
1

m1

1
√

2πNσ2
1

e
− 1

2
(L−Nm1)

2

Nσ2
1 dL

=

∫ ∞

γσ1√
Nm1

−
√

Nm1
σ1

1√
2π

e−
1
2
V 2

dV = erfc∗

(

γσ1√
Nm1

−
√
Nm1

σ1

)

.

In the R script chap 2 prob 2.2.20.R we plot the given ROC curve for m1 = 1, σ1 =
1
2
, and

N = 3. When this script is run it produces the plot given in Figure 8 (left).

Part (2): When m0 = m1 = 0, σ2
1 = σ2

s + σ2
n, and σ2

n = σ2
0 Equation 86 becomes

−1

2

(

1

σ2
s + σ2

n

− 1

σ2
n

)

lβ > γ ,

or simplifying some we get

lβ >
2σ2

n(σ
2
s + σ2

n)

σ2
s

γ . (87)



This is a horizontal line in the lα, lβ plane. Lets define the constant on the right-hand-side
as γ∗. Points in the lα, lβ plane above this constant are classified as H1 and points below
this constant are classified as H0. To compute the ROC we have

PF =

∫ ∞

γ∗
p(L|H0)dL

PD =

∫ ∞

γ∗
p(L|H1)dL .

Recall that L in this case is lβ ≡∑N
i=1R

2
i . We can derive the densities p(L|H0) and p(L|H1)

from the densities for Ri under H0 and H1.

Under H0 each Ri is a Gaussian random variable with a mean of 0 and a variance of σ2
n.

Thus 1
σ2
n

∑N
i=1R

2
i is a chi-squared random variable with N degrees of freedom and we should

write Equation 87 as
lβ
σ2
n

>
2(σ2

s + σ2
n)

σ2
s

γ ,

so

PF =

∫ ∞

2(σ2
s+σ2

n)

σ2
s

γ

p(L|H0)dL .

Here p(L|H0) is the chi-squared probability density with N degrees of freedom.

Under H1 each Ri is a Gaussian with a mean of 0 and a variance σ2
s+σ2

n. Thus
1

σ2
s+σ2

n

∑N
i=1R

2
i

is another chi-squared random variable with N degrees of freedom and we should write
Equation 87 as

lβ
σ2
s + σ2

n

>
2σ2

n

σ2
s

γ ,

so

PD =

∫ ∞

2σ2
n

σ2
s
γ

p(L|H1)dL .

Here p(L|H1) is again the chi-squared probability density with N degrees of freedom.

In the R script chap 2 prob 2.2.20.R we plot the given ROC curve for σn = 1, σs = 2, and
N = 3. When this script is run it produces the plot given in Figure 8 (right).

Problem 2.2.21 (error between to points)

Part (1): Since the book does not state exactly how we should compare the true impact
point denoted via (x, y, z) and either of the two target located at the points (x0, y0, z0) and
(x1, y1, z1). If we consider as our measurement the normalized squared distance between the
impact point and a target point say (x0, y0, z0) under hypothesis H0 then the distribution of
this sum is given by a chi-squared distribution with three degrees of freedom. Thus if our
impact point is at (x, y, z) and we compute

D2 =
(x− xi)

2

σ2
+

(y − yi)
2

σ2
+

(z − zi)
2

σ2
, (88)



for i = 0, 1 to perform our hypothesis test we can use a chi-squared distribution for the
distributions p(D2|H0) and p(D2|H1).

If we want to use the distance (rather than the square distance) as our measure of deviation
between the impact point and one of the hypothesis points, it turns out that the Euclidean
distance between two points is given by a chi distribution (not chi-squared). That is if Xi

are normal random variables with means µi and variance σ2
i then

Y =

√

√

√

√

N
∑

i=1

(

Xi − µi

σi

)2

,

is given by a chi distribution. The probability density function for a chi distribution looks
like

f(x;N) =
21−

N
2 xN−1e−

x2

2

Γ
(

N
2

) . (89)

If we remove the mean µi from the expression for Y we get the noncentral chi distribution.
That is if Z looks like

Z =

√

√

√

√

N
∑

i=1

(

Xi

σi

)2

,

and we define λ =

√

∑N
i=1

(

µi

σi

)2

then the probability density function for Z is given by

f(x;N, λ) =
e−

x2+λ2

2 xNλ

(λx)N/2
IN

2
−1(λx) , (90)

where Iν(z) is the modified Bessel function of the first kind. Since the chi distribution is
a bit more complicated than the chi-squared we will consider the case where we use and
use expression Equation 88 to measure distances. For reference, the chi-squared probability
density looks like

f(x;N) =
x

N
2
−1e−

x
2

2
N
2 Γ
(

N
2

)
. (91)

Using this the LRT for H1 against H0 look like

p(R|H1)

p(R|H0)
=

(

(x−x1)2

σ2 + (y−y1)2

σ2 + (z−z1)2

σ2

)
N
2
−1

(

(x−x0)2

σ2 + (y−y0)2

σ2 + (z−z0)2

σ2

)
N
2
−1

× exp

{

−1

2

(

(x− x1)
2

σ2
+

(y − y1)
2

σ2
+

(z − z1)
2

σ2

)

+
1

2

(

(x− x0)
2

σ2
+

(y − y0)
2

σ2
+

(z − z0)
2

σ2

)}

=

(

(x− x1)
2 + (y − y1)

2 + (z − z1)
2

(x− x0)2 + (y − y0)2 + (z − z0)2

)

N
2
−1

× exp

{

− 1

2σ2

(

(x− x1)
2 − (x− x0)

2 + (y − y1)
2 − (y − y0)

2 + (z − z1)
2 − (z − z0)

2
)

}

.

We would decide H1 when this ratio is greater than a threshold η.



Part (2): The time variable is another independent measurement and the density function
for the combined time and space measurement would simply be the product of the spatial
density functions for H1 and H0 discussed above and the Gaussian for time.

Problem 2.3.1 (the dimension of the M hypothesis Bayes test)

Part (1): The general M hypothesis test is solved by computing the minimum of M expres-
sions as demonstrated in Equation 16. As there are M expressions to find the minimum of
these M expressions requires M −1 comparisons i.e. we have a decision space that is M −1.

Part (2): In the next problem we show that the decision can make based on βi, which can
be computed in terms Λk(R) when we divide by p(R|H0).

Problem 2.3.2 (equivalent form for the Bayes test)

Part (1): When we use Pjp(R|Hj) = p(Hj|R)p(R) we can write Equation 11 as

R =
M−1
∑

i=0

M−1
∑

j=0

Cij

∫

Zi

p(Hj|R)p(R)dR =
M−1
∑

i=0

∫

Zi

p(R)
M−1
∑

j=0

Cijp(Hj|R)dR .

Given a sample R the risk is given by evaluating the above over the various Zi’s. We can
make this risk as small as possible by picking Zi such that it only integrates over points R
where the integrand above is as small as possible. That means pick R to be from class Hi if

p(R)
M−1
∑

j=0

Cijp(Hj |R) < p(R)
M−1
∑

j=0

Ci′jp(Hj |R) for all i′ 6= i .

We can drop p(R) from both sides to get the optimal decision to pick the smallest value of
(over i)

M−1
∑

j=0

Cijp(Hj|R) .

This is the definition of βi and is what we minimize to find the optimal decision rule.

Part (2): When the costs are as given we see that

βi =

M−1
∑

j=0;j 6=i

Cp(Hj|R) = C(1− p(Hi|R)) .

Thus minimizing βi is the same as maximizing p(Hi|R) as a function of i.



Problem 2.3.3 (Gaussian decision regions)

Part (1): The minimum probability of error is the same as picking the class/hypothesis
corresponding to the largest a-posterior probability. Thus we need to compute

p(Hk|R) for k = 1, 2, 3, 4, 5 .

Since each hypothesis is equally likely the above is equivalent to picking the class with the
maximum likelihood or the expression p(R|Hk) which is the largest. The decision boundaries
are then the points where two likelihood functions p(R|Hk) and p(R|Hk′) meet. For example,
the decision boundary between H1 and H2 is given when p(R|H1) = p(R|H2) or when we
simplify that we get

|R + 2m| = |R +m| .
By geometry we must have R+m < 0 and R+2m > 0 so we need to solve R+2m = −(R+m)
or R = −3

2
m. In general, the decision boundary will be the midpoint between each Gaussians

mean and are located at −3m
2
, −m

2
, m

2
, and 3m

2
.

Part (2): We can compute the probability of error in the following way

Pr(ε) = 1− P (correct decision)

= 1−
∫ − 3m

2

−∞
p(R|H1)dR−

∫ −m
2

− 3m
2

p(R|H2)dR

−
∫ +m

2

−m
2

p(R|H3)dR−
∫ + 3m

2

m
2

p(R|H4)dR−
∫ ∞

3m
2

p(R|H5)dR .

These integrals could be “evaluated” by converting to expressions involving the error func-
tion.

Problem 2.3.4 (Gaussians with different variances)

Part (1): As in Problem 2.3.4 the requested criterion is equivalent to the maximum likeli-
hood classification. That is given R we pick the hypothesis Hi such that p(R|Hi) is largest.

Part (2): If σ2
β = 2σ2

α and σα = m our conditional densities look like

p(R|H1) =
1√
2πm

exp

{

− R2

2m2

}

p(R|H2) =
1√
2πm

exp

{

−(R−m)2

2m2

}

p(R|H3) =
1√

2π(
√
2m)

exp

{

− R2

2(2m2)

}

.

If we plot these three densities on the R-axis for m = 2.5 we get the plot in Figure 9. We
now need to calculate the decision boundaries or the points where we would change the
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Figure 9: The three densities for Problem 2.3.4 for m = 2.5. Here p(R|H1) is plotted in red,
p(R|H2) is plotted in black, and p(R|H3) is plotted in green. The hypothesis, Hi, that is
chosen for any value of R corresponds to the index of the largest likelihood p(R|Hi) at the
given point R. The decision regions are drawn in the figure as light gray lines.



decision made. From the plot it looks like the classification is to pick “green” or H3 then
“red” or H1, then “black” or H2, and finally “green” or H3 again. Each of these points where
the decision changes is given by solving equations of the form p(R|Hi) = p(R|Hj). We will
compute these decision boundaries here. For the first decision boundary we need to find R
such that p(R|H3) = p(R|H1) or

1√
2
exp

{

− R2

2(2m2)

}

= exp

{

− R2

2m2

}

.

When we take the logarithm and solve for R we find R = ±m
√

2 ln(2) = ±2.943525 when
we consider with m = 2.5. Lets denote this numeric value as m13. For the second decision
boundary we need to find R such that p(R|H1) = p(R|H2) or

− R2

2m2
= −(R −m)2

2m2
or R =

m

2
.

We will denote this boundary as m12. Finally, for the third decision boundary we need to
find R such that p(R|H2) = p(R|H3) or

exp

{

−(R −m)2

2m2

}

=
1√
2
exp

{

− R2

2(2m2)

}

.

This can be written as
R2 − 4mR + 2m2(1− ln(2)) = 0 ,

or solving for R we get

R = 2m±
√
2m
√

1 + 8 ln(2) = {−4.045, 14.045} ,

when m = 2.5. We would take the larger value (and denote it m23) since we are looking for
a positive decision boundary.

Part (3): To evaluate this probability we will compute

Pr(ε) = 1− Pr(correct) ,

with Pr(correct) given by

3Pr(correct) =

∫ m13

−∞
p(R|H3)dR +

∫ m12

m13

p(R|H1)dR +

∫ m23

m12

p(R|H2)dR+

∫ ∞

m23

p(R|H3)dR .

The factor of three in the above expression is to account for the fact that all three hypothesis
are equally likely i.e. P (Hi) =

1
3
for i = 1, 2, 3.

Some of this algebra is done in the R code chap 2 prob 2.3.4.R.

Problem 2.3.5 (hypothesis testing with 2 dimensional densities)

Part (1): Since this is a three class problem we can directly use the results where the decision
region is written in terms of likelihood ratios Λ1(R) and Λ2(R) as found in Equations 17, 18,



and 19. To do that we need to compute these likelihood ratios. We find

Λ1(R) ≡ p(R|H2)

p(R|H1)

=
σ11σ21

σ12σ22
exp

{

−1

2

(

R2
1

σ2
12

+
R2

2

σ2
22

− R2
1

σ2
11

− R2
2

σ2
21

)}

=
σ2
n

σn

√

σ2
s + σ2

n

exp

{

−1

2

(

1

σ2
s + σ2

n

− 1

σ2
n

)

l1 −
1

2

(

1

σ2
n

− 1

σ2
n

)

l2

}

=
σn

√

σ2
s + σ2

n

exp

{

σ2
s

2σ2
n(σ

2
s + σ2

n)
l1

}

.

For Λ2(R) we have

Λ2(R) ≡ p(R|H3)

p(R|H1)

=
σ11σ21

σ13σ23
exp

{

−1

2

(

R2
1

σ2
13

+
R2

2

σ2
23

− R2
1

σ2
11

− R2
2

σ2
21

)}

=
σ2
n

σn

√

σ2
s + σ2

n

exp

{

−1

2

(

1

σ2
n

− 1

σ2
n

)

l1 −
1

2

(

1

σ2
s + σ2

n

− 1

σ2
n

)

l2

}

=
σn

√

σ2
s + σ2

n

exp

{

σ2
s

2σ2
n(σ

2
s + σ2

n)
l2

}

.

The class priors are specified as P0 = 1 − 2p and P1 = P2 = p so using Equations 17, 18,
and 19 we have that the decision region is based on

if p(1− 0)Λ1(R) > (1− 2p)(1− 0) + p(α− 1)Λ2(R) then H1 or H2 else H0 or H2

if p(1− 0)Λ2(R) > (1− 2p)(1− 0) + p(α− 1)Λ1(R) then H2 or H1 else H0 or H1

if p(α− 0)Λ2(R) > (1− 2p)(1− 1) + p(α− 1)Λ1(R) then H2 or H0 else H1 or H0 .

Simplifying these some we get

if Λ1(R) >
1

p
− 2 + (α− 1)Λ2(R) then H1 or H2 else H0 or H2

if Λ2(R) >
1

p
− 2 + (α− 1)Λ1(R) then H2 or H1 else H0 or H1

if Λ2(R) > Λ1(R) then H2 or H0 else H1 or H0 .

To find the decision regions in the l1 − l2 plane we can first make the inequalities above
equal to equalities to find the decision boundaries. One decision boundary is easy, when we
put in what we know for for Λ1(R) and Λ2(R) the last equation becomes l2 = l1, which is a
diagonal line in the l1 − l2 space. To determine the full decision boundaries lets take values
for p and α say p = 0.25 and α = 0.75 and plot the first two decision boundaries above. This
is done in Figure 10. Note that the first and second equation are symmetric (give the other
equation) if we switch l1 and l2. Thus the decision boundary in the l1 − l2 space expressed
by these two expressions is the same. Based on the inequalities in the above expressions we
would get the classification regions given in Figure 10. Some of this algebra and our plots is
performed in the R code chap 2 prob 2.3.5.R.
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Figure 10: The decision boundaries for Problem 2.3.5 with the final classification label
denoted in each region.

Problem 2.3.6 (a discrete M class decision problem)

Part (1): We are given

Pr(r = n|Hm) =
kn
m

n!
e−km =

(km)ne−km

n!
,

for m = 1, 2, 3, . . . ,M and k a fixed positive constant. Thus each hypothesis involves the
expectation of progressively more samples being observed. For example, the mean number
of events for the hypothesis H1, H2, H3, H4, . . . are k, 2k, 3k, 4k, . . . . Since each hypothesis
is equally likely and the coefficients of the errors are the same the optimal decision criterion
corresponds to picking the hypothesis with the maximum likelihood i.e. we pick Hm if

Pr(r = n|Hm) =
(km)ne−km

n!
≥ Pr(r = n|Hm′) =

(km′)ne−km′

n!
, (92)

for all m′ 6= m. For the value of k = 3 we plot Pr(r = n|Hm) as a function of n for
several values of m in Figure 11. In that plot you can see that for progressively larger values
of r we would select larger hypothesis values Hm. In the plot presented, as r, increased
we would decide on the hypothesis H1, H2, H3, · · · . Our decision as to when the selected
hypothesis changes is when two sequential likelihood functions have equal values. If we take
the inequality in Equation 92 as an equality, the boundaries of the decision region between
two hypothesis m and m′ are where (canceling the factor n!)

(km)ne−km = (km′)ne−km′
.
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Figure 11: Plots of the likelihoods Pr(r = n|Hm) as a function of r in Problem 2.3.6 for
various hypothesis or values of m. The optimal decision (given a measurement r) is to take
the hypothesis that has the largest likelihood.

Solving for n (the decision boundary between Hm′ and Hm) in the above we get

n =
k(m−m′)

ln
(

m
m′

) .

Since the change in hypothesis happens between sequential Hm′ and Hm we have that m =
m′ + 1 and the above simplifies to

nm′→m =
k

ln
(

1 + 1
m′

) .

We can evaluate this expression for m′ = 1 to find the locations where we switch between
H1 and H2, for m

′ = 2 to find the location where we switch between H2 and H3, etc. For
m′ = 1, 2, 3, 4, 5 (here M = 5) we find

[1] 4.328085 7.398910 10.428178 13.444260 16.454445

These numbers match very well the cross over points in Figure 11. Since the number of counts



received must be a natural number we would round the numbers above to the following

H1 : 1 ≤ r ≤ 4

H2 : 5 ≤ r ≤ 7

H3 : 8 ≤ r ≤ 10
...

Hm :

⌊

k

ln
(

1 + 1
m−1

)

⌋

+ 1 ≤ r ≤
⌊

k

ln
(

1 + 1
m

)

⌋

(93)

...

HM :

⌈

k

ln
(

1 + 1
M−1

)

⌉

≤ r ≤ ∞ .

Part (2): We would calculate Pr(ǫ) = 1 − Pr(correct) where Pr(correct) is calculated by
summing over regions in r where we would make the correct classification. This is given by

Pr(correct) =
M
∑

m=1

∑

n∈Zm

Pr(r = n|Hm)

=
4
∑

n=1

Pr(r = n|H1) +
7
∑

n=5

Pr(r = n|H2) +
10
∑

n=8

Pr(r = n|H3) + · · ·+
nu
∑

n=nl

Pr(r = n|Hm) ,

where the lower and upper summation endpoints nl and nu are based on the decision bound-
ary computed as given in Equation 93.

Problem 2.3.7 (M-hypothesis classification different mean vectors)

Part (1): For a three class problem we need to consider Equations 17, 18, and 19 to decide
the decision boundaries. Thus we should compute

Λ1(R) =
p(R|H1)

p(R|H0)
=

exp
{

−1
2
(r−m1)T (r−m1)

σ2

}

exp
{

−1
2
(r−m0)T (r−m0)

σ2

}

= exp

{

− 1

2σ2

[

(r −m1)
T (r −m1)− (r −m0)

T (r −m0)
]

}

= exp

{

− 1

2σ2

[

2rT (m0 −m1) +mT
1m1 −mT

0m0

]

}

= exp

{

− 1

2σ2

(

mT
1m1 −mT

0m0

)

}

exp

{

1

σ2
rT (m1 −m0)

}

= exp

{

− 1

2σ2

(

mT
1m1 −mT

0m0

)

}

el1 ,



with l1 defined as

l1 =
3
∑

i=1

ciri =
1

σ2

3
∑

i=1

(m1i −m0i)ri so ci =
1

σ2
(m1i −m0i) .

In the same way we have

Λ2(R) =
p(R|H2)

p(R|H0)

= exp

{

− 1

2σ2

(

mT
2m2 −mT

0m0

)

}

exp

{

1

σ2
rT (m2 −m0)

}

= exp

{

− 1

2σ2

(

mT
2m2 −mT

0m0

)

}

el2 ,

with l2 defined as

l2 =

3
∑

i=1

diri =
1

σ2

3
∑

i=1

(m2i −m0i)ri so di =
1

σ2
(m2i −m0i) .

Part (2): For the given cost assignment given here when we use Equations 17, 18, and 19
(and cancel out the common cost) we have

P1Λ1(R) > P0 − P2Λ2(R) then H1 or H2 else H0 or H2

P2Λ2(R) > P0 then H2 or H1 else H0 or H1

P2Λ2(R) > P0 + P1Λ1(R) then H2 or H0 else H1 or H0 .

To make the remaining problem simpler, we will specify values for P0 = P1 = P2 = 1
3
and

values for m0, m1, m2, and σ so that every expression in the decision boundary can be
evaluated numerically. This is done in the R script chap 2 prob 2.3.6.R and the result
plotted in Figure 12.

Problem 2.4.1 (estimation in r = ab+ n)

Part (1): The maximum a posterior estimate of a is derived from Bayes’ rule

p(A|R) =
p(R|A)p(A)

p(R)
,

from which we see that we need to compute p(R|A) and p(A). Now when the variable a is
given the expression we are observing or r = ab + n is the sum of two independent random
variables ab and n. These two terms are independent normal random variables with zero
means and variances a2σ2

b and σ2
n respectively. The variance of r is then the sum of the

variance of ab and n. With these arguments we have that the densities we need in the above
given by

p(R|A) =
1√

2π(A2σ2
b + σ2

n)
1/2

exp

{

− R2

2(A2σ2
b + σ2

n)

}

p(A) =
1√
2πσa

exp

{

− A2

2σ2
a

}

.
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Figure 12: Plots of decision regions for Problem 2.3.6. The regions into which we would
classify each set are labeled.

Note to calculate our estimate âmap(R) we don’t need to explicitly calculate p(R), since it is
not a function of A. From the above densities

ln(p(R|A)) = −1

2
ln(2π)− 1

2
ln(A2σ2

b + σ2
n)−

R2

2(A2σ2
b + σ2

n)
and

ln(p(A)) = −1

2
ln(2π)− ln(σa)−

A2

2σ2
a

,

We now need to find the value A such that

∂ ln(p(A|R))

∂A
= 0 .

This equation is

− Aσ2
b

A2σ2
b + σ2

n

+
Aσ2

bR
2

(A2σ2
b + σ2

n)
2
− A

σ2
a

= 0 .

One solution to the above is A = 0. If A 6= 0 and let v ≡ A2σ2
b +σ2

n then the equation above
is equivalent to

−σ2
b

v
+

σ2
bR

2

v2
− 1

σ2
a

= 0 ,

or
v2 + σ2

aσ
2
bv − σ2

aσ
2
bR

2 = 0 .

Using the quadratic equation the solution for v is given by

v =
−σ2

aσ
2
b ±

√

σ4
aσ

4
b + 4σ2

aσ
2
bR

2

2
=

−σ2
aσ

2
b ± σ2

aσ
2
b

√

1 + 4R2

σ2
aσ

2
b

2
.



From the definition of v we expect v > 0 thus we must take the expression with the positive
sign. Now that we know v we can solve for A2σ2

b + σ2
n = v for A from which we would find

two additional solutions for âmap(R).

Part (2): If we desire to simultaneously find âmap and b̂map then we must treat our two
unknowns a and b in a vector (a, b) and then find them both at the same time. Thus our
unknown “A” is now the vector (a, b) and we form the log-likelihood l given by

l = ln(p(R|A,B)) + ln(p(A,B))− ln(p(R))

= ln(p(R|A,B)) + ln(p(A)) + ln(p(B))− ln(p(R))

= ln

(

1√
2πσn

e
− 1

2
(R−AB)2

σ2
n

)

+ ln

(

1√
2πσa

e
− 1

2
A2

σ2
a

)

+ ln

(

1√
2πσb

e
− 1

2
B2

σ2
b

)

− ln(p(R)) .

We want to maximize l with respect to A and B so we take derivatives of l with respect to
A and B, set the result equal to zero, and then solve for A and B. The A and B derivative
of l are given by

(R− AB)B

σ2
n

− B

σ2
b

= 0

(R− AB)A

σ2
n

− A

σ2
a

= 0 .

One solution to these equations is A = B = 0. This is the only solution for if A and B are
both non-zero then the above two equations become

R −AB =
σ2
n

σ2
b

and R− AB =
σ2
n

σ2
a

,

thus R − AB is equal to two different things implying contradicting equations. Even if
σ2
b = σ2

a so that the two equations above are identical, we would then have only one equation
for the two unknowns A and B. Thus it looks like in this case that the only solutions are
âmap = b̂map = 0. This is different than the estimate of âmap we obtained in Part (1) above.

Part (3-a): For the expression for r = a+
∑k

i=1 bi + n we have that

p(R|A) = 1√
2π(kσ2

b + σ2
n)

1/2
exp

{

− (R− A)2

2(kσ2
b + σ2

n)

}

.

Thus

ln(p(R|A)) = ln

(

1√
2π(kσ2

b + σ2
n)

1/2

)

− (R− A)2

2(kσ2
b + σ2

n)
.

With l ≡ ln(p(R|A)) + ln(p(A))− ln(p(R)) taking the A derivative of l, and setting it equal
to zero, gives

R− A

kσ2
b + σ2

n

− A

σ2
a

= 0 .

If we solve the above for A we find

A =
σ2
aR

σ2
a + kσ2

b + σ2
n

, (94)



for the expression for âmap(R).

Part (3-b): In this case we have A = [a, b1, b2, · · · , bk−1, bk]
T and the densities we need are

given by

p(R|A) =
1√
2πσn

exp

{

−(R −A−
∑l

i=1Bi)
2

2σ2
n

}

p(A) =

(

1√
2πσa

e
− A2

2σ2
a

)

(

l
∏

i=1

1√
2πσb

e
− B2

i
2σ2

b

)

.

Then computing the log-likelihood l ≡ ln(p(R|A)) + ln(p(A))− ln(p(R)) we find

l = −(R − A−
∑l

i=1Bi)
2

2σ2
n

− A2

2σ2
a

− 1

2σ2
b

l
∑

i=1

B2
i + constants .

If we take the derivative of l with respect to A and set it equal to zero we get

1

σ2
n

(

R− A−
l
∑

i=1

Bi

)

− A

σ2
a

= 0 .

If we take the derivative of l with respect to Bi and set it equal to zero we get

1

σ2
n

(

R− A−
l
∑

i′=1

Bi′

)

− Bi

σ2
b

= 0 ,

for i = 1, 2, · · · , k − 1, k. As a system of equations this is




























(

1
σ2
n
+ 1

σ2
a

)

1
σ2
n

1
σ2
n

· · · 1
σ2
n

1
σ2
n

1
σ2
n

(

1
σ2
n
+ 1

σ2
b

)

1
σ2
n

· · · 1
σ2
n

1
σ2
n

1
σ2
n

1
σ2
n

(

1
σ2
n
+ 1

σ2
b

)

· · · 1
σ2
n

1
σ2
n

...
. . .

...
1
σ2
n

1
σ2
n

1
σ2
n

· · ·
(

1
σ2
n
+ 1

σ2
b

)

1
σ2
n

1
σ2
n

1
σ2
n

1
σ2
n

· · · 1
σ2
n

(

1
σ2
n
+ 1

σ2
b

)















































A
B1

B2
...

Bk−1

Bk



















=
R

σ2
n



















1
1
1
...
1
1



















This system must have a solution that depends on k (the number of bi terms). While it
might be hard to solve the full system above analytically we can solve smaller systems, look
for a pattern and hope it generalizes. If anyone knows how to solve this system analytically
“as is” please contact me. When k = 1 we have the system

[

1
σ2
n
+ 1

σ2
a

1
σ2
n

1
σ2
n

1
σ2
n
+ 1

σ2
b

]

[

A
B1

]

=
R

σ2
n

[

1
1

]

.

Solving for A and B we get

A =
τnτbR

τaτb + τbτn + τaτn
and B1 =

τnτaR

τaτb + τbτn + τaτn
.



Here we have introduced the precision τ which is defined as one over the variance. For
instance we have τa ≡ 1

σ2
a
, τb ≡ 1

σ2
b
, and τn ≡ 1

σ2
n
. If we do the same thing when k = 2 we find

solutions for A, B1, and B2 given by

A =
τnτbR

τaτb + 2τaτn + τbτn
and B1 = B2 =

τnτaR

τaτb + 2τaτn + τbτn
.

If we do the same thing for k = 3 we get

A =
τnτbR

τaτb + 3τaτn + τbτn
and B1 = B2 = B3 =

τnτaR

τaτb + 3τaτn + τbτn
.

For general k it looks like the solution is

A =
τnτbR

τaτb + kτaτn + τbτn
and B1 = B2 = · · · = Bk−1 = Bk =

τnτaR

τaτb + kτaτn + τbτn
.

See the Mathematical file chap 2 prob 2 4 1.nb where we solve the above linear system
for several values of k. If we take the above expression for A (assuming k terms Bi in the
summation) and multiply by 1

τnτaτb
on top and bottom of the fraction we get

A =
σ2
aR

1
τn

+ k
τb
+ 1

τa

=
σ2
aR

σ2
n + kσ2

b + σ2
a

,

which is the same as Equation 94.

Problem 2.4.2 (a first reproducing density example)

Part (1): Before any measurements are made we are told that the density of λ is a gamma
distribution defined by

p(λ|n∗, l∗) =
l∗

n∗

Γ(n∗)
e−λl∗λn∗−1 for λ ≥ 0 , (95)

and is zero for λ < 0. This density has an expectation and variance [1] given by

E(λ) =
n∗
l∗

(96)

Var(λ) =
n∗

l∗
2 . (97)

Part (2): After the first measurement is made we need to compute the a posterior distri-
bution of λ using Bayes’ rule

p(λ|X) =
p(X|λ)p(λ)

p(X)
.

For the densities given we have

p(λ|X) =
1

p(X)

(

λe−λX l∗
n∗

Γ(n∗)
e−λl∗λn∗−1

)

=

(

l∗
n∗

p(X)Γ(n∗)

)

e−λ(l∗+X)λn∗ .



In the above expression the factor p(X) just contributes to the normalization constant in
that p(λ|X) when integrated over valid values of λ should evaluate to one. Now notice that
the functional form for p(λ|X) derived above is of the same form as a gamma distribution
just like the priori distribution p(λ) was. That is (with the proper normalization) we see
that p(λ|X) must be

p(λ|X) =
(l∗ +X)n∗+1

Γ(n∗ + 1)
e−λ(l∗+X)λn∗ .

Then λ̂ms is just the mean of λ with the above density. From Equations 96 and 97 we see
that for the a posteriori density that we have here

λ̂ms =
n∗ + 1

l∗ +X
and E[(λ̂ms − λ)2] =

n∗ + 1

(l∗ +X)2
.

Part (3): When we now have several measurements Xi the calculation of the a posteriori
density is as follows

p(λ|X) =
p(X|λ)p(λ)

p(X)
=

1

p(X)

(

n
∏

i=1

p(Xi|λ)
)

p(λ) =
1

p(X)

(

n
∏

i=1

λe−λXi

)

(

l∗
n∗

Γ(n∗)
e−λl∗λn∗−1

)

=
l∗

n∗

p(X)Γ(n∗)
exp

{

−λ

(

l∗ +

n
∑

i=1

Xi

)}

λn+n∗−1 .

Again we recognize this is a gamma distribution with different parameters so the normaliza-
tion constant can be determined and the full a posteriori density is

p(λ|X) =
(l∗ +

∑n
i=1Xi)

n+n∗

Γ(n + n∗)
exp

{

−λ

(

l∗ +
n
∑

i=1

Xi

)}

λn+n∗−1 .

Again using Equations 96 and 97 our estimates of λ and its variance are now given by

λ̂ms =
n∗ + n

l∗ +
∑n

i=1Xi
and E[(λ̂ms − λ)2] =

n∗ + n

(l∗ +
∑n

i=1Xi)
2 .

Part (4): We now compute λ̂map for the density p(λ|X) computed in Part 3 above. Taking
the λ derivative of ln(p(λ|X)) and using the l′ and n′ notation in the book we have

d

dλ
ln(p(λ|X)) =

d

dλ
ln

(

l′n
′

Γ(n′)
e−λl′λn′−1

)

=
d

dλ
[−λl′ + (n′ − 1) ln(λ)] = −l′ +

(n′ − 1)

λ
.

Setting this expression equal to zero and solving for λ then gives

λ̂map =
n′ − 1

l′
=

n∗ + n− 1

l∗ +
∑n

i=1Xi
.

Note that this is different from λ̂ms computed in Part (3) by the term −1
l∗+

∑n
i=1 Xi

.



Problem 2.4.3 (normal conjugate densities)

Part (1): If we assume that the priori distribution of a is N
(

m0,
σn

k0

)

, then the a posteriori

density is given using Bayes’ rule and the density for p(R|A). We find

p(A|R) =
p(R|A)p(A)

p(R)
=

1

p(R)

(

1√
2πσn

exp

[

− (R − A)2

2σ2
n

])









k0√
2πσn

exp









− (A−m0)2

2

(

σ2
n

k2
0

)

















=
k0

2πσ2
np(R)

exp

{

− 1

2σ2
n

(

(R −A)2 + k20(A−m0)
2
)

}

= α exp

{

− 1

2σ2
n

(

A2 − 2RA +R2 + k20A
2 − 2k20m0A+ k20m

2
0

)

}

= α′ exp
{

− 1

2σ2
n

(

(1 + k20)A
2 − 2(R + k20m0)A

)

}

= α′ exp















− 1

2

(

σ2
n

1+k2

0

)

(

A2 − 2

(

R+ k20m0

1 + k20

)

A

)















= α′ exp















− 1

2

(

σ2
n

1+k2
0

)

(

A2 − 2

(

R+ k20m0

1 + k20

)

A+

(

R+ k20m0

1 + k20

)2

−
(

R+ k20m0

1 + k20

)2
)















= α′′ exp















− 1

2

(

σ2
n

1+k2
0

)

(

A−
(

R+ k20m0

1 + k20

))2















.

Here α, α′, and α′′ are constants that don’t depend on A. Notice that this expression is a
normal density with a mean and variance given by

m1 =
R + k2

0m0

1 + k2
0

and σ2
1 =

σ2
n

1 + k2
0

.

Part (2): If we now haveN independent observations ofR denoted R1, R2, R3, · · · , RN−1, RN

then the likelihood p(R|A) is now given by the product of the individual densities or

p(R|A) =
N
∏

i=1

1√
2πσn

exp

[

−(Ri − A)2

2σ2
n

]

.



Using this the a posteriori density is given by

p(A|R) = α exp

[

− 1

2σn

N
∑

i=1

(Ri −A)2

]

exp









− (A−m0)2

2

(

σ2
n

k2
0

)









= α exp

[

− 1

2σn

(

N
∑

i=1

(R2
i − 2ARi + A2)

)]

exp









− (A2 − 2Am0 +m2
0)

2

(

σ2
n

k2

0

)









= α′ exp

[

− 1

2σn

(

NA2 − 2A
N
∑

i=1

Ri

)]

exp









− (A2 − 2Am0)

2

(

σ2
n

k2
0

)









= α′ exp

[

−1

2

{

(

N

σ2
n

+
k20
σ2
n

)

A2 − 2

(

∑N
i=1 Ri

σ2
n

+
m0k20
σ2
n

)

A

}]

= α′ exp









− 1

2

(

σ2
n

N+k2
0

)

{

A2 − 2

σ2
n

(

σ2
n

N + k20

)

(

N
∑

i=1

Ri +m0k
2
0

)

A

}









= α′′ exp









− 1

2

(

σ2
n

N+k2

0

)

{

A−
(

1

N + k20

)

(

N
∑

i=1

Ri +m0k
2
0

)}2









.

When we put the correct normalization we see that the above is a normal density with mean
and variance given by

mN =
m0k

2
0 +N

(

1
N

∑N
i=1Ri

)

k2
0 +N

and σ2
N =

σ2
n

N + k2
0

.

Problem 2.4.4 (more conjugate priors)

Part (1): For the densities given we find that

p(A|R) =
p(R|A)p(A)

p(R)
=

1

p(R)

(

N
∏

i=1

A1/2

(2π)1/2
exp

(

−A

2
(Ri −m)2

)

)

(

cA
k1
2

−1 exp

(

−1

2
Ak1k2

))

=

(

c

p(R)(2π)N/2

)

A
N
2
+

k1
2

−1 exp

(

−1

2
Ak1k2 − A

2

N
∑

i=1

(Ri −m)2

)

=

(

c

p(R)(2π)N/2

)

A
N
2
+

k1
2

−1 exp

(

−1

2
A

(

k1k2 +
N
∑

i=1

(Ri −m)2

))

. (98)

This will have the same form as the a priori distribution for A with parameters k′
1 and k′

2 if

k′
1

2
− 1 =

k1 +N

2
− 1 or k′

1 = k1 +N ,

and

k′
1k

′
2 = k1k2 +

N
∑

i=1

(Ri −m)2 .

Solving for k′
2 (since we know the value of k′

1) we get

k′
2 =

1

k′
1

(

k1k2 +N

(

1

N

N
∑

i=1

(Ri −m)2

))

.



These are the same expressions in the book.

Part (2): To find âms we must find the conditional mean of the density given by Equation 98
which is of the same form of the a priori distribution (but with different parameters). From
the above, the a posteriori distribution has the form

p(A|k′
1, k

′
2) = cA

k′1
2
−1 exp

(

−1

2
Ak′

1k
′
2

)

.

As the gamma distribution looks like

p(A|λ, r) = 1

Γ(r)
(λA)r−1λe−λA , (99)

we see that the a posteriori distribution, computed above, is also a gamma distribution with

λ = 1
2
k′
1k

′
2 and r =

k′1
2
. Using the known expression for the mean of a gamma distribution in

the form of Equation 99 we have

E[A] =
r

λ
=

k′1
2

1
2
k′
1k

′
2

=
1

k′
2

.

Thus the conditional mean of our a posteriori distribution is given by

âms =
k′
1

k1k2 +Nw
=

k1 +N

k1k2 +Nw
.

Problem 2.4.5 (recursive estimation)

Part (1): Recall that from Problem 2.4.3 we have that with K observations of Ri that
p(A|R) = p(A|{Ri}Ki=1) is a normal density with a mean mK and a variance σ2

K given by

mK =
m0k

2
0 +Kl

K + k2
0

and σ2
K =

σ2
n

K + k2
0

with l =
1

K

K
∑

i=1

Ri . (100)

To make the a priori model for this problem match the one from Problem 2.4.3 we need to
take m0 = 0 and σn

k0
= σa or k0 =

σn

σa
. Thus the mean mK of the a posteriori distribution for

a becomes (after K measurements)

mK = âms =
K
(

1
K

∑K
i=1Ri

)

K + σ2
n

σ2
a

=

(

1

1 + σ2
n

Kσ2
a

)(

1

K

K
∑

i=1

Ri

)

. (101)

Part (2): The MAP estimator takes the priori information on a to be infinitely weak i.e.
σ2
a → +∞. If we take that limit in Equation 101 we get âmap =

1
K

∑K
i=1Ri.

Part (3): The mean square error is the integral of the conditional variance over all possible
values for R i.e. the book’s equation 126 we get

Rms =

∫ ∞

−∞
dRp(R)

∫ ∞

−∞
[A− âms(R)]p(A|R)dA =

∫ ∞

−∞
dRp(R)

(

σ2
n

K + k2
0

)

=
σ2
n

K + k2
0

,



or the conditional variance again (this true since the conditional variance is independent of
the measurement R).

Part (4-a): Arguments above show that each density over only the first j measurements or
p(A|{Ri}ji=1) should be normal with a mean and a variance which we will denote by

âj(R1, R2, · · · , Rj) and σ2
j .

We can now start a recursive estimation procedure with our initial mean and variance esti-
mates given by â0 = 0 and σ2

0 = σ2
a and using Bayes’ rule to link mean and variance estimates

as new measurements arrive. For example, we will use

p(A|R1, R2, · · · , Rj−1, Rj) =
p(A|R1, R2, · · · , Rj−1)p(Rj |A,R1, R2, · · · , Rj−1)

p(R1, R2, · · · , Rj−1, Rj)
=

p(A|R1, R2, · · · , Rj−1)p(Rj |A)

p(R1, R2, · · · , Rj−1, Rj)
.

This is (using the densities defined above)

p(A|R1, R2, · · · , Rj−1, Rj) =
1

p(R1, · · · , Rj)

(

1√
2πσj−1

exp

{

− 1

2σ2
j−1

(A− âj−1)
2

})

(

1√
2πσn

exp

{

− 1

2σ2
n

(A− Rj)
2

})

=
1

2πσj−1σnp(R1, · · · , Rj)
exp

{

− 1

2σ2
j−1

(A2 − 2âj−1A+ â2j−1)−
1

2σ2
n

(A2 − 2RjA+ R2
j )

)

= α exp

{

−1

2

[(

1

σ2
j−1

+
1

σ2
n

)

A2 − 2

(

âj−1

σ2
j−1

+
Rj

σ2
n

)

A

]}

= α exp















−1

2

(

1

σ2
j−1

+
1

σ2
n

)









A2 − 2

(

âj−1

σ2

j−1

+
Rj

σ2
n

)

(

1
σ2

j−1

+ 1
σ2

j

)A























.

From the above expression we will define the variance of p(A|{Ri}ji=1) or σ
2
j as

1

σ2
j

≡ 1

σ2
j−1

+
1

σ2
n

so σ2
j =

σ2
j−1σ

2
n

σ2
n + σ2

j−1

. (102)

Using this the above becomes

p(A|R1, R2, · · · , Rj−1, Rj) = α′ exp

{

− 1

2σ2
j

[

A−
(

âj−1

σ2
j−1

+
Rj

σ2
n

)

σ2
j

]2
}

.

With the correct normalization this is a normal density with a mean given by

âj(R1, R2, · · · , Rj−1, Rj) =

(

âj−1

σ2
j−1

+
Rj

σ2
n

)

σ2
j

=
σ2
n

σ2
n + σ2

j−1

âj−1(R1, R2, · · · , Rj−1) +
σ2
j−1

σ2
n + σ2

j−1

Rj .

This expresses the new mean âj as a function of âj−1, σ
2
j−1 and the new measurement Rj .



From Equation 102 with j = 1 and σ2
0 = σ2

a when we iterate a few of these terms we find

1

σ2
1

=
1

σ2
a

+
1

σ2
n

1

σ2
2

=
1

σ2
1

+
1

σ2
n

=
1

σ2
a

+
2

σ2
n

1

σ2
3

=
1

σ2
a

+
2

σ2
n

+
1

σ2
n

=
1

σ2
a

+
3

σ2
n

...
1

σ2
j

=
1

σ2
a

+
j

σ2
n

.

Problem 2.4.6

Part (1): Using Equation 29 we can write our risk as

R(â|R) =

∫ ∞

−∞
C(âms − â + Z)p(Z|R)dZ .

Introduce the variable Y = âms − â+ Z and the above becomes

∫ ∞

−∞
C(Y )p(Y + â− âms|R)dY , (103)

which is the books P.4.

Part (2): We first notice that due to symmetry the MS risk is

R(âms|R) =

∫ ∞

−∞
C(Z)p(Z|R)dZ = 2

∫ ∞

0

C(Z)p(Z|R)dZ ,

and that using Equation 103 we can write this as

R(â|R) =

∫ 0

−∞
C(Z)p(Z + â− âms|R)dZ +

∫ ∞

0

C(Z)p(Z + â− âms|R)dZ

=

∫ ∞

0

C(Z)p(−Z + â− âms|R)dZ +

∫ ∞

0

C(Z)p(Z + â− âms|R)dZ

=

∫ ∞

0

C(Z)p(Z − â+ âms|R)dZ +

∫ ∞

0

C(Z)p(Z + â− âms|R)dZ

Then ∆R ≡ R(â|R)−R(âms|R) can be computed by subtracting the two expressions above.
Note that this would give the expression stated in the book except that the product of the
densities would need to be subtraction.



Problem 2.4.7 (bias in the variance calculation?)

We are told to assume that Ri ∼ N(m, σ2) for all i and that Ri and Rj are uncorrelated.
We first compute some expectation of powers of Ri. Recalling the fact from probability of

E[X2] = Var(X) + E[X ]2 ,

and the assumed distribution of the Ri we have that

E[Ri] = m

E[RiRj ] =

{

E[Ri]E[Rj ] = m2 i 6= j
Var(Ri) + E[Ri]

2 = σ2 +m2 i = j
,

note that we have used the fact that the Ri are uncorrelated in the evaluation of E[RiRj ]
when i 6= j. Next define

R̄ =
1

n

n
∑

i=1

Ri ,

using this we can write our expression for V as

V =
1

n

n
∑

i=1

(Ri − R̄)2 =
1

n

n
∑

i=1

(R2
i − 2R̄Ri + R̄2) (104)

=
1

n

n
∑

i=1

R2
i − 2

R̄

n

n
∑

i=1

Ri +
n

n
R̄2

=
1

n

n
∑

i=1

R2
i − R̄2 . (105)

We now ask if V is an unbiased estimator of σ2 or whether E[V ] = σ2. Thus we take the
expectation of V given by Equation 105. We find

E[V ] =
1

n

n
∑

i=1

E[R2
i ]−E[R̄2] =

1

n
n(σ2 +m2)− E[R̄2] = σ2 +m2 − E[R̄2] .

To evaluate this we now need to compute the expectation of R̄2. From the definition of R̄
we have

R̄2 =

(

1

n

n
∑

i=1

Ri

)2

=
1

n2

∑

i,j

RiRj .

Thus we have

E[R̄2] =
1

n2

∑

i,j

E[RiRj ] =
1

n2

(

n(σ2 +m2) + n(n− 1)m2
)

=
σ2

n
+m2 . (106)

With this expression we can now compute E[V ] to find

E[V ] = σ2 +m2 −
(

σ2

n
+m2

)

= σ2 (n− 1)

n
6= σ2 . (107)



Thus the given expression for V is not unbiased.

Lets check that if we normalize “correctly” (divide the sum in Equation 104 by n− 1 rather
than n) we get an unbiased estimate of σ2. Let this estimate of the variance be denoted by
Ṽ . Using similar steps as in the above we get

Ṽ ≡ 1

n− 1

n
∑

i=1

(Ri − R̄)2

=
1

n− 1

n
∑

i=1

R2
i − 2

R̄

n− 1

n
∑

i=1

Ri +
n

n− 1
R̄2

=
1

n− 1

n
∑

i=1

R2
i −

n

n− 1
R̄2 .

In this case then we find

E[Ṽ ] =
1

n− 1

n
∑

i=1

E[R2
i ]−

n

n− 1
E[R̄2]

=
1

n− 1
n(σ2 +m2)− n

n− 1

(

σ2

n
+m2

)

= σ2 ,

when we simplify. Thus 1
n−1

∑n
i=1(Ri − R̄)2 is an unbiased estimator of σ2.

Problem 2.4.8 (ML estimation of a binomial distribution)

We are told that R is distributed as a binomial random variable with parameters (A, n).
This means that the probability we observe the value of R after n trials is given by

p(R|A) =
(

n
R

)

AR(1− A)n−R for 0 ≤ R ≤ n .

We desire to estimate the probability of success, A, from the measurement R.

Part (1): To compute the maximum likelihood (ML) estimate of A we compute

âml(R) = argmaxAp(R|A) = argmaxA

(

n
R

)

AR(1−A)n−R .

To compute this maximum we can take the derivative of p(R|A) with respect to A, set the
resulting expression equal to zero and solve for A. We find the derivative equal to

(

n
R

)

(

RAR−1(1−A)n−R + AR(n− R)(1−A)n−R−1(−1)
)

= 0 .

Dividing by AR−1(1− A)n−R−1 to get

R(1−A) + A(n−R)(−1) = 0 ,



and solving for A gives or ML estimate of

âml(R) =
R

n
. (108)

Lets compute the bias and variance of this estimate of A. The bias, b(A), is defined as

b(A) = E[â− A|A] = E[â|A]−A

= E

[

R

n

∣

∣

∣

∣

A

]

−A =
1

n
E[R|A]− A .

Now since R is drawn from a binomial random variable with parameters (n,A), the expecta-
tion of R is An, from which we see that the above equals zero and our estimator is unbiased.
To study the conditional variance of our error (defined as e = â− A) consider

σ2
e(A) = E[(e− E[e])2|A] = E[e2|A] = E[(â− A)2|A]

= E[

(

1

n
R−A

)2

|A] = 1

n2
E[(R− nA)2|A]

=
1

n2
(nA(1−A)) =

A(1−A)

n
. (109)

In the above we have used the result that the variance of a binomial random variable with
parameters (n,A) is nA(1 − A). In developing a ML estimator A is not considered random
and as such the above expression is the desired variance of our estimator.

Part (2): Efficiency means that our estimator is unbiased and must satisfy the Cramer-Rao
lower bound. One form of which is

Var[â(R)− A] =
1

E

{

[

∂ ln(p(R|A))
∂A

]2
} . (110)

For the density considered here the derivative of the above is given by

∂ ln(p(R|A))
∂A

=
R

A
− n−R

1− A
=

R− nA

A(1−A)
. (111)

Squaring this expression gives
R2 − 2nAR + n2A2

A2(1−A)2
.

Taking the expectation with respect to R and recalling that E[R] = nA and

E[R2] = Var[R] + E[R]2 = nA(1− A) + n2A2

we have
(nA(1− A) + n2A2)− 2nA(nA) + n2A2

A2(1− A)2
=

n

A(1−A)
,

when we simplify. As this is equal to 1/σ2
e(A) computed in Equation 109 this estimator is

efficient. Another way to see this argument is to note that in addition Equation 111 can be
written in the efficiency required form of

∂ ln(p(R|A))
∂A

= [â(R)−A]k(A) .

by writing it as
∂ ln(p(R|A))

∂A
=

[

R

n
− A

](

n

A(1−A)

)

.



Problem 2.4.11 (ML estimation of the mean and variance of a Gaussian)

Part (1): For the maximum likelihood estimate we need to find values of (A1, A2) that
maximizes

p(R|A1, A2) =
n
∏

i=1

p(Ri|A1, A2) =
n
∏

i=1

1

(2πA2)1/2
exp

{

−(Ri −A1)
2

2A2

}

=
1

(2π)n/2
1

A
n/2
2

exp

{

− 1

2A2

n
∑

i=1

(Ri − A1)
2

}

.

Taking logarithm of the above expression we desire to maximize we get

−n

2
ln(2π)− n

2
ln(A2)−

1

2A2

n
∑

i=1

(Ri − A1)
2 .

To maximize this we must evaluate

∇A[ln(p(R|A))]|A=âml(R) = 0 .

As a system of equations this is

∇A[ln(p(R|A))] =
[

1
A2

∑n
i=1(Ri −A1)

−n
2

1
A2

+ 1
2A2

2

∑n
i=1(Ri −A1)

2

]

= 0 .

The first equation gives

â1 =
1

n

n
∑

i=1

Ri .

When we put this expression into the second equation and solve for A2 we get

â2 =
1

n

n
∑

i=1

(Ri − â1)
2 .

Part (2): The estimator for A1 is not biased while the estimator for A2 is biased as was
shown in Problem 2.4.7 above.

Part (3): The estimators are seen to be coupled since the estimate of A2 depends on the
value of A1.

Problem 2.4.12 (sending a signal)

Part (1): The likelihood for A = (A1, A2) for this problem is given by

p(R|A) = p(R1|A)p(R2|A)

=

(

1√
2πσn

exp

{

− 1

2σ2
n

(R1 − S1)
2

})(

1√
2πσn

exp

{

− 1

2σ2
n

(R2 − S2)
2

})

.



The logarithm of this expression is given by

ln(p(R|A)) = − 1

2σ2
n

(R1 − S1)
2 − 1

2σ2
n

(R2 − S2)
2 + constants .

To find the maximum likelihood estimate of A we need to take the derivatives of ln(p(R|A))
with respect to A1 and A2. We find

∂ ln(p(R|A))
∂A1

=
1

σ2
n

(R1 − S1)
∂S1

∂A1
+

1

σ2
n

(R2 − S2)
∂S2

∂A1

=
1

σ2
n

(R1 − S1)x11 +
1

σ2
n

(R2 − S2)x21 and

∂ ln(p(R|A))
∂A2

=
1

σ2
n

(R1 − S1)
∂S1

∂A2
+

1

σ2
n

(R2 − S2)
∂S2

∂A2

=
1

σ2
n

(R1 − S1)x12 +
1

σ2
n

(R2 − S2)x22 .

Each derivative would need to be equated to zero and the resulting system solved for A1 and
A2. To do this we first solve for S and then with these known values we solve for A. As a
first step write the above as

x11S1 + x21S2 = x11R1 + x21R2

x12S1 + x22S2 = x12R1 + x22R2 .

In matrix notation this means that S is given by

[

S1

S2

]

=

[

x11 x21

x12 x22

]−1 [
x11 x21

x12 x22

] [

R1

R2

]

=

[

R1

R2

]

.

Here we have assumed the needed matrix inverses exits. Now that we know the estimate for
S the estimate for A is given by

[

A1

A2

]

=

[

x11 x12

x21 x22

]−1 [
S1

S2

]

=

[

x11 x12

x21 x22

]−1 [
R1

R2

]

.

We now seek to answer the question as to whether â1(R) and â2(R) are unbiased estimators

of A1 and A2. Consider the expectation of the vector

[

â1(R)
â2(R)

]

. We find

E

[

â1(R)
â2(R)

]

=

[

x11 x12

x21 x22

]−1

E

[

R1

R2

]

=

[

x11 x12

x21 x22

]−1

E

[

S1

S2

]

=

[

x11 x12

x21 x22

]−1 [
x11 x12

x21 x22

] [

A1

A2

]

=

[

A1

A2

]

,

showing that our estimator is unbiased.

Part (2): Lets compute the variance of our estimator

[

â1(R)
â2(R)

]

. To do this we first let



matrix

[

x11 x12

x21 x22

]

be denoted as X and note that

[

â1(R)− A1

â2(R)− A2

]

= X−1

[

R1

R2

]

−X−1X

[

A1

A2

]

= X−1

([

R1

R2

]

−X

[

A1

A2

])

= X−1

(

X

[

A1

A2

]

−X

[

A1

A2

]

+

[

n1

n2

])

= X−1

[

n1

n2

]

.

Using this we know that

Var

[

â1(R)
â2(R)

]

= X−1

(

Var

[

n1

n2

])

X−T .

Since

Var

[

n1

n2

]

=

[

σ2
n 0
0 σ2

n

]

= σ2
nI ,

the above becomes

Var

[

â1(R)
â2(R)

]

= σ2
n

[

x11 x12

x21 x22

]−1 [
x11 x12

x21 x22

]−1

= σ2
n

(

1

x11x22 − x12x21

[

x22 −x12

−x21 x11

])(

1

x11x22 − x12x21

[

x22 −x12

−x21 x11

])

=
σ2
n

(x11x22 − x12x21)2

[

x2
22 + x2

12 −x22x21 − x12x11

−x22x21 − x12x11 x2
21 + x2

11

]

. (112)

Part (3): Lets compute the Cramer-Rao bound for any unbiased estimator. To do this we
need to evaluate the matrix J which has components given by

Jij = E

[

∂ ln(p(R|A))
∂Ai

∂ ln(p(R|A))
∂Aj

]

= −E

[

∂2 ln(p(R|A))
∂Ai∂Aj

]

.

Using the above expressions we compute

∂2 ln(p(R|A))
∂A1

2 = − 1

σ2
n

x11
∂S1

∂A1
− 1

σ2
n

x21
∂S2

∂A1
= − 1

σ2
n

(x2
11 + x2

21)

∂2 ln(p(R|A))
∂A1∂A2

= − 1

σ2
n

x11
∂S1

∂A2

− 1

σ2
n

x21
∂S2

∂A2

= − 1

σ2
n

(x11x12 + x21x22)

∂2 ln(p(R|A))
∂A2

2 = − 1

σ2
n

x12
∂S1

∂A2
− 1

σ2
n

x22
∂S2

∂A2
= − 1

σ2
n

(x2
12 + x2

22) .

Thus as a matrix we find that J is given by

J =
1

σ2
n

[

x2
11 + x2

21 x11x12 + x21x22

x11x12 + x21x22 x2
12 + x2

22

]

.

The Cramer-Rao bound involves J−1 which we compute to be

J−1 =
σ2
n

(x2
11 + x2

21)(x
2
12 + x2

22)− (x11x12 + x21x22)2

[

x2
11 + x2

22 −(x11x12 + x21x22)
−(x11x12 + x21x22) x2

11 + x2
21

]

.



We can see how this expression compares with the one derived in Equation 112 if we expand
the denominator D of the above fraction to get

D = x2
11x

2
12 + x2

11x
2
22 + x2

21x
2
12 + x2

21x
2
22 − (x2

11x
2
12 + 2x11x12x21x22 + x2

21x
2
22)

= x2
11x

2
22 − 2x11x12x21x22 + x2

21x
2
12 = (x11x22 − x12x21)

2 .

Thus the above expression matches that from Equation 112 and we have that our estimate
is efficient.

Problem 2.4.14 (a Poisson random variable)

Part (1): Here we are told that P (R|A) = ARe−A

R!
and A is nonrandom. The logarithm is

given by
ln(P (R|A)) = R ln(A)−A− ln(R!) .

The first two derivatives of the log-likelihood above are given by

∂ ln(P (R|A))
∂A

=
R

A
− 1

∂2 ln(P (R|A))
∂A2

= − R

A2
.

By the Cramer-Rao bound we have that

Var[â(R)] ≥ −1

E
[

∂2 ln(P (R|A))
∂A2

] .

Thus we need to evaluate the expectation above. We find

E

[

∂2 ln(P (R|A))
∂A2

]

= −E

[

R

A2

]

= − 1

A2
E[R] = − A

A2
= − 1

A
,

using the fact that E[A] = A see [1]. Thus we see that Var[â(R)] ≥ A.

Part (2): In this case we have

p(R|A) =
n
∏

i=1

p(Ri|A) =
n
∏

i=1

(

ARie−A

Ri!

)

=
1

∏n
i=1Ri!

e−nAA
∑n

i=1 Ri .

Now the logarithm of the above gives

ln(p(R|A)) = −nA +

(

n
∑

i=1

Ri

)

ln(A)− ln

(

n
∏

i=1

Ri!

)

.

To compute the maximum likelihood estimate of A we take the first derivative of the log-
likelihood, set the result equal to zero and solve for A. This means that we need to solve

∂ ln(p(R|A))
∂A

= −n+

∑n
i=1Ri

A
= 0 .



This means A is given by

A =
1

n

n
∑

i=1

Ri .

To show that this is efficient we will write this as k(A)(â(R)−A) as

n

A

(

1

n

n
∑

i=1

Ri − A

)

.

Thus â(R) = 1
n

∑n
i=1Ri is an efficient estimator.

Problem 2.4.15 (Cauchy random variables)

Part (1): Note that we have

p(R|A) = 1

πn

n
∏

i=1

1

1 + (Ri − A)2
,

so that

ln(p(R|A)) = −
n
∑

i=1

ln(1 + (Ri − A)2)− n ln(π) .

Taking the first derivative of the above with respect to A we find

∂ ln(p(R|A))
∂A

=

n
∑

i=1

2(Ri − A)

1 + (Ri −A)2
.

The second derivative is then given by

∂2 ln(p(R|A))
∂A2

= 2
n
∑

i=1

( −1

1 + (Ri −A)2
+

(Ri − A)2

(1 + (Ri − A)2)2

)

= 2
n
∑

i=1

−1 + (Ri −A)2

(1 + (Ri − A)2)2
.

By the Cramer-Rao inequality we have that

Var[â(R)] ≥ −1

E
{

∂2 ln((R|A))
∂A2

} .

Thus we need to evaluate the expectation in the denominator of the above fraction. We find

E

{

∂2 ln(p(R|A))
∂A2

}

= 2

n
∑

i=1

∫ ∞

−∞

(−1 + (Ri − A)2)

(1 + (Ri −A)2)2
p(Ri|A)dRi

=
2

π

n
∑

i=1

[

−
∫ ∞

−∞

dRi

(1 + (Ri −A)2)3
+

∫ ∞

−∞

(Ri −A)2dRi

(1 + (Ri − A)2)3

]

=
2

π

n
∑

i=1

[

−
∫ ∞

−∞

dv

(1 + v2)3
+

∫ ∞

−∞

v2dv

(1 + v2)3

]

.

When we evaluate the above two integrals using Mathematica we find

E

{

∂2 ln(p(R|A))
∂A2

}

=
2

π

n
∑

i=1

[

−3π

8
+
(π

8

)

]

=
2n

π

(

−2π

8

)

= −n

2
.

Thus the Cramer-Rao inequality then gives Var[â(R)] ≥ 2
n
as we were to show.



Problem 2.4.16 (correlated Gaussian random variables)

Part (1): We have

p(R|ρ) =
n
∏

i=1

p(Ri1, Ri2|ρ)

=

n
∏

i=1

(

1

2π(1− ρ2)1/2
exp

{

−(R2
i1 − 2ρRi1Ri2 +R2

i2)

2(1− ρ2)

})

=
1

(2π)n(1− ρ2)n/2
exp

{

− 1

2(1− ρ2)

n
∑

i=1

(R2
i1 − 2ρRi1Ri2 + R2

i2)

}

.

Taking the logarithm of the above we get

ln(p(R|ρ)) = −n ln(2π)− n

2
ln(1− ρ2)− 1

2(1− ρ2)

n
∑

i=1

(R2
i1 − 2ρRi1Ri2 +R2

i2) .

The ML estimate is given by solving ∂ ln(p(R|ρ))
∂ρ

= 0 for ρ. The needed first derivative is

∂ ln(p(R|ρ))
∂ρ

= −n

2

(−2ρ)

(1− ρ2)
+

(−2ρ)

2(1− ρ2)2

n
∑

i=1

(R2
i1 − 2ρRi1Ri2 +R2

i2)−
1

2(1− ρ2)

n
∑

i=1

(−2Ri1Ri2)

=
nρ

1− ρ2
+

1

1− ρ2

n
∑

i=1

Ri1Ri2 −
ρ

(1− ρ2)2

n
∑

i=1

(R2
i1 − 2ρRi1Ri2 +R2

i2) .

To simplify expression this lets define some sums. We introduce

S11 ≡
1

n

n
∑

i=1

R2
i1 , S12 ≡

1

n

n
∑

i=1

Ri1Ri2 , S22 ≡
1

n

n
∑

i=1

R2
i2 .

With these the expression for ∂ ln(p(R|ρ))
∂ρ

now becomes

∂ ln(p(R|ρ))
∂ρ

=
nρ

1− ρ2
+

n

1− ρ2
S12 −

nρ

(1− ρ2)2
(S11 − 2ρS12 + S22)

=
n

(1− ρ2)2
[

−ρ3 + ρ− ρS11 + (1 + ρ2)S12 − ρS22

]

. (113)

For later work we will need to compute the second derivative of ln(p(R|ρ)) with respect to
ρ. Using Mathematica we find

∂2 ln(p(R|ρ))
∂ρ2

= − n

(1− ρ2)3
[

−1 + ρ4 + (1 + 3ρ2)S11 + (−6ρ− 2ρ3)S12 + (1 + 3ρ2)S22

]

. (114)

The equation for the ML estimate of ρ is given by setting Equation 113 equal to zero and
solving for ρ.

Part (2): One form of the Cramer-Rao inequality bounds the variance of â(R) by a function

of the expectation of the expression ∂2 ln(p(R|ρ))
∂ρ2

. In this problem, the samples Ri are mean
zero, variance one, and correlated with correlation ρ which means that

E[Ri1] = E[Ri2] = 0 , E[R2
i1] = E[R2

i2] = 1 , and E[Ri1Ri2] = ρ .



Using these with the definitions of S11, S22, and S12 we get that

E[S11] = E[S22] = 1 and E[S12] = ρ .

Using these expressions, the expectation of Equation 114 becomes

E

{

∂2 ln(p(R|ρ))
∂ρ2

}

= −n
1 + ρ2

(1 − ρ2)2
.

Thus using the “second derivative” form of the Cramer-Rao inequality or

E[(â(R)−A)2] ≥ −
{

E

[

∂2 ln(pr|a(R|A))
∂A2

]}−1

, (115)

we see that in this case we have

E[(â(R)− A)2] ≥ (1− ρ2)2

n(1 + ρ2)
.

Problem 2.4.17 (the Cramer-Rao inequality for biased estimates)

If A is nonrandom then

E[â(R)−A] =

∫

p(R|A)[â(R)−A]dR =

∫

p(R|A)â(R)dR−A = (A+B(A))−A = B(A) .

Taking the A derivative of both sides gives
∫ ∞

−∞

∂

∂A
{p(R|A)[â(R)−A]}dR = B′(A) .

Following the steps in the book’s proof of the Cramer-Rao bound we get an equation similar
to the books 185 of

∫ ∞

−∞

[

∂ ln(p(R|A))
∂A

√

p(R|A)
]

[

√

p(R|A)(â(R)−A)
]

dR = 1 +B′(A) .

Using the Schwarz inequality 39 on the integral on the left-hand-side we get that

1+B′(A) ≤
{

∫ ∞

−∞

[

∂ ln(p(R|A))
∂A

√

p(R|A)
]2

dR

}1/2
{
∫ ∞

−∞

[

√

p(R|A)(â(R)− A)
]2

dR

}1/2

.

Squaring both sides we get

(1 +B′(A))2 ≤
{

∫ ∞

−∞

[

∂ ln(p(R|A))
∂A

√

p(R|A)
]2

dR

}

Var[â(R)] .

If we solve for Var[â(R)] we get

Var[â(R)] ≥ (1 +B′(A))2

E

{

[

∂ ln(p(R|A))
∂A

]2
} ,

which is the expression we desired to obtain.



Problem 2.4.21 (an alternative derivation of the Cramer-Rao inequality)

Part (1): The first component of E[z] = 0 is true because â(R) is an unbiased estimator.
That the second component of E[z] is zero can be shown to be true by considering

∫

∂ ln(p(R|A))
∂A

p(R|A)dR =

∫

1
∂ ln(p(R|A))

∂A
dR =

∂

∂A

∫

p(R|A)dR =
∂

∂A
(1) = 0 .

Part (2): The covariance matrix is Λz = E[zzT ]. The needed outer product is given by

zzT =

[

â(R) −A
∂ ln(p(R|A))

∂A

]

[

â(R) −A
∂ ln(p(R|A))

∂A

]

=





(â(R) −A)2 (â(R) − A)
∂ ln(p(R|A))

∂A

(â(R) −A)
∂ ln(p(R|A))

∂A

(

∂ ln(p(R|A))
∂A

)2



 .

Following the same steps leading to Equation 60 we can show that the expectation of the
(1, 2) and (2, 1) terms is one and that E[zzT ] takes the form

E[zzT ] =





E[(â(R)−A)2] 1

1 E

[

(

∂ ln(p(R|A))
∂A

)2
]



 .

As Λz is positive semidefinite we must have |Λz| ≥ 0 which means that

E[(â(R)− A)2]E

[

(

∂ ln(p(R|A))
∂A

)2
]

≥ 1 ,

or

E[(â(R)− A)2] ≥ 1

E

[

(

∂ ln(p(R|A))
∂A

)2
] ,

which is the Cramer-Rao inequality. If equality holds in the Cramer-Rao inequality then
this means that |Λz| = 0.

Problem 2.4.22 (a derivation of the random Cramer-Rao inequality)

Note that we can show that E[z] = 0 in the same was as was done in Problem 2.4.21. We
now compute zzT and find

zzT =

[

â(R) −A
∂ ln(p(R,A))

∂A

]

[

â(R) −A
∂ ln(p(R,A))

∂A

]

=





(â(R) −A)2 (â(R) − A)
∂ ln(p(R,A))

∂A

(â(R) −A)
∂ ln(p(R,A))

∂A

(

∂ ln(p(R,A))
∂A

)2



 .

Consider the expectation of the (1, 2) component of zzT where using integration by parts we
find
∫

(â(R)−A)
∂ ln(p(R,A))

∂A
p(R,A)dRdA =

∫

(â(R)− A)
∂p(R,A)

∂A
dRdA

= (â(R)−A)p(R,A)|∞−∞ −
∫

(−1)p(R,A)dRdA

= 0 +

∫

p(R,A)dRdA = 1 .



Using this we find that E[zzT ] is given by

E[zzT ] =





E[(â(R)−A)2] 1

1 E

[

(

∂ ln(p(R,A))
∂A

)2
]



 .

As Λz is positive semidefinite we must have |Λz| ≥ 0 which as in the previous problem means
that

E[(â(R)− A)2] ≥ 1

E

[

(

∂ ln(p(R,A))
∂A

)2
] ,

which is the Cramer-Rao inequality when a is a random variable.

Problem 2.4.23 (the Bhattacharyya bound)

Part (1): Note that E[z] = 0 for the first and second component as in previous problems.
Note that for i ≥ 1 we have

E

[

1

p(R|A)
∂ip(R|A)

∂Ai

]

=

∫

1

p(R|A)
∂ip(R|A)

∂Ai
p(R|A)dR

=
∂i

∂Ai

∫

p(R|A)dR =
∂i

∂Ai
(1) = 0 .

Thus E[z] = 0 for all components and Λz = E[zzT ].

Part (2): The first row of the outer product zzT has components that look like

(â(R)−A)2 ,

(

â(R)−A

p(R|A)

)

∂p(R|A)
∂A

,

(

â(R)−A

p(R|A)

)

∂2p(R|A)
∂A2

, · · ·
(

â(R)−A

p(R|A)

)

∂ip(R|A)
∂Ai

,

for i ≤ n. When we evaluate the expectation for terms in this row we find

E

[(

â(R)− A

p(R|A)

)

∂ip(R|A)
∂Ai

]

=

∫

(â(R)− A)
∂ip(R|A)

∂Ai
dR

= (â(R)− A)
∂i−1p(R|A)

∂Ai−1

∣

∣

∣

∣

∞

−∞
−
∫

(−1)
∂i−1p(R|A)

∂Ai−1
dR

=
∂i−1

∂Ai−1

∫

p(R|A)dR =
∂i−1

∂Ai−1
(1) = 0 .

Thus Λz has its (1, 1) element given by E[â(R) − A)2], its (1, 2) element given by 1, and
all other elements in the first row are zero. The first column of Λz is similar. Denote the
lower-right corner of λz as J̃ and note that J̃ has elements for i ≥ 1 and j ≥ 1 given by

E

[

1

p(R|A)
∂ip(R|A)

∂Ai
× 1

p(R|A)
∂jp(R|A)

∂Aj

]

=

∫

1

p(R|A)
∂ip(R|A)

∂Ai

∂jp(R|A)
∂Aj

dR .

We know that Λz is nonnegative definite. Expressing the fact that |Λz| ≥ 0 by expanding
the determinant about the first row gives

σ2
ε |J̃ | − cofactor(J11) ≥ 0 .



Solving for σ2
ε we get

σ2
ε ≥ cofactor(J11)

|J̃ |
= J11 ,

the same procedure as in the proof of the Cramer-Rao bound proof for non-random variables.

Part (3): When N = 1 then zzT looks like

zzT =

[

σ2
ε 1

1
(

1
p(R|A)

∂p(R|A)
∂A

)2

]

=

[

σ2
ε 1

1
(

∂ ln(p(R|A))
∂A

)2

]

,

so J̃ = E

[

(

∂ ln(p(R|A))
∂A

)2
]

and thus

J̃11 =
1

E

[

(

∂ ln(p(R|A))
∂A

)2
] ,

which is the Cramer-Rao inequality.

Part (4): Informally, as N increases then J̃ increases (or its norm “increases”) and thus
J̃11 decreases providing a tighter bound.

Problem 2.4.27 (some vector derivatives)

Part (1): We have defined

∇x =











∂
∂x1
∂

∂x2
...
∂

∂xn











, (116)

and we want to show
∇x(A

TB) = (∇xA
T )B + (∇xB

T )A .

Lets compute the left-hand-side of this expression. We find that ATB is given by

ATB =
[

A1 A2 · · · An

]











B1

B2
...
Bn











= A1B1 + A2B2 + · · ·+ AnBn ,



a scalar. With this we see that

∇x(A
TB) =











∂
∂x1

(A1B1 + A2B2 + · · ·+ AnBn)
∂

∂x2
(A1B1 + A2B2 + · · ·+ AnBn)

...
∂

∂xn
(A1B1 + A2B2 + · · ·+ AnBn)











=











∂A1

∂x1
B1 +

∂A2

∂x1
B2 + · · ·+ ∂An

∂x1
Bn

∂A1

∂x2
B1 +

∂A2

∂x2
B2 + · · ·+ ∂An

∂x2
Bn

...
∂A1

∂xn
B1 +

∂A2

∂xn
B2 + · · ·+ ∂An

∂xn
Bn











+











A1
∂B1

∂x1
+ A2

∂B2

∂x1
+ · · ·+ An

∂Bn

∂x1

A1
∂B1

∂x2
+ A2

∂B2

∂x2
+ · · ·+ An

∂Bn

∂x2
...

A1
∂B1

∂xn
+ A2

∂B2

∂xn
+ · · ·+ An

∂Bn

∂xn











=











∂A1

∂x1

∂A2

∂x1
· · · ∂An

∂x1
∂A1

∂x2

∂A2

∂x2
· · · ∂An

∂x2
...

...
...

∂A1

∂xn

∂A2

∂xn
· · · ∂An

∂xn





















B1

B2
...
Bn











+











∂B1

∂x1

∂B2

∂x1
· · · ∂Bn

∂x1
∂B1

∂x2

∂B2

∂x2
· · · ∂Bn

∂x2
...

...
...

∂B1

∂xn

∂B2

∂xn
· · · ∂Bn

∂xn





















A1

A2
...
An











.

If we define ∇xA
T as the matrix










∂
∂x1
∂

∂x2
...
∂

∂xn











[

A1 A2 · · · An

]

=











∂A1

∂x1

∂A2

∂x1
· · · ∂An

∂x1
∂A1

∂x2

∂A2

∂x2
· · · ∂An

∂x2
...

...
...

∂A1

∂xn

∂A2

∂xn
· · · ∂An

∂xn











,

the we can write the above as (∇xA
T )B + (∇xB

T )A thus our derivative relationship is then

∇x(A
TB) = (∇xA

T )B + (∇xB
T )A . (117)

Part (2): Use Part (1) from this problem with B = x where we would get

∇x(A
Tx) = (∇xA

T )x+ (∇xx
T )A .

If A does not depend on x then ∇xA
T = 0 and we have ∇x(A

Tx) = (∇xx
T )A. We now need

to evaluate ∇xx
T where we find

∇xx
T =











∂x1

∂x1

∂x2

∂x1
· · · ∂xn

∂x1
∂x1

∂x2

∂x2

∂x2
· · · ∂xn

∂x2
...

...
...

∂x1
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= I ,

the identity matrix. Thus we have ∇x(A
Tx) = A. Part (3): Note from the dimensions

given xTC is a (1× n) · (n×m) = 1×m sized matrix. We can write the product of xTC as

xTC =
[

x1 x2 · · · xn

]











c11 c12 · · · c1m
c21 c22 · · · c2m
...

. . .
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cn1 cn2 · · · cnm











=
[ ∑n

j=1 xjcj1
∑n

j=1 xjcj2 · · ·
∑n

j=1 xjcjm
]



We now compute ∇x(x
TC) to get

∇x(x
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=











c11 c12 · · · c1m
c21 c22 · · · c2m
...

. . .
...

cn1 cn2 · · · cnm











= C .

Part (4): This result is a specialization of Part (3) where C = I.

Problem 2.4.28 (some vector derivatives of quadratic forms)

Part (1): Write our derivative as

∇xQ = ∇x(A
T (x)ΛA(x)) = ∇x(A

T (x)Λ1/2Λ1/2A(x)) = ∇x((Λ
1/2A(x))T (Λ1/2A(x))) .

Then using Problem 2.4.27 with the vectors A and B defined as A ≡ Λ1/2A(x) and B ≡
Λ1/2A(x) to get

∇xQ = (∇x[Λ
1/2A(x)]T )Λ1/2A(x) +∇x[Λ

1/2A(x)]Λ1/2A(x)

= 2(∇x[Λ
1/2A(x)]T )Λ1/2A(x) = 2(∇xA(x)

T )Λ1/2Λ1/2A(x)

= 2(∇xA(x)
T )ΛA(x) , (118)

as we were to show.

Part (2): If A(x) = Bx then using Problem 2.4.27 where we computed ∇xx
T we find

∇xA
T = ∇x(x

TBT ) = ∇x(x
T )BT = BT .

Using this and the result from Part (1) we get

∇xQ = 2BTΛBx .

Part (3): If Q = xTΛx then A(x) = x so from Part (4) of Problem 2.4.27 we have ∇xx
T = I

which when we use with Equation 118 derived above we get

∇xQ = 2Λx ,

as we were to show.
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