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To my family.



Introduction

This is my solution manual to some of the problems in the excellent book:

SQL Practice Problems
by Sylvia Moestl Vasilik

While the original book has solution in SQL Server I found it easiest to work the problems
in SQLite and thus these solutions are in that dialect of SQL. I hope you find them useful.

/¥ P 1: x/
SELECT
*
FROM
Shippers;

/* P 2 (EPage 20): */
SELECT CategoryName, Description FROM Categories;

/* P 3: x/
SELECT
FirstName, LastName, HireDate
FROM
Employees
WHERE
Title = ’Sales Representative’;

/* P 4 (EPage 25): */
SELECT
FirstName, LastName, HireDate
FROM
Employees
WHERE
Title =’Sales Representative’ AND Country =’USA’;

/* P 5 (EPage 28): %/
SELECT

OrderID, OrderDate
FROM

Orders
WHERE

EmployeeID = 5;



/* P 6 (EPage 32): */
SELECT
SupplierID, ContactName, ContactTitle
FROM
Suppliers
WHERE
ContactTitle <> ’Manager’;

/* P 7 (EPage 35): */
SELECT
ProductID, ProductName
FROM
Products
WHERE
ProductName LIKE ’%queso’’;

/* P 8 (EPage 38): %/
SELECT
OrderID, CustomerID, ShipCountry
FROM
Orders
WHERE
ShipCountry IN (’France’, ’Belgium’);

/* P 9 (EPage 41): */

SELECT
OrderID, CustomerID, ShipCountry
FROM
Orders
WHERE
ShipCountry IN (’Brazil’, ’Mexico’, ’Argentina’, ’Venezuela’);

/* P 10 (EPage 44): */
SELECT
FirstName
, LastName
, Title
, BirthDate
FROM
Employees
ORDER BY
BirthDate ASC;



/* P 11 (EPage 44): */
SELECT
FirstName
, LastName
, Title
, strftime(’%Y-%m-%d’, BirthDate) AS DateOnlyBirthDate
FROM
Employees
ORDER BY
BirthDate ASC;

/* P 12 (EPage 50): */
SELECT

FirstName

, LastName

, FirstName || ’> ’> || LastName AS FullName
FROM

Employees;

/* P 13 (EPage 53): */
SELECT

OrderID

, ProductID

, UnitPrice

, Quantity

, UnitPrice * Quantity AS TotalPrice
FROM

[Order Details]
ORDER BY

OrderID

, ProductID;

/* P 14 (EPage 56): *x/
SELECT

COUNT (*) AS TotalCustomers
FROM

Customers;

/* P 15 (EPage 59): */
SELECT

MIN(OrderDate) AS FirstOrder
FROM

Orders;

/* P 16 (EPage 62): */



SELECT
Country

FROM
Customers

GROUP BY
Country;

/* P 17 (EPage 65): */
SELECT
ContactTitle
, COUNT(*) AS TotalContractTitle
FROM
Customers
GROUP BY
ContactTitle
ORDER BY
TotalContractTitle DESC;

/* P 18 (EPage): */
SELECT
p.-ProductID
,» Pp.ProductName
, S.CompanyName
FROM
Products p LEFT JOIN Suppliers s ON p.SupplierID = s.SupplierID;

/* P 19 (EPage 71): */
SELECT
OrderID
, date(OrderDate) AS OrderDate
, CompanyName
FROM
Orders LEFT JOIN Shippers ON Orders.ShipVia = Shippers.ShipperID
WHERE
OrderID < 10300
ORDER BY
OrderID;

/* P 20 (EPage 76) */
SELECT
CategoryName
, COUNT(*) AS Count
FROM
Categories JOIN Products ON Categories.CategoryID = Products.CategorylID
GROUP BY
CategoryName



ORDER BY
Count DESC;

/* P 21 (EPage 79) */
SELECT

Country

, City

, COUNT(*) AS TotalCustomers
FROM

Customers
GROUP BY

Country, City
ORDER BY

TotalCustomers DESC;

/* P 22 (EPage 82) */
SELECT

ProductID

, ProductName

, UnitsInStock

, ReorderLevel
FROM

Products
WHERE

UnitsInStock <= ReorderLevel
ORDER BY

ProductID;

/* P 23 (EPage 85) */
SELECT
ProductID
, ProductName
, UnitsInStock
, UnitsOnOrder
, ReorderLevel
, Discontinued
FROM
Products
WHERE
(UnitsInStock + UnitsOnOrder) <= ReorderLevel
AND Discontinued=’0’
ORDER BY
ProductID;

/* P 24 (EPage 88) */
SELECT



CustomerID
, CompanyName
, Region
FROM
Customers
ORDER BY
(CASE WHEN Region IS NULL THEN 1 ELSE O END), Region, CustomerID;

/* P 25 (EPage 92)
SELECT
ShipCountry
, AVG(Freight) AS AverageFreight
FROM
Orders
GROUP BY
ShipCountry
ORDER BY
AverageFreight DESC
LIMIT
3;

*

/

/* P 26 (EPage 97) */
SELECT
ShipCountry
, AVG(Freight) AS AverageFreight
FROM
Orders
WHERE
strftime(’4Y’, OrderDate) = ’1997’
GROUP BY
ShipCountry
ORDER BY
AverageFreight DESC
LIMIT
3;

/* P 28 (EPage 105) */
SELECT

ShipCountry

, AVG(Freight) AS AverageFreight
FROM

Orders
WHERE

OrderDate >= (SELECT datetime(julianday(MAX(OrderDate)) - 365) FROM Orders)
GROUP BY

ShipCountry
ORDER BY



AverageFreight DESC
LIMIT
3;

/* P 29 (EPage 110) */
SELECT
Orders.EmployeelD
, Employees.LastName
, Orders.OrderID
, Products.ProductName
, [Order Details].Quantity
FROM
Orders
LEFT JOIN Employees ON Orders.EmployeelD = Employees.EmployeelD
LEFT JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
LEFT JOIN Products ON [Order Details].ProductID = Products.ProductID
ORDER BY
Orders.OrderID, [Order Details].ProductID
LIMIT
20;

/* P 30 (EPage 113) */
SELECT
Customers.CustomerID AS Customers_CustomerID
, Orders.CustomerID AS Orders_CustomerID
FROM
Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
WHERE
Orders.CustomerID IS NULL
ORDER BY
Orders.CustomerID;

/* P 31 (EPage 117) */
SELECT
Customers.CustomerID AS Customers_CustomerID
, Orders.CustomerID AS Orders_CustomerID
FROM
Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
AND Orders.EmployeeID = 4
WHERE
Orders.CustomerID IS NULL
ORDER BY
Orders.CustomerID;
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/* P 32 (EPage 121) */
SELECT

Customers.CustomerID

, Customers.CompanyName

, Orders.OrderID

, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM

Customers

JOIN Orders ON Customers.CustomerID = Orders.CustomerID

JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE

strftime(’%Y’, Orders.OrderDate) =’1998°

GROUP BY

Customers.CustomerID, Orders.OrderID
HAVING

TotalOrderAmount > 10000
ORDER BY

TotalOrderAmount DESC;

/* P 33 (EPage 126) */
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’4Y’, Orders.OrderDate) = 1998’
GROUP BY
Customers.CustomerID
HAVING
TotalOrderAmount > 15000
ORDER BY
TotalOrderAmount DESC;

/* P 34 (EPage 129) */
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice
* [Order Details].Quantity) AS TotalWithoutDiscount
, SUM([Order Details].UnitPrice
* [Order Details].Quantity * (1-[Order Details].Discount)) AS TotalWithDiscount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
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JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’4Y’, Orders.OrderDate) = 1998’
GROUP BY
Customers.CustomerID
HAVING
TotalWithDiscount > 15000
ORDER BY
TotalWithDiscount DESC;

/* P 35 (EPage 133) */
SELECT

Orders.EmployeelD

, Orders.OrderID

, date(Orders.0OrderDate)
FROM

Orders
WHERE

date(Orders.OrderDate, ’start of month’, ’+1 month’, ’-1 day’) = date(Orders.OrderDate)
ORDER BY

Orders.EmployeelD

, Orders.OrderID;

/* P 36 (EPage 136) */
SELECT

Orders.0OrderID

, COUNT(Orders.OrderID) AS TotalOrderDetails
FROM

Orders

JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
GROUP BY

Orders.0OrderID
ORDER BY

TotalOrderDetails
LIMIT

10;

/* P 37 (EPage 139) x/
/* To select a fixed number of random rows we can use */
SELECT
OrderID
FROM
Orders
ORDER BY
RANDOM ()
LIMIT
10;
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/* To select a fixed percentage of random rows we can use */
SELECT
OrderID
FROM
Orders
ORDER BY
RANDOM ()
LIMIT
CAST(0.02 * (SELECT COUNT(*) FROM Orders) AS INTEGER);

/* P 38 (EPage 142) */
SELECT

OrderID

, Quantity

, COUNT(*) AS Number
FROM

[Order Details]
WHERE

Quantity >= 60
GROUP BY

OrderID, Quantity
HAVING

Number > 1;

/* P 39 (EPage 146) */
/* Using a CTE (common table expression) */
WITH PossibleOrderIDs AS (
SELECT

OrderID
FROM

[Order Details]
WHERE

Quantity >= 60
GROUP BY

OrderID, Quantity
HAVING

COUNT(*) > 1
)
SELECT

OrderID

, ProductID

, UnitPrice

, Quantity

, Discount
FROM

[Order Details]
WHERE

13



OrderID IN PossibleOrderIDs
ORDER BY

OrderID

, Quantity;

/* P 40 (EPage 149) */
For this problem we add the keyword DISTINCT in the SELECT statement in the subquery
in the provided SQL.

/* P 41 (EPage 152) */
SELECT

OrderID

, OrderDate

, RequiredDate

, ShippedDate
FROM

Orders
WHERE

ShippedDate >= RequiredDate
ORDER BY

OrderDate ASC;

/* P 42 (EPage 156) */
SELECT

Orders.EmployeelD

, Employees.LastName

, COUNT(*) As TotalLateOrders
FROM

Orders

JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
WHERE

ShippedDate >= RequiredDate
GROUP BY

Orders.EmployeelD

, Employees.LastName
ORDER BY

TotalLateOrders DESC;

/* P 43-47 (EPage 159) */
/* Using two CTE (common table expressions) */
WITH
-- Total orders
TotalNumber0fOrders AS (
SELECT
EmployeeID
, COUNT(*) AS TotalOrders
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FROM
Orders
GROUP BY
EmployeeID
),
-— Late orders
TotalLateOrders AS (
SELECT
EmployeeID
, COUNT(*) AS TotalLateOrders
FROM
Orders
WHERE
ShippedDate >= RequiredDate
GROUP BY
EmployeeID

SELECT DISTINCT

Orders.EmployeelD

, Employees.LastName

, TotalOrders

, TotalLateOrders

, ROUND(CAST(TotalLateOrders AS FLOAT)/TotalOrders, 2) AS PercentLateOrders
FROM

Orders

JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

JOIN TotalNumberOfOrders ON Orders.EmployeelID = TotalNumberOfOrders.EmployeelD

LEFT JOIN TotalLateOrders ON Orders.EmployeeID = TotalLateOrders.EmployeelID
ORDER BY

PercentLateOrders DESC;

/* P 48-49 (EPage 177) */
WITH CustomerOrderSizes AS (
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’%Y’, Orders.OrderDate) = ’1998°
GROUP BY
Customers.CustomerID
ORDER BY
Customers.CustomerID
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SELECT
CustomerID
, TotalOrderAmount
, CASE
WHEN ((TotalOrderAmount > 0) AND (TotalOrderAmount <= 1000)) THEN ’low’
WHEN ((TotalOrderAmount > 1000) AND (TotalOrderAmount <= 5000)) THEN ’medium’
WHEN ((TotalOrderAmount > 5000) AND (TotalOrderAmount < 10000)) THEN ’high’
ELSE ’very high’
END AS CustomerGroup
FROM
CustomerOrderSizes
ORDER BY
CustomerID;

/* P 50 (EPage 185) */
WITH CustomerOrderSizes AS (
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’%Y’, Orders.OrderDate) = ’1998°
GROUP BY
Customers.CustomerID
ORDER BY
Customers.CustomerID
),
CustomerGroups AS (
SELECT
TotalOrderAmount
, CASE
WHEN ((TotalOrderAmount > 0) AND (TotalOrderAmount <= 1000)) THEN ’low’
WHEN ((TotalOrderAmount > 1000) AND (TotalOrderAmount <= 5000)) THEN ’medium’
WHEN ((TotalOrderAmount > 5000) AND (TotalOrderAmount < 10000)) THEN ’high’
ELSE ’very high’
END AS CustomerGroup
FROM
CustomerOrderSizes

SELECT
CustomerGroup
, COUNT(*) AS TotalInGroup
, ROUND(CAST(COUNT (*) AS DOUBLE)/(SELECT COUNT(*) FROM CustomerGroups), 2)
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AS PercentagelnGroup
FROM
CustomerGroups
GROUP BY
CustomerGroup
ORDER BY
PercentageInGroup DESC;

/* P 51 (EPage 189) */
WITH CustomerOrderSizes AS (
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’%Y’, Orders.OrderDate) = ’1998°
GROUP BY
Customers.CustomerID
ORDER BY
Customers.CustomerID
),
CustomerGroups AS (
SELECT
CustomerGroupName AS CustomerGroup
, TotalOrderAmount
FROM
CustomerOrderSizes
JOIN CustomerGroupThresholds ON (RangeBottom < TotalOrderAmount)
AND (TotalOrderAmount <= RangeTop)

SELECT
CustomerGroup
, COUNT(*) AS TotalInGroup
, ROUND (CAST (COUNT (*) AS DOUBLE)/(SELECT COUNT (*) FROM CustomerGroups), 2)
AS PercentagelnGroup
FROM
CustomerGroups
GROUP BY
CustomerGroup
ORDER BY
PercentageInGroup DESC;

/* P 52 (EPage 193) */
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SELECT
Country

FROM
Suppliers

UNION

SELECT
Country

FROM
Customers

ORDER BY
Country;

/* P 53 (EPage 196) */
WITH
SupplierCountries AS (
SELECT DISTINCT
Country
FROM
Suppliers
),
CustomerCountries AS (
SELECT DISTINCT
Country
FROM
Customers
)
-- Using ideas from: http://www.sqlitetutorial.net/sqlite-full-outer-join/
SELECT
SupplierCountries.Country AS SupplierCountry
, CustomerCountries.Country AS CustomerCountry
FROM
SupplierCountries
LEFT JOIN CustomerCountries USING(Country)
UNION
SELECT
SupplierCountries.Country AS SupplierCountry
, CustomerCountries.Country AS CustomerCountry
FROM
CustomerCountries
LEFT JOIN SupplierCountries USING(Country)
WHERE
NOT ((SupplierCountry IS NULL) AND (CustomerCountry IS NULL));

/* P 54 (EPage 200) */

WITH

-- get suppliers countries (and count)
SupplierCountries AS (

SELECT

18



Country
, COUNT(*) AS TotalSuppliers
FROM
Suppliers
WHERE
Country IS NOT NULL
GROUP BY
Country
)
-- get customer countries (and count)
CustomerCountries AS (
SELECT
Country
, COUNT(*) AS TotalCustomers
FROM
Customers
WHERE
Country IS NOT NULL
GROUP BY
Country
)
-- get a union of all countries
AllCountries AS (
SELECT
Country
FROM
Suppliers
WHERE
Country IS NOT NULL
UNION
SELECT
Country
FROM
Customers
WHERE
Country IS NOT NULL
)
SELECT
ac.Country
, IFNULL(sc.TotalSuppliers, 0) AS TotalSuppliers
, IFNULL(cc.TotalCustomers, 0) AS TotalCustomers
FROM
AllCountries ac

LEFT JOIN SupplierCountries sc ON ac.Country = sc.Country
LEFT JOIN CustomerCountries cc ON ac.Country = cc.Country

ORDER BY
ac.Country;

/* P 55 (EPage 204) */
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—-- Using ideas from:
-- https://www.xaprb.com/blog/2006/12/07/how-to-select-the-firstleastmax-row-per-group-in-sql/
WITH CountriesFirstOrder AS
(
-- get the first order date in each country
SELECT
ShipCountry
, MIN(OrderDate) AS FirstOrderDate
FROM
Orders
GROUP BY
ShipCountry
)
-— select the other information for this first order
SELECT
cfo.ShipCountry
, CustomerID
, OrderID
, date(OrderDate) AS OrderDate
FROM
CountriesFirstOrder cfo
LEFT JOIN Orders o ON (cfo.FirstOrderDate = o.0rderDate)
AND (cfo.ShipCountry = o.ShipCountry)
ORDER BY
cfo.ShipCountry;

/* P 56 (EPage 209) */
SELECT

io.CustomerID

, 10.0rderID AS InitialOrderID

, date(io.OrderDate) AS InitialOrderDate

, 80.0rderID AS NextOrderID

, date(so.0OrderDate) AS NextOrderDate

, CAST(julianday(so.0OrderDate) - julianday(io.OrderDate) AS INTEGER) AS DaysBetween
FROM

-— io = initial order

Orders io

-- so = second order

JOIN Orders so ON (io.CustomerID = so.CustomerID) AND (io.OrderID < so.0rderID)
WHERE

DaysBetween <= 5;

/* P 57 (EPage 217) SQLite does not currently support windowing functions */
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