Solutions to the Problems in
SQL Practice Problems
by Sylvia Moestl Vasilik

John Weatherwax

Text copyright (©2018 John L. Weatherwax
All Rights Reserved
Please Do Not Redistribute Without Permission from the Author

To my family.

Introduction

This is my solution manual to some of the problems in the excellent book:

SQL Practice Problems
by Sylvia Moestl Vasilik

While the original book has solution in SQL Server I found it easiest to work the problems
in SQLite and thus these solutions are in that dialect of SQL. I hope you find them useful.

/¥ P 1: x/
SELECT
*
FROM
Shippers;

/* P 2 (EPage 20): */
SELECT CategoryName, Description FROM Categories;

/* P 3: x/
SELECT
FirstName, LastName, HireDate
FROM
Employees
WHERE
Title = ’Sales Representative’;

/* P 4 (EPage 25): */
SELECT
FirstName, LastName, HireDate
FROM
Employees
WHERE
Title =’Sales Representative’ AND Country =’USA’;

/* P 5 (EPage 28): %/
SELECT

OrderID, OrderDate
FROM

Orders
WHERE

EmployeeID = 5;

/* P 6 (EPage 32): */
SELECT
SupplierID, ContactName, ContactTitle
FROM
Suppliers
WHERE
ContactTitle <> ’Manager’;

/* P 7 (EPage 35): */
SELECT
ProductID, ProductName
FROM
Products
WHERE
ProductName LIKE ’%queso’’;

/* P 8 (EPage 38): %/
SELECT
OrderID, CustomerID, ShipCountry
FROM
Orders
WHERE
ShipCountry IN (’France’, ’Belgium’);

/* P 9 (EPage 41): */

SELECT
OrderID, CustomerID, ShipCountry
FROM
Orders
WHERE
ShipCountry IN (’Brazil’, ’Mexico’, ’Argentina’, ’Venezuela’);

/* P 10 (EPage 44): */
SELECT
FirstName
, LastName
, Title
, BirthDate
FROM
Employees
ORDER BY
BirthDate ASC;

/* P 11 (EPage 44): */
SELECT
FirstName
, LastName
, Title
, strftime(’%Y-%m-%d’, BirthDate) AS DateOnlyBirthDate
FROM
Employees
ORDER BY
BirthDate ASC;

/* P 12 (EPage 50): */
SELECT

FirstName

, LastName

, FirstName || ’> ’> || LastName AS FullName
FROM

Employees;

/* P 13 (EPage 53): */
SELECT

OrderID

, ProductID

, UnitPrice

, Quantity

, UnitPrice * Quantity AS TotalPrice
FROM

[Order Details]
ORDER BY

OrderID

, ProductID;

/* P 14 (EPage 56): *x/
SELECT

COUNT (*) AS TotalCustomers
FROM

Customers;

/* P 15 (EPage 59): */
SELECT

MIN(OrderDate) AS FirstOrder
FROM

Orders;

/* P 16 (EPage 62): */

SELECT
Country

FROM
Customers

GROUP BY
Country;

/* P 17 (EPage 65): */
SELECT
ContactTitle
, COUNT(*) AS TotalContractTitle
FROM
Customers
GROUP BY
ContactTitle
ORDER BY
TotalContractTitle DESC;

/* P 18 (EPage): */
SELECT
p.-ProductID
,» Pp.ProductName
, S.CompanyName
FROM
Products p LEFT JOIN Suppliers s ON p.SupplierID = s.SupplierID;

/* P 19 (EPage 71): */
SELECT
OrderID
, date(OrderDate) AS OrderDate
, CompanyName
FROM
Orders LEFT JOIN Shippers ON Orders.ShipVia = Shippers.ShipperID
WHERE
OrderID < 10300
ORDER BY
OrderID;

/* P 20 (EPage 76) */
SELECT
CategoryName
, COUNT(*) AS Count
FROM
Categories JOIN Products ON Categories.CategoryID = Products.CategorylID
GROUP BY
CategoryName

ORDER BY
Count DESC;

/* P 21 (EPage 79) */
SELECT

Country

, City

, COUNT(*) AS TotalCustomers
FROM

Customers
GROUP BY

Country, City
ORDER BY

TotalCustomers DESC;

/* P 22 (EPage 82) */
SELECT

ProductID

, ProductName

, UnitsInStock

, ReorderLevel
FROM

Products
WHERE

UnitsInStock <= ReorderLevel
ORDER BY

ProductID;

/* P 23 (EPage 85) */
SELECT
ProductID
, ProductName
, UnitsInStock
, UnitsOnOrder
, ReorderLevel
, Discontinued
FROM
Products
WHERE
(UnitsInStock + UnitsOnOrder) <= ReorderLevel
AND Discontinued=’0’
ORDER BY
ProductID;

/* P 24 (EPage 88) */
SELECT

CustomerID
, CompanyName
, Region
FROM
Customers
ORDER BY
(CASE WHEN Region IS NULL THEN 1 ELSE O END), Region, CustomerID;

/* P 25 (EPage 92)
SELECT
ShipCountry
, AVG(Freight) AS AverageFreight
FROM
Orders
GROUP BY
ShipCountry
ORDER BY
AverageFreight DESC
LIMIT
3;

*

/

/* P 26 (EPage 97) */
SELECT
ShipCountry
, AVG(Freight) AS AverageFreight
FROM
Orders
WHERE
strftime(’4Y’, OrderDate) = ’1997’
GROUP BY
ShipCountry
ORDER BY
AverageFreight DESC
LIMIT
3;

/* P 28 (EPage 105) */
SELECT

ShipCountry

, AVG(Freight) AS AverageFreight
FROM

Orders
WHERE

OrderDate >= (SELECT datetime(julianday(MAX(OrderDate)) - 365) FROM Orders)
GROUP BY

ShipCountry
ORDER BY

AverageFreight DESC
LIMIT
3;

/* P 29 (EPage 110) */
SELECT
Orders.EmployeelD
, Employees.LastName
, Orders.OrderID
, Products.ProductName
, [Order Details].Quantity
FROM
Orders
LEFT JOIN Employees ON Orders.EmployeelD = Employees.EmployeelD
LEFT JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
LEFT JOIN Products ON [Order Details].ProductID = Products.ProductID
ORDER BY
Orders.OrderID, [Order Details].ProductID
LIMIT
20;

/* P 30 (EPage 113) */
SELECT
Customers.CustomerID AS Customers_CustomerID
, Orders.CustomerID AS Orders_CustomerID
FROM
Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
WHERE
Orders.CustomerID IS NULL
ORDER BY
Orders.CustomerID;

/* P 31 (EPage 117) */
SELECT
Customers.CustomerID AS Customers_CustomerID
, Orders.CustomerID AS Orders_CustomerID
FROM
Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
AND Orders.EmployeeID = 4
WHERE
Orders.CustomerID IS NULL
ORDER BY
Orders.CustomerID;

10

/* P 32 (EPage 121) */
SELECT

Customers.CustomerID

, Customers.CompanyName

, Orders.OrderID

, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM

Customers

JOIN Orders ON Customers.CustomerID = Orders.CustomerID

JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE

strftime(’%Y’, Orders.OrderDate) =’1998°

GROUP BY

Customers.CustomerID, Orders.OrderID
HAVING

TotalOrderAmount > 10000
ORDER BY

TotalOrderAmount DESC;

/* P 33 (EPage 126) */
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’4Y’, Orders.OrderDate) = 1998’
GROUP BY
Customers.CustomerID
HAVING
TotalOrderAmount > 15000
ORDER BY
TotalOrderAmount DESC;

/* P 34 (EPage 129) */
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice
* [Order Details].Quantity) AS TotalWithoutDiscount
, SUM([Order Details].UnitPrice
* [Order Details].Quantity * (1-[Order Details].Discount)) AS TotalWithDiscount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID

11

JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’4Y’, Orders.OrderDate) = 1998’
GROUP BY
Customers.CustomerID
HAVING
TotalWithDiscount > 15000
ORDER BY
TotalWithDiscount DESC;

/* P 35 (EPage 133) */
SELECT

Orders.EmployeelD

, Orders.OrderID

, date(Orders.0OrderDate)
FROM

Orders
WHERE

date(Orders.OrderDate, ’start of month’, ’+1 month’, ’-1 day’) = date(Orders.OrderDate)
ORDER BY

Orders.EmployeelD

, Orders.OrderID;

/* P 36 (EPage 136) */
SELECT

Orders.0OrderID

, COUNT(Orders.OrderID) AS TotalOrderDetails
FROM

Orders

JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
GROUP BY

Orders.0OrderID
ORDER BY

TotalOrderDetails
LIMIT

10;

/* P 37 (EPage 139) x/
/* To select a fixed number of random rows we can use */
SELECT
OrderID
FROM
Orders
ORDER BY
RANDOM ()
LIMIT
10;

12

/* To select a fixed percentage of random rows we can use */
SELECT
OrderID
FROM
Orders
ORDER BY
RANDOM ()
LIMIT
CAST(0.02 * (SELECT COUNT(*) FROM Orders) AS INTEGER);

/* P 38 (EPage 142) */
SELECT

OrderID

, Quantity

, COUNT(*) AS Number
FROM

[Order Details]
WHERE

Quantity >= 60
GROUP BY

OrderID, Quantity
HAVING

Number > 1;

/* P 39 (EPage 146) */
/* Using a CTE (common table expression) */
WITH PossibleOrderIDs AS (
SELECT

OrderID
FROM

[Order Details]
WHERE

Quantity >= 60
GROUP BY

OrderID, Quantity
HAVING

COUNT(*) > 1
)
SELECT

OrderID

, ProductID

, UnitPrice

, Quantity

, Discount
FROM

[Order Details]
WHERE

13

OrderID IN PossibleOrderIDs
ORDER BY

OrderID

, Quantity;

/* P 40 (EPage 149) */
For this problem we add the keyword DISTINCT in the SELECT statement in the subquery
in the provided SQL.

/* P 41 (EPage 152) */
SELECT

OrderID

, OrderDate

, RequiredDate

, ShippedDate
FROM

Orders
WHERE

ShippedDate >= RequiredDate
ORDER BY

OrderDate ASC;

/* P 42 (EPage 156) */
SELECT

Orders.EmployeelD

, Employees.LastName

, COUNT(*) As TotalLateOrders
FROM

Orders

JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
WHERE

ShippedDate >= RequiredDate
GROUP BY

Orders.EmployeelD

, Employees.LastName
ORDER BY

TotalLateOrders DESC;

/* P 43-47 (EPage 159) */
/* Using two CTE (common table expressions) */
WITH
-- Total orders
TotalNumber0fOrders AS (
SELECT
EmployeeID
, COUNT(*) AS TotalOrders

14

FROM
Orders
GROUP BY
EmployeeID
),
-— Late orders
TotalLateOrders AS (
SELECT
EmployeeID
, COUNT(*) AS TotalLateOrders
FROM
Orders
WHERE
ShippedDate >= RequiredDate
GROUP BY
EmployeeID

SELECT DISTINCT

Orders.EmployeelD

, Employees.LastName

, TotalOrders

, TotalLateOrders

, ROUND(CAST(TotalLateOrders AS FLOAT)/TotalOrders, 2) AS PercentLateOrders
FROM

Orders

JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

JOIN TotalNumberOfOrders ON Orders.EmployeelID = TotalNumberOfOrders.EmployeelD

LEFT JOIN TotalLateOrders ON Orders.EmployeeID = TotalLateOrders.EmployeelID
ORDER BY

PercentLateOrders DESC;

/* P 48-49 (EPage 177) */
WITH CustomerOrderSizes AS (
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’%Y’, Orders.OrderDate) = ’1998°
GROUP BY
Customers.CustomerID
ORDER BY
Customers.CustomerID

15

SELECT
CustomerID
, TotalOrderAmount
, CASE
WHEN ((TotalOrderAmount > 0) AND (TotalOrderAmount <= 1000)) THEN ’low’
WHEN ((TotalOrderAmount > 1000) AND (TotalOrderAmount <= 5000)) THEN ’medium’
WHEN ((TotalOrderAmount > 5000) AND (TotalOrderAmount < 10000)) THEN ’high’
ELSE ’very high’
END AS CustomerGroup
FROM
CustomerOrderSizes
ORDER BY
CustomerID;

/* P 50 (EPage 185) */
WITH CustomerOrderSizes AS (
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’%Y’, Orders.OrderDate) = ’1998°
GROUP BY
Customers.CustomerID
ORDER BY
Customers.CustomerID
),
CustomerGroups AS (
SELECT
TotalOrderAmount
, CASE
WHEN ((TotalOrderAmount > 0) AND (TotalOrderAmount <= 1000)) THEN ’low’
WHEN ((TotalOrderAmount > 1000) AND (TotalOrderAmount <= 5000)) THEN ’medium’
WHEN ((TotalOrderAmount > 5000) AND (TotalOrderAmount < 10000)) THEN ’high’
ELSE ’very high’
END AS CustomerGroup
FROM
CustomerOrderSizes

SELECT
CustomerGroup
, COUNT(*) AS TotalInGroup
, ROUND(CAST(COUNT (*) AS DOUBLE)/(SELECT COUNT(*) FROM CustomerGroups), 2)

16

AS PercentagelnGroup
FROM
CustomerGroups
GROUP BY
CustomerGroup
ORDER BY
PercentageInGroup DESC;

/* P 51 (EPage 189) */
WITH CustomerOrderSizes AS (
SELECT
Customers.CustomerID
, Customers.CompanyName
, SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalOrderAmount
FROM
Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID
JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID
WHERE
strftime(’%Y’, Orders.OrderDate) = ’1998°
GROUP BY
Customers.CustomerID
ORDER BY
Customers.CustomerID
),
CustomerGroups AS (
SELECT
CustomerGroupName AS CustomerGroup
, TotalOrderAmount
FROM
CustomerOrderSizes
JOIN CustomerGroupThresholds ON (RangeBottom < TotalOrderAmount)
AND (TotalOrderAmount <= RangeTop)

SELECT
CustomerGroup
, COUNT(*) AS TotalInGroup
, ROUND (CAST (COUNT (*) AS DOUBLE)/(SELECT COUNT (*) FROM CustomerGroups), 2)
AS PercentagelnGroup
FROM
CustomerGroups
GROUP BY
CustomerGroup
ORDER BY
PercentageInGroup DESC;

/* P 52 (EPage 193) */

17

SELECT
Country

FROM
Suppliers

UNION

SELECT
Country

FROM
Customers

ORDER BY
Country;

/* P 53 (EPage 196) */
WITH
SupplierCountries AS (
SELECT DISTINCT
Country
FROM
Suppliers
),
CustomerCountries AS (
SELECT DISTINCT
Country
FROM
Customers
)
-- Using ideas from: http://www.sqlitetutorial.net/sqlite-full-outer-join/
SELECT
SupplierCountries.Country AS SupplierCountry
, CustomerCountries.Country AS CustomerCountry
FROM
SupplierCountries
LEFT JOIN CustomerCountries USING(Country)
UNION
SELECT
SupplierCountries.Country AS SupplierCountry
, CustomerCountries.Country AS CustomerCountry
FROM
CustomerCountries
LEFT JOIN SupplierCountries USING(Country)
WHERE
NOT ((SupplierCountry IS NULL) AND (CustomerCountry IS NULL));

/* P 54 (EPage 200) */

WITH

-- get suppliers countries (and count)
SupplierCountries AS (

SELECT

18

Country
, COUNT(*) AS TotalSuppliers
FROM
Suppliers
WHERE
Country IS NOT NULL
GROUP BY
Country
)
-- get customer countries (and count)
CustomerCountries AS (
SELECT
Country
, COUNT(*) AS TotalCustomers
FROM
Customers
WHERE
Country IS NOT NULL
GROUP BY
Country
)
-- get a union of all countries
AllCountries AS (
SELECT
Country
FROM
Suppliers
WHERE
Country IS NOT NULL
UNION
SELECT
Country
FROM
Customers
WHERE
Country IS NOT NULL
)
SELECT
ac.Country
, IFNULL(sc.TotalSuppliers, 0) AS TotalSuppliers
, IFNULL(cc.TotalCustomers, 0) AS TotalCustomers
FROM
AllCountries ac

LEFT JOIN SupplierCountries sc ON ac.Country = sc.Country
LEFT JOIN CustomerCountries cc ON ac.Country = cc.Country

ORDER BY
ac.Country;

/* P 55 (EPage 204) */

19

—-- Using ideas from:
-- https://www.xaprb.com/blog/2006/12/07/how-to-select-the-firstleastmax-row-per-group-in-sql/
WITH CountriesFirstOrder AS
(
-- get the first order date in each country
SELECT
ShipCountry
, MIN(OrderDate) AS FirstOrderDate
FROM
Orders
GROUP BY
ShipCountry
)
-— select the other information for this first order
SELECT
cfo.ShipCountry
, CustomerID
, OrderID
, date(OrderDate) AS OrderDate
FROM
CountriesFirstOrder cfo
LEFT JOIN Orders o ON (cfo.FirstOrderDate = o.0rderDate)
AND (cfo.ShipCountry = o.ShipCountry)
ORDER BY
cfo.ShipCountry;

/* P 56 (EPage 209) */
SELECT

io.CustomerID

, 10.0rderID AS InitialOrderID

, date(io.OrderDate) AS InitialOrderDate

, 80.0rderID AS NextOrderID

, date(so.0OrderDate) AS NextOrderDate

, CAST(julianday(so.0OrderDate) - julianday(io.OrderDate) AS INTEGER) AS DaysBetween
FROM

-— io = initial order

Orders io

-- so = second order

JOIN Orders so ON (io.CustomerID = so.CustomerID) AND (io.OrderID < so.0rderID)
WHERE

DaysBetween <= 5;

/* P 57 (EPage 217) SQLite does not currently support windowing functions */

20

