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Chapter 1 (Introduction)

Notes on a Market Neutral Strategy

In this section of these notes we outline and derive some basic formulas used in pair trading
for easy reference. Some of these ideas are discussed in the book while others are not. To
begin we recall the stock-market line (SML) for the “p”th security is defined by

rp = βrm + θp , (1)

here rp could be the rate of return from a specific stock or from a portfolio of stocks and
where β is computed from

β =
cov(rp, rm)

var(rm)
. (2)

When we talk about market-neutral strategies we are seeking strategies where the calculated
β coefficient above β ≈ 0. From the manner in which β is calculated this means that we
seek a portfolio with returns rp such that

cov(rp, rm) ≈ 0 .

If we consider the simplest portfolio possible, that of one, consisting of just two stocks A
and B where each stock has its own CAPM decomposition given by

rA = βArm + θA

rB = βBrm + θB ,

and our portfolio will consist of a fraction, wA, of our total investment dollars X0 in the
A instrument and of wB = 1 − wA fraction of our total investment dollars X0 in the B
instrument. This means that the amount of money invested in A is XA = wAX0 and in B is
XB = wBX0. With this partition of X0 into XA and XB the rate of return on the portfolio
is given by [3]

rAB = wArA + wBrB

= wA(βArm + θA) + wB(βBrm + θB)

= (wAβA + wBβB)rm + wAθA + wBθB .

Thus we see that the coefficient of the market return rm in this two stock portfolio is given
by wAβA+wBβB. When we say that this portfolio is market-neutral we are stating that this
coefficient is zero. We can construct a market-neutral portfolio by selecting the coefficients
wA and wB such that we enforce this constraint. That is

wAβA + wBβB = 0 ,

or
wA

wB

= −
βB

βA

. (3)

Since with a pair trade wB = 1 − wA we can solve for wA (equivalently wB) in terms of the
factor exposures βA and βB. When we do this we find

wA = −
βB

βA − βB

(4)

β



Using these formulas we can derive the number of shares to transact in A and B simply
by dividing the dollar amount invested in each by the current price of the security. The
formulas for this are

NA =
XA

pA
=

wAX0

pA
= −

(

βB

βA − βB

)

X0

pA
(6)

NB =
XB

pB
=

wBX0

pB
=

(

βA

βA − βB

)

X0

pB
. (7)

This means that given the number of shares we will order for A (or B) to get a market-
neutral portfolio are directly related to their factor exposures βA and βB using the above
formulas. An example MATLAB script that demonstrates some of the equations is given in
sample portfolio return.m.



Chapter 2 (Time Series)

Notes on time series models

See the MATLAB file ts plots.m for code that duplicates the qualitative time series pre-
sented in this section of the book. The results of running this code are presented in Figure 1.
These plots agree qualitatively with the ones presented in the book.

Notes on model choice (AIC)

In the R file dup figure 2 5.R we present code that duplicates figures 2.5A and 2.5B from
the book. When this code is run the result is presented in Figure 2. We see the same
qualitative figure as in the book, namely that the AIC is minimized with 4 parameters
(three AR coefficients and the mean of the time series). While not explicitly stated in the
book, I’m given the understanding that the author feels that the use of the AIC to be very
important in selecting the time series model. In fact if a time series is fit using R with the
arima command one of the outputs is the AIC. This makes it very easy to use this criterion
to select the model we should use to best predict future returns with.

Notes on modeling stock prices

In this subsection of these notes we attempted to duplicate the qualitative behavior of the
results presented in this chapter on modeling stock prices of GE. To do this we extracted
approximately 100 closing prices (data was extracted over the dates from 01/02/2010 to
06/04/2010 which yielded 107 data points) and performed the transformation suggested in
this section of the book. This is performed in the R code dup modeling stock prices.R and
when that script is run we obtain the plots shown in Figure 3. From the plots presented there
it looks like the normal approximation for the returns of GE is a reasonable approximation.
The plots in Figure 3 also display the well know facts that the tails of asset returns are not
well modeled by the Gaussian distribution. In fact the returns of GE over this period appear
to be very volatile.
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Figure 1: A duplication of the various time series model discussed in this chapter. Top
Row: A white noise time series and a MA(1) time series. Bottom Row: An AR(1) time
series and a random walk time series.
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Figure 2: The AIC for model selection. Left: The time series generated by an AR(3)
model. Right: The AIC for models with various orders plotted as a function of parameters
estimated.
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Figure 3: Modeling of the returns of the stock GE. Top Row: The log price time series of
the closing prices of GE. The first difference of these log prices (the daily returns). Bottom
Row: A qq-plot of GE daily returns and the autocorrelation function of the returns. Note
that from the qq-plot we see that for “small” returns a normal approximation is quite good
but that the extreme returns observed don’t fit very well with a normal model. Perhaps
options on GE were mispriced during this time frame.



Chapter 3 (Factor Models)

Notes on arbitrage pricing theory (APT)

We simply note here that given an explicit specification of the k factors we desire to use in
our factor model (and correspondingly their returns ri) one can compute the factor expo-
sures (β1, β2, · · · , βk) and the idiosyncratic return re simply by using multidimensional linear
regression. Namely we seek a linear model for r using ri as

r = β1r1 + β2r2 + β3r3 + · · ·+ βkrk + re . (8)

Thus the technique linear regression enables us to determine the factor exposures β and
the idiosyncratic returns re for each stock. As an example of this technique, one might
consider using a sector “spdr” based factor model. This means that given a particular
instrument we will linearly regress its close-to-close log-return on the “sector spdrs”,

XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV, XLY,

using Equation 8. In this case the indexes 1, 2, · · · , k refer to the sector spdrs in that, ri is
the close-to-close log-return of the i-th sector spdr. Alternative factor models might be

• a factor model based on a broad market index (like SPX), a technology index (like
NDX), and a small cap index (like RUT)

• a factor model based on a broad market index (like SPX), a bond ETF fund, and a
gold ETF fund

• a factor model based purely on statistics (eigenvector/eigenvalue factor model).

We explicitly specify an implementation for the three index factor model (NDX/SPX/RUT)
in the following python code

• In the code load factor exposure matrix.py we compute the factor exposure matrix
X.

• In the code load factor cov matrix.py we compute the factor covariance matrix V.

• In the code load specific variance matrix.py computes the specific variance ma-
trix ∆.

The factor covariance matrix

With the following APT factor decompositions for two instruments A and B

rA =
k

∑

i=1

βA,iri + rA,e

rB =
k

∑

j=1

βB,jrj + rB,e ,



then we have that the product of the two returns rArB is given by

rArB =
k

∑

i=1

k
∑

j=1

βA,iβB,jrirj + rA,e

k
∑

j=1

βB,jrj + rB,e

k
∑

i=1

βA,iri + rA,erB,e .

To compute the covariance of rA and rB we take the expectation of the above expression
and use the facts that

E

[

rA,e

k
∑

j=1

βB,jrj

]

= E

[

rB,e

k
∑

i=1

βA,iri

]

= E[rA,erB,e] = 0 ,

since rA,e and rB,e are assumed to be zero mean uncorrelated with the factor returns ri, and
uncorrelated with idiosyncratic returns from different stocks. Using these facts we conclude
that

cov(rA, rB) =
k

∑

i=1

k
∑

j=1

βA,iβB,jE[rirj ]

=
[

βA,1 βA,2 · · · βA,k

]











E[r21] E[r1r2] · · · E[r1rk]
E[r2r1] E[r22] · · · E[r2rk]

...
...

. . .
...

E[rkr1] E[rkr2] · · · E[r2k]





















βB,1

βB,2
...

βB,k











= eAVeTB ,

where eA = (βA,1, βA,2, · · · , βA,k) and eB = (βB,1, βB,2, · · · , βB,k) are the vectors of factor
exposures for the A and B-th security respectively and V is the factor covariance matrix.

Using a factor model to calculate the risk on a portfolio

Recall that the total return variance on our portfolio is the sum of two parts, a common
factor variance and a specific variance as

σ2
ret = σ2

cf + σ2
specific . (9)

Arbitrage pricing theory (APT) tells us that the common factor covariance is computed from
eTp V ep where ep is the factor exposure profile of the entire portfolio. Thus to evaluate the
common factor variance for a portfolio we need to be able to compute the factor exposure
ep for the portfolio. As an example, in the simplest case of a two stock portfolio with a hA

weight in stock A and a hB weight in stock B then we have a factor exposure vector ep given
by the weighted sum of the factor exposure profiles of A and B as

ep = hAeA + hBeB .

Where if we assume a two factor model eA = (βA,1, βA,2) is the factor exposure profile of
stock A and eB = (βB,1, βB,2) is the factor exposure profile of stock B. Using the above, we
have that

ep = (hAβA,1 + hBβB,1, hAβA,2 + hBβB,2)

=
[

hA hB

]

[

βA,1 βA,2

βB,1 βB,2

]

= hX .

Where the vector h above is the “holding” or weight vector that contains the weights of each



Notes on the calculation of a portfolios beta

As discussed in the text the optimal hedge ratio λ between our portfolio p and the market
m is given by

λ =
cov(rp, rm)

var(rm)
. (10)

To use APT to compute the numerator in the above expression requires a bit of finesse or
at least the expression presented in the book for λ seemed to be a jump in reasoning since
some of the notation used there seemed to have changed or at least needs some further
explanation. We try to elucidate on these points here. In general, the original portfolio
p will consist of a set of equities with a weight vector given by hp. This set of stocks is
to be contrasted with the market portfolio which may consist of stocks that are different
than symbols in the portfolio p. Lets denote the factor exposure matrix of the stocks in the
portfolio as Xp which will be of size Np × k and the factor exposure matrix of the market as
Xm which will be of size Nm × k. Here where Np is the number of stocks in our portfolio,
Nm is the number of stocks in the market portfolio, and k is the number of factors in our
factor model. Note the dimensions of Xm and Xp maybe different. Then using ideas from
this and the previous section means that the common factors variance σ2

cf can be expressed
by multiplying ep = hpXp on the left and em = hmXm on the right of the common factor
covariance matrix V as

σ2
cf = hpXpV(hmXm)

T = hpXpVXT
mh

T
m .

Now even if the dimensions of Xm and Xp are different the product above still is valid. The
specific variance σ2

specific needed to evaluate cov(rp, rm) in this case is given by

σ2
specific = hp,common∆commonh

T
m,common ,

where ∆common is a diagonal matrix with the specific variances of only the stocks that are in
common to both the original portfolio and the market portfolio. If there are no stocks that
meet this criterion then this entire term is zero. Another way to evaluate this numerator is to
simply extend the holding vectors of both the portfolio and the market to include all stocks
found in either the original and the market portfolios. In that case the portfolio holdings
vector, hp, would have zeros in places where stocks are in the market but are not in our
portfolio and the market holdings vector, hm, would have zeros in places where there are
stocks that are in our portfolio but not in the market portfolio.

Notes on tracking basket design

In this section of these notes we elucidate on the requirements to design a portfolio p that will
to track the market m as closely as possible. Using APT to evaluate the variance of rm− rp,
we are led to look for a holding vector hp such that minimizes the following expression

var(rm − rp) = var(rm) + var(rp)− 2cov(rm, rp)

= hmXVXThT
m + hm∆hT

m (11)

+ hpXVXThT
p + hp∆hT

p (12)

− 2(hmXVXThT
p + hm∆hT

p ) . (13)



Here the three parts represented by the terms on lines 11, 12 and 13 above are the market
variance, the tracking basket variance, and the covariance between the market and the
portfolio respectively. We can also write this objective function as

var(rm − rp) = hmXVXThT
m + hpXVXThT

p − 2hmXVXThT
p (14)

+ hm∆hT
m + hp∆hT

p − 2hm∆hT
p (15)

The terms on lines 14 are the common factor terms and the terms on line 15 are the specific
variance terms. Now it might be hard to optimize this expression directly but we can derive
a very useful practical algorithm by recalling that the contribution to the total variance
form the common factor terms on line 14 is normally much larger in magnitude than the
contribution to the total variance from the specific terms on line 15. Thus making the
common factor terms as small as possible will be more important and make more of an
impact in the total minimization than making the specific variance terms small.

With this motivation, observe that if we select a portfolio holding vector hp, such that

hpX = hmX , (16)

then the combination of the three terms hmXVXThT
m, hpXVXThT

p and −2hmXVXThT
p on

line 14 vanish (leaving a zero common variance) and we are left with the following minimum
variance portfolio design criterion

min
hp:hpX=hmX

(hm∆hT
m + hp∆hp − 2hm∆hT

p ) .

This remaining problem is a quadratic programming problem with linear constraints. As a
practical matter we will often be happy (and consider the optimization problem solved) when
we have specified a portfolio that satisfies hpX = hmX. As a notational comment, since the
definition of the factor exposures of the portfolio and the market are given by ep = hpX and
em = hmX the statement made by Equation 16 is that the factor exposures of the tracking
portfolio should equal the factor exposures of the market.

If the specific factors selected for the columns of X are actual tradable instruments then
the criterion hmX = hpX, explicitly states how to optimally hedge the given portfolio, p, so
that it will be market neutral. To see this note that the holding vector hp has components,
hi,p, that represent the percent of money held in the ith equity. If we multiply the portfolio
holding vector hp by the dollar value of the portfolio D we get

Dhp = (Dh1,p, Dh2,p, Dh3,p, · · · , DhN,p) = (N1p1, N2p2, N3p3, · · · , NNpN) ,

whereNi and pi represents the number of shares and current price of the ith security and there
are N total securities in our universe. If the columns of our factor exposure matrix represent
actual tradable instruments, then each component of the row vector DhpX represents the

exposure to the given security (factor). If the elements of X are β
(j)
i we can write the jth

component of the product DhpX (representing the exposure of this portfolio to the j factor)
as

(DhpX)j =
N
∑

i=1

Nipiβ
(j)
i ,

for 1 ≤ j ≤ k where k is the number of factors. Using hpX = hmX, since the factors are



we do this the combined holdings of the original portfolio and the newly constructed market
portfolio will be market neutral and will have a very small variance.

For example, assume we have only three factors k = 3 and we take as the market holding
vector hm a vector of all zeros except for the three elements that correspond to the tradable
factors. If these three tradable factors are located at the indices i1, i2 and i3 among all of
our N tradable securities then we get for the jth component of DhmX

(DhmX)j = D

N
∑

i=1

hi,mβ
(j)
i = D(hi1,mβ

(j)
i1

+ hi2,mβ
(j)
i2

+ hi3,mβ
(j)
i3
)

= Ni1pi1β
(j)
i1

+Ni2pi2β
(j)
i2

+Ni3pi3β
(j)
i3

.

Here Nij is the number of shares in the jth factor and specifying its value is equivalent to
specifying the non-zero components of hm, and pij is the current price of the j factor. If we
write out DhpX = DhmX for the three factors j = 1, 2, 3 we get three linear equations.

N
∑

i=1

Nipiβ
(1)
i = Ni1pi1β

(1)
i1

+Ni2pi2β
(1)
i2

+Ni3pi3β
(1)
i3

N
∑

i=1

Nipiβ
(2)
i = Ni1pi1β

(2)
i1

+Ni2pi2β
(2)
i2

+Ni3pi3β
(2)
i3

N
∑

i=1

Nipiβ
(3)
i = Ni1pi1β

(3)
i1

+Ni2pi2β
(3)
i2

+Ni3pi3β
(3)
i3

.

Since each of the given factors is a tradable we expect that the β values above will be 1 or
0. This is because when we do the factor regression

ri1 =

k
∑

j=1

β
(j)
i1
ri + ǫi1

on the i1 security the only non-zero β is the one for the i1 security itself and its value is 1.
Thus the system above decouples into three scalar equations

N
∑

i=1

Nipiβ
(1)
i = Ni1pi1

N
∑

i=1

Nipiβ
(2)
i = Ni2pi2

N
∑

i=1

Nipiβ
(3)
i = Ni3pi3 ,

for the unknown values of Ni1 , Ni2 and Ni3 . These are easily solved. Buying a portfolio
of the hedge instruments in share quantities with signs opposite that of Ni1 , Ni2 and Ni3

computed above will produced a market neutral portfolio and is the optimal hedge.
As a very simple application of this theory we consider a single factor model where the

only factor is the underlying market and a portfolio with only a single stock A. We assume



We then ask what the optimal number of shares NB of a stock B, trading at pB and with
a market exposure of βB, we would need to order so that the combined portfolio is market
neutral. Using the above equations we have

NApAβA = NBpBβB so NB =
βApA
βBpB

NA .

Thus we would need to sell NB shares to get a market neutral portfolio. This is the same
result we would get from Equation 7 (with a different sign) when we replace X0 with what
we get from Equation 6. The fact that the sign is different is simply a consequence of the
conventions used when setting up each problem.



Chapter 4 (Kalman Filtering)

Notes on the text

A very nice book, that goes into Kalman filtering in much more detail is [2].

the scalar Kalman filter: optimal estimation with two measurements of a con-
stant value

In this section of these notes we provide an alternative an almost first principles derivation
of how to combine two estimate of an unknown constant x. In this example here we assume
that we have two scalar measurements yi of the scalar x each with a different uncertainty
σ2
i . Namely,

zi = x+ vi with vi ∼ N(0, σ2
i ) .

To make these results match the notation in the book the first measurement z1 corresponds
to the a priori estimate x̂i|i with uncertainty σ2

ε,i and the second measurement z2 corresponds
to yi with uncertainty σ2

η,i. We desire our estimate x̂ of x to be a linear combination of the
two measurements zi for i = 1, 2. Thus we take x̂ = k1z1 + k2z2, and define x̃ to be our
estimate error given by x̃ = x̂−x. To make our estimate x̂ unbiased requires we set E[x̃] = 0
or

E[x̃] = E[k1(x+ v1) + k2(x+ v2)− x] = 0

= E[(k1 + k2)x+ k1v1 + k2v2 − x]

= E[(k1 + k2 − 1)x+ k1v1 + k2v2]

= (k1 + k2)x− x = (k1 + k2 − 1)x = 0 ,

thus this requirement becomes k2 = 1 − k1 which is the same as the books Equation 1.0-4.
Next lets pick k1 and k2 (subject to the above constraint such that) the error as small as
possible. When we take k2 = 1− k1 we find that x̂ is given by

x̂ = k1z1 + (1− k1)z2 ,

so x̃ is given by

x̃ = x̂− x = k1z1 + (1− k1)z2 − x

= k1(x+ v1) + (1− k1)(x+ v2)− x

= k1v1 + (1− k1)v2 . (17)

Next we compute the expected error or E[x̃2] and find

E[x̃2] = E[k2
1v

2
1 + 2k1(1− k1)v1v2 + (1− k1)

2v22]

= k2
1σ

2
1 + 2k1(1− k1)E[v1v2] + (1− k1)

2σ2
2

= k2
1σ

2
1 + (1− k1)

2σ2
2 ,

since E[v1v2] = 0 as v1 and v2 are assumed to be uncorrelated. This is the books equation 1.0-
5. We desire to minimize this expression with respect to the variable k1. Taking its derivative
with respect to k1, setting the result equal to zero, and solving for k1 gives

σ2



Putting this value in our expression for E[x̃2] to see what our minimum error is given by we
find

E[x̃2] =

(

σ2
2

σ2
1 + σ2

2

)2

σ2
1 +

(

σ2
1

σ2
1 + σ2

2

)2

σ2
2

=
σ2
1σ

2
2

(σ2
1 + σ2

2)
2

(

σ2
2 + σ2

1

)

=
σ2
1σ

2
2

(σ2
1 + σ2

2)

=
1

1
σ2
1

+ 1
σ2
2

=

(

1

σ2
1

+
1

σ2
2

)−1

,

which is the books equation 1.06. Then our optimal estimate x̂ take the following form

x̂ =

(

σ2
2

σ2
1 + σ2

2

)

z1 +

(

σ2
1

σ2
1 + σ2

2

)

z2 .

Some special cases of the above that validate its usefulness are when each measurement
contributes the same uncertainty then σ1 = σ2 and we see that x̂ = 1

2
z1+

1
2
z2, or the average

of the two measurements. As another special case if one measurement is exact i.e. σ1 = 0,
then we have x̂ = z1 (in the same way if σ2 = 0, then x̂ = z2). These formulas all agree with
similar ones in the text.

Notes on the filtering the random walk

In this section of these notes we consider measurements and dynamics of a security as
it undergoes the random walk model. To begin, we write the sequence of measurement,
state propagation, measurement, state propagation over and over again until we reach the
discrete time t where we wish to make an optimal state estimate denoted xt. Denoting
the measurements by yt and true states by xt this discrete sequence of equations under the
random walk looks like

y0 = x0 + e0 0th measurement

x1 = x0 + ε1 propagation

y1 = x1 + e1 1st measurement

x2 = x1 + ε2 propagation

y2 = x2 + e2 2nd measurement

x3 = x2 + ε3 propagation

y3 = x3 + e3 3rd measurement

x4 = x3 + ε4 propagation
...

yt−1 = xt−1 + et−1 ”t− 1”th measurement

xt = xt−1 + εt propagation

yt = xt + et our final measurement.

Here xt is the log-price and y is a measurement of the “fair” log-price both at time t. Now we
will use all of the above information to estimate the value of xt (and actually xl for l ≤ t).



measurements y0, y1, · · · , yt but only 2t + 1 equations. To estimate the values of xt for all
t we can use the method of least squares. When et and εt come from a zero-mean normal
distribution with equal variances this procedure corresponds to ordinary least squares. If
et and εt are have different variances we need to use the method of weighted least squares.
To complete this discussion we assume that the process noise and the measurement noise
are the same so that we can use ordinary least squares and then write the above system as
the matrix system











































y0
0
y1
0
y2
0
y3
0
...

yt−1
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yt
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1 0 0 0 0 0
−1 1 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 0 1 0 0
0 0 −1 1 0
0 0 0 1 0
0 0 0 −1 1
...

. . .
. . .

. . .
...

0 1 0
0 −1 1

0 0 0 1
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e0
−ε1
e1
−ε2
e2
−ε3
e3
−ε4
...

et−1

−εt
et











































.

Here the pattern of the coefficient matrix in front of the vector of unknowns, denoted by H ,

is constructed from several blocks like

[

1 0
−1 1

]

, placed on top of each other but translated

one unit to the right. This matrix can be created for any integer value of t using the
MATLAB function create H matrix.m. Once we have the H matrix the standard least
square estimate of the vector x is obtained by computing x̂ = (HTH)−1HTy, where y is the
vector left-hand-side in the above matrix system. Since the y vector has zeros at every other
location these zeros make the numerical values in the corresponding columns of the product
matrix (HTH)−1HT irrelevant since their multiplication is always zero. Thus the result of
the product of (HTH)−1HT and the full y is same as the action of the matrix (HTH)−1HT

with these zero index columns removed on the vector y again with the zeros removed. Thus
the discussed procedure for estimating x is very inefficient since all the computations involved
in computing the unneeded columns are unnecessary. An example to clarify this may help.
If we take t = 2 in the above expressions and compute (HTH)−1HT we get the matrix

5/8 -3/8 1/4 -1/8 1/8

1/4 1/4 1/2 -1/4 1/4

1/8 1/8 1/4 3/8 5/8

Now y when t = 2 in this case is given by

y =













y0
0
y1
0
y2













.



Then due to the zeros in the vector y the product x̂ = (HTH)−1HTy is equivalent to the
simpler product





x̂0

x̂1

x̂2



 =





5/8 1/4 1/8
1/4 1/2 1/4
1/8 1/4 5/8









y0
y1
y2



 .

If we express the above matrix product as a sequence of scalar equations we have

x̂0 =
5

8
y0 +

1

4
y1 +

1

8
y2

x̂1 =
1

4
y0 +

1

2
y1 +

1

4
y2

x̂2 =
1

8
y0 +

1

4
y1 +

5

8
y2 .

Note that this formulation gives us estimates of all components of x and that the estimates of
data points earlier in time depend on measurements later in time making them not practical
for a fully causal algorithm (smoothing is a possibility however). From the above we see that
the optimal estimate of x2 is given by

x̂2 =
1

8
y0 +

1

4
y1 +

5

8
y2 ,

this agrees with the result in the book. Thus the elements of (HTH)−1HT eventually become
weights to which we multiply the individual measurements yi. When we take t = 3 and
remove the columns (HTH)−1HT corresponding to the zero elements of y we get a matrix
of weights

x̂ =









13/21 5/21 2/21 1/21
5/21 10/21 4/21 2/21
2/21 4/21 10/21 5/21
1/21 2/21 5/21 13/21









ỹ ,

where ỹ has the same elements of y but with the zeros removed. Performing one more
example, when we take t = 4 and remove the columns (HTH)−1HT corresponding to the
zero elements of y we get a matrix of weights

x̂ =













34/55 13/55 1/11 2/55 1/55
13/55 26/55 2/11 4/55 2/55
1/11 2/11 5/11 2/11 1/11
2/55 4/55 2/11 26/55 13/55
1/55 2/55 1/11 13/55 34/55













ỹ .

See the MATLAB file equal variance kalman weights.m where we calculate these matri-
ces. The weights used to optimally estimate xt are given by the last row in the above two
matrices. Thus as we add samples the amount of computation needed to estimate xt in this
manner increases. The reformulation of this least squares estimation of xt into a recursive
algorithm that avoids forming these matrices and requiring all of this work is one of the
benefits obtained when using the time domain Kalman filtering framework.

If we recognize from the examples above that the effect in the estimate of xt on observed
past data points decays rather quickly and since the probability distributions above are



of t, form the matrix (HTH)−1HT once to compute a set of constant weights and simply
use these weights into the future. It can be shown that for a general time t the weight wi to
apply to yi in the approximation

x̂t = w0yt + w1yt−1 + w2yt−2 + · · ·+ wt−1y1 + wty0 , (18)

are given by

(w0, w1, w2, · · · , wt−1, wt) =

(

F2(t+1)−1

F2(t+1)
,
F2(t+1)−3

F2(t+1)
,
F2(t+1)−5

F2(t+1)
, · · · ,

F3

F2(t+1)
,

F1

F2(t+1)

)

.

If we let t → ∞ these weights go to

(w0, w1, w2, · · · , wt−1, wt) =

(

1

g
,
1

g3
,
1

g5
, · · · ,

1

g2t−1
,

1

g2t+1

)

,

where g = 1+
√
5

2
≈ 1.6180 is the golden ratio. If we filter under the assumption of large t we

can save a great deal of computation by avoiding the entire computation of (HTH)−1HTy
and simply using these golden ratio based (and fixed) weights. This will be explored in the
next section.

Notes on the example of smoothing the Standard & Poor index

In this section of these notes we discuss the application of Kalman filtering a random walk to
the log prices of the SPY ETF. Based on discussions from the previous section if we assume
t ≫ 1 and recognize that the golden ratio weights wt = 1

g2t+1 decay exponentially with t
we can simply choose to truncate the weights after some point and our Kalman filter then
becomes as a weighted sum of log prices as expressed in Equation 18. Thus in this section we
get price data on the ETF SPY, take the logarithm, and filter these using the top n weights.
If we wish to perform coarser smoothing on our data, since a down-sampled random walk
is still a random walk (but with a larger innovation variance) we can apply the formula in
Equation 18 on every other data point and duplicate the figure “kalman smoothing of a
random walk”.

We can implement coarser Kalman filtering by any number of days very easily using
the MATLAB filter function by taking the default golden ratio weights above and then
inserting a fixed number of zeros in between each element. We can produce the the new vector
of filter weights with the following MATLAB code (when we want 2 days of smoothing)

N_ds = 2; % want this many days of smoothing

wts_ds = [];

for ii=1:length(wts)

wts_ds = [wts_ds,wts(ii)];

for jj=1:N_ds-1, % put this many zeros into our filter

wts_ds = [wts_ds,0];

end

end

Using the vector wts ds we can then directly filter the log prices with the filter func-
tion. This procedure is implemented in the MATLAB script filter SPY.m, which when run
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Figure 4: A duplication of the random walk smoothing of SPY using the simplest Kalman fil-
ter model. How the MATLAB filter function process data results in the initial discrepancy
between the log prices and the filtered values.



Chapter 5 (Overview)

Notes on cointegration: the error correction representation

As a link to the real world of tradables it is instructive to note that the nonstationary series
xt and yt that we hope are cointegrated and that we will trade based on the signal of are the
log-prices of the A and B securities

xt = log(pAt ) (19)

yt = log(pBt ) . (20)

Under this realization the error correction representation of cointegration given by

xt − xt−1 = αx(xt−1 − γyt−1) + εxt

yt − yt−1 = αy(xt−1 − γyt−1) + εyt ,

is a statement that the two returns of the securities A and B are linked via the stationary
error correction term xt−1 − γyt−1. This series is so important it is given a special name and
called the spread. Notice that in the error correction representation spread series affects the
return of A and B via the coefficients αx and αy called the error correction rates for xt and
yt. In fact we must have αx < 0 and αy > 0 (see the Matlab script cointegration sim.m).
The fact that it should be stationary might give a possible way to find the γ parameter in
cointegration. Simply use stationarity tests on the spread time series for various values of γ
in some range and pick the value of γ that makes the spread series “most” stationary. We
expect that the spread time series to reach some “long run equilibrium” which is to mean
that xt − γyt oscillates about a mean value µ or

xt − γyt ∼ µ as t → ∞ .

If we can take the approximation above as an equality we see that using Equations 19 and 20
give

log(pAt )− γ log(pBt ) = µ ,

or solving for pBt in terms of pAt we find

pAt = eµ(pBt )
γ , (21)

is the long run price relationship. The error correction representation is very easy to sim-
ulate. In the MATLAB function cointegration sim.m we duplicate the books figures on
cointegration. When that code is run it generates plots as shown in Figure 5.

Notes on cointegration: the common trends model

Another characterization of cointegration is the so called common trends model, also
known as the Stock-Watson characterization where the two series we assume are cointe-
grated are represented as

xt = nxt
+ εxt

y = n + ε .
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Figure 5: A demonstration of two cointegrated series. See the text for details.

In this formulation, to have the above equations represent prices in our tradable universe
the series xt is the given stocks log-price i.e. xt = log

(

pAt
)

, which we have been assuming is
a nonstationary random walk like term, the series nxt

is the nonstationary common factor
“log-price” (such that the first difference of nxt

is the common factor return), and εxt
is the

idiosyncratic log-price (again such that the first difference of εxt
is the idiosyncratic return)

which we assume is stationary. If we desire that some linear combination of xt and yt be a
fully stationary series when we compute xt − γyt we find

xt − γyt = (nxt
− γnyt) + (εxt

− γεyt) .

Thus to be stationary means that we require

nxt
− γnyt = 0 , (22)

or in terms of prices that the common factor log-prices are the same up to a proportionality
constant γ. This condition is a bit hard to work with and we will see simplified criterion
below.

Notes on applying the cointegration model

In this section of these note we make some comments on how to apply the theory of coin-
tegration to trade pairs of stocks. We focus on what has been discussed in this text and
then at the end make some comments about alternative techniques discussed in other books.
As a first step we select a pair of stocks to potentially trade and compute the cointegration
coefficient γ for that pair. Methods to select the exact pairs to trade will be discussed in
the following chapter on Page 25. Then we trade based on the instantaneous value of the
spread defined by

spreadt ≡ log(pAt )− γ log(pBt ) . (23)

The basis for this decision is the fundamental fact that we expect the right-hand-side of the
above expression to be a constant value (perhaps very slowly changing) and a deviation term
that is mean reverting. That is our model for price movement between the two securities A
and B is



How well the following trading strategy will work depends on whether this model holds in
the future. The above Equation 24 expresses log(pAt ) as a linear function of log(pBt ). This
motivates one procedure for estimating γ, µ, and σ2

ε that of using linear regression on log
prices see Page 29.

When the spread time series is at a “historically” large value (of either sign) we construct
a portfolio to take advantage of the fact that we expect the value of this expression to mean
revert. If we consider a portfolio p long one dollar share of A and short γ dollar shares of B
then the return on this portfolio from time t to t+ i is given by

log

(

pAt+i

pAt

)

− γ log

(

pBt+i

pBt

)

= log(pAt+i)− log(pAt )− γ(log(pBt+i)− log(pBt ))

= log(pAt+i)− γ log(pBt+i)− (log(pAt )− γ log(pBt ))

= spreadt+i − spreadt .

From this expression we see that to maximize the return on this pair portfolio we wait until
the time t when the value of spreadt is “as small as possible” i.e. less that µ − nl,entry∆,
the mean spread, µ, minus some number, nl,entry, of spread standard deviations ∆. We get
out of the trade at the time t + i when the value of spreadt+i is “as large as possible” i.e.
larger than µ+nl,exit∆, for some other number, nl,exit. The pairs trading strategy is then
summarized as

• If we find at the current time t that

spreadt < µ− nl,entry∆ , (25)

we buy shares in A and sell shares in B in the ratio of NA : NB = 1: γ, and wait to
exit the trade at a time t+ i when

spreadt+i > µ+ nl,exit∆ . (26)

Here nl,entry and nl,exit are long spread entry and exit threshold parameters respectively.

• If instead we find at the current time t that

spreadt > µ+ ns,entry∆ , (27)

we do the opposite trade. That is, we sell shares in A and buy shares in B in the ratio
NA : NB = 1: γ, and wait to exit the trade until the time t+ i when

spreadt+i < µ− ns,exit∆ . (28)

Here ns,entry and ns,exit are short spread entry and exit threshold parameters respec-
tively.

Now if we buy NA shares of A and NB shares of B in the ratio 1 : γ i.e. NA : NB = 1: γ this
means that we require

NA

NB

=
1

γ
, (29)

or



Using these same ideas, we can also determine a spread based stop loss in a similar manner.
For example, if at the time t we determine via Equation 25 that we would like to be long a
unit of spread, then by picking a stop loss spread threshold, nsl, at the point we enter the
trade we can evaluate the value of

spreadt − nsl∆ .

If at any point during the trade of this spread unit if the current spread value falls below
this value i.e. spreadt+i < spreadt − nsl∆, we should assume that the spread is not mean
reverting and exit the trade.

The above expression for spread are not the only ones possible. In all cases however how
good the pairs trading strategy performs is based on how mean reverting the expression for
spread is. Thus we assume that each spread expression can be written as a constant plus a
mean reverting term or µ + εt. Based on various books on pairs trading the spread signal
we a use to trigger can be based on

• spreadt ≡
pAt
pBt

∼ µ+ εt or the ratio of prices see [4].

• spreadt ≡ log(pAt )−γ log(pBt ) ∼ µ+ εt. In other words the log prices of A are regressed
on the log prices of B see [5].

• spreadt ≡ pAt −γpBt ∼ µ+ε. In other words the untransformed prices of A are regressed
on the untransformed prices of B see [1].

All three could potentially be a viable trading strategies. How well each one works depends
on how well each expression is a mean reverting time series going into the future and how
well the parameters estimated from the past time series hold true in the future.

One subtle difference among the second and third methods above is what the hedge ratio
γ represents in each case. In the case where we regress log prices on each other the hedge
ratio γ represents the ratio of capital to apply to both sides of the trade. If we regress
untransformed prices on each other then the hedge ratio represents the ratio of shares to
apply to both sides of the trade. This is a subtle difference that seems somewhat overlooked
in many places in the literature.

Notes on how to pick the values of NA and NB

One of the problems I found when implementing this strategy directly was exactly how to
specify the values of NA and NB or the shares to be traded of the stocks A and B. While it
is clear that they should satisfy Equation 29, it seemed unclear exactly how to specify the
two values of NA and NB that combine in that ratio. This section discuss some ideas that
might be used to determine NA and NB.

One idea is to specify these two shares amounts NA and NB such that the net imbalance
of the initial pair portfolio is “not too large”. Thus we introduce an imbalance threshold, t,
that we are willing to tolerate and then require that we pick NA and NB such that

|βApANA − βBpBNB| ≤ t . (31)

Note that by convention NA > 0 and NB > 0 and thus we have introduced a minus sign in



Since we must have NA and NB related via NB = γNA when we put that relationship into
the above expression and solve for |NA| we find

|NA| ≈
t

|βApA − γβBpB|
. (32)

With |NA| specified as above we thus take |NB| = γ|NA|, or

|NB| ≈
γt

|βApA − γβBpB|
. (33)

The sign of NA and NB is determined by whether we want to go long or short a unit of
spread as determined by the above logic.

Another method one could use to specify the exact shares NA and NB to trade can be
obtained by considering Equation 29 and by writing the fraction 1

γ
as a rational number say

p/q. If we can do this then we have

NA

NB

=
1

γ
≈

p

q
.

Thus one specification of NA and NB that will make this true is to take NA = p and
NB = q. One way finds this rational approximation is to compute the continued fraction
approximation of 1

γ
.



Chapter 6 (Pairs Selection in the Equity Markets)

Notes on the distance measure

The distance measure we will consider is the absolute value of the correlation between the
common factor returns of two securities which can be written as

d(A,B) = |ρ| =

∣

∣

∣

∣

∣

cov(rA, rB)
√

var(rA)var(rB)

∣

∣

∣

∣

∣

.

Since we want to measure only the common factor return we should really write cov(·, ·) and
var(·) with a cf subscript to represent that we only want the common factor variance of the
return as varcf . From arbitrage pricing theory (APT) can write the above distance measure
in terms of the factor exposures eA, eB of our two securities, and the factor covariance matrix
V as

|ρ| =

∣

∣

∣

∣

∣

eAVeTB
√

(eAVeTA)(eBVeTB)

∣

∣

∣

∣

∣

. (34)

The book uses the notation x rather then e to denote the common factor exposure vectors
and F rather than V to denote the common factor covariance matrix. The notation in this
respect seems to be a bit inconsistent.

Reconciling theory and practice: stationarity of integrated specific returns

From this small subsection of the book we can take away the idea that for pair trading as
discussed in this book we will do two things

• Consider as a possible pair for trading any two stocks that have a large value of |ρ|
(defined above) and for any such pairs estimate their cointegration coefficient γ.

• Using this estimated value of γ, form the spread time series defined by

log(pAt )− γ log(pBt ) ,

and test to see if it is stationary.

• If this pair is found to have a stationary spread, we can trade when the spread is
observed to deviate significantly from its long run equilibrium value (denoted here as
µ).

Notes on reconciling theory and practice: a numerical example

To test some of these ideas I implemented in the python codes

• find possible pairs.py and

• multifactor stats.py

a multifactor sector based pair searching strategy using the discussed pair statistics. Some
of the pairs that these routines found are shown here:



sector= Basic Materials with 710 members

Pair: ( RTP, BHP): corr_ii_jj= 0.996833 SNR= 10.390647

Pair: ( RTP, VALE): corr_ii_jj= 0.991511 SNR= 7.247113

Pair: ( BHP, VALE): corr_ii_jj= 0.990573 SNR= 6.922419

sector= Technology with 927 members

Pair: ( AAPL, MSFT): corr_ii_jj= 0.981468 SNR= 5.193737

Pair: ( MSFT, IBM): corr_ii_jj= 0.962065 SNR= 3.522831

Pair: ( AAPL, IBM): corr_ii_jj= 0.892878 SNR= 1.908111

sector= Consumer, Cyclical with 1168 members

Pair: ( TM, MCD): corr_ii_jj= 0.993515 SNR= 12.124917

Pair: ( TM, WMT): corr_ii_jj= 0.986572 SNR= 9.832299

Pair: ( MCD, WMT): corr_ii_jj= 0.975303 SNR= 7.163039

sector= Industrial with 1452 members

Pair: ( GE, UTX): corr_ii_jj= 0.998224 SNR= 10.762886

Pair: ( SI, GE): corr_ii_jj= 0.993410 SNR= 6.432623

Pair: ( SI, UTX): corr_ii_jj= 0.989422 SNR= 5.185361

sector= Funds with 1056 members

Pair: ( EEM, SPY): corr_ii_jj= 0.997625 SNR= 5.831888

Pair: ( EEM, GLD): corr_ii_jj= -0.044805 SNR= 0.430726

Pair: ( SPY, GLD): corr_ii_jj= 0.012789 SNR= 0.080389

sector= Financial with 2851 members

Pair: ( WFC, JPM): corr_ii_jj= 0.997321 SNR= 10.498293

Pair: ( WFC, HBC): corr_ii_jj= 0.989763 SNR= 5.273780

Pair: ( JPM, HBC): corr_ii_jj= 0.981574 SNR= 4.118802

sector= Energy with 879 members

Pair: ( CVX, XOM): corr_ii_jj= 0.986020 SNR= 4.198963

Pair: ( BP, XOM): corr_ii_jj= 0.962390 SNR= 6.936206

Pair: ( BP, CVX): corr_ii_jj= 0.933948 SNR= 5.281772

sector= Diversified with 158 members

Pair: ( LUK, IEP): corr_ii_jj= 0.783188 SNR= 3.222232

Pair: ( IEP, LIA): corr_ii_jj= 0.770306 SNR= 7.884407

Pair: ( LUK, LIA): corr_ii_jj= 0.410682 SNR= 2.619646

sector= Communications with 1354 members

Pair: ( VOD, CHL): corr_ii_jj= 0.992050 SNR= 12.187919

Pair: ( T, CHL): corr_ii_jj= 0.933453 SNR= 3.955416

Pair: ( VOD, T): corr_ii_jj= 0.924183 SNR= 3.067509



These pairs look like a representative selection of stocks one would consider to possibly
be cointegrated. Since the multifactor pairs searching strategy is quite time intensive we
perform this procedure rather infrequently (once a month).



Chapter 7 (Testing for Tradability)

Notes on estimating the linear relationship: various approaches

This section of the book seems to be concerned with various ways to estimate the parameters
γ and µ in the definition of the spread time series given by Equation 23. The book proposes
three methods: the multifactor approach, the minimizing chi-squared approach, and the
regression approach. Here I summarize these methods in some detail. Note that in each ex-
pression, the parameters we are estimating could have a subscript to denote the independent
variable. For example, in estimating γ we could call it γAB since we are assuming that the
B log prices of the stock is the independent variable. An expression for γBA can be obtained
by exchanging A and B in the formulas given. In general, we will compute both expressions
that is γAB and γBA and fix the (A,B) ordering for our stocks to enforce γAB > γBA. The
various approaches for estimate the statistics of the spread time series st are

• Multifactor approach: This method is based on the decomposition of each stocks
return into factor returns and factor uncertainties. Given the common factor covari-
ance matrix, F, and each stocks factor exposure vectors eA and eB, the cointegration
coefficient γ under the method is given by

γ =
eTAFeB
eTBFeB

.

An expression for µ is obtained by computing the mean of the spread time series. This
method is implemented in the routine multifactor stats.py.

• Chi-squared approach: In this approach we pick the values of γ and µ to minimize
a chi-squared merit function given by

χ2(γ, µ) =
N
∑

t=1

(log(pAt )− γ log(pBt )− µ)2

var(εAt ) + γ2var(εBt )
. (35)

Here var(εAt ) are variances of the errors in the observations of log(pAt ), the same for
var(εBt ). When dealing with daily data we can estimate var(εAt ) by assuming a uniform
distribution between the low and the highest prices for that day and using the variance
of a uniform distribution given by

var(εAt ) =
1

12
(log(pA,high

t )− log(pA,low
t )) .

To implement the minimization of χ2 many optimization routines require the derivative
of the objective function they seek to minimize with respect to the variables they are
minimizing over, which in this case are (γ, µ). So that we have these derivatives
documented we derive them here. To evaluate these derivatives we define the residual
rt and total variance vt time series as

rt ≡ log(pAt )− γ log(pBt )− µ

vt ≡ var(εAt ) + γ2var(εBt ) .



Using these we find

χ2(γ, µ) =

N
∑

t=1

rt
2

vt

∂χ2(γ, µ)

∂µ
= −2

N
∑

t=1

rt
vt

∂χ2(γ, µ)

∂γ
=

N
∑

t=1

(

2
rt
vt

∂rt
∂γ

−
r2t
v2t

∂vt
∂γ

)

= −2

N
∑

t=1

(

rt
vt

log(pBt ) + γ
r2t
v2t

var(εBt )

)

.

This method is implemented in chisquared minimization stats.py.

• Regression approach: This method is the most direct and is based on estimating
(γ, µ) from the linear model

log(pAt ) = γ log(pBt ) + µ .

This method is implemented in the python code linear regression stats.py.

In the case where A and B satisfy Equation 24 we now show that regressing the log
returns of A against the returns of B also enable us to estimate the hedge ratio γ. The
other parameters µ and σ2

ε would then have to be estimated in other ways. To show
this we form the return time series for A and B as

rAt = log(pAt )− log(pAt−1)

rBt = log(pBt )− log(pBt−1) .

We next form the difference rAt − γrBt to find

rAt − γrBt = log(pAt )− γ log(pBt )− (log(pAt−1)− γ log(pBt−1))

= (µ+ εt)− (µ+ εt−1) = εt − εt−1 ,

when we use the assumed log-price model given by Equation 24. From the above
we see that a the slope of a regression between rAt and rBt would give an estimate of
γ. This procedure does not give an estimate of µ since this cancels out in the above
simplifications.

Notes on testing the residual for tradability

After the initial selection of potential pairs to trade is made, one needs to construct the
spread time series given by Equation 23 and test it for tradability. In the best of cases the
spread time series will be composed of a mean offset µ and a mean-reverting error term εt
as

log(pAt )− γ log(pBt ) = µ+ εt .

Once can easily compute the spread time series and subtract its mean to obtain just the time
series of εt. To have the residual series εt be mean reverting means that this series should
have a large number of zero-crossings. One way to get a single estimate of the zero-crossing
rate is using

zcr =
1

T−1
∑

I{spread spread < 0} , (36)



where spreadt is our demeaned spread signal of length T and the indicator function I{A}
is 1 if the argument A is true and 0 otherwise. This is implemented in the python code
estimate zero crossing rate.py. All things being equal we prefer residual series with
a large zero-crossing rate, since in that case we don’t have to wait long once we put on
a trade for convergence. The book argues that this single point estimate will be heavily
biased towards the particular spread time series under consideration and that a bootstrap
technique should instead be used to estimate the time between zero-crossings. This is done
in estimate time between zero crossings.py. Once the time between zero-crossing has
been computed for each pair we sort the pairs so that the pairs with the shortest time
between zero-crossings are presented for potential trading first.

Backtest results

It seemed prudent to perform some backtesting to observe if any of the above methods for
estimating γ better than the others. We then could then fix the method used to compute
γAB and spend additional effort in other directions. In the following results, we fixed many
algorithm parameters at reasonable values and then ran parameter sweeps over nearby axil-
lary values. Since this resulted in many backtest results (one for each parameter setting) we
then computed the median value of the Sharpe ratio over all strategy run samples. This gave
one backtest result for all of the various versions considered. We present summary statis-
tics for this median PnL based strategy variant for monthly compute statistics for backtests
between 20100104 and 20110128. We found

(55): Multifactor_nss_short_sconv_0.8.stdout:> 0.163080839345

(53): ChiSquared_nss_long_sconv_0.4.stdout:> -1.24553409212

(53): CloseCloseRegression_nss_short_sconv_0.5.stdout:> -0.679766680284

(53): VWAPRegression_moa_0.9.stdout:> -1.25712936399

The period at the end of 2010 (September-December) was difficult for market neutral strate-
gies since the market gained considerably during that time. This indicates that we may
need to add a stoploss that depends on the future performance of the spread and whether
it is converging as expected or not. We then selected the multifactor estimation of γAB as
the best estimation method and ran many parameter variations over this same in-sample
time period. Given the best Sharpe ratio from the parameters tried we will then perform an
out-of-sample test using these numbers over the range of earlier dates: 20090104 - 20100104.
If the out-of-sample performance looks good we will trade this strategy.



Chapter 8 (Trading Design)

Notes on the trading strategy

Based on results from the book to this point the strategy we propose to implement is the
following. On a particular set day (say the first Friday of each month) we will find and extract
the most correlated pairs in each sector based on the correlation distance metric given by
Equation 34. We then need to determine which of these pairs are possibly cointegrated and
correspondingly have a stationary spread. To do this, we consider each possible pair and use
a bootstrap technique to estimate the mean time between zero crossings of the spread time
series. Pairs with the shortest mean time between zero crossings are considered optimal for
pairs trading. Then for each pair starting with “short” mean time between zero-crossings
we estimate the variance of the spread time series σ2 and put on a trade (buy or sell one
spread unit) when we observe that the spread has deviated by more than ∆ (often taken to
be ∆ = 0.75σ) from its historical mean. This is as discussed on Page 21. We will only put
on a position if we do not already one in this pair. Assume that at time t when we put on
the trade we have observed the spread spreadt and can thus compute its sign. We buy a
unit of spread at the time t if Equation 25 is true or sell a unit of spread if Equation 27 is
true. We then exit the trade if any of the following criterion have happend

• The spread time series has “mean reverted” (returned to zero or some equivalent met-
ric).

• The trade time limit (based on the mean time between crossings for this pair) has
expired.

• The paired porfolio’s return is greater than a given return profit target threshold tpt.

• The paired porfolio’s return is less than a given return stop loss threshold tsl.

• The paired portfolio’s profit is greater than a given dollar profit target threshold Vpt.

• The paired portfolio’s profit is less than a given dollar profit target threshold Vsl.

Notes on band design for white noise

In this section of these notes we duplicate several of the results presented in the book
with the MATLAB command white noise band design.m. When this script is run the
results it produces are presented in Figure 6. To begin with we first reconstruct the exact
profit value function ∆(1 − N(∆)) where N(·) is the cumulative density function for the
standard normal. This is plotted in Figure 6 (top). Next, we simulate a white noise random
process and estimate the probability that a sample from it has a value greater than ∆. This
probability as a function of ∆ is plotted in Figure 6 (middle). Finally, using the above
estimated probability function we multiply by ∆ to obtain the sample based estimate of
the profit function. A vertical line is drawn at the location of the empirically estimated
profit function maximum. These results agree with the ones presented in the book. A
python implementation of the count based probability estimator is given in the function
estimate probability discrete counts.py.
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Figure 6: Duplication of the various profit value functions discussed in this chapter. Top:
A plot of ∆(1−N(∆)) vs. ∆ where N(·) is the cumulative density function of the standard
normal. Middle: A plot of the simulated white noise probability of crossing the threshold
∆ as a function of ∆. Bottom: A plot of the simulated white noise profit function. The
empirical maximum is located with a vertical line.



0.7 0.8 0.9 1.0 1.1 1.2 1.3
delta value

0.10

0.15

0.20

0.25

p
ro

b
a
b
ili

ty
monotonic adjustment

raw counts
monotonic adjustment

Figure 7: A monotonically adjusted probability profile.

Notes on regularization

The book then presents two functions to more optimally estimate the probability a sample
of the spread st crosses a certain number of sigma away from the mean given the raw count
based estimate. The first is a simple monotonic adjustment of the probability curve and
is implemented in the python code probability monotonic adjustment.py. An example
count based probability curve estimate and the resulting monotonically adjusted probability
estimate can be seen in Figure 7. The second adjustment is based on imposing a penalty
for non-smooth functions. This penalty is obtained by adding to the least-squares cost
function an objective function that is larger for sample estimates that are non-smooth and
then minimizing this combined cost function. The book suggests the following cost function

cost(z;y) = (y1 − z1)
2 + (y2 − z2)

2 + · · ·+ (yn − zn)
2

+ λ
[

(z1 − z2)
2 + (z2 − z3)

2 + · · ·+ (zn−1 − zn)
2
]

, (37)

where yi are the monotonically smoothed probability estimates and zi are the smoothness
regularized probability estimates obtained by minimizing the above cost function over z. As
many optimization routines require the derivative of the cost function they seek to minimize
we find the derivatives of cost(z;y) with respect to z as follows. For i = 1 (the first sample)

∂cost(z;y)

∂z1
= −2(y1 − z1) + 2λ(z1 − z2) .

for 2 ≤ i ≤ n− 1

∂cost(z;y)
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Figure 8: Left: Estimates of the probability a sample of the spread is greater than the given
number of standard deviations from the mean. Right: Estimates of the profit profile using
the three methods suggested in the book.

and finally for the last sample i = n

∂cost(z;y)

∂zn
= −2(yn − zn)− 2λ(zn−1 − zn) .

The process of selecting a grid of λ values, minimizing the above cost function as a function
of z and selecting the final estimate of z to be the one that gives the location of the “heel”
in the cost vs. log(λ) curve is done in the python code probability regularized.py.
Demonstrations of the output from these commands is shown in Figure 8, where we have
used 25 points to sample the range [0, 2.0] of the z-transformed CAT-HON spread. Despite what
the book states, the results obtained from each of these procedures appears quantitativly
the same. Regularization is known to help more when the number of samples is very small.
Perhaps this is an application where these procedures would be more helpful.
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