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Chapter 2 (Basic Statistics)

Notes on the text

Notes on trimmed and Winsored statistics

In the R code tmean.R and winsorize.R one will find simple code to compute the trimmed
mean and to return a Winsorized data set. The R code chap 2 examples N problems.R

demonstrate their use on examples and problems from this chapter.

Problem Solutions

Problem 27

Using tmean.R we find 80.04762.

Problem 35/36

Using winsorize.R we find the Winsorized data set given by 24, 24, 25, 32, 35, 36, 36, 42, 42.
The variance of this is 51.361.

Problem 37

We would expect the Winsorized variance to be smaller than the sample variance. The
sample variance in this case equals 81 and is indeed larger.

Problem 38

We would expect the Winsorized sample variance s2w to always be smaller than the sample
variance s2 since when we compute the Winsorized data set we are decreasing the magnitude
of the largest and smallest numbers.



Chapter 5 (Sampling Distributions)

Notes on the text

Notes on the confidence interval for the population median

In the python code mckean schrader.py one will find a simple version of the McKean-
Schrader estimator for the confidence interval for the population median. When this code is
run from the command line it correctly duplicates Example 3 from the book.

Problem Solutions

Problem 18

See the python code chap 5 problems.py for a call to the python code mckean schrader.py

to compute the standard error of the median.

Problem 19

The previous problem has no repeated values so using the McKean-Schrader estimate of the
standard error of the population median is reasonable.

Problem 20

See the python code chap 5 problems.py for a call to the python code mckean schrader.py

to compute the standard error of the median on this data set. Warning: The above codes
produce a value of 0.5823 for the standard error where as the book claims it should be 0.97.
This example has many tied values which indicates that the standard error of the median
will most likely be computed poorly.

Problem 21

The previous problem has many repeated values and so we expect the McKean-Schrader
estimate of the standard error to perform poorly.



Problem 22

We should probably not use the central limit theorem result with σM replaced with sM to
calculate the probability requested since the data in Problem 20 has many repeated values.
In the case of repeated values it is less likely that sM ≈ σM .

Problem 23

Since the median is a more robust measure of the central tendency of a set of data, the fact
that this given data set has a likely “outlier” with a value of 201, indicates that the given
point will affect the estimate of the mean and correspondingly the estimate of the standard
error of the mean. We would expect a much larger estimate of the standard error of the mean
due to this point, while the standard error of the median should not be as affected. We can
verify this by computing both of these estimates. In the python file chap 5 problems.py

we use the code mckean schrader.py to compute the McKean-Schrader estimate of the
standard error of the median and the expression s/

√
n to estimate the standard error of

the mean. We find these two numbers given by 3.688 and 16.592 showing that indeed the
standard estimate of the mean is larger. Warning: These numbers are slightly different
than given in the back of the book.

Problem 24

Assuming normality would certainly not be a good assumption when the data values are
discrete and repeated values are very likely.



Chapter 6 (Estimation)

Notes on the text

Notes on the confidence interval for the probability p of success

There were a number of computational routines developed for this chapter. In the python
code agresti coull.py one will find a simple version of the Agresti-Coull estimator for
confidence interval for the probability of success p given the number of success X from n
Bernoulli trials as discussed in the text in this chapter. In the python code blyth.py one
will find an implementation of Blyth’s method for estimating this confidence interval when
the number of successes X is near 0 or n, specifically equal to one of the values 0, 1, n− 1,
or n.

Problem Solutions

Problem 1

A 0.95 confidence interval means that with probability of 95% the true population mean µ
is contained in the interval returned.

Problem 2

When the population standard deviation σ is known then the random variable Z = X̄−µ
σ/

√
n
is

distributed as a standard normal. Thus the value of c for which X̄ ± c σ√
n
is an 1 − α %

confidence interval is the one that satisfies

P (Z ≤ c) = 1− α

2
,

In R the value of c can be computed with the qnorm function. In the R script chap 6 prob 2.R

this is demonstrated and we find the three requested values given by

1.281552, 1.750686, 2.326348.

Problem 3

We compute for α = 0.05 the value of c for which P (Z ≤ c) = 1 − α
2
, where P (·) is the

c.d.f. for the standard normal. Using the R function qnorm we find c = 1.959964, so the 0.95



confidence interval is given by

X̄ ± cσ√
n
= (43.040, 46.95) .

Problem 4

This is the same as problem 3 but now α = 0.01.

Problem 5

Given the sample mean X̄ we will compute a 0.95 confidence interval and see if it overlaps
with the proposed population mean of µ = 1200. We find that with α = 0.05 that c =
2.575829 and then that

X̄ ± cσ√
n
= (1141.833, 1158.167) .

Since this does not contain the value of µ = 1200 there is evidence that this is not the correct
value for the population mean and the above confidence interval indicates that in fact the
mean is probably less than this value.

Problem 7 (changing the number of samples n)

Since the 1− α confidence interval has end points given by

X̄ ± cσ√
n
,

it has a width given by

2
cσ√
n
.

When the number of samples, n, doubles we see that this width changes to

2
cσ√
2n

=
1√
2

(

2
cσ√
n

)

,

and the original interval is reduced by the factor 1√
2
. In the same way when the number of

samples is multiplied by four the length of the confidence interval shrinks by a factor of two.

Problem 8

Part (a): We find (19.9602, 19.9798).



Part (b): The confidence interval computed implies that there is only a 5% chance that
the true population mean is outside of the above interval. This would indicate that there
is evidence that the specification is not being met. Warning: This is different than in the
back of the book.

Problem 11

Part (a): Since the random variable T , as specified, is given by a t-distribution with n− 1
degrees of freedom we can calculate the requested probability using

P (T > c) = 1− P (T < c) = 0.025 ⇒ P (T < c) = 0.975 .

We can evaluate this with the R command qt(0.975, 20) to get 2.085963.

Part (b): In this case we can directly use the R command qt( 0.995, 20 ) = 2.845340.

Part (c): To evaluate this we first use the fact that

P (−c ≤ T ≤ c) = P (T ≤ c)− P (T ≤ −c) .

We next note that, since P (T ≤ c) = 1− P (T ≥ c) and that the t distribution is symmetric
about the origin we can write P (T ≥ c) = P (T ≤ −c). These two observations combined
show that the desired probability P (−c ≤ T ≤ c) is equal to

P (−c ≤ T ≤ c) = 1− P (T ≥ c)− P (T ≤ −c)

= 1− P (T ≤ −c)− P (T ≤ −c) = 1− 2P (T ≤ −c) .

Setting this expression equal to 0.9 and solving for P (T ≤ −c) gives

P (T ≤ −c) = 0.05 .

We can find the value of−c where this is true with the R command qt( 0.05, 20 ) = -1.724718,
thus c = 1.724718.

Problem 12

Part (a): We find (19.56179, 32.43821).

Problem 15

We find (10.69766, 23.50234).



Problem 16

We will use the version of the central limit theorem tailored for the population median. First
define a random variable ZM as

ZM =
M − θ

SM

,

where θ is the population median, M is the sample median, and SM is the McKean-Schrader
estimator of the standard error of the median. Then the central limit theorem we consider
states that ZM will be approximately normal. Thus our confidence interval for θ is given by
an expression of the form

M ± cSM ,

where c is the 1 − α/2 quantile of the standard normal distribution. For this problem our
desired probability coverage is 95% which gives α = 0.05 and thus the value of c is given by
c = 1.959964. Using this our confidence interval in the median is then given by

M ± cSM = 34 + 1.96 ∗ 3 = (28.12011, 39.87989) .

Problem 17

We can use the python code mckean schrader.py to compute the McKean-Schrader estimate
of standard error of the population median. We find that it is given by 53.768. We can then
use the central limit theorem for medians to derive a 99% confidence interval for the median
θ. The desired confidence interval will have a form given by

(M − csM ,M + csM) ,

where c is the 1−α/2 quantile of the standard normal. When we use the data suggested for
this problem we find that confidence interval give by

(123.5011, 400.4988) .

Warning: This result differs from that in the back of the book.

Problem 18

With n = 10 and k = 2 we have the confidence interval based on a binomial distribution

P2 = P (2 ≤ Y ≤ 10− 2) = P (2 ≤ Y ≤ 8) = F (8; 10, 0.5)− F (1; 10, 0.5) = 0.978515 ,

where F (k;n, p) is the cumulative density function for the binomial density function with
parameters n = 10 and p = 0.5.



Problem 19

With n = 15 and k = 4 we have we have the confidence interval based on a binomial
distribution

P4 = P (4 ≤ Y ≤ 15− 4) = P (4 ≤ Y ≤ 11) = F (11; 15, 0.5)− F (3; 15, 0.5) = 0.96484 ,

where F (k;n, p) is the cumulative density function for the binomial density function with
parameters n = 15 and p = 0.5.

Problem 20

When we sort the data from Problem 14 we find that the spot of the number 88 is located
at k = 3. Then the probability confidence for this value of k (since n = 19 in this case) is
given by

P3 = P (3 ≤ Y ≤ 19− 3) = P (3 ≤ Y ≤ 16) = F (16; 19, 0.5)− F (2; 19, 0.5) = 0.9992 .

where F (k;n, p) is the cumulative density function for the binomial density function with
parameters n = 19 and p = 0.5. Warning: While k = 3 is the location of the value 88 (the
first element of the confidence interval) the component X(n−k+1) = X(19−3+1) = X(17) = 666
which is not equal to 515 the second element of the confidence interval as it should.

Problem 21

For this experiment we see that we have n = 15 and X = 5 so we can use the Agresti-Coull
method to compute a confidence interval on p the population probability of success. Using
the python code agresti coull.py we find one given by (0.2365, 0.76340). We can also
use the standard normal approximation to compute a confidence interval on the population
value of p. This interval is given by

p̂± c

√

p̂(1− p̂)

n
= (0.0947, 0.5718) .

where c is the 1− α/2 quantile of the standard normal.

Problem 22

For each of the given values for n and X , the central limit derived confidence interval is
given by first computing

p̂ =
X

n
and then SE(p̂) =

√

p̂(1− p̂)

n
.

For example in the first case we find

p̂ = 0.2 and SE(p̂) = 0.064 .



Problem 23

From the given problem statement we find p̂ = 1/10 and a 0.95 confidence interval using the
central limit theorem is given by (−0.01759, 0.2175). Using the Agresti-Coull method gives
(0.053, 0.176) which is much smaller. Warning: The numbers for the central limit theorem
based confidence interval are different than the ones given in the back of the book.

Problem 26

When there is only one sample, using the central limit theorem to derive a confidence interval
around the population probability of success p will not result in a very good estimate of its
standard error. One should use a method like Blyth’s instead.

Problem 27

When we run the blyth.py routine we compute (8.54 10−5, 0.00498) for the confidence in-
terval. Warning: This is different than the result in the back of the book.

Problem 29

This is similar to the other problems we have encountered. We have p̂ = 5
250

and we proceed
to calculate the standard error around p in the usual ways.

Problem 30

In this case we cannot use a central limit based confidence interval. We must instead use
Blyth’s method which is tailored to cases where almost none (or almost all) of the sample are
of one type. Running the python code blyth.py gives (0, 0.0182). Warning: This result is
different than in the back of the book.

Problem 31

An estimate of the percentage of women who have seen the advertisement is given by p̂ = 180
1000

and a confidence interval using the central limit theorem gives (0.1561, 0.20381).



Problem 32 (some affects of non-normality on the students-t distribution

One form of non-normality that is common in applications is that of skewness. When the
samples of X are drawn from a distribution that is skewed then the actual distribution of
T (defined via T = X̄−µ

s/
√
n
) will also be skewed. As such the probability density function

for these random variables T will not equal a symmetric student-t distribution. Because of
this, the confidence interval calculated using a student-t distribution will be correspondingly
incorrect.

Problem 33

When using the student-t based confidence interval one must estimate the standard deviation
σ of the distribution from which samples are drawn. If outliers are relatively rare this
estimated value will be smaller than the true population value, since it is unlikely that we
will have observed enough samples to “see” the large variation possible from this distribution.
Thus the T values we compute using this estimated standard error will have an “intrinsic”
error due to the fact that the sample standard deviation will be systematically different than
the population standard deviation. Basically the fact that we introduced an error in having
to estimate the population standard deviation from the observed sample. The larger sample
size we observe the closer our estimated standard deviation will be to the population one.

Problem 34

In the R code chap 6 problems.R we plot the given data with a boxplot. The result of
running that code is presented in Figure 1. Since the 75% quantile (the upper line in the
given boxplot) is at a larger distance from the median than is the 25% point (the lower
line in the given boxplot). This leads us to conclude that the provided data looks to be
derived from a skewed distribution. As discussed in the book, the T statistics computed
from a skewed distribution will themselves be skewed. Thus using the symmetric student-t
distribution for analysis of the confidence interval for the population mean of samples from
a skewed distribution will introduce additional errors.

Problem 35

For this problem we will use the formula for the confidence interval for the 20% trimmed
mean given in the book

(

X̄t − c
sw

.6
√
n
, X̄t + c

sw
.6
√
n

)

.

Where in the above expression X̄t is the 20% sample trimmed mean, sw is the Winsorized
sample standard deviation, and c is the 1− α/2 % quantile of a standard normal.
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Figure 1: The box plot for the data in Problem 34.

Part (a): Using the above formula and the number specified in this part of the problem we
find a confidence interval given by (49.690, 54.309).

Problem 37

When we calculate the 95% confidence interval for the population mean we find (266.865, 930.398)
and the 95% confidence interval for the 20% trimmed mean is given by (308.781, 580.756).
Note that the confidence interval for the 20% trimmed mean is much smaller than that of
the population mean. Warning: These results are different than given in the back of the
book.

Problem 39/40

When we calculate the 95% confidence interval for the population mean we find (30.734, 58.265)
and the 95% confidence interval for the 20% trimmed mean is given by (37.204, 52.462). Note
that the confidence interval for the 20% trimmed mean is much smaller than that of the
population mean, this is do to the potential outlier point 5. Warning: The result for the
confidence interval for the trimmed mean are different than given in the back of the book.



Chapter 7 (Hypothesis Testing)

Notes on the text

Some important concepts/definitions introduced in this chapter are:

• Recall that α is the probability of a Type I error, or the error that we reject the null
hypothesis H0 when it is in fact true.

• Recall that β is the probability of a Type II error, or the error that we accept H0 when
it is false.

• The p-value is the smallest α value at which one will reject the null-hypothesis H0.

• The power is the probability of rejecting the null hypothesis when it is false.

Problem Solutions

Sample code that computes many of the numerical values for these problems can be found
in the R code chap 7 problems.R.

Problem 1

We form the statistic Z = X̄−µ
σ/

√
n
= 78−80

5/
√
10

= −1.264. We will reject H0 (that µ > 80) when

Z ≤ c where c is the 0.05 quantile of the standard normal. We find c = −1.6448. Since
Z > c we cannot reject H0. We may have just observed a sample this low by chance.

Problem 2

If we want to test H0 : µ = 80 then we now need to observe that Z that with probability of
95% will be within an interval about the mean of the standard normal. This means that Z
needs to be |Z| ≤ c where c is the 1 − 0.5α quantile of the standard normal (otherwise we
reject). This value is found to be 1.959. Since we found Z = −1.264 we cannot reject H0.

Problem 3

A 95% confidence interval is given by

X̄ ± c
σ√
n
,



where c is given as in Problem 2. This gives the interval (74.90, 81.09). Since the point
µ = 80 is inside of this range the decision to not reject H0 is consistent with this result.

Problem 4

The p-value is the smallest possible probability of a type I error given the observed value of
the test statistic Z. In other words we take the critical value to be Z, then probability that
another random draw from H0 would yield a statistic Z ′ “beyond” this critical value is the
p-value. In Problem 1 we have a one sided test, so when the critical value is taken to be
c = Z = −1.264 as computed in that problem the p-value is given by

p = Prob {Z ′ ≤ c|H0} ,

and can be computed in R using the function pnorm(-1.2649). When we do that we find
p = 0.1029.

Problem 5

In this case we are looking for a two-sided test since H0 : µ = 80 and thus the p-value is
given by

p = Prob {|Z ′| > c|H0} = 2
∫ c

−∞
N (x; 0, 1)dx .

This can evaluated using the R command 2 * pnorm( -1.2649 ). When we compute this
we find p = 0.205.

Problem 6

When we compute Z in this case we get Z = −14 and c = −1.6448. Since Z < c we must
reject the hypothesis that H0 : µ > 130 as the evidence does not support this claim.

Problem 7

In this case all that changes is the value of the critical value c. In this case we get c = 1.95996
since |Z| > c we reject the hypothesis that H0 : µ = 130.

Problem 8

The confidence interval for µ would be given by (118.600, 121.40) thus the value of 130 is
not inside that range.



Problem 9

For a two-sided hypothesis test, if we are not told σ than we don’t know what they typical
range of X̄ is when averaging n samples from the distribution of X . If σ were a “small
number” we would expect that X̄ to be very close to µ. Or stated another way, there would
be a small range about X̄ in which the true mean µ must fall. If σ were a “large number”
than we would expect a wider range around X̄ in which µ will be found. Thus we cannot
decide on whether to reject or not in a two-sided hypothesis test. For the assumption H0

given here H0 : µ < 25 the sample value X̄ = 23 is already consistent with H0 thus we cannot
reject H0 given this sample mean.

Problem 10

For the problem stated we would want to assume that H0 : µ < 232 and we would hope that
our sample mean X̄ would reject the hypothesis of H0. We then compute Z and find Z = 10
and c = 2.326, since Z > c we must reject H0.

Problem 11

Lets take the null hypothesis to be H0 : µ = 546, then with the given numbers (and assuming
a two-sided test) we find Z = 2.124 and c = 1.9599. Since |Z| > c we must reject H0 and
“conclude” that µ 6= 546 most likely µ is larger than that number based on the observed
value of X̄ . We could compute a confidence interval around X̄ to determine by how much
(see the next problem).

Problem 12

We can determine a 95% confidence interval for µ based on the sample of X̄ , we find
(547.46, 582.53). Since 546 is not inside of that interval we again conclude that the true
mean is larger than 546.

Problem 13

For the hypothesis test where H0 : µ ≥ 60 the expression for the power is given by

power = 1− β = P

(

Z ≤ c−
√
n(µ− µ0)

σ

)

.

When α = 0.01 we find c = −2.32 and we have n = 25, µ = 56, σ = 5, and µ0 = 60. When
we evaluate the above expression we get a power of 0.952.



Problem 14

For the hypothesis test where H0 : µ ≤ 100 the expression for the power is given by

power = 1− β = P

(

Z ≥ c−
√
n(µ− µ0)

σ

)

.

When α = 0.025 we find c = 1.9599 and we have n = 36, µ = 103, σ = 8 and µ0 = 100.
When we evaluate the above expression we get a power of 0.614.

Problem 16

Being confident in not rejecting H0 is a case where we need to know the the power of the
given test. If the power is sufficiently large we can worry less.

For the hypothesis test where H0 : µ ≥ 60 the expression for the power is given by

power = 1− β = P

(

Z ≤ c−
√
n(µ− µ0)

σ

)

.

When we compute this we get 0.351.

Problem 18

When we change the value of n we find the power changes as

> ns = c(20,30,40)

> pnorm( c - ( sqrt(ns)*(mu-mu_0)/sigma ) )

[1] 0.5572501 0.7074796 0.8119132

Problem 19

We can increase the power by increasing the probability of a type I error α.

Problem 20

For Part (a) and (b) we cannot reject H0 with this evidence while for Part (c) we do.



Problem 22

For Part (a) and (b) we cannot reject H0 with this evidence while for Part (c) we do.

Problem 23

For all parts we cannot reject H0

Problem 24

We cannot reject H0 with the data given.

Problem 25

With T = −2.61, we reject H0 with the data given.

Problem 26

With T = 2, we cannot reject H0 with the data given.

Problem 27

I think there is a typo in this problem in that X̄ = 76 and µ = 32, so we most certainly
would reject H0 in this case.

Problem 28

For the numbers given I get c = 2.262 and T = −5.059 which results in us rejecting H0.
These numbers are different than in the back of the book.

Problem 29

For the numbers given c = 2.821 and T = 2.273 and we cannot reject H0.



Problem 30

When we perform hypothesis testing on the 20% trimmed mean X̄t the test statistics is

Tt =
0.6(X̄t − µ0)

sw/
√
n

, (1)

where sw is the 20% Winsorized standard deviation. The critical value c to use with this
test is the 1 − α/2 quantile of a Student’s t-distribution with ν = n − h − 1 degrees of
freedom where h is the number of trimmed observations. Recall that the 20% trimmed mean
is computed by first sorting the data into the sequence of observations X(k), computing 0.2n,
rounding this number down to the nearest integer (called g) and then we have

X̄t =
1

n− 2g
(X(g+1) +X(g+2) + · · ·+X(n−g)) . (2)

Thus the number of sampled trimmed is computed in R notation as h = 2*floor(.2 * n).

Part (a): For the numbers given we find h = 8 and c = 2.200 and Tt = 0.59628, since
|Tt| ≤ c we fail to reject.

Part (b): For the numbers given we find h = 8 and c = 2.200 and Tt = 0.29814, since
|Tt| ≤ c we fail to reject.

Part (c): For the numbers given we find h = 8 and c = 2.200 and Tt = 0.89442, since
|Tt| ≤ c we fail to reject.

Problem 31

The test statistics for the 20% mean is given by Equation 1, which is to be compared with
a critical value from a t-distribution with n− h− 1 degrees of freedom, where h is given in
R notation by h=2*floor(.2*n). We first find h = 6, and c = 1.833.

Part (a): We find Tt = 0.53333, thus since Tt < c we cannot reject H0.

Part (b): We find Tt = 0.2666, thus since Tt < c we cannot reject H0.

Part (b): We find Tt = 0.8, thus since Tt < c we cannot reject H0.

Problem 32

We find c = 2.570 and Tt = −3.103. Since |T | > c we reject H0. This is different than the
solution in the back of the book. If anyone sees anything wrong with my logic or calculations,
please let me know.



Problem 33

For this problem we get c = 2.976 and Tt = 0.1285 so we fail to reject.

Problem 34

One of the main things that seem to be stressed was that the percentile bootstrap was better
behaving when the underlying distribution was skewed or has heavy tails.



Chapter 8 (Correlation and Regression)

Notes on the text

Notes on least squares regression

In the python code theil sen.py one will find a simple version of the Theil-Sen estimator
for simple linear regression as discussed in the text on this section. This code is modeled
after the code in Rallfun-v8 from the book [1] which is an R version of the same robust
estimator.

Notes on the population correlation ρ

From the definition of Pearson’s correlation r which is the relative reduction in error in using
the predictors Ŷ as opposed to the mean Ȳ in estimating Y given by

r2 =

∑

(Yi − Ȳ )2 −∑

(Yi − Ŷi)
2

∑

(Yi − Ȳ )2
,

we can write this as

r2 = 1−
∑

(Yi − Ŷi)
2

∑

(Yi − Ȳ )2
,

which is the same expression as the squared multiple correlation coefficient R2. Thus in
words R2 can be seen to be Pearson’s correlation (squared) between the Y values (i.e. Yi)
and the predicted Yi values (i.e. the Ŷi).

Problem Solutions

Problem 17-18

The confidence interval for β1 is given by

b1 ± t

√

√

√

√

s2Y X
∑

(Xi − X̄)2
,

where for a 1−α confidence interval the value of t is the 1−α/2 quantile of the t-distribution
with ν = n − 2 degrees of freedom. For a 95% confidence interval has α = 0.05 so we can
compute the 1− α/2 quantile of the t-distribution with the R command

qt( 1 - 0.5 * alpha, n-2 )



See chap 8 prob 17.R for and R implemention of this problem.

Note: The solution in the back of the book for problem 18 cannot be correct since the
confidence interval does not contain the estimate b0 = −1.5.

Problem 19

The confidence intervals may be inaccurate for a number of reasons. One is that n = 10
is a very small number of points to derive accurate statistics from. Another is that if the
underlying distributions are not normal (maybe the true distribution is highly skewed or
possesses heavy tails) then the confidence intervals computed using a normal assumption
may not be very reliable.

Problem 21

Part (a): We can derive an estimate of β1 using

b1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
=

180

60
= 3 .

An estimate of β0 can be derived using

b0 = Ȳ − b1X̄ ,

from which we see that we need to compute X̄ . We can extract this later value by recalling
that

∑

(Xi − X̄)2 =
∑

X2
i − nX̄2 ,

from which we have
60 = 1922− 38X̄2 so X̄ = 7 .

Thus we get that b0 = −1.

Part (b): To test the hypothesis H0 : β0 = 0 with α = 0.02 we compute the statistic T
where T is given by

T = b0

√

√

√

√

n
∑

(Xi − X̄)2

s2Y.X
∑

X2
i

= −0.09901 ,

which is to be compared to a threshold t as |T | ≥ t, where t is the 1 − α/2 quantile of the
Student’s t-distribution with ν = n − 2 degrees of freedom. When we want α = 0.02 or a
98% confidence interval we find that t = 2.43. Thus since |T | is not larger than t we cannot
reject H0.

Part (c): Following the box on computing confidence intervals in simple linear regression a
0.9 confidence interval for β1 means α = 0.1 and we would compute

b1 ± t

√

√

√

√

s2Y.X
∑

(Xi − X̄)2
= (0.6024587, 5.397541) .



See chap 8 prob 21.R for and R implemention of this problem.

Problem 22

We would have

b1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
=

100

400
=

1

4

b0 = Ȳ − b1X̄ = 10− 1

4
(12) = 7 .

The 90% confidence interval is computed with

b1 ± t

√

√

√

√

s2Y.X
∑

(Xi − X̄)2
, (3)

where t is the 1 − α/2 = 1 − 0.1/2 = 0.95 quartile of the Student’s t distribution. This
number is t = 1.6848. Thus we get a confidence interval of (−0.7609, 1.2609).

Problem 23

The 0.95 confidence interval is given by Equation 3. If α = 0.05 the t value above is given
by 2.11990 and the confidence interval is given by (2.04, 4.15). Since this range is entirely
greater than the value of 2 we can reject the hypothesis that H0 : β1 < 2 with a probability
of a type I error that is less than 0.05.

Problem 24

The confidence interval for β0 is given by

b0 ± t

√

√

√

√

s2Y.X
∑

X2
i

n
∑

(Xi − X̄)2
, (4)

where t is the 1−α/2 = 0.975 quantile of the Student’s t distribution with ν = n−2 degrees
of freedom, this value is 2.068. Using this we compute a confidence interval of (2.781, 9.218).

Problem 25

Part (a): The Pearson correlation is defined as

r =

∑

(Xi − X̄)(Yi − Ȳ )
√

∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
. (5)



In this case these give r = 0.8. To test H0 : ρ = 0 at the α = 0.01 level we first compute

T = r

√

n− 2

1− r2
= 6.666 .

Then for α = 0.01 we compute the 1 − α/2 quantile of the Student’s t-distribution with
n− 2 = 25 degrees of freedom. This value of t is 2.787. Since T is larger than this value we
reject the hypothesis of H0 and hence have the risk of a type I error (failure to reject H0 at
the 0.01 level). Thus for this problem we reject H0.

Part (b): In this case r = 10√
16(25)

= 0.5 and T = 1.0. We compare this to t = 3.182. Since

T is smaller we cannot reject H0 : ρ = 0.

Problem 26

We compute r = 40√
64(100)

= 0.5, and then T = r
√

n−2
1−r2

= 3 and for this value of α we have

t = 1.703. Since our T value is greater than this value of t we can reject the hypothesis
H0 : ρ = 0. This indicates a dependence of Y on X .

Problem 27

Part (a): Since b1 = rsy
sx

is an estimate of the slope of the least squares regression line if
r > 0 one might conclude that b1 > 0 (and corresponding that β1 > 0). As in figure 8.1 the
results of potential outliers can cause r to take on any value.

Part (b): Yes, see Part (a).

Part (c): Always plot the data to verify that the least squares regression line looks reason-
able.

Problem 28

Because of Equation 5 if Y ∗
i = 3Yi we can show that r∗ = r there is no change to r under a

constant multiple of Yi.

Problem 29

Because b1 = r sy
sx

if Y ∗
i = 3Yi then b∗1 = 3b1 i.e. the slope estimate is multiplied by 3.



Problem 30

Recall the discussion in the book on how Pearson’s correlation r depends on the residual.
There it was noticed that at the residual increases the correlation r decreases. This is shown
in figure 8.4. Since for the second model Y = 0.5X +2+2e, the residual will be larger (they
will have a variance of 4) we expect this model to have a smaller Pearson correlation value
of r.

Problem 31

Since we select b0 and b1 in Ŷi = b0 + b1Xi to minimize
∑

(Yi − Ŷi)
2 we are guaranteed that

min
(b0,b1)

∑

(Yi − (b0 + b1Xi))
2 ≤

∑

(Yi − Ȳ )2 ,

and the numerator in the coefficient of determination will be positive.

Problem 32

The problem with the statement just given is that it is asking to evaluate the “power” of
using r to conclude that H0 : ρ = 0 when we cannot reject this hypothesis. The book claims
that more modern methods with greater power are available to allow one to more safely
conclude that if we cannot reject H0 : ρ = 0 then this hypothesis is true. One thing to note
is that in the best case (i.e. no outliers) r is an linear measure of dependence. Thus if X
and Y depend nonlinearly r will not capture this dependence i.e. r = 0 while X and Y are
not independent.

Problem 33

Part (a): An example where a large value of r2 does not mean that X predicts Y well is
the S. Mednick study on schizophrenia where a single outlier was the cause of the strong
correlation.

Part (b): Using Ŷ is not much better than using Ȳ .

Problem 34

One might argue as follows. Because we are removing potential outliers we are removing
points with large residuals. From the discussion on “interpreting r” and figure 8.4 removing
points with large outliers should result in a smaller average residual and thus a larger value
for Pearson’s correlation r.



Problem 35

This changes the Student’s t-distribution to something else.

Problem 36

The confidence interval should now depend on X in some way as in Var(Y |X) = σ2(X),
where as in box 8.1 it is independent of X (because it assumes homoscedasticity).



Chapter 9 (Comparing Two Groups)

Problem Solutions

Problem 1-2 (Student’s t-test of different means)

We implemented the two-sample Student’s t-test in the python code two sample student T.py.
In that script you will find the numbers for these problems specified and the results verified.

Problem 3 (equal means?)

The T value for this problem is 9.29516, with an α value for this problem of 1.3 10−12. We
can reject the hypothesis that the means are the same.

Problem 4 (Welch’s test)

We implemented Welch’s test in the python code welchs test.py. In that script you will
find the numbers for these problems. When we run we find that using Welch’s test we get a
value of W = 10.5097 which gives a value of α = 5 10−14.

Problem 5 (Welch’s test vs. Student’s t-test)

Since the sample variance between the two classes seemed so much different s21 = 4 and
s22 = 16 we expect that Welchs’ test will be the better test to use. This test gave a larger
test statistics 10.5 vs. 9.25 and a smaller value for α. These indicate that it might have
more power (the ability to “tell” when we should reject the hypothesis H0).

Problem 6-7 (Student’s t-test and Welch’s)

In the python code two sample student T.py and welchs test.py we run tests with these
numbers. For the student t-test we T = 3.794 with α = 0.00025. For Welch’s test we get
W = 3.7947 with α = 0.00025828 both of which reject the assumption that the samples have
equal means.



Problem 8 (Student’s t-test vs Welch’s with equal variance)

When the two populations have equal variance which method one uses does not make much
difference.

Problem 9-10 (using Student’s t-test or Welch’s)

As the sample variance are approximately equal we could use Student’s t-test instead. Since
we are asked to use Welch’s method we will do that. I get an answer that is different than
in the back of the book. I get ν = 29.25117, t = 2.0444, and a confidence interval given by
(1.3858, 8.614141).

For Student t’s method I again get a different result than what is found in the back of the
book. I get ν = 30., t = 2.0422724563 and a confidence interval given by (1.38973, 8.610261).

Problem 11 (training accountants)

The sample variance of these two data sets is 30159.125 and 10031.267857142857. Because
they are so different we need to use Welch’s method. For the data given I get α = 0.1141
which is not sufficient to reject the hypothesis that these two samples have the same mean.

Problem 12 (hypothalamus weights)

For this problem I get that the sample mean, sample variance, and number of samples for
H0 no heart disease and H1 to be

H0 (no heart disease)= (12.063636363636363, 14.584545454545458, 11)

H1 (with heart disease)= (15.666666666666666, 31.083809523809531, 15)

We see that the variance of the two classes is indeed different and Welch’s test is the one to
use. I however get an α = 0.031 which would reject H0 at the 5% level. These numerics are
computed in the python code welchs test.py.

Problem 13 (confidence intervals for Student’s t)

From the book we have that confidence intervals using Student’s t can be unsatisfactory when
sampling from normal distributions with unequal variances or from non-normal distributions



with other differences like skew. Thus if the true distributions have any of these problems
the confidence interval given might be incorrect.

Note: Several of the following problems are worked in the R script chap 9 problems.R.

Problem 14 (equal probabilities)

When we run that script we find Z = 0.6182762 with a critical value c = 1.96 thus we fail
to reject (cannot conclude that the proportions are different).

Problem 15 (disturbing?)

When we run that script we find Z = −0.2642733 again with a critical value c = 1.96 thus
we cannot conclude that the proportions are different. We get a confidence interval for the
difference in proportions given by (−0.13035626, 0.08593477).

Problem 16 (are these the same training program?)

We find Z = −0.4025341 again with a critical value c = 1.96 thus we cannot conclude that
the proportions are different. We get a confidence interval for the difference in proportions
given by (−0.1717639, 0.1309475).

Problem 17 (violence in the Middle East)

For this problem I get T = 3.3161920706374484, ν = 49, and a confidence interval for the
difference in the means of (3.2774568475731645, 13.358906788790469), indicating that the
means do differ. The sign difference in this result vs. that from the back of the book is
due to a different ordering of µ0 and µ1. Note that the variances of these two samples are
135.084 and 36.428 indicating that Welch’s test maybe more appropriate.

Problem 18 (equal medians?)

The 95% confidence interval for this problem is (−15.2026585, 0.2026585) indicating that we
cannot reject the hypothesis that the medians are the same.



Problem 20 (alcohol consumption)

I don’t get that one would reject the hypothesis that the proportions are different. I get
Z = 0.2962875 and a confidence interval of (−0.2441337, 0.3310902).

Problem 21-22 (older sisters vs. younger sisters)

I get TD = 5.25 and a confidence interval of (1.851066, 4.148934) arguing that there is a
difference between the sisters. Problems can arise if the normality assumption is violated.

Problem 23 (improving nutrition)

I get TD = 2.908673 and a confidence interval given by (1.345246, 7.369040) thus we reject
that they are the same mean before and after training. Unfortunately the after training
mean is less than the before training mean.

Problem 24 (differing medians?)

We will use the hypothesis testing procedure for medians on the differences in test scores
from the previous problem. We find a confidence interval of (1.0800728.919928) indicating
that the medians do differ at the 95% level and thus we would reject the hypothesis that the
difference scores have a median of zero.

Problem 25 (median of the differences 6= difference of the medians)

The previous problem tested the median of the differences. This is not the same as the
difference in the medians.

Problem 26 (a summary of the paired Student’s t-test)

If the sample variances observed from the two sets of data was approximately the same we
could apply the paired Student’s t-test. If the underlying distributions are both normal

and with equal variances then we have the optimal conditions for Student’s t-test. If the
distributions are not-normal but are identical Student’s t-test will still perform quite well. In
many cases the true Type I error probability (we reject H0 in favor for H1 with a probability
of error given by α) will be in fact less than α. Thus if Student’s t-test rejects the hypothesis
H0 : µ0 = µ1 then we can conclude that something is different between the two distributions.



Problem 27 (practical concerns with Student’s t-test)

We need the two sample’s variance to be equal, if they are not we may reject H0 : µ0 = µ1

when in fact it is true because of this difference. If the sample variance look different (maybe
differ by more than 10%) use Welch’s test.

Problem 28 (using medians to determine class differences)

Method based on medians can have better power than methods based on means. This means
that if in fact H1 : θ0 6= θ1 a median based method is more likely to actually reject H0. In
other words the median based methods are better at minimizing the probability of a Type II
error (β) or in layman’s terms

β = P{Don’t reject H0|H1 is True} .

Thus if its important to be notified “immediately” when the central location has changed
i.e. when H1 is now true one should consider median based methods.

Problem 29 (the percentile bootstrap method)

Following the discussion in the book and using the numbers given in this problem we have
B = 1000, A = 10, C = 2. Then we find

Q =
A + 0.5C

B
= 0.011 ,

P = min(Q, 1−Q) = 0.011 .

Then we get a p-value for testing the hypothesis H0 : θ0 = θ1 given by 2P = 0.022. Allowing
us to reject H0 at the 5% level and conclude that the medians do in fact look different.

Problem 30 (Yuen’s method)

The self-awareness data is in table 9.2. In the python code yuens test.py we implement
Yuen’s test. When we run that script we compute the value of the Ty statistics to be
Ty = −2.04424. Changing the order of the input data will remove the negative sign in front
of Ty.
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