
Some Notes from the Book:

Priciples of Adaptive Filters

and Self-learning Systems

by Anthony Zaknick

John L. Weatherwax∗

October 8, 2004

Introduction

Here are some notes that I wrote up as I worked through this excellent book. I’ve worked
hard to make these notes as good as I can, but I have no illusions that they are perfect. If
you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

∗
wax@alum.mit.edu

1

Linear Systems and Stochastic Processes

Problem Solutions

Problem 3 (FIR filters)

Part (a): In the notation here the list given represents the first four values of h[n]. That is

{0.2, 0.3, 0.3, 0.3} = {h[0], h[1], h[2], h[3]} .

Thus we have N = 4. To have a linear phase filter when we are given the finite impulse
response in this form requires

h∗[n] = h[N − 1− n] , (1)

or
h∗[n] = −h[N − 1− n] . (2)

For this problem none of these conditions hold true. Thus this is not a linear phase filter.

Part (b): Since h[0] = 0.1 6= h[N − 1] = h[5] = 0.2 (or its negative), neither of these two
conditions hold and this is not a linear phase filter.

Part (c): For this part Equation 1 holds and this is a linear phase filter.

Part (d): This is not a linear phase filter.

Part (e): For this part Equation 2 holds and this is a linear phase filter.

Problem 4 (the H(z) for some FIR filters)

To have a linear phase filter we need to write H(ejθ) as

H(ejθ) = A(ejθ)ej(β−αθ) .

Part (a): For a linear time-invariant system we will rely on the definition of H(z) of

H(z) =

q
∑

m=0

h[m]z−m .

We have
H(z) = 0.5 + 0.5z−1 = 0.5(1− z−1) .

This has a zero of 1 and no pole. We now write H(ejθ) as

H(ejθ) = 0.5(1 + e−jθ) = 0.5(ejθ/2 + ejθ/2)e−jθ/2 = cos(θ/2)e−jθ/2 .

2

Part (b): We have

H(z) = 0.5− 0.5z−2 = 0.5(1− z−1)(1 + z−1) .

This has two zeros of ±1. We now write H(ejθ) as

H(ejθ) = 0.5(1− e+2jθ) = 0.5(e−jθ − ejθ)ejθ = −j sin(θ)ejθ

= sin(θ)ej(θ−
π
2
) .

Part (c): As in the previous part we have

H(z) = 0.5 + 0.5z−2 = 0.5z−2(z2 + 1) = 0.5z−2(z − i)(z + i) .

This has two roots of ±i. Now we write H(ejθ) as

H(ejθ) = 0.5 + 0.5e2jθ = 0.5(e−jθ + ejθ)ejθ = cos(θ)ejθ .

Part (d): We have

H(z) = 0.25− 0.5z−1 + 0.25z−2 = 0.25z−2(z2 − 2z + 1) = 0.25z−2(z − 1)2 .

This FIR has only a single root of 1 that is of multiplicity one. Now we write H(ejθ) as

H(ejθ) = 0.25− 0.5ejθ + 0.25e2jθ = 0.25(e−jθ − 2 + ejθ)ejθ

= 0.25(e−jθ/2 − ejθ/2)2ejθ = 0.25(2j sin(θ/2))2ejθ = sin(θ/2)2ej(θ+π) .

Problem 5

To be orthogonal means that aT b = 0. To be orthonormal means that they are orthogonal
and also that ||a|| = 1 and ||b|| = 1.

Problem 6 (Toeplitz matrices)

The matrices a, c, e, and f are Toeplitz. The matrices c, d, e, and f are symmetric which
means that they are centrosymmetric matrices.

Problem 7 (the inverse of an orthogonal matrix)

For a matrix A to be orthogonal means that ATA = I. Its inverse is then A−1 = AT .

Problem 8 (the importance of ergodicity)

An ergodic process are important because we can then use them to generate meaningful
ensemble statistics from a single time series.

3

Problem 11 (computing the autocorrelation function)

Consider the discrete sequence x[n] = A sin(nω0 + φ) where φ is a uniform random variable
between (−π, π). Then the mean process, x̄, is given by

x̄ = E{x[n]} =
1

2π

∫ π

−π

A sin(nω0 + φ)dφ

= − 1

2π
A cos(nω0 + φ)|π−π

= − A

2π
(cos(nω0 + π)− cos(nω0 − π))

= − A

2π
(− cos(nω0) + cos(nω0)) = 0 .

The autocorrelation function for this series is computed as

rx(m) = E{x[k]x[k +m]∗}
= E{A sin(kω0 + φ)A sin((k +m)ω0 + φ)}

=
A2

2π

∫ π

−π

sin(kω0 + φ) sin((k +m)ω0 + φ)dφ

=
A2

4π

∫ π

−π

(cos(mω0) + cos(2kω0 +mω0 + 2φ))dφ

=
A2

2
cos(mω0) +

A2

4π

∫ π

−π

cos(2kω0 +mω0 + 2φ)dφ .

This last integral evaluates to 0 and we end with

rx(m) =
A2

2
cos(mω0) .

If we now consider the harmonic process x[n] = Aej(nω0+φ) we find its mean to be

x̄ = E{x[n]} =
A

2π

∫ π

−π

ej(nω0+φ)dφ =
A

2π
ejnω0

(

ejφ

j

∣

∣

∣

∣

π

−π

=
A

2π

ejnω0

j
(eπj − e−πj) = 0 .

The autocorrelation function for this process is given by using the definition or

rx(m) = E{x[k]x[k +m]∗}

=
|A|2
2π

∫ π

−π

ej(kω0+φ)e−j((k+m)ω0+φ)dφ

=
|A|2
2π

e−jmω0

∫ π

−π

dφ = |A|2e−jmω0 .

4

Problem 12 (the autocorrelation matrix)

The 2× 2 requested autocorrelation matrix is

Rx =

[

rx(0) r∗x(1)
rx(1) rx(0)

]

=

[

A2

2
A2

2
cos(ω0)

A2

2
cos(ω0)

A2

2

]

=
A2

2

[

1 cos(ω0)
cos(ω0) 1

]

.

Problem 13 (computing the power spectrum)

A first-order discrete autoregressive process has an autocorrelation function given by rx(m) =
α|m|, with |α| < 1. We can compute the power spectrum Px(e

jθ) by its definition. We find

Px(e
jθ) =

∞
∑

k=−∞

rx(k)e
−jkθ =

∞
∑

k=−∞

α|k|e−jkθ =
−1
∑

k=−∞

α−ke−jkθ +
∞
∑

k=0

αke−jkθ

=

∞
∑

k=1

αkejkθ +

∞
∑

k=0

(αe−jθ)k =

∞
∑

k=0

αkejkθ − 1 +
1

1− αe−jθ

=
1

1− αejθ
+

1

1− αe−jθ
− 1 =

1− α2

(1− αejθ)(1− αe−jθ)
, (3)

when we simplify.

Problem 14 (the power spectrum of filtered white noise)

Since the variance of white noise is σ2
w = 1 the power spectral density of w is Pw(e

jθ) = σ2
w

or a constant. After filtering with the suggested first order LSI filter H(z) = 1
1+ 1

4
z−1

the

output signal (denoted x[n]) has a power spectral density Px(e
jθ) = Px(e

jθ)|H(ejθ)|2 so we
get

Px(e
jθ) =

σ2
w

(1 + 1
4
ejθ)(1 + 1

4
e−jθ)

.

The autocorrelation of x[n] is computed via the inverse Fourier transform of Px(e
jθ) as

rx(k) =
1

2π

∫ π

−π

Px(e
jθ)ejkθdθ .

Since we have seen a power spectral density in this form in Equation 3 we don’t have to do
the inverse Fourier transform directly. Instead we can make Equation 3 look like the above
expression by replacing α in with −1

4
. There is a constant factor of 1− α2 that needs to be

“removed” from Equation 3. Thus from the above power spectral density we see that the
autocorrelation function that it corresponds to is given by

(

σ2
w

1−
(

1
4

)2

)

(

−1

4

)|m|

.

5

Problem 15

Yes this statement is true, since for any wide sense stationary process x with an autocorre-
lation function rx(m) that is passed through a LSI system with impulse response h[m] we
have

σ2
y =

∞
∑

l=−∞

∞
∑

m=−∞

h[l]rx(m− l)h∗[m] .

This equation is discussed in the book. If x is the white noise process then it has a delta
function for its autocorrelation function rx(·). That is rx(m− l) = 0 if m 6= l and rx(0) = σ2

x

in that case. Thus in this case σ2
y above simplifies and we have

σ2
y =

∞
∑

m=−∞

h[m]σ2
xh

∗[m] = σ2
x

∞
∑

m=−∞

|h[m]|2 .

6

Optimization and Least Squares Estimation

Notes on the text

Notes on linear regression–fitting data to a line

We begin with our χ2 objective function we seek to minimize with respect to a and b

χ2(a, b) =

N
∑

i=1

(

yi − a− bxi

σi

)2

.

To perform this minimization we take the a and the b derivatives of χ2(a, b) and set the
result equal to zero. Doing this for a and then simplifying we find

∂χ2

∂a
= 2

N
∑

i=1

(

yi − a− bxi

σi

)

(−1) = 0 .

Distributing the sums to each term gives

N
∑

i=1

yi
σi

− a

N
∑

i=1

1

σi
− b

N
∑

i=1

xi

σi
= 0 .

or
Sy − aS − bSx = 0 .

Taking the derivative of χ2(a, b) with respect to b now gives

∂χ2

∂b
= 2

N
∑

i=1

(

yi − a− bxi

σi

)

(−xi) = 0 .

Again distributing the sums to each term gives

N
∑

i=1

xiyi
σi

− a
N
∑

i=1

xi

σi

− b
N
∑

i=1

xi
2

σi

= 0 .

or
Sxy − aSx − bSxx = 0 .

These two equations as a system for a and b we have
[

S Sx

Sx Sxy

] [

a
b

]

=

[

Sy

Sxy

]

.

The solution for a and b can be obtained with Crammer’s rule
[

a
b

]

=
1

SSxx − S2
x

[

Sxx −Sx

−Sx S

] [

Sy

Sxy

]

.

Thus we have shown that

a =
SxxSy − SxSxy

∆
and

b =
SSxy − SxSy

∆
with

∆ = SSxx − S2
x .

7

Notes on diagonalization using Jacobi’s algorithm

To make A =

[

a11 a12
a21 a22

]

symmetric using the Jacobi algorithm we need to find J =
[

c s
−s c

]

such that JTA is symmetric. Considering the elements in the product of JTA we

see that this requires

ca12 − sa22 = sa11 + ca21 or

c(a12 − a21) = s(a11 + a22) or

c

s
=

a11 + a22
a12 − a21

.

We define the ratio of c to s as ρ. Now given the matrix A, the value of ρ is fixed via the
above expression. Since c2 + s2 = 1 we can put c = ±

√
1− s2 into the expression for ρ to

get

ρ = ±
√
1− s2

s
,

or
1− s2 = s2ρ2 .

or
1

1 + ρ2
= s2 so s = ± 1

√

1 + ρ2
.

Given this value for s we find that c is then given by

c = ±
√
1− s2 = ±

√

1− 1

1 + ρ2
= ±

√

ρ2

1 + ρ2
= ± ρ

√

1 + ρ2
= ρs .

We can take the plus sign above since we just need to know that s and c exist i.e. we only
need one solution. Let the symmetric matrix this J produces be denoted as B. That is

B = JTA =

[

b11 b12
b12 b22

]

. Note that via its components we can see that B is symmetric (as

it must be by the way we picked s and c above). We next want to find a rotation, J2, such
that JT

2 BJ2 is diagonal. In the same way as we did the first part of this section, this means
that we want to pick c and s such that

[

c s
−s c

]T [
b11 b12
b12 b22

] [

c s
−s c

]

=

[

d1 0
0 d2

]

.

When we multiply the left-hand-side matrices to get

JT
2 BJ2 =

[

c −s
s c

] [

b11c− sb12 sb11 + cb12
b12c− sb22 sb12 + cb22

]

=

[

c(b11c− sb12)− s(b12c− sb22) c(sb11 + cb12)− s(sb12 + cb22)
s(cb11 − sb12) + c(cb12 − sb22) s(sb11 + cb12) + c(sb12 + cb22)

]

=

[

c2b11 + s2b22 − 2scb12 c2b12 − s2b12 + sc(b11 − b22)
c2b12 − s2b12 + sc(b11 − b22) c2b22 + s2b11 + 2scb12

]

.

8

To make this product matrix diagonal requires

c2b12 − s2b12 + sc(b11 − b22) = 0 .

Lets define the variable ξ as ξ = b22−b11
2b12

, so that the above becomes

c2 − s2 − 2ξsc = 0 .

Introduced another variable t such that t = s
c
by dividing the above equation by c2 to get

1− t2 − 2ξt = 0 .

This is the quadratic equation t2 + 2ξt− 1 = 0 in t. When we solve for t we get

t =
−2ξ ±

√

4ξ2 + 4

2
= −ξ ±

√

ξ2 + 1 .

Since B is a fixed matrix (once we specify the first rotation J) the value of ξ is fixed and
from the above the value of t is fixed. As earlier, s = ±

√
1− c2 so that

t =
s

c
=

±
√
1− c2

c
.

by squaring we get c2t2 = 1− c2. Solving for c2 we get c2 = 1
1+t2

so

c =
1√

1 + t2
,

when we take the positive root. Then

s = ±
√

1− 1

1 + t2
= ± t√

1 + t2
= tc ,

as claimed. The total transformation on A, first by J and then J2, is then JT
2 (J

TA)J2 = D
is a diagonal matrix. These two combined transformations can be written as (JJ2)

TAJ2 and
provide the two matrices JJ2 and J2 that diagonalize the matrix A.

Notes on the QR algorithm with Householder transformations

The book claims that if we form the Householder matrix H(v) as

H(v) = I − 2vvT

||v||2 , (4)

and given x if we take v = x− ||x||e1 we get

H(v)x = ||x||e1 .

To show that first note that H(v)x = x− 2vvT x
||v||2

. Now consider vTx. We have

vTx = (x− ||x||e1)Tx = xTx− ||x||eT1 x = ||x||2 − ||x||eT1 x = ||x||(||x|| − eT1 x) .

9

Now consider ||v||2 or

||v||2 = (x− ||x||e1)T (x− ||x||e1) = ||x||2 − 2||x||eT1 x+ ||x||2

= 2||x||2 − 2||x||eT1 x = 2||x||(||x|| − eT1 x) .

Thus
vTx

||v||2 =
||x||(||x|| − eT1 x)

2||x||(||x|| − eT1 x)
=

1

2
.

Therefore we have shown

H(v)x = x− 2

2
v = x− v = x− (x− ||x||e1) = ||x||e1 .

as claimed.

Problem Solutions

Problem 1 (maximizing volume)

After we cut out the corners the dimension of the “base” is (6− 2x)× (6− 2x) with a height
of x giving a volume of

V (x) = (6− 2x)2x = 4x3 − 24x2 + 36x . (5)

To optimize V (x) with respect to x we take the derivative with respect to x, set the result
equal to zero and then solve for x. We find

V ′(x) = 12x2 − 48x+ 36 = 0 .

When we divide by 12 and factor we get (x − 1)(x − 3) = 0, thus x = 1 or x = 3. We find
the second derivative of V (x) given by V ′′(x) = 2x− 4. We find V ′′(1) = −2 and V ′′(3) = 2.
For V to be a maximum at x we want V ′′(x) < 0 thus x = 1 gives the maximum volume of
V (1) = 42 = 16.

Problem 4 (formulating of the acoustic position system example)

We could use the values TC1
, TC2

, TC3
, · · · directly, but that would not be an optimal choice

due to the fact that V is typically very large all of these expressions are very small. This
means that the set of five equations could be ill-conditioned. We can obtain a more robust
solution by using differences between the original measurements TC1

, TC2
, TC3

, · · · . The dif-
ferences are chosen to be from points that will give the largest measurements. That is we
would want to differ TC1

and TC3
(for G0) and TC2

and TC0
(for H0). We also scale these

differences by V (the velocity of sound in sea water).

10

Parametric Signal and System Modeling

Problem Solutions

Problem 1 (AR, MA, and ARMA models)

Recall that our linear time invariant filter can be represented in a rational transform form

Bq(z)

Ap(z)
=

∑q
k=0 bkz

−k

1 +
∑p

k=1 akz
−k

,

which when input the discrete signal x[n] produces the discrete output signal y[n] given by

y[n] =

q
∑

k=0

bkx[n− k] +

p
∑

k=1

aky[n− k] .

We have a moving average model if all ak = 0. We have an autoregressive model if all bk = 0.
We have a mixed ARMA model if neither ak or bk are all zero.

Problem 2 (fitting ARMA models)

Finding the coefficients of an AR(p) model is simplified in that the relationship between the
desired AR parameters ak, and the autocorrelation function of the time series x[n] leads to
the set of simultaneous linear equations. Models with moving average terms requires the
solution of nonlinear equations to estimate their parameters bk. Thus estimating ak is easier.

Problem 3 (deriving ∂ε
∂a∗

k

)

Warning: I think I might have something wrong with this derivation since it does not match
exactly the result from the book. If anyone sees that anything is wrong (or correct and the
book is wrong) please contact me.

Equation 4.5 from the book is given by

ε =
1

2π

∫ π

−π

∣

∣E(ejθ)
∣

∣

2
dθ

=
1

2π

∫ π

−π

∣

∣

∣

∣

X(e−jθ)− B(e−jθ)

A(e−jθ)

∣

∣

∣

∣

2

dθ

=
1

2π

∫ π

−π

[

X(e−jθ)−
∑q

k=0 bke
−jθk

1 +
∑p

k=1 ake
−jθk

] [

X(e−jθ)∗ −
∑q

k=0 b
∗
ke

jθk

1 +
∑p

k=1 a
∗
ke

jθk

]

dθ .

11

When we take the derivative of this expression with respect to the parameter a∗k we get

∂ε

∂a∗k
=

1

2π

∫ π

−π

[

X(e−jθ)−
∑q

k=0 bke
−jθk

1 +
∑p

k=1 ake
−jθk

] ∑q
k=1 b

∗
ke

jθk

[1 +
∑p

k=1 a
∗
ke

jθk]
2 e

jθkdθ

=
1

2π

∫ π

−π

[

X(e−jθ)−
∑q

k=0 bke
−jθk

1 +
∑p

k=1 ake
−jθk

]

B(e−jθ)∗

A(e−jθ)2∗
ejθkdθ

Warning: In the book the external exponent is e−jθk while in the above we have ejθk.
There maybe a typo in the book. Again if anyone sees anything wrong with what I have
done please let me know.

Problem 5 (problems with the Pade approximation method)

In the Pade’ approximation method requires that the signal x[n] be the output from the LSI
model with transfer function H(z) given by

H(z) =
B(z)

A(z)
=

∑q
k=0 bkz

−k

1 +
∑p

k=1 akz
−k

=
∞
∑

n=0

h[n]z−n .

Since we desire the output from this linear filter to equal x[n] and we have p+q+1 unknowns
given by the values of {ak}pk=1 and {bk}qk=0 to determine these we equate the output from
the above LSI system to x[n] for this many points (enough values so that we can uniquely
determine ak and bk). One problem with this method is that in practice x[n] may have noise
mixed in with the signal and as such filtering to be specific to the of points x[n] might be.
One problem with this method is that only the first p + q + 1 points from x[n] are used
to estimate the coefficients {ak}pk=1 and {bk}qk=0 thus a large sample history will be ignored
unless we take p and q very large.

Problem 6 (using the Pade’ approximation method)

Pade’s method is based on the following. Recall that we desire to have H(z) ≈ B(z)
A(z)

. If we

assume that B(z) = A(z)H(z) then the impulse response form of this equation means that

bn =
∞
∑

k=0

akh[n− k] = h[n] +

p
∑

k=1

akh[n− k] . (6)

for 0 ≤ n ≤ q and is zero for all other value for n. Take n = 0, 1, · · · q−1, q, q+1, q+2, · · · , p+q
sequentially in the above equation we get

h[n] +

p
∑

k=1

akh[n− k] =

{

bn n = 0, 1, 2, · · · , q
0 n = q + 1, q + 2, · · · q + p

. (7)

12

If we assume h is causal (h[n] = 0 when n < 0) when we write out the above, we get the
following system of equations

b0 = h[0]

b1 = h[1] + a1h[0]

b2 = h[2] + a1h[1] + a2h[0]

b3 = h[3] + a1h[2] + a2h[1] + a3h[0]
...

bq−1 = h[q − 1] + a1h[q − 2] + a2h[q − 3] + · · ·+ ap−1h[q − p] + aph[q − p− 1]

bq = h[q] + a1h[q − 1] + a2h[q − 2] + · · ·+ ap−1h[q − p+ 1] + aph[q − p]

0 = h[q + 1] + a1h[q] + a2h[q − 1] + · · ·+ ap−1h[q − p+ 2] + aph[q − p+ 1]
...

0 = h[q + p− 1] + a1h[q + p− 2] + a2h[q + p− 3] + · · ·+ ap−1h[q] + aph[q − 1]

0 = h[q + p] + a1h[q + p− 1] + a2h[q + p− 2] + · · ·+ ap−1h[q + 1] + aph[q] .

We then enforce that our systems impulse response matches the given signal or h[n] = x[n]
and then use the above to determine the coefficients ak and bk. For this problem we take the
very short signal x =

[

1 1.5 0.75
]

and use Pade’s method to determine the coefficients
ak and bk.

Part (a): When q = 0 and p = 2 using Equation 7 with h[n] = x[n] we get the following
p+ q + 1 = 3 equations

x[0] + a1x[−1] + a2x[−2] = b0

x[1] + a1x[0] + a2x[−1] = 0

x[2] + a1x[1] + a2x[0] = 0 .

Since x[n] is zero for negative arguments, as a matrix equation this becomes





x[0] 0 0
x[1] x[0] 0
x[2] x[1] x[0]









1
a1
a2



 =





b0
0
0



 .

Thus b0 = 1 and the system for the vector

[

a1
a2

]

becomes

[

1 0
1.5 1

] [

a1
a2

]

= −
[

1.5
0.75

]

.

We thus find that a1 = −1.5 and a2 = 1.5 and our model for x[n] is

x̂[n] = −
2
∑

k=1

akx[n− k] = 1.5x[n− 1]− 1.5x[n− 2] ,

for n ≥ 2.

13

Part (b): When p = 0 and q = 2 using Equation 7 with h[n] = x[n] we get the following
p+ q + 1 = 3 equations





x[0]
x[1]
x[2]



 [1] =





b0
b1
b2



 ,

Thus b0 = 1, b1 = 1.5 and b2 = 0.75.

Part (c): For p = 1 and q = 1 using Equation 7 with h[n] = x[n] gives

x[0] + a1x[−1] = b0

x[1] + a1x[0] = b1

x[2] + a1x[1] = 0 .

As a matrix system this is




x[0] 0
x[1] x[0]
x[2] x[1]





[

1
a1

]

=





b0
b1
0



 .

Solving the last equation or x[2] + x[1]a1 = 0 we have 0.75 + 1.5a1 = 0 so a1 = −1
2
. With

this the coefficients b0 and b1 are given by the first two equations above or
[

b0
b1

]

=

[

x[0]
x[1] + a1x[0]

]

=

[

1
1.5− 0.5(1.5)

]

=

[

1.5
0.75

]

.

Problem 4.7 (using Prony’s method)

Prony’s method is also used to to model our signal x[n] as the output of an LSI system. As
discussed in the book we first solve for the autoregressive coefficients a and then use these to
compute the moving average coefficients b. As discussed in the text to solve for the AR(1)
part of the system we need to consider the system

x̃+ X̃2ã = 0 ,

or X̃2ã = −x̃. In component form this matrix equation is










x[q]
x[q + 1]
x[q + 2]

...











ã1 = −











x[q + 1]
x[q + 2]
x[q + 3]

...











.

The dots indicate that we would consider this system over the entire length of x[n]. The
least squares solution for ã1 from this system is obtained by multiplying by the transpose of
the leading coefficient matrix to get

(

∞
∑

k=q

x[k]2

)

ã1 = −
∞
∑

k=q

x[k]x[k + 1] ,

14

so solving for ã1 we get

ã1 = −
∑∞

k=q x[k]x[k + 1]
∑∞

k=q x[k]
2

.

If we take q = 1 and for this system we get

ã1 = −
∑∞

k=1 x[k]x[k + 1]
∑∞

k=1 x[k]
2

= −x[1]x[2] + x[2]x[3] + · · ·+ x[19]x[20]

20
= −19

20
.

Then with this value for a1 we can find b0 and b1. They are given by
[

b0
b1

]

= X1a =

[

x[0] 0
x[1] x[0]

] [

1
ã1

]

=

[

1
1 + ã1

]

=

[

1
1
20

]

.

Problem 8 (finding all-pole models)

Lets use the all pole Prony modeling method with when our signal is x[n] = δ[n]− δ[n− 1].
To do this this we first need to evaluate the needed autocorrelation functions rx(k,m). Since
we know the signal x[n] exactly we can compute these explicitly. We find

rx(k,m) =
∞
∑

n=0

x[n−m]x∗[n− k]

=
∞
∑

n=0

(δ[n−m]− δ[n−m− 1])(δ[n− k]− δ[n− k − 1])

=

∞
∑

n=0

(δ[n−m]δ[n− k]− δ[n−m]δ[n− k − 1])

−
∞
∑

n=0

(δ[n−m− 1]δ[n− k]− δ[n−m− 1]δ[n− k − 1])

= δ[m− k]− δ[m− k − 1]− δ[k −m− 1] + δ[m− k]

= 2δ[m− k]− δ[m− k − 1]− δ[m− k + 1] .

Note that rx(k,m) is really a function of the difference m − k. Using the expression for
rx(k,m) to compute a we need to solve

p
∑

m=1

amrx(k,m) = −rx(k, 0) for k = 1, 2, . . . , p− 1, p . (8)

This gives the system


















rx(0) r∗x(1) r∗x(2) · · · r∗x(p− 2) r∗x(p− 1)
rx(1) rx(0) r∗x(1) · · · r∗x(p− 3) r∗x(p− 2)
rx(2) rx(1) rx(0) · · · r∗x(p− 4) r∗x(p− 3)
...

...
...

...
...

...
rx(p− 2) rx(p− 3) rx(p− 4) · · · rx(0) r∗x(1)
rx(p− 1) rx(p− 2) rx(p− 3) · · · r∗x(1) rx(0)





































a1
a2
a3
...

ap−1

ap



















= −



















rx(1)
rx(2)
rx(3)
...

rx(p− 1)
rx(p)



















15

Part (a): In the case where p = 1 we only have one coefficient a1 so using the first row in
the above matrix system we get

rx(0)a1 = −rx(1) .

From the expression derived rx(k,m) = rx(k − m) we see that rx(0) = 2 and rx(1) = −1
thus a1 =

1
2
. To evaluate b0 we use

{εp}min = rx(0) +

p
∑

k=1

akr
∗(k) = 2 + a1r

∗(1) = 2 +
1

2
(−1) =

3

2
.

Then b0 =
√

{εp}min =
√

3
2
.

Part (b): For the second order all-pole model we have p = 2 and we need to solve
∑p

m=1 amrx(k −m) = −rx(k) for k = 1, 2. These two equations are

a1rx(0) + a2rx(−1) = −rx(1)

a1rx(1) + a2rx(0) = −rx(2) .

or when we put in what we know about rx this system is
[

2 −1
−1 2

] [

a1
a2

]

=

[

1
0

]

.

Solving we find a1 =
2
3
and a2 =

1
3
for the two AR coefficients.

Problem 4.9 (using the autocorrelation method)

For this problem we have a finite signal of length N = 20. That is the data

x[0], x[1], · · · , x[N − 2], x[N − 1] .

We again use Equation 8 to solve for the elements of the vector a.

Part (a): For the all-pole autocorrelation method note we have rx(k,m) = rx(k − m) so
that when we consider the normal Equations 8 we have

p
∑

m=1

amrx(k −m) = −rx(k) for k = 1, 2, · · ·p .

We evaluate rx using

rx(k) =
N
∑

n=k

x[n]x∗[n− k] ,

for k ≥ 0. Note the lower limit on the sum above is k. For the given signal x[n] we find

rx(1) =

N
∑

n=1

x[n]x∗[n− 1]

= x[1]x∗[0] + x[2]x∗[1] + x[3]x∗[2] + · · ·+ x[N − 2]x∗[N − 3] + x[N − 1]x∗[N − 2]

= −1 +−1 +−1 + · · ·+−1 = −(N − 1) .

16

I’m assuming that the last element of x is x[N − 1] = −1. For rx(2) we find

rx(2) =
N
∑

n=2

x[n]x∗[n− 2]

= x[2]x∗[0] + x[3]x∗[1] + x[4]x∗[2] + · · ·+ x[N − 2]x∗[N − 4] + x[N − 1]x∗[N − 3]

= 1 + 1 + 1 + · · ·+ 1 = N − 2 .

For rx(3) we find

rx(3) =
N
∑

n=3

x[n]x∗[n− 3]

= x[3]x∗[0] + x[4]x∗[1] + · · ·+ x[N − 2]x∗[N − 5] + x[N − 1]x∗[N − 4]

= −1 +−1 +−1 + · · ·+−1 = −(N − 3) .

In general it looks like the pattern for rx(k) is

rx(k) = (−1)k(N − k) for k ≥ 0 .

Using these values we want to solve for a1 and a2 and

a1rx(0) + a2rx(−1) = −rx(1)

a1rx(1) + a2rx(0) = −rx(2) ,

or using the values for rx(k) we have

Na1 − (N − 1)a2 = +(N − 1)

−(N − 1)a1 +Na2 = −(N − 2) .

When we solve these for a1 and a2 we get a1 = 2(N−1)
2N−1

and a2 = 1
2N−1

for the two AR
coefficients. We could then take N = 20 to evaluate them numerically if desired.

Problem 4.10 (using the modified Yule-Walker equations)

The modified Yule-Walker equations follow from

rx(k) +

p
∑

m=1

amrx(k −m) =

{

σ2
vc(k) 0 ≤ k ≤ q
0 k > q

, (9)

where c(k) is given by

c(k) =

q
∑

m=k

bmh
∗[m− k] =

q−k
∑

m=0

bm+kh
∗[m] . (10)

17

In matrix form the left-hand-side of these equations looks like


























rx(0) rx(−1) rx(−2) · · · rx(−(p− 1)) rx(−p)
rx(1) rx(0) rx(−1) · · · rx(−(p− 2)) rx(−(p− 1))
...

...
rx(q) rx(q − 1) rx(q − 2) · · · rx(q − p+ 1) rx(q − p)

rx(q + 1) rx(q) rx(q − 1) · · · rx(q − p+ 2) rx(q − p+ 1)
...

...
rx(q + p− 1) rx(q + p− 2) rx(q + p− 3) · · · rx(q) rx(q − 1)
rx(q + p) rx(q + p− 1) rx(q + p− 2) · · · rx(q + 1) rx(q)













































1
a1
a2
...

ap−1

ap



















,

where I have partitioned the matrix to show the MA part (the first q + 1 rows) and the AR
part (the last rows). The modified Yule-Walker equations have a right-hand-side given by
the vector

σ2
v



























c(0)
c(1)
...

c(q − 1)
c(q)
0
...
0



























.

When we extract out the AR(p) bottom part we need to solve for a in the matrix






rx(q) rx(q−1) ··· rx(q−p+2) rx(q−p+1)
rx(q+1) rx(q) ··· rx(q−p+3) rx(q−p+2)

...
...

rx(q+p−2) rx(q+p−3) ··· rx(q) rx(q−1)
rx(q+p−1) rx(q+p−2) ··· rx(q+1) rx(q)











a1
a2
...

ap−1

ap



 = −







rx(q+1)
rx(q+2)

...
rx(q+p−1)
rx(q+p)






. (11)

Once the coefficients in ak are solved for we can evaluate bk with Rxa = c. When p = q = 1
as we are asked to consider here when we consider the first three Equations in 9 we get the
system





rx(0) rx(−1)
rx(1) rx(0)
rx(2) rx(1)





[

1
a1

]

= σ2
v





c(0)
c(1)
0



 .

Given what we are told about rx the third equation means that a1 = −1
2
. Taking σ2

v = 1
and using what we just found for a1 we find c(0) and c(1) given by

c(0) = rx(0) + rx(−1)a1 = 26 + 7(−1/2) = 22.5

c(1) = rx(1) + rx(0)a1 = 7 + 26(−1/2) = −6 .

Then using Equation 10 we see that

c(0) = b0h
∗[0] + b1h

∗[1]

c(1) = b1h
∗[1] .

Given values for h∗[0] and h∗[1] we can use the above to solve for b0 and b1. Warning: I’m
not sure what values to take for h∗[0] and h∗[1]. If anyone knows what I should use for these
please email me.

18

Problem 4.11 (a third-order all-pole model)

The AR coefficients are given by solving the Yule-Walker Equations 11 (when we take q = 0)
and recall that rx(−n) = r∗x(n) = rx(n). For a AR(3) model this is the system





rx(0) rx(1) rx(2)
rx(1) rx(0) rx(1)
rx(2) rx(1) rx(0)









a1
a2
a3



 = −





rx(1)
rx(2)
rx(3)



 .

We can use the numbers given in this problem to solve for the values of ak.

Problem 4.12 (predicting autocorrelations)

Given the values of rx(k) for 0 ≤ k ≤ 3 and the coefficients ak we can use Equation 9 to
compute rx(k) for larger values of k. For example to compute rx(4) we would use

rx(4) = −
3
∑

m=1

amrx(k −m) = −(a1rx(3) + a2rx(2) + a3rx(1)) .

Everything on the right-hand-side is known.

19

Optimum Wiener Filter

Notes on the text

Notes on the derivation of the ideal continuous time Wiener filter

We start with an expansion of the objective function we seek to minimize, ξ, as

ξ =

∫ ∞

−∞

∣

∣

∣

∣

X(f)

G(f)
Φ(f)− S(f)

G(f)

∣

∣

∣

∣

2

df

=

∫ ∞

−∞

∣

∣

∣

∣

(S(f) + V (f))

G(f)
Φ(f)− S(f)

G(f)

∣

∣

∣

∣

2

df

=

∫ ∞

−∞

1

|G(f)|2
{

|V (f)Φ(f)− (1− Φ(f))S(f)|2
}

df

=

∫ ∞

−∞

1

|G(f)|2
{

|V (f)Φ(f)|2 − 2V (f)Φ(f)(1− Φ(f))∗S∗(f) + |1− Φ(f)|2|S(f)|2
}

df

If we assume (as does the book) that the middle term integrates to zero we get

ξ =

∫ ∞

−∞

|G(f)|−2
{

|S(f)|2|1− Φ(f)|2 + |V (f)|2|Φ(f)|2
}

df

Note there seems to be a type in the expression presented in the book. Taking the derivative
of ξ with respect to the “object” Φ(f) and setting the result equal to zero gives

2|S(f)|2(1− Φ(f))(−1) + 2|V (f)|2Φ(f) = 0 .

When we solve for Φ(f) in the above expression we get

Φ(f) =
|S(f)|2

|S(f)|2 + |V (f)|2 , (12)

for the optimal Wiener solution.

Problem Solutions

Problem 5.1 (and example of FIR filtering)

For this problem we follow the section on general noise FIR Wiener filtering with rs(k) = α|k|

and q = 2. This means that we need to solve (Rs + Rv)w = rs for the weight vector w,

where Rs =

[

rs(0) r∗s(1)
rs(1) rs(0)

]

, Rv = σ2
v

[

1 0
0 1

]

, and the right-hand-side vector is rs =
[

rs(0)
rs(1)

]

. We take q = 2 since we want a first order filter. For the signal generated with an

20

autocorrelation function of rs(k) = α|k| we have that Rs =

[

1 α
α 1

]

, and rs =

[

1
α

]

so the

solution to for the two weights

[

w[0]
w[1]

]

is given by

[

w[0]
w[1]

]

=

([

1 α
α 1

]

+ σ2
v

[

1 0
0 1

])−1 [
1
α

]

=

[

1 + σ2
v α

α 1 + σ2
v

]−1 [
1
α

]

.

Thus performing the above inverse we find
[

w[0]
w[1]

]

=
1

(1 + σ2
v)

2 − α2

[

1 + σ2
v −α

−α 1 + σ2
v

] [

1
α

]

=
1

(1 + σ2
v)− α2

[

1 + σ2
v − α2

−α + (1 + σ2
v)α

]

, (13)

for the two solutions. If α = 0.8 and σ2
v = 1 we can use Equation 13 to get w[0] = 0.40408

and w[1] = 0.2381 so W (z) = w[0] + w[1]z−1 is the optimal Wiener filter, the same as the
expression given in the book.

Problem 5.3 (FIR Wiener prediction)

Following the section in the book entitled “FIR Wiener Linear Prediction” we need to com-
pute w[0] and w[1] in the no noise case by solving Rxw = rsx(1) = rx(1) or

[

rx(0) r∗x(1)
rx(1) rx(0)

] [

w[0]
w[1]

]

=

[

rx(1)
rx(2)

]

. (14)

For the autocorrelation function given this becomes
[

1 α
α 1

] [

w[0]
w[1]

]

=

[

α
α2

]

.

Solving this we get
[

w[0]
w[1]

]

=
1

1− α2

[

1 −α
−α 1

] [

α
α2

]

=
1

1− α2

[

α− α3

−α2 + α2

]

=

[

α
0

]

.

Thus the optimal first-order Wiener predictor is x̂[n + 1] = αx[n].

Problem 5.4-5.5 (FIR Wiener prediction with noise)

In this case the measurement of x[n] is contaminated by zero-mean white noise as y[n] =
x[n] + ν[n]. here y[n] is the measurement process. Then we want to estimate x[n+ 1] using
measurements of y[n] as

x̂[n+ 1] =

q−1
∑

m=0

w[m]y[n−m] . (15)

21

To do that we must solve the Wiener-Hopf equations or

q−1
∑

m=0

w[m]ry(k −m) = rx(1)y(k) for k = 0, 1, 2, · · · , q − 1 .

In this case given here we have

rx(1)y(k) = E{x[n + 1]y∗[n− k]} = E{x[n + 1](x∗[n− k] + ν[n− k])}
= E{x[n + 1]x∗[n− k]} = rx(1)

ry(k) = E{y[n]y∗[n− k]} = rx(k) + rv(k) .

For the Markov autocorrelation signal given here this becomes the matrix equation [Rx +
Rv]w = rx(1) or when we take q = 2 to get a first-order predictor we get

[

1 + σ2
v α

α 1 + σ2
v

] [

w[0]
w[1]

]

=

[

α
α2

]

.

Solving for the vector w we get
[

w[0]
w[1]

]

=
1

(1 + σ2
v)

2 − α2

[

1 + σ2
v −α

−α 1 + σ2
v

] [

α
α2

]

=
1

(1 + σ2
v)

2 − α2

[

(1 + σ2
v)α− α3

−α2 + (1 + σ2
v)α

2

]

=
1

(1 + σ2
v)

2 − α2

[

α− α3 + σ2
vα

σ2
vα

2

]

.

Thus the optimum first order predictor in this case is given by

x̂[n+ 1] =

(

α− α3 + σ2
vα

(1 + σ2
v)

2 − α2

)

y[n] +

(

σ2
vα

2

(1 + σ2
v)

2 − α2

)

y[n− 1] .

If we take σ2
v → 0 in the above we get x̂[n+1] = αy[n] = αx[n], since y[n] = x[n]+v[n] → x[n]

in this case. This is the same result seen earlier.

Problem 5.6 (FIR Wiener linear prediction of x[n + 3])

We want to estimate the signal s[n] where s[n] = x[n + 3] using x[n] and x[n − 1] as our
measurements. From the section entitled “FIR Wiener linear prediction” we need solve
Rxw = rsx(c) = rx(c). With c = 3, this becomes

[

rx(0) r∗x(1)
rx(1) rx(0)

] [

w[0]
w[1]

]

=

[

rx(3)
rx(4)

]

. (16)

With the expression for rx(k) given in this problem we have
[

2 0.6364
0.6364 2

] [

w[0]
w[1]

]

=

[

−0.5155
−0.6561

]

.

Solving this gives w[0] = −0.17067 and w[1] = −0.27234. The mean square error (MSE)
corresponding to this solution is given by

ξ = rx(0)− rHx(c)w = rx(0)− rHx(3)w

= 2−
[

−0.5155 −0.6561
]

[

−0.17067
−0.27234

]

= 1.7324 .

22

Problem 5.7 (FIR Wiener linear prediction of x[n + c])

We repeat the previous problem for various values of c = 1, 2, 3, 4, 5 and look at the MSE
for each. The only thing that changes in each case is the expression for the right-hand-side
in Equation 16. See the Octave file prob 5 7.m where this is worked. When that script is
executed we get the following for the MSE for each prediction lookahead c

c = 1 2 3 4 5 6

MSE = 1.7747 1.8522 1.7324 1.7605 1.9030 1.9364

23

Optimum Kalman Filter

Notes on the text

Notes on the Kalman Filter Examples

We take for x̂[2] the following approximation based on measurements taken at the times
t = 1 and t = 2

x̂[2] ≈









y1[2]
1
T
(y1[2]− y1[1])

y2[2]
1
T
(y2[2]− y2[1])









.

We want to evaluate P (2|2). We first construct an approximation to x[2]− x̂[2] in that

x[2]− x̂[2] ≈









x1[2]− y1[2]
x2[2]− 1

T
(y1[2]− y1[1])

x3[2]− y2[2]
x4[2]− 1

T
(y2[2]− y2[1])









.

Using what we know from how the state maps to the measurements that

y1[2] = x1[2] + v1[2]

y2[2] = x2[2] + v2[2] ,

and how the state at the previous timestep maps to the state at the current timestep that

x2[2] = x2[1] + u1[1]

x4[2] = x4[1] + u2[1] ,

so that we get for x[2]− x̂[2]

x[2]− x̂[2] =









−v1[2]
x2[1] + u1[1]− 1

T
(x1[2] + v1[2]− x1[1]− v1[1])

−v2[2]
x4[1] + u2[1]− 1

T
(x2[2] + v2[2]− x2[1]− v2[1])









=









−v1[2]
u1[1]− 1

T
(v1[2]− v1[1]) + x2[1]− 1

T
(x1[2]− x1[1])

−v2[2]
u2[1]− 1

T
(v2[2]− v2[1]) + x4[1]− 1

T
(x2[2]− x2[1])









.

If we take

x2[1] ≈
1

T
(x1[2]− x1[1]) and

x4[1] ≈
1

T
(x2[2]− x2[1]) ,

24

we get for x[2]− x̂[2] the following









−v1[2]
u1[1]− 1

T
(v1[2]− v1[1])
−v2[2]

u2[1]− 1
T
(v2[2]− v2[1])









.

The covariance we seek P (2|2) is when we define e ≡ x[2] − x̂[2] is P (2|2) = E[eeT]. This
later matrix has components given by P (2|2)ij = E[eiej]. Thus when we compute several of
these expectations we see that

P (2|2)11 = E[e1e1] = E [(−v1[2])(−v1[2])] = σ2
ρ

P (2|2)12 = E[e1e2] = E

[

(−v1[2])(u1[1]−
1

T
(v1[2]− v1[1]))

]

=
σ2
ρ

T

P (2|2)22 = E[e2e2] = E

[

(u1[1]−
1

T
(v1[2]− v1[1]))(u1[1]−

1

T
(v1[2]− v1[1]))

]

= σ2
1 + 2

σ2
ρ

T 2
.

The remaining elements in P (2|2) are computed in the same way.

Problem solutions

Problem 6.2 (Kalman filtering of a constant)

We begin with the estimation of a constant x from a series of uncorrelated corrupted noisy
measurements. For this example we take our state x[n] to be the estimate of our constant x
and assume that there is no process dynamics. Thus the state equation is given by

x[n] = x[n− 1] .

Thus in the notation of the book Qw(n) = 0. If we assume that each measurement is a
noised version of x we have that

y[n] = x[n] + v[n] .

with v[n] ∼ N (0, σ2
v) and Qv(n) = σ2

v . Then with this specification the Kalman equations
for this problem we initialize our initial estimate of x and its uncertainty as x̂[0|0] = x0 and
P (0|0) = p0. Then for n = 1, 2, · · · we iterate

• Predict the state: x̂[n|n− 1] = x̂[n− 1|n− 1].

• Predict the uncertainty in the state: P (n|n− 1) = P (n− 1|n− 1).

• Compute the filter gain: K(n) = P (n|n−1)
P (n|n−1)+σ2

v
.

25

• Using K(n) incorporate the measurement y[n] to update the state estimate:

x̂(n|n) = x̂[n|n− 1] +K(n)(y[n]− x̂[n|n− 1])

• Using K(n) incorporate the measurement y[n] to update the state uncertainty:

P (n|n) = (I −K(n))P (n|n− 1)

26

Power Spectral Density Analysis

Problem solutions

Problem 7.1 (main approaches to spectral estimation)

The two main approaches to spectral estimation can be classified as the nonparametric and
the parametric approach. In the nonparametric approach no model (or functional form)
is assumed for the autocorrelation function rx(k) of the process x[n] we are considering.
It basically involves estimating the autocorrelation function and then taking its Fourier
transform. The periodogram, the modified periodogram (windowing of the periodogram),
Bartlett’s (periodogram averaging), Welch’s method, and the method of Blackman-Tukey are
examples of the classical nonparametric approaches. In the nonclassical parametric approach
a particular model is assumed for the signal x[n]. If the model is true this implies a particular
form for the autocorrelation function. If the assumed model is correct these methods can
generate better spectral estimates with fewer data points N . Typical models assume the
process x[n] is: autoregressive, moving average, autoregressive moving average or harmonic
(complex exponential in random noise).

Problem 7.2 (the power spectrum of white noise)

The power spectrum of a white noise signal x(t) of variance σ2
x is a constant that is

Px(e
jθ) = σ2

x .

Problem 7.3 (the minimum value of N to resolve two sinusoids)

Warning: I’m not entirely sure about this problem. See the comments at the end as to
why. If anyone knows what I am doing incorrectly please let me know.

From the book the resolution for the nonparametric periodogram is given by

∆θ = 0.89
2π

N
. (17)

For us to be able to resolve these two different sinusoids using this method would then require
a value of N such that

∆θ = 0.89
2π

N
≪ 0.02π .

so
N ≫ 89 .

I’m a bit worried about this results since I don’t seem to use the white noise variance σ2
x or

the sampling frequency Fs in this solution.

27

Problem 7.4 (the variance of the periodogram spectral estimator)

From the discussion in the book the variance of the periodogram spectral estimator is related
to the true spectral density Px(e

jθ) as

Var
{

P̂per−x(e
jθ)
}

≈ P 2
x (e

jθ) . (18)

If our signal x(t) is white noise with variance σ2
x then we have Px(e

jθ) = σ2
x a constant. Thus

Var
{

P̂per−x(e
jθ)
}

above does not go to zero as the sample record length N increases.

Problem 7.5 (Bartlett’s resolution and the number of data sections)

From the textbook, the resolution ∆θ for Bartlett’s power spectrum estimator is

∆θ = 0.89K
2π

N
(19)

and the variance of the estimator is

Var
{

P̂B(e
jθ)
}

≈ 1

K
P 2
x (e

jθ) . (20)

For a fixed N as K, the number of nonoverlapping data sections increases the number of
points in each interval L, must decrease. From Equation 19 we see that ∆θ increases (gets
worse), while from Equation 20 the variance gets better.

Problem 7.6 (a figure of merit)

The book defined a “figure of merit” or µ that is to capture the trade offs between reducing
the variance vs. the associated cost in loss of resolution ∆θ. The figure of merit introduced
is defined as the normalized variance ν, times the resolution ∆θ. For the four nonparametric
methods considered in the book: periodogram, Bartlett, Welsh, and Blackman-Tukey, all
the figures of merit are of the form C

(

2π
N

)

for various numerical values for C. From this
we see that the performance of all these nonparametric methods are directly limited by the
length of the data sequence N .

Problem 7.7 (MV power spectrum estimation of white noise with variance σ2
x)

Recall that for the the minimum variance (MV) method the spectral density estimate is
given by

P̂MV (e
jθ) =

q + 1

eHR−1
x e

, (21)

28

where the vector e is given by

e =



















1
ejθ

ej2θ

...
ej(q−1)θ

ejqθ



















.

Also recall that for a white noise process with a variance of σ2
x we have an autocorrelation

matrix of Rx = σ2
xI. Thus we have

eHR−1
x e =

1

σ2
x

eHe =
q + 1

σ2
x

,

where we have used eHi ei =
∑q

i=0 1
2 = q + 1. Using this in Equation 21 we find

P̂MV (e
jθ) = σ2

x ,

as it should.

Problem 7.8 (MV spectral estimate of a harmonic model)

Note that the given signal is a specification of the harmonic signal given by

x[n] =

p
∑

i=1

|Ai|ejφiejnθi + w[n] , (22)

in that the given signal for this problem is just one term in the above sum. In the book the
autocorrelation matrix Rx for a harmonic model is computed and is given by

Rx =

p
∑

i=1

Pieie
H
i + σ2

wI , (23)

where Pi = |Ai|2 and ei is given by

ei =



















1
ejθi

ej2θi
...

ej(q−1)θi

ejqθi



















.

We will compute the power spectral density using

P̂MV(e
jθ) =

q + 1

eHR−1
x e

.

29

For this problem we have that Rx is given by

Rx = σ2
wI + Pieie

H
i = σ2

w

(

I +

(

Pi

σ2
w

)

eie
H
i

)

.

Lets define the signal to noise ratio Pi

σ2
w
as α then we get

R−1
x =

1

σ2
w

(

I + αeie
H
i

)−1
.

Using the Sherman-Morrison formula we get

R−1
x =

1

σ2
w

(

I − αeie
H
i

1 + αeHi ei

)

Note that eHi ei = q + 1 and we get

R−1
x =

1

σ2
w

(

I − α

1 + α(q + 1)
eie

H
i

)

.

Now consider the expression eHR−1
x e need to evaluate P̂MV(e

jθ) and we get

eHR−1
x e =

1

σ2
w

(q + 1)− α

σ2
w(1 + α(q + 1))

eHeie
H
i e .

Note that the product in the second term is

(eHei)(e
H
i e) = |eHei|2 =

∣

∣

∣

∣

∣

q
∑

k=0

ejk(θi−θ)

∣

∣

∣

∣

∣

2

.

Using this we get for P̂MV(e
jθ) the following expression

P̂MV(e
jθ)) =

q + 1
q+1
σ2
w
+ α

σ2
w(1+α(q+1))

|∑q
k=0 e

jk(θi−θ)| .

This expression will have a single peak when θ = θi.

30

Adaptive Finite Impulse Response Filters

Notes on the Text

Notes on the time constant τm in the LMS algorithm

Pick τm such that when k = τm we have the initial error in the mth component reduced by
a factor of e. That is we are looking for k = τm such that

vm[k] ≈
1

e
vm[0] .

We can write this as

(1− µλm)
τm ≈ 1

e
= e−1 ,

so
τm ln(1− µλm) = −1 ,

or taking logarithms we get

τm = − 1

ln(1− µλm)
. (24)

If µ ≪ 1 (or very small LMS step sizes) then

ln(1− µλm) ≈ −µλm +O(µ2λ2
m) ,

so in this case we have

τm = − 1

(−µλm)
=

1

µλm
. (25)

For all possible values of λm the one where λm = λmin is the most restrictive in that it results
in the largest value of τm. This number represents the limiting number of iterations for the
LMS algorithm.

Notes on the recursive least squares estimation

In this and the following section the definition of x is

x[k] =
[

x[k] x[k − 1] x[k − 2] · · · x[k − p+ 1]
]T

. (26)

The definition of the vector w (with its p components) is

w[n] =
[

w0[n] w1[n] w2[n] · · · wp−1[n]
]T

. (27)

The definition of ξ, or the objective function we will try to minimize is

ξ(n) =
n
∑

k=0

β(n, k)|d[k]−wT [n]x[k]|2 . (28)

31

When we specialize the “forgetting factor” β(n, k) to be β(n, k) = λn−k we get

ξ(n) =

n
∑

k=0

λn−k|d[k]−wT [n]x[k]|2 , (29)

Note that the term in the summation expresses how well the weight vector w times the input
vector x matches the desired signal d[n] over all of the times in the past i.e. for 0 ≤ k ≤ n
and not just the most recent input data x[n] and d[n].

Notes on the exponentially weighted recursive least squares algorithm

Warning: From what I have been able to duplicate, the book seems to make some errors
in complex conjugation in the formulas it presents. I have tried to make sure that this
derivations is correct but an error could have crept in. If anyone sees anything wrong with
my arguments below (or finds them to be correct) please let me know.

The optimal solution to our exponentially weighted recursive least squares formulation was
derived in Equation 45 and requires us to solve (for each n as new samples arrive)

Φ(n)ŵ[n] = θ(n) . (30)

Here Φ(n) and θ(n) are defined in the book. This involves computing the inverse of Φ(n) for
each n. To do this inverse we will use a special result from matrix algebra. In cases where
our matrix A can be written as “almost an inverse”, its inverse can sometimes be more easily
computed. One case of this form is Woodbury’s identity, which states that if A can be
written as

A = B−1 + CD−1CH then

A−1 = B −BC[D + CHBC]−1CHB . (31)

Since we have the the recursive definition of Φ(n) of

Φ(n) = λΦ(n− 1) + x∗[n]xT [n] ,

we can use Equation 31 if we let A = Φ(n), B−1 = λΦ(n−1), C = x∗[n] and D = 1. In that
case we find

Φ(n)−1 = λ−1Φ(n− 1)−1 − λ−1Φ(n− 1)−1x∗[n]x[n]Tλ−1Φ(n− 1)−1

(1 + λ−1xT [n]Φ(n− 1)−1x∗[n])
. (32)

Lets define P (n) ≡ Φ(n)−1 and the matrix k(n) to be

k(n) ≡ λ−1P (n− 1)x∗[n]

1 + λ−1xT [n]P (n− 1)x∗[n]
=

λ−1Φ(n− 1)−1x∗[n]

1 + λ−1xT [n]Φ(n − 1)−1x∗[n]
, (33)

Then Equation 32 in terms of P (n) then becomes

P (n) = λ−1P (n− 1)− λ−1k(n)xT [n]P (n− 1) . (34)

32

Now multiply both sides of this expression by x∗[n] on the right to get

P (n)x∗[n] = λ−1P (n− 1)x∗[n]− λ−1k(n)xT [n]P (n− 1)x∗[n] . (35)

From the first expression in the definition of k(n) given by Equation 33 when we multiply
by the denominator we get

k(n)(1 + λ−1xT [n]P (n− 1)x∗[n]) = λ−1P (n− 1)x∗[n] ,

so writing the above as

λ−1k(n)xT [n]P (n− 1)x∗[n] = λ−1P (n− 1)x∗[n]− k(n) , (36)

and then putting this into the right-hand-side of Equation 35 we get

P (n)x∗[n] = k(n) or k(n) = Φ(n)−1x∗[n] . (37)

We will use the expression just developed to develop a recursive update algorithm for ŵ[n].
To begin, in Equation 30 or ŵ[n] = P (n)θ(n) first recursively replace θ(n) to get

ŵ[n] = P (n)θ(n) = P (n)(λθ(n− 1) + d[n]x∗[n])

= λP (n)θ(n− 1) + P (n)d[n]x∗[n] .

Now in the first term above, we recursively expand the expression for P (n) using Equation 34
and find ŵ[n] given by

ŵ[n] = λ(λ−1P (n− 1)− λ−1k(n)xT [n]P (n− 1))θ(n− 1) + P (n)d[n]x∗[n]

= P (n− 1)θ(n− 1)− k(n)xT [n]P (n− 1)θ(n− 1) + d[n]P (n)x∗[n] .

Replace P (n) with Φ(n)−1 to get

ŵ[n] = Φ(n− 1)−1θ(n− 1)− k(n)xT [n]Φ(n− 1)−1θ(n− 1) + d[n]P (n)x∗[n] .

Note that Φ(n− 1)−1θ(n− 1) = ŵ[n− 1] and we get

ŵ[n] = ŵ[n− 1]− k(n)xT [n]ŵ[n− 1] + d[n]P (n)x∗[n] .

From Equation 37 we can replace P (n)x∗[n] with k(n) and get

ŵ[n] = ŵ[n− 1]− k(n)xT [n]ŵ[n− 1] + d[n]k(n) .

In that expression consider k(n)xT [n]ŵ[n− 1]. Since xT [n]ŵ[n− 1] is a scalar we can write
this as xT [n]ŵ[n− 1]k(n) and get

ŵ[n] = ŵ[n− 1] + (d[n]xT [n]ŵ[n− 1])k(n) .

When we define α[n] = d[n]− xT [n]ŵ[n− 1] we get the result in the book.

33

Problem solutions

Problem 8.1 (finding the optimal second-order AR predictor)

We can solve this problem using Equation 14 to compute the optimal weights. In that
equation we need to compute rx(k) for an AR(2) model. For an AR(2) model there is an
exact formula for the autocorrelation function rx(k) (see [1]), which we now state. For the
AR(2) model given by

zt = φ1zt−1 + φ2zt−2 + at ,

we first solve the quadratic equation

1− φ1B − φ2B
2 = 0 ,

for its two roots which we denote as G−1
1 and G−2

2 . Then the autocorrelation function for an
AR(2) model is given by

rx(k) =
G1(1−G2

2)G
k
1 −G2(1−G2

1)G
k
2

(G1 −G2)(1 +G1G2)
,

When we use that formula we find the autocorrelation function for 0 ≤ k ≤ 3 given by

rx(k) = 1.0000 , 0.7032 , 0.0850 ,−0.4614 .

When we then put these into Equation 14 and solve for w we find w =

[

w0

w1

]

=

[

1.2728
−0.8100

]

for the values that would be used for the estimation of x[n] from x[n− 1] and x[n− 2] in the
expression

x̂[n] = w0x[n− 1] + w1x[n− 2] .

This part of the problem is worked in the MATLAB file prob 8 1.m.

To demonstrate how to generate these coefficients using the LMS algorithm we note that the
vector w[k] and x[k] in the LMS algorithm are given by

w[k] =

[

w0[k]
w1[k]

]

, and x[k] =

[

x[k − 1]
x[k − 2]

]

.

The output from this filter is

y[k] = w0[k]x[k − 1] + w1[k]x[k − 2] .

We desire y[k] ≈ x[k] and define an error e[k] = x[k] − y[k]. With this notation the LMS
weight update equation for w[k] becomes

w[k + 1] = w[k] + 2ηe[k]x[k] .

We expect that if we have convergence that the components of the w[k] vector will approach
their correct values. That is w0[k] → 1.2728 and w1[k] → −0.81 as k → +∞. For stability
we must pick the parameter η such that 0 < η < 1

λmax
with

λmax ≤
p
∑

k=0

λk = Tr[Rx] = rx(0) + rx(1) = 1.0 + 0.7119 = 1.7119 .

34

0 50 100 150 200 250 300 350 400 450 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

iteration number

we
igh

t v
alu

e

phi
1
 estimate

phi
2
 estimate

Figure 1: Convergence plots of the coefficient weights w0[k] and w1[k] when we run the LMS
algorithm.

Computational Note: We will compute the one-dimensional signal using the MATLAB
function filter. Once we have have the state x[n] generated we will use the routine aalms.m
from [2] which implements the LMS algorithm in MATLAB. When we run the MATLAB
script prob 8 1 LMS.m we get the plot shown in Figure 1.

Problem 8.2 (bounds on the LMS step size)

For the autocovariance matrix for the previous problem we find eigenvalues given by 0.2968
and 1.7032. Thus the step size in the LMS algorithm

w[k + 1] = w[k] + 2ηe[k]x[k] ,

should be take

0 < η <
1

λmax
=

1

1.7032
= 0.5871 . (38)

In practice the step size should be at least 10 times this small giving a value of 0.058.

Problem 8.3 (the normalized LMS algorithm)

The normalized LMS algorithm uses the following to update the weights w[k]

w[k + 1] = w[k] +
2ηe[k]

(a+ ||x[k]||2)x[k] , (39)

35

for a > 0. This is the same setup as problem 8.1 but using a different algorithm. See
the MATLAB function prob 8 1 NLMS.m where we use the routine aanlms.m from [2] which
implements the normalized LMS algorithm in MATLAB.

Problem 8.4 (the complex LMS algorithm)

If the process x[k] and the FIR filter coefficients are complex then y[k] = x̂[k] = wTx as
before but now x and w can be complex vectors. The LMS algorithm is based on the method
of steepest descent in that the coefficients w[k] are updated as

w[k + 1] = w[k]− η∇
w
E{e2[k]} . (40)

To derive the LMS algorithm we now need to evaluate ∇
w
E{e2[k]}. We find a derivative of

the above given by (see equation 5.5 and 5.6 in the book in Chapter 5 for another example
of this type of calculation) as

∇
w
E{e2[k]} =

∂

∂w∗
e2[k] =

∂

∂w∗
e[k]e∗[k] =

∂

∂w∗
(d[k]− y[k])(d∗[k]− y∗[k])

= (d[k]− y[k])
∂

∂w∗
(d∗[k]−wHx∗) = (d[k]− y[k])

∂

∂w∗
(−wHx∗) .

By working out components we can see that

∂

∂w∗
(−wHx∗) = −x∗ ,

and thus
∇

w
E{e2[k]} = −2e[k]x∗[k] ,

and the LMS algorithm takes the suggested form

w[k + 1] = w[k] + 2ηe[k]x∗[k] . (41)

Problem 8.6 (pick w to minimize exponentially weighted RLS)

The objective function we seek to minimize for this problem is

ξ(n) =
n
∑

k=0

λn−k|d[k]−wT [n]x[k]|2 . (42)

To determine a value of w[n] that minimizes ξ(n) we take the derivative of ξ(n) with respect
to the scalars w∗

m[n] (note the conjugate), set the result equal to zero and solve for wm[n]. We
find this derivative (see equations 5.5 and 5.6 in the book in Chapter 5 for another example

36

of this type of calculation) given by

∂ξ(n)

∂wm[n]∗
=

n
∑

k=0

λn−k ∂

∂wm[n]∗
|d[k]−wT [n]x[k]|2

=
n
∑

k=0

λn−k ∂

∂wm[n]∗
(d[k]−wT [n]x[k])(d[k]−wT [n]x[k])∗

=
n
∑

k=0

λn−k(d[k]−wT [n]x[k])
∂

∂wm[n]∗
(d∗[k]−wH [n]x∗[k])

=

n
∑

k=0

λn−k(d[k]−wT [n]x[k])
∂

∂wm[n]∗
(−wH [n]x∗[k]) . (43)

Note that this last derivative is given by

∂

∂wm[n]∗
(−wH [n]x∗[k]) = −x∗

m[k] .

When we put this expression back into Equation 43 we get two terms

−
n
∑

k=0

λn−kd[k]x∗
m[k] +

n
∑

k=0

wT [n]x[k]x∗
m[k] , (44)

both of which are scalars. Since we need to evaluate ∂ξ(n)
∂wm[n]∗

for m = 0, 1, . . . , p− 1 we have
p equations like the above expression. If we write these equations in rows for each of the m
values we see that the first term in Equation 44 when written as a vector is

−
n
∑

k=0

λn−kd[k]x∗[k] = −θ(n) .

For the second term in Equation 44 we first use wT [n]x[k] = x[k]Tw[n] to write it as

n
∑

k=0

λn−kx∗
m[k]x[k]

Tw[n] .

This is again a scalar since x[k]Tw[n] is the scalar inner product. If we write this in rows
for each of the m values we see that we “fill in” the vector x∗

m[k] and get

n
∑

k=0

λn−kx∗[k]x[k]Tw[n] =

(

n
∑

k=0

λn−kx∗[k]x[k]T

)

w[n] = Φ(n)w[n] .

Thus we have shown that
∂ξ(n)

∂wm[n]∗
= −θ(n) + Φ(n)w[n] . (45)

Setting this result equal to zero and solving for w[n] gives the requested expression.

37

Frequency Domain Adaptive Filters

Problem solutions

Problem 9.1 (the number of multiplications in the block LMS algorithm (BLMS))

The block LMS algorithm has a weight update expression given by

w[n+ L] = w[n] + 2η
L−1
∑

m=0

e[n +m]x[n +m] . (46)

per block of L ≥ 1 input points. Here e[n + m] is the error made at sample n +m and is
given by

e[n +m] = d[n+m]− xT [n +m]w[n] , (47)

where we see that w[n] is held constant for the L error point estimations. For a fixed
value of m, to evaluate e[n + m] requires p multiplications to compute the inner product
xT [n+m]w[n] and to evaluate the product e[n+m]x[n+m] another p multiplications. As
this must be done for each value of 0 ≤ m ≤ L − 1. We get a total of 2pL multiplications
to update w by the information contained in L input points. If we process L = p points we
get 2p2 multiplications, the same number as the normal LMS algorithm (see the text at the
end of the chapter). This argument seems to indicate that we do not save in computational
complexity with respect to multiplications when using the block LMS algorithm.

Problem 9.4 (frequency domain filtering)

The DFT F matrix is a p× p matrix that looks like

F =















F00 F01 F02 · · · F0(p−1)

F10 F11 F12 · · · F1(p−1)
...

...
F(p−2)0 F(p−2)1 F(p−2)2 · · · F(p−2)(p−1)

F(p−1)0 F(p−1)1 F(p−1)2 · · · F(p−1)(p−1)















,

with the mn element given by

Fmn = e−j 2πmn
p−1 for 0 ≤ m,n ≤ p− 1 ,

and has an inverse given by 1
p
FH or the elements

1

p
ej

2πmn
p−1 .

38

Problem 9.5 (main purpose of the overlap-save and overlap-add methods)

The main purpose of the overlap-save and overlap-add methods is to turn circular convolu-
tions into linear ones.

Problem 9.6 (disadvantages of the circular convolution method)

The circular convolution method had degraded performance.

39

Introduction to Neural Networks

Problem solutions

Problem 12.1 (aspects of artificial neural networks (ANN))

Following the two items from Haykin’s formal definition of an artificial neural network we
recall:

• In a neural network we acquire knowledge through a learning process

• The weights or connection strengths are used to store this knowledge.

Problem 12.2 (general characteristics of artificial neural networks)

Artificial neural networks are powerful techniques because they can deal with nonlinearities,
high dimensions, noisy, complex, and imperfect sensor data. In addition artificial neural
networks don’t necessarily require a complete model of the problem to produce useful results.

Problem 12.3 (main types of artificial neural networks)

The book mentions three main types of artificial neural networks:

• Supervised learning

• Reinforcement learning

• Self-organizing (unsupervised learning) type

Problem 12.4 (artificial neural networks as black boxes)

Artificial neural networks can operate as black boxes in some situations. They should not
be used when their performance gives the same results as other technologies for solving the
same problem.

Problem 12.5 (possible applications of artificial neural networks)

The book mentions several applications of artificial neural networks. Some of them include

40

• Classification or pattern recognition

• Multivariate function mapping

• Time series analysis

• Nonlinear filtering or signal processing

• Intelligent or nonlinear control

The list of applications is only limited by ones imagination.

Problem 12.6 (an example artifical neural networks)

We can think of the output of a three layer neural network as the composition of linear
operations and nonlinear activation function f(·) as

y = f(Uf(Wx)) . (48)

It can help to recall the definitions of the elements of W and U and then to place them
into rectangular arrays such that the above multiplications are valid. The weight wji is the
connection from the input node xi to hidden node hj . To facilitate the matrix product Wx
the matrix W is of size (M + 1)× (p+ 1) and is indexed with elements wji as

W =























0 0 · · · 0
w10 w11 · · · w1p

w20 w21 · · · w2p
...

...
...

wj0 wj1 · · · wjp
...

...
...

wM0 wM1 · · · wnp























.

Note following the book we are using the convention that the weights between the inputs x
and the internal bias node h0 are zero. This is why the first row in the matrix W is zero.

The matrix U is indexed ukj which are the weights between the hidden layer hj and the
output layer yk. To facilitate the matrix product Uf(·) the matrix U is of dimension K ×
(M + 1) and in terms of ukj looks like

U =



















u10 u11 u12 · · · u1M

u20 u21 u22 · · · u2M
...

...
...

...
uk0 uk1 uk2 · · · ukM
...

...
...

...
uK0 uK1 uK2 · · · uKM



















.

41

Given the numerical values specified for this problem we can now evaluate the initial values
for W and U.

Part (a): The matrix W is of size (M +1)× (p+1) = 3× 3 and for the network given here
we have

W =





0 0 0
3 −1 2
1 2 0



 .

The matrix U is of dimension K × (M + 1) = 1 × 3 and for the network given we have
U =

[

−3 1 −2
]

.

Part (b): The vector hidden layer output h is given by the first composition above or





h0

h1

h2



 = f(Wx) = f









0 0 0
3 −1 2
1 2 0









1
1
3







 = f









0
8
3







 =





0.5
0.9997
0.9526



 .

Note that due to the form of the activation function f(·) we have h0 = f(0) = 1
2
6= 1. In

many places in the book the bias element h0 is stated to be 1. We could enforce this if
we change the form of the activation function (by multiplying by 2), the results are still
consistent if we allow h0 = 1

2
, rather than 1. The output y1 is then given in terms of the

values of the hidden units as

y1 = f (Uh) = f





[

−3 1 −2
]





0.5
0.9997
0.9526







 = 0.0828 .

Part (c): We now want to calculate the error signals δy1, δh1, and δh2. From the book we
have

δyk = (yk − dk)yk(1− yk) = (0.0828− 0.9)(0.0828)(1− 0.0828) = −0.0620 ,

when we take k = 1. Again from the book we have the error signals δhj for a general number
K of output nodes is given by

δhj =

(

K
∑

a=1

(ya − da)ya(1− ya)uaj

)

hj(1− hj) .

When we take K = 1 this becomes

δhj = (y1 − d1)y1(1− y1)u1jhj(1− hj) .

In this later expression we take j = 1 and j = 2 and will need to use u11 = 1 and u12 = −2
with h1 and h2 computed above. We find δh1 = −2.0796 10−5 and δh2 = 0.0056.

Part (d): Once we have the error signals δy1, δh1, and δh2 we adjust the elements of U as

∆ukj = −ηδykhj , (49)

42

for k = 1, . . . , K and j = 0, 1, . . . ,M . Once we have these elements we update U as

Unew = Uold +∆U .

Using the numbers from this problem we find

∆U = −ηδy1
[

h0 h1 h2

]

= −η(0.082755)
[

0.50000 0.99966 0.95257
]

=
[

0.031017 0.062014 0.059093
]

when we take η = 1. We adjust the elements of W as

∆wji = −µδhjxi , (50)

for j = 1, . . . ,M and i = 0, 1, . . . , p. Since j starts at 1 we don’t update the first row of W
and it stays as a row of zeros. Once we have these elements we update W as

Wnew = Wold +∆W .

Using the numbers from this problem we find

∆W = −µ

[

δh1

δh2

]

[

x0 x1 x2

]

= −µ

[

−2.0796 10−5

0.0056

]

[

1 1 3
]

=

[

2.0796 10−5 2.0796 10−5 6.2389 10−5

−5.6050 10−3 −5.6050 10−3 −1.6815 10−2

]

.

Now that we have new version of W and U we would accept another (randomly chosen)
augmented input vector x and using them compute the needed update matrices ∆W and
∆U with this new vector. This process is repeated until the error on the training and
testing set start to diverge. These numerical calculations are worked in the MATLAB file
prob 12 6.m

43

References

[1] G. Box, G. M. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting & Control
(3rd Edition). Prentice Hall, 3rd edition, Feb. 1994.

[2] A. Poularikas and Z. Ramadan. Adaptive filtering primer with MATLAB. Electrical
Engineering Primer Series. CRC/Taylor & Francis, 2006.

44

