
IEEE TRANS. IMAGE PROCESSING 1

A Fast Method for Computing Local Image
Statistics with Rectangular Stencils

John Weatherwax

Abstract— In this paper we present a computationally fast
method at computing a local images statistics using a moving
window filter. The method we present can be much faster than
the more conventional method of programming this algorithm,
while being conceptually easy to understand and implement.

I. INTRODUCTION

IN image processing a very fundamental operation is that
of spacial filtering [1], [2]. When all the coefficients of

the stencil are one, this physically represents something very
simple. The resulting filtered image is proportional to replacing
each pixel in the original with its local average. In this
statement, the local pixels to be averaged are specified by
the filtering stencil. The filtered image and the local average
image are equal when the former is divided by the number of
elements in the stencil.

In this paper we present a computationally fast method
at computing the locally averaged image. In addition, the
computational method we present enables the efficient com-
putation of higher order local statistics such as variance,
skewness, kurtosis, etc. [3] using generalizations of the ideas
presented here. For the computational method we present to
be maximally efficient the stencils used must be rectangular or
constructed from rectangular pieces. In addition, each stencil
coefficient must be the same value. This implies that the stencil
can have no zero elements. More general stencil types are
possible but the efficiency of the method presented here is
then lost. In figure 1 we present a representative sample of
stencils the method described here will work efficiently for. To
avoid descriptive complications the method will be described
using the simplest stencil possible. Generalizations to more
complicated shapes such as those shown in figure 1 involve
slight modifications of the ideas presented here and will not
be discussed.

The outline of this brief paper is as follows. In section II we
present a description of the algorithm as it would be applied to
a square stencil of odd dimension. We next comment on the
algorithms computational complexity compared with that of
the more naive implementation of the local filtering algorithm.
Finally, in section III we conclude.

Manuscript received January 1, 2005; revised December 30, 2005. This
work was sponsored by the U.S. Government under Air Force Contract
F19628-00-C-0002. Options, interpretations, conclusions, and recommenda-
tions are those of the authors and are not necessarily endorsed by the United
States Government.

J. Weatherwax is with Lincoln Laboratory, Massachusetts Institute of
Technology.

Fig. 1. A set of representative stencils to which the filtering method described
in this paper maybe applied. In the top three stencils, it is imagined that each
white box represents a neighbor of the center black box. The value placed
in the black pixel in the filtered image represents the average over all pixels
in the stencil (white and black). In the bottom three stencils, the average in
the original image is taken over all black pixels and its value is placed in the
center black pixel.

II. ALGORITHM DESCRIPTION

Assuming an input image I with the intensity at pixel (i, j)
represented by Ii,j and of dimensions M×N , a kernel filtering
operation is described mathematically [1], with the following
equation

Īi,j =

d∑
p=−d

d∑
q=−d

Wp,q Ii+p,j+q

d∑
p=−d

d∑
q=−d

Wp,q

. (1)



IEEE TRANS. IMAGE PROCESSING 2

Fig. 2. Typical example square stencils of odd size used to describe the
algorithm.

In this expression, we have assumed a square stencil of size
2d + 1 along each side with Wp,q representing the weights
applied to each of the respective pixel values centered on and
surrounding Ii,j . See figure 2 for two example stencils. This
process is applied to each pixel in the input image and an new
output image Ī is created. In the application of equation 1 over
all pixels in the input image, boundary conditions will have
to be specified. This can be done in a number of ways and
as its specification is not a conceptually important part of this
algorithm it will not be discussed further.

In this paper we will be concerned only with rectangular
stencils with all unit coefficients. We note that the case of all
stencil coefficients constant, but not equal to one, is simply a
multiplicative scaling of the stencil with all ones and is thus a
trivial modification. Stencils with zero components and non–
constant coefficients can be handled by this method, although
the resulting formulas are complicated and it is felt that few
computational benefits would result in these cases. Least our
method seem too specific, it is noted that the types of stencils
described are ideal at computing local image statistics namely
means and variances.

Under the assumption of unit coefficients equation 1 be-
comes

Īi,j =
1

Nstencil

d∑

p=−d

d∑

q=−d

Ii+p,j+q . (2)

Where Nstencil = (2d + 1)2 is the number of pixels in
the stencil under consideration. Here equation 2 represents
creation of new image Ī , representing the average of the pixels
in I specified by the processing stencil. We will for brevity
sometimes call the image Ī the “mean” image.

We note that the ability to compute an image representing
local averages, translates directly into the ability to compute an
image representing local higher order moments. For example,
the computation of the “variance” image is obtained by
computing the mean image (using equation 2) of the following
image

D = (I − Ī)2 . (3)

Here image subtraction is done point–wise. Higher order
moments can be obtained with generalizations to these ideas.

The algorithm begins by first computing the cumulative
summation along each row of the input image I . This is

represented with the following equation

Ĩi,j =

j∑

q=1

Ii,q . (4)

The next step is to perform a cumulative summation along
the columns of the image Ĩ . This is given by the following
equation

Îi,j =

i∑

p=1

Ĩp,j . (5)

Note that both these operations can be easily performed
in most computational environments. For example in
MATLABTMthe cumsum command can be used to accomplish
each transformation.

Taken together, the Î image can be expressed directly in
terms of the I image by the following equation

Îi,j =

i∑

p=1

j∑

q=1

Ip,q . (6)

The mean image Ī is now computed from the image Î with
the four additions and one division. The equation expressing
this is given by

Nstencil Īi,j = Îi+d,j+d − Îi−d−1,j+d

− Îi+d,j−d−1 + Îi−d−1,j−d−1 . (7)

Here for equation formatting purposes we have not explicitly
performed the division by Nstencil.

Each subtraction in equation 7 represents the removal of
the cumulative summation of all points to the north–west
of the pixel of interest. Similarly each addition represents
the addition of the cumulative summation of all points to
the north–west of the pixel of interest. Graphically this is
represented in figure 3. In that figure, shading is used to
represent the number of pixels that are influenced by each term
in the above equation. Darker shading represents that a given
pixel is influenced by more terms in equation 7. Specifically,
the term Îi+d,j+d includes every pixel north–west of the lower
right stencil corner of the stencil in the summation. The second
term −Îi−d−1,j+d subtracts the sum of all pixels to the north–
west of the upper right corner of the stencil. The third term
−Îi+d,j−d−1 subtracts the cumsum of all pixels to the north-
west of the lower left corner of the stencil. At this point
these three operations have resulted in double counting of the
pixels to the north–west of the upper left corner of the stencil.
The addition of the fourth term Îi−d−1,j−d−1 corrects this
deficiency by adding back the doubly subtracted terms. For
the more algebraically inclined, a proof of this result will be
given in the appendix. In the following subsection we discuss
this algorithms complexity and compare it to the complexity
of a more naive implementation of equation 2.

A. Algorithmic Complexity

In this subsection we briefly discuss the algorithmic com-
plexity of this algorithm for square stencils. A naive imple-
mentation of the algorithm represented by equation 2 would



IEEE TRANS. IMAGE PROCESSING 3

Fig. 3. Graphical representation of equation 7.

require one to perform O((2d + 1))2) multiplications and
summations for each pixel in the original image resulting in
O((2d + 1)2MN) computations in total. In the algorithm de-
scribed in this paper both equations 4, and 5 require O(NM)
additions (only). The equation 7 requires O(4NM) additions
resulting in a total of O(6NM) calculations. Thus this algo-
rithm will represents a significant computational savings over
the naive implementation when

6 � (2d + 1)2 , (8)

or

d �

√
6 − 1

2
≈ 0.7247 . (9)

Thus, in fact for the 3 × 3 stencil shown in figure 2 this new
algorithm is more efficient than the naive implementation. In
addition the efficiency improves the larger the stencil size.

III. CONCLUSION

In this paper we have presented a computationally fast
method at computing local pixel averages. This method has
been shown to be sufficiently faster than the more obvious
implementation of filter averaging. Since the computation
of local higher order statistics are a generalization of local
averaging the method presented here is valid also for quickly
computing additional statistics such as variance. In addition
it was shown that the larger the stencil size the greater the
computational efficiency of this new method. It is hoped that
this paper will enable the image processing community to
quickly benefit from the improved speeds possible with this
algorithm.

APPENDIX

PROOF OF EQUATION 7

Inserting equation 6 into the first line in equation 7, and
performing the subtraction over the p index we get

Îi+d,j+d − Îi−d−1,j+d =
i+d∑

p=1

j+d∑

q=1

Ip,q −
i−d−1∑

p=1

j+d∑

q=1

Ip,q =

i+d∑

p=i−d

j+d∑

q=1

Ip,q . (10)

Now substituting equation 6 into the (negative) of the second
line of equation 7 and again performing the subtraction over
the p index, we get

Îi+d,j−d−1 − Îi−d−1,j−d−1 =
i+d∑

p=1

j−d−1∑

q=1

Ip,q −
i−d−1∑

p=1

j−d−1∑

q=1

Ip,q =

i+d∑

p=i−d

j−d−1∑

q=1

Ip,q . (11)

Now subtracting equation 11 from equation 10 and performing
the subtraction over the q index, we get

i+d∑

p=i−d

j+d∑

q=1

Ip,q −
i+d∑

p=i−d

j−d−1∑

q=1

Ip,q =
i+d∑

p=i−d

j+d∑

q=j−d

Ip,q . (12)

As this is the right hand side of equation 2 the proof is
complete.

The author would like to thank Dr. John Kay for his helpful
comments and suggestions while this research was carried out.

REFERENCES

[1] J. C. Russ, The image processing handbook (2nd ed.). CRC Press, Inc.,
1995.

[2] R. C. Gonzalez and R. E. Woods, Digital Image Processing. New Jersey,
USA: Prentice Hall, 2001.

[3] M. R. Spiegel, J. Schiller, and R. A. Srinivasan, Schaum’s Outline:
Probability and Statistics. New York, USA: McGraw-Hill, 2000.

John L. Weatherwax received a B.S. with honors in mathematics and a
S.B. with honors in physics from the University of Missouri–Columbia in
1996. In September 1996 he attended Massachusetts Institute of Technology,
Cambridge Ma. with a National Science Foundation Fellowship. In 2001 he
graduated from M.I.T. receiving a doctorate in mathematics in the area of
non–linear hyperbolic systems. From 2001 on, he has been a member of the
technical staff working at M.I.T. Lincoln Laboratory, Lexington Ma. Currently
he is in the ballistic missile division working on discrimination algorithms.


