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An Approximation Algorithm for Computing the
Mean Square Error Between Two High Range

Resolution RADAR Profiles
John Weatherwax

Abstract— In this paper we present an approximation method
for computing the one dimensional mean square error (MSE)
between two High Range Resolution (HRR) RADAR profiles. In
much of the signal processing literature the MSE is computed
with a brute force exhaustive search or a cross-correlation
technique. In this paper we wish to emphasize and develop an
alternative approximate computational technique for its calcula-
tion. We found that the MSE calculation could be approximated
well by two one-dimensional minimization and show how to
optimally compute each minimization. The technique we present
has the added features that it does all of its calculations in the
spatial domain.

I. INTRODUCTION

IN much of one–dimensional signal processing, two finite
length signals are compared using a mean square error

(MSE) metric. In this paper we envision that two length
�

signals ( ����� � and ���	� � ) are to be compared with the following
mathematical expression


����� ����� ��������� ����� 
�������� �! "
#%$ �'& ��� (*),+-�.)/��� (0���2143 (1)

Here the minimum, in the above expression, is taken over an
index shift + , and a real valued scaling factor

&
. Physically,

in this expression each vector ( � and � ) represents a signal
corrupted with additive noise. Mathematically, a MSE score
between two one–dimensional vectors represents how alike the
two signals are, regardless of signal amplitude and position.
A large MSE score indicates a large difference, while a small
score indicates signals that are very similar.

A specific application where this MSE criterion is used in
RADAR signal processing is that for template matching of two
High Range Resolution (HRR) RADAR profiles [1]–[7]. As
an example of the type of signals considered there, in figure 1
we present a sample Moving and Stationary Target Acquisition
and Recognition (MSTAR) HRR profile taken from a M9 tank.
In this paper our application of the MSE will be taken from
HRR RADAR signal processing, but the analysis we do will
be applicable to many other signal processing domains where
similar situations hold.
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Fig. 1. Typical MSTAR RADAR High Range Resolution profile.

In what follows, the vector ����� � will often be referred to as
the ”test” signal and the vector ����� � will often be referred to as
the “template” signal. This choice of terminology is derived
from one operational use of the MSE in template matching. In
this application a new input test signal � would be compared
with every template signal � in a template library. The template
signal with the smallest MSE score would be chosen to most
represent the test signal. Signal classification or additional
processing could be done with this information.

Physically, the amplitude (
&

) in equation 1 is included to
insure that the test signal ����� � has the same signal to noise
ratio as the template signal. The shift + is to insure that both
profiles have their signal properly centered. We envision that
shifts of a profile only slide the signal portion of the vector
along a fixed and infinite noise floor. Thus the range of the
shift parameter is not bounded, but different MSE scores only
result for +65 � ) � � � � .

It can be seen from equation 1 that a given MSE calculation
can be considered a two–dimensional minimization problem;
that of minimizing the function

7 �'& �8+9�;: �<� �! "
#%$ �'& ��� (=)>+-�?)/��� (0���214� (2)

over the real variable
&

and the discrete variable + . See figure 2
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Fig. 2. Typical quadratic unimodal MSE surface behavior. The gain �
and shift index � are varied along the � and � axes respectively. A unique
minimum results at the vertex of this “parabola.”

for a typical plot of the
7 �'& �8+9� surface. In that figure one can

see the nice quadratic – looking structure that results along
each dimension. The rest of the paper presents the approximate
minimization technique used in calculating an approximate
value for the MSE.

II. AN APPROXIMATE TECHNIQUE AT CALCULATING THE

MSE MINIMUM

For all of the cases considered in our research the two-
dimensional minimization represented in figure 2 could be well
approximated by two one-dimensional minimizations. While
it is well known that this is not in general true for arbitrary
functions of two variables we found that this procedure rep-
resented a very good approximation for computing the MSE
in the following sense.

In the template matching problem considered here it is
important that any procedure used to calculate the MSE truly
select the global minimum (or something very close to it)
when the two HRR profiles are from the same class and
the resulting MSE small. If the two HRR profiles are from
different classes it is less important that our procedure return
the exact minimum MSE. For by returning something larger
than the exact minimum MSE between two dissimilar HRR
profiles we increase our probability of excluding this template
profile as a match to our input test profile. While this argument
is not rigorous, again, in practice with many comparisons
between similar and different profiles this two minimization
procedure worked very well.

In performing our two one-dimensional minimizations, we
first minimize the function

7
with respect to the gain

&
over

a fixed shift index ( +>� �
), and then with that value of

&
we minimize the function

7
over a the shift parameter + . The

minimization over
&

can be done analytically. The result with

+<� �
is given by standard calculus and is given by

&�� � � �<�%�
"
# $ ��� ( � ��� (0�

� �<� �
"
#%$ ��� (0� 1 3 (3)

We note that in the operational setting that motivated this work
we found it advantageous to “mean match” the test signal to
the template signal, before using equation 3. Mean matching,
involves computing the mean of the test signal �
	����	 and the
mean of the template � 	������ signal and adding to the test signal
a constant equal to � 	������ )�� 	����	 .

The method used to minimize over + is more interesting
and can greatly affect algorithm performance. To the authors’
knowledge, at this point in the MSE calculation many methods
perform some sort of brute force exhaustive search over the
discrete index + or use a cross-correlation technique [7].
Rather use either technique we sought a method that was
computationally cheaper than brute force and that avoided the
use of FFT’s. The technique we use to arrive at a minimum
of

7
with respect to + , is called a discrete Fibonacci search

(also called a lattice search [8]). We were led to a discrete
Fibonacci search by the following observations about the
second minimization:

� The independent variable + is discrete and therefore
Newton type methods that rely on derivatives cannot be
used.

� Each function evaluation of
7

is very expensive involving� � � � additions.

To optimize the MSE calculation with respect to speed we
would like a method that uses as few function evaluations as
possible; in fact, we would prefer a method that reuses func-
tion evaluations if possible in locating this unique minimum.
The provable optimal algorithm for this task is the Fibonacci
search [9]. In the next section we will briefly discuss this
algorithm with respect to our problem of interest.

We note, before presenting the details of the Fibonacci
search, that the cross-correlation technique is also a com-
putationally efficient method at producing the required range
shift [10]. In addition, we will show in the appendix below,
that our proposed search technique has the same computational
complexity as the cross-correlation technique. Thus from a
computational viewpoint there is no difference between the
two techniques. A proof of this statement is presented in the
appendix below.

III. THE DISCRETE FIBONACCI SEARCH AS APPLIED TO

THE MSE CALCULATION

The Fibonacci search algorithm in the context of our prob-
lem will be explained in this section. However, before we can
fully explain this search algorithm we need a few definitions
and some background.

A discrete function � is unimodal1 on an interval � �.���8� (with
� and � integers) if � has a minimum ( $ in the interval, and
� is strictly decreasing to the left of ( $ and strictly increasing
to the right of ( $ . See figure 3 for a graphical representation
of a unimodal function. Consider now the problem of locating

1Some authors designate function with one minimum as uninodal [11]
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Fig. 3. Examples of unimodal functions. In the function on the left the new
search interval should be � ��������� , while in the function on the right the new
search interval should be � �	�
�
��� .

this extrema. Standard iterative “bracketing” algorithms [12],
[13] attempt to reduce the interval under consideration by
choosing two arbitrary intermediate points ( � ��( 1 � �� ( � ( 1  ��� , examining the value of the function at ( � and ( 1 , and
then discarding one of the subintervals, � � � ( � � or

� ( 1 ���8� . For
example, if � � ( � ��� � � ( 1 � , the interval � � � ( � � can be excluded
(see figure 3) and all our attention can be focused on the
reduced interval � ( � � �8� , which still bracket our minimum ( $ .

The functions to which such bracketing algorithms are
typically applied have rather complex non-analytical forms, are
very expensive to evaluate, or are integer valued. If they were
not of these types, standard newton type algorithms that utilize
derivative information could be used (with quadratic conver-
gence). Because the functional form of the MSE problem we
are minimizing, each functional evaluation is expensive (on the
order of

�
additions) and, the search space is discrete, newton

methods are of no use. Now in continuing our bracketing
routine we would select two new points � ( � and � ( 1 inside � ( � � � �and based on function evaluations of these points, eliminate
more interval as done above. In selecting the two new points
from the reduced subinterval � ( � ���8� at which we will evaluate
� , it is natural to hope that one of them could be the previous
chosen ( 1 at which � has already been evaluated. Thus we get
information on the location of the minimum of our function
without any additional functional evaluations. The problem, of
course, is that an unfortunate original choice for ( 1 could lead
to an insignificant reduction at this stage in the size of our
interval bracketing ( $ .

The answer to the question as to how to choose the (
points to reuse information and to maximize the amount
of interval reduction is given by the Fibonacci search. The
minimization technique is named such because it uses the
Fibonacci sequence, defined by

� $ � � � � ��� � ��� � ��� � � � ��� � � � � � (4)

for ����� . The first � � Fibonacci numbers are given as follows

� �!�#"!�%$!& � �%"'�(�*)%$+$,&*- �.)+) (5)

With this quick background the algorithm is as follows,
please see any of the references at the end of this paper for a
more thorough description. For a discrete search with ���/�
to �<� �

(all discrete problems can be shifted to this form),
select as ( 1 the largest Fibonacci number less than the total
number of shift indices (here

�
). This means that one finds

the largest integer � such that
� �� � � (6)

where
� � are the Fibonacci numbers. Given the previously

computed optimal
& � & �

, from equation 3, evaluate the
function

7
at the two points ( 1 � � � , and ( � � � � � � .The function values at our two internal test points will be

called
7 � : 7 �'& � � ( � � and

7 1 : 7 �'& � � ( 1 � points. With
these two values the main iterative loop begins. We loop until0 ( 1 )/( � 0 �1� . If 7 � & � � ( � ��

7 � & � � ( 1 � (7)

then the new interval of search should be � � � ( 1 � , and the
following assignments are made for the next pass through the
loop,

� � � (8)

� � ( 1 (9)( 1 � ( � (10)7 1 � 7 � (11)( � � �2� � � )/( 1 � (12)7 � � 7 �'& � � ( � � (13)

On the other hand if7 � & � � ( � ���
7 � & � � ( 1 � (14)

then the new interval of search should be � ( � � �8� , and the
following assignments are made for the next pass through the
loop,

� � ( � (15)

� � � (16)( � � ( 1 (17)7 � � 7 1 (18)( 1 � � ) � ( � ) ��� (19)7 1 � 7 �'& � � ( 1 � (20)

Each time through the loop we decrease the interval surround-
ing our minimization, and it can be shown that our internal
test points ( � and ( 1 , are Fibonacci numbers. In addition,
after � loops this routine will terminate. Thus, in general,
the minimum can be found in � function evaluations with �
equal to the index on the largest Fibonacci number less than or
equal to

�
. All of these facts are demonstrated and discussed

in [8]. In the next section we compare this search algorithm
computationally against a more naive exhaustive search.

IV. ALGORITHM COMPARISONS

Here we compare our approximate technique against an
exhaustive search algorithm for computing the MSE. In the
exhaustive search

&
is discretized between )3$ and $ in steps

of
� 34$ , and the shift index + is taken from within the range of� ) �65 "��7� �65 " � . Timing results are shown in figure 4. Both

algorithms were developed in MATLAB and run on a Pentium
PC running Linux.

On the x-axis we plot the number of randomly chosen
HRR profiles and on the y-axis we plot the time (in seconds)
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Fig. 4. Comparison of algorithmic timings between an exhaustive search
technique and the Fibonacci search.

required to compare a fixed test profile with all profiles. The
timing was done with the MATLAB “tic” and “toc” function.
These timing results clearly show that a Fibonacci search
speeds up the MSE computation, by about �+$ � %. Using a
Fibonacci search, one can do the computation of the MSE for
about three and a half templates in the time it takes to do one
template in the exhaustive search technique.

V. CONCLUSION

In this paper we have motivated the fact that a very
good method for computing the MSE between two HRR
signals of interest can be approximated well by two one–
dimensional minimization techniques. After that motivation,
we have presented a computationally efficient method at
evaluating the minimization along each direction. This two
minimization decomposition technique (as an approximation
technique for MSE calculations) does not seem to have been
made elsewhere. We hope that this observation will motivate
other researchers to try similar techniques on other one–
dimensional template matching problems that use the MSE.

APPENDIX

COMPUTATIONAL COMPLEXITY OF THE FIBONACCI

SEARCH

In this appendix we show that the computational complexity
of the Fibonacci search technique on HRR profiles of size

�
,

is equal to that of a cross-correlational technique used for the
same purpose.

A cross-correlation technique requires
� � �������.� � � � cal-

culations for the FFTs on each profile. A component wise
product and a maximization each require

� �'� � additional
calculations. Thus, the cross-correlation technique in total
requires

� � " �������.� � � � " � �;� � �'������� �'� � � (21)

calculations to obtain its solution + .
For the Fibonacci search, it can be shown [14] that the

Fibonacci numbers
� � can be written as

� � � ��
$
�	� � ) �� � � (22)

where
�

and �� are defined to be

� � � �
�
$

" 
 � 3 � � & � �+�*- (23)

�� � � ) �
$

" 
 ) 3 ��� & � �*�+- (24)

Since the Fibonacci search requires � function evalua-
tions [8] where � is given in terms of

�
by the implicit

equation � � 

� 3 (25)

Each function evaluation requires
� �'� � additions so we get

a total of
� � � � � . Solving equation 25 for � as a function

of
�

, using equation 22 gives

� � �����.� � $ � ����� �	� � 3 (26)

together this gives a total complexity of the Fibonacci search
technique of

� �'�������.� � � � , the same as that of the cross-
correlation technique.
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