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Chapter 1 (Gaussian Elimination and Its Variants)

Exercise 1.1.20 (an example of block partitioning)

We first compute Ax with (ignoring the partitioning for the time being) is given by

Ax =





1 3 2
2 1 1
−1 0 1









1 0 1
2 1 1
−1 2 8



 =





4 7 4
3 3 3
−2 2 −1





Now to show that Ai1X1j + Ai2X2j = Bij for i, j = 1, 2 consider each of the possible four
pairs in tern. First consider (i, j) = (1, 1) which is

A11X11 + A12X21 =

[

1
2

]

[1] +

[

3 2
1 1

] [

2
−1

]

=

[

1
2

]

+

[

4
1

]

=

[

5
3

]

Which is the same as B11. Now (i, j) = (1, 2) gives

A11X12 + A12X22 =

[

1
2

]

[

0 1
]

+

[

3 2
1 1

] [

1 1
2 0

]

=

[

0 1
0 2

]

+

[

7 3
3 1

]

=

[

7 4
3 3

]

Which is the same as B12. Now (i, j) = (2, 1) gives

A21X11 + A22X21 = [−1] [1] +
[

0 1
]

[

2
−1

]

= −1 +−1 = −2

Which is the same as B21. Finally, considering (i, j) = (2, 2), we have

A21X12 + A22X22 = [−1]
[

0 1
]

+
[

0 1
]

[

1 1
2 0

]

=
[

0 −1
]

+
[

2 0
]

=
[

2 −1
]

Which is the same as B22. Thus we have shown the equivalence requested.

Exercise 1.1.25

Let A be n by m and consider A partitioned by columns so that

A =
[

a1|a2| · · · |am
]

.

Here ai is the i-th column of A of dimension n by 1. Consider x partitioned into m scalar
blocks as

x =











x1

x2

...
xm











Then

Ax =
[

a1|a2| · · · |am
]











x1

x2

...
xm











= x1a
1 + x2a

2 + x3a
3 + · · ·+ xma

m = b (1)

Showing that b is a linear combination of the columns of A.



Exercise 1.2.4

Lets begin by assuming that there exists a nonzero y such that Ay = 0. But applying A−1

to both sides gives
A−1Ay = A−10 = 0

or y = 0 which is a contradiction to our initial assumption. Therefore no nonzero y can
exist.

Exercise 1.2.5

If A−1 exists then we have
AA−1 = I .

Taking the determinant of both sides of this expression gives

|A||A−1| = 1 , (2)

but since |A−1| = |A|−1 it is not possible for |A| = 0 or else Equation 2 would be in
contradiction.

Exercise 1.2.11

The equation for the car at x1 is

−4x1 + 1 + 4(x2 − x1) = 0 ,

or
8x1 − 4x2 = 1 .

Which is the same as given in the book. The equation for the car at x2 is given by

−4(x2 − x1) + 2 + 4(x3 − x2) = 0 .

Which is the same as in the book. The equation for the car at x3 is given by

−4(x3 − x2) + 3− 4x3 = 0 ,

or
−4x2 − 8x3 = −3 .

Which is the same as given in the book. Since the determinant of the coefficient matrix A
has value det(A) = 256 6= 0, A is nonsingular.



Exercise 1.3.7

A pseudo-code implementation would look like the following

% Find the last element of b that is zero ($b_k=0$ and $b_{k+1} \ne 0$)

for i=1,2,...,n

if( b_i \ne 0 ) break

endfor

k=i-1 % we now have b_1 = b_2 = b_3 = \ldots = b_k = 0

for i=k+1,...,n

for j=k+1,...,n

b_i = b_i - g_{ij} b_j

endfor

if( g_{ii} = 0 ) set error flag, exit

b_i = b_i/g_{ii}

endfor

Exercise 1.3.14

Part (a): To count the operations we first consider the inner for loop which has 2 flops
and is executed n − (j + 1) + 1 = n − j times. The outer loop is executed once for every
j = 1, 2, . . . , n therefore the total flop count is given by

n
∑

j=1

n
∑

i=j+1

2 =
n
∑

j=1

2(n− j) = 2
n−1
∑

j=1

j = 2
1

2
n(n− 1) = n(n− 1) ,

the same as row oriented substitution.

Part (b): Row oriented forward substitution subtracts just the columns of the row we are
working on as we get to each row. Column oriented forward substitution subtracts from all
rows before moving to the next unknown (row).

Exercise 1.3.14

Part (b): In row-oriented substitution we first solve for x1, then x2 using the known value
of x1, then x3 using the known values of x1 and x2. This pattern continues until finally
we solve for xn using all of then known x1, x2, down to xn−1. The column subtractions (in
column oriented substitution) occurs one at a time i.e. in row-oriented substitution we have

a11x1 = b1 ⇒ x1 =
b1
a11

.



a21x1 + a22x2 = b2 ⇒ x2 =
b2 − a21x1

a22

⇒ x2 =
b2 − a21

(

b1
a11

)

a22

while in column oriented substitution we solve for x1, with

x1 =
b1
a11

.

and then we get

a22x2 = b2 − a21

(

b1
a11

)

,

and solve for x2. In summary using column oriented substitution we do some of the sub-

tractions in xi =
bi−

∑i−1

j=1
aijyj

aij
, each time we go through the loop. In row-oriented does all

subtractions at once.

Exercise 1.3.15

A pseudocode implementation of row-oriented back substitution would look something like
the following

for i=n,n-1,. . . ,2,1 do
for j=n,n-1,. . . ,i+2,i+1 do

b(i) = b(i) - A(i,j)*b(j)
end
if A(i,i)=0 then

// return error; system is singular

end
b(i) = b(i)/A(i,i)

end

Exercise 1.3.16 (column-oriented back substitution)

A pseudocode implementation of column-oriented back substitution would look something
like the following

Note that the i loop above could be written backwards as i = j − 1, j − 2, . . . , 2, 1 if this
helps maintain consistency.



for j=n,n-1,. . . ,2,1 do
if A(j,j)=0 then

// return error; system is singular

end
b(j) = b(j)/A(j,j)
for i=1,2,. . . ,j-1 do

b(i) = b(i) - A(i,j)*b(j)
end

end

Exercise 1.3.16

Column oriented substitution we factor our problem Ux = y as
[

Û h
0 unn

] [

x̂
xn

]

=

[

ŷ
yn

]

,

which written out in each

Û x̂+ hxn = ŷ

unnxn = yn

We first solve for xn then solve for x̂ in

Ûx = ŷ − hxn .

This is a n − 1 × n − 1 upper triangular system where we make the same substitutions, so
we let

y1 = y1 − u1nxn

y2 = y2 − u2nxn

...

yn−1 = · · ·
Put xn in yn. The algorithm is given by

for i:-1:n do

if u(i,i)=0 set flag

y(i) = y(i)/u(i,i)

for j = i-1:-1:1 do

y(j) = y(j) - u(j,i) y(i)

The values of x stored in y1, y2, y3, · · · yn. We can check this for the index n. We have

yn ← yn/unn

yn−1 ← yn−1 − un−1,nxn

...

y1 ← y1 − u1,nxn .



Exercise 1.3.17

Part (a): Performing row oriented back-substitution on








3 2 1 0
0 1 2 3
0 0 −2 1
0 0 0 4

















x1

x2

x3

x4









=









−10
10
1
12









,

we have

x4 = 3

x3 =
1− 3

−2 = 1

x2 = 10− 2(1)− 3(3) = −1

x1 =
−10− 2(−1)− 1(1)

3
=
−10 + 2− 1

3
=
−9
3

= −3

Part (b): Column oriented back-substitution, would first solve for x4 giving x4 = 3, and
then reduce the order of the system by one giving





3 2 1
0 1 2
0 0 −2









x1

x2

x3



 =





−10
10
1



− 3





0
3
1



 =





−10
1
−2



 .

This general procedure is then repeated by solving for x3. The last equation above gives
x3 = 1, and then reducing the order of the system above gives

[

3 2
0 1

] [

x1

x2

]

=

[

−10
1

]

− 1

[

1
2

]

=

[

−11
−1

]

.

Using the last equation to solve for x2 gives x2 = −1, and reducing the system one final time
gives

[3]x1 = [−11]− 2[−1] = −9 ,
which has as its solution x1 = 3.

Exercise 1.3.20 (block column oriented forward substitution)

The block variant of column oriented forward substitution on














G11

G21 G22

G31 G32 G33
...

...
. . .

Gs1 Gs2 Gs3 Gss





























y1
y2
y3
...
ys















would look like



for j=1,2,. . . ,s do
if G(j,j) is singular then

// return error; system is singular

end
// matrix inverse of G(j,j) taken here

b(j)=inverse(G(j,j))*b(j)
for i=j+1,j+2,. . . ,s do

// matrix multiplication performed here

b(i) = b(i) - G(i,j)*b(j)
end

end

Exercise 1.3.21 (row and column back substitution)

The difference between (block) row and column back substitution is that in row forward
substitution as we are processing each row we subtract out multiples of the computed un-
knowns. In column substitution we do all the subtractions required for each row at one time
and then no longer need to remember these unknowns. The difference is simply a question
of doing the calculations all at once or each time we access a row.

Exercise 1.3.23 (the determinant of a triangular matrix)

The fact that the determinant of a triangular matrix is equal to the product of the diagonal
elements, can easily be proved by induction. Lets assume without loss of generality that
our system is lower triangular (upper triangular systems are transposes of lower triangular
systems) and let n = 1 then |G| = g11 trivially. Now assume that for a triangular system
of size n × n that the determinant is given by the product of its n diagonal elements and
consider a matrix G̃ of size (n + 1) × (n + 1) partitioned into a leading matrix G11 of size
n× n.

G =

[

G11 0
hT gn+1,n+1

]

.

Now by expanding the determinant of G along its last column we see that

|G| = gn+1,n+1|G11| = gn+1,n+1

n
∏

i=1

gii =

n+1
∏

i=1

gii ,

proving by induction that the determinant of a triangular matrix is equal to the product of
its diagonal elements.



Exercise 1.3.29

Part (b):
[

Ĝ 0
hT gnn

] [

y
yn

]

=

[

b̂
bn

]

,

Given y1, y2, · · · , yi−1 we compute yi from

yi =
bi − hT ŷ

aii
.

As an algorithm we have

for i:1:n do

if a(i,i)=0 (set error)

for j=1:i-1 do

b(i) = b(i)-a(i,j) y(j)

b(i) = b(i)/a(i,i)

end

end

Exercise 1.4.15

If A =

[

4 0
0 9

]

.

Part (a): xTAx =
[

x1 x2

]

[

4 0
0 9

] [

x1

x2

]

= 4x2
1 +9x2

2 ≥ 0, which can bet equal to zero

only if x = 0.

Part (b): A = GGT we have g11 = ±
√
a11, we take the positive sign, so g11 = 2. Now

gi1 =
ai1
g11

i = 2, · · · , n

so we have that

g21 =
a21
g11

=
0

2
= 0 .

Multiplying out GGT we see that

a11 = g211
a12 = g11g21

a22 = g221 + g222 .

ai2 = gi1g21 + gi2g22 .

a22 = 0 + g222 ⇒ g22 =
√
a22 = 3 .



so

A =

[

4 0
0 9

]

=

[

2 0
0 3

] [

2 0
0 3

]

= GGT

so the Cholesky factor of A is

[

2 0
0 3

]

.

Part (c): G2 =

[

−2 0
0 3

]

, G3 =

[

2 0
0 −3

]

, G4 =

[

−2 0
0 −3

]

.

Part (d): We can change the sign of any of the elements on the diagonal, so there are
2 ·2 ·2 · · ·2 = 2n where n is the number of diagonal elements so 2n lower triangular matrices.

Exercise 1.4.21

For A =









16 4 8 4
4 10 8 4
8 8 12 10
4 4 10 12









.

g11 =
√
16 = 4

g21 =
4

4
= 1

g31 =
8

4
= 2

g41 =
4

4
= 1

g22 =
√

a22 − g221 =
√
10− 12 = 3

g32 =
a32 − g31g21

g22
=

8− 2(1)

3
= 2

g42 =
a42 − g41g21

g22
=

4− 1(1)

3
= 1

g33 =
√

a33 − g231 − g232 =
√
12− 4− 4 = 2

g43 =
a43 − g41g31 − g42g32

g33
=

10− 1(2)− 1(2)

2
= 3

g44 =
√

a44 − g241 − g242 − g243 =
√
12− 12 − 12 − 32 = 1 .

G =









4 0 0 0
1 3 0 0
2 2 2 0
1 1 3 1









.



Since we want to solve GGTx = b, we let y = GTx to solve Gy = b, which is the system








4 0 0 0
1 3 0 0
2 2 2 0
1 1 3 1

















y1
y2
y3
y4









=









32
26
38
30









.

The first equation gives y1 = 8, which put in the second equation gives 8 + 3y2 = 26 or
y2 = 6. When we put these two variables into the third equation we get

16 + 12 + 2y3 = 38⇒ y3 = 5 .

When all of these variables are put into the fourth equation we have

8 + 6 + 15 + y4 = 30⇒ y4 = 1 .

Using these values of yi we now want solve








4 1 2 1
0 3 2 1
0 0 2 3
0 0 0 1

















x1

x2

x3

x4









=









8
6
5
1









.

The fourth equation gives x4 = 1. The third equation is then 2x3 + 3 = 5 ⇒ x3 = 1. With
both of these values into the second equation we get

3x2 + 2 + 1 = 6⇒ x2 = 1 .

With these three values put into the first equation we get

4x1 + 1 + 2 + 1 = 8⇒ x1 = 1 .

Thus in total we have x =









1
1
1
1









.

Exercise 1.4.52

Since A is positive definite we must have for all non-zero x’s the condition xTAx > 0. Let
x = ei, a vector of all zeros but with a one in the i-th spot. Then xTAx = eTi Aei = aii > 0,
proving that the diagonal elements of a positive definite matrix must be positive.

Exercise 1.4.56

Let v be a nonzero vector and consider

vTXTAXv = (Xv)TA(Xv) = yTAy > 0 ,

where we have defined y = Xv, and the last inequality is from the positive definiteness
of A. Thus, XTAX is positive definite. Note, if X were singular then XTAX is only
positive semi definite since there would then exist nonzero v such that Xv = 0, and therefore
vTXTAXv = 0, in contradiction to the requirement of positive definiteness.



Exercise 1.4.58

Part (a): Consider the expression for Ã22, we have

Ã22 = A22 −RT
12R12

= A22 − (R−T
11 A12)

T (R−T
11 A12)

= A22 −AT
12R

−1
11 R

−T
11 A12

= A22 −AT
12(R

T
11R11)

−1A12

= A22 −AT
12A

−1
11 A12

which results from the definition of A11 = RT
11R11.

Part (b): Since A is symmetric we must have that A21 = AT
12 and following the discussion

on the previous page A has a decomposition like the following

A =

[

A11 A12

A21 A22

]

=

[

RT
11 0

AT
12R

−1
11 I

] [

I 0

0 Ã22

] [

R11 R−T
11 A12

0 I

]

. (3)

This can be checked by expanding the individual products on the right hand side (RHS) as
follows

RHS =

[

RT
11 0

AT
12R

−1
11 I

] [

R11 R−T
11 A12

0 Ã22

]

=

[

RT
11R11 A12

AT
12 Ã22 + AT

12R
−1
11 R

−T
11 A12

]

Which will equal A when
Ã22 = A22 −AT

12R
−1
11 R

−T
11 A12 .

Part (c): To show that Ã22 is positive definite we note that by first defining X to be

XT ≡
[

RT
11 0

AT
12R

−1
11 I

]

,

we see that X is nonsingular at from Eq. 3 we have that
[

I 0

0 Ã22

]

= X−TAX−1 .

By the fact that sinceX−1 is invertible and A is positive definite then we have thatX−TAX−1

is also positive definite and therefore by the square partitioning of principle submatrices of
positive definite matrices (Proposition 1.4.53) the submatrix Ã22 is positive definite.

Exercise 1.4.60

We will do this problem using induction on n the size of our matrix A. If n = 1 then showing
that the Cholesky factor is unique is trivial

[a11] = [+
√
a11][+

√
a11] .



Assume that the Cholesky factor is unique for all matrices of size less than or equal to n. Let
A be a positive definite of size n + 1 and assume (to reach a contradiction) that A has two
Cholesky factorizations, i.e. A = RTR and A = STS. By partitioning A and R as follows

[

A11 A12

AT
12 an+1,n+1

]

=

[

RT
11 0

RT
12 rn+1,n+1

] [

R11 R12

0 rn+1,n+1

]

.

Here A11 is of dimension n by n, A12 is n by 1, and the elements of R are partitioned
conformably with A. Then by equating terms in the above block matrix equation we have
three unique equations (equating terms for AT

12 results in a transpose of the equation for
A12) The three equations are

A11 = RT
11R11

A12 = RT
11R12

an+1,n+1 = RT
12R12 + r2n+1,n+1 .

From the induction hypotheses since A11 is n by n its Cholesky decomposition (i.e. R11)
is unique. This implys that the column vector R12 is unique since R11 and correspondingly
RT

11 is invertible. It then follows that since rn+1,n+1 > 0 that rn+1,n+1 must be unique since
it must equal

rn+1,n+1 = +
√

an+1,n+1 − RT
12R12 .

We know that the expression
an+1,n+1 −RT

12R12 > 0

by an equivalent result to the Schur complement result discussed in the book. Since every
component of our construction of R is unique, we have proven that the Cholesky decompo-
sition is unique for positive definite matrices of size n + 1. By induction it must hold for
positive definite matrices of any size.

Exercise 1.4.62

Since A is positive definite it has a Cholesky factorization given by A = RTR. Taking the
determinant of this expression gives

|A| = |RT ||R| = |R|2 =
(

n
∏

i=1

rii

)2

> 0 ,

showing the desired inequality.



Exercise 1.5.9

We wish to count the number of operations required to solve the following banded system
Rx = y with semiband width s or













r1,1 r1,2 r1,3 . . . r1,s
r2,2 r2,3 . . . r2,s r2,s+1

rn−1,n−1 rn−1,n

rn,n













x = y

so at row i we have non-zero elements in columns j = i, i+ 1, i+ 2, . . . i+ s, assuming that
i + s is less than n. Then a pseudocode implementation of row-oriented back substitution
would look something like the following

for i=n,n-1,. . . ,2,1 do
// the following is not executed when j=n

for j=min(n,i+s),min(n,i+s)-1,. . . ,i+2,i+1 do
y(j) = y(j) - R(i,j)*y(j)

end
if R(i,i)=0 then

// return error; system is singular

end
y(i) = y(i)/A(i,i)

end

Counting the number of flops this requires, we have approximately two flops for every exe-
cution of the line y(j) = y(j)−R(i, j) ∗ y(j), giving the following expression for the number
of flops

1
∑

i=n









i+1
∑

j=min(n,i+s)

2



 + 1



 .

Now since
i+1
∑

j=min(n,i+s)

2 = O(2s)

the above sum simplifies (using order notation) to

O(n+ 2sn) = O(2sn) ,

as requested.

Exercise 1.6.4

Please see the Matlab file exercise 1 6 4.m for the evaluation of the code to perform the
suggested numerical experiments. From those experiments one can see that the minimum



degree ordering produces the best ordering as far as remaining non-zero elements and time to
compute the Cholesky factor. This is followed by the reverse Cuthill-McKee ordering. Since
the matrix delsq is banded to begin with a direct Cholesky factorization can be computed
rather quickly. Randomizing the ordering of the nodes produces the matrix with the most
fill in (largest number of non-zero elements) and also requires the largest amount of time to
compute the Cholesky factorization for.

Exercise 1.6.5

Please see the Matlab file exercise 1 6 5.m for the evaluation of the code to perform the
suggested numerical experiments. From those experiments one can see that the minimum
degree ordering produces the best ordering as far as remaining non-zero elements and time
to compute the Cholesky factor. This is followed by the reverse Cuthill-McKee ordering.

Exercise 1.7.18 (solving linear systems with LU)

From exercise 1.7.10 our matrix A has the following LU decomposition









2 1 −1 3
−2 0 0 0
4 1 −2 6
−6 −1 2 −3









=









1 0 0 0
−1 1 0 0
2 −1 1 0
−3 2 −1 1

















2 1 −1 3
0 1 −1 3
0 0 −1 3
0 0 0 3









Then we are solving LUx = b by first solving Ly = b and then Ux = y. The first problem is
Ly = b or









1 0 0 0
−1 1 0 0
2 −1 1 0
−3 2 −1 1

















y1
y2
y3
y4









=









12
−8
21
−26









which upon performing forward substitution gives

y1 = 12

y2 = −8 + y1 = −8 + 12 = 4

y3 = 21− 2y1 + y2 = 21− 24 + 4 = 1

y4 = −26 + 3y1 − 2y2 + y3 = 3(12)− 2(4) + 1 = 29

The second step is to solve Ux = y or the system









2 1 −1 3
0 1 −1 3
0 0 −1 3
0 0 0 3

















x1

x2

x3

x4









=









12
4
1
29











which upon performing backward substitution gives

x4 = 13

−x3 = 1− 3x1 = 1− 39 = −38 ⇒ x3 = 38

x2 = x3 − 3x4 = 38− 39 = −1
2x1 = −x2 + x3 − 3x4 = 1 + 38− 29 = 10 ⇒ x1 = 5

so our solution is given by








x1

x2

x3

x4









=









5
−1
38
13









.

Exercise 1.7.34

Part (a): By considering the given matrix M and the product MA we see that we are
multiplying row j by m and adding it to row i. This is the definition of a row operations of
type 1.

Part (b): Since the given matrix M , is also lower triangular the determinant of M is the
product of the diagonal elements. In this case, since the diagonal elements are all ones the
product is then also a one, and therefore det(M) = +1. Since Â = MA we have that

|Â| = |MA| = |M ||A| = |A| .

Part (c): I will assume that the inverse of M is given by replacing the element m in M
by its negative −m. We can check this for correctness by multiplying the two matrices as
M−1M and observing that we obtain the identity. This result can also be understood as
recognizing that the inverse of M (which is action of multiplying row j by m and adding
it to row i), would be the action of multiplying row j by −m and adding it to row i. This
action is the same as replacing the (i, j)th element in I with −m.

Exercise 1.7.35

Part (a): By multiplying a matrix A by the matrix M described we find the ith and jth
rows of A exchanged.

Part (b): Since M is obtained from the identity matrix by exchanging two rows of I the
determinant change sign i.e.

det(M) = −det(I) = −1 ,
so

det(Â) = det(MA) = det(M)det(A) = −det(A) .



Part (c): The inverse of exchanging the ith row and the jth row would be performing this
operation twice so M−1 = M . Also we can see that this is true by explicitly calculating the
multiplication of M with itself.

Exercise 1.7.36

Part (a): M is obtained from the identity matrix by replacing the ith row by c times the
ith row, i.e. Mii = c.

Part (b): M−1 is obtained from the identity matrix by replacing the ith row by 1/c times
the ith row, i.e. Mii = 1/c.

Part (c): We have
det(M) = c det(I) = c ,

so
det(Â) = det(MA) = det(M)det(A) = c det(A) .

Exercise 1.7.44 (triangular matrices have triangular inverses)

Part (a): We are told that L is non-singular and lower triangular. We want to prove that
L−1 is lower triangular. We will do this by using induction on n the dimension of L. For
n = 1 L is a scalar and L−1 is also a scalar. Trivially both are lower triangular. Now assume
that if L is non-singular and lower triangular of size n× n, then L−1 has the same property.
Let L be a matrix of size (n+ 1)× (n + 1) and partition L as follows

L =

[

L11 0
L21 L22

]

.

Where L11 and L22 are both lower triangular matrices of sizes less than n × n, so that we
can apply the induction hypothesis. Let M = L−1 and partition M con formally i.e.

M =

[

M11 M12

M21 M22

]

.

We want to show that M12 must be zero. Now since ML = I by multiplying the matrices
above out we obtain

LM =

[

L11 0
L21 L22

] [

M11 M12

M21 M22

]

=

[

L11M11 L11M12

L21M11 + L22M21 L21M12 + L22M22

]

=

[

I 0
0 I

]



Equating block components gives

L11M11 = I

L11M12 = 0

L21M11 + L22M21 = 0

L21M12 + L22M22 = I .

By the induction hypothesis both L11 and L22 are invertible. Thus the equation L11M11 = I
gives M11 = L−1

11 , and the equation L11M12 = 0 gives M12 = 0. With these two conditions
the equation L21M12 +L22M22 = I becomes L22M22 = I. Since L22 is invertible we compute
that M22 = L−1

22 . As both L11 and L22 are lower triangular of size less than n × n by the
induction hypothesis their inverse are lower triangular and we see that M itself is then lower
triangular since

M =

[

L−1
11 0

M21 L−1
22

]

.

Thus by the principle of induction we have shown that the inverse of a lower triangular
matrix is lower triangular.

Part (b): We can prove that the main diagonal elements of L−1 are given by l−1
ii in a number

of ways. One is by using mathematical induction, another is to simply compute the product
of the corresponding row of L with the corresponding column of L−1. For example since the
ith row of L multiplied by the ith column of L−1 must produce unity we have

1 =
n
∑

k=1

Lik(L
−1)ki .

Since L is lower triangular L−1 is lower triangular so we have that their components must
satisfy

Lik = 0 for k > i

(L−1)ki = 0 for i > k

so that the above sum becomes

1 = Lii(L
−1)ii or (L−1)ii =

1

Lii
.

Exercise 1.7.45 (product of lower triangular matrices)

Part (a): We will prove that the product of two lower triangular matrices is lower triangular
by induction. We begin with n = 2 for which we have

[

l11 0
l21 l22

] [

m11 0
m21 m22

]

=

[

l11m11 0
l21m11 + l22m21 l22m22

]

which is lower triangular. Assume the product of two lower triangular matrices of size n̂ ≤ n
is also lower triangular and consider two lower triangular matrices of size n+ 1. Performing



a “bordered” block partitioning of the two lower triangular matrices we have that

Ln+1 =

[

Ln 0
lT ln+1,n+1

]

and Mn+1 =

[

Mn 0
mT mn+1,n+1

]

where the single subscripts denote the order of the matrices. With bordered block decom-
position of our two individual matrices we have a product given by

Ln+1Mn+1 =

[

LnMn 0
lTMn + ln+1,n+1m

T ln+1,n+1mn1,n+1

]

.

Since by the induction hypotheses the product LnMn is lower triangular we see that our
product Ln+1Mn+1 is lower triangular.

Part (b): This can again be proved by induction. For n = 2 we see our diagonal elements
are given by l11m11 and l22m22. Assuming this is true for n̂ ≤ n. The fact that the n + 1th
diagonal element of Ln+1Mn+1 in the above bordered factorization is given by ln+1,n+1mn1,n+1

and the induction hypothesis applied to LnMn shows that the diagonal elements of Ln+1Mn+1

have the correct form. As stated in the book this implies that the product of two unit lower
triangular matrices is unit triangular.

One can prove that the diagonal elements of products of unit triangular matrices are ones
by another method. Letting L and M be unit lower triangular we have that the ith row of
L is given by

Li,: = [li,1, li,2, . . . li,i−1, 1, 0, . . . 0]

the ith column of the matrix M is given by

M:,i = [0, 0, . . . , 0, 1, mi+1,i, mi+2,i, . . . , mn,i]
T

Then the (i, i) element in LM is given by the inner product of these two vectors and gives
one since this is the only non-zero overlapping component.

Exercise 1.7.46 (product of upper triangular matrices)

Let matrices U and V be upper triangular, then UT and V T are lower triangular. Because of
this UTV T is lower triangular. Since UTV T = (V U)T , we see that (V U)T is lower triangular.
Taking the transpose we see that V U is upper triangular. Thus the product of upper
triangular matrices are again upper triangular.

Exercise 1.7.47

Part (e): Our L matrix is given by L = M1M2M3 . . .Mn−2Mn−1. To compute this product
we will multiply the factors from the left to the right. To begin, consider the product of



Mn−2Mn−1 which is given by

Mn−2Mn−1 =



















1
. . .

1
1 0 0

mn−1,n−2 1 0
mn,n−2 0 1





































1
. . .

1
1 0 0
0 1 0
0 mn,n−1 1



















=



















1
. . .

1
1 0 0

mn−1,n−2 1 0
mn,n−2 mn,n−1 1



















.

From which we see that the effect of this multiplication is to have inserted the two elements
mn−1,n−2 andmn,n−2 into the lower right block matrix inMn−1. Motivated by this observation
we will now block decompose the product Mn−2Mn−1 into a matrix like

[

In−4 0
0 A

]

,

with A defined as

A =









1 0 0 0
0 1 0 0
0 mn−1,n−2 1 0
0 mn,n−2 mn,n−1 1









≡
[

1 0
0 M

]

.

Here we have increased the dimension of lower right block matrix by one over the lower right
block matrix annotated in the product Mn−2Mn−1 above. In addition, we have defined the
matrix M to be

M =





1 0 0
mn−1,n−2 1 0
mn,n−2 mn,n−1 1





Now consider the matrix Mn−3 given by

Mn−3 =























1
. . .

1
1 0 0 0

mn−2,n−3 1 0 0
mn−1,n−3 0 1 0
mn,n−3 0 0 1























.

which can be viewed as having the same block structure as the product Mn−2Mn−1 above
by considering a block decomposition of this matrix as

Mn−3 =

[

I 0
0 B

]

,



where B is given by

B =









1 0 0 0
mn−2,n−3 1 0 0
mn−1,n−3 0 1 0
mn,n−3 0 0 1









≡
[

1 0
m I

]

.

Where we have introduced the vector m defined as m = [mn−2,n−3, mn−1,n−3, mn,n−3]
T . Then

the block product of Mn−3(Mn−2Mn−1) is given by

Mn−3Mn−2Mn−1 =

[

I 0
0 B

] [

I 0
0 A

]

=

[

I 0
0 AB

]

. (4)

For the product of B with A, we have from their definitions that

BA =

[

1 0
m I

] [

1 0
0 M

]

=

[

1 0
m M

]

. (5)

From which we see that the effect of the multiplication BA is to replace the first column of
A with the first column of B. Since everything we have done simply involves viewing the
various multiplications as block matrices in specific ways this procedure can be repeated at
each step, i.e. we can form block matrices of the current running product MiMi+1 . . .Mn−1,
with the current Mi−1 to multiply on the left by, just as is done in Eq. 4. The lower right
block multiplication can be decomposed further in a form exactly like Eq. 5. By repeating
this procedure n − 2 times corresponding to all required products we will have produced a
matrix L as given in the book.

Exercise 1.7.44/46

Part (a): For n = 2 we have

[

a11 a12
0 a22

]−1

=

[

a−1
11 −a−1

11 a12a
−1
22

0 a−1
22

]

.

So an upper triangular matrix n = 2 has an upper triangular matrix as its inverse. Assume
this is true for n = k, by mathematical induction we want to show this is true for n = k+1.





a11 a1,k+1

0 a22
0 0 ak+1,k+1



 =

[

a11 hT

0 A

]

with A a k × k matrix. Now the inverse of the above is
[

a−1
11 a−1

11 h
TA−1

0 A−1

]

Now A−1 is an upper triangular by the induction hypothesis and therefore the matrix above
is upper triangular.



Part (b): V is unit upper triangular then V −1 is a unit upper triangular. As the inverse of
any triangular matrix (upper or lower) must have its diagonal elements to be the reciprocals
of the corresponding elements in the original matrix i.e.

a−1
ii =

1

aii
.

Thus if aii = 1 then a−1
ii = 1.

Exercise 1.7.50

Part (a): Assume that there are at least two M that will satisfy the given expression. What
is important is this expression is that the block matrices A11 and A12 don’t change while
the transformation introduces zeros below the block matrix A11. As specified in the problem
the matrix Ã22 in each case can be different. This means we will assume that there exists
matrices M1 and M2 such that

[

Ik 0
−M1 In−k

] [

A11 A12

A21 A22

]

=

[

A11 A12

0 Ã
(1)
22

]

,

where we have indicated that Ã22 may depend on the “M” matrix by providing it with a
subscript. For the matrix M2 we have a similar expression. Multiplying on the left by the
inverse of this block matrix

[

Ik 0
−M1 In−k

]

which is
[

Ik 0
M1 In−k

]

(this inverse can be shown by direct multiplication of the two matrices), gives the following

[

A11 A12

A21 A22

]

=

[

Ik 0
M1 In−k

] [

A11 A12

0 Ã
(1)
22

]

=

[

Ik 0
M2 In−k

] [

A11 A12

0 Ã
(2)
22

]

.

Equating the (2, 1) component of the block multiplication above gives M1A11 = M2A11,
which implys that M1 = M2, since A11 is nonsingular. This shows the uniqueness of this
block Gaussian factorization.

Returning to a single M , by multiplying the given factorization out we have

[

Ik 0
−M In−k

] [

A11 A12

A21 A22

]

=

[

A11 A12

−MA11 + A21 −MA12 + A22

]

=

[

A11 A12

0 Ã22

]

,

so equating the (2, 1) block component of the above expression we see that −MA11+A21 = 0,
or M = A21A

−1
11 . In the same way equating the (2, 2) block components of the above gives

−A21A
−1
11 A12 + A22 ,

which is the Schur complement of A11 in A.



Part (b): By multiplying on the left by the block matrix inverse we have
[

Ik 0
M In−k

] [

Ik 0
−M In−k

] [

A11 A12

A21 A22

]

=

[

Ik 0
M In−k

] [

A11 A12

0 Ã22

]

,

or
[

A11 A12

A21 A22

]

=

[

Ik 0
M In−k

] [

A11 A12

0 Ã22

]

,

as was to be shown.

Part (c): Taking the determinant of the above expression gives since |A| 6= 0, that

|A| =
∣

∣

∣

∣

[

I 0
M I

]∣

∣

∣

∣

∣

∣

∣

∣

[

A11 A12

0 Ã22

]∣

∣

∣

∣

= 1|A11||Ã22| .

so |Ã22| 6= 0, (or else |A| = 0, which is not true) and therefore since its determinant is
nonzero, Ã22 is nonsingular.

Exercise 1.7.54

Part (a): Let H be by symmetric and invertible then by the definition of the inverse, H−1

satisfies HH−1 = I. Now taking the transpose of both sides and remembering that the
transpose of a product is the product of the transposes but in the opposite order we have
(H−1)THT = IT which simplifies to (H−1)TH = I, since both H and I are symmetric. By
multiplying both sides on the left by H−1 we have that

(H−1)T = H−1

showing that H−1 is symmetric.

Part (b): The Schur complement is given by Â22 = A22 − A21A
−1
11 A12 and involves the

submatrices in A. To determine properties of these submatrices consider the block definition
of A given by

A =

[

A11 A12

A21 A22

]

.

Taking the transpose of A (and using the fact that it is symmetric) we have

AT =

[

AT
11 AT

21

AT
12 AT

22

]

=

[

A11 A12

A21 A22

]

which gives (equating elements) the following

AT
11 = A11

AT
21 = A12

AT
12 = A21

AT
22 = A22 .

With these components we can compute the transpose of the Schur complement given by

ÂT
22 = AT

22 − AT
12(A

−1
11 )

TAT
21 = A22 − A21A

−1
11 A21 = Â22 ,

showing that Â22 is symmetric.



Exercise 1.8.1

Taking the block determinant of the given B we have

|B| = |B11||B22| .

Since B22 has a column of all zeros, it has a zero determinant. Thus B has a zero determinant
and is singular.

Exercise 1.8.7 (the inverse of a permutation matrix)

The fact that P−1 = P T can be recognized by considering the product of P with P T . When
row i of P is multiplied by any column of P T not equal to i the result will be zero since
the location of the one’s in each vector won’t agree in the location of their index. However,
when row i of P is multiplied by column i the result will be one. Thus we see by looking at
the components of PP T that PP T = I and P T is the inverse of P .



Chapter 2 (Sensitivity of Linear Systems)

Exercise 2.1.10 (the one norm is a norm)

We have for the one norm the following definition

||x||1 =
n
∑

i=1

|xi| .

We can check to see that each norm requirement is satisfied for this norm. We have

• The condition ||x||1 ≥ 0 for all x and ||x||1 = 0 if and only if x = 0 can be seen to be
certainly true.

Exercise 2.1.10

From the definition of the one norm ||x||1 =
∑n

i=1 |xi| we see that

||x||1 ≥ 0 and ||x||1 = 0 ,

can only be true if x = 0. We also see that

||αx||1 =
n
∑

i=1

|αxi| = |α|
∑

i

|xi| = |α|||x||1 .

and that

||x+ y||1 =
n
∑

i=1

|xi + yi| ≤
∑

i

(|xi|+ |yi|) = ||x||1 + ||y||1

Exercise 2.1.11

The distance between two points is the distance taking only right angles.

Exercise 2.1.13

For the infinity norm has
||x||∞ ≥ 0 ,

and ||x||∞ = if and only if x = 0. We also have

||αx||∞ = min
1≤i≤n

|αxi| = |α| min
1≤i≤n

|xi| = |α|||x||∞ .



The third requirement of a norm is given by

||x+ y||∞ = max
1≤i≤n

|xi + yi|

≤ max
1≤i≤n

(|xi|+ |yi|)

≤ max
1≤i≤n

|xi|+ max
1≤i≤n

|yi| = ||x||∞ + ||y||∞ .

Exercise 2.2.4

Part (a): Show that κ(A) = κ(A−1), We know that

κ(A) = ||A||||A−1|| .

so that
κ(A−1) = ||A−1||||A|| = ||A||||A−1|| = κ(A) .

Part (b): We have

κ(cA) = ||cA||||(cA)−1|| = |c|||A|| 1|c| ||A
−1|| = κ(A) .

Exercise 2.2.5

If p = 1 we have the set {x ∈ R2|||x||1 = 1} is equivalent to {x ∈ R2||x| + |y| = 1}.
Which looks like If p = 3/2 we have the set {x ∈ R2|(|x|3/2 + |y|3/2)2/3 = 1} is equivalent to
{x ∈ R2||x|3/2 + |y|3/2 = 1} which looks like If p = 2 we have the set {x ∈ R2|x2 + y2 = 1},
which looks like If p = 3 we have the set {x ∈ R2||x|3 + |y|3 = 1}, which looks like If p = 10
we have the set {x ∈ R

2||x|10 + |y|10 = 1}, which looks like If p = ∞ we have the set
{x ∈ R2|max1≤i≤n |xi| = 1}, which looks like

Exercise 2.2.6

Part (a): The condition number of A is defined by κ(A) = ||A||||A−1||, while the condition
number of A−1 is defined by κ(A−1) = ||A−1||||(A−1)−1|| = ||A−1||||A|| = κ(A)

Part (b): If c is any nonzero scalar then we have for κ(cA) the following simplifications
proving the desired relationship

κ(cA) = ||cA|| ||(cA)−1|| = |c| ||A|| ||1
c
A−1|| = |c| 1|c| ||A|| ||A

−1|| = κ(A) .



Exercise 2.2.7

If A = GGT then Part (a): ||x||A = (xTAx)1/2 = (xTGGTx)1/2 = ((GTx)T (GTx))1/2 =
||GTx||2.

Part (b): We know that ||GTx||2 ≥ 0, for all GTx which is the same as for all x. In addition,
if ||GTx||2 = 0 if and only if GTx = 0, which since GT is invertible is true if and only if
x = 0.

Next we have

||αx||A = ||GT (αx)||2
= |α|||GTx||2 = |α|||x||A .

Next we have

||x+ y||A = ||GT (x+ y)||2 = ||GTx+GTy||2
≤ ||GTx||2 + ||GTy||2
= ||x||A + ||y||A .

Exercise 2.2.7

Let A =

[

1 1
1 1

]

and B =

[

1 1
1 1

]

, then ||A|| = 1 and ||B|| = 1, where

AB =

[

2 2
2 2

]

and ||AB|| = 2 .

But ||AB|| = 2 6= ||A||||B|| = 1 · 1 = 1.

Exercise 2.2.8

Part (a): ||A(cx)|| = ||cAx|| = |c|||Ax||, and ||cx|| = |c|||x||, so that the ratio is unchanged
by scalar multiplication.

Part (b):

||A|| = max
x 6=0

||Ax||
||x|| = max

x 6=0
||A
(

x

||x||

)

|| .

But as x runs through all Rn for x 6= 0, so that x
||x||

runs through Rn with ||x|| = 1. Thus

||A|| = max
||x||=1

||Ax|| .



Exercise 2.2.9

The Frobenius norm is defined by

||A||F =

(

n
∑

i=1

n
∑

j=1

|aij|2
)1/2

,

and the two norm of A is given by

||A||2 = max
x 6=0

||Ax||2
||x||2

.

Part (a): We have ||I||F = (
∑n

i=1 1
2)

1/2
= n1/2, and

||I||2 = max
x 6=0

||Ix||2
||x||2

= 1 .

Part (b): ||A||22 = max||x||2=1 ||Ax||22 = max||x||2=1

∑n
i=1

∣

∣

∣

∑n
j=1 aijxj

∣

∣

∣

2

, by Cauchy-Schwartz

inequality
∣

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

∣

2

≤
n
∑

j=1

a2ij

n
∑

j=1

x2
j .

As ||x|| = 1 or
(

∑n
j=1 x

2
j

)1/2

= 1.

Exercise 2.2.10

Remembering the definition of the infinity norm. We have ||A||∞ = max1≤i≤n

∑n
j=1 |aij|,

and consider the following

||Ax||∞ = max
1≤i≤n

|Ax|i ≤ max
1≤i≤n

n
∑

j=1

|aij||xj |

≤ max
1≤i≤n

n
∑

j=1

|aij |
(

max
1≤k≤n

|xk|
)

≤ ||x||∞ max
1≤i≤n

n
∑

j=1

|aij| .

Therefore
||Ax||∞
||x||∞

≤ max
1≤i≤n

n
∑

j=1

|aij | .



Let max1≤i≤n

∑n
j=1 |aij | occur at at the k-th row. Then

Axk =
n
∑

j=1

akjxj =
n
∑

j=1

|akj| ,

If the xj is chosen so that as the vector x has components xi, picked as

xj

{

−1 akj < 0
+1 akj > 0 .

So ||x||∞ = 1, one sees that

||Ax||∞
||x|| =

n
∑

i=1

|akj| = max
1≤i≤n

n
∑

i=1

|aij | .

Exercise 2.3.2

We want to prove that

MaxMag(A) = max
x 6=0

||Ax||
||x|| ,

and that

MinMag(A−1) = min
x 6=0

||A−1x||
||x|| ,

We have that

maxmag(A) = max
x 6=0

||Ax||
||x|| = max

v 6=0

||v||
||A−1v||

=
1

minv 6=0
||A−1v||

||v||

=
1

minmax(A−1)
.

Ax = v, so x = A−1v.

MinMag(A−1) = min
x 6=0

||A−1x||
||x|| = min

v 6=0

||v||
|Av|

=
1

maxv 6=0
||Av||
||v||

=
1

maxmag(A−1)
.

Then
maxmag(A)

minmag(A)
= ||A||maxmag(A−1) = ||A||||A−1|| ,

from Exercise 2.3.2.



Exercise 2.3.4

With Aǫ =

[

ǫ 0
0 ǫ

]

, so that

||Aǫ|| = max
x 6=0

||Aǫx||
||x|| = max

(x1,x2)6=0

||(ǫx1, ǫx2)||
||x|| = |ǫ|max

x 6=0

||x||
||x|| = |ǫ| = ǫ

Aǫ−1 =

[

1/ǫ 0
0 1/ǫ

]

, so by the above ||A−1
ǫ || = 1/ǫ, to therefore

κ(Aǫ) = ǫ

(

1

ǫ

)

= 1 .

an obviously det(Aǫ) = ǫ2.

Exercise 2.3.5 (perturbing the right-hand-side b)

We want to prove that
||δb||
||δ|| ≤ κ(A)

||δx||
||x|| .

We begin with Ax = b which gives that x = A−1b, so that ||x|| ≤ ||A−1||||b||. By perturbing
the solution to Ax = b, we get that δx relates to δb by considering

A(x+ δx) = b+ δb⇒ Aδx = δb .

Thus ||A||||δx|| ≥ ||δb||. So ||δx|| ≥ ||δb||
||A||

, or equivalently that

1

||δx|| ≤
||A||
||δb|| .

Multiplying these two equations we get

||x||
||δx|| ≤ ||A

−1||||A|| ||b||||δb|| = κ(A)
||b||
||δb|| .

Equality in this expression holds when ||x|| = ||A−1||||b|| or b is in in the direction of max-
imum magnification of A−1 and ||A||||δx|| = ||δb||, so that δx is in the direction of the
maximal magnification of A. Then we have that

||δb||
||b|| ≤ κ(A)

||δx||
||x|| .



Exercise 2.3.6 ( ||δb||
||b||
≤ κ(A) ||δx||

||x||
as a statement about residuals)

We have r(x̂) = Ax̂− b = A(x+ δx)− b = Aδx = δb. So that

||r(x̂)||
||b|| =

||δb||
||b|| ≤ κ(A)

||δx||
||x||

As the above inequality is sharp we can get ||r(x̂)||
||b||

= κ(A) ||δx||
||x||

, and thus the residual can be

very much non-zero. If the matrix is well conditioned then κ(A) is fairly small and by the

above the residual must be small and we cannot get a very large ||r(x̂)||
||b||

with a well conditioned
matrix.

Watkins: Ex 2.3.10 (solving Ax = b with perturbations in A and b)

We are told to consider Ax = b and (A+ δA)(x+ δx) = b+ δb. Expanding the left-hand-side
of the second equation gives

Ax+ Aδx+ δA(x+ δx) = b+ δb ,

or since Ax = b this is
Aδx = δb− δA(x+ δx) ,

or solving for δx we get
δx = A−1(δb− δA(x+ δx)) .

Taking vector norms on both sides we get

||δx|| ≤ ||A−1|| (||δb||+ ||δA||(||x||+ ||δx||))

= ||A−1||||A||
(||δb||
||A|| +

||δA||
||A|| (||x||+ ||δx||)

)

.

Since b = Ax we have ||b|| ≤ ||A||||x|| so 1
||A||
≤ ||x||

||b||
and using the definition of the condition

number κ(A) ≡ ||A||||A−1|| we have

||δx|| ≤ κ(A)

( ||δb||
||b|| ||x||+

||δA||
||A|| ||x||

)

+ κ(A)
||δA||
||A|| ||δx|| ,

or solving for ||δx|| we get
(

1− κ(A)
||δA||
||A||

)

||δx|| ≤ κ(A)

( ||δb||
||b|| +

||δA||
||A||

)

||x|| .

Since we are assuming that our matrix perturbation is small enough that the new matrix
A + δA is still invertible or ||δA||

||A||
≤ 1

κ(A)
, the left-hand-side has a leading coefficient that is

positive and we can divide by it to get

||δx||
||x|| ≤

κ(A)
(

||δA||
||A||

+ ||δb||
||b||

)

1− κ(A) ||δA||
||A||

, (6)

the desired expression.
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Exercise 4.3.21 (quartic convergence)

Exercise 4.3.22 (the number of digits of accuracy with linear convergence)

At iteration i denote our approximation error as ||qj − v||2 = 10−sj for some sj. Since we are
told that we have linear convergence we know that

||qj+1 − v||2 ≈
1

r
||qj − v||2 =

1

r
10−sj = 10−sj−log(r) ,

or we see the number of correct digits increases by − log(r) on each iteration.

Exercise 4.4.1 (geometric multiplicity)

The geometric multiplicity is the dimension of the space {v ∈ Cn|Av = λv}. This space
transforms as

Dim{v ∈ C
n|Av = λv} = Dim{v ∈ C

n|P−1APv = λv} = Dim{Pv ∈ C
n|A(Pv) = λ(Pv)} .

Thus the geometric multiplicity of the eigenvalue of B equals the geometric multiplicity of
the corresponding eigenvalue of A.

Exercise 4.4.2 (geometric and algebraic multiplicity for simple matrices)

When A is simple it has n distinct eigenvalues and thus n linearly independent eigenvectors.
Thus the geometric and the algebraic multiplicity of each eigenvalue is 1.

Exercise 4.4.3 (A−1 is similar to B−1)

If A is similar to B that means that there is an invertible transformation P such that
B = P−1AP . Thus taking the “inverse” of each side and assuming that all inverses exist we
have

B−1 = P−1A−1P ,

or that B−1 and A−1 are similar.



Exercise 4.4.4 (eigenvectors of a diagonal matrix)

The vectors that are all zeros except for a single 1 at one location are the eigenvectors of a
diagonal matrix. These vectors are obviously linearly independent and a diagonal matrix is
therefore simple.

Exercise 4.4.5

If A satisfies V −1AV = D with D diagonal and V nonsingular then we want to show that
the columns of V are the n linearly independent eigenvectors of A and the elements of D
are the eigenvalues. From V −1AV = D we have AV = V D. If we let vi be the ith column
of V , and λi the ith diagonal element of D then AV = V D is the same as Avi = λivi for
i = 1, 2, ·n or that vi is the ith eigenvector of A. That vi and vj are linearly independent
follows from the fact that V is nonsingular. As A has n linearly independent eigenvectors A
is simple.

Exercise 4.4.6 (norms of unitary matrices)

Part (a): As U is unitary we have

||U ||2 = max
||x||6=0

||Ux||2
||x||2

= max
||x||6=0

||x||2
||x||2

= 1 ,

since ||Ux||2 = ||x||2. As U is unitary so is U−1, thus ||U−1||2 = 1 also. Thus we have

κ(U) = ||U ||2||U−1||2 = 1 · 1 = 1 .

Part (b): We are told that A and B are unitary similar thus B = U−1AU . Thus

||B||2 ≤ ||U−1||2||A||2||U ||2 = ||A||2 ,

by the consistency property of the matrix norm. Also from A = UBU−1 we have ||A||2 ≤
||B||2 so we have that ||A||2 = ||B||2. In the same way we can show that ||A−1||2 = ||B−1||2
so we have

κ2(A) = ||A||2||A−1||2 = ||B||||B−1|| = κ2(B)

Part (c): Given B = U∗AU and consider B + δB = U∗(A+ δA)U or

B + δB = U∗AU + U∗δAU ,

or
δB = U∗δAU .

Thus δA and δB are unitary similar and ||δB||2 = ||δA||2.



Exercise 4.4.7 (round-off errors in arbitrary similarity transforms)

From the given P we have P−1 =

[

1 −α
0 1

]

.

Part (a): With A =

[

2 0
0 1

]

so B = P−1AP =

[

2 α
0 1

]

and

||B||∞ = max(2 + |α|, 1) = 2 + |α| ,

if α is large enough.

Part (b): A =

[

1 0
0 1

]

and δA = ǫ
2

[

1 1
1 1

]

. Thus we have

||A||∞ = 1

||δA||∞ =
ǫ

2
(2) = ǫ ,

thus
||δA||∞
||A||∞

= ǫ .

From the matrices above we have B = P−1AP = P−1P = I, and

B + δB = P−1(A+ δA)P =

[

1 −α
0 1

] [

1 + ǫ
2

ǫ
2

ǫ
2

1 + ǫ
2

] [

1 α
0 1

]

=

[

1 −α
0 1

] [

1 + ǫ
2

α(1 + ǫ
2
) + ǫ

2
ǫ
2

α ǫ
2
+ 1 + ǫ

2

]

=

[

1 + ǫ
2
− α ǫ

2
α
(

1 + ǫ
2

)

+ ǫ
2
− α− α ǫ

2
− α ǫ

2
ǫ
2

α ǫ
2

]

=
ǫ

2

[

1− α α− α2

1 1 + α

]

.

Thus ||B||∞ = 1 and

||δB||∞ =
ǫ

2
max(|1− α|+ |α− α2|, 1 + |1 + α|) ,

which can be as large as desired by selecting α large. When α is large we have this expression
O(α2).

Exercise 4.4.8 (conditioning of similarity transformations)

Part (a): Writing B = P−1AP we have

||B|| ≤ ||P−1||||A||||P || = κ(P )||A|| .

Thus ||B|| ≤ κ(P )||A||. Therefore 1
κ(P )
||A|| ≤ ||B||. Combining these two we get

1

κ(P )
||A|| ≤ ||B|| ≤ κ(P )||A||



Part (b): From B = P−1AP and B + δB = P−1(A+ δA)P we have that

δB = P−1δAP .

Thus as in Part (a) we can show that

1

κ(P )
||δA|| ≤ ||δB|| ≤ κ(P )||δA|| .

Using ||B|| ≥ 1
κ(P )
||A|| and ||δB|| ≤ κ(P )||δA|| we have that

||δB||
||B|| ≤

κ(P )2||δA||2
||A|| .

Using ||B|| ≤ κ(P )||A|| and ||δB|| ≥ 1
κ(P )
||δA|| we have that

||δB||
||B|| ≥

||δA||2
κ(P )2||A|| .

Exercise 4.4.9 (arbitrary similarity transformation don’t preserve A = A∗)

For this just pick any invertible P such that P ∗ 6= P−1 like P =

[

1 i
0 1

]

. Then consider

a matrix A that is Hermitian or satisfies A = A∗ like A =

[

1 2
2 1

]

. From the given P we

have that P−1 =

[

1 −i
0 1

]

and we find

B = P−1AP =

[

1 −i
0 1

] [

1 2
2 1

] [

1 i
0 1

]

=

[

1 −i
0 1

] [

1 i+ 2
2 2i+ 1

]

=

[

1− 2i i+ 2 + 2− i
2 2i+ 1

]

=

[

1− 2i 5
2 2i+ 1

]

.

Note that B∗ =

[

1 + 2i 2
5 −2i+ 1

]

6= B.

Exercise 4.4.10 (observations from the proof of Schur’s theorem)

Part (a): We can specify the ordering of the eigenvalues in T in any order since all that was
required in the proof of Schur’s theorem was to initially pick an eigenvector v of A. Since
the eigenvalue associated with this eigenvector appears at the (1, 1) location in the matrix
T . Since v was arbitrary wen can pick any eigenvector and correspondingly any eigenvalue.
This argument can then be repeated recursively.



Part (b): We start the proof of Schur’s theorem by picking an eigenvector v (of A) that
vector then goes in the matrix U1. Our total unitary transformation U is U1U2 with

U2 =











1 0 · · · 0
0
... Û2

0











.

Note that

U = U1U2 =
[

v W
]











1 0 · · · 0
0
... Û2

0











=
[

v WÛ2

]

,

Thus the first column of U is the eigenvector of A with the eigenvalue λ. Since λ (and the
corresponding eigenvector v) was chosen arbitrarily we can extract any arbitrary ordering of
eigenvectors values.

Exercise 4.4.13 (the Rayleigh quotient can give approximate eigenvalues)

Part (a): From q =
∑n

i=1 civi we have

||q||22 = q∗q =

(

n
∑

i=1

c∗i v
∗
i

)(

n
∑

j=1

cjvj

)

=

n
∑

i=1

|ci|2 .

Since q∗i qj = δij the Kronecker delta.

Part (b): Note that

v1 − q = (1− c1)v1 −
n
∑

j=2

cjvj .

Thus using the same arguments as in the first part of this problem we have

||v1 − q||22 = |1− c1|2 +
n
∑

j=2

|cj |2 .

Thus dropping the positive term |1− c1|2 we have

||v1 − q||22 ≤
n
∑

j=2

|cj|2 ,

as we were to show.

Part (c): Note the Rayleigh quotient ρ is ρ = q∗Aq when the norm of q is one. If we expand
q in terms of the eigenvectors of A we have q =

∑n
i=1 civj so that q∗ =

∑n
i=1 c

∗
i v

∗
j and

Aq =

n
∑

i=1

ciλivi ,



giving

q∗Aq =

(

n
∑

i=1

c∗i v
∗
j

)(

n
∑

i=1

ciλivi

)

=

n
∑

i=1

|ci|2λi ,

using the property of the orthonormal eigenvectors.

Part (d): Since
∑n

i=1 |ci|2 = 1 by Part (a) we can write

λ1 − ρ =

n
∑

i=1

λ1|ci|2 −
n
∑

i=1

λi|ci|2 =
n
∑

i=2

(λ1 − λi)|ci|2 .

Using this we have

|λ1 − ρ| ≤ C

n
∑

i=2

|ci|2 ≤ C||v1 − q||22 ,

using Part (b). Thus the take away from this is that if we pick a vector q that is close to
the eigenvector v1 (say in norm by O(ǫ)) then the Rayleigh quotient will be close to the
eigenvalue (by an amount O(ǫ2)).

Exercise 4.4.14 (eigenvalues of Hermitian matrices are real)

Part (a): Note that the conjugate of the expression x∗Ax is itself again

(x∗Ax)∗ = x∗A∗x = x∗Ax .

Only real numbers are their own complex conjugates.

Part (b): Since the numerator x∗Ax and the denominator x∗x in the Rayleigh quotient are
real the Rayleigh quotient itself must be real.

Part (c): As the Rayleigh quotients when computed using eigenvectors return eigenvalues
the eigenvalues of Hermitian matrices must be real.

Exercise 4.4.15 (unitary similarity and positive definiteness)

Assume that B is unitarily similar to A and consider for an arbitrary vector x the inner
product

x∗Bx = x∗U∗AUx = (Ux)∗A(Ux) > 0

as A is positive definite. Thus B is positive definite.



Exercise 4.4.16 (eigenvalues of positive definite matrices are positive)

Consider the Rayleigh quotient for a positive definite matrix A or x∗Xx
x∗x

. Since we know that
the numerator and the denominator are positive real numbers the fraction is also. Thus the
eigenvalues of the positive definite matrix A must be positive.

Exercise 4.4.17 (positive definite is equivalent to positive eigenvalues)

We have shown that if A is positive definite it has positive eigenvalues. Assume that A has
positive eigenvalues, then from the Spectral Theorem we can write A as A = UDU∗ with U
unitary, and D a diagonal matrix with the positive eigenvalue of A as the diagonal elements.
In that case note that

x∗Ax = x∗UDU∗x = (U∗x)∗D(U∗x) > 0 ,

since the last expression is the sum of positive terms.

Exercise 4.4.18 (positive semidefinite matrices)

For results with positive semidefinite matrices all signs like > become ≥ but all of the
arguments are the same.

Exercise 4.4.19 (skew-Hermitian matrices)

Part (a): Consider B∗ = (U∗AU)∗ = U∗A∗U = −U∗AU = −B showing that B is skew-
Hermitian.

Part (b): When A is skew-Hermitian then Schur’s Theorem states T = U∗AU so we have
that T and A are unitary similar. Thus T must be skew-Hermitian and T ∗ = −T this means
that T is a diagonal matrix with imaginary elements on the diagonal.

Part (c): Besides the argument above we can consider the Rayleigh quotient. Note that
taking its conjugate we have

ρ∗ =
x∗A∗x

x∗x
= −x

∗Ax

x∗x
= −ρ .

The only numbers that are negative conjugates of them selves are pure imaginary numbers,
showing that the eigenvalues of A must be pure imaginary.



Exercise 4.4.20 (unitary and unitary similarity)

Part (a): If B = U∗AU then

BB∗ = U∗AU(U∗A∗U) = U∗AA∗U = I

therefor B−1 = B and B is unitary.

Part (b): Let T be an upper triangular matrix that is unitary. Then because T us unitary
we know that T−1 = T ∗. Since inverses of upper triangular matrices are also upper triangular
we have that T−1 is upper triangular. At the same time T ∗ is lower triangular. In order that
these two things equal each other we must have that they are both diagonal matrices. As
T ∗ is a diagonal matrix so is T .

Part (c): Schur’s Theorem states that there exists a unitary matrix U such that U∗AU = T
with T upper triangular with the eigenvalues of A on the diagonal. Since A is unitary and
T is unitarily similar to A, by Part (a) we know that T is unitary. Since T is unitary and
upper triangular we know by Part (b) that T must be a diagonal matrix.

Part (d): From the above discussion we have that U∗AU = T where T is a unitary diagonal
matrix and hold the eigenvalues of A. Since T is unitary T−1 = T ∗ and writing this equation
in terms of an arbitrary element of the diagonal of T (say ρ) we have 1

ρ
= ρ∗ or |ρ|2 = 1.

Thus the eigenvalues of A lie on the unit circle.

Another way to see this is to consider the Rayleigh quotient ρ for an eigenvector x with
eigenvalue ρ. Since A is unitary and x is the eigenvector we have that

ρ∗ =
x∗A∗x

x∗x
=

(x∗A−1x

x∗x
=

x∗
(

1
ρ
x
)

x∗x
=

1

ρ
.

Again we have ρρ∗ = 1 or that |ρ|2 = 1.

Exercise 4.4.21 (normal matrices)

Part (a): We will show this for just the case where A is Hermitian since all the other cases
are the same. In that case A∗ = A so that AA∗ = AA = A2. The other product, A∗A, is
equal to A2 also.

Part (b): If B = U∗AU then we have

BB∗ = U∗AU(U∗A∗U) = U∗AA∗U = U∗A∗AU ,

since A is normal. Continuing we have

U∗A∗AU = U∗A∗UU∗AU = B∗B ,



showing that B is normal.

Part (c): Partition the original n× n upper triangular matrix T in the following way

T =

[

t11 tr
0 T̂

]

.

Here T̂ is a n − 1 × n − 1 upper triangular matrix, t11 is a scalar, and tr is a row vector.
Then with this we have

T ∗ =

[

t∗11 0

tr
∗ T̂ ∗

]

.

The normal products TT ∗ and T ∗T are

TT ∗ =

[

t11 tr
0 T̂

] [

t∗11 0

tr
∗ T̂ ∗

]

=

[

|t11|2 + trtr
∗ trT̂

∗

T̂ tr
∗ T̂ T̂ ∗

]

T ∗T =

[

t∗11 0

tr
∗ T̂ ∗

] [

t11 tr
0 T̂

]

=

[ |t11|2 t11
∗tr

t11tr
∗ T̂ ∗T̂

]

Since we assume that TT ∗ = T ∗T equating the components of the above we get

|t11|2 + trt
∗
r = |t11|2

trT̂
∗ = t11

∗tr

T̂ t∗r = t11t
∗
r

T̂ T̂ ∗ = T̂ ∗T̂ .

By induction T̂ is normal, upper triangular and therefore diagonal. From the (1, 1) element
or the first equation above we must have

trt
∗
r = 0 .

But trt
∗
r is the sum of the normed squared of the elements of tr and this is only equal to zero

if each element is. Thus tr = 0. This solution makes the other two equations satisfied.

Part (d): Let A be a diagonal matrix then we have

AA∗ =











|a11|2 0
|a22|2

. . .

0 |ann|2











,

and A∗A is the same so A is normal.

Part (e): Assume that A is unitary similar to a diagonal matrix say D. Since D is normal
by Part (d) and every matrix unitary similar to a normal matrix is normal we have that A
is normal.

Assume that A is normal thus AA∗ = A∗A. By Schur’s Theorem there exists a unitary
matrix U such that U∗AU = T where T upper triangular. Now A is normal and thus T is
normal by Part (b). By Part (c) when T is upper triangular and normal we have that T is
diagonal. Thus A is unitary similar to a diagonal matrix.



Exercise 4.4.22 (A has n orthonormal eigenvectors then A is normal)

Assume that A has n orthonormal eigenvectors. Form the matrix U with these n eigenvector
as columns. Then AU = UD since the eigenvectors are orthonormal we can create these
such that D = U∗AU or A and D are unitary similar. As a diagonal matrix is normal then
by Exercise 4.4.21 Part (b) A is also normal.

Exercise 4.4.23 (properties of diagonal matrices)

Part (a): D is Hermitian so that D∗ = D. In components this means that d∗ii = dii or the
diagonal elements must be real. These are also the eigenvalues of the matrix D.

Part (b): Let ei be a vector of all zeros with a 1 in the ith location. Then e∗iDei = dii ≥ 0
so D is positive semi-definite.

Part (c): This is the same as the previous part where we have e∗iDei = dii > 0.

Part (d): For D∗ = −D or in component form we have d∗ii = −dii or that dii is imaginary
thus the eigenvalues of D are imaginary.

Part (e): The matrix D is such that D∗ = D−1 in component form we have d∗ii =
1
dii

or

|dii|2 = 1.

Exercise 4.4.24 (properties of normal matrices)

Part (a): A is a normal matrix then its unitary similar to the diagonal matrix so that
U∗AU = D thus D∗ = U∗A∗U = U∗AU = D so D is Hermitian. By Exercise 4.4.23 (a) the
eigenvalues of D are real. As A is similar to D it has the same (real) eigenvalues.

Part (b-e): Following the steps as in Part (a) to show A unitary similar to a diagonal
matrix, that has the same properties as A. Then we use Exercise 4.4.23 to show properties
of the eigenvalues of D. Then A has the same eigenvalues as D (due to the fact that they
are similarity related) and thus the eigenvalues of A satisfy the desired properties.

Exercise 4.4.25 (Rayleigh quotient of normal matrices approximate eigenvalues)

Since the book has shown that every normal matrix has n orthonormal eigenvectors (the
main requirement needed for Exercise 4.4.13) we can follow the steps in that proof to show
the required steps.



Exercise 4.4.26 (defective matrices and a nearby simple matrix)

Let A be defective. By Schur’s Theorem A = U∗TU with T upper triangular with diagonal
elements of T the eigenvalues of A. Consider a matrix Aǫ created from another (as yet)
unknown upper triangular matrix Tǫ as Aǫ = U∗TǫU . The matrix U is the same Hermitian
matrix created in Schur’s Theorem. Then we have

||A− Aǫ||2 = ||U∗(T − Tǫ)U ||2 = ||T − Tǫ||2 .

We now pick Tǫ such that it equals T for all off diagonal elements. Then the matrix T − Tǫ

is a diagonal matrix say D. The two norm of this diagonal matrix is the square root of the
largest eigenvector of D∗D. This is the same as the absolute value of the diagonal elements.
Thus we have

||T − Tǫ||2 = max
i

(|Tii − Tǫii|) .

We can now select the elements to use as the diagonal elements of Tǫ in such a way that
they are all distinct and that the maximum above is as small as possible. Thus if we pick
Tǫ to be as above Tǫ will be simple and so will Aǫ and Aǫ has the requested distance to the
matrix A.

Exercise 4.4.28 (properties of skew-symmetric matrices)

Part (a): Assume that A is n by n skew-symmetric. As the matrix A is real the characteristic
equation det(A− λI) is a nth order real polynomial and any nonzero complex roots that it
might have must come in complex conjugate pairs. Since A is skew-symmetric (also skew-
Hermitian) it must have its eigenvalues on the imaginary axis. Since n is odd it cannot have
all of its roots be complex since they must come in pairs and we would need to have an even
polynomial order. Thus λ = 0 must be a root of the characteristic equation and our matrix
A must be singular.

Part (b): These matrices look like

[

0 b
0 −b

]

is a 2 by 2 skew-symmetric matrix.

Part (c): T will be block diagonal with each block a 2× 2 block like

[

0 b
−b 0

]

or a 1× 1

block of zero.

Exercise 4.4.29 (properties of the trace function)

Part (a): The trace function is a linear operator and this is just an expression for that fact.

Part (b): We want to show that trace(CD) = trace(DC) which we do by considering the



left-hand-side and showing that it equals the right-hand-side. We have

trace(CD) =

n
∑

i=1

(CD)ii =

n
∑

i=1

n
∑

k=1

CikDki

=

n
∑

k=1

n
∑

i=1

CikDki =

n
∑

k=1

(DC)kk

= trace(DC) .

Part (c): Note that ||B||2F =
∑n

i=1

∑n
j=1 |bij|2. Now consider the (i, j)th element of B∗B

given by

(B∗B)ij =
n
∑

k=1

(B∗)ikBkj =
n
∑

k=1

(Bki)
∗Bkj .

Thus

trace(B∗B) =
n
∑

i=1

n
∑

k=1

(Bki)
∗Bki =

n
∑

i=1

n
∑

k=1

|Bki|2 = ||B||2F .

Using the result from Part (b) we have trace(B∗B) = trace(BB∗) and thus this also equals
||B||F .

Exercise 4.4.30 (normal and block triangular)

Part (a): We assume that T is normal thus TT ∗ = T ∗T . When we write out the left-hand-
side and right-hand-side of this expression we get

TT ∗ =

[

T11 T12

0 T22

] [

T ∗
11 0

T ∗
12 T ∗

22

]

=

[

T11T
∗
11 + T12T

∗
12 T12T

∗
22

T22T
∗
12 T22T

∗
22

]

T ∗T =

[

T ∗
11 0

T ∗
12 T ∗

22

] [

T11 T12

0 T22

]

=

[

T11T
∗
11 T ∗

11T12

T ∗
12T11 T12T

∗
12 + T ∗

22T12

]

.

Since T is normal we have the above two expressions are equal. If we consider the (1, 1)
component of the above we get that we must have

T11T
∗
11 + T12T

∗
12 = T ∗

11T11 .

Canceling the common terms and taking the trace of the remaining expression we get

trace(T12T
∗
12) = 0 .

Using the trace is equal to the Frobenius norm result proven earlier we have that the above
is equal to

||T12||2F = trace(T12T
∗
12) = 0 ,

or
∑

i

∑

j

|(T12)ij|2 = 0 ,

which means that echo component of T12 must be zero or that the matrix T12 is zero. This
means that T is block diagonal as we were to show.



Exercise 4.4.31 (2× 2 normal matrices)

Part (a): We find

AA∗ =

[

a b
c d

] [

a c
b d

]

=

[

a2 + b2 ac+ bd
ac + db c2 + d2

]

A∗A =

[

a c
b d

] [

a b
c d

]

=

[

a2 + c2 ab+ cd
ab+ cd b2 + d2

]

.

To be normal when we equating the (1, 1) component of AA∗ = A∗A we get

a2 + b2 = a2 + c2 ⇒ b2 = c2 ,

which means that b = ±c. Equating the (1, 2) component of AA∗ = A∗A we get

ac+ bd = ab+ cd .

If we have b = c then this last equation is (changing all c’s to b’s) gives

ab+ bd = ab+ cd or b = c ,

the same condition as before. Thus in this case we get A =

[

a b
b d

]

and we have a symmetric

matrix. If b = −c then the second equation above becomes (changing all c’s into −b’s) gives
−ab + bd = ab− bd or − a + d = a− d or a = d .

Thus we have A =

[

a b
−b a

]

.

Part (b): For A of the given form the eigenvalues are given by |A− λI| = 0 or
∣

∣

∣

∣

a− λ b
−b a− λ

∣

∣

∣

∣

= 0 .

This gives (a− λ)2 + b2 = 0 or since b is real we get λ = a± bi.

Part (c): By Ex. 4.4.30 T is block diagonal. The elements of the blocks are either scalars

for the real eigenvalues or 2× 2 blocks of the form

[

a b
−b a

]

for the complex eigenvalues.

Exercise 4.4.32 (more properies of the trace)

Part (a): A and B are similar so B = S−1AS. Then

trace(B) = trace(S−1AS) = trace(ASS−1) = trace(A) .

Part (b): By Schur’s Theorem for all matrices A there exists an unitary matrix U such that
U∗AU = T with T upper triangular with the eigenvalues of A on the diagonal of T . Then
using that result we have

trace(U∗AU) = trace(A) = trace(T ) =

n
∑

i=1

λi .



Exercise 4.4.33 (the determinant of a matrix)

By the complex Schur’s Theorem for all matrices A there exists an unitary matrix U such
that U∗AU = T with T upper triangular with the eigenvalues of A on the diagonal of T .
Then we have since U∗ = U−1 that

|U−1AU | = |T | =
n
∏

i=1

λi .

The left-hand-side is |U |−1|A||U | = |A| and we get

|A| =
n
∏

i=1

λi ,

as we were to show.


