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Introduction

Here you’ll find some notes that I wrote up as I worked through this excellent book. I’ve
worked hard to make these notes as good as I can, but I have no illusions that they are perfect.
If you feel that that there is a better way to accomplish or explain an exercise or derivation
presented in these notes; or that one or more of the explanations is unclear, incomplete,
or misleading, please tell me. If you find an error of any kind – technical, grammatical,
typographical, whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my attention.

All comments (no matter how small) are much appreciated. In fact, if you find these notes
useful I would appreciate a contribution in the form of a solution to a problem that I did
not work, a mathematical derivation of a statement or comment made in the book that was
unclear, or a correction to a typo (spelling, grammar, etc) about these notes. Sort of a “take
a penny, leave a penny” type of approach. Remember: pay it forward.

∗wax@alum.mit.edu
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Chapter 1 (Functions)

Section 1.4 (Functions)

Section 1.5 (Examples of Functions)

Problem 22

WWX: working here.

Section 1.6 (Trigonometric Functions)

Problem 4

Using the cosine sum formula we find

cos

(
7π

6
+

7π

4

)
= cos

(
7π

6

)
cos

(
7π

4

)
− sin

(
7π

6

)
sin

(
7π

4

)
= −

√
3

2
√
2
− 1

2
√
2
= −(

√
3 + 1)

2
√
2

.

Problem 8

Using the half-angle formula for sin(·) we have

sin

(
1

2

(π
6

))
= +

√
1− cos(π/6)

2
=

√
1− (

√
3/2)

2
.
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Chapter 6 (The Integral)

Section 6.5 (integration by substitution)

additional examples at evaluating integrals

Integrate: ∫
cos(x)dx√
1 + sin(x)

.

Let u = sin(x) then du = cos(x)dx and we get

∫
du√
1 + u

= 2(1 + u)1/2 + C = 2(1 + sin(x))1/2 + C .

Integrate: ∫
sin−1(x)dx√

1 + x2
.

Let u = sin−1(x) then du = dx√
1−x2 and we get

∫
udu =

u2

2
+ C =

1

2
(sin−1(x))2 + C .

Integrate: ∫
tan(x)dx

cos2(x)
.

First write this integral as

−
∫ (

− sin(x)

cos3(x)

)
dx

Let u = cos(x) then du = − sin(x)dx and we get

−
∫

du

u3
= − u−2

(−2)
+ C =

1

2u2
+ C =

1

2 cos2(x)
+ C .

Integrate:

I =

∫
dx

(1− sin(x))
.
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First write this integral as

I =

∫
(1 + sin(x))dx

1− sin2(x)
dx

=

∫
(1 + sin(x))dx

cos2(x)
dx

=

∫
dx

cos2(x)
+

∫
sin(x)

cos2(x)
dx

=

∫
sec2(x)dx−

∫ (
− sin(x)

cos2(x)

)
dx .

In the second integral let u = cos(x) then du = − sin(x)dx and we get

I = tan(x)−
∫

du

u2

= tan(x)− u−1

(−1)
+ C

= tan(x) +
1

cos(x)
+ C .

Integrate:

I =

∫
eln(

√
x)dx =

∫ √
xdx =

2

3
x3/2 + C .

Integrate:

I =

∫
cos(

√
x)

2
√
x

dx .

Let u =
√
x so that du = dx

2
√
x
and we get

I = 2

∫
cos(u)du = −2 sin(u) + C

= −2 sin
(√

x
)
+ C .

Integrate:

I =

∫
dx√

x2 + 2x+ 2

We have

I =

∫
dx√

x2 + 2x+ 1 + 1

=

∫
dx√

(x+ 1)2 + 1
.

Let u = x+ 1 then du = dx to get

I =

∫
du√
u2 + 1

= arcsin(u) + C = arcsin(x+ 1) + C .
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Integrate:

I =

∫
(3x− 7)dx

(x− 1)(x− 2)(x− 3)
.

We will do this with partial fractions. We need to find A, B, and C such that

3x− 7 = A(x− 2)(x− 3) +B(x− 1)(x− 3) + C(x− 1)(x− 2) .

Let x = 2 to get
6− 7 = 0 +B(1)(−1) + 0 so B = 1 .

Let x = 3 to get
9− 7 = 0 + 0 + C(2)(1) so C = 1 .

Let x = 1 to get
3− 7 = A(−1)(−2) + 0 + 0 so A = −2 .

Thus we have written our integral as

I =

∫ (
− 2

x− 1
+

1

x− 2
+

1

x− 3

)
dx

= −2 ln |x− 1|+ ln |x− 2|+ ln |x− 3|+ C .

Integrate:

I =

∫
x2exdx .

We will do this with integration by parts. Let u = x2 so that du = 2xdx and v = ex so that
dv = exdx and the above becomes

I = x2ex − 2

∫
xexdx .

To evaluate this second integral again use integration by parts by letting u = x, so that
du = dx and v = ex so that dv = exdx and we get

I = x2ex − 2

[
xex −

∫
exdx

]

= x2ex − 2xex + 2ex + C .

Integrate:

I =

∫ √
x2 + 1dx .

Let x = tan(θ) so that dx = sec2(θ)dθ and we get

I =

∫
sec(θ) sec2(θ)dθ =

∫
sec3(θ)dθ

=
1

2
sec(θ) tan(θ) +

1

2

∫
sec(θ)dθ

=
1

2
sec(θ) tan(θ) +

1

2
ln |sec(θ) + tan(θ)|+ C

=
x

2

√
x2 + 1 +

1

2
ln
∣∣∣
√
x2 + 1 + x

∣∣∣+ C .
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Integrate:

I =

∫
et

1 + e2t
dt .

Let u = et so that du = etdt then

I =

∫
du

1 + u2
= arctan(u) + C = arctan

(
et
)
+ C .

Integrate:

I =

∫
1

ex + e−x
dx

We multiply by ex

ex
to get

I =

∫
ex

e2x + 1
dx = arctan(ex) + C .

Integrate:

I =

∫
1

1 +
√
x
dx .

Multiply by
√
x√
x
to get ∫ √

xdx√
x(1 +

√
x)

.

Integrate by parts where u =
√
x so that du = dx

2
√
x
and v = 2 ln |1+√

x| so that dv = dx√
x(1+

√
x)

and we get

I = 2
√
x ln |1 +

√
x| − 2

∫
ln |1 +√

x|
2
√
x

dx .

Let u = 1 +
√
x so that dw = dx

2
√
x
in this second integral to get

I = 2
√
x ln |1 +

√
x| − 2

∫
ln |w|dw .

Use integration by parts on this second integral with u = ln |w| so du = dw
w

with v = w with
dv = dw and we get

I = 2
√
x ln |1 +

√
x| − 2

[
w ln |w| −

∫
dw

]

= 2
√
x ln |1 +

√
x| − 2 [w ln |w| − w]

= 2
√
x ln |1 +

√
x| − 2(1 +

√
x) ln |1 +

√
x| − 2(1 +

√
x) .

Integrate:

I =

∫
1√

1 +
√
x
dx .
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Let u = 1 +
√
x so that

√
x = u− 1 and

du =
dx

2
√
x
⇒ dx = 2du

√
x = 2(u− 1)du ,

and we get for I

I =

∫
2(u− 1)√

u
du = 2

∫
(
√
u− u−1/2)du

= 2
u3/2

3/2
− 2

u1/2

1/2
+ C =

4

3
u3/2 − 4u1/2 + C

=
4

3
(1 +

√
x)3/2 − 4(1 +

√
x)1/2 + C .

Integrate:

I =

∫
t2/3(t5/3 + 1)2/3dt .

Let u = t5/3 + 1 so du = 5
3
t2/3dt and we get

I =
3

5

∫
5

3
t2/3(t5/3 + 1)2/3dt

=
3

5

(t5/3 + 1)5/3

(5/3)
+ C =

9

25
(t5/3 + 1)5/3 + C .

Integrate:

I =

∫
cot(x)dx

ln(sin(x))
.

Let u = ln(sin(x)) so that du = cos(x)
sin(x)

dx = cot(x)dx and we get

I =

∫
du

u
= ln |u|+ C

= ln | ln(sin(x))|+ C = ln(ln(sin(x))) + C .

For the following integrals we will only give hits as to how they maybe evaluated

Integrate:

I =
dt√

1− e−t

Hint let u = (1− e−t)−1/2.

Integrate:

I =

∫
dx

ex − 1
.

Hint multiply by e−x

e−x .
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Integrate:

I =

∫
du

(eu − e−u)2
.

Hint multiply by e2u

e2u
, and use the integration substitution v = e2u.

Integrate:

I =

∫
ex cos(2x)dx

Hint let u = ev with dv = cos(2x) and use integration by parts twice.

Integrate:

I =

∫
dx

x(1 + x1/3)

Hint let u = 1 + x1/3

Integrate:

I =

∫
z5dz√
1 + z2

.

Hint use integration by parts with u = z4 and dv = z(1 + z2)−1/2 three times.

Integrate:

I =

∫
(sin−1(x))2dx .

Hint use integration by parts with u = (sin−1(x))2 and dv = dx.

Integrate:

I =

∫
x3

(x2 + 1)2
.

Hint use integration by parts with u = x2 and dv = xdx
(x2+1)2

.

Integrate:

I =

∫
x
√
2x+ 1dx

Hint use integration by parts with u = x and dv = (2x+ 1)1/2dx.

Integrate:

I =

∫
e−x tan−1(ex)dx

Hint u = tan−1(ex) and dv = e−x and use integration by parts.

Show:

I =

∫
ln
(
x+

√
x
)
= ln

(√
x
)
+ ln

(
1 +

√
x
)
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Integrate:

I =

∫
x

x2 + 4x+ 3
.

Hint use partial fractions.

Integrate:

I =

∫ √
x2 − a2

x
dx

Hint divide by x and let a
x
= sin(θ).

Integrate:

I =

∫
dx

x(3
√
x+ 1)

.

Let u = 3
√
x+ 1.

Integrate:

I =

∫
cot(θ)dθ

1 + sin2(θ)
.

Hint let u = sin(θ).

Integrate:

I =

∫
e4tdt

1 + e2t)2/3
.

Hint u = e2t.

Integrate:

I =

∫
xdx√
1− x

Hint let u = 1− x.

Integrate:

I =

∫
ln
(
x+

√
x2 − 1

)
dx

Hint use integration by parts with u = ln
(
x+

√
x2 − 1

)
and dv = dx.

Integrate:

I =

∫
sin−1(

√
x)dx

Hint use integration by parts with u = sin−1(
√
x) and dv = dx.
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Chapter 7 (Applications of the Integral)

Section 7.2 (Volume)

Problem 4

To evaluate this volume, construct a line from (0, 0) to (h, a). Such a line has a form
y(x) = a + a

h
(x − h). Rotating this line about the x-axis we would have a differential of

volume given by dV = 2πy(x)dx. The total volume is then the integral of this differential or

V = 2π

∫ h

0

(
a +

a

h
(x− h)

)
dx = 2π

(
ah+

a

h

(x− h)2

2

∣∣∣∣
h

0

)
= πah .

If a = 1√
2
and h = 1√

2
we get V = π

2
.
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Chapter 8 (Elementary Transcendental Functions)

Section 8.7 (The Hyperbolic and Inverse Hyperbolic Functions)

Problem 37

Part (a): A definition of the arctanh function is the value of y (given x) such that x =
tanh(y). From the domain and range of the tanh function we see that the domain of the
function y = arctanh(x) is −1 < x < +1 and the range is −∞ < y < ∞.

We desire to take the derivative of y = arctanh(x). We can do this by first solving for x and
then taking the derivative implicitly. Solving for x gives

x = tanh(y) .

Taking the derivative with respect to x gives

1 = sech2(y)
dy

dx
.

But we can take the identity cosh2(x) − sinh2(x) = 1, and divide by cosh2(x) to get an
equivalent identity of sech2(x) = 1− tanh2(x), so that our derivative becomes

dy

dx
=

1

1− tanh2(y)
=

1

1− x2
,

with a domain of |x| < 1.

Review Problems (Elementary Transcendental Functions)

Problem 33

We want to integrate
∫

dx√
x(1+x)

. Let u =
√
x, so that x = u2, and du = dx

2
√
x
= dx

2u
. With

these our integral becomes

∫
2du

1 + u2
= 2 tan−1(u) + C = 2 tan−1(

√
x) + C .

11



Chapter 9 (Methods of Integration)

Section 9.2 (Integration by Parts)

Problem 10 (the integral of ln(x))

When we let u = ln(x) and dv = dx using the integration by parts formula
∫
udv = uv−

∫
vdu

we have ∫
ln(x)dx = x ln(x)−

∫
x

(
1

x

)
dx = x ln(x)− x+ c . (1)

We can check that this is correct by taking the derivative of the given expression where we
find

ln(x) + 1− 1 = ln(x) ,

as it should.

Problem 12 (the integral of x ln(x))

Let u = x and dv = ln(x)dx and then use the result from Problem 10 in Equation 1 to get

∫
x ln(x)dx = x(x ln(x)− x)−

∫
1(x ln(x)− x)dx

= x2 ln(x)− x2 −
∫

x ln(x)dx+
x2

2
+ c .

Solving for
∫
x ln(x)dx in the previous expression we find

∫
x ln(x)dx =

1

2

(
x2 ln(x)− x2

2

)
+ c =

x2

4
(2 ln(x)− 1) + c . (2)

Problem 14 (the integral of ln(x)2)

Let u = ln(x) and dv = ln(x)dx and then use the result from Problem 10 in Equation 1 to
get

∫
ln(x)2dx = ln(x)(x ln(x)− x)−

∫
1

x
(x ln(x)− x)dx

= x ln(x)2 − x ln(x)−
∫

ln(x)dx+ x+ c

= x ln(x)2 − x ln(x)− x ln(x) + x+ x+ c

= x(ln(x)2 − 2 ln(x) + 2) + c . (3)
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Problem 16 (the integral of x ln(x)2)

Let u = x and dv = ln(x)2 with the solution to Problem 14 in Equation 3 we have

∫
x ln(x)2dx = x(x ln(x)2 − 2x ln(x) + 2x)−

∫
(x ln(x)2 − 2x ln(x) + 2x)dx

Then solving for
∫
x ln(x)2dx we get

2

∫
x ln(x)2dx = x2 ln(x)2 − 2x2 ln(x) + 2x2 + 2

∫
x ln(x)dx− 2

2
x2 + c .

Using the results from Problem 12 in Equation 2 this becomes

∫
x ln(x)2dx =

1

2
x2 ln(x)2 − x2 ln(x) +

x2

2
+

x2

4
(2 ln(x)− 1) + c

=
1

2
x2 ln(x)2 − 1

2
x2 ln(x) +

x2

4
+ c .

We can check this result using the result from Problem 28 with p = 1 where we get

∫
x ln(x)2dx =

x2

2
ln(x)2 − 2

4
x2 ln(x) +

2

8
x2 + c ,

the same as before.

Problem 18 (the integral of x2 ln(x))

Since
∫
x ln(x)dx = ln(x)2

2
+ c when we write x2 ln(x) as x(x ln(x)) and use integration by

parts with u = x and dv = x ln(x) to get

∫
x2 ln(x)dx =

x

2
ln(x)2 −

∫
x ln(x)dx

=
x

2
ln(x)2 − ln(x)2

2
+ c .

Problem 20 (the integral of x(x+ 10)50)

∫
x(x+ 10)50dx = x

(x+ 10)51

51
−
∫

(x+ 10)51

51
dx

= x
(x+ 10)51

51
− (x+ 10)52

52(51)
+ c .
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Problem 27 (the integral of xp ln(x))

Let u = xp and dv = ln(x)dx (and thus that
∫
x ln(x)dx = x ln(x)− x) with integration by

parts we have

∫
xp ln(x)dx = xp(x ln(x)− x)−

∫
pxp−1(x ln(x)− x)dx

= xp+1 ln(x)− xp+1 − p

∫
xp ln(x)dx+ p

∫
xpdx .

Solving for
∫
xp ln(x)dx we first get

(1 + p)

∫
xp ln(x)dx = xp+1 ln(x)− xp+1 +

p

p + 1
xp+1 + c ,

or ∫
xp ln(x)dx =

xp+1

p+ 1
ln(x)− p

(p+ 1)2
xp+1 + c when p 6= 1 . (4)

Problem 28 (the integral of xp ln(x)2)

Let u = xp and dv = ln(x)2 and use the results from Problem 14 namely Equation 3 to get

∫
xp ln(x)2dx = xpx(ln(x)2 − 2 ln(x) + 2)−

∫
pxp−1x(ln(x)2 − 2 ln(x) + 2)dx

= xp+1(ln(x)2 − 2 ln(x) + 2)− p

∫
xp ln(x)2dx+ 2p

∫
xp ln(x)dx− 2p

∫
xpdx .

Solving for
∫
xp ln(x)2dx and using the result from Problem 27 namely Equation 4 we have

(1+p)

∫
xp ln(x)2dx = xp+1(ln(x)2−2 ln(x)+2)−2p

[
xp+1

p+ 1
ln(x)− xp+1

(p+ 1)2

]
− 2p

p + 1
xp+1+c .

Thus when p 6= 1 we have

∫
xp ln(x)2dx =

xp+1

p+ 1
ln(x)2 +

1

p+ 1

[
−2 +

2p

p+ 1

]
xp+1 ln(x)

+
1

p+ 1

[
2− 2p

(p+ 1)2
− 2p

p+ 1

]
xp+1 + c

=
xp+1

p+ 1
ln(x)2 − 2

(p+ 1)2
xp+1 ln(x) +

2

(p+ 1)3
xp+1 + c (5)
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Problem 33 (the integral of ln(x)n)

Let u = ln(x)n and dv = dx so using integration by parts
∫
udv = uv −

∫
vdu we get

∫
ln(x)ndx = x ln(x)n −

∫
xn ln(x)n−1 1

x
dx

= x ln(x)n − n

∫
ln(x)n−1dx .

Section 9.6 (Partial Fractions)

Problem 1

From the formulas given in the book

1

x(x+ 1)
=

A

x
+

B

x+ 1
,

or
1 = A(x+ 1) +Bx .

Let x = 0 and x = −1 to get 1 = A and 1 = −B. Thus

1

x(x+ 1)
=

1

x
− 1

x+ 1
,

so the integral is given by

∫
1

x(x+ 1)
=

∫
dx

x
−
∫

1

x+ 1
= ln |x| − ln |x+ 1|+ c = ln

∣∣∣∣
x

x+ 1

∣∣∣∣ + c .

Problem 2

We write
5x− 13

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
,

or
5x− 13 = A(x− 3) +B(x− 2) .

Let x = 3 and x = 2 to get
2 = B and − 3 = −A .

Thus A = 3 and B = 2 and our integral is given by

∫
5x− 13

(x− 2)(x− 3)
dx =

∫
3

x− 2
dx+

∫
2dx

x− 3
= 3 ln |x− 2|+ 2 ln |x− 3|+ c .
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Problem 3

We write
−4

x2 − 4
=

A

x− 2
+

B

x+ 2
,

or
−4 = A(x+ 2) +B(x− 2) .

Let x = 2 to get −4 = 4A or A = −1. Let x = −2 to get −4 = −4B so B = 1. Thus the
integral we want is

∫ −4

x2 − 4
dx = −

∫
1

x− 2
dx+

∫
1

x+ 2
dx

= − ln |x− 2|+ ln |x+ 2|+ c = ln

∣∣∣∣
x+ 2

x− 2

∣∣∣∣+ c .

Problem 4

We write
5x+ 1

(x− 1)2(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2
,

or
5x+ 1 = A(x− 1)(x+ 2) +B(x+ 2) + C(x− 1)2 .

Let x = 1 to get 6 = 3B or B = 2. Let x = −2 to get −9 = C(9) or C = −1. Equating the
coefficients of the O(x2) terms gives

0 = A+ C ⇒ A = −C = 1 .

Thus the integral we seek can be written as

∫
5x+ 1

(x− 1)2(x+ 2)
dx =

∫
1

x− 1
dx+

∫
2

(x− 1)2
dx−

∫
1

x+ 2
dx

= ln |x+ 1| − 2(x− 1)−1 − ln |x+ 2|+ c

= ln

∣∣∣∣
x+ 1

x+ 2

∣∣∣∣− 2(x− 1)−1 + c .

Problem 5

We write
x2 + 4x+ 5

(x+ 1)(x+ 2)(x+ 3)
=

A

x+ 1
+

B

x+ 2
+

C

x+ 3
,

or
x2 + 4x+ 5 = A(x+ 2)(x+ 3) +B(x+ 1)(x+ 3) + C(x+ 1)(x+ 2) .

16



Let x = −2 to get 4 − 8 + 5 = 0 + B(−1)(1) or B = −1. Let x = −3 to get 9 − 12 + 5 =
0+ 0+C(−2)(−1) to get C = 1. Let x = −1 to get 1− 4 + 5 = A(1)(2) or A = 1. Then we
have shown that

∫
x2 + 4x+ 5

(x+ 1)(x+ 2)(x+ 3)
dx =

∫
1

x+ 1
dx−

∫
1

x+ 2
dx+

∫
1

x+ 3

= ln |x+ 1| − ln |x+ 2|+ ln |x+ 3|+ c

= ln

∣∣∣∣
(x+ 1)(x+ 3)

x+ 2

∣∣∣∣ + c .

Problem 6

Note that
x3 + 2x

x2 − x− 2
,

is not a proper rational fraction so we need to use long division to reduce it to a proper
rational fraction. This is done with the following steps

x+ 1

x2 − x− 2
)

x3 + 2x
− x3 + x2 + 2x

x2 + 4x
− x2 + x+ 2

5x+ 2

From this expression we have shown that

x3 + 2x

x2 − x− 2
= x+ 1 +

5x+ 2

x2 − x− 2
.

Note that x2 − x− 2 = (x− 2)(x+ 1) so we can write

5x+ 2

x2 − x− 2
=

A

x− 2
+

B

x+ 1
,

or
5x+ 2 = A(x+ 1) +B(x− 2) .

Let x = −1 to get −3 = B(−3) or B = 1. Let x = 2 to get 12 = 3A or A = 4. Thus we
have shown that

5x+ 2

x2 − x− 2
=

4

x− 2
+

1

x+ 1
,

and our integral is given by

∫
x3 + 2x

x2 − x− 2
dx =

∫
(x+ 1)dx+

∫
4

x− 2
dx+

∫
dx

x+ 1

=
x2

2
+ x+ 4 ln |x− 2|+ ln |x+ 1|+ c .
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Problem 7

Note that by the rules for partial fractions the integrand can be written as

x

(x+ 1)2(x− 1)2
=

A

x+ 1
+

B

(x+ 1)2
+

C

x− 1
+

D

(x− 1)2
,

or
x = A(x+ 1)(x− 1)2 +B(x− 1)2 + C(x− 1)(x+ 1)2 +D(x+ 1)2 .

Let x = 1 so that 1 = 4D or D = 1
4
. Let x = −1 so that −1 = B(2)2 or B = −1

4
. Expanding

the polynomial on the right-hand-side of the above expression we get

x = A(x3 − x2 − x+ 1) +B(x2 − 2x+ 1) + C(x3 + x2 − x+ 1) +D(x2 + 2x+ 1) .

Thus equating the coefficients of O(x3) terms we get 0 = A+C and equating the coefficients
of the O(x2) terms

0 = −A+B + C +D = −A− 1

4
+ C +

1

4
.

These last two equations taken together imply that A = C = 0 and our fraction is then
written as

x

(x+ 1)2(x− 1)2
= − 1

4(x+ 1)2
+

1

4(x− 1)2
.

With this expression our integral becomes
∫

x

(x+ 1)2(x− 1)2
dx = +

1

4(x+ 1)
− 1

4(x− 1)
+ c .

Problem 8

Note that by the rules of partial fractions our integrand can be written as

3x+ 2

(x+ 2)(x2 + 4)
=

A

x+ 2
+

Bx+ C

x2 + 4
,

or
3x+ 2 = A(x2 + 4) + (Bx+ C)(x+ 2)

Let x = −2 so that −4 = 8A or A = −1
2
. Let x = ±2i say x = 2i then we get

6i+ 2 = (2iB + C)(2i+ 2) = −4B + 4iB + 2iC + 2C = (4B + 2C)i+ (2C − 4B) .

Equating the real and imaginary parts of the above we must have

6 = 4B + 2C

2 = 2C − 4B .

When we solve this system for B and C we get B = 1
2
and C = 2. Thus we have shown that

3x+ 2

(x+ 2)(x2 + 4)
= −1

2

1

x+ 2
+

1
2
x+ 2

x2 + 4
.

18



To integrate this we have

∫
3x+ 2

(x+ 2)(x2 + 4)
dx = −1

2
ln |x+ 2|+ 1

2

∫
x

x2 + 4
dx+ 2

∫
dx

x2 + 4

= −1

2
ln |x+ 2|+ 1

4
ln |x2 + 4|+ 2

∫
dx

x2 + 4

= −1

2
ln |x+ 2|+ 1

4
ln |x2 + 4|+ 2

2
arctan

(x
2

)
+ c

= −1

2
ln |x+ 2|+ 1

4
ln |x2 + 4|+ arctan

(x
2

)
+ c .

Problem 9

The given fraction is not proper and thus we need to do long division on it.

1

x3 + x
)

x3 + 3x2 − x+ 3
− x3 − x

3x2 − 2x+ 3

Thus we have
x3 + 3x2 − x+ 3

x3 + x
= 1 +

3x2 − 2x+ 3

x(x2 + 1)
.

Now the remaining fraction can be written as

3x2 − 2x+ 3

x(x2 + 1)
=

A

x
+

Bx+ C

x2 + 1
,

or
3x2 − 2x+ 3 = A(x2 + 1) + (Bx+ C)x .

Expanding the right-hand-side of the above gives

Ax2 + A+ Bx2 + Cx = (A+B)x2 + Cx+ A .

Thus

A+B = 3

C = −2

A = 3 .

Thus B = 0 and we have
3x2 − 2x+ 3

x(x2 + 1)
=

3

x
− 2

x2 + 1
.

So to integrate we have

∫
x3 + 3x2 − x+ 3

x3 + x
dx = x+ 3

∫
dx

x
− 2

∫
dx

x2 + 1
= x+ 3 ln |x| − 2 arctan(x) + c .
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Problem 10

The given fraction can be written as

x2 + 5x+ 6

(x2 + 4)(x2 + 9)
=

Ax+B

x2 + 4
+

Cx+D

x2 + 9
,

or

x2 + 5x+ 6 = (Ax+B)(x2 + 9) + (Cx+D)(x2 + 4)

= Ax3 + 9Ax+Bx2 + 9B + Cx3 + 4Cx+Dx2 + 4D

= (A+ C)x3 + (B +D)x2 + (9A+ 4C)x+ (9B + 4D) .

Thus we have

A+ C = 0

B +D = 1

9A+ 4C = 5

9B + 4D = 6 .

Solving this system of equations we have A = 1, B = 2
5
, C = −1, and D = −3

5
. Thus we get

x2 + 5x+ 6

(x2 + 4)(x2 + 9)
=

x+ 2
5

x2 + 4
− x+ 3

5

x2 + 9
,

Then to integrate we have
∫

x2 + 5x+ 6

(x2 + 4)(x2 + 9)
dx =

∫
x

x2 + 4
dx+

2

5

∫
1

x2 + 4
dx−

∫
x

x2 + 9
dx− 3

5

∫
1

x2 + 9
dx

=
1

2
ln
(
x2 + 4

)
+

1

5
arctan

(x
2

)
− 1

2
ln
(
x2 + 9

)
− 1

5
arctan

(x
3

)
+ c .

Problem 11

The quadratic in the denominator has roots given by

−2 ±
√

4− 4(2)

2
=

−2±
√
−4

2
.

Thus this is an irreducible quadratic. The formula for partial fractions in this case is given
by

2x2 + 4

x(x2 + 2x+ 2)
=

A

x
+

Bx+ C

x2 + 2x+ 2
,

or
2x2 + 4 = A(x2 + 2x+ 2) + (Bx+ C)x .

Expanding the right-hand-side we get

Ax2 + 2Ax+ 2A+Bx2 + Cx = (A+B)x2 + (2A+ C)x+ 2A .

20



Thus for this to match the left-hand-side requires

2 = A +B

0 = 2A + C

4 = 2A .

Thus A = 2, B = 0, and C = −4 and we have shown that

2x2 + 4

x(x2 + 2x+ 2)
=

2

x
− 4

x2 + 2x+ 2
=

2

x
− 4

(x+ 1)2 + 1
.

Thus we can evaluate the integral given as

∫
2x2 + 4

x(x2 + 2x+ 2)
dx = 2 ln |x| − 4 arctan(x+ 1) + c .

Problem 12

Using the rules of partial fractions we can write

3

x(x2 − 1)
=

A

x
+

B

x+ 1
+

C

x− 1
,

or
3 = A(x+ 1)(x− 1) +Bx(x− 1) + Cx(x+ 1) .

Let x = 1 to get 3 = 2C or C = 3
2
. Let x = −1 to get 3 = −B(−2) or B = 3

2
. Let x = 0 to

get 3 = A(−1) or A = −3 and we have shown

3

x(x2 − 1)
= −3

x
+

3

2(x+ 1)
+

3

2(x− 1)
.

With this expression the integral we seek is given by

∫
3

x(x2 − 1)
dx = −3 ln(x) +

3

2
ln |x+ 1|+ 3

2
ln |x− 1|+ c .

Problem 13

Using the rules of partial fractions we can write

1

x4 − 1
=

1

(x2 + 1)(x− 1)(x+ 1)
=

Ax+B

x2 + 1
+

C

x− 1
+

D

x+ 1
,

or
1 = (Ax+B)(x− 1)(x+ 1) + C(x2 + 1)(x+ 1) +D(x2 + 1)(x− 1) .
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Let x = 1 to get 1 = C(2)(2) or C = 1
4
. Let x = −1 to get 1 = D(2)(−2) or D = −1

4
. Let

x = i =
√
−1 to get

1 = (Ai+B)(−1 − 1) so A = 0 and B = −1

2
.

Thus the integral we seek can be evaluated as

∫
1

x4 − 1
dx = −1

2

∫
dx

x2 + 1
+

1

4

∫
dx

x− 1
+

1

4

∫
dx

x+ 1

= −1

2
arctan(x) +

1

4
ln |x− 1|+ 1

4
ln |x+ 1|+ c

= −1

2
arctan(x) +

1

4
ln |(x− 1)(x+ 1)|+ c .

Problem 14

To evaluate this integral we will need to reduce the fraction to proper form. Thus we need
to perform polynomial long division. We find

3x + 2

x2 + 4
)

3x3 + 2x2 + 2x + 6
− 3x3 − 12x

2x2 − 10x + 6
− 2x2 − 8

− 10x− 2

,

so that
3x3 + 2x2 + 2x+ 6

x2 + 4
= 3x+ 2− 10x+ 2

x2 + 4
.

From this we see that our integral can be given by

∫
3x3 + 2x2 + 2x+ 6

x2 + 4
=

3x2

2
+ 2x− 10

∫
x

x2 + 4
dx− 2

∫
dx

x2 + 4

=
3x2

2
+ 2x− 10

2
ln
(
x2 + 4

)
− arctan

(x
2

)
+ c .

Problem 15

Using the rules of partial fractions we can write

1

(x− 1)2(x+ 1)2
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2
+

D

(x+ 2)2
,

or
1 = A(x− 1)(x+ 2)2 +B(x+ 2)2 + C(x+ 2)(x− 1)2 +D(x− 1)2 . (6)
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Let x = 1 to get 1 = 9B or B = 1
9
. Let x = −2 to get 1 = 9D or D = 1

9
. Taking the x

derivative of Equation 6 we get

0 = A(x+ 2)2 + 2A(x− 1)(x+ 2) + 2B(x+ 2) +C(x− 1)2 + 2C(x+ 2)(x− 1) + 2D(x− 1) .

Let x = 1 in this derivative to get

0 = 9A+ 6B = 9A+
6

9
.

Thus A = − 2
27
. Let x = −2 in the derivative to get

0 = C(−3)2 + 2D(−3) = 9C − 6D = 9C − 2

3
.

Thus C = 2
27
. Using these we get that we can expand our integrand as

1

(x− 1)2(x+ 2)2
= − 2

27

1

x− 1
+

1

9

1

(x− 1)2
+

2

27

1

x+ 2
+

1

9

1

(x+ 2)2

Using this our integral can be computed as

∫
dx

(x− 1)2(x+ 2)2
= − 2

27
ln |x− 1| − 1

9(x− 1)
+

2

27
ln |x+ 2| − 1

9(x+ 2)
+ c

=
2

27
ln

∣∣∣∣
x+ 2

x− 1

∣∣∣∣−
1

9(x− 1)
− 1

9(x+ 2)
+ c .

Problem 16

The roots of the quadratic polynomial in the denominator is given by −2±
√
4−20

2
which are

two imaginary numbers, thus the quadratic is irreducible. The rules of partial fractions give

3x− 4

(x2 + 2x+ 5)(x2 + 2)
=

Ax+B

x2 + 2x+ 5
+

Cx+D

x2 + 2
,

or
3x− 4 = (Ax+B)(x2 + 2) + (Cx+D)(x2 + 2x+ 5) .

Expanding the right-hand-side of the above gives

(A+ C)x3 + (B + 2C +D)x2 + (2A+ 5C + 2D)x+ (2B + 5D) .

For this expression to equal the original left-hand-side (or 3x− 4) for all x, we must have

A + C = 0

B + 2C +D = 0

2A+ 5C + 2D = 3

2B + 5D = −4 .
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When we solve for A, B, C, and D in the above we get A = −1, B = −2, C = 1, and D = 0.
Thus the integrand for this problem can be written as

3x− 4

(x2 + 2x+ 5)(x2 + 2)
= − x

x2 + 2x+ 5
+

x

x2 + 2
.

Thus the integral can now be evaluated as
∫

3x− 4

(x2 + 2x+ 5)(x2 + 2)
dx = −

∫
x

(x+ 1)2 + 4
dx+

∫
x

x2 + 2
dx

= −
∫

x+ 1

(x+ 1)2 + 4
dx+

∫
1

(x+ 1)2 + 4
dx+

∫
x

x2 + 2
dx

= −1

2
ln
(
(x+ 1)2 + 4

)
+

1

2
arctan

(
x+ 1

2

)
+

1

2
ln
(
x2 + 2

)
+ c .

Problem 17

The rules of partial fractions state that we can write our fraction as

1

(x+ b)(x+ d)
=

A

x+ b
+

B

x+ d
,

for some A and B. The above is the same as

1 = A(x+ d) +B(x+ b) .

Let x = −d to get 1 = B(b − d) or B = 1
b−d

assuming that b 6= d. Let x = −b to get

1 = A(d− b) so A = 1
d−b

. Thus our integral can be written as

∫
dx

(x+ b)(x+ d)
=

1

d− b

∫
dx

x+ b
+

1

b− d

∫
dx

x+ d

=
1

d− b
ln |x+ b| + 1

b− d
ln |x+ d|+ c

=
1

d− b
ln

∣∣∣∣
x+ b

x+ d

∣∣∣∣ + c .

Problem 18

Note that our fraction can be written as

1

(ax+ b)(cx+ d)
=

1

ac
(
x+ b

a

) (
x+ d

c

) .

The rules of partial fractions state that we can write

1(
x+ b

a

) (
x+ d

c

) =
A

x+ b
a

+
B

x+ d
c

,
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for some A and B. The above is the same as

1 = A

(
x+

d

c

)
+B

(
x+

b

a

)
.

Let x = −d
c
in the above to get 1 = B

(
b
a
− d

c

)
= B

(
bc−ad
ac

)
. Thus

B =
ac

bc− ad
,

assuming that bc − ad 6= 0. Let x = − b
a
in the above to get 1 = A

(
− b

a
+ d

c

)
= A

(
ad−cb
ac

)
.

Thus
A =

ac

ad− cb
,

again assuming that bc− ad 6= 0. Thus we have shown that we can write our integrand as

1

(ax+ b)(cx+ d)
=

1

ac

[
ac

ad− cb

1(
x+ b

a

) − ac

ad− cb

1(
x+ d

c

)
]

=
1

ad− cb

(
1

x+ b
a

− 1

x+ d
c

)
.

Thus the integral we seek is given by
∫

dx

(ax+ b)(cx+ d)
=

1

ad− cb

(
ln

∣∣∣∣x+
b

a

∣∣∣∣− ln

∣∣∣∣x+
d

c

∣∣∣∣
)
+ c1

=
1

ad− cb
ln

∣∣∣∣∣
x+ b

a

x+ d
c

∣∣∣∣∣ + c1 =
1

ad− cb
ln

∣∣∣∣
1
a
(ax+ b)

1
c
(cx+ d)

∣∣∣∣ + c1

=
1

ad− cb
ln

∣∣∣∣
ax+ b

cx+ d

∣∣∣∣ +
1

ad− cb
ln
∣∣∣ c
a

∣∣∣+ c1

=
1

ad− cb
ln

∣∣∣∣
ax+ b

cx+ d

∣∣∣∣ + c2 .

Here c1 and c2 are constants.

Problem 19

The rules of partial fractions state that we can write

1

a2 − x2
= − 1

x2 − a2
= −

(
A

x− a
+

B

x+ a

)
,

for some A and B. The above is the same as

−1 = −A(x+ a)− B(x− a) .

Let x = a to get −1 = −B(−2a) or B = − 1
2a
. Let x = +a to get −1 = −2aA or A = 1

2a
.

Thus we have shown that
1

a2 − x2
= − 1

2a(x− a)
+

1

2a(x+ a)
.

Using this expression we have that our integral given by
∫

dx

a2 − x2
= − 1

2a
ln |x− a|+ 1

2a
ln |x+ a|+ c =

1

2a
ln

∣∣∣∣
x+ a

x− a

∣∣∣∣+ c .
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Problem 20

The rules of partial fractions state that we can write

1

(a2 − x2)2
=

1

(a− x)2(a+ x)2
=

A

a− x
+

B

(a− x)2
+

C

a+ x
+

D

(a+ x)2
.

for some A, B, C, and D. The above is the same as

1 = A(a− x)(a + x)2 +B(x+ a)2 + C(a+ x)(a− x) +D(a− x)2 .

Let x = a to get 1 = B(4a2) or B = 1
4a2

Let x = −a to get 1 = D(2a)2 or D = 1
4a2

. To
determine the coefficients A and C we take the derivative of the equation above. We find

0 = A(−1)(a+ x)2 + 2B(x+ a) + C(a− x)2 + 2C(a+ x)(a− x)(−1) + 2D(a− x)(−1) .

Let x = −a in the above to get

0 = C(2a)2 + 2D(−1)(2a) .

Let x = a in the above to get

0 = A(−1)(2a)2 + 2B(2a) .

Solving these two equations for A and C we find A = 1
4a3

and C = 1
4a3

. Thus we have shown
that

1

(a2 − x2)2
=

1

4a3
1

a− x
+

1

4a2
1

(a− x)2
+

1

4a3
1

a+ x
+

1

4a2
1

(a + x)2
.

Using this expression we can now perform the desired integration. We find
∫

dx

(a2 − x2)2
= − 1

4a3
ln |a− x| + 1

4a2
1

a− x
+

1

4a3
ln |a+ x| − 1

4a2
1

a+ x
+ c

=
1

4a3
ln

∣∣∣∣
a + x

a− x

∣∣∣∣+
1

4a2
1

a− x
− 1

4a2
1

a+ x
+ c

=
1

4a3
ln

∣∣∣∣
a + x

a− x

∣∣∣∣+
1

4a2

(
a + x− a+ x

a2 − x2

)
+ c

=
1

4a3
ln

∣∣∣∣
a + x

a− x

∣∣∣∣+
1

2a2

(
x

a2 − x2

)
+ c .

Problem 21

The rules of partial fractions state that we can write our integrand as

x

a2 − x2
=

A

a− x
+

B

a + x
.

for some A and B. The above is the same as

1 = A(a + x) +B(a− x) .
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Let x = −a to get −a = B(2a) so B = −1
2
. Let x = a to get a = A(2a) so A = 1

2
. Thus we

have shown that
x

a2 − x2
=

1

2(a− x)
− 1

2(a+ x)
.

Thus we can integrate as

∫
x

a2 − x2
= −1

2
ln |a−x|− 1

2
ln |a+x|+ c = −1

2
ln |(a−x)(a+x)|+ c = −1

2
ln |a2−x2|+ c .

Chapter 9 Review Problems

Problem 44

In the integral ∫
cos(arcsin(x))√

1− x2
dx ,

let v = arcsin(x) so that dv = dx√
1−x2 and the integral is given by

∫
cos(v)dv = sin(v) + c = sin(arcsin(x)) + c .
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Chapter 12 (Infinite Series)

Review Problems (Infinite Series)

Problem 42

This statement is false. As a counter example let an = 1
n
and bn = 1

n
then both individual

series diverge but the product series anbn = 1
n2 converges.
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Chapter 13 (Taylor’s Approximation and Power Series)

Section 13.6 (The Binomial and Some Other Series)

Problem 1

To derive the Taylor series of the given f(x) we have

f(x) = (1 + x)1/2 =
∞∑

k=0

(
1/2
k

)
xk

=

∞∑

k=0

1

k!

(
1

2

)(
1

2
− 1

)(
1

2
− 2

)
· · ·
(
1

2
− k + 1

)
xk

=

∞∑

k=0

1

k!

(
1

2

)(
−1

2

)(
−3

2

)
· · ·
(−2k + 3

2

)
xk

=
∞∑

k=0

(−1)k(2 · 1− 3)(2 · 2− 3)(2 · 3− 3) · · · (2k − 3)

2kk!
xk

=
∞∑

k=0

(−1)k(−1)(1)(3)(5) · · · (2k − 3)

2kk!
xk

= 1 +
x

2
+

∞∑

k=2

(−1)k1 · 3 · 5 · · · (2k − 3)xk

2kk!
.

Applying the ratio test to the above series we have

lim sup
k→∞

|ak+1|
|ak|

= lim sup
k→∞

1·3·5···(2k−3)(2k−1)|x|k+1

2k+1(k+1)!

1·3·5···(2k−3)|x|k
2kk!

= lim sup
k→∞

|x| 2k − 1

2(k + 1)
= |x| .

Thus to have convergence we require this limit to be less than one or |x| < 1. This implies
that ρ = +1.

Problem 3

To derive the Taylor series for the given f(x) about x0 we have

f(x) = (4 + x)−1/2 = 4−1/2
(
1 +

x

4

)−1/2

=
1

2

(
1 +

x

4

)−1/2

.
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From which we see that

f(x) =
1

2

∞∑

k=0

(
−1/2
k

)(x
4

)k

=
1

2

(
1 +

∞∑

k=1

(
−1/2
k

)(x
4

)k
)

=
1

2

(
1 +

∞∑

k=1

1

k!

(
−1

2

)(
−1

2
− 1

)(
−1

2
− 2

)
· · ·
(
−1

2
− k + 1

)(x
4

)k
)

=
1

2

(
1 +

∞∑

k=1

(−1)k(1)(3)(5) · · · (2k − 1)

2kk!

(x
4

)k
)

.

Applying the ratio test to the above series we have

lim sup
k→∞

|ak+1|
|ak|

= lim sup
k→∞

(2k + 1)

2(k + 1)

( |x|
4

)
=

|x|
4

.

To have convergence we require |x|
4
< 1 which implies that ρ = +4.

Problem 5

We desire the Taylor series of f(x) = ln
(√

1 + x2 + x
)
at the point x0 = 0. Taking the

derivative of f we find that

f ′(x) =

(
1
2
(1 + x2)−1/2(2x) + 1

)
√
1 + x2 + x

=

x√
1+x2 + 1

√
1 + x2 + x

= 1

(
1√

1 + x2

)
=

∞∑

k=0

(
−1/2
k

)
x2k .

Now we can expand the binomial coefficient in the above as
(

−1/2
k

)
=

1

k!

(
−1

2

)(
−1

2
− 1

)
· · ·
(
−1

2
− k + 1

)

=
1

2kk!
(−1)(−1− 2) · · · (−1− 2k + 2) =

(−1)k(1 · 3 · 5 · · · (2k − 1))

2kk!
.

Thus we find that f ′(x) is given as a Taylor series by

f ′(x) =
∞∑

k=0

(−1)k1 · 3 · 5 · · · (2k − 1)

2kk!
x2k .

Integrating this expression term by term we find that our desired function f(x) is given by

f(x) =
∞∑

k=0

(−1)k1 · 3 · 5 · · · (2k − 1)

2kk!(2k + 1)
x2k+1 + C ,

where C is an integration constant that needs to be determined. Setting x = 0 in the
above series gives f(0) = C, while setting x = 0 in the original expression for f(x) gives
f(0) = ln(1) = 0. From which we see that we should take C = 0.
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Problem 14

We find that our desired f(x) can be written as

f(x) = (8− x)1/3 = 2
(
1− x

8

)1/3

= 2

∞∑

k=0

(
1/3
k

)(
−x

8

)k

= 2

(
1 +

∞∑

k=1

1

k!

(
1

3

)(
1

3
− 1

)
· · ·
(
1

3
− k + 1

)(
−x

8

)k
)

.

Computing the first few terms in this series for k = 1 and k = 2 we have

f(x) = 2

(
1−

(
1

3

)(x
8

)
+

1

2

(
−2

3

)(
x2

64

)
+ · · ·

)
= 2

(
1− x

24
− x2

192
+ · · ·

)
.

Problem 16

Part (a): We have, by taking the term by term derivative of the given expression that

f ′(x) =
∞∑

k=1

(
α
k

)
kxk−1 =

∞∑

k=0

(
α

k + 1

)
(k + 1)xk .

For |x| < 1. Note that since the k = 0 term is a constant its derivative is zero.

Part (b): After multiplying f ′(x) by 1 + x we have

(1 + x)f ′(x) =

∞∑

k=0

[(
α

k + 1

)
(k + 1)xk +

(
α

k + 1

)
(k + 1)xk+1

]
.

Considering the second summation above we see that it is equal to
∑∞

k=1

(
α
k

)
kxk, by

shifting the index on k. Since we can include the k = 0 term in this summation (the

multiplication of k makes this term zero) we can write it as
∑∞

k=0

(
α
k

)
kxk. Which when

put into the first summation gives us the result that (1 + x)f ′(x) is equal to

∞∑

k=0

[(
α

k + 1

)
(k + 1) +

(
α
k

)
k

]
xk ,

as requested.
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Part (c): We have that the expression on the right hand side is equal to

(
α

k + 1

)
(k + 1) +

(
α
k

)
k =

(
α(α− 1)(α− 2) · · · (α− (k + 1) + 1)

(k + 1)!

)
(k + 1)

+

(
α(α− 1)(α− 2) · · · (α− k + 1)

k!

)
k

=
α(α− 1) · · · (α− k + 1)(α− k)

k!

+
α(α− 1) · · · (α− k + 1)k

k!

=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
(α− k + k)

= α

(
α
k

)
.

Part (d): Using the identity in Part (c) and the expression found in Part (b) we see that

(1 + x)f ′(x) = α

∞∑

k=0

(
α
k

)
xk = αf(x)

so that a differential equation satisfied by f(x) is given by

f ′

f
=

α

1 + x
.

When we integrate both sides of this expression we obtain

ln(f(x)) = α ln(1 + x) + C1 ,

with C1 an integration constant. To evaluate this constant take x = 0. Since f(0) = 1 we
see that C1 = 0 and so we can finally conclude that

f(x) = (1 + x)α =

∞∑

k=0

(
α
k

)
xk .
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Vectors and Three-Dimensional Analytic Geometry

Vectors in Two Dimensions

Problem 1

We have

a+ b = (−2, 1) + (3,−2) = (1,−1)

a− b = (−2, 1)− (3,−2) = (−5, 3)

2a− 3b = 2(−2, 1)− 3(3,−2) = (−4, 2)− (9,−6) = (−13, 8) .

Problem 2

We have

a+ b = (1, 0) + (−2, 1) = (−1, 1)

a− b = (1, 0)− (−2, 1) = (3,−1)

2a− 3b = 2(2, 0)− 3(−2, 1) = (2, 0)− (6, 3) = (−4,−3) .

Problem 3

We have

a+ b = (1, 1) + (1,−1) = (2, 0)

a− b = (1, 1)− (1,−1) = (0, 2)

2a− 3b = 2(1, 1)− 3(1,−1) = (2, 2)− (3,−3) = (−1, 5) .

Problem 4

We have

a+ b = (2,−5) + (1, 4) = (3,−1)

a− b = (2,−5)− (1, 4) = (1,−9)

2a− 3b = 2(2,−5)− 3(1, 4) = (4,−10)− (3, 12) = (1,−22) .
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Problem 5

We have −−→
PQ = (4,−2)− (2, 1) = (2,−3) .

Problem 6

We have −−→
PQ = (2,−2)− (−1,−4) = (3, 2) .

Problem 7

We have −−→
PQ = (−1, 0)− (2, 4) = (−3,−4) .

Problem 8

We have −−→
PQ = (1, 4)− (5,−2) = (−4, 6) .

Problem 9

We have

−−→
PQ = b− a = (3,−2)− (2, 1) = (1,−3)
−−→
QP = a− b = (2, 1)− (3,−2) = (−1, 3) .

Problem 10

We know the value of the vector
−−→
PQ and it can be computed as

−−→
PQ = b− a = (−3, 2) .

Since we know a this is
b− (2,−1) = (−3, 2) ,

or
b = (2,−1) + (−3, 2) = (−1, 1) .
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Problem 11

If we have a = b then
(x+ y, x− y) = (2, 3) ,

or

x+ y = 2

x− y = 3 .

If we add these two equations we get x = 5
2
. If we subtract these two equations we get

y = −1
2
.

Problem 12

If we have a = 2b then
(x+ y, 2) = 2(3, x− 2y) ,

or
(x+ y, 2) = (6, 2x− 4y) .

This is equivalent to the system

x+ y = 6

2x− 4y = 2 .

From the last equation we have x = 1 + 2y. If we put this into the first equation we can
solve for y to find y = 5

3
. This means that x = 13

3
.

Problem 13

We have ||a|| =
√
22 + 12 =

√
5.

Problem 14

We have ||a|| =
√
1 + 9 =

√
10.

Problem 15

We have ||a|| =
√
9 + 16 = 5.

35



Problem 16

We have ||a|| =
√
x2 + x2 = 2|x|.

Problem 17

We have

||a|| =
√

(x+ y)2 + (x− y)2 =
√
x2 + 2xy + y2 + x2 − 2xy + y2

=
√

2x2 + 2y2 =
√
2
√
x2 + y2 .

Problem 18

We have
||a|| =

√
9x2 + 16x2 =

√
25x2 = 5|x| .

Problem 19

Let the vector b = (x, y) then we want bTa = 0 which is x + 2y = 0. Thus x = −2y. This
means that

||b|| =
√

x2 + y2 =
√
4y2 + y2 =

√
5|y| .

If we want ||b|| = 5 then we need to have |y| =
√
5 so y = ±

√
5. This means that

x = −2y = ∓2
√
5 and our vector b is

b = (∓2
√
5,±

√
5) = ±

√
5(−2, 1) .

Lets check that this value for b has the needed requirements. We have

bTa = ±
√
5(−2 + 2) = 0 ,

and
||b|| =

√
4(5) + 5 =

√
25 = 5 .

Problem 20

We have −−→
PQ = (−1, 4)− (2, 1) = (−3, 3) .

This means that
||−−→PQ|| =

√
32 + 32 = 3

√
2 .
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Thus

P̂Q =

−−→
PQ

||−−→PQ||
=

1√
2
(−1, 1) .

Then with this we have

b = 8P̂Q =
8√
2
(−1, 1) .

Problem 21

We have

||(2,−3)|| =
√
4 + 9 =

√
13

||(λ, 1)|| =
√
λ2 + 1 .

Setting these two equal gives

λ2 + 1 = 13 or λ2 = 12 or λ = ±2
√
3 .

Problem 22

Let

a = (ax, ay)

b = (bx, by)

c = (cx, cy) .

Then we have

(a+ b) + c = (ax + bx, ay + by) + (cx, cy) = (ax + bx + cx, ay + by + cy) ,

and
a+ (b+ c) = (ax, ay) + (bx + cx, by + cy) = (ax + bx + cx, ay + by + cy) ,

which are equal.

Problem 23

Let a = (ax, ay) then

(λµ)a = (λµax, λµay)

λ(µa) = λ(µax, µay) = (λµax, λµay) ,

which are equal.
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Problem 24

Let

a = (ax, ay)

b = (bx, by) .

Then we have

λ(a+ b) = λ(ax + bx, ay + by) = (λax + λbx, λay + λby) ,

and
λa+ λb = (λax, λay) + (λbx, λby) = (λax + λbx, λay + λby) ,

which are the same.

Problem 25

The balance of forces in the vertical direction gives

+T sin(θ) + T sin(θ)−W = 0 so T =
W

2 sin(θ)
.

The Dot Product

Problem 1

We have
a · b = 2− 3 = −1 ,

and

cos(θ) =
a · b

||a||||b|| =
−1√

1 + 1
√
4 + 9

= − 1√
26

.

Problem 2

We have
a · b = 2 + 2 = 4 ,

and

cos(θ) =
a · b

||a||||b|| =
4√

1 + 4
√
4 + 1

=
4

5
.
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Problem 3

We have
a · b = 2− 2 = 0 ,

so that

cos(θ) =
a · b

||a||||b|| = 0 so θ =
π

2
.

Problem 4

We have
a · b = −2 + 6 = 4 ,

so that

cos(θ) =
a · b

||a||||b|| =
4√

4 + 9
√
1 + 4

=
4√
65

.

Problem 5

We have
a · b = 4− 1 = 3 .

so that

cos(θ) =
a · b

||a||||b|| =
3√
2
√
17

=
3√
34

.

Problem 6

We have
a · b = 6− 10 = −4 ,

so that

cos(θ) =
a · b

||a||||b|| =
−4√

9 + 4
√
4 + 25

= − 4√
13
√
29

= − 4

13
√
2
.

Problem 7

We have
a · b = 2 + 6 = 8 ,

so that

cos(θ) =
a · b

||a||||b|| =
8√

4 + 4
√
1 + 9

=
2√
5
.
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Problem 8

We have
a · b = 3− 2 = 1 ,

so that

cos(θ) =
a · b

||a||||b|| =
1√

1 + 4
√
9 + 1

=
1

5
√
2
.

Problem 9

We could take

u =
a

||a|| =
(−3,−4)√
9 + 16

=
1

5
(−3,−4) .

Problem 10

We could take

u =
a

||a|| =
(2,−5)√
4 + 25

=
(2,−5)√

29
.

Problem 11

We could take

u =
a

||a|| =
(3x,−4x)√
9x2 + 16x2

=
(3x,−4x)

5|x| =

(
3x

5|x| ,−
4x

5|x|

)
.

Problem 12

We could take

u =
a

||a|| =
(x, x)√
x2 + x2

=
(x, x)

|x| =

(
x

|x| ,
x

|x|

)
.

Problem 13

We could take

u =
a

||a|| =
(−5, 12)√
25 + 144

=
(−5, 12)√

169
=

(−5, 12)

13
.
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Problem 14

We could take

u =
a

||a|| =
(x, y)√
x2 + y2

.

Problem 15

As −a = (−1,−3) we could take

u =
−a

||a|| =
(−1,−3)√

1 + 9
=

(−1,−3)√
10

.

Problem 16

As −a = −4i + 3j we could take

u =
−a

||a|| =
(−4, 3)√
16 + 9

=

(
−4

5
,
3

5

)
.

Problem 17

A vector perpendicular to a is proportional to ±(−(−2), 1) = ±(2, 1) and thus has a unit
vector u given by

u =
±(2, 1)√

5
.

Problem 18

A vector perpendicular to a is proportional to ±(−5, 12) and thus has a unit vector u given
by

u =
±(−5, 12)√
25 + 144

=
±(−5, 12)√

169
=

±(−5, 12)

13
.

Problem 19

Note that the unit vector in the direction of a is given by

ua =
(1, 1)√

2
.
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Then the component of b in the direction of a is b · ua which in this case is

2 + 1√
2

=
3√
2
.

Problem 20

Note that the unit vector in the direction of a is given by

ua =
(2, 1)√

5
.

Then the component of b in the direction of a is b · ua which in this case is

2 + 1√
5

=
3√
5
.

Problem 21

Note that the unit vector in the direction of a is given by

ua =
(2, 1)√

5
.

Then the component of b in the direction of a is b · ua which in this case is

2− 3√
5

= − 1√
5
.

Problem 22

Note that the unit vector in the direction of a is given by

ua =
(3, 2)√
9 + 4

=
(3, 2)√

13
.

Then the component of b in the direction of a is b · ua which in this case is

6− 6√
13

= 0 .

Problem 23

Note that the unit vector in the direction of a is given by

ua =
(1,−2)√

5
.
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Then the component of b in the direction of a is b · ua which in this case is

x− 2x√
5

= − x√
5
.

Problem 24

Note that the unit vector in the direction of a is given by

ua =
(x, x)√
x2 + x2

=
(x, x)

|x|
√
2
.

Then the component of b in the direction of a is b · ua which in this case is

x− 2x

|x|
√
2

= − x

|x|
√
2
.

Problem 25

Recall that the projection of b onto a is given by

projab = (b · ua)ua .

To compute this note that

ua =
(2,−1)√
4 + 1

=
(2,−1)√

5
,

and

b · ua =
2 + 3√

5
=

√
5 .

Thus

projab = (b · ua)ua =
√
5
(2,−1)√

5
= (2,−1) .

Problem 26

Recall that the projection of b onto a is given by

proj
a
b = (b · ua)ua .

To compute this note that

ua =
(−3, 4)

5
,

and

b · ua =
−6− 4

5
= −2 .

Thus

proj
a
b = (b · ua)ua = −2ua =

(6,−8)

5
.
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Problem 27

Recall that the projection of b onto a is given by

proj
a
b = (b · ua)ua .

To compute this note that

ua =
(1, 1)√

2
,

and

b · ua =
2 + 3√

2
=

5√
2
.

Thus

projab = (b · ua)ua =
5√
2

(
(1, 1)√

2

)
=

5

2
(1, 1) .

Problem 28

Recall that the projection of b onto a is given by

proj
a
b = (b · ua)ua .

To compute this note that

ua =
(2,−3)√
4 + 9

=
(2,−3)√

13
,

and

b · ua =
4x− 3x√

13
=

x√
13

.

Thus

proj
a
b = (b · ua)ua =

x√
13

(
(2,−3)√

13

)
=

(
2x

13
,
−3x

13

)
.

Problem 29

Let a = (ax, ay) and b = (bx, by) then

a · b = axbx + ayby ,

while
b · a = bxax + byay ,

which are the same.
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Problem 30

Let a = (ax, ay) and b = (bx, by) then

λ(a · b) = λ(axbx + ayby) = λaxbx + λayby ,

while
(λa) · b = (λax, λay) · (bx, by) = λaxbx + λayby ,

which are the same.

Problem 31

We have that

||a+ b|| = ||(4, 1)|| =
√
16 + 1 =

√
17 = 4.123106

||a||+ ||b|| =
√
1 + 4 +

√
9 + 1 =

√
5 +

√
10 = 5.398346 ,

showing that
||a+ b|| ≤ ||a||+ ||b|| ,

is true in this case.

Problem 32

We have that

||a+ b|| = ||(3, 2)|| =
√
9 + 4 =

√
13

||a||+ ||b|| =
√
1 + 1 +

√
4 + 9 =

√
2 +

√
13 ,

showing that
||a+ b|| ≤ ||a||+ ||b|| ,

is true in this case.

Problem 33

We have that

||a+ b|| = ||(5, 3)|| =
√
25 + 9 =

√
34 = 5.830952

||a||+ ||b|| =
√
1 + 4 +

√
9 + 16 =

√
5 + 5 = 7.236068 ,

showing that
||a+ b|| ≤ ||a||+ ||b|| ,

is true in this case.
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Problem 34

We have that

||a+ b|| = ||(2,−2)|| =
√
4 + 4 = 2

√
2

||a||+ ||b|| =
√
2 +

√
1 + 9 =

√
2 +

√
10 ,

showing that
||a+ b|| ≤ ||a||+ ||b|| ,

is true in this case.

Problem 35

Let x = c1a and y = c2b. The triangle inequality with x and y is

||x+ y|| ≤ ||x||+ ||y|| ,

or
||c1a+ c2b|| ≤ ||c1a||+ ||c2b|| .

Now replacing the above with

||c1a|| = |c1|||a||
||c2b|| = |c2|||b|| ,

we get the desired expression.

Problem 36

Part (a): Starting from the origin, if we draw two vectors a and b in the x-y plane then the
vector a−b is the one that if we “add to” the vector b we get a. This is just the statement
that

(a− b) + b = a ,

which is also true algebraically. Geometrically this means that “walking” along b from tail
to tip and then along a− b from tail to tip we get to the tip of a.

Part (b): Consider the triangle inequality ||x+y|| ≤ ||x||+ ||y|| with x = b and y = a−b.
Then this is

||a|| ≤ ||b||+ ||a− b|| ,
or

||a− b|| ≥ ||a|| − ||b|| . (7)
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Part (c): Consider the triangle inequality ||x+y|| ≤ ||x||+ ||y|| with x = a and y = b−a.
Then this is

||b|| ≤ ||a||+ ||b− a|| ,
or

||b− a|| ≥ ||b|| − ||a|| . (8)

Part (d): As ||a− b|| = ||b− a|| from Equation 7 we have

||a− b|| ≥ ||a|| − ||b|| ,

and from Equation 8 we have
||a− b|| ≥ ||b|| − ||a|| .

Taken together this means that

||a− b|| ≥ |||a|| − ||b||| .

Problem 37

Part (a): Notice that a− r is proportional to a− b thus there is a z such that

a− r = z(a− b) .

Solving for r gives
r = a− z(a− b) .

If we let t = −z we have the desired expression.

Part (b): These are the points beyond P or Q but still on the segment joining P and Q.

Problem 38

We compute

||r|| =
√

cos2(θ) + sin2(θ) =
√
1 = 1 .

Drawing this vector in the x-y plane we see that the vector r makes an angle θ with the
x-axis.

Vectors in Three Dimensions

Problem 1

We have −−→
PQ =

−→
Q −−→

P = (3,−2, 4)− (2, 1,−1) = (1,−3, 5) .
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Problem 2

We have −−→
PQ =

−→
Q −−→

P = (1,−3, 2)− (3, 2,−4) = (−2,−5, 2) .

Problem 3

Using −−→
PQ =

−→
Q −−→

P ,

we have −→
Q =

−−→
PQ+

−→
P .

Thus in this case we have

−→
Q = −i + 4j+ 2k+ 2i− j + 2k = i+ 3j+ 4k .

Problem 4

Using −−→
PQ =

−→
Q −−→

P ,

we have −→
P =

−→
Q −−−→

PQ .

Thus in this case we have

−→
P = 3i+ 4j− k− (2i− j+ 3k) = i+ 5j− 4k .

Problem 5

We have

3a− 2b = 3(2,−1, 3)− 2(−3, 2, 1) = (6,−3, 9)− (−6, 4, 2) = (12,−7, 7) .

Problem 6

We have
3a− 2b = (12, 0, 3)− (4,−4, 6) = (8, 4,−3) .
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Problem 7

We have
3a− 2b = 6i+ 3j− 3k− (−2i + 6k) = 8i+ 3j− 9k .

Problem 8

We have
3a− 2b = −3i + 6j− 9k− (4i+ 2j− 8k) = −7i− 4j− k .

Problem 9

We have
||a|| =

√
9 + 4 + 1 =

√
14 .

Problem 10

We have
||a|| =

√
4 + 4 + 9 =

√
17 .

Problem 11

We have
||a|| =

√
4 + 1 + 16 =

√
21 .

Problem 12

We have
||a|| =

√
9 + 25 + 1 =

√
35 .

Problem 13

We have

||−−→PQ|| = ||−→Q −−→
P || = ||(3,−2, 4)− (2, 1,−1)|| =

√
1 + 9 + 25 =

√
35 .
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Problem 14

We have

||−−→PQ|| = ||−→Q −−→
P || = ||(1,−3, 2)− (3, 2,−4)|| = ||(−2,−5, 6)|| =

√
4 + 25 + 36 =

√
65 .

Problem 15

We have

a · b = 6− 4 + 2 = 4

cos(θ) =
a · b

||a||||b|| =
4√

9 + 1 + 4
√
4 + 16 + 1

=
4√

14
√
21

=
4

7
√
6
.

Problem 16

We have

a · b = 4 + 0 + 1 = 5

cos(θ) =
a · b

||a||||b|| =
5√

16 + 1
√
1 + 1 + 1

=
5√
17
√
3
=

5√
51

.

Problem 17

We have

a · b = 1 + 2− 3 = 0

cos(θ) =
a · b

||a||||b|| = 0 .

Thus θ = π
2
.

Problem 18

We have

a · b = −2 + 0− 3 = −5

cos(θ) =
a · b

||a||||b|| =
−5√

4 + 1 + 1
√
1 + 9

=
−5√
6
√
10

= − 5

2
√
15

.
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Problem 19

The component of b in the direction of a is given by

||b|| cos(θ) = ||b||
(

a · b
||a||||b||

)
=

a · b
||a|| . (9)

For the vectors given here we have

a · b
||a|| =

2 + 1− 6√
4 + 1 + 9

= − 3√
14

.

Problem 20

The component of b in the direction of a is given by Equation 9. For the vectors given here
we have

a · b
||a|| =

4 + 0 + 2√
1 + 1 + 4

=
6√
6
=

√
6 .

Problem 21

The component of b in the direction of a is given by Equation 9. For the vectors given here
we have

a · b
||a|| =

−2 + 3 + 4√
4 + 9 + 16

=
5√
29

.

Problem 22

The component of b in the direction of a is given by Equation 9. For the vectors given here
we have

a · b
||a|| =

−2 + 3 + 4√
1 + 1 + 1

=
5√
3
.

Problem 23

To be perpendicular we need to have a · b = 0. Now

a · b = 6λ+ λ− 3 = 7λ− 3 .

To have this equal zero we need λ = 3
7
.
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Problem 24

To be perpendicular we need to have a · b = 0. Now

a · b = 2− 2λ2 + 12 .

To have this equal zero we need to have λ = ±
√
7.

Problem 25

We want
u =

a

||a|| .

Now ||a|| =
√
9 + 1 + 4 =

√
14. Thus

u =
1√
14

(3i+ j− 2k) .

Problem 26

We want
u = − a

||a|| .

Now ||a|| =
√
4 + 9 + 16 =

√
29. Thus

u = − 1√
29

(2i− 3j− 4k) .

Problem 27

The vector from P to Q is

−−→
PQ =

−→
Q −−→

P = (1,−1, 1)− (−2, 0, 4) = (3,−1,−3) .

Thus
||−−→PQ|| =

√
9 + 1 + 9 =

√
19 .

Thus

u =
1√
19

(3,−1,−3) .
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Problem 28

Let u = (ux, uy, uz) then we need to have u such that

a · u = 0 = b · u .

Note that

a · u = 2ux − 3uy + uz = 0 (10)

b · u = ux + uy + uz = 0 . (11)

From Equation 11 we have
uz = −ux − uy , (12)

which we put into Equation 10 to get

2ux − 3uy + (−ux − uy) = 0 ,

which simplifies to give ux = 2uy. Using this in Equation 12 we get that

uz = −2uy − uy = −3uy .

Thus (ux, uy, uz) = (2uy, uy,−3uy). To be a unit vector means that ||u|| = 1 or

√
4u2

y + u2
y + 9u2

y = |uy|
√
14 .

Lets take uy = ± 1√
14

and then get

u = (ux, uy, uz) = (2uy, uy,−3uy) = ± 1√
14

(2, 1,−3) .

Problem 29

If a and b are sides of a parallelogram then the diagonal are given by the vectors a+ b and
a− b. If these two diagonals are perpendicular that means that their dot product must be
zero or

(a+ b) · (a− b) = 0 ,

or expanding the left-hand-side gives

a · a− a · b+ b · a− b · b = 0 ,

or
||a||2 − ||b||2 = 0 or ||a|| = ||b|| ,

showing that the sides must all be of the same length.
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Problem 30

Using results from the previous problem we are asked to evaluate

||a+ b||2 + ||a− b||2 = (a+ b) · (a+ b) + (a− b) · (a− b)

= a · a+ a · b+ b · a+ b · b+ a · a− a · b− b · a+ b · b
= 2a · a+ 2b · b = 2||a||2 + 2||b||2 ,

which is the sum of squares of all four sides.

Problem 31

Let the cube be constructed in the positive octant of the x-y-z Cartesian coordinate system
(assume a side of length one). Then the diagonal is represented by the vector

d = i + j+ k .

An example edge is given by the vector i. The cosign of the angle between these two is then
given by

cos(θ) =
(i+ j+ k) · i√
1 + 1 + 1

√
1
=

1√
3
.

This means that

θ = arccos

(
1√
3

)
= 0.9553166 = 54.73561◦ .

Problem 32

If a and b are sides of a parallelogram then the diagonal are given by the vectors a+ b and
a− b thus in this case we have

a+ b = 0i− j + 4k = −j + 4k

a− b = 2i− 3j + 0k = 2i− 3j .

The angle between these two vectors is given by

cos(θ) =
(a+ b) · (a+ b)

||a+ b||||a− b||

=
0 + 3 + 0√
1 + 16

√
4 + 9

=
3√
221

= 0.201802 .

Thus θ = 1.367599 = 78.35765◦.
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Problem 33

Let the cube be constructed in the positive octant of the x-y-z Cartesian coordinate system
(assume a side of length one). Then the diagonal is represented by the vector

d = i + j+ k .

A diagonal to one of its faces is given by the vector i + j. The cosign of the angle between
these two is then given by

cos(θ) =
(i+ j + k) · (i+ j)√
1 + 1 + 1

√
1 + 1

=

√
2

3
= 0.8164966 .

This means that
θ = 0.6154797 = 35.26439◦ .

Problem 34

Now each of the given vectors can be written as the difference between the position vectors
pointing to the endpoints. Thus the expression we are given can be written as

(
−→
B −−→

A) + (
−→
C −−→

B) + (
−→
D −−→

C) + (
−→
E −−→

D) = 0 ,

or simplifying we get

−−→
A +

−→
E = 0 ,

showing that the point A must correspond with the point E.

The Cross Product

Problem 1

We find

a× b =

∣∣∣∣∣∣

i j k
2 −1 −1
1 2 4

∣∣∣∣∣∣
= i

∣∣∣∣
−1 −1
2 4

∣∣∣∣− j

∣∣∣∣
2 −1
1 4

∣∣∣∣ + k

∣∣∣∣
2 −1
1 2

∣∣∣∣

= i(−4 + 2)− j(8 + 1) + k(4 + 1) = −2i− 9j+ 5k .
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Problem 2

We find

a× b =

∣∣∣∣∣∣

i j k
−1 2 1
3 1 −1

∣∣∣∣∣∣
= i

∣∣∣∣
2 1
1 −1

∣∣∣∣− j

∣∣∣∣
−1 1
3 −1

∣∣∣∣ + k

∣∣∣∣
−1 2
3 1

∣∣∣∣

= i(−2− 1)− j(1− 3) + k(−1− 6) = −3i+ 2j− 7k .

Problem 3

We find

a× b =

∣∣∣∣∣∣

i j k
1 1 1
−2 −3 1

∣∣∣∣∣∣
= i

∣∣∣∣
1 1
−3 1

∣∣∣∣− j

∣∣∣∣
1 1
−2 1

∣∣∣∣+ k

∣∣∣∣
1 1
−2 −3

∣∣∣∣

= i(1 + 3)− j(1 + 2) + k(−3 + 2) = 4i− 3j− k .

Problem 4

We find

a× b =

∣∣∣∣∣∣

i j k
2 0 −3
1 1 −1

∣∣∣∣∣∣
= i

∣∣∣∣
0 −3
1 −1

∣∣∣∣− j

∣∣∣∣
2 −3
1 −1

∣∣∣∣ + k

∣∣∣∣
2 0
1 1

∣∣∣∣

= i(3)− j(−2 + 3) + k(2) = 3i− j + 2k .

Problem 5

We find

a× b =

∣∣∣∣∣∣

i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣
= i

∣∣∣∣
a2 0
b2 0

∣∣∣∣− j

∣∣∣∣
a1 0
b1 0

∣∣∣∣ + k

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣

= (a1b2 − a2b1)k .

56



Problem 6

We find

a× b =

∣∣∣∣∣∣

i j k
a1 a2 0
0 0 b3

∣∣∣∣∣∣
= i

∣∣∣∣
a2 0
0 b3

∣∣∣∣− j

∣∣∣∣
a1 0
0 b3

∣∣∣∣ + k

∣∣∣∣
a1 a2
0 0

∣∣∣∣

= a2b3i− a1b3j .

Problem 7

Note that b+ c = −i+ 5j+ 4k. Thus

a× (b+ c) =

∣∣∣∣∣∣

i j k
2 −1 −1
−1 5 4

∣∣∣∣∣∣
= i

∣∣∣∣
−1 −1
5 4

∣∣∣∣− j

∣∣∣∣
2 −1
−1 4

∣∣∣∣+ k

∣∣∣∣
2 −1
−1 5

∣∣∣∣

= i(−4 + 5)− j(8− 1) + k(10− 1) = i− 7j+ 9k .

Problem 8

Note that a+ b = 3i+ j + 2k. Thus

(a+ b)× c =

∣∣∣∣∣∣

i j k
3 1 2
−2 3 1

∣∣∣∣∣∣
= i

∣∣∣∣
1 2
3 1

∣∣∣∣− j

∣∣∣∣
3 2
−2 1

∣∣∣∣+ k

∣∣∣∣
3 1
−2 3

∣∣∣∣

= i(1− 6)− j(3 + 4) + k(9 + 2) = −5i− 7j+ 11k .

Problem 9

In one way to evaluate this we first compute

b× c =

∣∣∣∣∣∣

i j k
1 2 3
−2 3 1

∣∣∣∣∣∣
= i

∣∣∣∣
2 3
3 1

∣∣∣∣− j

∣∣∣∣
1 3
−2 1

∣∣∣∣+ k

∣∣∣∣
1 2
−2 3

∣∣∣∣

= i(2− 9)− j(1 + 6) + k(3 + 4) = −7i− 7j + 7k .

Then we compute
a · (b× c) = −14 + 7− 7 = −14 .

We can compute this “directly” if we note that it is a scalar triple product and can be
evaluated using determinants as

a · (b× c) =

∣∣∣∣∣∣

2 −1 −1
1 2 3
−2 3 1

∣∣∣∣∣∣
= 2(2− 9)− (−1)(1+ 6)+ (−1)(3 + 4) = −14+ 7− 7 = −14 ,
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the same as before.

Problem 10

Note that (a× c) · b = b · (a× c) which is a scalar triple product. Thus

b · (a× c) =

∣∣∣∣∣∣

1 2 3
2 −1 −1
−2 3 1

∣∣∣∣∣∣
= 1(−1 + 3)− 2(2− 2) + 3(6− 2) = 14 .

Note that another way to evaluate this is as follows

(a× c) · b = (c× b) · a = −(b× c) · a = −a · (b× c) = −(−14) = 14 ,

using the result from Problem 9.

Problem 11

Note that b× c = −7i− 7j+ 7k from Problem 9. Thus

a× (b× c) =

∣∣∣∣∣∣

i j k
2 −1 −1
−7 −7 7

∣∣∣∣∣∣
= i

∣∣∣∣
−1 −1
−7 7

∣∣∣∣− j

∣∣∣∣
2 −1
−7 7

∣∣∣∣ + k

∣∣∣∣
2 −1
−7 −7

∣∣∣∣

= i(−7− 7)− j(14− 7) + k(−14− 7) = −14i− 7j− 21k .

Problem 12

Note that

a× b =

∣∣∣∣∣∣

i j k
2 −1 −1
1 2 3

∣∣∣∣∣∣
= i

∣∣∣∣
−1 −1
2 3

∣∣∣∣− j

∣∣∣∣
2 −1
1 3

∣∣∣∣ + k

∣∣∣∣
2 −1
1 3

∣∣∣∣

= i(−3 + 2)− j(6 + 1) + k(6 + 1) = −i− 7j+ 7k .

Thus

(a× b)× c =

∣∣∣∣∣∣

i j k
−1 −7 7
−2 3 1

∣∣∣∣∣∣
= i

∣∣∣∣
−7 7
3 1

∣∣∣∣− j

∣∣∣∣
−1 7
−2 1

∣∣∣∣+ k

∣∣∣∣
−1 −7
−2 3

∣∣∣∣

= i(−7 − 21)− j(−1 + 14) + k(−3− 14) = −28i− 13j− 17k .
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Problem 13

This would be u = ± a×b

||a×b|| . Now

a× b =

∣∣∣∣∣∣

i j k
1 −2 1
3 1 −4

∣∣∣∣∣∣
= i

∣∣∣∣
−2 1
1 −4

∣∣∣∣− j

∣∣∣∣
1 1
3 −4

∣∣∣∣ + k

∣∣∣∣
1 −2
3 1

∣∣∣∣

= i(8− 1)− j(−4− 3) + k(1 + 6) = 7i+ 7j+ 7k .

Using this result we have that

||a× b|| =
√

3(72) = 7
√
3 .

Thus

u = ±7i+ 7j + 7k

7
√
3

= ± i+ j + k√
3

.

Problem 14

This would be u = ± a×b

||a×b|| . Now

a× b =

∣∣∣∣∣∣

i j k
−2 3 −1
3 0 4

∣∣∣∣∣∣
= i

∣∣∣∣
3 −1
0 4

∣∣∣∣− j

∣∣∣∣
−2 −1
3 4

∣∣∣∣ + k

∣∣∣∣
−2 3
3 0

∣∣∣∣

= i(12)− j(−8 + 3) + k(0− 9) = 12i+ 5j− 9k .

Using this result we have that

||a× b|| =
√
122 + 52 + 92 =

√
250 = 5

√
10 .

Thus

u = ±12i + 5j− 9k

5
√
10

.

Problem 15

We compute

−−→
PQ =

−→
Q −−→

P = (0, 3, 0)− (0, 0, 0) = (0, 3, 0)
−−→
PR =

−→
R −−→

P = (2, 5, 8)− (0, 0, 0) = (2, 5, 8) .

Thus we have

−−→
PQ×

−−→
PR =

∣∣∣∣∣∣

i j k
0 3 0
2 5 8

∣∣∣∣∣∣
= 0 + 3

∣∣∣∣
i k
2 8

∣∣∣∣+ 0

= 3(8i− 2k) = 24i− 6k .
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Now the area we seek is given by 1
2
||−−→PQ×

−−→
PR|| or

1

2

√
242 + 62 = 3

√
17 .

Problem 16

We compute

−−→
PQ =

−→
Q −−→

P = (2, 1, 3)− (−1,−2, 1) = (3, 3, 2)
−−→
PR =

−→
R −−→

P = (1, 4, 0)− (−1,−2, 1) = (2, 6,−1) .

Thus we have

−−→
PQ×

−−→
PR =

∣∣∣∣∣∣

i j k
3 3 2
2 6 −1

∣∣∣∣∣∣
= i

∣∣∣∣
3 2
6 −1

∣∣∣∣− j

∣∣∣∣
3 2
2 −1

∣∣∣∣+ k

∣∣∣∣
3 3
2 6

∣∣∣∣

= i(−3− 12)− j(−3 − 4) + k(18− 6)

= −15i+ 7j+ 12k .

Now the area we seek is given by 1
2
||−−→PQ×

−−→
PR|| or

1

2

√
152 + 72 + 122 =

1

2

√
418 .

Problem 17

From the problem we compute

−−→
PQ = (1, 1, 0)
−−→
PR = (−1, 3, 0)
−→
PS = (1, 0, 4) .

Then the volume of the parallelepiped is given by the absolute value of the scalar triple
product defined as −−→

PQ · (−−→PR×
−→
PS) . (13)

To evaluate this we find

−−→
PQ · (−−→PR×

−→
PS) =

∣∣∣∣∣∣

1 1 0
−1 3 0
1 0 4

∣∣∣∣∣∣
= 4

∣∣∣∣
1 1
−1 3

∣∣∣∣ = 4(3 + 1) = 16 ,

As this value is not zero these three points are not coplanar.
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Problem 18

From the problem we compute

−−→
PQ =

−→
Q −−→

P = (2, 1, 4)− (−1, 2, 2) = (3,−1, 2)
−−→
PR =

−→
R −−→

P = (−1, 4, 1)− (−1, 2, 2) = (0, 2,−1)
−→
PS =

−→
S −−→

P = (3, 0, 5)− (−1, 2, 2) = (4,−2, 3) .

Then the volume of the parallelepiped is given by the absolute value of the scalar triple
product defined in Equation 13. To evaluate this we find

−−→
PQ · (−−→PR×

−→
PS) =

∣∣∣∣∣∣

3 −1 2
0 2 −1
4 −2 3

∣∣∣∣∣∣
= 3

∣∣∣∣
2 −1
−2 3

∣∣∣∣+ 4

∣∣∣∣
−1 2
2 −1

∣∣∣∣ = 12− 12 = 0 .

As this value is zero these three points are coplanar.

Problem 19

From the problem we compute

−−→
PQ =

−→
Q −−→

P = (0, λ, 1)− (2, 4,−1) = (−2, λ− 4, 2)
−−→
PR =

−→
R −−→

P = (−2, 1, 2)− (−2, 4,−1) = (−4,−3, 3)
−→
PS =

−→
S −−→

P = (1, 1, 0)− (2, 4,−1) = (−1,−3, 1) .

To be coplanar the volume of the parallelepiped must be zero. The volume of the paral-
lelepiped is given by the absolute value of the scalar triple product defined in Equation 13.
To evaluate this we find

−−→
PQ · (−−→PR×

−→
PS) =

∣∣∣∣∣∣

−2 λ− 4 2
−4 −3 3
−1 −3 1

∣∣∣∣∣∣
= −2

∣∣∣∣
−3 3
−3 1

∣∣∣∣ + 4

∣∣∣∣
λ− 4 2
−3 1

∣∣∣∣−
∣∣∣∣
λ− 4 2
−3 3

∣∣∣∣

= −2(−3 + 9) + 4(λ− 4 + 6)− (3λ− 12 + 6) = λ+ 2 ,

when we simplify. This value is zero when λ = −2.

Problem 20

From the problem we compute

−−→
PQ =

−→
Q −−→

P = (1, 1, 1)− (0, 2,−3) = (1,−1, 4)
−−→
PR =

−→
R −−→

P = (2, 0,−1)− (0, 2,−3) = (2,−2, 2)
−→
PS =

−→
S −−→

P = (λ, 2λ,−λ)− (0, 2,−3) = (λ, 2λ− 2,−λ+ 3) .
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To be coplanar the volume of the parallelepiped must be zero. The volume of the paral-
lelepiped is given by the absolute value of the scalar triple product defined in Equation 13.
To evaluate this we find

−−→
PQ · (−−→PR×

−→
PS) =

∣∣∣∣∣∣

1 −1 4
2 −2 2
λ 2λ− 2 −λ+ 3

∣∣∣∣∣∣

= λ

∣∣∣∣
−1 4
−2 2

∣∣∣∣− (2λ− 2)

∣∣∣∣
1 4
2 2

∣∣∣∣+ (−λ + 3)

∣∣∣∣
1 −1
2 −2

∣∣∣∣
= 18λ− 12 ,

when we simplify. This value is zero when λ = 2
3
.

Problem 21

From the problem we compute

−−−→
P1P2 = (x2 − x1, y2 − y1)
−−−→
P1P3 = (x3 − x1, y3 − y1) .

From the text, the area of this triangle is given by 1
2
||−−−→P1P2 ×

−−−→
P1P3||. We find

−−−→
P1P2 ×

−−−→
P1P3 =

∣∣∣∣∣∣

i j k
x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣
= k

∣∣∣∣
x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣ .

The norm of the above cross product vector is the absolute value of the 2 × 2 determinant
on the right-hand-side of the above. We can write the above 2 × 2 determinant as a 3 × 3
determinant (called D) as

D ≡

∣∣∣∣∣∣

0 0 1
x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣
.

We will now use operations which leave the value of the determinant unchanged to convert
D into the form given in this problem thereby showing the desired equivalence. To do that
we add the first row to the second row and then the third row to get

D =

∣∣∣∣∣∣

0 0 1
x2 − x1 y2 − y1 1
x3 − x1 y3 − y1 1

∣∣∣∣∣∣
.

Next we multiply the third column by x1 and add that column to the first column to get

D =

∣∣∣∣∣∣

x1 0 1
x2 y2 − y1 1
x3 y3 − y1 1

∣∣∣∣∣∣
.
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Next we multiply the third column by y1 and add that column to the second column to get

D =

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
.

Now we exchange columns twice to get

D =

∣∣∣∣∣∣

1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣
.

Finally we take the transpose of this to get

D =

∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
.

Taking the absolute value and multiplying by 1
2
gives the area.

Problem 22

Part (a): We have

a× (b+ c) =

∣∣∣∣∣∣

i j k
ax ay az

bx + cx by + cy bz + cz

∣∣∣∣∣∣

= i

∣∣∣∣
ay az

by + cy bz + cz

∣∣∣∣− j

∣∣∣∣
ax az

bx + cx bz + cz

∣∣∣∣ + k

∣∣∣∣
ax ay

bx + cx by + cy

∣∣∣∣
= i(ay(bz + cz)− az(by + cy))− j(ax(bz + cz)− az(bx + cx)) + k(ax(by + cy)− ay(bx + cx))

= i(aybz − azby)− j(axbz − azbx) + k(axby − aybx)

+ i(aycz − azcy)− j(axcz − azcx) + k(axcy − aycx)

= a× b+ a× c .

Part (b): This would be done in a similar way to Part (a) above.

Problem 23

Part (a): We have

(αa)× b =

∣∣∣∣∣∣

i j k
αax αay αaz
bx by bz

∣∣∣∣∣∣
= i

∣∣∣∣
αay αaz
by bz

∣∣∣∣− j

∣∣∣∣
αax αaz
bx bz

∣∣∣∣+ k

∣∣∣∣
αax αay
bx by

∣∣∣∣

= αi(aybz − azby)− αj(axbz − azbx) + αk(axby − aybx) = α(a× b) .

Part (b): This would be done in a similar way to Part (a) above.
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Problem 24

We want to show that
(a+ b)× (a− b) = 2(b× a) .

To show this we consider

(a+ b)× (a− b) =

∣∣∣∣∣∣

i j k
ax + bx ay + by az + bz
ax − bx ay − by az − bz

∣∣∣∣∣∣

= i

∣∣∣∣
ay + by az + bz
ay − by az − bz

∣∣∣∣− j

∣∣∣∣
ax + bx az + bz
ax − bx az − bz

∣∣∣∣+ k

∣∣∣∣
ax + bx ay + by
ax − bx ay − by

∣∣∣∣
= i((ay + by)(az − bz)− (ay − by)(az + bz))

− j((ax + bx)(az − bz)− (ax − bx)(az + bz))

+ k((ax + bx)(ay − by)− (ax − bx)(ay + by))

= i(ayaz − aybz + azby − bybz − ayaz − aybz + azby + bybz)

− j(axaz − axbz + azbx − bxbz − axaz − axbz + azbx + bxbz)

+ k(axay − axby + aybx − bxby − axay − axby + aybx + bxby)

= 2i(azby − aybz)− 2j(azbx − axbz) + 2k(−axby + aybx)

= 2i

∣∣∣∣
by bz
ay az

∣∣∣∣− 2j

∣∣∣∣
bx bz
ax az

∣∣∣∣+ 2k

∣∣∣∣
bx by
ax ay

∣∣∣∣
= 2(b× a) .

Problem 25

Part (a): We want to evaluate i× (b× c). To start this problem we notice that

b× c =

∣∣∣∣∣∣

i j k
bx by bz
cx cy cz

∣∣∣∣∣∣
= i

∣∣∣∣
by bz
cy cz

∣∣∣∣− j

∣∣∣∣
bx bz
cx cz

∣∣∣∣ + k

∣∣∣∣
bx by
cx cy

∣∣∣∣

= i(bycz − bzcy)− j(bxcz − bzcx) + k(bxcy − bycx) .

This means that

i× (b× c) =

∣∣∣∣∣∣

i j k
1 0 0

bycz − bzcy −bxcz + bzcx bxcy − bycx

∣∣∣∣∣∣

= −1

∣∣∣∣
j k

−bxcz + bzcx bxcy − bycx

∣∣∣∣
= −1(j(bxcy − bycx) + k(bxcz − bzcx)) = j(bycx − bxcy) + k(bzcx − bxcz)

= jbycx − kbzcx − jbxcy − kbxcz = cx(b− bxi)− bx(c− cxi)

= cxb− bxc .
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Part (b): Next we want to evaluate j× (b× c). We find

j× (b× c) =

∣∣∣∣∣∣

i j k
0 1 0

bycz − bzcy −bxcz + bzcx bxcy − bycx

∣∣∣∣∣∣

= 1

∣∣∣∣
i k

bycz − bzcy bxcy − bycx

∣∣∣∣
= i(bxcy − bycx)− k(bycz − bzcy)) = ibxcy + kbzcy − icxby − kczby

= cy(ibx + kbz)− by(icx − kcz) = cy(b− byj)− by(c− cyj)

= cyb− byc .

Finally we have

k× (b× c) =

∣∣∣∣∣∣

i j k
0 0 1

bycz − bzcy −bxcz + bzcx bxcy − bycx

∣∣∣∣∣∣

= −1

∣∣∣∣
i j

bycz − bzcy −bxcz + bzcx

∣∣∣∣
= i(bxcz − bzcx)− j(bzcy − bycz)) = ibxcz + jbycz − icxbz − jcybz

= cz(b− bzk)− bz(c− czk)

= czb− bzc .

Part (c): We can compute what we seek by breaking a up into its components and using
what we computed above as

a× (b× c) = axi× (b× c) + ayj× (b× c) + azk× (b× c)

= (axcxb− axbxc) + (aycyb− aybyc) + (azczb− azbzc)

= (axcx + aycy + azcz)b− (axbx + ayby + azbz)c

= (a · c)b− (a · b)c ,

as we were to show.

Problem 26

Part (a): From the previous problem we have

a× (b× c) = (c · a)b− (b · a)c .

Using the fact that a× b = −b× a in the above we get

(b× c)× a = (b · a)c− (c · a)b .

Replace the “letters” in the above to get the same thing but with different “letters”

(a× b)× c = (a · c)b− (b · c)a .
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Part (b): We now seek to determine when a× (b× c) = (a×b)× c. Using the above this
is equivalent to

(c · a)b− (b · a)c = (a · c)b− (b · c)a ,
or

(b · a)c = (b · c)a .
This means that the vector c must be parallel to the vector a.

Problem 27

Part (a): The relationships d · a = 0 and d · b = 0 give

d1a1 + d2a2 + d3a3 = 0 (14)

d1b1 + d2b2 + d3b3 = 0 . (15)

We will solve for d3 in both. If we solve for d3 in Equation 14 we get

d3 = −d1a1 + d2a2
a3

,

while Equation 15 gives

d3 = −d1b1 + d2b2
b3

.

If we set these two equal we get

−d1a1 + d2a2
a3

= −d1b1 + d2b2
b3

,

or
d1a1b3 + d2a2b3 = d1b1a3 + d2b2a3 ,

or
d1(a1b3 − a3b1) = d2(a3b2 − a2b3) , (16)

which is one of the desired equations.

Next we will solve for d2 in both. If we solve for d3 in Equation 14 we get

d2 = −d3a3 + d1a1
a2

,

while Equation 15 gives

d2 = −d3b3 + d1b1
b2

.

If we set these two equal and simplify (as before) we get

d3(a2b3 − a3b2) = d1(a1b2 − a2b1) , (17)

which is the second of the desired equations.
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Part (b): Using the given expression we find

||d||2 = ||a||2||b||2 sin2(θ)

= ||a||2||b||2(1− cos2(θ))

= ||a||2||b||2 − |a · b|2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= a21b
2
1 + a21b

2
2 + a21b

2
3 + a22b

2
1 + a22b

2
2 + a22b

2
3 + a23b

2
1 + a23b

2
2 + a23b

2
3

− (a21b
2
1 + a22b

2
2 + a23b

2
3 + 2a1a2b1b2 + 2a1a3b1b3 + 2a2a3b2b3)

= a21b
2
2 − 2a1a2b1b2 + a22b

2
1 + a21b

2
3 − 2a1a3b1b3 + a23b

2
1 + a22b

2
3 − 2a2a3b2b3 + a23b

2
2

= (a1b2 − a2b1)
2 + (a1b3 − a3b1)

2 + (a2b3 − a3b2)
2 ,

the desired expression.

Part (c): If we multiply the expression for ||d||2 above by d21 we get

d21||d||2 = (d1(a1b2 − a2b1))
2 + (d1(a1b3 − a3b1))

2 + (d1(a2b3 − a3b2))
2

= ((a2b3 − a3b2)d3)
2 + ((a2b3 − a3b2)d2)

2 + (d1(a2b3 − a3b2))
2

= (a2b3 − a3b2)
2||d||2 .

Assuming that ||d||2 6= 0 we have

d21 = (a2b3 − a3b2)
2 or d1 = ±(a2b3 − a3b2) .

Using this in Equation 16 we get

d2 = ±(a3b1 − a1b3) ,

while using this in Equation 17 we get

d3 = ±(a1b2 − a2b1) .

Part (d): From the geometric definition of a × b to have a, b, and a × b form a right
handed coordinate system means that when a = i and b = j we must have a × b in the
direction of k and with a magnitude of

||i||j|| sin(90◦) = 1 .

Thus i× j = k. Using the formulas we have derived above for di in this case we see that

d1 = ±(0− 0) = 0

d2 = ±(0− 0) = 0

d3 = ±(1− 0) = ±1 .

Thus to agree with the argument above we must take the plus sign in the above expression.
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Planes and Lines

Problem 1

Following the book, the vector equation of a plane is

(r− r0) · n = 0 . (18)

Here
r− r0 = (x− 2)i+ (y + 1)j+ (z − 3)k .

Thus the equation of the plane is

−(x− 2) + 4(y + 1) + 5(z − 3) = 0 ,

or expanding we get
−x + 4y + 5z = −2 − 4 + 15 = 9 .

Problem 2

Following the book the vector equation of a plane is (r− r0) · n = 0. Here

r− r0 = (x− 3)i+ yj+ (z + 4)k .

Thus the equation of the plane is

y + 2(z + 4) = 0 ,

or expanding we get
y + 2z = −8 .

Problem 3

A normal to this plane is given by

n =
−−→
PQ×

−−→
PR =

∣∣∣∣∣∣

i j k
−2− 1 0 + 2 1− 3
0− 1 5 −1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

i j k
−3 2 −2
−1 5 −1

∣∣∣∣∣∣

= i

∣∣∣∣
2 −2
5 −1

∣∣∣∣− j

∣∣∣∣
−3 −2
−1 −1

∣∣∣∣+ k

∣∣∣∣
−3 2
−1 5

∣∣∣∣
= i(−2 + 10)− j(3− 2) + k(−15 + 2) = 8i− j− 13k .

A point on this plane is r0 = (1,−2, 3). Then the equation of this plane is (r − r0) · n = 0
which in this case is

8(x− 1)− (y + 2)− 13(z − 3) = 0 ,

or expanding we get
8x− y − 13z = −29 .
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Problem 4

A normal to this plane is given by

n =
−−→
PQ×

−−→
PR =

∣∣∣∣∣∣

i j k
4− 2 0− 1 2 + 1
−3 −3 1 + 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

i j k
2 −1 3
−3 −3 2

∣∣∣∣∣∣

= i

∣∣∣∣
−1 3
−3 2

∣∣∣∣− j

∣∣∣∣
2 3
−3 2

∣∣∣∣+ k

∣∣∣∣
2 −1
−3 −3

∣∣∣∣
= i(−2 + 9)− j(3− 9) + k(−6 − 3) = 7i + 5j− 9k .

A point on this plane is r0 = (2, 1,−1). Then the equation of this plane is (r − r0) · n = 0
which in this case is

7(x− 2) + 5(y − 1)− 9(z + 1) = 0 ,

or expanding we get
7x+ 5y − 9z = 28 .

Problem 5

From its “coefficients” a normal to this plane is given by

n = 2i− j+ 5k .

A plane thought the point is r0 = (3, 1,−2) and with normal n is given by the equation
(r− r0) · n = 0. In this case is

2(x− 3)− (y − 1) + 5(z + 2) = 0 ,

or expanding
2x− y + 5z = −5 .

Problem 6

From the book, we know that the vector in the “direction” of the line is formed from the
coefficients of the numbers in the denominator of the fractions on the left-hand-side of

x− 2

3
=

y + 1

−2
=

z

−1
= t ,

so
n = 3i− 2j− k .

A plane thought the point is r0 = (4,−1, 3) and with normal n is given by the equation
(r− r0) · n = 0. In this case is

3(x− 4)− 2(y + 1)− (z − 3) = 0 ,

or expanding
3x− 2y − z = 11 .
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Problem 7

From the book, we know that the vector in the “direction” of the line is formed from the
coefficients of the numbers in the denominator of the fractions. Thus one line is in the
“direction”

l1 = 3i− 2j− k ,

and the other line is in the “direction”

l2 = −i + 4j+ 2k .

A vector normal to this plane is given by n = l1 × l2. We find

n = l1 × l2 =

∣∣∣∣∣∣

i j k
3 −2 −1
−1 4 2

∣∣∣∣∣∣
= i

∣∣∣∣
−2 −1
4 2

∣∣∣∣− j

∣∣∣∣
3 −1
−1 2

∣∣∣∣+ k

∣∣∣∣
3 −2
−1 4

∣∣∣∣

= i(−4 + 4)− j(6 − 1) + k(12− 2) = −5j + 10k .

We now need a point on this plane. Notice that the point r0 = (2,−1, 0) is on each line.
The equation of the plane (r− r0) · n = 0 in this case is given by

−5(y + 1) + 10(z − 0) = 0 ,

or expanding we get
−5y + 10z = 5 ,

or dividing by −5 this gives
y − 2z = −1 .

Problem 8

For our plane P0 to be perpendicular to another plane P1 means that the normal vector of
P0 is perpendicular to the normal vectors of P1. For plane P0 to be perpendicular to both
P1 and P2 means that the normal vector of P0 is perpendicular to both normal vectors of P1

and P2.

Thus a vector normal to this plane is given by n = n1 × n2. We find

n = n1 × n2 =

∣∣∣∣∣∣

i j k
1 −2 1
−2 1 3

∣∣∣∣∣∣
= i

∣∣∣∣
−2 1
1 3

∣∣∣∣− j

∣∣∣∣
1 1
−2 3

∣∣∣∣+ k

∣∣∣∣
1 −2
−2 1

∣∣∣∣

= i(−6 − 1)− j(3 + 2) + k(1 + 4) = −7i− 5j+ 5k .

With r0 = (3, 2,−1) the equation of the plane (r− r0) · n = 0 in this case is given by

−7(x− 3)− 5(y − 2) + 5(z + 1) = 0 ,

or expanding we get
−7x− 5y + 5z = −36 .
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Problem 9

Lets find two points on this line. As each fraction equals t if we set t = 0 we note that
P = (−2, 3,−1) is one point on this line. If we take t = 1 we get another point Q = (−3, 5, 2)
on the plane. With these two points and the desired point R = (2, 2,−3) we now have three
points on our plane. Using these three points a normal to this plane is given by

n =
−−→
PQ×

−−→
PR =

∣∣∣∣∣∣

i j k
−3 + 2 5− 3 2 + 1

4 −1 −2

∣∣∣∣∣∣
=

∣∣∣∣∣∣

i j k
−1 2 3
4 −1 −2

∣∣∣∣∣∣

= i

∣∣∣∣
2 3
−1 −2

∣∣∣∣− j

∣∣∣∣
−1 3
4 −2

∣∣∣∣+ k

∣∣∣∣
−1 2
4 −1

∣∣∣∣
= i(−4 + 3)− j(2− 12) + k(1− 8) = −i + 10j− 7k .

The equation of the plane (r− r0) · n = 0 in this case with r0 = (2, 2,−3) is given by

−(x− 2) + 10(y − 2)− 7(z + 3) = 0 ,

or expanding we get
x+ 10y − 7z = −39 .

Problem 10

The normal to this plane must be parallel to

n = (3, 0,−2)− (1,−3, 2) = (3− 1)i+ (0 + 3)j+ (−2− 2)k = 2i+ 3j− 4k .

The equation of the plane (r− r0) · n = 0 in this case with r0 = (1,−3, 2) is given by

2(x− 1) + 3(y + 3)− 4(z − 2) = 0 ,

or expanding we get
2x+ 3y − 4z = 1 .

Problem 11

Setting this expression equal to t and solving for x, y, and z we get

x = 2 + 3t

y = −1 + 2t

z = 4− t .
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Problem 12

Solving each of these expressions for t I find

x+ 1

6
=

y − 2

−3
=

z − 5

4
= t .

Problem 13

The equation of this line would be given by

r− r0 = t(i+ 2j− k) ,

or
(x− 2)i+ (y + 1)j+ (z − 3)k = t(i+ 2j− k) .

This means that

x = 2 + t

y = −1 + 2t

z = 3− t .

Problem 14

The equation of this line would be given by

r− r0 = t(2i+ 3j− 5k) ,

or
(x+ 3)i+ (y − 2)j+ (z + 5)k = t(2i + 3j− 5k) .

This means that

x = −3 + 2t

y = 2 + 3t

z = −5 − 5t .

Solving for t in each of these gives

t =
x+ 3

2
=

y − 2

3
=

z + 5

−5
.
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Problem 15

A vector v “parallel” to this line is given by

v = (2− 4)i+ (−1− 2)j+ (6− 3)k = −2i− 3j+ 3k .

Then the equation of the line or r− r0 = tv is given by

(x− 4)i+ (y − 2)j+ (z − 3)k = −2ti− 3tj + 3tk ,

or

x− 4 = −2t

y − 2 = −3t

z − 3 = 3t .

Solving these for t we get the symmetric equations

t =
x− 4

−2
=

y − 2

−3
=

z − 3

3
.

Problem 16

The vector v that this line is “parallel” to is given by the denominators of the given fraction
or

v = 2i− 3j− k .

Then the equation of the line or r− r0 = tv with r0 = (−1, 0, 3) is given by

(x+ 1)i+ yj+ (z − 3)k = 2ti− 3tj− tk ,

or

x = −1 + 2t

y = −3t

z = 3− t ,

for the scalar parametric equations.

Problem 17

A normal to the plane is given by n = j + 2k. The equation of the line is then given by
r− r0 = tn with r0 = (−2, 6, 1) or

(x+ 2)i+ (y − 6)j+ (z − 1)k = 0i+ tj+ 2tk ,
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or

x = −2

y = 6 + t

z = 1 + 2t ,

for the scalar parametric equations. Solving these for t we get

t = y − 6 =
z − 1

2
,

for the symmetric equations.

Problem 18

The normal to this plane is given by

n = 2i+ 3j− k .

The equation of the line is then given by r− r0 = tn with r0 = (3,−1, 4) or

(x− 3)i+ (y + 1)j+ (z − 4)k = 2ti + 3tj− tk ,

or

x = 3 + 2t

y = −1 + 3t

z = 4− t ,

for the scalar parametric equations.

Problem 19

Our line must run parallel to a vector that is perpendicular to the two normals of the two
planes. These two normals are

n1 = i− 2k

n2 = 3j + k .

A vector that is perpendicular to these two vectors is v = n1 × n2. We find

v = n1 × n2 =

∣∣∣∣∣∣

i j k
1 0 −2
0 3 1

∣∣∣∣∣∣
= i

∣∣∣∣
0 −2
3 1

∣∣∣∣− j

∣∣∣∣
1 −2
0 1

∣∣∣∣+ k

∣∣∣∣
1 0
0 3

∣∣∣∣

= i(0 + 6)− j(1− 0) + k(3) = 6i− j+ 3k .
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We now need a point on this line. If we take y = −3 then the second plane gives z = 0.
Using this in the first plane and we find x = 4 to give the point r0 = (4,−3, 0). The equation
of the line is then given by r− r0 = tv or

(x− 4)i+ (y + 3)j+ zk = 6ti− tj + 3tk ,

or

x = 4 + 6t

y = −3− t

z = 3t ,

for the scalar parametric equations.

Problem 20

Following the procedure used in the previous problem we have

v = n1 × n2 =

∣∣∣∣∣∣

i j k
1 −1 1
2 3 −5

∣∣∣∣∣∣
= i

∣∣∣∣
−1 1
3 −5

∣∣∣∣− j

∣∣∣∣
1 1
2 −5

∣∣∣∣ + k

∣∣∣∣
1 −1
2 3

∣∣∣∣

= i(5− 3)− j(−5 − 2) + k(3 + 2) = 2i+ 7j+ 5k .

We now need a point on this line. That is we are looking for a solution to the system

x− y + z = 7

2x+ 3y − 5z = 9 .

If we solve the first equation for x we get x = 7 − z + y. If we put that into the second
equation and solve for y (in terms of z) we get

y =
7z

5
− 1 .

From this functional form we can get nice integer solutions if we take z = 5 so that y = 6
and then x = 7 − 5 + 6 = 8. Thus a point on the line is r0 = (8, 6, 5). The equation of the
line is then given by r− r0 = tv or

(x− 8)i+ (y − 6)j+ (z − 5)k = t(2i+ 7j+ 5k) ,

or

x = 8 + 2t

y = 6 + 7t

z = 5 + 5t ,

for the scalar parametric equations. Solving these for t the symmetric equations for this line
are given by

t =
x− 8

2
=

y − 6

7
=

z − 5

5
.
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Problem 21

A normal to this plane is given by N = i+ j + k. A unit normal is then

n =
N

||N|| =
1√
3
(i+ j + k) .

We now need to find a point Q on this plane. If we take x = y = 0 then z = 7 so the point
(x, y, z) = (0, 0, 7) is on the plane. Using this value for Q we find

−−→
QP = 2i+ j− 12k .

The distance we seek is given by |−−→QP · n| or
1√
3
|2 + 1− 12| = 9√

3
= 3

√
3 .

Problem 22

A normal to this plane is given by N = 2i+ 3j− k. A unit normal is then

n =
N

||N|| =
1√
14

(2i+ 3j− k) .

We now need to find a point Q on this plane. If we take x = y = 0 then z = −12 so the
point (x, y, z) = (0, 0,−12) is on the plane. Using this value for Q we find

−−→
QP = −i− 3j + 14k .

The distance we seek is given by |−−→QP · n| or
1√
14

| − 2− 9− 14| = 25√
14

.

Problem 23

A normal to this plane is given by N = 2i − j + 2k. From the parametric equations given
we can derive the symmetric equations for this line as

t =
x− 3

−3
=

y

2
=

z + 1

4
.

From these a vector parallel to this line is given by a = −3i + 2j + 4k. For our line to be
parallel to the plane means that the vector a must be perpendicular to N. To check this we
compute

N · a = −3(2)− 2 + 8 = 0 .

Thus a is perpendicular to N and our line is parallel to the plane.
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Problem 24

A normal to this plane is given by N = 2i + 3j − k. From the symmetric equations given
for this line a vector parallel to this line is given by a = −2i + 3j − k. For our line to be
parallel to the plane means that the vector a must be perpendicular to N. To check this we
compute

N · a = −4 + 9 + 1 = 6 6= 0 .

Thus a is not perpendicular to N and our line is not parallel to the plane.

Problem 25

The parametric equations for this line are

x = 2− 2t

y = −1 + 3t

z = 2− t .

If we put these into the equation of the plane we get

4− 4t− 3 + 9t− 2 + t = 11 or t = 2 .

Using this value in the parametric equations above give the point (x, y, z) = (−2, 5, 0).

Problem 26

Note that the vectors p− r and q− r are in the plane. A normal to this plane is then given
by the cross product of these two vectors or

n = (p− r)× (q− r) .

Using the associative property of the cross product we can write this as

n = (p× q)− (p× r)− (r× q) + (r× r) .

Using the properties of the cross product a × b = −b × a and a × a = 0 the above is
equivalent to

n = (p× q) + (r× p) + (q× r) ,

as we were to show.

Problem 27

A normal to this plane is given by N = 2i− j+ 2k. A unit normal is then

n =
N

||N|| =
1

3
(2i− j+ 2k) .
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A vector parallel to this line is given by a = −3i + 2j + 4k. Now note that it the line is
not parallel to the plane the distance between them will be zero as the line will eventually
intersect the plane. We find that N · a = −6− 2 + 8 = 0 so our line is parallel to our plane.

A point on the plane is Q = (0, 0, 10). A point on the line is P = (2, 0,−1). Thus

−−→
QP = 2i− 11k .

The distance we seek is given by |−−→QP · n| or
1

3
|4− 22| = 6 .

Problem 28

A normal to this plane is given by N = 5i− 4j+ 2k. A unit normal is then

n =
N

||N|| =
1√
45

(5i− 4j+ 2k) .

The symmetric equations for this line are given by

t =
x− 1

2
=

y + 1

1
=

z − 2

−3
.

From these a vector parallel to this line is given by a = 2i+ j−3k. Now note that it the line
is not parallel to the plane the distance between them will be zero as the line will eventually
intersect the plane. We find that

N · a = 5(2)− 4(1) + 2(−3) = 10− 4− 6 = 0 .

so our line is parallel to our plane.

A point on the plane is Q = (0, 0, 6). A point on the line is P = (1,−1, 2). Thus

−−→
QP = i− j− 4k .

The distance we seek is given by |−−→QP · n| or
1√
45

|5 + 4− 8| = 1√
45

.

Problem 29

From the symmetric form of the lines we find vectors parallel to each line given by

a = i+ 3j− 2k

b = 4i− j+ 2k .
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A vector perpendicular to a and b is given by

N = a× b =

∣∣∣∣∣∣

i j k
1 3 −2
4 −1 2

∣∣∣∣∣∣
= i

∣∣∣∣
3 −2
−1 2

∣∣∣∣− j

∣∣∣∣
1 −2
4 2

∣∣∣∣+ k

∣∣∣∣
1 3
4 −1

∣∣∣∣

= i(6− 2)− j(2 + 8) + k(−1− 12) = 4i− 10j− 13k .

A unit normal is then

n =
N

||N|| =
1√
285

(4i− 10j− 13k) .

A point on the first line is P = (2,−1, 1). A point on the second line is Q = (−1, 2,−3).
Thus −−→

QP = 3i− 3j + 4k .

The distance we seek is given by |−−→QP · n| or
1√
285

|12 + 30− 52| = 10√
285

.

Problem 30

The symmetric equations for these two lines are

t =
x

2
=

y + 1

−1
=

z − 3

1

t =
x− 2

−1
=

y + 1

3
=

z

1
.

Vectors parallel to each linear are then given by

a = 2i− j+ k

b = −i + 3j+ k .

A vector perpendicular to a and b is given by

N = a× b =

∣∣∣∣∣∣

i j k
2 −1 1
−1 3 1

∣∣∣∣∣∣
= i

∣∣∣∣
−1 1
3 1

∣∣∣∣− j

∣∣∣∣
2 1
−1 1

∣∣∣∣ + k

∣∣∣∣
2 −1
−1 3

∣∣∣∣

= i(−1 − 3)− j(2 + 1) + k(6− 1) = −4i− 3j+ 5k .

A unit normal is then

n =
N

||N|| =
1

5
√
2
(−4i− 3j+ 5k) .

A point on the first line is P = (0,−1, 3). A point on the second line is Q = (2,−1, 0). Thus

−−→
QP = 2i+ 3k .

The distance we seek is given by |−−→QP · n| or
1

5
√
2
| − 8 + 0 + 15| = 7

5
√
2
.
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Problem 31

This problem presents one way to compute the needed normal vector n. The following
problem demonstrates another way.

From the given symmetric equations a vector parallel to the line is given by

a = 2i+ 3j− k .

A point on the line is given by A = (1,−1, 0). Thus

−−→
AP = (2i+ j+ k)− (i− j) = i + 2j+ k .

Now to find a vector N that is perpendicular to the line and through the point P thus it
would take the form

N = (2i+ j + k)− ((1 + 2t)i+ (−1 + 3t)j− tk) = (1− 2t)i+ (2− 3t)j + (1 + t)k ,

for t ∈ R. For N to be perpendicular to a we need N · a = 0 which in this case is

2(1− 2t) + 3(2− 3t)− (1 + t) = 0 so t =
1

2
.

This means that

N =
1

2
j+

3

2
k .

Making this a unit vector then gives

n =
N

||N|| =
1√
10

(j+ 3k) .

The distance we seek is given by |−−→AP · n| or

1√
10

|0 + 2 + 3| =
√
5√
2
=

√
10

2
.

Problem 32

From the given parametric equations we can compute the symmetric equations. We find

t =
x+ 2

1
=

y − 4

−1
=

z − 1

3
.

From the symmetric equations a vector parallel to the line is given by

a = i− j + 3k .

A point on the line is given by A = (−2, 4, 1). Thus

−−→
AP = (i+ 3j− 4k)− (−2i+ 4j + k) = 3i− j− 5k .
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Note that the vector b = a×
−−→
AP will be perpendicular to the plane containing the line and

the point. Computing this I find

b = a×
−−→
AP =

∣∣∣∣∣∣

i j k
1 −1 3
3 −1 −5

∣∣∣∣∣∣
= i

∣∣∣∣
−1 3
−1 −5

∣∣∣∣− j

∣∣∣∣
1 3
3 −5

∣∣∣∣ + k

∣∣∣∣
1 −1
3 −1

∣∣∣∣

= i(5 + 3)− j(−5 − 9) + k(−1 + 3) = 8i+ 14j+ 2k .

Now the vector N = a×b will be perpendicular to both the line (i.e. the vector a) and the
normal to the plane (i.e. the vector b) and will thus be the vector we seek. I find

N = a× b =

∣∣∣∣∣∣

i j k
1 −1 3
8 14 2

∣∣∣∣∣∣
= i

∣∣∣∣
−1 3
14 2

∣∣∣∣− j

∣∣∣∣
1 3
8 2

∣∣∣∣ + k

∣∣∣∣
1 −1
8 14

∣∣∣∣

= i(−2− 42)− j(2− 24) + k(14 + 8) = −44i+ 22j+ 22k = 22(−2i+ j + k) .

Making this a unit vector then gives

n =
N

||N|| =
1√
6
(−2i+ j + k) .

As another way (similar to what was done in the previous problem) to find a vector N′ that
is perpendicular to the line and through the point P is to recall that it would take the form

N′ = (i+ 3j− 4k)− ((−2 + t)i + (4− t)j + (1 + 3t)k) = (3− t)i+ (−1 + t)j + (−5− 3t)k ,

for t ∈ R. For N′ to be perpendicular to a we need N′ · a = 0 which in this case is

(3− t)− (−1 + t) + 3(−5− 3t) = 0 so t = −1 .

This means that
N′ = 4i− 2j− 2k .

Making this a unit vector then gives

n′ =
N′

||N′|| =
1√
6
(2i− j− k) .

Note that this is the negative of the vector n found above. As we are taking the absolute
values below both vectors will give the equivalent distance.

The distance we seek is given by |−−→AP · n| = |−−→AP · n′| or

1√
6
|6 + 1 + 5| =

√
11√
6
.
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Problem 33

For this problem we will take a = axi + ayj + azk and r = xi + yj+ zk.

Part (a): In this case a · r = 0 is

axx+ ayy + azz = 0 ,

or the equation of a plane thought the origin with the normal vector a.

Part (b): In terms of components this expression is

|axx+ ayy + azz| = c
√
a2x + a2y + a2z .

If a · r > 0 then this is

axx+ ayy + azz = +c
√

a2x + a2y + a2z ,

which is a plane with normal a not through the origin. If a · r < 0 then this above is

axx+ ayy + azz = −c
√

a2x + a2y + a2z ,

which is another plane with normal a and not though the origin.

If we divide both sides of the original expression by ||a|| we get
∣∣∣∣
a

||a|| · r
∣∣∣∣ = c ,

which states that the distance from the origin to the plane is c.

Part (c): This is equivalent to r · r− a · r = 0 or

x2 + y2 + z2 − axx− ayy − azz = 0 .

If we “complete the square” in the above we get
(
x− ax

2

)2
+
(
y − ay

2

)2
+
(
z − az

2

)2
=

a2x
4

+
a2y
4

+
a2z
4
.

which is the equation of a sphere with a center at 1
2
a and a radius R such that R2 = 1

4
||a||2

so R = ||a||
2
.

Problem 35

These two lines are parallel to the vectors a and b. Then a normal to each line is given by
N = a × b. Two points on the lines are r1 and r2 so a vector connecting these two point
is r1 − r2. These two lines will intersect if and only if the distance between them is zero or
from the discussion in the text if∣∣∣∣

(
a× b

||a× b||

)
· (r1 − r2)

∣∣∣∣ = 0 .

This is equivalent to the given expression.
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Vector Functions of One Variable

Problem 1

For this we have
lim
t→0

(e−ti+ 2 cos(t)j + (t2 − 1)k) = i+ 2j− k .

Problem 2

For this we have

lim
t→π

(e2ti− sin(t)j+ t3k) = e2πi− 0j + π3k = e2πi+ π3k .

Problem 3

Because of the denominator in the expression 2t
t−1

the limit does not exist.

Problem 4

For this we have

lim
t→1

(
1

t
i+

t− 2

t+ 1
j+

t− 1

2t
k

)
= i− 1

2
j .

Problem 5

For this we have

lim
t→0

1

t
(sin(2t)i + 3tj+ tan(t)k) = 2i+ 3j + k .

In the above we have used L’Hospital’s rule to evaluate the component limits.

Problem 6

For this we have

lim
t→2

(
t2 − 4

t− 2
i+

√
t−

√
2

t− 2
j

)
= lim

t→2

(
(t + 2)i+

√
t−

√
2

(
√
t−

√
2)(

√
t +

√
2)
j

)
= 4i+

1

2
√
2
j .
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Problem 7-9

These can be proven by converting the left and right hand-side into its i, j, and k components
and showing that they are equal.

Problem 10

For this we have

lim
t→0

(3u(t)− 2v(t)) = 3 lim
t→0

u(t)− 2 lim
t→0

v(t)

= 3(i+ 2j− k)− 2(i− j) = i+ 7j− 3k .

Problem 11

For this we have

lim
t→0

(u(t) · v(t)) = lim
t→0

u(t) · lim
t→0

v(t)

= (i+ 2j− k) · (i− j) = 1− 2 = −1 .

Problem 12

For this we have

lim
t→0

(u(t)× v(t)) = lim
t→0

u(t)× lim
t→0

v(t) = (i+ 2j− k)× (i− j) =

∣∣∣∣∣∣

i j k
1 2 −1
1 −1 0

∣∣∣∣∣∣

= k

∣∣∣∣
1 2
1 −1

∣∣∣∣+ 1

∣∣∣∣
i j
1 −1

∣∣∣∣ = k(−1 − 2) + (−i− j) = −i− j− 3k .

Problem 13

For this we have
F′(t) = 2ti− sin(t)j+ 2 cos(t)k .

Problem 14

For this we have
F′(t) = −e−ti+ (et + tet)j+ 4k .
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Problem 15

For this we have

F′(t) = (2 sin(2t) + 4t cos(2t))i+ 3 sin(t)j + 12(2t− 1)k .

Problem 16

For this we have

F′(t) = (cos(t)− t sin(t))i + (sin(t) + t cos(t))j− 6k .

Problem 17

For this we have

d

dt
(u(t) + v(t)) = u′(t) + v′(t)

= −e−ti− 2 sin(t)j+ 2tk+ 2e2ti− cos(t)j+ 3t2k

= (2e2t − e−t)i− (cos(t) + 2 sin(t))j + (2t+ 3t2)k .

Problem 18

For this we have

d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t)

= (−e
−ti− 2 sin(t)j+ 2tk) · (e2ti− sin(t)j+ t

3k)

+ (e−ti+ 2cos(t)j+ (t2 − 1)k) · (2e2ti− cos(t)j+ 3t2k)

= (−e
t + 2 sin2(t) + 2t3) + (2et − 2 cos2(t) + 3t2(t2 − 1))

= e
t + 2(sin2(t)− cos2(t)) + 5t4 − 3t2 .

Problem 19

For this we have

d

dt
(3u(t)− 2v(t)) = 3u′(t)− 2v′(t)

= 3(−e−ti− 2 sin(t)j + 2tk)− 2(2e2ti− cos(t)j+ 3t2k)

= (−3e−t − 4e2t)i+ (−6 sin(t) + 2 cos(t))j+ (6t− 6t2)k .
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Problem 20

For this we have

d

dt
(4u(t)− 3v(t)) = 4u′(t)− 3v′(t)

= 4(2i− 2tj + 4t3k)− 3(2ti+ 6j+ 5k)

= (8− 6t)i− (4t+ 18)j+ (16t3 − 15)k .

Problem 21

For this we have

d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t)

= (2i− 2tj+ 4t3k) · (t2i+ 6tj + 5tk) + (2ti− t2j+ t4k) · (2ti+ 6j+ 5k)

= 2t2 − 12t2 + 20t4 + 4t2 − 6t2 + 5t4 = −12t2 + 25t4 .

Problem 22

It might be faster to work this problem by first taking the cross product and then taking
the derivative of that expression. For the cross product of these two vectors I find

u(t)× v(t) =

∣∣∣∣∣∣

i j k
2t −t2 t4

t2 6t 5t

∣∣∣∣∣∣

= i

∣∣∣∣
−t2 t4

6t 5t

∣∣∣∣− j

∣∣∣∣
2t t4

t2 5t

∣∣∣∣ + k

∣∣∣∣
2t −t2

t2 6t

∣∣∣∣
= i(−5t3 − 6t5)− j(10t2 − t6) + k(12t2 + t4) .

This then means that

d

dt
(u(t)× v(t)) = i(−15t2 − 30t4)− j(20t− 6t5) + k(24t+ 4t3) .

Problem 23

As v(t)·u(t) = u(t)·v(t) the answer to this problem is the same as the answer to Problem 21.

Problem 24

As v(t)×u(t) = −u(t)× v(t) the answer to this problem is the same as the negative of the
answer to Problem 22.
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Problem 25

Part (a): For this vector we have x = 2t− 3 so t = x+3
2
. If we put that into y = −4t2 we

get

y = −4

(
x+ 3

2

)2

= −(x+ 3)2 ,

which is a parabola with its vertex at (−3, 0) and “opening downwards”. Now as t goes from
−∞ to ∞ the particle moves on this parabola from left to right.

Part (b): For this expression for r(t) we find

r′(t) = 2i− 8tj ,

thus r′(−1) = 2i+ 8j. The desired unit vector is then

1√
68

(2i+ 8j) =
1√
17

(i+ 4j) .

Part (c): When t = −1 we find r(−1) = −5i− 4j. The tangent to the curve goes thought
the point r(−1) and in the direction of r′(−1). This means that we have

x(t) = −5 + t

y(t) = −4 + 4t

z(t) = 0 ,

for −∞ < t < +∞.

Part (d): A normal vector for this plane is given by N = i + 4j. Next recall that the
equation of a plane is given by Equation 18. In this case this becomes

(x+ 5) + 4(y + 4) = 0 .

Problem 26

Part (a): Let x(t) = cosh(t) and z(t) = 2 sinh(t) then using cosh2(θ)− sinh2(θ) = 1 we find

x2 − z2

4
= 1 .

This is a hyperbola with two branches

x = ±
√

1 +
z2

4
.

When t = 0 we find (x(0), z(0)) = (1, 0). As t → −∞ we have (x(t), z(t)) → (+∞,−∞)
and as t → +∞ we have (x(t), z(t)) → (+∞,+∞). This means that our “particle” is in the
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plane y = 0 and on the right-most curve starting at (x, z) = (+∞,−∞) and moving towards
the point (x, z) = (1, 0) before moving away from it towards (x, z) = (+∞,+∞).

Part (b): We find r(0) = 1i which is the point (x, y, z) = (1, 0, 0). We also find

r′(t) = sinh(t)i+ 2 cosh(t)k .

This means that r′(0) = 2k. A unit tangent vector is then k.

Part (c): The parametric equations of the line through the point (1, 0, 0) and parallel to
the vector k are given by

x− 1 = 0

y − 0 = 0

z − 0 = τ .

for −∞ < τ < ∞.

Part (d): A normal vector to this plane is given by N = 2k. The equation of a plane is
given by Equation 18 which in this case is given by

0(x− 1) + 0(y − 0) + 2(z − 0) = 0 or z = 0 .

Problem 27

Part (a): From this parametric representation of our vector function we find

r(0) = 2i+ 0j+ 0k = 2i

r′(t) = −2 sin(t)i + 3 cos(t)j+ 4k and thus

r′(0) = 0i+ 3j+ 4k = 3j+ 4k .

A unit tangent vector to the curve at the point t = 0 is then given by

r′(0)

||r′(0)|| =
3j+ 4k√
9 + 16

=
1

5
(3j+ 4k) .

Part (b): A parametric equation for the line tangent to the curve is then given by

x(τ) = 2 + 0τ = 2

y(τ) = 0 + 3τ = 3τ

z(τ) = 0 + 4τ = 4τ .

Part (c): A vector normal to the desired plane is given by N = r′(0) = 3j+ 4k. Using this
in Equation 18 gives

0(x− 2) + 3(y − 0) + 4(z − 0) = 0 , or 3y + 4z = 0 .

88



Problem 28

Part (a): The given vector curve will pass though the point (4,−3, 2) for a t value given
by the solution to the equations

4 = t2 + 3

−3 = −3t

2 = 2t2 .

From the second of these we see that t = 1. Also for this vector function we compute

r′(t) = 2ti− 3j+ 4tk thus

r′(1) = 2i− 3j+ 4k .

A unit tangent vector to the curve at t = 1 is then given by

r′(1)

||r′(1)|| =
2i− 3j+ 4k√
4 + 9 + 16

=
2i− 3j+ 4k√

29
.

Part (b): A parametric equation for the line tangent to the curve at the given point is

x(τ) = 4 + 2τ

y(τ) = −3− 3τ

3(τ) = 2 + 4τ ,

for −∞ < τ < +∞.

Part (c): The plane normal to the curve has a normal vector given by r′(1). Using that
and Equation 18 the equation of the plane through this point takes the form

2(x− 4) + 3(y + 3) + 4(z − 2) = 0 .

Problem 29

Lets call these two curves r1(t) and r2(τ) respectively. Then from what we are given we find

r′1(t) = 2ti− 3j+ 4tk

r′2(τ) = 2i+ j + τk .

We first note that for r1(t) will go though the point (4,−3, 2) when t = 1 and r2(τ) to go
through the point (4,−3, 2) when τ = 2. Next from these two expressions we can compute
that

r′1(1) = 2i− 3j+ 4k

r′2(2) = 2i+ j + 2k .

Using these we find that

cos(θ) =
r′1(1) · r′2(2)

||r′1(1)||||r′2(2)||
=

4− 3 + 8√
4 + 9 + 16

√
4 + 1 + 4

=
3√
29

= 0.557086 .

This gives θ = 56.14549◦.
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Problem 30

Lets call these two curves r1(t) and r2(τ) respectively. We first note that for r1(t) will go
though the point (1, 0, 1) when t = 2 and r2(τ) to go through the point (1, 0, 1) when τ = 0.
Next from these two expressions we find

r′1(t) = −π sin(πt)i− 2π cos(πt)j + k

r′2(τ) = 2i+ 8τ j− π sin(πτ)k .

From these we compute that

r′1(2) = 0i− 2πj+ k

r′2(0) = 2i+ 0j+ 0k .

Using these we find that

cos(θ) =
r′1(2) · r′2(0)

||r′1(2)||||r′2(0)||
= 0 .

This gives θ = π
2
= 90◦.

Problem 31

Part (a): For this vector function we have

x(t) = a cos(ωt)

y(t) = b sin(ωt) ,

and thus
x2

a2
+

y2

b2
= 1 ,

which is the equation of an ellipse with semi-major and semi-minor axis of lengths a and b.

Part (b): The vector expression for the velocity of the particle is given by

r′(t) = −aω sin(ωt)i + bω cos(ωt)j .

Part (c): The direction towards the origin at any time t is given by −r(t). A unit vector
in that direction is then given by

u = − r(t)

||r(t)|| =
−a cos(ωt)i− b sin(ωt)j√
a2 cos2(ωt) + b2 sin2(ωt)

.

The desired component in the direction of r′(t) is then u · r′(t). We compute this to be

a2ω sin(ωt) cos(ωt)− b2ω sin(ωt) cos(ωt)√
a2 cos2(ωt) + b2 sin2(ωt)

=
(a2 − b2)ω sin(ωt) cos(ωt)√
a2 cos2(ωt) + b2 sin2(ωt)

.
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Problem 32

We are told that ||u(t)|| = c or ||u||2 = c2 where c is a constant. In terms of the components
of u this is equivalent to

u2
1(t) + u2

2(t) + u2
3(t) = c2 .

Taking the derivative of this with respect to t gives

2u1(t)u
′
1(t) + 2u2(t)u

′
2(t) + 2u3(t)u

′
3(t) = 0 ,

which can also be written in vector form as

u(t) · u′(t) = 0 .

This is the statement that u(t) and u′(t) are perpendicular.

Problem 33

From the definition of the dot product we have

u(t) · v(t) = u1(t)v1(t) + u2(t)v2(t) + u3(t)v3(t) .

Then using the product rule in each scalar product we have

d

dt
u(t) · v(t) = du1(t)

dt
v1(t) +

du2(t)

dt
v2(t) +

du3(t)

dt
v3(t) + u1(t)

dv1(t)

dt
+ u2(t)

dv2(t)

dt
+ u3(t)

dv3(t)

dt

= u′(t) · v(t) + u(t) · v′(t) .

Problem 34

Recall that the cross product of two vectors is given by

u(t)× v(t) =

∣∣∣∣∣∣

i j k
u1(t) u2(t) u3(t)
v1(t) v2(t) v3(t)

∣∣∣∣∣∣
= i

∣∣∣∣
u2(t) u3(t)
v2(t) v3(t)

∣∣∣∣− j

∣∣∣∣
u1(t) u3(t)
v1(t) v3(t)

∣∣∣∣+ k

∣∣∣∣
u1(t) u2(t)
v1(t) v2(t)

∣∣∣∣

= i(u2(t)v3(t)− u3(t)v2(t))− j(u1(t)v3(t)− u3(t)v1(t)) + k(u1(t)v2(t)− u2(t)v1(t)) .

Then using the product rule in each scalar product we have

d

dt
u(t)× v(t) = i(u′2(t)v3(t)− u

′
3(t)v2(t))− j(u′1(t)v3(t)− u

′
3(t)v1(t)) + k(u′1(t)v2(t)− u

′
2(t)v1(t))

+ i(u2(t)v
′
3(t)− u3(t)v

′
2(t))− j(u1(t)v

′
3(t)− u3(t)v

′
1(t)) + k(u1(t)v

′
2(t)− u2(t)v

′
1(t))

= u′(t)× v(t) + u(t)× v′(t) .

Arc Length and Curvature

WWX: Working here.
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Dynamics of Particles

Kepler’s Laws

Cylinders, Surfaces of Revolution, and Quadric Surfaces
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Chapter 16 (Differentiation of Functions of Several Vari-

ables)

Section 16.4 (the Gradient and the Directional Derivative)

Problem 13 (increasing most rapidly)

For the f(x, y) given we have∇f = (x+y)̂i+(2x+2y)ĵ, so that ||∇f || =
√
(x+ y)2 + 4(x+ y)2 =√

5|x+ y|, which is the rate of change where f is increasing most most rapidly.

Problem 14 (increasing most rapidly)

For the f(x, y, z) given we have ∇f = (y2 + 6zx)̂i + (2xy + 2z2)ĵ + (4yz + 3x2)k̂, so that
||∇f || =

√
(x+ y)2 + 4(x+ y)2 =

√
5|x+y|, which is the rate of change where f is increasing

most most rapidly.

Problem 42 (a heat seeking particle)

The maximum heat flow would be in the direction of the gradient. In this problem this is

∇T = T0e
−(x2+3y2)/5

(
−2x

5
î− 6y

5
ĵ

)

= −T0

5
e−(x2+3y2)/5

(
2x̂i+ 6yĵ

)

Therefore at (a, b) the insect follows, the path in (x, y) that has slope given by

dy

dx
=

(∇T )y
(∇T )x

.

In this problem we obtain that this expression is

dy

dx
=

6y

2x
=

3y

x
,

or solving this differential equation

dy

y
= 3

dx

x

ln(|y|) = 3 ln(|x|) + C

|y| = C|x|3 .
Evaluating this expression at the point (a, b) to determine the constant C we find that
C = b/a3 and thus the path is given by

y =
b

a3
x3 .
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Chapter 17 (Multiple Integrals)

Section 17.5 (Triple Integrals)

Problem 7 (the cap of a sphere)

See the scanned notes for a sketch of the given projection. The projection on to the xy-
plane happens when z = 3. Thus projecting the 3D region onto the xy-plane requires
x2 + y2 + 9 = 16, or x2 + y2 = 7. The inequalities describing this volume then become

3 ≤ z ≤ 16− x2 − y2

−
√
7− x2 ≤ y ≤ +

√
7− x2

−7 ≤ x ≤ +7 .

Problem 8 (a region bounded by two planes)

See the scanned notes for a sketch of the given region. From that figure one sees that
the plane x + 2z = 2 has xz intercepts given by (x, z) = (0, 1) and (x, z) = (2, 0) with y
arbitrary. The plane 3x + 2y + z = 12 has intercepts on the three coordinate axis given
by (9, 0, 0), (0, 6, 0), and (0, 0, 12). Thus the volume sought is the region above the plane
x+ 2z = 2 and below the plane 3x+ 2y + z = 12.

Part (a): When we project our volume onto the xy-plane we have to break the region into
two regions Ω1

xy and Ω2
xy, since the smaller plane x + 2z = 2 intersects the xy axis when

z = 0 at the point x = 2. Letting Ω1
xy be the upper trapezoid of Ωxy we have for Ω1

xy the
following mathematical description

2− x

2
≤ z ≤ 12− 3x− 2y

0 ≤ y ≤ 12− 3x

2
0 ≤ x ≤ 2 .

Letting Ω2
xy denote the lower trapezoid of Ωxy we have the following mathematical description

0 ≤ z ≤ 12− 3x− 2y

0 ≤ y ≤ 12− 3x

2
2 ≤ x ≤ 4 .

Part (b): Projecting into the xz plane we need to break into two regions. For all points in
the region Ωxz for y we have

0 ≤ y ≤ 12− 3x

2
.
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In Ω1
xz, the first of the two regions we break Ωxz up into we have

0 ≤ z ≤ 12− 3x

2 ≤ x ≤ 4 ,

while in Ω2
xz, the second of the two regions we break Ωxz up into we have

2− x

2
≤ z ≤ 12− 3x

1 ≤ x ≤ 2 .

Problem 9 (between a plane and a cylinder)

Part (a): See the scanned notes for a diagram of the integration region. For Ωxz we have to
break the integration region into two parts depending on whether or not we are above/below
the z location where the cylinder intersects the xz-plane. This intersection occurs when
y = 0 or z = +2 (taking the positive root of z2 = 4). Letting Ω1

xz denote the projection onto
the xz-plane below the line z = 2 we have defining equations for Ω1

xz given by

4− z2 ≤ y ≤ 12− 3z

2

0 ≤ x ≤ 12− 3z

4
0 ≤ z ≤ 2 .

Letting Ω2
xz denote the projection onto the xz-plane above the line z = 2 we have defining

equations given by

0 ≤ y ≤ 12− 4x− 3z

2

0 ≤ x ≤ 12− 3z

4
2 ≤ z ≤ 4 .

Part (b): See the scanned notes for a diagram of this integration region. For Ωyz we again
have to break our integration region up into two components depending on whether we
are above/below the cylinders intersection on the y-axis. The cylinder intersects the y-axis
when x = 0 and z = 0 of y = 4. If we denote Ω1

yz as the region of the yz-plane below the
intersection y = 4 we have

0 ≤ x ≤ 12− 3z − 2y

4
√
4− y ≤ z ≤ 12− 2y

3
0 ≤ y ≤ 4 .
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If we denote by Ω2
yz the region above the intersection y = 4 we have

0 ≤ x ≤ 12− 3z − 2y

4

0 ≤ z ≤ 12− 2y

3
4 ≤ y ≤ 6 .

Problem 10 (between a plane and a sphere)

See the scanned notes for a diagram of the desired integration region. To be above the plane
and inside the sphere requires that our z variable satisfy

3− y ≤ z ≤ 36− x2 − y2 .

Next consider the plane y + z = 3. The curve resulting from the intersection of this plane
and the sphere x2 + y2 + z2 = 36 is given by the equation x2 + y2 + (3 − y)2 = 36. We can
expand the given quadratic (3−y)2, combine terms, and complete the square in the variable
y to obtain the following for the expression for the curve projected into the xy-plane

(
x√
2

)2

+

(
y − 3

2

)2

=
63

4
.

One can find the algebra to derive this on the scanned notes. This is the expression for an
ellipse and we can integrate over it by letting y range as

3

2
−
√

63

4
− x2

2
≤ y ≤ 3

2
+

√
63

4
− x2

2
,

while x ranges over
−
√
2 ≤ x ≤

√
2 .

These three inequalities complete the specification of our integration region.

Problem 12

To evaluate this we project onto xy-plane where

0 ≤ z ≤ 6− 2x− y

3

0 ≤ x ≤ 6− y

2
0 ≤ y ≤ 6 .

Thus we have

Iz =

∫∫∫
ρ(x, y, z)(x2 + y2)dV =

∫ 6

0

∫ 6−y
2

0

∫ 2− 2
3
x− y

3

0

k(x2 + y2)dzdxdy .
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Problem 14

Recall the definition of the z-coordinate of the center of mass is given by

z̄ =
1

M

∫∫∫
zρ(x, y, z)dV ,

with M given by

M =

∫∫∫

V

ρ(x, y, z)dV .

Projecting the integration region into the xy-plane gives the following limits

0 ≤ z ≤ 4− z2

0 ≤ y ≤ 4

−2 ≤ z ≤ 2 .

With these M is given by

M =

∫ 2

−2

∫ 4

0

∫ 4−x2

0

(6− z)dzdydx .

Once we have computed this we compute z̄ as

z̄ =
1

M

∫ 2

−2

∫ 4

0

∫ 4−x2

0

(6− z)zdzdydx .

Problem 15

To evaluate this integral we project onto the xy-plane which is

x2

a2
+

y2

b2
= 1 ,

or an ellipse. Solving for y in the above expression gives

y = ±b

√
1−

(x
a

)2
.

If our density is given by ρ = kr2 = k(x2 + y2 + z2), then M is given by

M =

∫∫
ρdV =

∫ +a

−a

∫ b
√

1−(y/a)2

−b
√

1−(y/a)2

∫ 2b−y

0

k(x2 + y2 + z2)dzdydx .

97



Problem 16

To begin recall the definition of the first moment with respect to the xz-plane is given by

Lxz =

∫∫∫

Ω

yρ(x, y, z)dV .

We want to consider the region Ω bounded by one sheet of the hyperboloid

−
(x
a

)2
+
(y
b

)2
−
(z
c

)2
= 1 . (19)

and the plane y = 2b. Let z = 0 and we get
(
y
b

)2 −
(
x
a

)2
= 1. The region looks like a

convertible or a “gondola hood”. Projecting onto the xy-plane since when we solve for z in
Equation 19 we get

z = ±c

√(y
b

)2
−
(x
a

)2
− 1 .

The region that we want to integrate over has z bounded by

−c

√(y
b

)2
−
(x
a

)2
− 1 ≤ z ≤ +c

√(y
b

)2
−
(x
a

)2
− 1 .

When z = 0 solving for x in
(
y
b

)2 −
(
x
a

)2
= 1 we get

x = ±a

√(y
b

)2
− 1 ,

thus the range for x is given by

−a

√(y
b

)2
− 1 ≤ x ≤ +a

√(y
b

)2
− 1 ,

and the range for y is given by b ≤ y ≤ 2b. Thus for Lxz we get

Lxz =

∫ 2b

b

∫ a
√

( y
b )

2−1

−a
√

( y
b )

2−1

∫ +c
√

( y
b )

2−(x
a)

2−1

−c
√

( y
b )

2−(x
a)

2−1

ykdzdxdy .

Section 17.6 (Integration using Cylindrical Coordinates)

Problem 1 (the volume of an ellipsoid)

To introduce the substitution r2 = x2 + y2 needed for cylindrical coordinates we write our
equation as

1

a2
(x2 + y2) +

z2

c2
= 1 ,

or in terms of r
z2

c2
+

1

a2
r2 = 1 ,
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or solving for z we have our ellipsoid given by

z = ±c

√
1−

(r
a

)2
.

Then the equation for our volume V becomes

V =

∫ +a

−a

∫ √
a2−x2

−
√
a2−x2

∫ c
√

1−r2/a2

−c
√

1−r2/a2
dzdydx = 2c

∫ a

−a

∫ √
a2−x2

−
√
a2−x2

√
1− r2/a2dydx .

Expressing the xy-integration in polar rather than Cartesian we can express the integral for
V as

V =

∫ 2π

0

∫ a

0

∫ c
√

1−r2/a2

−c
√

1−r2/a2
dzrdrdθ = (2π)2c

∫ a

0

√
1− r2/a2rdr .

To integrate this last integral we let v = r/a so that dv = dr/a and the above becomes

V = 4πc

∫ 1

0

√
1− v2a2vdv = 4πa2c

∫ 1

0

v
√
1− v2dv = 4πa2c

(
1− v2

(3/2)(−2)

∣∣∣∣
1

0

=
4πa2c

3
.

Problem 2 (the volume of Ω)

First note that the given paraboloid can be written in polar as

az =
√
2(x2 + y2) =

√
2r2 .

Next the bounds of the region we want to integrate is given by

√
12

a
r2 ≤ z ≤

√
a2 − r2

0 ≤ r ≤ R

0 ≤ θ ≤ 2π ,

Where we don’t know the value of R the upper limit of the variable r. To find the upper
limit on r we eliminate z from r2 + z2 = a2 and z =

√
12
a
r2 to give

12

a2
r4 + r2 = a2 ,

or

r4 +
a2

12
r2 − a4

12
= 0 .

Solving this quadratic equation for r2 we have

r2 =
−a2

12
±
√

a4

122
+ 4

(−a4

12

)

2
=

−a2

12
± a2√

12

(
1
12

+ 4
)1/2

2

=
−a2

12
± a2√

12

(
49
12

)1/2

2
=

a2

24
(−1 ± 7) =

a2

4
,
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where we have taken the positive sign since we must have r2 > 0. Thus r = a
2
and our

volume V when we project into the xy-plane becomes

V =

∫ 2π

0

∫ a/2

0

∫ √
a2−r2

√

12
a

r2
dzrdrdθ

= 2π

∫ a/2

0

(
√
a2 − r2r −

√
12

a
r3

)
dr

= 2π



(
(a2 − r2)3/2

(3/2)(−2)

∣∣∣∣
a/2

0

−
(√

12

a

(
r4

4

)∣∣∣∣∣

a/2

0




= 2π

[
−1

3

((
3

4
a2
)3/4

− a3

)
−

√
e12

4a

(
a4

8

)]
,

which could probably be simplified.

Section 17.7 (Integration using Spherical Coordinates)

Problem 28 (a moment of inertia problem)

We have r⊥ = r sin(θ) and the moment of inertia is defined as Iz =
∫∫∫

r2⊥ρdV . To compute
this using spherical coordinates we have

Iz =

∫∫∫
r2 sin2(θ)kdV

=

∫ 2π

0

∫ π

0

∫ b

a

r2 sin(θ)2kr2 sin(θ)drdθdφ

= 2πk

(
r5

5

∣∣∣∣
b

a

(∫ π

0

sin3(θ)dθ

)

=
2πk

5
(b5 − a5)

(∫ π

0

sin(θ)dθ −
∫ π

0

cos2(θ) sin(θ)dθ

)

=
2πk

5
(b5 − a5)

(
− cos(θ)|π0 +

cos(θ)3

3

∣∣∣∣∣

π

0

)

=
8πk

15
(b5 − a5) .

Problem 34 (the volume of a region within two spheres)

The volume of any region is given by the triple integral V =
∫∫∫

dV , which we evaluate by
splitting it into two pieces. We have the top “ice cream cone” shape which is defined by the
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limits

0 ≤ θ ≤ π

3
0 ≤ r ≤ 1

0 ≤ φ 2π ,

and the “bottom rind“ is defined by the limits
π

3
≤ θ ≤ π

2
0 ≤ r ≤ 2 cos(θ)

0 ≤ φ 2π

Thus the volume V is given by the sum of two integrals

V =

∫ 2π

0

∫ π/3

0

∫ 1

0

r2 sin(θ)drdθdφ+

∫ 2π

0

∫ π/2

π/3

∫ 2 cos(θ)

0

r2 sin(θ)drdθdφ .

So that to evaluate this we have

V

2π
=

1

3

∫ π/3

0

sin(θ)dθ +
1

3

∫ π/2

π/3

23 cos(θ)3dθ or

3V

2π
= −(cos

(π
3

)
− 1) + 8

∫ π/2

π/3

(cos(θ)− sin(θ)2 cos(θ))dθ or

3V

2π
=

(
1− 1

2

)
+ 8

[
sin(θ)|π/2π/3 −

sin3(θ)

3

∣∣∣∣
π/2

π/3

]
or

3V

2π
= 8

(
2

3
− 3

√
3

8

)
,

when we simplify. We might try to evaluate this expression in cylindrical coordinates where
the limits are given by

0 ≤ θ ≤ π

3
0 ≤ φ ≤ 2π

a/2

cos(θ)
≤ r ≤ a ,

and so the volume is given by

V =

∫ 2π

0

∫ π/3

0

∫ a

a/2
cos(θ)

r2 sin(θ)drdθdφ .

Problem 35 (the mass of a sphere)

We are told that that our density is given via ρ(x, y, z) = kr and we want to compute the
total mass M given by M =

∫∫∫
krdV . Thus we get

M =

∫ 2π

φ=0

∫ π/2

θ=0

∫ 2a cos(θ)

r=0

krr2 sin(θ)drdθdφ .
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This can be evaluated using

M = 2πk

∫ π/2

0

sin(θ)

∫ 2a cos(θ)

r=0

r3drdθ

= 2πk

∫ π/2

0

sin(θ)
r4

4

∣∣∣∣
2a cos(θ)

0

dθ

=
π

2
k

∫ π/2

0

sin(θ)24a4 cos4(θ)dθ

= 23a4πk

(
−cos5(θ)

5

∣∣∣∣
π/2

0

=
8a4πk

5
(−1)(0− 1) =

8πa4k

5
.
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Chapter 18 (Line and Surface Integrals)

Section 18.3 (Green’s Theorem)

Problem 1

We desire to verify Green’s theorem
∮

C

Pdx+Qdy =

∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dA , (20)

with F = yi + x2j and the curve C given by the circle x2 + y2 = a2. To parameterize this
curve C, let x(t) = a cos(t) and y(t) = a sin(t), so that dx = −a sin(t)dt and dy = a cos(t)dt
so that the contour integral (the left hand side of the Green’s theorem) becomes

I ≡
∮

C

Pdx+Qdy =

∮

C

(a sin(t))(−a sin(t)dt) + (a2 cos2(t))(a cos(t)dt) .

With this we see that I becomes

I =

∫ 2π

t=0

(−a2 sin2(t) + a3 cos3(t))dt

= −a2
∫ 2π

0

(
1− cos(2t)

2

)
dt+ a3

∫ 2π

0

(1− sin2(t)) cos(t)dt

= −a2

2
(2π) +

a2

2

∫ 2π

0

cos(2t)dt− a3
∫ 2π

0

sin2(t) cos(t)dt

= −a2π +
a2

2

(
sin(2t)

2

∣∣∣∣
2π

0

− a3
∫ 2π

0

sin2(t) cos(t)dt

= −a2π − a3
∫ 2π

0

sin2(t) cos(t)dt .

To evaluate the remaining integral let v = sin(t) so that dv = cos(t)dt and the integral above
becomes

−a3
∫ 0

0

v2dv = −a3
v3

3

∣∣∣∣
0

0

= 0 .

While the right hand side of Green’s theorem is given by
∫∫

Ω

(2x− 1)dxdy .

Converting this integral to polar by using x = r cos(θ), y = r sin(θ), and dxdy = rdrdθ our
right-hand-side integral becomes

∫ a

0

∫ 2π

0

(2r cos(θ)− 1)rdrdθ =

∫ a

0

∫ 2π

0

2r2 cos(θ)drdθ −
∫ a

0

∫ 2π

0

rdrdθ

= 0−
(
r2

2

∣∣∣∣
a

0

)∫ 2π

0

dθ = −a2

2
(2π) = −a2π ,

the same expression, proving the equivalence.
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Problem 5

By Green’s theorem we have
∮

C

2dx− 3dy =

∫∫

Ω

(
∂

∂x
(−3)− ∂

∂y
(2)

)
dA = 0 .

Problem 6

By Green’s theorem we have
∮

C

2ydx− 3xdy =

∫∫

Ω

(
∂

∂x
(−3x)− ∂

∂y
(2y)

)
dA

= (−3− 2)

∫∫

Ω

dA = −5(a
√
2)
a
√
2

2
= −5a2 ,

where we have evaluated
∫∫

Ω
dA (the area of the region Ω) using elementary geometry.

Problem 7

By Green’s theorem we have
∮

xydy =

∫∫

Ω

(
∂

∂x
(xy)− ∂

∂y
(0)

)
dA =

∫∫

Ω

ydA ,

which we recognize as the is the y coordinate of the center of mass of the object Ω. To
evaluate this expression we will convert the integral from Cartesian coordinates to polar
coordinates. We find

∫ a

r=0

∫ π

θ=0

r sin(θ)rdrdθ =
r3

3

∣∣∣∣
a

0

∫ π

0

sin(θ)dθ

=

(
a3

3

)
(− cos(θ)|π0 =

(
a3

3

)
(1 + 1) =

2a3

3
.

Section 18.4 (Surface Area and Surface Integrals)

Notes on the expression N = a×b
||a×b||

We compute the cross product of a× b first and then dot with k to find

(ā× b̄) · k =

∣∣∣∣∣∣

i j k
∆x 0 a3
0 ∆y b3

∣∣∣∣∣∣
= (k∆x∆y) · k = ∆x∆y ,
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as given in the book for ∆σ(N · k). If our surface is given via z = f(x, y) then from the
expression for N(x∗

i , y
∗
i ) given in the book, the required denominator of ∆σij is given by

|N̂(x∗
i , y

∗
i ) · k̂| =

+1
[
f 2
x(x

∗
i , y

∗
i ) + f 2

y (x
∗, y∗) + 1

]1/2 .

Then our differential of surface area ∆σij is given by

∆σij =
∆Aij

|N̂(x∗
i , y

∗
i ) · k̂|

=
[
f 2
x(x

∗
i , y

∗
i ) + f 2

y (x
∗, y∗) + 1

]1/2
∆Aij ,

the same as given in the book. If our surface is given by an equation of the form F (x, y, z) = 0
then the normal vector is

~N =
Fxî+ Fy ĵ + Fzk̂

||∇F || ,

so that |N · k̂| = |Fz|
||∇F || and our differential of surface area under this parametrization of the

surface is given by

dσ =
dAxy

|N̂ · k̂|
=

(F 2
x + F 2

y + F 2
z )

1/2

|Fz|
dAxy .

Notes on example 3

From the expression for N given in this section and the function F (x, y, z) given in this
example we have

N̂ =
Fxî+ Fy ĵ + Fzk̂√

F 2
x + F 2

y + F 2
z

=
x̂i+ zĵ√
x2 + z2

=
x

a
î+

z

a
k̂ .

Notes on example 4

In general the expression for the surface area A(S) is given by

A(S) =

∫∫

Ω

dA

|N̂ · n̂|
,

where n̂ is the normal to the plane where by we are taking the projection. If we project
into the yz plane where the surface is given via x = f(y, z) the surface area is given by the
general expression

A(S) =

∫∫

Ωyz

(
F 2
x + F 2

y + F 2
z

|Fx|

)
dAyz .

Since for this example we have Fx = −2x, Fy = 2y, and Fz = 2z, the above becomes

A(S) =

∫∫

Ωyz

(x2 + y2 + z2)1/2

|x| dydz .

105



We must replace x with its functional expression in terms of y and z or x = x(y, z) and get

A(S) =

∫∫

Ωyz

(2(y2 + z2)− 1)1/2

(y2 + z2 − 1)1/2
=

∫ √
2

r=1

∫ π/2

θ=0

(
2r2 − 1

r2 − 1

)1/2

rdθdr ,

where we have converted the integral we obtained into polar coordinates. We can compare
this result with what we get if we evaluate this integral in the xz-plane, where in general we
get

A(S) =

∫

Ωxz

dAxz

|N̂ · ĵ|
=

∫∫

Ωxz

dAxz(F
2
x + F 2

y + F 2
z )

1/2

|Fy|
.

For this problem in particular we have when we use y =
√
1 + x2 − z2 we find

A(S) =

∫∫

Ωxz

dAxz
(x2 + y2 + z2)1/2

|y| =

∫∫

Ωxz

dAxz
(1 + 2x2)1/2√
1 + x2 − z2

.

The range of limits can be obtained by letting y = 0 (to project into the xz-plane) where we
have z2 = 1 + x2. For a fixed x then we find 0 < z <

√
1 + x2 and the limits of x go from 0

to 1 not 1 to 0 for if the integrand was removed (replaced with a 1) we must have a result
that denotes a positive integral. Thus we get

A(S) =

∫ 1

0

∫ √
1+x2

0

(
1 + 2x2

1 + x2 − z2

)1/2

dzdx .

The above becomes ∫ 1

0

(1 + 2x2)1/2
∫ √

1+x2

0

dz

(1 + x2 − z2)1/2
dx .

Let z =
√
1 + x2v so that dz =

√
1 + x2dv, and remembering that d

dx
arcsin(x) = 1√

1−x2 we
get

A(S) =

∫ 1

0

(1 + 2x2)1/2
∫ 1

0

√
1 + x2dv

(1 + x2 − (1 + x2)v2)1/2
dx

=

∫ 1

0

(1 + 2x2)1/2
∫ 1

0

dv√
1− v2

dx

=

∫ 1

0

(1 + 2x2)1/2 (arcsin(x)|10 dx =
π

2

∫ 1

0

(1 + 2x2)1/2dx .

To finish this integral we let tan(u) =
√
2x so that sec2(u)du =

√
2dx to get for A(S)

A(S) =
π

2

∫ tan−1(
√
2)

0

sec(u)

(
1√
2
sec2(u)

)
du

=
π

2
√
2

∫ tan−1(
√
2)

0

sec3(u)du =
π

2
√
2

∫ tan−1(
√
2)

0

sec(u) sec2(u)du =
π

2
√
2
.
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Notes on example 5

Following the books derivation we obtain and then evaluate the given expression for M . We
have

M =

∫∫

Ωxy

(a− z)
a

z
dAxy with z = ±

√
a2 − x2

= a

∫ a

0

∫ x

0

(a−
√
a2 − x2)√

a2 − x2
dydx

= a2
∫ a

0

∫ x

0

(a2 − x2)−1/2dydx− a

∫ a

0

∫ x

0

dydx

= a2
∫ a

0

x(a2 − x2)−1/2dy − a

∫ a

0

xdx

= a2
(
(a2 − x2)1/2

(−2)(1/2)

∣∣∣∣
a

0

− a

(
x2

2

∣∣∣∣
a

0

= −a2(0− (a2)1/2)− a3

2
=

a3

2
.

Section 18.5 (Parametric Equations of Surfaces)

Notes on Surface Area in Parametric Coordinates

Following the derivation given in the book we need to compute

∂r

∂θ
× ∂r

∂φ
=

∣∣∣∣∣∣

î ĵ k̂
−R sin(θ) sin(φ) R cos(θ) sin(φ) 0
R cos(θ) cos(φ) R sin(θ) cos(φ) −R sin(φ)

∣∣∣∣∣∣
= î(−R2 cos(θ) sin(φ)2)− ĵ(R2 sin(θ) sin2(φ))

+ k̂(−R2 sin2(θ) sin(φ) cos(φ)− R2 cos2(θ) cos(φ) sin(φ))

= î(−R2 cos(θ) sin2(φ))− R2 sin(θ) sin2(φ)ĵ − k̂R2 sin(φ) cos(φ) .

So that we have that the norm of this vector is given by
∣∣∣∣
∣∣∣∣
∂r̄

∂θ
× ∂r̄

∂φ

∣∣∣∣
∣∣∣∣ = R2(cos2(θ) sin4(φ) + sin2(θ) sin4(φ) + sin2(φ) cos2(φ))1/2

= R2(sin4(φ) + sin2(φ) cos2(φ))1/2 = R2 sin(φ) .

As claimed in the book.

Notes on Example 5

Given the parametric representation of the points on the torus we compute ∂r
∂u

and ∂r
∂v

and
then we need to evaluate the cross product of these two vectors to compute the surface area.
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We thus find

∂r̄

∂u
× ∂r̄

∂v
=

∣∣∣∣∣∣

î ĵ k̂
−(R + a cos(v)) sin(u) (R + a cos(v)) cos(u) 0

−a sin(v) cos(u) −a sin(v) cos(u) a sin(v)

∣∣∣∣∣∣

= k̂(a(R + a cos(v)) sin(v) sin2(u) + a(R + a cos(v)) sin(v) cos2(u))

+ a cos(v)(̂i(R + a cos(v)) cos(u) + ĵ(R + a cos(v)) sin(u))

= a(R + a cos(v))
(
cos(u) cos(v)̂i+ sin(u) cos(v)ĵ + sin(v)k̂

)
.

Therefore with this the norm becomes
∣∣∣∣
∣∣∣∣
∂r̄

∂u
× ∂r̄

∂v

∣∣∣∣
∣∣∣∣
2

= a2(R + a cos(v))2((cos2(u) + sin2(u)) cos2(v) + sin2(v)) = a2(R + a cos(v))2 ,

the same as computed in the book.

Problem 1 (a surface in parametric form)

We are told that our surface has the following form

x = 2u− v

y = u+ 2v

z = u− v ,

Solving the first equation for v give v = 2u−x putting this into the second and third equation
give

y = u+ 4v − 2x = 5u− 2x and

z = u− 2u+ x = −u+ x ⇒ u = −z + x .

Putting this last equation for u into the one for y gives

y = 5(−z + x)− 2x = −5z + 3x ,

which is a plane thought the origin.

Section 18.6 (The Divergence and the Curl)

Problem 1 (practice with the divergence and the curl)

With v = xy sin(y)i+ x2zj− y cos(z)k, compute ∇ · v and ∇× v.

The expression ∇ · v is given by

∇ · v =
∂

∂x
(xy sin(y)) +

∂

∂y
(x2z) +

∂

∂z
(−y cos(z))

= y sin(y) + 0 + y sin(z) = y(sin(y) + sin(z)) .
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The expression ∇× v is given by

∇× v =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

xy sin(y) x2z −y cos(z)

∣∣∣∣∣∣

= i

(
∂

∂y
(−y cos(z))− ∂

∂z
(x2z)

)
− j

(
∂

∂x
(−y cos(z))− ∂

∂z
(xy sin(z))

)

+ k

(
∂

∂x
(x2z)− ∂

∂y
(xy sin(y))

)

= i(− cos(z)− x2) + j(0) + k(2xz − x sin(y)− xy cos(y)) .

Section 18.7 (The Divergence Theorem)

Notes on Example 1

From the text we have that F3 is given by

F3 = −GMρ

∫∫

S

zdσ

(x2 + y2 + z2)3/2
.

With F (x, y, z) = x2 + y2 − a2 our differential of surface area is dσ = dAyz

|N̂ ·̂i| where

N̂ = ± 2x̂i+ 2yĵ

2
√

x2 + y2
.

When we evaluate this unit vector on x2 + y2 = a2 we get that N̂

N̂ = ± x̂i + yĵ

a
.

This gives that |N̂ · î| = x
a
. Using this we find F3 becomes

F3 = −GMρ(4)

∫∫

Ωyz

z

(a2 + z2)3/2
dAyz

(x/a)

= −4GMρa

∫∫

Ωyz

z

(a2 + z2)3/2
dAyz√
a2 − y2

= −4GMρa

∫ h

0

∫ a

0

z

(a2 + z2)3/2
1√

a2 − y2
dzdy

= −4GMρa

(
(a2 + z2)−1/2

(−1/2)(2)

∣∣∣∣
h

0

∫ a

0

1

(a2 − y2)1/2
dy

= 4GMρa

(
1

(a2 + h2)1/2
− 1

a

)
arcsin

(y
a

)∣∣∣
a

0

= −4GMρa

(
1

a
− 1

(a2 + h2)1/2

)(π
2

)

= −2πGMρ(1 − a(a2 + h2)1/2) .
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Problem 1 (practice with the divergence theorem)

For this problem we desire to evaluate the integral

I ≡
∫∫

S

(2xi− 3yj+ 4zk) ·Ndσ ,

over the unit cube both directly and by using the divergence theorem. We begin by perform-
ing this integration directly. By breaking the total integration into pieces over the individual
six faces of the cube the above integral above becomes (here we use the notation () as a
shorthand to denote the integrand)

I =

∫∫
() · idσ +

∫∫
() · (−i)dσ +

∫∫
() · jdσ +

∫∫
() · (−j)dσ

+

∫∫
() · kdσ +

∫∫
() · (−k)dσ

=

∫ 1

0

∫ 1

0

2xdydz +

∫ 1

0

∫ 1

0

2xdydz +

∫ 1

0

∫ 1

0

(−3y)dydz +

∫ 1

0

∫ 1

0

3ydxdy

+

∫ 1

0

∫ 1

0

4zdxdy +

∫ 1

0

∫ 1

0

−4zdxdy = 2− 3 + 4 = 3 .

In the above the six integrals are the integrals over the faces where one coordinate is held
constant over the entire integration region. For each integral we hold x = 1, x = 0, y = 1,
y = 0, z = 1, and z = 0 constant.

As a second method to evaluate this integral we will use the divergence theorem, which states
that the desired integral is equal to the following

∫∫

S

v ·Ndσ =

∫∫∫
∇ · vdv .

The divergence of v is given by ∇ · v = 2− 3 + 4 = 3. Therefore
∫∫

S

v ·Ndσ = 3

∫∫∫
dV = 3 ,

the same result as before.

Problem 8 (some practice with the divergence theorem)

Our vector field for this problem is given by

~v = (x2 + y2)̂i+ 2xyĵ .

Thus the divergence theorem gives
∫∫

S

~v · N̂dσ =

∫∫∫

V

(∇ · ~v)dV =

∫∫∫
(2x+ 2x)dV .
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To evaluate this integral we convert to cylindrical where we get

∫ 2π

0

∫ 3

0

∫ 9−r2

0

2(r cos(θ))dzrdrdθ = 2

∫ 2π

0

∫ 3

0

(9− r2)r2 cos(θ)dθ = 2 · 0 = 0 ,

when we evaluate the θ integral.

Problem 13 (practice with the divergence theorem)

For this problem we want to evaluate
∫∫

S
v · Ndσ when v = Uzk and S is the portion of

the paraboloid z = a2 − x2 − y2 with z ≥ 0 and N the upper unit normal. Recall that an
explicit representation of the two inner/outer normals when we have a surface expressed in
the form z = f(x, y) is given by

N± = ±
(

fxi+ fyj− k√
1 + f 2

x + f 2
y

)
= ±

(
−2xi− 2yj− k√
1 + 4x2 + 4y2

)
.

In the above, to get the upper unit normal we take the minus sign so that the coefficient k
is positive. To evaluate this flux,

∫∫
s
v ·Ndσ, we will use the divergence theorem given by

∫∫

S

v ·Ndσ =

∫∫∫

V

(∇ · v)dV .

Now since ∇ · v = U , the above becomes

∫∫

S

v ·Ndσ = U

∫∫∫

V

dV = U

∫ 2π

θ=0

∫ a

ρ=0

∫ a2−x2−y2

z=0

dzρdρdθ

= U(2π)

∫ a

ρ=0

(a2 − x2 − y2)ρdρ = 2π

∫ a

ρ=0

(a2 − ρ2)ρdρ

= 2π

(
a2ρ2

2
− ρ4

4

∣∣∣∣
a

0

= π

(
a2a2 − a4

2

)
=

πa4

2
.

Problem 17 (practice with the divergence theorem)

We desire to find the total vertical force on the hemisphere x2 + y2 + z2 = a2 for z ≥ 0,
where the force per unit area is f̄ = αzk. We have for a total force F̄ the following

F̄ =

∫∫

S

f̄dσ .

So the the vertical force is Fvertical = F̄ · ẑ = F̄ · j, and gives

∫∫

S

f̄ · jdσ =

∫∫

S

αzdσ .
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As z = a cos(θ) on the sphere in spherical coordinates and the differential of area dσ (again in
spherical coordinates) is given by dσ = a2 sin(θ)dθdφ, we see that the integral above becomes

∫ π
2

θ=0

∫ 2π

φ=0

a2a cos(θ)α sin(θ)dθdφ = αa3(2π)

∫ 2π

θ=0

cos(θ) sin(θ)dθ

= αa3(2π)

(− cos2(θ)

2

∣∣∣∣
π/2

0

= αa3π .

Problem 21 (an expression for the volume)

From the given expression and the divergence theorem we find

1

3

∫∫

S

~F · n̂dσ =
1

3

∫∫∫
(∇ · ~F )dV =

3

3

∫∫∫
dV = V (D) ,

as we were to show.

Section 18.8 (Stokes’ Theorem)

Problem 1 (practice with Stokes’ theorem)

We desire to use Stokes theorem to evaluate
∫
Γ
v ·Tds for the vector v = 2zi−xj+3yk and

the curve Γ the triangular path from (2, 0, 0) to (0, 2, 0) to (0, 0, 3) and back to (2, 0, 0). We
begin by recalling Stokes’ theorem

∫

Γ

v ·Tds =

∫∫
(∇× v) ·Ndσ .

Thus to compute this we first need to compute ∇× v. We find

∇× v =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

2z −x 3y

∣∣∣∣∣∣
= i(3− 0) + j(2− 0) + k(−1 − 0) = 3i+ 2j− k .

We next compute N, the normal to the given surface. We begin by computing two vectors
in the plane, a and b as

a = (0− 2)i+ (2− 0)j+ (0− 0)k = −2i+ 2j+ k

b = (0− 2)i+ (0− 0)j+ (2− 0)k = −2i+ 0j+ 2k .

These represent vectors spanning the edges of the given planer triangle. Then the normal
vector N using these is given by the cross product, which we find

a× b =

∣∣∣∣∣∣

i j k
−2 2 1
−2 0 2

∣∣∣∣∣∣
= −j(−4 + 2) + 2(2i+ 2k) = 4i+ 2j+ 4k = N .
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We now need to normalize this vector to compute N̂. We find

N̂ =
N

||N|| =
2i+ j+ 2k√
4 + 1 + 4

=
1

3
(2i+ j+ 2k) .

Thus the required product in Stokes’ theorem is (∇ × v) · N = 1
3
(6 + 2 − 2) = 2. Using

Stokes’ theorem we now have ∫

Γ

v ·Tds = 2

∫∫

S

dσ .

To evaluate this remaining integral we project our integration region onto the x-y plane.
From the discussion in the book we have a differential of surface area for this projection
given by

dσ =
dxdy

|N · k| =
dxdy

(2/3)
=

3

2
dxdy .

Thus our integral above becomes

2

(
3

2

)∫∫

Ωxy

dxdy = 3

∫ 2

x=0

∫ 2−x

y=0

dydx

= 3

∫ 2

x=0

(2− x)dx = 3

(
2x− x2

2

∣∣∣∣
2

0

= 3(4− 2) = 6 ,

when we specify the limits of the integration in the x-y plane.

Problem 13 (more practice with Stokes’ theorem)

We want to evaluate
∫∫

S
∇× ~v · N̂ where our vector field is given by

~v = xyzî+ (x+ z)ĵ + (x2 − y2)k̂ .

To do that we will use Stokes’ theorem which is∫∫

S

∇× ~v · N̂dσ =

∫

C

~v · τ̂ dS .

Consider the curve C in the xy plane parametrized by x(t) = a cos(t) and y(t) = a sin(t) for
0 ≤ t ≤ 2π. Then we have

τ̂ =
ẋ̂i+ ẏĵ√
ẋ2 + ẏ2

,

and
dS =

√
ẋ2 + ẏ2dt .

Using these we get that the right-hand-side of Stokes’ theorem is given by
∫

C

~v · τ̂dS =

∫ 2π

0

((xyz)ẋ+ (x+ z)ẏ)|z=0 dt

=

∫ 2π

0

xẏdt = a2
∫ 2π

0

cos(t) cos(t)dt

= a2
∫ 2π

0

1 + cos(2t)

2
dt =

a2

2

(
2π +

1

2
sin(2t)|2π0

)
= πa2 .
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