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Chapter 2 (Characteristics of Data)

Questions 2.1-2.8

In the R code for this chapter we compute these statistics on this given data. With a computer
these type of exercises are quite simple.

Questions 2.9-2.10

Please see the output of the R code that comes with this chapter.

Questions 2.11-2.12

These would be worked in the same way as Question 2.13.

Question 2.13

Running the R code for this problem I get

[1] 2.504280808 0.001283146

Question 2.14

Running the R code for this problem I get

[1] 0.833876923 0.001718536

Question 2.15

Running the R code for this problem I get

[1] 52.860000 1.002724
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Question 2.16

If we assume that any tubes with values less than or equal to 66 (the lower specification
limit) or larger than or equal to 72 (the upper specification limit) we would find three such
tubes which is a 50% out of specification rate.

Question 2.17

If the upper specification limit is 100 then I get none of the samples violate this condition
giving a zero violation percentage.

Question 2.18

If we assume that a value of heat less than or equal to 70 (the lower specification limit) or
larger than or equal to 90 (the upper specification limit) are out of specification then I find
12 such data points which is a 15% out of specification rate.

Question 2.19

If we take the given numbers as the specification limits I find two samples are too low and
no samples are too large. These will give about a 2% out of specification rate.

Question 2.20

If we take the given numbers as the specification limits, I find one sample is too low and no
samples are too large. These will give about a 1.5% out of specification rate.

Question 2.21

From the given data I find only two samples with a value below 50 to give a 2% out of
specification rate.
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Chapter 3 (Simple Probability and Probability Distri-

butions)

Question 3.1

In the R code for this question I simulate an unbiased coin and compute the empirical
probability that the coin flip will land heads from the from the number of heads observed
When you run that code I plot this probability and you can see it converging to the true
value of p0 = 0.5. Let x be the random variable representing the number of heads observed
in n coin flips. Then as x is a binomial random variable the variance of this random variable
is np0(1− p0). Evaluating this I compute σ = 5.

Question 3.2

We do the same as in the previous question but now using p0 = 1/6 we compute σ = 3.72678
for the standard deviation of the number of sixes (in 100 rolls).

Questions 3.3-3.5

The number of nonconforming found when inspecting n is a binomial random variable. Using
the command dbinom we can easily compute these numbers.

Question 3.6

The probability that we draw zero or one bad gauges from the two we draw is given by a
hyperbolic random variable with form

P (d) =

(

1

d

)(

7

2−d

)

(

8

2

) ,

for 0 ≤ d ≤ 1. Evaluating this gives

[1] 0.75 0.25

for P (0) and P (1) respectively.
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Question 3.7

Here we get

[1] 0.625 0.375

Question 3.8

Here we get

[1] 0.53571429 0.42857143 0.03571429

Question 3.9

Here we get

[1] 0.3571429 0.5357143 0.1071429

Question 3.10

The number X of nonconforming parts is a binomial random variable which has a well
defined mean and variance. Computing these using the numbers given I get

[1] "mean= 40.000000; sigma= 6.000000; 3*sigma= 18.000000"

Question 3.11

These can be computed with the R function choose and factorial. We find these are given
by

[1] 210 210 5040

Question 3.12

Part (a): This would be
(

52

4

)

.
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Part (b): The rank is the “number” on the card. There are only thirteen ways to get a
four hand set of cards all of the same rank. This hand is also called “four-of-a-kind”.

Part (c): There are 13 ways to pick the rank that the three cards share. There are
(

4

3

)

ways
to pick these three cards. There are then 52− 4 = 48 other cards that can be the last card.
Thus there are

13

(

4

3

)

(48) = 2496 ,

hands of this type. This hand is also called “three-of-a-kind”.

Part (d): We would divide the above two numbers by the number in Part (a). This gives

[1] 4.801921e-05 9.219688e-03

Problem 3.13

Errors on a page are often modeled as Poisson with the given average as the parameter.
Using the R function ppois we can compute these two probabilities as

[1] 0.6626273 0.1205129

Problem 3.14

These are given by

[1] 0.5152161 0.2935616

Problem 3.15

These are given by

[1] 0.6766764 0.2706706 0.5939942

Problem 3.16

These are given by

[1] 0.09475787 0.17834131
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Problem 3.17

This is given by 0.5898322. The true distribution is a hypergeometric distribution. We can
use a binomial probability distribution as an approximate distribution with p = 100/1000 =
0.1 and n = 5. Then with the approximate distribution the probability requested in Part (a)
would be given by 0.5904900 very close to the exact probability.

Problem 3.18

This is given by 0.9043821. The correct distribution is the binomial. We can approximate
this distribution using a Poisson approximate with c0 = np = 0.1. Under this approximate
the probability requested in Part (a) would be given by 0.9048374 very close to the exact
probability.

Problem 3.19

Part (a-b): The exact distribution is a binomial with n = 100 and p0 as given and the
probability requested is given by

[1] 0.81856680: 0.16404144 0.01627265

Part (c): We can approximate this binomial distribution using a Poisson distribution.
Under that approximate the probabilities above would be

[1] 0.81873075 0.16374615 0.01637462

Problems 3.20 – 3.22

For each of these problems we will compute the value of c0 + 3σc and then evaluate the
given probability This is quite easy as all of the densities are Poisson. The results of this
calculation for each of the problems can be found in the R code for this chapter and we get

[1] 0.004024267 0.004533806 0.003834707

Problem 3.23

The true density in this case is hypergeometric but we can do much of the same for this
problem as we did in the previous ones. Following the same steps as above we find this
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probability given by 0.00836578.

Problem 3.24

We can use the dbinom command to find

[1] 0.4096 0.4096 0.1536 0.0256 0.0016

Problem 3.25

We can use the dbinom command to find

[1] 0.59049 0.32805 0.07290 0.00810 0.00045 0.00001

Problem 3.26

We can use the dhyper command for this problem where I find

[1] 0.47619048 0.47619048 0.04761905

Problem 3.27

We can also use the dhyper command for this problem where I find

[1] 0.23809524 0.53571429 0.21428571 0.01190476
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Figure 1: The control plot for Problem 2.

Chapter 4 (Control Charts in General)

Question 4.2

We plot the individual samples and the full sample mean in Figure 1. There we see that
the second sample is significantly larger than the others. A cause for this sample should be
investigated.

Question 4.3

We plot the individual samples and the full sample mean in Figure 2 (left). There we see
that most of the samples seem to be clustered around the mean indicating that this process
is looks to be in control.

Question 4.4

We plot the individual samples for x̄ and the range Figure 2 (right). There we see that the
third range sample and the 12th samples of x̄ are very large seem and should be investigated.
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Figure 2: Left: The control plot for Problem 3. Right: The control plot for Problem 4.
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Figure 3: Left: The control plot for Question 1. Right: A histogram of the raw data for
Question 1.

Chapter 6 (Control Charts for Measurements:

Process Control)

Question 6.1

As each of the x̄ is made up of samples with five elements we have

A2 = 0.577

D3 = 0

D4 = 2.115 ,

using the table in the back of the book. Using these values we get the control charts given
in Figure 3 (left). Notice that this process appears to be in control.

If we then take µ = x̄ and estimate σ using R̄ we find σ = 0.318143. Then the limits of the
x values that make up the sample are given by µ−3σ and µ+3σ. For these two values I get

[1] "confidence limits x: (2.739572, 4.648428)"

Notice that the right-most limit is significantly larger than the maximum specification limit
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Figure 4: Left: The control plot for Question 2. Right: The control plot for Question 3.

of 4.0. We can place these limits on the histogram of the individual x measurements see
Figure 3 (right). Note that from this plot we see that one sample has a very large value
(of 4.9) that is even beyond the 3σ limits. Note that also many of the individual oat cereal
packages had more than the allowed 4.0 (the maximum specification value and drawn as a
blue vertical line in the histogram) of moisture content. To make this process better match
what is required we would need to lower the process average value µ.

Question 6.2

In Figure 4 (left) I plot the control curves for x̄ and R for this process. Notice that we have
many points beyond the control limits in both x̄ and R. This process does not appear to be
in control. If we desire to hold to the low side of the diameter it looks like we accomplish
that in that more points are below the value of x̄ than are above it. We seem to have have
several (5-6 values) that are above the upper control limit of x̄.

Question 6.3

In Figure 4 (right) I plot the control curves for x̄ and R for this process. As is standard, in
the top plot I have drawn the control plot for x̄. In that plot I’ve also drawn the upper and
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lower control limits in light red lines and the the minimum specification value (of 0.25) in a
thicker red line. Notice that we see several points in both control plots that indicate that
the process is out-of-control.

As there are several value of x̄ that are beyond the minimum specification of 0.25 it looks
like our minimum specification will not be met in all cases. To correct for this we need to
raise the process mean µ. This can also be observed by assuming that the process was in
control (even though it looks like it is not) and then estimating µ and σ from the given data.
The three sigma limits from these are given by

[1] "confidence limits x: (0.197613, 0.366053)"

Notice that the lower confidence limit of 0.198 is quite a bit smaller than the minimum
specification of 0.25 and in fact there is a almost a 13% probability that a sample would fall
below that value.

As n = 2 if we are given x̄ and R for the first sample we can assume that x2 > x1 and solve

x̄ = 0.255 =
1

2
(x1 + x2)

R = 0.01 = x2 − x1 ,

to get x1 and x2. We find x1 = 0.26 and x2 = 0.25.

Question 6.4

In Figure 5 (left) I plot the control curves for x̄ and s for this process. In both plots I’ve
also drawn the upper and lower control limits in light red lines. Notice that we see several
points in both control plots that indicate that the process is out-of-control. I’m not sure
we would expect control as potentially this experiment is looking to find additives that help
to reduce corrosion. Thus some additives might work better than others and by doing the
experiments we would find out which ones. The points (or more specifically the underlying
element) far from the control center are ones that are significantly different than the others
and should be studied further.

Question 6.5

In Figure 5 (right) I plot the control curves for x̄ and R for this process. I do this for
the three different runs of 20 samples each. In each run I estimate x̄ and R̄. We have the
following observations about each run.

• For the first run: A few points outside of the control bounds for x̄ and three points
close to the upper control limit for R. Too many points are too far from the estimated
value of x̄ to ignore.
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Figure 5: Left: The control plot for Question 4. Right: The control plot for Question 5.

• For the second run: Some adjustments are made and control limits are recomputed.
Notice that now the process means seem in more control but that the control chart for
the range has two sample that are on the upper control limit. Thus it seems like the
process range is not under control.

• For the third run: More adjustments are made and both control limits are much tighter.
The process seems to now be in control.

We can see the progression of the estimates of x̄ and R̄ over each batch

[1] "xbar_1= 2.370000; rbar_1= 4.800000"

[1] "xbar_2= 2.700000; rbar_2= 4.250000"

[1] "xbar_3= 2.680000; rbar_3= 1.200000"

Question 6.6

In Figure 6 (left) I plot the control curves for x̄ and R for this process. As we are not told
the number of samples in each batch used to compute the sample x̄ I assumed n = 2. Note
that in both of these plots the process appears to be in control. In the control plot of the
process mean, the fact that the lower and upper confidence intervals are so far from the
sample values of x̄ indicates that my assumption that n = 2 is probably incorrect.
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Figure 6: Left: The control plot for Question 6. Right: The control plot for Question 7.

Question 6.7

In Figure 6 (right) I plot the control curves for x̄ and R for this process.
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Chapter 7 (Process Capability)

Notes on the Text

Specifications or Tolerance Limits: Case (2)

If we find we have dye that is 97.8% pure which is under our specification limit of 98%. If
we take a volume X of this dye and mix it with another volume X of dye with a purity of p
to have the combined total meet our specification we need to have

0.978X + pX

2X
> 0.98 .

Solving this for p gives p > 0.982 which is how the book gets the number quoted.

Manufacturing Tolerances vs. Specification limits

From my reading of the book, here is how I would describe some of the terms introduced.

Specification Limits: are how accurate the parts need to be for them to be correctly used
downstream of their manufacturing i.e for them to be used for their intended purpose.

Manufacturing Tolerances: would be constructs that specify how accurately a part needs
to be made. One would want the manufacturing limits to be at least as stringent as the
specification limits but sometimes they might be more stringent. By this I mean that the
part is required to be manufactured to a tighter specification than is actually required. In
the book this is argued to not be a good idea.

Question 7.1

Running the exercise 6.1 we see that the process appears to be in control and we should
certainly be able to compute the process capability indices.

The definition of CP is

CP =
US− LS

6σX

, (1)

Here US and LS are the upper and lower specification limits and we can estimate σX using
either

σX =
R̄

d2

σX =
s̄

c4
.
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From the problem statement we have LS = 0 and US = 4 and using the first formula above
I estimate σX = 0.318143. These together give CP = 2.0954958.

To compute CPK recall that its definition is

CPK = min

(

x̄− LS

3σX

,
US− x̄

3σX

)

. (2)

Using the numbers for this problem I compute CPK = 0.320611.

Next to compute PPK I estimate σX̄ using the standard deviation of the x̄ values. I then
multiply this by

√
n to get σX . This procedure gives PPK = 1.479004.

I think the take away from these calculations is that both CP and PPK are “large” (larger
than one) indicating that we are able to meet our specifications. The fact that CPK is
“small” (less than one) indicates that the mean of the process is too large relative to the
value of US and should be controlled lower.

Question 7.2

Modifying the previous exercise to compute the requested process specifications metrics I
find

[1] "C_p= 0.000162"

[1] "x_bar= 2.680000; LS= 1.176000; US= 1.176500; C_pk= -0.971428"

[1] "sigma_xbar= 0.285804; sigma_x= 0.639078; P_PK= 0.000130"

Notice that the process appears to be in control but based on the metrics above is unable to
meet the required specifications.

Question 7.3

Modifying the previous exercise to compute the requested process specifications metrics I
find

[1] "C_p= 1.805867"

[1] "x_bar= 4.879062; LS= 2.000000; US= 6.000000; C_pk= 1.012132"

[1] "sigma_xbar= 0.664333; sigma_x= 1.150658; P_PK= 0.579379"

Given the question statement I was not exactly sure how to compute the specification limits
LS and US in this case.
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Question 7.4

Modifying the previous exercise to compute the requested process specifications metrics I
find

[1] "C_p= 0.522159"

[1] "x_bar= 78.276923; LS= 70.000000; US= 90.000000; C_pk= 0.432187"

[1] "sigma_xbar= 3.313283; sigma_x= 5.738775; P_PK= 0.580844"
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