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Introduction

Here you’ll find solutions to the problems that I wrote up as I worked through this excellent
book. I would say that the problems you will find here are more challenging than the ones
found in a typical a first year calculus course. They are a great introduction to some more
advanced techniques. For some of the problems I used R to perform any needed calculations
or plots. Any code snippets for various exercises can be found at the following location:

http://www.waxworksmath.com/Authors/A_F/Ferrar/ferrar.html

I’ve worked hard to make these notes as good as I can, but I have no illusions that they
are perfect. If you feel that that there is a better way to accomplish or explain an exercise
or derivation presented in these notes; or that one or more of the explanations is unclear,
incomplete, or misleading, please tell me. If you find an error of any kind – technical,
grammatical, typographical, whatever – please tell me that, too. I’ll gladly add to the
acknowledgments in later printings the name of the first person to bring each problem to my
attention.
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Chapter 1 (Preliminary Discussion)

Examples I

Exercise 1

Using partial fractions we can write the terms un as

un =
1

n(n + 1)(n+ 2)(n+ 3)
=

A

n
+

B

n+ 1
+

C

n + 2
+

D

n + 3
.

Multiplying by the denominator of the fraction on the left-hand-side

1 = A(n + 1)(n+ 2)(n+ 3) +Bn(n + 2)(n+ 3) + Cn(n + 1)(n+ 3) +Dn(n+ 1)(n+ 2) .

If we set n = 0 in the above we get A = 1
6
. If we set n = −1 in the above we get B = −1

2
.

If we set n = −2 in the above we get C = 1
2
. Finally if we set n = −3 in the above we get

D = −1
6
. Thus we can write the terms of our series un as

un =
1

6n
− 1

2(n+ 1)
+

1

2(n+ 2)
− 1

6(n+ 3)

=
1

6n
− 3

6(n+ 1)
+

3

6(n+ 2)
− 1

6(n+ 3)

=
1

6n
− 1

6(n+ 1)
− 2

6(n + 1)
+

2

6(n+ 2)
+

1

6(n+ 2)
− 1

6(n+ 3)

=
1

6

[

1

n
− 1

n+ 1

]

− 1

3

[

1

n + 1
− 1

n + 2

]

+
1

6

[

1

n+ 2
− 1

n+ 3

]

.

This last expression is in a form that we can sum and we find

N
∑

n=1

un =
1

6

[

1− 1

N + 1

]

− 1

3

[

1

2
− 1

N + 2

]

+
1

6

[

1

3
− 1

N + 3

]

=
1

18
− 1

6

[

1

N + 1
− 2

N + 2
+

2

N + 3

]

.

Letting N → ∞ we get
∞
∑

n=1

un =
1

18
.

Which is the conclusion reached in the book.

Exercise 2

Using partial fractions we can write the terms un as

un =
1

n(n+ 2)
=

A

n
+

B

n + 2
.
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Multiplying by the denominator of the fraction on the left-hand-side gives

1 = A(n + 2) +Bn .

If we set n = 0 in the above we get A = 1
2
. If we set n = −2 in the above we get B = −1

2
.

Thus we have

1

n(n+ 2)
=

1

2n
− 1

2(n+ 2)

=
1

2n
− 1

2(n+ 1)
+

1

2(n+ 1)
− 1

2(n+ 2)

=
1

2

[

1

n
− 1

n+ 1

]

+
1

2

[

1

n+ 1
− 1

n + 2

]

.

This last expression we can sum to get

N
∑

n=1

1

n(n+ 2)
=

1

2

[

1− 1

N + 1

]

+
1

2

[

1

2
− 1

N + 2

]

=
1

2
+

1

4
− 1

2

[

1

N + 1
+

1

N + 2

]

=
3

4
− 1

2

[

1

N + 1
+

1

N + 2

]

.

Thus we find ∞
∑

n=1

un =
3

4
.

Exercise 3

Using partial fractions we can write the terms un as

n

(n + 1)(n+ 2)(n+ 3)
=

A

n + 1
+

B

n+ 2
+

C

n+ 3
.

Multiplying by the denominator of the fraction on the left-hand-side gives

n = A(n+ 2)(n+ 3) +B(n + 1)(n+ 3) + C(n+ 1)(n+ 2) .

If we set n = −1 in the above we get A = −1
2
. If we set n = −2 in the above we get B = 2.

Finally, if we set n = −3 in the above we get C = −3
2
. Thus we have shown that we can

write un as

un = − 1

2(n + 1)
+

2

n + 2
− 3

2(n+ 3)
.

Note that using this we can also write un as

un = −1

2

1

n+ 1
+

3

2

1

n+ 2
+

1

2

1

n+ 2
− 3

2

1

n+ 3

= −1

2

[

1

n+ 1
− 1

n+ 2

]

+
3

2

[

1

n + 2
− 1

n + 3

]

.
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This last expression is in a form we can sum easily. We find

N
∑

n=1

un = −1

2

[

1

2
− 1

N + 2

]

= −1

4
+

1

2(N + 2)
+

1

2
− 3

2(N + 3)

=
1

4
+

1

2

[

1

N + 2
− 3

N + 3

]

.

Letting N → ∞ we get
∑∞

n=1 un = 1
4
.

Exercise 4

Part (i): Using partial fractions we can write the terms un as

un =
2n+ 3

(n+ 1)(n+ 2)(n+ 3)
=

A

n + 1
+

B

n+ 2
+

C

n+ 3
.

Multiplying by the denominator of the fraction on the left-hand-side gives

2n+ 3 = A(n+ 2)(n+ 3) +B(n + 1)(n+ 3) + C(n+ 1)(n+ 2) .

If we set n = −1 in the above we get A = 1
2
. If we set n = −2 in the above we get B = 1.

If we set n = −3 in the above we get C = −3
2
. Thus we have

un =
1

2(n+ 1)
+

1

n + 2
− 3

2(n+ 3)

=
1

2(n+ 1)

1

2(n+ 2)
+

1

2(n+ 2)
+

1

n+ 2
− 3

2(n+ 3)

=
1

2

[

1

n + 1
− 1

n + 2

]

+
3

2

[

1

n+ 2
− 1

n+ 3

]

.

This last expression is in the form that we can sum and we find

N
∑

n=1

un =
1

2

[

1− 1

N + 2

]

+
3

2

[

1

3
− 1

N + 3

]

= 1− 1

2

[

1

N + 2
+

3

N + 3

]

.

If we let N → ∞ then we can conclude that the sum of un is one.

Part (ii): To start with we will cancel n on the top and bottom of the given fraction and
write it out using partial fractions to get

un =
n

(n− 1)(n+ 1)(n+ 2)
=

A

n− 1
+

B

n + 1
+

C

n + 2
.
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If we multiply by denominator of the fraction on the left-hand-side gives

n = A(n + 1)(n+ 2) +B(n− 1)(n+ 2) + C(n− 1)(n+ 1) .

If we let n = 1 we get A = 1
6
. If we let n = −1 then we get B = 1

2
. If we let n = −2 then

we get C = −2
3
. Thus we have shown that we can write un as

un =
1

6(n− 1)
+

1

2(n+ 1)
− 2

3(n+ 2)

=
1

6

[

1

n− 1
− 1

n

]

+
1

6n
+

1

2(n+ 1)
− 2

3(n+ 2)

=
1

6

[

1

n− 1
− 1

n

]

+
1

6n
− 1

6(n+ 1)
+

1

6(n+ 1)
+

1

2(n+ 1)
− 2

3(n+ 2)

=
1

6

[

1

n− 1
− 1

n

]

+
1

6

[

1

n
− 1

n+ 1

]

+
1

6(n+ 1)
+

3

6(n+ 1)
− 4

6(n+ 2)

=
1

6

[

1

n− 1
− 1

n

]

+
1

6

[

1

n
− 1

n+ 1

]

+
2

3

[

1

n+ 1
− 1

n + 2

]

.

This last expression is in a form that we can sum. Note that we cannot start our summation
at n = 1 since that is a singularity of the fraction we are summing. Thus we will start our
summation at n = 2. When we do this we find

N
∑

n=2

1

6

[

1− 1

N

]

+
1

6

[

1

2
− 1

N + 1

]

+
2

3

[

1

3
− 1

N + 2

]

.

If we let N → ∞ then we see

∞
∑

n=2

un =
1

6
+

1

12
+

2

9
=

17

36
.

Part (iii): Using partial fractions we can write un as

un =
2n+ 1

n2(n+ 1)2
=

A

n
+

B

n2
+

C

n + 1
+

D

(n + 1)2
.

If we multiply both sides by the denominator of the fraction on the left-hand-side we get

2n+ 1 = An(n + 1)2 +B(n + 1)2 + Cn2(n+ 1) +Dn2 .

If we let n = 0 we get B = 1. If we let n = −1 then we get D = −1. Thus we have just
argued that

2n+ 1 = An(n+ 1)2 + (n+ 1)2 + Cn2(n+ 1)− n2

= An(n+ 1)2 + 2n+ 1 + Cn2(n + 1)

= A(n3 + 2n2 + n) + 2n+ 1 + C(n3 + n2) .

If we take the derivative of this expression with respect to n we get

2 = A(3n2 + 4n+ 1) + 2 + C(3n2 + 2n) .
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If we let n = 0 we get A = 0. If we let n = −1 we get C = 0. Thus we have shown

un =
2n+ 1

n2(n+ 1)2
=

1

n2
− 1

(n+ 1)2
.

This is a form that we can sum and we have

N
∑

n=1

un = 1− 1

(N + 1)2
.

Thus
∑∞

n=1 un = 1.

Part (iv) : Using partial fractions we can write un as

un =
3n+ 5

(n+ 1)(n+ 2)(n+ 3)
=

A

n + 1
+

B

n+ 2
+

C

n+ 3
.

If we multiply both sides by the denominator of the fraction on the left-hand-side we get

3n+ 5 = A(n+ 2)(n+ 3) +B(n + 1)(n+ 3) + C(n+ 1)(n+ 2) .

If we let n = −1 we get A = 1. If we let n = −2 then we get B = 1. Finally if we let n = −3
to get C = −2. Thus we have shown that

un =
1

n + 1
+

1

n+ 2
− 2

n + 3

=
1

n + 1
− 1

n + 2
+

2

n + 2
− 2

n + 3

=
1

n + 1
− 1

n + 2
+ 2

[

1

n + 2
− 1

n + 3

]

.

This is in a form that we can sum explicitly. We find

N
∑

n=1

un = 1− 1

N + 2
+ 2

[

1

3
− 1

N + 3

]

=
5

3
− 1

N + 2
− 2

N + 3
.

Using this we find
∑∞

n=1 un = 5
3
.
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Chapter 2 (Formal Definitions)

Note that in the first few of these solutions I will present the proofs in more detail. In
later solutions I will present less details as the general ideas should be understood the more
problems the student works.

Examples II

Exercise 1

Part (i): To show αn converges to zero for any given ǫ > 0 we must be able to find a value
of N such that |αn| < ǫ for all n ≥ N . In this case this is the statement that

∣

∣

∣

∣

(−1)n
1

n

∣

∣

∣

∣

< ǫ ,

for all n ≥ N . The above will be true for any n such that n > 1
ǫ
. Thus we have found a

value of N such that |αn| < ǫ if we take N to be any integer larger than 1
ǫ
.

Part (ii): For this problem to show αn converges to zero for any given ǫ > 0 we must be
able to find a value of N such that |αn| < ǫ for all n ≥ N . In this case this is the statement
that

∣

∣

∣

∣

n + 1

n2 + 2

∣

∣

∣

∣

< ǫ ,

for all n ≥ N . To show this we first note that

n + 1 < 2n ,

for n > 1 and that
n2 + 2 > n2 ,

for all n. Thus combining these two inequalities we have

n+ 1

n2 + 2
<

2n

n2
=

2

n
.

Thus given any ǫ > 0 we can obtain |αn| < ǫ when

2

n
< ǫ .

This later inequalities will happen for n > 2
ǫ
. Thus we need to take N to be an integer larger

than the value of
2

ǫ
,

and in that case we will have |αn| < ǫ for all n ≥ N .
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Part (iii): For this part, as before, we assume that we are given ǫ > 0 then we seek to find
a value of N such that |αn| < ǫ for all n ≥ N . We will have |αn| < ǫ if

1√
n
< ǫ ,

or

n >
1

ǫ2
.

Thus if we pick N larger than 1
ǫ2

we will have |αn| < ǫ for all n ≥ N .

Part (iv): Assume that we are given ǫ > 0 then we seek to find a value of N such that
|αn| < ǫ for all n ≥ N . To find such a N we note that we can find an upper bound for the
numerator as

n2 + 3 < n2 + 3n2 = 4n2 ,

for n > 1. For the denominator we can find a lower bound by noting that we can take

n3 − 1 > n3 − n3

2
=

n3

2

Which will happen if

−1 > −n3

2
or

n3

2
> 1 or n >

3
√
2 ≈ 2.828427 .

Thus if we pick n larger than the maximum of these two numbers (one and 2.828427) say
the number 3 then we have

|αn| <
4n2

n3

2

=
8

n
.

We can make this smaller than any value of ǫ if we take n > 8
ǫ
. Thus in summary if we have

N larger than the maximum of the three numbers {1, 3
√
2, 8

ǫ
} we will have |αn| < ǫ for all

n ≥ N .

Part (v): Assume that we are given ǫ > 0 then we seek to find a value of N such that
|αn| < ǫ for all n ≥ N . To find such a N we first note that n + 5 < n + 5n = 6n for n > 1.
Then using that result we have

|αn| <
6n

n3/2
=

6√
n
.

We can make this less than ǫ if we take n > 36
ǫ2
. If we take N larger than one and 36

ǫ2
we will

have |αn| < ǫ for all n ≥ N .

Exercise 2

Part (i): We need to consider |αn − 1| and show that this can be made smaller than any ǫ
if n is large enough. The difference in the absolute value is

n

n + 1
− 1 =

−1

n+ 1
.
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Thus |αn − 1| = 1
n+1

. Since n + 1 > n for all n ≥ 1 we have that

|αn − 1| < 1

n
,

for all n ≥ 1. We can make this right-hand-side less than any ǫ > 0 if we take n > 1
ǫ
.

Part (ii): We need to consider |αn − 3| and show that this can be made smaller than ǫ if n
is made large enough. Note that we can write the expression for αn as

αn =
3n2 + 1

n2 − 5n
=

3n2 − 3(5n) + 3(5n) + 1

n2 − 5n
=

3(n2 − 5n) + 15n+ 1

n2 − 5n
= 3 +

15n+ 1

n2 − 5n
.

From the given expression if we can show that the fraction 15n+1
n2−5n

converges to zero then
by using the result from Example 6 in this section (that result is the statement that if βn

converges to β then βn + c converges to β + c) we will have that αn → 3 as we desired to
show.

To show that
15n+ 1

n2 − 5n
→ 0 ,

we first bound the numerator above as

15n+ 1 < 15n+ n = 16n ,

for all positive n > 1. Next for the denominator we have

n2 − 5n >
1

2
n2 ,

when

−5n > −1

2
n2 or 5 <

n

2
or n > 10 .

Thus using these two inequalities we have

15n+ 1

n2 − 5n
<

32n

n2
=

32

n
.

Thus if given ǫ > 0 we can make our fraction less than ǫ if we take N > 32
ǫ
.

Part (iii): Note that we can write the expression for αn as the following

αn =
4(n3 − 2n2 + 1) + 8n2 − 4 + 6n− 7

n3 − 2n2 + 1

= 4 +
8n2 + 6n− 11

n3 − 2n2 + 1
. (1)

Thus if we can show that
8n2 + 6n− 11

n3 − 2n2 + 1
→ 0 ,
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the original expression for αn has a limit of four. To show this note that we can find an
upper bound on the numerator as

8n2 + 6n− 11 < 8n2 + 6n < 8n2 + 6n2 < 14n2 ,

for all positive n > 1. Next we can find a lower bound on the denominator as

n3 − 2n2 + 1 > n3 − 2n2 > n3 − 1

2
n3 =

1

2
n3 .

Which is true when

−2n2 > −1

2
n3 or 4 < n .

Thus we have
8n2 + 6n− 11

n3 − 2n2 + 1
<

28n2

n3
=

28

n
.

Given an ǫ > 0 we can make this fraction less than ǫ if we take N > 28
ǫ
.

A more heuristic way of making this same argument is the following. Consider the fraction

f(n) ≡ 8n2 + 6n− 11

n3 − 2n2 + 1
=

8

n

(

n2 + 3
4
n− 11

8

n2 − 2n+ 1
n

)

. (2)

Then as n → +∞ we have
n2 + 3

4
n− 11

8

n2 − 2n+ 1
n

→ 1 ,

and 8
n
→ 0 as n → +∞ we expect the total fraction f(n) → 0 as n → ∞.

Exercise 3

Part (i): For the given expression for αn we have

αn =
n

n+ 1
=

n + 1− 1

n + 1
= 1− 1

n+ 1
,

which shows that the value of αn is one minus something that gets smaller as n increases.
Thus we have that αn < 1 giving an upper bound (that is never obtained) for αn. This form
also makes us expect that αn+1 > αn since in αn+1 we are subtracting a smaller fraction
from the constant one than in αn. We can “test” if αn+1 > αn is true by assuming it is and
seeing if using reversible transformations we can end up with an obviously true statement.
The statement αn+1 > αn is equivalent to

n + 1

n + 2
>

n

n+ 1
,

or
(n+ 1)2 > n(n + 2) .
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If we expand both sides and cancel common expressions on both sides we get 1 > 0 which
we know to be true. Thus αn+1 > αn and so we have that αn ≥ α1 =

1
2
for all n ≥ 1 showing

the lower bound for αn.

Part (ii): As suggested in the hint in Equation 1 we have decomposed αn into a constant
plus a function of n and we have shown that f(n) → 0 as n increases. From this we have
that αn > 4 and we have no least element. From the above arguments we might expect that
f(n + 1) < f(n) for n large enough. We can attempt to show this by assuming that it is
true and then performing reversible transformations on the inequality until we end up with
an expression known to be true. The expression f(n+ 1) < f(n) is then equivalent to

8(n+ 1)2 + 6(n+ 1)− 11

(n+ 1)3 − 2(n+ 1)2 + 1
<

8n2 + 6n− 11

n3 − 2n2 + 1
.

One would need to verifty this by clearing denominators and simplifying. Then if this is true
we have that αn ≤ 4 + f(1) showing that αn has a greatest value.

Exercise 4

Let x < 1 then in this example we want to show that xn converges to zero as n → ∞. Let
ǫ > 0 be given. Since ǫ is typically thought of as ”small”, we can assume that ǫ < 1. For
this problem we want to find a value of N such that

xn < ǫ ,

for all n ≥ N . If we take the logarithm of both sides of the above we have

n log(x) < log(ǫ) .

As x < 1 we have log(x) < 0 so if we divide both sides of the above inequality by log(x) we
must reverse the direction of the inequality to get

n >
log(ǫ)

log(x)
.

Now as both log(ǫ) and log(x) are negative the above fraction is positive (as it must be).
Thus if we pick a value of N that is larger than this fraction we will have |αn| < ǫ when
n ≥ N .

Exercise 5

Now as y is larger than one we can write it as y = 1 + p where p is a positive number. In
taking the nth power of y we note that

yn = (1 + p)n ,
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and the right-hand-side of the above must be larger than any single term we choose taken
from the binomial expansion of the expression (1 + p)n. This is because by the binomial
expansion (1 + p)n is equal to the sum of n+ 1 positive terms. Lets consider this inequality
written with the k + 1st binomial expansion term which gives

yn >

(

n

k + 1

)

pk+1

=
n!

(k + 1)!(n− k − 1)!
pk+1

=
n(n− 1)(n− 2) · · · (n− k)

(k + 1)!
pk+1

>
(n− k)k+1pk+1

(k + 1)!
.

Thus using this we have that

nk

yn
<

nk(k + 1)!

(n− k)k+1pk+1
=

(k + 1)!

pk+1

nk

(n− k)k+1
=

(k + 1)!

pk+1

nk

nk+1
(

1− k
n

)k+1

=
(k + 1)!

pk+1
(

1− k
n

)k+1

(

1

n

)

.

Now as

1− k

n
> 1− k

k + 1
=

1

k + 1
,

when n > k + 1. Thus we have

nk

yn
<

(

(k + 1)!(k + 1)k+1

pk+1

)

1

n
< ǫ ,

If we take

n >
(k + 1)!(k + 1)k+1

pk+1ǫ
.

This shows that the fraction nk

yn
converges to zero as n → ∞.

Exercise 6

Since we are told that αn converges to α given any ǫ > 0 we can find a N such that

|αn − α| < ǫ ,

for all n ≥ N . We can write the above inequality (by adding and subtracting c) as

|(αn − c)− (α− c)| < ǫ .

for all n ≥ N . This is the same as the statement that the sequence αn− c converges to α− c.
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To show convergence of cαn to cα let ǫ > 0 be given and find a value of N such that

|αn − α| < ǫ

|c| ,

for all n ≥ N . If we multiply both sides by |c| this becomes

|cαn − cα| < ǫ ,

which shows that cαn converges to cα.

Exercise 7

To start with recall that it is a fact of absolute values that

||αn| − |α|| ≤ |αn − α| .

Now because we are told that αn converges to α if we are given a value of ǫ > 0 we can find
a N such that |αn − α| < ǫ for all n ≥ N . By the above inequality we have also found a
value of N such that ||αn| − |α|| < ǫ for all n ≥ N since the same value of N works.

Exercise 8

To show that a sequence diverges through negative values we have to show that the sequence
−αn diverges though positive values.

Part (i): As −αn = n2 − 6 if we are given a value of A > 0 then we can make −αn greater
than this value if we take

n2 − 6 > A or n >
√
A+ 6 .

Part (ii): Here we have −αn = 2n so we will have −αn > A if 2n > A or n > log2(A).

Part (iii): Here we have αn = (−3)2n+1 = −3(−3)2n = −3 · 9n. Thus −αn = 3 · 9n. If we
take A > 0 then we can find n such that −αn > A if we take

n >
log(A/3)

log(9)
.
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Chapter 3 (Bounds: Monotonic Sequences)

Examples III

Exercise 1

Part (i): If a sequence is monotonic decreasing then

αn+1 < αn ,

or squaring both sides we must have

α2
n+1 < α2

n .

For the given expression for αn this is

1 +
1

n+ 1
< 1 +

1

n
,

or
1

n+ 1
<

1

n
,

which we know to be true.

Part (ii): As this sequence is just the one from Part (i) but shifted down by the constant
one, if the first sequence is a monotonic decreasing sequence then this one must be is also.

Part (iii): We start by writing αn as

αn =

√
n
(√

1 + 1
n
− 1
)

√
n3

=

√

1 + 1
n
− 1

n
.

Next we use Bernoulli’s inequality 1 one version of which is

(1 + x)r ≤ 1 + rx , (3)

when 0 ≤ r ≤ 1 and x is a real number x ≥ −1 to bound our numerator above as
√

1 +
1

n
=

(

1 +
1

n

)1/2

≤ 1 +
1

2n
.

This means that we can bound αn as

αn ≤ 1 + 1
2n

− 1

n
=

1

2n2
.

As this bounds αn by a monotonically decreasing sequence it can be shown that αn itself is
a monotonically decreasing sequence.

1https://en.wikipedia.org/wiki/Bernoulli’s inequality
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Exercise 2

Part (i): To work this exercise we first recall Stirling’s approximation or

n! =
√
2πn

(n

e

)n
(

1 +O

(

1

n

))

.

Thus using that we have

1

n!
=

1√
2πn

( e

n

)n
(

1

1 +O
(

1
n

)

)

≈ 1√
2πn

( e

n

)n
(

1− O

(

1

n

))

.

Thus using this we have
nn

n!
=

en√
2πn

(

1− O

(

1

n

))

,

which gets larger as n increase and thus αn is increasing.

Part (ii): The sequence αn will be increasing if αn+1 > αn or for this exercise that is

(n+ 1)2 − (n+ 1) + 2 > 3n2 − n + 2 .

Expanding the left-hand-side and simplifying, we find that this inequality is equivalent to

6n+ 2 > 0 ,

which is itself equivalent to n > −1
3
which we know is true. As every step is reversible the

original statement is true and αn is increasing.

Exercise 3

For this sequence to be increasing we must have

(n+ 1)2 + 2b(n + 1) + c > an2 + 2bn + c .

On expanding and canceling common terms this becomes

2an + a− 2b > 0 ,

which is equivalent to

n >
2b− a

2a
,

as we were to show.

18



Exercise 4

If bn > 0 and an+1 > an then we have

an+1(b1 + b2 + · · ·+ bn) > an(b1 + b2 + · · ·+ bn) .

Now as an is increasing we have

an > an−1 > an−2 > · · · > a2 > a1 ,

and thus the left-hand-side of the above is bounded below by

an+1(b1 + b2 + · · ·+ bn) > a1b1 + a2b2 + · · ·+ anbn .

Now if our sequence un is defined as

un =

∑n
i=1 aibi
∑n

i=1 bi
,

or
un(b1 + b2 + · · ·+ bn) = a1b1 + a2b2 + · · ·+ anbn .

Now if bn > 0 and an is monotonically increasing from what we proved above we have that

un+1(b1 + b2 + · · ·+ bn) > a1b1 + a2b2 + · · ·+ anbn ,

or

un+1 >
a1b1 + a2b2 + · · ·+ anbn

b1 + b2 + · · ·+ bn
= un ,

Thus un is an increasing sequence.

Exercise 6

If we assume that an converges to a limit (say the number l) then l must satisfy

l =
k

1 + l
,

which simplifies to
l2 + l − k = 0 .

We can show this if we let an be given by an = l + bn with bn → 0 as n → ∞. In this case
from the definition of an we have that bn must satisfy

(l + bn+1)(1 + bn + l) = k ,

or expanding and moving all terms with b to the left-hand-side we get

lbn + (l + bn)bn+1 + bnbn+1 = k − l − l2 .

Now the left-hand-side goes to zero as n goes to infinity which means that the right-hand-side
must be equal to zero. The book has a nice argument for that in this section of the text.
Thus we have that

l2 + l − k = 0 ,

as we were to show.
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Exercise 7

If an tends to a finite limit then this again means we can write it as an = l+bn where bn → 0
as n → ∞. Then from the definition of an we have that bn must satisfy

l + bn+1 = l2 + 2lbn + b2n + k − k2 ,

or expanding and moving all terms with b to the left-hand-side we get

b2n + 2lbn − bn+1 = k2 − k − l2 + l .

Now the left-hand-side goes to zero as n goes to infinity which means that the right-hand-side
must be equal to zero. This means that

l2 − l − k(k − 1) = 0 ,

or using the quadratic equation to solve for l this give

l =
l ±
√

4k2 − 4(k + 1)

2
=

1± (2k − 1)

2
,

assuming that 2k − 1 ≥ 0. The minus sign in the above expression gives

l =
2− 2k

2
= 1− k ,

while the plus sign in the above expression gives

k =
1 + 2k − 1

2
= k ,

as we were to show.
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Chapter 5 (The Comparison Test; The Ratio Test)

Examples IV

Exercise 1

As we have the bounds
1

(

n + 1
2

)2 <
1

n2
,

and the sum of the series with terms 1
n2 converges then the sum of the series with the smaller

terms must converge also by the comparison test.

Next as
3n− 1 < 3n ,

for all n we have that
1

3n− 1
>

1

3n
.

As
∑

1
3n

= 1
3

∑

1
n
and the sum on the right-hand-side or

∑

1
n
diverges so we must have that

∑

1
3n−1

also diverges by the comparison test.

Exercise 2

For the terms in the first sum notice that

1

(2n+ 1)3
<

1

8n3
,

and using the comparison test as
∑

1
n3 converges we know that

∑

1
(2n+1)3

also converges.

For the terms of the second sum notice that

n

(3n + 2)3
<

n

(3n)3
=

n

27n3
=

1

27n2
.

Then using the comparison test as
∑

1
27n2 converges so must

∑

n
(3n+2)3

.

Exercise 3

For the terms of the first sum we have that 4n− 1 < 4n for all n we have

1

4n− 1
>

1

4n
,
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squaring both sides of that inequality this means that

1

(4n− 1)2
>

1

(4n)2
,

and multiplying both sides by n we get that

n

(4n− 1)2
>

n

(4n)2
=

1

16n
.

Now using the comparison test we see that as
∑

1
16n

= 1
16

∑

1
n
diverges so must

∑

n
(4n−1)2

.

For the terms of the second series as 2n− 1 < 2n for all n by taking the square root of that
inequality we have that

(2n− 1)1/2 < (2n)1/2 ,

or equivalently that
1

(2n)1/2
<

1

(2n− 1)1/2
.

Now as
∑

1
(2n)1/2

= 1
21/2

∑

1
n1/2 diverges by the comparison test we must have that

∑

1
(2n−1)1/2

diverges also.

Examples V

Exercise 1

For each of the given examples I will present in the order (left-to-right and top-to-bottom)
the terms vn of a series that converges and has

un

vn
→ L > 0 ,

as n → ∞. One can then use Theorem 9 in the text to prove convergence. These results are
obtained by considering the numerator and the denominator of the terms un and retaining
only the leading order terms in each. We have

vn =
1

n2

vn =
1

n2

vn =
1

n2

vn =
1

n2

vn =
n

n5/2
=

1

n3/2

vn =
n2

n6
=

1

n2
.
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Exercise 2

As in the previous exercise for each of the given examples I will present in the order (left-
to-right and top-to-bottom) the terms vn of a series that diverges. See the previous exercise
for some discussion on this. We have

vn =
1

n

vn =
1

n

vn =
1

n

vn =
1

n

vn =
n

n3/2
=

1

n1/2

vn =
1

n
.

Exercise 3

The statement that un

vn
→ 0 means that for any ǫ > 0 we can find a N0 such that

∣

∣

∣

∣

un

vn

∣

∣

∣

∣

< ǫ ,

for all n ≥ N0. The above is equivalent to the statement that

|un| < ǫ|vn| ,

for n ≥ N0. As both un and vn are positive we have that un < ǫvn for n ≥ N0. We can
extend this statement to all n by finding a value of C such that each expression

un

vn
< C ,

for 1 ≤ n ≤ N0 is true. Since there are a finite number of such inequalities we can find such
a C. Then let C ′ = max(C, ǫ) and we have

un < C ′vn for all n .

Then we can use Theorem 8 in the book to prove that
∑

un converges.

Exercise 4

The first example of un and vn has the limit

un

vn
=

n−2

n−1
=

1

n
→ 0 ,
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as n → ∞. Here
∑

un is convergent but
∑

vn is not.

For the second example keep un as n−2 and take vn = n−3/2 then we have

un

vn
=

n−2

n−3/2
=

1

n1/2
→ 0 ,

as n → ∞. For this example we see that both
∑

un and
∑

vn are convergent.

Examples VI

Exercise 1

We will use d’Alembert’s test on the absolute value of un. We have

lim
n→∞

|un|
|un+1|

= lim
n→∞

(n+ 1)|x|n
(n+ 2)|x|n+1

=
1

|x| .

Our sum will converge if 1
|x| > 1 which happens if |x| < 1 or −1 < x < +1. For the case

where x = 1 then our sum is
∑

(n+ 1) which has terms that increase as n gets larger (they
go to infinity) and thus this sum cannot converge. If x = −1 then the terms of the sum
are un = (n + 1)(−1)n and the sequence of partial sums will osscilate between positive and
negative values and thus the infinite sum will not converge.

For the second example, d’Alembert’s test would compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

(

(n+ 1)|x|n
n + 2

× n+ 3

(n+ 2)|x|n+1

)

=
1

|x| .

Again our sum will converge if 1
|x| > 1 which happens if |x| < 1 or −1 < x < +1. If x = 1

then our sum is
∑

n+1
n+2

. This sum has terms that limit to one (and not zero) as n → ∞ and
thus this sum cannot converge. If x = −1 then |un| → 1 (which is not zero) and thus this
sum cannot converge.

For the third example, d’Alembert’s test would compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

(

(n+ 1)|x|n
(n + 2)(n+ 3)

× (n+ 3)(n + 4)

(n+ 2)|x|n+1

)

=
1

|x| .

Our sum will again converge if 1
|x| > 1 which happens if |x| < 1 or −1 < x < +1. If x = 1

then our sum is
∑

n+1
(n+2)(n+3)

. This sum converges as can be shown by using Theorem 9 by

comparing it with the terms from the convergent series
∑

1
n2 . If x = −1 then we have

un =
(n + 1)(−1)

(n+ 2)(n+ 3)
,

which are the terms of a convergence sum by using the alternating series test.
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Exercise 2

We can write this sum as

1 +
∞
∑

n=1

unx
n ,

with

un =
a(a+ 1)(a+ 2) · · · (a+ n− 2)(a+ n− 1)b(b+ 1)(b+ 2) · · · (b+ n− 2)(b+ n− 1)

c(c + 1)(c+ 2) · · · (c+ n− 2)(c + n− 1)d(d + 1)(d + 2) · · · (d+ n− 2)(d + n− 1)
.

Now to check this note that if n = 1 the products in the above become

u1 =
ab

cd
.

If n = 2 the products in the above become

u2 =
a(a+ 1)b(b+ 1)

c(c+ 1)d(d+ 1)
.

Thus from the above representation we when we compute the ratio un

un+1
we would get

un

un+1

=
(c + n)(d+ n)

(a+ n)(b+ n)x
. (4)

Thus the limit of this fraction as n → ∞ is the value 1
x
. By d’Alembert’s test our sum will

converge if 1
x
> 1 which happens if x < 1.

If x = 1 then from Equation 4 our limit is one and d’Alembert’s test is inconclusive. To
study convergence at x = 1 we can use Raabe’s test. To use Raabe’s test we need to compute

lim
n→∞

n

(

un

un+1
− 1

)

.

From Equation 4 when x = 1 this expression is

R = lim
n→∞

n

(

(c+ n)(d+ n)

(a+ n)(b+ n)
− 1

)

= lim
n→∞

n

(

(c+ n)(d+ n)− (a+ n)(b+ n)

(a + n)(b+ n)

)

= lim
n→∞

n

(

cd− ab+ (c+ d− a− b)n

(a + n)(b+ n)

)

= c+ d− a− b .

From this expression we see that our sum will converge if c + d − a − b > 1 and diverge if
c+ d− a− b < 1.
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Exercise 3

For the first series we have

un =
xn

n!
,

for n ≥ 0. Will use d’Alembert’s test so we need to compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

( |x|n
n!

)

×
(

(n + 1)!

|x|n+1

)

= lim
n→∞

n+ 1

|x| = ∞ .

As this is larger than one for any x our series converges for any value of x.

For the second series we have

un =
x2n+1

(2n+ 1)!
,

for n ≥ 0. For this series we will also use d’Alembert’s test where we find

lim
n→∞

|un|
|un+1|

= lim
n→∞

( |x|2n+1

(2n+ 1)!

)

×
(

(2n+ 3)!

|x|2n+3

)

= lim
n→∞

(2n+ 3)(2n+ 2)

|x|2 = ∞ .

As this is larger than one for any x our series converges for any value of x.

Exercise 4

Using d’Alembert’s test on this sum we need to compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

n!|x|n
(n+ 1)!|x|n+1

=
1

|x| lim
n→∞

1

n + 1
= 0 .

As this is smaller than one for any x our series diverges for all values of x.

Exercise 5

On this sum to use d’Alembert’s test we need to compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

nk|x|n
(n+ 1)k|x|n+1

=
1

|x| lim
n→∞

(

n

n+ 1

)k

=
1

|x| .

To compute this we used the fact that

lim
n→∞

(

n

n+ 1

)k

= lim
n→∞

1k = 1 .

Thus this sum will converge if 1
|x| > 1 or when |x| < 1.
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Exercise 6

Now the first sum can be written as

1 +

∞
∑

n=1

a+ (n− 1)

2nn!
xn .

To study convergence by using d’Alembert’s test we need to compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

(

(a+ n− 1)|x|n
2nn!

)

×
(

2n+1(n+ 1)!

(a + n)|x|n+1

)

=
2

|x| lim
n→∞

(

a + n− 1

a+ n

)

(n+1) = ∞ ,

for any x. If this limit is larger than one for any x our series converges for any value of x.

Now this second sum can be written as

1 +
∞
∑

n=1

n(a+ (n− 1))

2nn!
xn .

To study convergence by using d’Alembert’s test we need to compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

(

n(a+ n− 1)|x|n
2nn!

)

×
(

2n+1(n + 1)!

(n+ 1)(a+ n)|x|n+1

)

=
2

|x| lim
n→∞

(

n(a + n− 1)

(n+ 1)(a+ n)

)

(n + 1) = ∞ ,

for any x. If this limit is larger than one for any x our series converges for any value of x.

Exercise 7

Now this sum can be written as

1 +

∞
∑

n=1

n(a+ (n− 1))

bn
xn .

Using d’Alembert’s test on this series we compute

lim
n→∞

|un|
|un+1|

= lim
n→∞

(

n(a+ n− 1)|x|n
bn

)

×
(

bn+1

(n+ 1)(a+ n)|x|n+1

)

=
b

|x| lim
n→∞

(

n

n+ 1

)(

a + n− 1

a+ n

)

=
b

|x| .

This series will converge if this expression is greater than one or |x| < b and diverges if it
is less than one. If x = b then this limit becomes one and d’Alembert’s test is inconclusive.
When x = b the series is

1 +
∞
∑

n=1

n(a+ (n− 1)) ,
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which cannot converge as the terms in the sum increase to infinity as n → ∞. We can also
show that this series diverges using Raabe’s test. In that case the limit we need to evaluate
is

lim
n→∞

n

(

un

un+1
− 1

)

= lim
n→∞

n (1− 1) = 0 .

As this is less than one our series diverges.

Exercise 8

Using d’Alembert’s test for this sum we have

lim
n→∞

|un|
|un+1| = lim

n→∞

(

(a + n)|x|n
(b+ n)

)

×
(

(b+ n + 1)

(a+ n + 1)|x|n+1

)

=
1

|x| .

This series will converge if this is greater than one or when |x| < 1 and diverge if this smaller
than one. If x = 1 the sum is

∑ a+ n

b+ n
,

which does not converge as

lim
n→∞

a+ n

b+ n
= 1 6= 0 .

We can also show that this series diverges using Raabe’s test. In that case the limit we need
to evaluate is

lim
n→∞

n

(

un

un+1

− 1

)

= lim
n→∞

n (1− 1) = 0 .

As this is less than one our series diverges.

Exercise 9

If we are told that un ≤ un+1 for all n ≥ N0 (and strictly “less than” for at least one value
of n) then

lim
n→∞

un

un+1
,

must be less than one and therefore by d’Alembert’s test the sum
∑

n un diverges. If instead
we are told that

lim
n→∞

n

(

un

un+1

− 1

)

< 1 ,

then by Raabe’s test we can conclude that
∑

un diverges.

Exercise 10

These statements are the converses of the previous exercise in that by using d’Alembert’s
or Raabe’s test we can show that the needed expressions for those test satisfy the needed
conditions for the series to converge.
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Exercise 11

Assume this series can be written as
∑∞

n=1 un. It is not too difficult to see that it takes the
form

un =
1 · 3 · 5 · · · (2n− 3) · (2n− 1)

2 · 5 · 8 · · · (3n− 4) · (3n− 1)
xn for n ≥ 1 ,

Using this we can write down an expression for the fraction

|un|
|un+1|

.

Notice that the changes in going from one term in the sum un to the next term in the sum
un+1 results in the addition of some factors into the numerator and denominator. Thinking
in this way we have that

|un|
|un+1|

=
1

|x|

(

3n− 1

2n− 1

)

.

Thus from this we see that

lim
n→∞

|un|
|un+1|

=
3

2|x| .

The sum will converge if this is larger than one and diverge is this is less than one. Thus
the sum converges if −3

2
< x < 3

2
. If x = 3

2
then to use Raabe’s test we need to compute

lim
n→∞

n

( |un|
|un+1|

− 1

)

= lim
n→∞

n

(

2

3

(

3n− 1

2n− 1

)

− 1

)

= lim
n→∞

n

6n− 3
=

1

6
.

As this is less than one the sum must diverge when x = 3
2
.

Exercise 12

From the form given for un in the first sum we find

|un|
|un+1|

=
(2n+ 3)

(n+ 1)|x| →
2

|x| ,

as n → ∞. Thus by d’Alembert’s test this series will converge if this expression is greater
than one or |x| < 2 or −2 < x < +2 and diverge if it is larger than one. To determine
convergence when x = 2 we can use Raabe’s test where we need to compute

lim
n→∞

n

( |un|
|un+1|

− 1

)

= lim
n→∞

n

(

2n+ 3

2(n+ 1)
− 1

)

= lim
n→∞

n

(

1

2(n+ 1)

)

=
1

2
.

As this is less than one the sum must diverge when x = 2.
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From the form given for un in the second sum we find

|un|
|un+1|

=
(2n+ 1)

(n+ 2)|x| →
2

|x| ,

as n → ∞. Thus by d’Alembert’s test this series will converge if this expression is greater
than one or |x| < 2 or −2 < x < +2 and diverge if it is larger than one. To determine
convergence when x = 2 we can use Raabe’s test where we need to compute

lim
n→∞

n

( |un|
|un+1|

− 1

)

= lim
n→∞

n

(

2n+ 1

2(n+ 2)
− 1

)

= lim
n→∞

n

( −3

2(n+ 2)

)

= −3

2
.

While this is less than one which indicates divergence, it is negative so I’m not fully sure that
Raabe’s test holds in this case and thus we will try to answer the question of convergence
for this sum using different methods.

To study convergence at x = 2 the first thing we will do is to try to write an explicit
expression for un. Notice that we can put even factors into the denominator of un (and then
we have to put them into the numerator also) to write un as

un =
(n+ 1)!

1 · 3 · 5 · · · (2n− 3) · (2n− 1)
xn =

2 · 4 · 6 · · · (2n− 2) · (2n)(n+ 1)!

1 · 2 · 3 · 4 . . . (2n− 2) · (2n− 1)(2n)
xn

=
2nn!(n + 1)!

(2n)!
xn .

If x = 2 this simplifies to

un =
4nn!(n + 1)!

(2n)!
.

Now we cannot just apply d’Alembert’s test to this expression since it must give us an
indeterminate result (as it did above). To see this note that

lim
n→∞

un

un+1
= lim

n→∞

(

4nn!(n+ 1)!

(2n)!
× (2n + 2)!

4n+1(n+ 1)!(n+ 2)!

)

=
1

4
lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 1)(n+ 2)
=

1

4
(4) = 1 .

As another method we will use Sterling’s approximation2 or

n! ∼
√
2πn

(n

e

)n

. (5)

to study the behavior of un for large n. In this case we have

un ∼ 4n
√
2πn

(

n
e

)n√

2π(n+ 1)
(

n+1
e

)n+1

√
4πn

(

2n
e

)2n

=

√
π

e

√
n + 1

(1 + n)n+1

nn
.

2https://en.wikipedia.org/wiki/Stirling’s approximation
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when we simplify. If we recall that

(

1 +
1

n

)n

→ e ,

as n → ∞. We see that the above limit becomes
√
π

e
(n+ 1)3/2 · e =

√
π(n+ 1)3/2 → ∞ .

As this means that the terms of our sum diverge to infinity our series must diverge when
x = 2.

Exercise 13

From the form of un given we find

|un|
|un+1|

=
(2n+ 5)

|x|(n+ 1)
→ 2

|x| ,

Thus by d’Alembert’s test this series will converge if this expression is greater than one or
|x| < 2 or −2 < x < +2 and diverge if it is larger than one. If x = 2 then |un|

|un+1| → 1 and
our test is indeterminate. To determine convergence at x = 2 we can use Raabe’s test where
the limit we need to consider in this case is

n

(

2n+ 5

2(n+ 1)
− 1

)

= n

(

3

2(n+ 1)

)

→ 3

2
> 1 ,

and our series converges when x = 2.

Note that the terms of the second sum are equal to five times the terms of the first sum the
convergence region for this sum is the same as the convergence region for the first sum.

Exercise 14

From the form for un given we find

|un|
|un+1|

=
(3n+ 4)

|x|(n+ 1)
→ 3

|x| ,

as n → ∞. Thus by d’Alembert’s test this series will converge if this expression is greater
than one or |x| < 3 or −3 < x < +3 and diverge if it is larger than one. If x = 3 then
|un|

|un+1| → 1 and our test is indeterminate. To determine convergence at x = 3 we can use
Raabe’s test where the limit we need to consider in this case is

n

(

3n+ 4

3(n+ 1)
− 1

)

= n

(

1

3(n+ 1)

)

→ 1

3
< 1 ,

31



and our series diverges when x = 3.

For the next sum from the form for un given we find

|un|
|un+1|

=
(3n+ 7)

|x|(n+ 1)
→ 3

|x| .

By d’Alembert’s test this series will converge if this expression is greater than one or when
−3 < x < +3 and diverge if it is larger than one. If x = 3 then |un|

|un+1| → 1 and our test is
indeterminate. To determine convergence at x = 3 we can use Raabe’s test where the limit
we need to consider in this case is

n

(

3n+ 7

3(n+ 1)
− 1

)

= n

(

4

3(n+ 1)

)

→ 4

3
> 1 ,

and our series converges when x = 3.

Exercise 15

Part (i): For this part we will use the first sum in Exercise 14 as a guide. Namely we will
consider the sum ∞

∑

n=1

1 · 2 · · · (n− 1) · n
5 · 9 · 13 · · · (4n− 3) · (4n+ 1)

From the form for un given we find

|un|
|un+1|

=
(4n+ 5)

|x|(n+ 1)
→ 4

|x| ,

as n → ∞. Thus by d’Alembert’s test this series will converge if this expression is greater
than one or |x| < 4 or −4 < x < +4 and diverge if it is larger than one. If x = 4 then
|un|

|un+1| → 1 and our test is indeterminate. To determine convergence at x = 4 we can use
Raabe’s test where the limit we need to consider in this case is

n

(

4n+ 5

4(n+ 1)
− 1

)

= n

(

1

4(n+ 1)

)

→ 1

4
< 1 ,

and our series diverges when x = 4.

Part (ii): For this part we will use the second sum in Exercise 14 as a guide. Namely we
will consider the sum ∞

∑

n=1

1 · 2 · · · (n− 1) · n
9 · 13 · · · (4n− 3) · (4n+ 5)

.

Notice that this sum has a denominator “incremented by one” from the one considered in
the previous part. This makes the denominator larger and the terms of un smaller and will
allow the sum to converge at x = 4 as we will now show.
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The same arguments in the previous part of this exercise will show that the sum converges
for −4 < x < +4 and that if x = 4 our test is indeterminate. To determine convergence at
x = 4 we can use Raabe’s test where the limit we need to consider in this case is

n

(

4n+ 9

4(n+ 1)
− 1

)

= n

(

5

4(n+ 1)

)

→ 5

4
> 1 ,

and our series converges when x = 4.
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Chapter 6 (Theorems On Limits)

Examples VII

Exercise 4

Using partial fractions we can write

1
(

n+ 1
2

) (

n + 3
2

) (

n+ 5
2

) =
A

n + 1
2

+
B

n+ 3
2

+
C

n+ 5
2

.

If we multiply by the denominator of the fraction on the left-hand-side we get

1 = A

(

n+
3

2

)(

n +
5

2

)

+B

(

n+
1

2

)(

n +
5

2

)

+ C

(

n+
1

2

)(

n +
3

2

)

.

If we let n = −1
2
we get

1 = A(1)(2) so A =
1

2
.

If we let n = −3
2
we get

1 = B(−1)(1) so B = −1 .

If we let n = −5
2
we get

1 = 0 + 0 + C(−2)(−1) so C =
1

2
.

Using these values we have just shown that

1
(

n+ 1
2

) (

n + 3
2

) (

n+ 5
2

) =
1

2
(

n + 1
2

) − 1

n + 3
2

+
1

2
(

n+ 5
2

)

=
1

2
(

n + 1
2

) − 1

2
(

n + 3
2

) − 1

2
(

n + 3
2

) +
1

2
(

n+ 5
2

) . (6)

As an identity we will use notice that if we sum “differences” we get

N
∑

n=0

(an − an+1) = (a0 − a1) + (a1 − a2) + · · ·+ (aN−1 − aN ) + (aN − aN+1) = a0 − aN+1 . (7)

If we use this twice in Equation 6 when we sum the original expression from n = 0 to n = N
we have

N
∑

n=0

1
(

n+ 1
2

) (

n + 3
2

) (

n+ 5
2

) =
1

2

(

1
1
2

− 1

N + 3
2

)

− 1

2

(

1
3
2

− 1

N + 5
2

)

=
2

3
− 1

2N + 3
+

1

2N + 5
.

If we take N → ∞ we find that this sum is
∞
∑

n=0

1
(

n+ 1
2

) (

n+ 3
2

) (

n + 5
2

) =
2

3
.
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Exercise 5

Lets consider the partial fractions expansion

1

n2(n+ 1)
=

A

n
+

B

n2
+

C

n+ 1
.

If we multiply by the denominator of the fraction on the left-hand-side we get

1 = An(n + 1) +B(n+ 1) + Cn2 .

If we let n = 0 in the above we get B = 1. If we let n = −1 in the above we get C = 1. If
we let n = 1 in the above we get A = −1. Using all of these we can conclude that

1

n2(n+ 1)
= −1

n
+

1

n2
+

1

n+ 1
= −

(

1

n
− 1

n+ 1

)

+
1

n2
.

If we sum both sides from n = 1 to n = N and use the fact that sums of differences telescopes
i.e. using Equation 7 we get

N
∑

n=1

1

n2(n+ 1)
= −

(

1− 1

N + 1

)

+

N
∑

n=1

1

n2
. (8)

If we now take N → ∞ we get

∞
∑

n=1

1

n2(n+ 1)
= −1 +

∞
∑

n=1

1

n2
,

which is the expression we were wanting to prove.

Exercise 6

As a high level overview of how we will try to solve this problem we will use partial fractions
and Equation 7 to simplify the partial sums of the given expression. To start we note that
using partial fractions we can show

1

n(n + 1)
=

1

n
− 1

n+ 1
.

Recalling that
(a− b)3 = a3 − 3a2b+ 3ab3 − b3 ,

if we cube this fraction we get

(

1

n(n+ 1)

)3

=
1

n3
− 3

n2(n+ 1)
+

3

n(n + 1)2
− 1

(n + 1)3

=
1

n3
− 1

(n + 1)3
− 3

n2(n+ 1)
+

3

n(n + 1)2
.
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Note that summing the first two terms will give a sum of the form an − an+1 for which we
can use Equation 7. Using this insight we have

N
∑

n=1

(

1

n(n+ 1)

)3

=

(

1− 1

(N + 1)3

)

− 3
N
∑

n=1

1

n2(n+ 1)
+ 3

N
∑

n=1

1

n(n+ 1)2
. (9)

Note that we can use Equation 8 to simplify the third term in the above. To simply the
fourth term above we will use the same arguments as in the previous problem. We start by
using partial fractions to write

1

n(n+ 1)2
=

1

n
− 1

n + 1
− 1

(n + 1)2
.

Notice summing the first two terms will be the sum of a difference and thus if we sum this
from n = 1 to n = N we get

N
∑

n=1

1

n(n+ 1)2
= 1− 1

N + 1
−

N
∑

n=1

1

(n+ 1)2

= 1− 1

N + 1
−

N+1
∑

n=2

1

n2

= 1− 1

N + 1
−
(

N+1
∑

n=1

1

n2
− 1

)

= 2− 1

N + 1
−

N+1
∑

n=1

1

n2
. (10)

With this and Equation 8 we can simplify Equation 9. We have

N
∑

n=1

(

1

n(n + 1)

)3

= 1− 1

(N + 1)3

− 3

(

−1 +
1

N + 1
+

N
∑

n=1

1

n2

)

+ 3

(

2− 1

N + 1
−

N+1
∑

n=1

1

n2

)

.

Lets take the limit where N → ∞ and we get

N
∑

n=1

(

1

n(n+ 1)

)3

= 1 + 3− 3

∞
∑

n=1

1

n2
+ 6− 3

∞
∑

n=1

1

n2

= 10− 6

∞
∑

n=1

1

n2
= 10− π2 ,

when we use the identity
∞
∑

n=1

1

n2
=

π2

6
. (11)
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Exercise 7

The ratio we want to consider to use d’Alembert’s test is

un

un+1
=

−(x− n)

n + 1
=

n− x

n + 1
→ 1 ,

when n → ∞. Thus this test is inconclusive and we can’t tell for which x values the sum
converges or diverges. Notice that for any fixed x this fraction is eventually positive. To
attempt to determine convergence we will use Raabe’s test. To use that test we need to
compute

lim
n→∞

n

(

un

un+1
− 1

)

.

In this case we find

n

(

un

un+1
− 1

)

= n

(−x− 1

n+ 1

)

→ −x− 1 .

We will have convergence if this expression is greater than one. Thus we have convergence
if x < −2 and divergence if x > −2. For visualization this function is plotted in the R code
examples vii exercise 7.R.

Examples VIII

Exercise 4

If an → 0 as n → ∞ then we also have an + 1 → 1 as n → ∞. Then the ratio of these two
sequences will converge to

an
1 + an

→ 0

1
= 0 ,

by using the limit theorems from this section of the book.

Exercise 5

To start we assume that
∑

an converges. Then as an > 0 we have

an
1 + an

< an ,

so we can conclude that
∑ an

1 + an
,

converges using the comparison theorem. To prove the other direction we will assume that

∑ an
1 + an

,
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converges. Then we know that

lim
n→∞

(

an
an + 1

)

= 0 ,

or else the series of these terms cannot converge. We can show that this means that an → 0
as n → ∞. This means that we can find an N such that an is as small as we like for n ≥ N .
Select the N such that

an <
1

2
,

for n ≥ N . This means that for n ≥ N we have

1 + an <
3

2
,

so
2

3
<

1

1 + an
.

If we multiply by an this is
2

3
an <

an
1 + an

.

As the sum of the terms on the right-hand-side converges so must the sums of the terms on
the left-hand-side by the comparison theorem. As

∑

an is a multiple of this left-hand-side
sum it too must converge.

Exercise 6

If one of the sums converged but the other did not then this situation would be a contradiction
to the result from the previous exercise. Thus these two sums either both converge or both
diverge.

Exercise 7

We can use the same arguments from Exercise 5 to argue this case. The only things that at
change would be the numerical bounds (like the number 2

3
).

Exercise 8

If a−1
n converges then since

1

an + c
<

1

an
,

the sum of the terms (an + c)−1 converges by the comparison test. In the other direction if

∑ 1

an + c
,
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converges then

lim
n→∞

(

1

an + c

)

= 0 ,

thus an → ∞. Note that we can write

1

an + c
=

1

an

(

1 + c
an

) .

Then as an → ∞ there exists a N such that

c

an
< 2 ,

for n ≥ N . This means that

1

an + c
>

1

an(1 + 2)
=

1

3an
.

Using this and the comparison theorem as
∑

(an + c)−1 converges we have that
∑

1
3an

con-

verges (and so will
∑

a−1
n as it is a constant multiple of the previous sum).

Exercise 9

Consider the sums of the first N terms

sN =
N
∑

n=1

un ,

Thus

s2N =
N
∑

n=1

N
∑

m=1

unum =
N
∑

n=1

u2
n +

N
∑

n=1

N
∑

m=1;m6=n

unum = SN +
N
∑

n=1

N
∑

m=1;m6=n

unum . (12)

As un > 0 for all n we have that
s2N > SN ,

for all N . If we take the limit N → ∞ we get s2 > S.

In a similar way (but being a bit loose about the the upper most index N in these sums) we
have

s2N =

N
∑

n=1

N
∑

m=1

unum

=
N
∑

n=1;m=n+1

unum +
N
∑

n=m+1;n=1

unum +
N
∑

n,m=1;|n−m|≥2

unum

= 2
N
∑

n=1

unun+1 +
N
∑

n,m=1;|n−m|≥2

unum ≥ 2
N
∑

n=1

unun+1 .

Taking the limit N → ∞ we get s2 > 2σ.
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Exercise 10

Here we can take un = 1
n
. Then

∑

un diverges but
∑

u2
n converges.

Exercise 11

As the sum converges we can find a value of N such that the tail of the sum is less than any
number we specify. For example we will find n such that

∞
∑

m=n

um <
s

2
.

Then since

u1 + u2 + · · ·+ un +

∞
∑

m=n

um = s ,

we must have that
u1 + u2 + · · ·+ un >

s

2
.

Using this result we have
un

u1 + u2 + · · ·+ un

<
2un

s
.

Now from the above inequality and the comparison theorem as
∑

un converges we have that

∑ un

u1 + u2 + · · ·+ un
,

converges.

Examples IX

Exercise 1

We write our sum as the following

∑ 1

nk
=
∑ 1

ek log(n)
.

To use the condensation test in this later sum we will take

φ(n) =
1

ek log(n)
.

Then we have

hnφ(hn) =
hn

ekn log(h)
=

(

h

ek log(h)

)n

.
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For this later sum to converge we will need to have the fraction that we are taking the powers
of less than one or

h

ek log(h)
< 1 .

This later fraction means that

h < ek log(h) or h < hk .

As h is greater than or equal to 2 we can divide by h to get

1 < hk−1 .

Taking the logarithm of both sides we get

0 < (k − 1) log(h) .

Dividing by log(h) > 0 we get k−1 > 0 or k > 1. Thus this later sum will converge if k > 1.
By the condensation theorem then the original sum will converge under the same condition.

Exercise 2

We will use the condensation theorem on this sum. To do that we will let

φ(n) =
1

n log(n)(log(log(n)))k
.

With this function we see that

φ(hn) =
1

hnn log(h) log(n log(h))k
=

1

hnn log(h)(log(n) + log(h))k
.

With this we see that

hnφ(hn) =
1

n log(h)(log(n) + log(h))k
.

Now the sum
∑

hnφ(hn) is a series of positive terms which we will compare with the series

∑ 1

n log(n)k
,

using the ratio test. Ignoring the constant 1
log(h)

(which does not affect convergence of any

series) we have

lim
n→∞

(

1
n log(n)k

1
n(log(n)+log(h))k

)

= lim
n→∞

(

(log(n) + log(h))k

log(n)k

)

= lim
n→∞

(

1 +
log(log(h))

log(n)

)k

= 1 > 0 .

Thus by the comparison test the two series converge and diverge in tandem. As the series
with terms 1

n log(n)k
converges when k > 1 and diverges when k ≤ 1 the sum

∑

hnφ(hn) con-

verges/diverges under the same conditions. Using that result and the condensation theorem
we have that the original sum will converge when k > 1 and diverge when k ≤ 1.
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Exercise 3

As a first step note that we must have a > 0 or else the terms hnφ(hn) won’t limit to zero.
For simplicity we will assume that b > 0 and c > 0 also. Next note that the terms of the
original sum satisfy

1

na log(n)b log(log(n))c
<

1

na
,

and so by the comparison theorem the sum in this exercise will converge where the sum
∑

n−a does. This later sum will converge if a > 1 and thus we have convergence of the
original sum when a > 1.

At this point, when a ≤ 1, we have not answered the question of convergence. To continue
to study this sum we will try to use the condensation theorem. Towards that end we let

φ(n) =
1

na log(n)b log(log(n))c
.

Then we have

φ(hn) =
1

hannb log(h)(log(log(hn)))c
,

so that

hnφ(hn) =
1

log(h)h(a−1)nnb(log(n) + log(log(h)))c
. (13)

The factor 1
log(h)

will not affect convergence of the sum
∑

hnφ(hn) and so we can ignore it
in what follows. As h is an integer such that h ≥ 2 when a < 1 we have a− 1 < 0 and

ha−1 =
1

h1−a
< 1 .

Thus the factor
1

h(a−1)n
=

(

1

ha−1

)n

,

in hnφ(hn) is the nth power of an expression less than one. As this term is an upper bound
on the terms of hnφ(hn) by the comparison theorem we have that the series

∑

hnφ(hn)
converges when a < 1.

Thus we have shown that our sum converges for all a > 0 except perhaps a = 1. We now
consider this case. If a = 1 then Equation 13 (ignoring the constant log(h) factor) is

hnφ(hn) =
1

nb(log(n) + log(log(h)))c
.

Now since
1

nb(log(n) + log(log(h)))c
<

1

nb
,

then by the comparison theorem the given series will converge if
∑

nb does. This later series
will converge if b > 1. If b ≤ 1 then by Theorem 9 in the book (studying the limit of the
terms of two series un

vn
→ L) the above series will converge or diverge like

1

nb log(n)c
.
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Applying the condensation test to this series when φ(n) = 1
nb log(n)c

we need to consider

hnφ(hn) =
hn

hnbnc log(h)
=

1

hn(b−1)nc log(h)
.

To see if a series with terms like hnφ(hn) converges we will use a ratio test by computing

lim
n→∞

hnφ(hn)

hn+1φ(hn+1)
= lim

n→∞

h(n+1)(b−1)(n+ 1)c

hn(b−1)nc

= hb−1 lim
n→∞

(

1 +
1

n

)c

= hb−1 .

Our series will converge if this limit is greater than one or hb−1 > 1. As h ≥ 2 this will
happen if b > 1 and diverge if b < 1.

If we are in the case where a = 1 and b = 1 then our series has terms that look like

1

log(log(n))c
.

Applying the condensation test one more time with φ(n) = 1
log(log(n))c

we have

hnφ(hn) =
hn

log(n log(h)c
=

hn

(log(n) + log(h))c
.

As h ≥ 2 a series of terms with this form diverges (as the limit does not go to zero).

Thus in summary it looks like this series converges

• if a 6= 1 or

• if a = 1 and b > 1.
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Chapter 7 (Alternating Series)

Examples X

Exercise 1

For the first example we have un = (−1)n

n+1
for n ≥ 0. For this expression we have limn→∞ |un| =

0 and so our alternating series will converge.

For the second example we have un = (−1)n

2n+1
for n ≥ 0. For this expression we have

limn→∞ |un| = 0 and so our alternating series will converge.

Exercise 2

For this example we have un = (−1)n+1

np for n ≥ 1. For this expression we will have
limn→∞ |un| = 0 as long as p > 0 and in that case our alternating series will converge.

Exercise 3

I was not sure how to show this expression. If anyone sees how to show it please contact me.

Exercise 4

For this example we have un = (−1)n+1

x+n
for n ≥ 1. For this expression we will have

limn→∞ |un| = 0 and our alternating series will converge.

Exercise 5

For this example we have un = (−1)n+1xn

n
for n ≥ 1. For this expression we will have

limn→∞ |un| = 0 if |x| < 1 and our alternating series would converge in that case. If x = −1
then the terms of the series become

un =
(−1)n+1(−1)n

n
= −1

n
,

and the series will diverge. If x = 1 then the terms of the series become

un =
(−1)n+1

n
,

and the series will converge.
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Exercise 6

Lets consider the partial sum of this series i.e.the sum of the first N terms. We then have

SN = 1 +
N
∑

n=1

(−1)n+1

n(n + 1)
.

Note that we can write the fraction in the sum as

1

n(n + 1)
=

1

n
− 1

n+ 1
.

Then we have

SN = 1 +
N
∑

n=1

(−1)n+1

n
−

N
∑

n=1

(−1)n+1

n+ 1

= 1 +

N
∑

n=1

(−1)n+1

n
−

N+1
∑

n=2

(−1)n

n

= 1 + 1 +

N
∑

n=2

(−1)n+1

n
−

N+1
∑

n=2

(−1)n

n

= 2 + 2
N
∑

n=2

(−1)n+1

n
+

(−1)N

N + 1

= 2

N
∑

n=1

(−1)n+1

n
+

(−1)N

N + 1
.

If then take the limit where N → ∞ we get the desired expression.

Miscellaneous Examples On Chapters I-VII

Exercise 1

Part (a): Note that if we let the sequence of bn+1’s be given by the geometric mean of an
and bn i.e. bn+1 =

√
anbn than this exact result (and many others related to the arithmetic-

geometric mean) is discussed in great detail the paper [1]. This result is also mentioned
in a problem in [2]. What follows initially is mostly taken from [1] where we assume that
bn+1 =

√
anbn. This “warm-up” will suggest what we can do for the problem at hand.

In the case of the arithmetic-geometric mean if we consider an initial value for a and b and
then iterate the given sequence we will find that the larger initial number b will start to
decrease and the smaller initial number a will start to increase. Thus

a < a1 < b1 < b .
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Another iteration will give the same trend

a < a1 < a2 < b2 < b1 < b .

Thus the sequence {an} is increasing and bounded above and the sequence {bn} is decreasing
and bounded below. Thus each must progress a finite limit say β and α. We will now show
that the limit of each sequence is the same. Notice that we can compute

b1 − a1
b− a

=
b1 − a1
b− a

(

b1 + a1
b1 + a1

)

=
b21 − a21

(b− a)(b1 + a1)

=
1
4
(b+ a)2 − ba

(b− a)(b1 + a1)
=

1
4
(b− a)2

(b− a)(b1 + a1)

=
1

4

(

b− a

b1 + a1

)

=
b− a

4
(

1
2
(b+ a) + a1

)

=
b− a

2(b+ a) + 4a1
<

b− a

2(b+ a)
<

1

2
.

Thus we have shown that

b1 − a1 <
1

2
(b− a) .

This in tern implies that

b2 − a2 <
1

2
(b1 − a1) <

(

1

2

)2

(b− a) .

Continuing this process we have that

bn − an <

(

1

2

)n

(b− a) for n ≥ 1 .

Thus as n → ∞ we see that the limits β and α must be equal.

For the arithmetic-harmonic mean sequence (the iteration sequence given here) we can derive
a similar bound on the distance between an and bn as a function of n in terms of the initial
distance between the two starting values a and b. The idea is the same as above but the
algebra is a bit different. Towards that end we have

b1 − a1
b− a

=
2ab
a+b

− a+b
2

b− a
=

4ab
2(a+b)

− (a+b)2

2(a+b)

b− a

=
4ab− (a+ b)2

2(a+ b)(b− a)
=

4ab− (a2 + 2ab+ b2)

2(a+ b)(b− a)

= − a2 − 2ab+ b2

2(a+ b)(b− a)
= − (a− b)2

2(a + b)(b− a)

= − b− a

2(a+ b)
.

Using this we have that
|b1 − a1|
|b− a| =

|b− a|
2(a+ b)

<
1

2
.
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Thus

|b1 − a1| <
1

2
|b− a| ,

the same type of expression we had before. Generalizing this to arbitrary n we have

|bn − an| <
(

1

2

)n

|b− a| for n ≥ 1 .

Thus as n → ∞ we see that the limits of bn and an must be equal. One can use the R

code in misc examples i vii exercise 1.R to numerically experiment with iterating this
sequence.

Exercise 2

We start with a1 = cos(θ) and b1 = 1 and we will iterate

an+1 =
1

2
(an + bn)

bn+1 =
√

an+1bn ,

for n ≥ 2 “by hand”. For n = 1 we get

a2 =
1

2
(1 + cos(θ)) = cos2

(

θ

2

)

,

and

b2 =

√

cos2
(

θ

2

)

= cos

(

θ

2

)

.

Next for n = 2 we have

a3 =
1

2

(

cos

(

θ

2

)

+ cos2
(

θ

2

))

=
1

2
cos

(

θ

2

)(

1 + cos

(

θ

2

))

= cos

(

θ

2

)

cos2
(

θ

4

)

.

Using the above we have

b3 =

√

cos2
(

θ

2

)

cos2
(

θ

2

)

= cos

(

θ

2

)

cos

(

θ

4

)

.

For a4 we have

a4 =
1

2

(

cos

(

θ

2

)

cos

(

θ

4

)2

+ cos

(

θ

2

)

cos

(

θ

4

)

)

=
1

2
cos

(

θ

2

)

cos

(

θ

4

)(

cos

(

θ

4

)

+ 1

)

= cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)2

.
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Then for b4 we have

b4 =

√

cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)2

cos

(

θ

2

)

cos

(

θ

4

)

= cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

.

While some might be able to see the pattern at this point I’m going to compute another set
of terms by hand as its not fully clear yet to me what the full pattern is. For a5 I get

a5 =
1

2

(

cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)2

+ cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

)

=
1

2
cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)(

cos

(

θ

8

)

+ 1

)

= cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

cos

(

θ

16

)2

.

For b5 we get

b5 =

√

cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

cos

(

θ

16

)2

cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

= cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

cos

(

θ

16

)

.

From these expressions it looks like the sequence an takes the form

a1 = cos(θ)

a2 = cos

(

θ

2

)2

a3 = cos

(

θ

2

)

cos

(

θ

4

)2

a4 = cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)2

a5 = cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

cos

(

θ

16

)2

.

Thus the general pattern looks like

a1 = cos(θ)

an =

(

n−1
∏

k=1

cos

(

θ

2k

)

)

cos

(

θ

2n−1

)2

,

for n ≥ 2.
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For bn the terms we compute were

b1 = 1

b2 = cos

(

θ

2

)

b3 = cos

(

θ

2

)

cos

(

θ

4

)

b4 = cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

b5 = cos

(

θ

2

)

cos

(

θ

4

)

cos

(

θ

8

)

cos

(

θ

16

)

.

It looks like the pattern is

bn =

n
∏

k=1

cos

(

θ

2k

)

,

for n ≥ 1.

Now we want to show that an is monotone increasing and bn is monotone decreasing. Consider

an+1 − an =

(

n
∏

k=1

cos

(

θ

2k

)

)

cos

(

θ

2n

)

−
(

n−1
∏

k=1

cos

(

θ

2k

)

)

cos

(

θ

2n−1

)

=

(

n−1
∏

k=1

cos

(

θ

2k

)

)

[

cos2
(

θ

2n

)

− cos

(

θ

2n−1

)]

.

Using

cos2(x) =
1 + cos(2x)

2
,

we have

cos2
(

θ

2n

)

=
1

2

(

1 + cos

(

θ

2n−1

))

.

Thus we have that

cos2
(

θ

2n

)

− cos

(

θ

2n−1

)

=
1

2
− 1

2
cos

(

θ

2n−1

)

=
1

2

(

1− cos

(

θ

2n−1

))

.

As 1− cos(x) > 0 for all x we have that an+1 − an > 0 and an is monotone increasing.

Next consider

bn+1 − bn =
n
∏

k=1

cos

(

θ

2k

)

−
n−1
∏

k=1

cos

(

θ

2k

)

=

(

n−1
∏

k=1

cos

(

θ

2k

)

)

[

cos

(

θ

2n

)

− 1

]

.

As cos
(

θ
2n

)

< 1 we have cos
(

θ
2n

)

− 1 < 0 thus bn+1 − bn < 0 and bn is monotone decreasing.
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Next we want to show that both an and bn tend to sin(θ)
θ

as n → ∞. Note that from the
above expressions for an and bn we have that

an = bn−1 cos

(

θ

2n−1

)

,

thus as cos
(

θ
2n−1

)

→ 1 as n → ∞ if we can show that bn → sin(θ)
θ

as n → ∞ we also have
that an has this same limit. To show the limit for bn we start with the identity

sin(x) = sin
(

2
(x

2

))

= 2 sin
(x

2

)

cos
(x

2

)

.

If we repeat this expansion on the factor sin
(

x
2

)

we get

sin(x) = sin
(

2
(x

2

))

= 2
(

2 sin
(x

4

)

cos
(x

4

))

cos
(x

2

)

= 22 sin
(x

4

)

cos
(x

4

)

cos
(x

2

)

.

Repeating this expansion on the factor sin
(

x
4

)

(and simplifying) we get

sin(x) = 23 sin
(x

8

)

cos
(x

8

)

cos
(x

4

)

cos
(x

2

)

.

If we did this k times it looks like the pattern is thus

sin(x) = 2k sin
( x

2k

)

k
∏

i=1

cos
( x

2i

)

.

To evaluate this as k → ∞ we note that using the approximation sin(x) ≈ x for small x we
have that

lim
k→∞

(

2k sin
( x

2k

))

≈ lim
k→∞

(

2k
( x

2k

))

= x .

This means that we have just shown that

∞
∏

i=1

cos
( x

2i

)

=
sin(x)

x
,

as we were to show.

Exercise 3

Part (i): We can write the partial sum we want to evaluate as

N
∑

k=0

(k + 1)2xk .
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Expanding the quadratic and breaking up the sum into parts we get

N
∑

k=0

(k + 1)2xk =

N
∑

k=0

(k2 + 2k + 1)xk

=
N
∑

k=0

k2xk + 2
N
∑

k=0

kxk +
N
∑

k=0

xk

=

N
∑

k=1

k2xk + 2

N
∑

k=1

kxk +

N
∑

k=0

xk . (14)

Now as we have

S(x) =

N
∑

k=0

xk =
1− xN+1

1− x
. (15)

We know the value of the last sum in the expression for
∑N

k=0(k+1)2xk. If we take the first
derivative of the expression for S(x) we get

S ′(x) =
N
∑

k=0

kxk−1 =
−(N + 1)xN

1− x
+

1− xN+1

(1− x)2

=
−(N + 1)xN (1− x) + 1− xN+1

(1− x)2

=
1− (N + 1)xN −NxN+1

(1− x)2
.

If we multiply both sides of this expression by x we get

N
∑

k=0

kxk =
x− (N + 1)xN+1 +NxN+2

(1− x)2
. (16)

Note that when k = 0 the first term is identically zero. Next we take the derivative of both
sides of the above to get

N
∑

k=0

k2xk−1 =
1− (N + 1)2xN +N(N + 2)xN+1

(1− x)2
+

2(x− (N + 1)xN+1 +NxN+2)

(1− x)3
.

If we simplify the right-hand-side of the above we get

N
∑

k=0

k2xk−1 =
1 + x− (N + 1)2xN + (2N2 + 2N − 1)xN+1 −N2xN+2

(1− x)3
.

If we multiply both sides by x we get

N
∑

k=0

k2xk =
x+ x2 − (N + 1)2xN+1 + (2N2 + 2N − 1)xN+2 −N2xN+3

(1− x)3
. (17)
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We could use the expressions just derived in the right-hand-side of Equation 14 to evaluate
the given sum. An easier solution however might be to consider the desired sum

N
∑

k=0

(k + 1)2xk ,

and then shift the k index down by one to get

N−1
∑

k=1

k2xk−1 =
1

x

N−1
∑

k=1

k2xk .

We can now use Equation 17 to evaluate this. We find

N−1
∑

k=1

k2xk−1 =
1 + x−N2xN−1 + (2N2 − 2N − 1)xN − (N − 1)2xN+1

(1− x)3
.

Part (ii): We can write the term in the sum as two parts

1 + r2

r(r + 1)(r + 2)(r + 3)
=

1

r(r + 1)(r + 2)(r + 3)
+

r

(r + 1)(r + 2)(r + 3)
.

Now using partial fractions on the first term gives

P1 =
1

r(r + 1)(r + 2)(r + 3)
= − 1

2(r + 1)
+

1

2(r + 2)
− 1

6(r + 3)
+

1

6r
. (18)

Using partial fractions on the second term gives

P2 =
r

(r + 1)(r + 2)(r + 3)
=

2

r + 2
− 3

2(r + 3)
− 1

2(r + 1)
. (19)

If we sum the terms in P1 from r = 1 to r = n we have

S1 = −1

2

n
∑

r=1

1

r + 1
+

1

2

n
∑

r=1

1

r + 2
− 1

6

n
∑

r=1

1

r + 3
+

1

6

n
∑

r=1

1

r

= −1

2

n+1
∑

r=2

1

r
+

1

2

n+2
∑

r=3

1

r
− 1

6

n+3
∑

r=4

1

r
+

1

6

n
∑

r=1

1

r

=
1

2

[

−1

2
+

1

n+ 2

]

+
1

6

[

1 +
1

2
+

1

3
− 1

n+ 1
− 1

n+ 2
− 1

n + 3

]

=
1

18
− 1

6(n+ 1)
+

1

3(n+ 2)
− 1

6(n+ 3)
,

when we simplify. To evaluate the second term P2 we will write it as follows

3

2(r + 2)
− 3

2(r + 3)
+

1

2(r + 2)
− 1

2(r + 1)
.
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If we sum these terms from r = 1 to r = n we get

S1 =
3

2

n
∑

r=1

1

r + 2
− 3

2

n
∑

r=1

1

r + 3
+

1

2

n
∑

r=1

1

r + 2
− 1

2

n
∑

r=1

1

r + 1

=
3

2

n+2
∑

r=3

1

r
− 3

2

n+3
∑

r=4

1

r
+

1

2

n+3
∑

r=3

1

r
− 1

2

n+1
∑

r=2

1

r

=
3

2

[

1

3
− 1

n+ 3

]

+
1

2

[

1

n+ 2
+

1

n+ 3
− 1

2

]

=
1

4
+

1

2(n+ 2)
− 1

n+ 3
.

Thus in total when we add the two parts S1 and S2 and simplify we get

n
∑

r=1

1 + r2

r(r + 1)(r + 2)(r + 3)
=

11

18
− 1

6(n+ 1)
+

5

6(n+ 2)
+

5

6(n+ 3)
.

Exercise 4

Part (i): Lets use the condensation test (Theorem 16 in the book) with

φ(n) =
1

n log(n)2
.

Then from this functional form we see that

hnφ(hn) =
hn

hnn2 log(h)2
=

1

n2 log(h)2
.

The sum of the terms hnφ(hn) converges by comparing its terms with that from the con-
vergent series

∑

n−2. As the series
∑

hnφ(hn) converges by using the condensation test so
does the series

∑

φ(n).

Part (ii): For the terms of this sum note that we have

n

n3 + 1
<

n

n3
=

1

n2
,

and thus our series converges by using the comparison test with the convergence series
∑

n−2.

Exercise 5

Note that this sum has terms un given by

un ≡
∏n−1

k=0(b+ k)
∏n−1

k=0(a + k + 1)
,
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using the convention that
∏n

k=0 fk = 1 if n ≤ 0. Then consider

un

un+1
=

∏n−1
k=0(b+ k)

∏n−1
k=0(a + k + 1)

×
∏n

k=0(a + k + 1)
∏n

k=0(b+ k)
=

a+ n+ 1

b+ n
→ 1 ,

as n → ∞. Thus d’Alembert’s test does not tell us if the sum converges. To determine
convergence we will use Raabe’s test. With this test we need to compute

n

(

un

un+1
− 1

)

= n

(

a+ n + 1

b+ n
− 1

)

= n

(

1 + a− b

b+ n

)

→ 1 + a− b ,

as n → ∞. Now as a > b we have that a− b > 0 and 1 + a− b > 1. Thus by Raabe’s test
∑

n un converges.

We will now show that the terms are monotonically decreasing. To do that using what we
derived for the ratio above we have that

un+1 =

(

b+ n

a + n+ 1

)

un .

As b < a we have that
b+ n

a+ n + 1
<

a + n

a+ n+ 1
< 1 .

Thus

un+1 =

(

b+ n

a + n+ 1

)

un < un ,

and our sequence is monotonically decreasing.

Now we will show that the given sum converges to a
a−b

. This “proof” is much like the one
given for Exercise 17 below. We start with

a

a− b
=

(a− b) + b

a− b
= 1 +

b

a− b
= 1 +

b

a + 1

(

a + 1

a− b

)

. (20)

Note that this last factor is the “same” as the first fractional expression we started with but
with the values of a and b increased by one. That is using Equation 20 again it becomes

a+ 1

a− b
= 1 +

b+ 1

a + 2

(

a + 2

a− b

)

.

We can keep applying this identity getting a final fraction that has it numerator increased
by one from the previous numerator. This gives the pattern

a

a− b
= 1 +

b

a+ 1

(

a+ 1

a− b

)

once

= 1 +
b

a+ 1

(

1 +
b+ 1

a+ 2

(

a+ 2

a− b

))

= 1 +
b

a+ 1
+

b

a+ 1

(

b+ 1

a+ 2

)(

a+ 2

a− b

)

twice

= 1 +
b

a+ 1
+

b

a+ 1

(

b+ 1

a+ 2

)(

1 +

(

b+ 2

a+ 3

)

a+ 3

a− b

)

= 1 +
b

a+ 1
+

b

a+ 1

(

b+ 1

a+ 2

)

+
b

a+ 1

(

b+ 1

a+ 2

)(

b+ 2

a+ 3

)(

a+ 3

a− b

)

three times .

The patterns should now be clear. We can continue this expansion n + 1 times to get the
expression given in the book.
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Exercise 6

If we combine the fractions in the argument of the sum we get

un =
2n+ 1− n

n(2n+ 1)
− 1

2n+ 2
=

n + 1

n(2n+ 1)
− 1

2n+ 2

=
(n + 1)(2n+ 2)− n(2n+ 1)

n(2n+ 1)(2n+ 2)
=

3n+ 2

n(2n+ 1)(2n+ 2)
.

A sum with these terms converges by the comparison test with a series with the terms n−2.

Exercise 7

Part (i): Using partial fractions we can write

1

n(n+ 1)(n+ 2)
=

1

2n
− 1

n+ 1
+

1

2(n+ 2)

=
1

2n
− 1

2(n+ 1)
− 1

2(n+ 1)
+

1

2(n+ 2)
.

We wrote the expression above as we did to facilitate the sum we will take next. Towards
evaluating the sum we have

N
∑

n=1

1

n(n + 1)(n+ 2)
=

1

2

(

N
∑

n=1

1

n
−

N
∑

n=1

1

n+ 1

)

− 1

2

(

N
∑

n=1

1

n+ 1
−

N
∑

n=1

1

n + 2

)

=
1

2

(

N
∑

n=1

1

n
−

N+1
∑

n=2

1

n

)

− 1

2

(

N
∑

n=1

1

n + 1
−

N+1
∑

n=2

1

n + 1

)

=
1

2

(

1− 1

N + 1

)

− 1

2

(

1

2
− 1

N + 2

)

=
1

4
+

1

2

(

1

(N + 1)(N + 2)

)

,

when we simplify. We know that an infinite sum with these terms converges using the
comparison test to the series with terms n−3. In addition, using the above summation
formula we see that the sum specifically converges to the value 1

4
.

Part (ii): Using partial fractions we can write

1

n(n + 1)(n+ 3)
=

1

3n
− 1

2(n+ 1)
+

1

6(n+ 3)
.

Now subtract and add 1
3(n+1)

between the first and second term above to get

1

n(n+ 1)(n+ 3)
=

1

3n
− 1

3(n+ 1)
− 1

6(n+ 1)
+

1

6(n+ 3)
,
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when we simplify. Again we wrote the expression above as we did to facilitate the sum we
will take next. To sum this note that we can write the above as

N
∑

n=1

1

n(n+ 1)(n+ 3)
=

1

3

(

N
∑

n=1

1

n
−

N
∑

n=1

1

n + 1

)

− 1

6

(

N
∑

n=1

1

n+ 1
−

N
∑

n=1

1

n + 3

)

=
1

3

(

N
∑

n=1

1

n
−

N+1
∑

n=2

1

n

)

− 1

6

(

N
∑

n=1

1

n + 1
−

N+2
∑

n=3

1

n+ 1

)

=
1

3

(

1− 1

N + 1

)

− 1

6

(

1

2
+

1

3
− 1

N + 1 + 1
− 1

N + 2 + 1

)

=
7

36
− 1

3(N + 1)
+

1

6(N + 2)
+

1

6(N + 3)
.

when we simplify. We know that an infinite sum with these terms converges using the
comparison test to the series with terms n−3. In addition, using the above summation
formula we see that the sum specifically converges to the value 7

36
.

Part (iii): To sum terms with this form we consider

(n+ 1)(n+ 2)(n+ 3)(n+ 4)− n(n+ 1)(n+ 2)(n+ 3) = 4(n + 1)(n+ 2)(n+ 3) .

Then note that

N
∑

n=1

(fn+1 − fn) =

N
∑

n=1

fn+1 −
N
∑

n=1

fn =

N+1
∑

n=2

fn −
N
∑

n=1

fn = fN+1 − f1 . (21)

By summing first statement in this part we have

N
∑

n=1

[(n+ 1)(n+ 2)(n+ 3)(n+ 4)− n(n+ 1)(n+ 2)(n+ 3)] = 4

N
∑

n=1

(n+ 1)(n+ 2)(n+ 3) .

Using the identity in Equation 21 we see the left-hand-side of the above is equal to

(N + 1)(N + 2)(N + 3)(N + 4)− 1(2)(3)(4) .

Setting this equal to 4
∑N

n=1(n+ 1)(n+ 2)(n+ 3) we obtain

N
∑

n=1

(n + 1)(n+ 2)(n+ 3) =
1

4
((N + 1)(N + 2)(N + 3)(N + 4)− 24) .

This is almost the sum we want. Shifting the index n down by one we get

N+1
∑

n=2

n(n+ 1)(n+ 2) =
1

4
((N + 1)(N + 2)(N + 3)(N + 4)− 24) .

Including the n = 1 term and moving the n = N +1 term out of the sum on the left we have

N
∑

n=1

n(n+1)(n+2)−1(2)(3)+(N+1)(N+2)(N+3) =
1

4
((N+1)(N+2)(N+3)(N+4)−24) .
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If we solve for the sum of interest we get

N
∑

n=1

n(n + 1)(n+ 2) =
1

4
N(N + 1)(N + 2)(N + 3) .

Another way to work this problem is to expand the given expression and to do the sums
individually. We have

n(n+ 1)(n+ 2) = n3 + 3n2 + 2n .

Then using the following sum identities

N
∑

n=1

n =
1

2
N(N + 1) (22)

N
∑

n=1

n2 =
1

6
N(N + 1)(2N + 1) (23)

N
∑

n=1

n3 =
N2

4
(N + 1)2 . (24)

This means that we can compute the desired sum as

N
∑

n=1

n(n + 1)(n+ 2) =

N
∑

n=1

n3 + 3

N
∑

n=1

n2 + 2

N
∑

n=1

n

=
N2

4
(N + 1)2 +

3

6
N(N + 1)(2N + 1) +

2

2
N(N + 1)

=
N(N + 1)

4
(N(N + 1) + 2(2N + 1) + 4)

=
N(N + 1)

4

(

N2 + 5N + 6
)

=
1

4
N(N + 1)(N + 2)(N + 3) ,

the same as the above.

An infinite sum with terms like these cannot converge as the terms do not limit to zero as
n → ∞.

Part (iv): As before we will use Equation 15 to derive Equation 16 which by dividing both
sides by x is the sum we desire in this exercise.

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| where we find

|un|
|un+1|

=
n|x|n−1

(n+ 1)|x|n =
n

(n+ 1)|x| .

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1.
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Part (v): As before we will use Equation 15 to derive Equation 16 and then Equation 17.
This gives the sum of terms n2xn to which we will have to add the result from Equation 15
to derive the desired sum.

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| where we find

|un|
|un+1|

=
(n2 + 1)|x|n

((n+ 1)2 + 1)|x|n+1
=

(n2 + 1)

((n+ 1)2 + 1)|x| .

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1.

Exercise 8

Before we begin we note that if α is a root of f(x) = x3 − 7x+ 6 = 0 then by inspection of
the graph of f(x) we see that α ∈ {−3, 1, 2}.

Part (i): In this case lets let sn = 2 + ξn where ξn > 0. Then we find

sn+1 = (7sn − 6)1/3 = (14 + 7ξn − 6)1/3 = (8 + 7ξn)
1/3 = 2

(

1 +
7

8
ξn

)1/3

.

Next we recall Bernoulli’s inequality which has two forms. One form states

(1 + x)r ≥ 1 + rx , (25)

which is valid when r ≤ 0 or r ≥ 1 (and x ≥ −1). Another form is when r is not in the
previous range specified then we have

(1 + x)r ≤ 1 + rx . (26)

which is valid when 0 ≤ r ≤ 1 (and x ≥ −1).

With this background then using Bernoulli’s inequality (namely Equation 26) we have that

sn+1 ≤ 2

(

1 +
7

24
ξn

)

= 2 +
7

12
ξn .

As
7

12
ξn < ξn ,

we have that
sn+1 < 2 + ξn = sn ,

showing that sn is monotonically decreasing.
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As a way to prove that sn − α is the same sign is to work this exercise with everything in
terms of sn − α. From the iteration equation we have

(sn+1 − α + α)3 = 7(sn − α + α)− 6 ,

or expanding

(sn+1 − α)3 + 3α(sn+1 − α)2 + 3α2(sn+1 − α) + α3 = 7(sn − α) + 7α− 6 .

Using the fact that α is a solution of α3 = 7α− 6 we get

(sn+1 − α)3 + 3α(sn+1 − α)2 + 3α2(sn+1 − α) = 7(sn − α) .

We can write this as

(sn+1 − α)
[

(sn+1 − α)2 + 3α(sn+1 − α) + 3α2
]

= 7(sn − α) . (27)

Lets consider the quadratic equation x2 + 3αx+ 3α2 = 0 which has roots

x =
−3α±

√

9α2 − 4(3α2)

2
=

−3α±
√
3|α|i

2
.

The fact that these roots are complex means that this quadratic has no real zeros. Thus the
quadratic expression

(sn+1 − α)2 + 3α(sn+1 − α) + 3α2 ,

is either always positive or always negative. Taking (sn+1 − α) = 0 we get the above equal
to 3α2 showing that it is always positive. Using that fact with Equation 27 we see that both
sn − α and sn+1 − α have the same sign.

Exercise 9

Part (i): For the first sum recall that

∑

sech(nx) =
∑ 1

cosh(nx)
=
∑ 2

enx + e−nx
.

Now note that when x > 0 we have the terms of this sum bounded above by

2

enx + e−nx
<

2

enx
= 2(e−x)n .

As e−x < 1 when x > 0 this sum converges and by the comparison test our original sum
converges.

When x < 0 the same type of arguments say

2

enx + e−nx
<

2

e−nx
= 2(ex)n .

Now ex < 1 when x < 0 and the sum of these upper bounds converges. Again by the
comparison test we have that our original sum converges when x < 0.
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If x = 0 then each term of the sum is sech(nx) = 1 and the sum diverges.

Part (ii): Using much of the same ideas as the first sum for the second sum recall that

∑

xnsech(nx) =
∑ 2xn

enx + e−nx
.

If x = 0 then each term is zero and the sum converges to zero.

If x > 0 then we can bound the terms of our sum as

2xn

exn + e−xn
<

2xn

exn
= 2(xe−x)n .

An infinite sum of these upper bounding terms will converge if |xe−x| < 1 or as x > 0 when
x < ex. This is true for all x > 0 as can be seen by plotting the functions y = x and y = ex

over the domain x > 0.

If x < 0 then we can bound the terms of our sum as

2xn

exn + e−xn
<

2xn

e−xn
= 2(xex)n .

An infinite sum of these upper bounding terms will converge if |xex| < 1 or as x < 0 when
−x < e−x. This is true for all x < 0 as can be seen by plotting the functions y = −x and
y = e−x over the domain x < 0.

Another way to argue convergence is to use d’Alembert’s test. In that case if x > 0 we need
to evaluate (ignoring the factor of two)

lim
n→∞

(

un

un+1

)

= lim
n→∞

(

xn

exn + e−xn

)(

ex(n+1) + e−x(n+1)

xn+1

)

=
1

x
lim
n→∞

(

ex + e−x(2n+1)

1 + e−2xn

)

=
ex

x
.

For convergence we would need to have ex

x
> 1 the same condition we had before.

Exercise 10

Note that
1

n+ 2 + (−1)n
=

{

1
n+3

n even
1

n+1
n odd

.

Note that both the expressions on the right-hand-side are less than or equal to 1
n+1

. As
the absolute value of the terms of this series limits to zero as n → ∞ using the alternating
sequence theorem we have that our series converges.
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Exercise 11

We will use the ratio test to argue that the two series either both converge or both diverge.
Note that the limit of the ratio of the terms of the two series is

lim
n→∞

(

un
un

sn

)

= lim
n→∞

sn =
∞
∑

n=1

un .

Thus if
∑

un is convergent this is a finite value and the series
∑

un

sn
must also converge.

Warning: I was not able to argue that if
∑∞

n=1 un diverges then we know that
∑∞

n=1
un

sn
also

diverges. If anyone knows how to do this please contact me.

Exercise 12

The terms of this series can be written as

un =
n!xn

∏n
i=1(i+ α)

.

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| where we find

|un|
|un+1|

=
n+ 1 + α

(n+ 1)|x| .

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1.

Exercise 13

Part (i): To show that un is monotonically decreasing we will group pairs of terms as

un =

(

1

n+ 1
− 1

n+ 2

)

+

(

1

n+ 3
− 1

n + 4

)

+

(

1

n + 5
− 1

n+ 6

)

+ · · · .

Now notice that each pair of terms is of the form

1

n+ k
− 1

n + k + 1
=

1

(n+ k)(n + k + 1)
>

1

(n+ k + 1)(n+ k + 2)
=

1

n + k + 1
− 1

n+ k + 2
,

for different positive integers k. This means that we can bound each of the pairs of terms in
un as

un >

(

1

n+ 2
− 1

n+ 3

)

+

(

1

n+ 4
− 1

n+ 5

)

+

(

1

n+ 6
− 1

n + 7

)

+ · · · = un+1 .
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This shows that un decreases monotonically.

Part (ii): To start this part lets consider

u0 − u1 =

∞
∑

k=0

(−1)k

k
−

∞
∑

k=0

(−1)k

k + 1
=

∞
∑

k=0

(−1)k

k
−

∞
∑

k=1

(−1)k−1

k

=
∞
∑

k=0

(−1)k

k
+

∞
∑

k=1

(−1)k

k
= 1 + 2

∞
∑

k=1

(−1)k

k

= 1− 2

(

1

2

)

+ 2
∞
∑

k=2

(−1)k

k
= 2

∞
∑

k=2

(−1)k

k

= 2

∞
∑

k=2

(−1)k

k
= 2

∞
∑

k=0

(−1)k+2

k + 2
= 2u2 .

This shows the desired relationship for n = 1.

Lets assume that the given expression holds up to n and write out the given expression for
n+ 1 where we would want to show

u0 − u1 + u2 − · · · − u2n−1 + u2n − u2n+1 = 2(n+ 1)u2(n+1) .

Using what we know about all but the last two terms on the left-hand-side (i.e. using the
assumed relationship for n) we have that the left-hand-side of the above can be written as

2nu2n + u2n − u2n+1 = (2n+ 1)u2n − u2n+1 .

Using the definition of un the above becomes

(2n+ 1)u2n − u2n+1 = (2n+ 1)

∞
∑

k=1

(−1)k+1

2n+ k
−

∞
∑

k=1

(−1)k+1

2n+ 1 + k

= (2n+ 1)

∞
∑

k=−1

(−1)k+3

2n+ 2 + k
−

∞
∑

k=0

(−1)k+2

2n + 2 + k

= (2n+ 1)
∞
∑

k=−1

(−1)k+1

2n+ 2 + k
+

∞
∑

k=0

(−1)k+1

2n+ 2 + k

= (2n+ 1)

[

(−1)0

2n+ 2− 1
+

(−1)1

2n+ 2
+

∞
∑

k=1

(−1)k+1

2n+ 2 + k

]

+
(−1)1

2n + 2
+

∞
∑

k=1

(−1)k+1

2n+ 2 + k

= (2n+ 1)

[

1

2n + 1
− 1

2n+ 2
+ u2n+2

]

− 1

2n + 2
+ u2n+2

= (2n+ 1)

[

1

(2n + 1)(2n+ 2)
+ u2n+2

]

− 1

2n + 2
+ u2n+2

= (2n+ 2)u2n+2 ,

when we simplify. As this is the desired expression for n+ 1 we are done.
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Exercise 14

To show the first part we will consider the sequence of reciprocals

βn ≡ 1√
n2 + 1− n

.

Note that we can write this as

βn =
1√

n2 + 1− n

(√
n2 + 1 + n√
n2 + 1 + n

)

=

√
n2 + 1 + n

n2 + 1− n2
=

√
n2 + 1 + n .

For this sequence we see that βn is monotonically increasing and thus the original sequence
must be monotonically decreasing. As a final observation note that βn → ∞ as n → ∞ and
thus the original sequence tends to zero n → ∞.

Because of the fact that
√
n2 + 1 − n tends to zero by using the alternating series test we

have that the given series converges.

Exercise 15

The terms of this series can be written as

un =
x2n+1[1 · 3 · 5 · · · (2n− 3)]

[2 · 4 · 6 · · · (2n)](2n + 1)
,

for n = 1, 2, 3, . . . (here n = 1 is the first term). To study convergence of the infinite series

we will use d’Alembert’s test. We first need to compute the ratio |un|
|un+1| where we find

|un|
|un+1|

=

( |x|2n+1[1 · 3 · 5 · · · (2n− 3)]

[2 · 4 · 6 · · · (2n)](2n+ 1)

)(

[2 · 4 · 6 · · · (2n)(2n+ 2)](2n+ 3)

|x|2n+3[1 · 3 · 5 · · · (2n− 3)(2n− 1)]

)

=

(

1

|x|2
)(

(2n+ 2)(2n+ 3)

(2n− 1)(2n+ 1)

)

.

Thus the limit of this fraction as n → ∞ is the value 1
|x|2 . By d’Alembert’s test our sum will

converge if 1
|x|2 > 1 which happens if |x|2 < 1 or −1 < x < +1.

If x = 1 then the above fraction has the limit of one and d’Alembert’s test is indeterminate.
To determine convergence we will use Raabe’s test. With this test we need to compute (when
x = 1)

n

(

un

un+1
− 1

)

= n

(

(2n+ 2)(2n+ 3)

(2n− 1)(2n+ 1)
− 1

)

= n

(

10n+ 7

(2n− 1)(2n+ 1)

)

→ 5

2
,

as n → ∞. As this is larger than one by Raabe’s test the sum converges.
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Exercise 16

Part (i): To study convergence of the infinite series we will use d’Alembert’s test. We first

need to compute the ratio |un|
|un+1| where we find

|un|
|un+1|

=
n(n+ 1)|x|n

(n+ 1)(n+ 2)|x|n+1
=

(

1

|x|

)(

(n + 2)

n

)

.

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1. This test also tells us that the sum will diverge

if |x| > 1. If x = 1 then the terms of the series don’t limit to zero as n → ∞ and thus the
sum also diverges.

Part (ii): To study convergence of the infinite series we will use d’Alembert’s test. We first

need to compute the ratio |un|
|un+1| where we find

|un|
|un+1|

=

(

n(n+ 3)(n+ 5)|x|n
(n+ 1)(n+ 2)

)

×
(

(n+ 2)(n+ 3)

(n + 1)(n+ 4)(n+ 6)|x|n+1

)

=
n(n + 3)2(n+ 5)

(n+ 1)2(n+ 4)(n+ 6)|x| .

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1. This test also tells us that the sum will diverge

if |x| > 1. If x = 1 then the terms of the series don’t limit to zero as n → ∞ and thus the
sum also diverges.

Exercise 17

The first equality is easy to show

m+ 1

m− n + 1
=

(m− n+ 1) + n

m− n+ 1
= 1 +

n

m− n + 1
= 1 +

n

m

(

m

m− n+ 1

)

. (28)

Now in this last factor note that it is the “same” as the first fractional expression we started
with but with the values of m and n decreased by one. That is we write it as

m

m− n+ 1
=

(m− 1) + 1

(m− 1)− (n− 1) + 1
,

and using Equation 28 again it becomes

m

m− n+ 1
= 1 +

n− 1

m− 1

(

m− 1

m− n + 1

)

.
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We can keep applying this identity getting a final fraction that has it numerator decremented
by one from the previous numerator. This gives the pattern

m+ 1

m− n+ 1
= 1 +

n

m

(

m

m− n+ 1

)

once

= 1 +
n

m

(

1 +
n− 1

m− 1

(

m− 1

m− n+ 1

))

= 1 +
n

m
+

n

m

(

n− 1

m− 1

)(

m− 1

m− n+ 1

)

twice

= 1 +
n

m
+

n

m

(

n− 1

m− 1

)(

1 +

(

n− 2

m− 2

)

m− 2

m− n+ 1

)

= 1 +
n

m
+

n

m

(

n− 1

m− 1

)

+
n

m

(

n− 1

m− 1

)(

n− 2

m− 2

)(

m− 2

m− n+ 1

)

three times

= 1 +
n

m
+

n

m

(

n− 1

m− 1

)

+
n

m

(

n− 1

m− 1

)(

n− 2

m− 2

)(

1 +
n− 3

m− 3

(

m− 4

m− n+ 1

))

.

The patterns should now be clear. We can continue this expansion n times and we have

m+ 1

m− n+ 1
= 1 +

n

m
+

n

m

(

n− 1

m− 1

)

+
n

m

(

n− 1

m− 1

)(

n− 2

m− 2

)

+ · · ·

+
n(n− 1)(n − 2) · · · 2(1)

m(m− 1)(m− 2) · · · (m− n+ 2)(m− n+ 1)
.

Exercise 18

Part (i): Note that if x > 1 then as n → ∞ the limit of nx−n is of the “type” ∞ × 0
and is thus indeterminate. If we write it as n

xn then it is of the “type” ∞
∞ and we can apply

L’Hospital’s rule. We have

lim
n→∞

( n

xn

)

= lim
n→∞

(

1

ln(x)xn

)

→ 0 ,

as n → ∞.

Part (ii): For this we have

1

x− 1
− 1

x+ 1
=

x+ 1− (x− 1)

x2 − 1
=

2

x2 − 1
.

Part (iii): For this we will repeatedly use the identity derived above. That is consider

1

x− 1
=

1

x+ 1
+

2

x2 − 1
. (29)

Then if we use this expression on the last term in the above (but with x → x2) we have

1

x− 1
=

1

x+ 1
+ 2

(

1

x2 + 1
+

2

x4 − 1

)

=
1

x+ 1
+

2

x2 + 1
+

4

x4 − 1
.
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If we use Equation 29 on the last term in the above (but with x → x4) we get

1

x− 1
=

1

x+ 1
+

2

x2 + 1
+ 4

(

1

x4 + 1
+

2

x8 − 1

)

=
1

x+ 1
+

2

x2 + 1
+

4

x4 + 1
+

8

x8 − 1
.

Continuing this procedure as many times as needed gives the intended result.

Exercise 19

To show this we will instead consider the sequence of reciprocals

βn ≡ 1

αn
=

1√
n+ 1−√

n
.

Note that we can write this as

βn =
1√

n+ 1−√
n

(
√
n+ 1 +

√
n√

n+ 1 +
√
n

)

=

√
n + 1 +

√
n

n + 1− n
=

√
n+ 1 +

√
n .

For this sequence we have

βn =
√
n + 1 +

√
n <

√
n + 2 +

√
n+ 1 = βn+1 ,

which means that the sequence βn is monotonically increasing and thus αn must be mono-
tonically decreasing. As a final observation note that βn → ∞ as n → ∞ and thus αn → 0
when n → ∞.

Exercise 20

Note that
2n+ 1 + n2 − (n+ 1)2

n2(n+ 1)2
= 0 .

Splitting this into parts we have

2n+ 1

n2(n+ 1)2
+

1

(n + 1)2
− 1

n2
= 0 .

Thus if we multiply both sides by xn and sum from n = 1 to n = ∞ we have

∞
∑

n=1

(

2n+ 1

n2(n+ 1)2

)

xn +
∞
∑

n=1

xn

(n+ 1)2
−

∞
∑

n=1

xn

n2
= 0 .

Solving for the first sum and shifting indices on the second sum we have

∞
∑

n=1

(

2n+ 1

n2(n+ 1)2

)

xn = −
∞
∑

n=2

xn−1

n2
+

∞
∑

n=1

xn

n2
.
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If we include the n = 1 term in the first sum on the right we have

∞
∑

n=1

(

2n+ 1

n2(n + 1)2

)

xn = −
∞
∑

n=1

xn−1

n2
+ 1 +

∞
∑

n=1

xn

n2

= −1

x

∞
∑

n=1

xn

n2
+ 1 +

∞
∑

n=1

xn

n2

= 1 +

(

1− 1

x

) ∞
∑

n=1

xn

n2
,

which simplifies to the desired expression.

Exercise 21

We start with

αn =

(

a+ n− 1

n

)

yn .

This is the product of a sequence xn = a+n−1
n

and yn. Note that the sequence xn is mono-
tonically decreasing because

xn+1 = 1 +
a− 1

n + 1
< 1 +

a− 1

n
= xn .

As y < 1 we have that yn is also monotonic decreasing as yn+1 < yn. Then as αn is the
product of two monotonically decreasing sequences it also is monotonically decreasing.

When n → ∞ we have that xn → 1 and yn → 0 so that αn ≡ xny
n → 0 in that case.

Exercise 22

The terms of this sum take the form

un =

(

a + n− 1

n

)

xn .

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| where we find

|un|
|un+1|

=

(

(a+ n− 1)|x|n
n

)

×
(

n+ 1

(a+ n)|x|n+1

)

=

(

(a+ n− 1)(n+ 1)

(a + n)n

)(

1

|x|

)

.

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1. This test also tells us that the sum will diverge
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if |x| > 1. If x = 1 then the terms of the series don’t limit to zero as n → ∞ and thus the
sum also diverges. If x = −1 then the terms of the series are given by

un =

(

a+ n− 1

n

)

(−1)n = (−1)n +

(

a− 1

n

)

(−1)n .

As n → ∞ the second terms becomes smaller and smaller in comparison to the first term.
Thus the sum of these un terms like this will oscillate and the series will not converge.
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Chapter 9 (Absolute and Non-Absolute Convergence)

Examples XI

Exercise 1

The regions of convergence for each sum was computed in Exercise 1 on Page 24.

Exercise 2

The terms in this sum are given by
∑

n unx
n where

un =

(
∏n−1

i=0 (a + i)
) (
∏n−1

i=0 (b+ i)
)

(
∏n−1

i=0 (c+ i)
) (
∏n−1

i=0 (d+ i)
) , (30)

for n ≥ 0. Here we are using the convention that
∏−1

i=0 f(i) = 1. To study convergence of

the infinite series we will use d’Alembert’s test. We first need to compute the ratio |unxn|
|un+1xn+1|

where we find
|unx

n|
|un+1xn+1| =

(c+ n)(d+ n)

(a+ n)(b+ n)|x| .

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1. This test also tells us that the sum will diverge

if |x| > 1. If x = ±1 then the terms of the series don’t limit to zero as n → ∞ and thus the
sum also diverges.

Exercise 3

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| . For the first series our terms take the form

un =
xn

n!
,

for n ≥ 0. In that case we find

|un|
|un+1|

=
|x|n
n!

× (n + 1)!

|x|n+1
=

n+ 1

|x| .

Thus the limit of this fraction as n → ∞ is ∞. By d’Alembert’s test our sum will converge
if this limit is larger than one which happens for all x.
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For the second series our terms take the form

un =
x2n+1

(2n+ 1)!
,

for n ≥ 0. In that case we find

|un|
|un+1|

=
|x|2n+1

(2n+ 1)!
× (2n+ 3)!

|x|2n+3
=

(2n+ 3)(2n+ 2)

|x|2 .

Thus the limit of this fraction as n → ∞ is ∞. By d’Alembert’s test our sum will converge
if this limit is larger than one which happens for all x.

Exercise 4

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| where for this series un = n!xn. We find

|un|
|un+1|

=
n!|x|n

(n + 1)!|x|n+1
=

1

(n + 1)|x| .

Thus the limit of this fraction as n → ∞ is the value 0. By d’Alembert’s test our sum will
diverge if this limit is less than one which it is for all x.

Another way to argue this is to follow the hint in the book. We will have |un+1| > |un| when

(n+ 1)!|x|n+1 > n!|x|n ,

or
(n + 1)|x| > 1 .

Solving for n in the above for a given x this will happen when

n >
1

|x| − 1 ,

as n → ∞ the above inequality will eventually be satisfied and |un+1| > |un| showing that
|un| cannot limit to zero as it must for the series to be convergent.

Exercise 5

To study convergence of the infinite series we will use d’Alembert’s test. For this series the
terms un take the form un = nkxn. To use d’Alembert’s test we need to compute the ratio
|un|

|un+1| where we find

|un|
|un+1|

=
nk|x|n

(n + 1)k|x|n+1
=

(

1

|x|

)

(

1
(

1 + 1
n

)k

)

.
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Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1. This test also tells us that the sum will diverge

if |x| > 1.

If x = 1 then the terms of the series look like un = nk which will converge by the comparison
test if k < −1.

If x = −1 then the terms of the series look like un = (−1)knk which will converge by the
alternating series test if k < 0.

Exercise 6

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| .

For the first series our terms take the form

un =
(a+ n− 1)xn

∏n
i=1(2i)

,

for n ≥ 1. In that case we find

|un|
|un+1|

=
(a+ n− 1)|x|n
∏n

i=1(2i)
×

∏n+1
i=1 (2i)

(a+ n)|x|n+1

=
1

|x|

(

a+ n− 1

a+ n

)

(2n+ 2) .

Thus the limit of this fraction as n → ∞ is the value ∞. By d’Alembert’s test our sum will
converge if this limit is larger than one which it is for all x.

For the second series our terms take the form

un =
n(a+ n− 1)xn

∏n
i=1(2i)

,

for n ≥ 1. This is really just n times the un term in the previous series. In that case we find

|un|
|un+1|

=
n(a+ n− 1)|x|n

∏n
i=1(2i)

×
∏n+1

i=1 (2i)

(n + 1)(a+ n)|x|n+1

=
1

|x|

(

n

n + 1

)(

a+ n− 1

a+ n

)

(2n+ 2) .

Thus the limit of this fraction as n → ∞ is the value ∞. By d’Alembert’s test our sum will
converge if this limit is larger than one which it is for all x.
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Exercise 7

To study convergence of the infinite series we will use d’Alembert’s test. We first need to
compute the ratio |un|

|un+1| . For this series we have terms given by

un =
n(a+ n− 1)xn

bn
,

for n ≥ 1. With terms like this we find

|un|
|un+1|

=
n(a+ n− 1)|x|n

|b|n × |b|n+1

(n + 1)(a+ n)|x|n+1

=
|b|
|x|

(

n

n + 1

)(

a+ n− 1

a+ n

)

.

Thus the limit of this fraction as n → ∞ is the value |b|
|x . By d’Alembert’s test our sum will

converge if this limit is larger than one which happens when |x| < |b|.

Notes on the sums |
∑n

k=1 cos(rθ)| and |
∑n

k=1 sin(rθ)|

Here we will prove the statements

n
∑

r=1

cos(rθ) =
sin(1

2
nθ) cos(1

2
(n + 1)θ)

sin(1
2
θ)

(31)

n
∑

r=1

sin(rθ) =
sin(1

2
nθ) sin(1

2
(n + 1)θ)

sin(1
2
θ)

. (32)

To do this note that (here the lower summation limit is r = 0)

n
∑

r=0

cos(rθ) = Re

n
∑

r=0

eirθ

n
∑

r=0

sin(rθ) = Im

n
∑

r=0

eirθ .

Thus we will evaluate
∑n

r=0 e
irθ. I find

n
∑

r=0

eirθ =
1− eiθ(n+1)

1− eiθ
=

1− eiθ(n+1)

1− eiθ
× e−iθ/2

e−iθ/2

=
eiθ(n+

1
2
) − e−iθ/2

eiθ/2 − e−iθ/2
=

eiθ(n+
1
2
) − e−iθ/2

2i sin(θ/2)

= − i

2 sin(θ/2)

[(

cos

(

θ

(

n +
1

2

))

− cos

(

θ

2

))

+ i

(

sin

(

θ

(

n+
1

2

))

+ sin

(

θ

2

))]

.
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Thus the real and imaginary parts of this give

n
∑

r=0

cos(rθ) =
sin
(

θ
(

n+ 1
2

))

+ sin
(

θ
2

)

2 sin(θ/2)
(33)

n
∑

r=0

sin(rθ) = −
(

cos
(

θ
(

n+ 1
2

))

− cos
(

θ
2

)

2 sin(θ/2)

)

. (34)

Expand the first sine in the numerator (call it Nc) of Equation 33 to get

Nc = sin(nθ) cos

(

θ

2

)

+cos(nθ) sin

(

θ

2

)

+sin

(

θ

2

)

= sin(nθ) cos

(

θ

2

)

+(cos(nθ)+1) sin

(

θ

2

)

.

Use the sine double angle formula sin(x) = 2 sin
(

x
2

)

cos
(

x
2

)

for sin(nθ) and the cosign double
angle formula

1 + cos(x) = 2 cos2
(x

2

)

,

for cos(nθ) + 1 in the above to get

Nc = 2 sin
(n

2
θ
)

cos
(n

2
θ
)

cos

(

θ

2

)

+ 2 sin

(

θ

2

)

cos2
(n

2
θ
)

= 2 cos
(n

2
θ
)

[

sin
(n

2
θ
)

cos

(

θ

2

)

+ sin

(

θ

2

)

cos
(n

2
θ
)

]

= 2 cos
(n

2
θ
)

sin

(

n

2
θ +

θ

2

)

= 2 cos
(n

2
θ
)

sin

(

(n + 1)
θ

2

)

.

Thus we have shown that

n
∑

r=0

cos(rθ) =
cos
(

n
2
θ
)

sin
(

(n+ 1) θ
2

)

sin(θ/2)
. (35)

To evaluate the sum from r = 1 (and not r = 0) we have to subtract one from both side of
Equation 33 to get

n
∑

r=1

cos(rθ) =
sin
(

θ
(

n+ 1
2

))

− sin
(

θ
2

)

2 sin(θ/2)
.

To simplify this we get

N ′
c = sin(nθ) cos

(

θ

2

)

+ (cos(nθ)− 1) sin

(

θ

2

)

.

We now use the cosign double angle formula this time in the form of

cos(x)− 1 = −2 sin2
(x

2

)

,
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to write N ′
c as

N ′
c = 2 sin

(n

2
θ
)

cos
(n

2
θ
)

cos

(

θ

2

)

− 2 sin

(

θ

2

)

sin2
(n

2
θ
)

= 2 sin
(n

2
θ
)

[

cos
(n

2
θ
)

cos

(

θ

2

)

− sin

(

θ

2

)

sin
(n

2
θ
)

]

= 2 sin
(n

2
θ
)

cos

(

n

2
θ +

θ

2

)

= 2 sin
(n

2
θ
)

cos

(

(n+ 1)
θ

2

)

.

Thus we have shown that

n
∑

r=1

cos(rθ) =
sin
(

n
2
θ
)

cos
(

(n+ 1) θ
2

)

sin(θ/2)
. (36)

Now expand the first cosine in the numerator (call it Ns) of Equation 34 to get

Ns = cos(nθ) cos

(

θ

2

)

−sin(nθ) sin

(

θ

2

)

−cos

(

θ

2

)

= (cos(nθ)−1) cos

(

θ

2

)

−sin(nθ) sin

(

θ

2

)

.

The steps are much the same as above (using the half angle formulas). The algebra is

Ns = −2 sin2
(n

2
θ
)

cos

(

θ

2

)

− 2 sin
(n

2
θ
)

cos
(n

2
θ
)

sin

(

θ

2

)

= −2 sin
(n

2
θ
)

sin

(

n

2
θ +

θ

2

)

= −2 sin
(n

2
θ
)

sin

(

(n+ 1)
θ

2

)

.

Thus we have shown that (we can start the sum at r = 0 or r = 1 as sin(0) = 0)

n
∑

r=1

sin(rθ) =
sin
(

n
2
θ
)

sin
(

(n+ 1) θ
2

)

sin(θ/2)
. (37)

Examples XII

Exercise 1

We can show convergence for most values of θ by noting that these sums are examples of the
theorem in the book that states if vn is a monotonic sequence that converges to zero then
∑

vn sin(nθ) is convergent for all real values of θ and
∑

vn cos(nθ) is convergent for all real
values of θ other than zero and multiples of 2π.
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For
∑ cos(nθ)

n2 note that its terms are bounded as

∣

∣

∣

∣

cos(nθ)

n2

∣

∣

∣

∣

<
1

n2
,

and thus this sum converges for all θ by the comparison test.

For the sum
∑ cos(nθ)

n
if θ = 2πm (for m an integer) then cos(nθ) = 1 and our sum is

equivalent to
∑

1
n
which diverges.

Exercise 2

Note that for k > 0 we have that vn = 1
nk is a monotonic decreasing sequence that converges

to zero. Then from the “theorem” given in this section we know that
∑

n−k cos(nθ) will
converge for all real θ other than θ = 0 or θ a multiple of 2π. If θ = 0 or a multiple of 2π
then the series

∑

n−k cos(nθ) is equivalent to the series
∑

n−k which converges if k > 1.

Exercise 3

This statement is a consequence of Dirichlet’s Test (Theorem 24). This follows because as
we are told that

∑

an converges we know that it is bounded so there exists a K such that
∣

∣

∣

∣

∣

n
∑

k=1

ak

∣

∣

∣

∣

∣

< K ,

for all n. Then defining vn ≡ n−x = 1
nx which is a monotonically decreasing to zero sequence

and using Dirichlet’s test tells us that the product sum
∑

anvn converges.

Exercise 4

One way to work this exercise is to use the ratio test i.e. Theorem 9 (if an > 0 for n ≥ N)
to argue that both sums either converge together or diverge together.

Another way to work this exercise is to use Able’s test. To start we assume that
∑

an
n

converges. Next let vn ≡ n
n−x

. Note that for vn we have

vn − vn+1 =
n

n− x
− n+ 1

n+ 1− x
=

x

(n− x)(n + 1− x)
.

If n is large enough eventually vn − vn+1 > 0 so vn is monotonically decreasing. From the
definition of vn we have that vn → 1. By Abel’s test the product series or

∑

(an
n

)

vn =
∑ an

n− x
,
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also converges.

In the same way if we assume that
∑

an
n−x

converges and let wn ≡ n−x
n

then we have

wn − wn+1 =
n− x

n
− n+ 1− x

n + 1
= − x

n(n + 1)
.

From this we see that wn is a monotonic sequence and converges to the finite limit of one.
Using Abel’s test we know that the product series or

∑

(

an
x− x

)

wn =
∑ an

n
,

also converges.

Exercise 5

This is an alternating series like in Theorem 18 with un = 1
n−x

. We have

un − un+1 =
1

n− x
− 1

n + 1− x
=

1

(n− x)(n+ 1− x)
> 0 ,

Thus for n ≥ ⌈x⌉ this sequence is monotonically decreasing and un → 0 as n → ∞. The
sum converges by Theorem 18.

Note using Dirchlets’s test with an = (−1)n−1 and vn = 1
n−x

also shows convergence.

Exercise 6

Consider the alternating sequence Theorem 18 with un = 1√
n
and un = 1√

n+x
. Now both

expressions for un are monotone decreasing and converges to zero. Thus the sum converges
by the alternating series test.

Note using Dirchlets’s test with an = (−1)n and vn = 1√
n
or 1√

x+n
also shows convergence.

Exercise 7

If we follow the hint and take an = (−1)n then we see that

|a1 + a2 + · · ·+ an| ≤ 2 < 3 ,

for all n. If bn tends monotonically to zero then
∑

anbn is converges by Dirichlet’s test
(Theorem 24).
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Exercise 8

To start this exercise note that using Mathematica (or a table of such sums) we can show
that

n
∑

r=1

sin

((

r +
1

2

)

x

)

=
sin
(

nx
2

)

sin
(

1
2
(n+ 2)x

)

sin
(

x
2

) .

This means that this sum is bounded as
∣

∣

∣

∣

∣

n
∑

r=1

sin

((

r +
1

2

)

x

)

∣

∣

∣

∣

∣

≤ 1

| sin
(

x
2

)

| .

Let K = 1

|sin(x
2 )| if sin

(

x
2

)

6= 0. With this bound we can use Theorem 24 (Dirichlet’s test)

with vn = 1
n+1/2

(which is monotonically decreasing to a limit of zero) to argue that the sum

∑ sin
((

n+ 1
2

)

x
)

n+ 1
2

,

converges.

Next consider the case when sin
(

x
2

)

= 0. That means that x
2
= lπ so that x = 2πl for some

integer l. In these cases the sum we are trying to evaluate becomes

∑ sin
((

n + 1
2

)

(2πl)
)

n+ 1
2

=
∑ sin(πl)

n + 1
2

.

As each term in this sum is exactly zero it also converges. Thus our sum converges for all x.
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Chapter 10 (The Product of Two Series)

Examples XIV

Exercise 1

We will use the fact that ∞
∑

n=1

1

n
− log(n) = γ , (38)

where γ is a constant such that γ ≈ 0.57721.

For this exercise we find that the sum of n terms is given by

sn = 1 +
1

3
+

1

5
+ · · ·+ 1

2n+ 1
− 1

2
log(n)

+

(

1

2
+

1

4
+ · · ·+ 1

2n

)

−
(

1

2
+

1

4
+ · · ·+ 1

2n

)

=
2n
∑

k=1

1

k
− 1

2
log(n)− 1

2

n
∑

k=1

1

k

= log(2n) + γ2n −
1

2
log(n)− 1

2
(log(n) + γn)

= log(2) + γ2n −
1

2
γn .

Here γn is a sequence such that γn → γ as n → ∞. If we take n → ∞ then we get

sn → log(2) +
γ

2
,

as we were to show.

Exercise 2

For this exercise we find that the sum of n terms is given by

sn = 1 +
1

2
− 1

3
+

1

4
+

1

5
− 1

6
+ · · ·+ 1

3n− 2
+

1

3n − 1
− 1

3n
− 1

3
log(n)

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·+ 1

3n− 2
+

1

3n − 1
+

1

3n
− 1

3
log(n)− 2

3
− 2

6
− 2

9
− · · · − 2

3n

=
3n
∑

k=1

1

k
− 1

3
log(n)− 2

3

n
∑

k=1

1

k

= log(3n) + γ3n − 1

3
log(n)− 2

3
(log(n) + γn)

= log(3) + γ3n − 2

3
γn .
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If we take n → ∞ then we get

sn → log(3) +
γ

3
,

as we were to show.

Exercise 3

For this exercise we find that the sum of the first 2n terms is given by

s2n =
2n
∑

k=1

(−1)k+1

k

=

2n
∑

k even

(−1)k+1

k
+

2n
∑

k odd

(−1)k+1

k
= −

2n
∑

k even

1

k
+

2n
∑

k odd

1

k

= −2

2n
∑

k even

1

k
+

2n
∑

k=1

1

k
= −2

n
∑

k=1

1

2k
+

2n
∑

k=1

1

k
= −

n
∑

k=1

1

k
+

2n
∑

k=1

1

k

= − log(n)− γn + log(2n) + γ2n

= −γn + log(2) + γ2n .

If we take n → ∞ then we get
s2n → log(2) ,

as we were to show. As s2n+1 differs from s2n by a term O(1/n) the limit of s2n+1 as n → ∞
is the same as s2n and both converge to log(2).

Exercise 4

Using partial fractions we can write

1

n(16n2 − 1)
= −1

n
+

2

4n− 1
+

2

4n + 1
.

Lets consider the sum of n terms. We would have

sn = −
n
∑

k=1

1

k

+ 2

(

1

3
+

1

7
+

1

11
+

1

15
+ · · ·+ 1

4n− 1

)

+ 2

(

1

5
+

1

9
+

1

13
+

1

17
+ · · ·+ 1

4n+ 1

)

= −
n
∑

k=1

1

k

+ 2

(

1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
+ · · ·+ 1

4n− 1
+

1

4n+ 1

)

.
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Notice that this second sum is all (but the number 1) of the first 4n + 1 odd terms. Thus
we can write sn as

sn = −
n
∑

k=1

1

k
+ 2

(

4n+1
∑

k odd

1

k
− 1

)

= −
n
∑

k=1

1

k
+ 2

(

4n+1
∑

k=1

1

k
−

4n+1
∑

k even

1

k
− 1

)

= −
n
∑

k=1

1

k
+ 2

(

4n+1
∑

k=1

1

k
−

2n
∑

k=1

1

2k
− 1

)

= −(log(n) + γn) + 2

(

log(4n) + γ4n −
1

2
log(2n)− 1

2
γ2n − 1

)

= −γn + 2

(

log(4) + γ4n −
1

2
log(2)− 1

2
γ2n − 1

)

.

If we take n → ∞ then we get
sn → log(8)− 2 ,

as we were to show.

Exercise 5

Lets denote the infinite sum by S and the partial sum of 5n terms as S5n. By breaking the
partial sum down into 5n terms this sum can be written as

S5n =

[(

1 +
1

3
+

1

5

)

−
(

1

2
+

1

4

)]

(39)

+

[(

1

7
+

1

9
+

1

11

)

−
(

1

6
+

1

8

)]

(40)

+

[(

1

13
+

1

15
+

1

17

)

−
(

1

10
+

1

12

)]

(41)

...

+

[(

1

6n− 5
+

1

6n− 3
+

1

6n− 1

)

−
(

1

4n− 2
+

1

4n

)]

. (42)

Thus we see that stopping this sum at five terms (n = 1) is the sum of the term on line 39.
Stopping the sum at 10 terms (n = 2) is the sum of the terms on lines 39 and 40. Stopping
the sum at 15 terms (n = 3) is the sum of the terms on lines 39, 40, and 41. By looking at
these terms we can conclude that the sum of 5n terms (for a general n ≥ 1) is the expression
above (summed over all lines).

We will separate the above into a couple of sums of the harmonic series
∑n

k=1
1
k
by “adding

and subtracting” the needed terms to make “complete” sums. Towards this end we will write
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S5n as

S5n = 1 +
1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
+ · · ·+ 1

6n− 5
+

1

6n− 3
+

1

6n− 1

+
1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

6n− 6
+

1

6n− 4
+

1

6n− 2
+

1

6n

−
(

1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

6n− 6
+

1

6n− 4
+

1

6n− 2
+

1

6n

)

−
(

1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

4n− 2
+

1

4n

)

.

By combining the first two rows we can write this as

S5n =

6n
∑

k=1

1

k
− 1

2

3n
∑

k=1

1

k
− 1

2

2n
∑

k=1

1

k
,

or

S5n = log(6n) + γ6n −
1

2
(log(3n) + γ3n)−

1

2
(log(2n) + γ2n) .

Taking the limit of n → ∞ as γn → γ we get

S5n → log(6)− 1

2
log(3)− 1

2
log(2) =

1

2
log(6) ,

as we were to show.

Exercise 6

This exercise is a generalization of the previous exercise and as such it will help to have
solved that one before solving this one.

Lets denote the infinite sum by S and the partial sum of (p + q)n terms as S(p+q)n. By
breaking the partial sum down into (p+ q)n terms this sum can be written as

S(p+q)n =

[(

1 +
1

3
+

1

5
+ · · ·+ 1

2p− 1

)

−
(

1

2
+

1

4
+

1

6
· · ·+ 1

2q

)]

(43)

+

[(

1

2p+ 1
+

1

2p + 3
+ · · ·+ 1

4p − 1

)

−
(

1

2q + 2
+

1

2q + 4
+ · · ·+ 1

4q

)]

(44)

+

[(

1

4p+ 1
+

1

4p + 3
+ · · ·+ 1

6p − 1

)

−
(

1

4q + 2
+

1

4q + 4
+ · · ·+ 1

6q

)]

(45)

...

+

[(

1

2(n− 1)p + 1
+

1

2(n− 1)p + 3
+ · · ·+ 1

2np− 1

)

−
(

1

2(n− 1)q + 2
+

1

2(n − 1)q + 4
+ · · ·+ 1

2nq

)]

. (46)

Thus we see that stopping this sum at p+ q terms (n = 1) is the sum of the term on line 43.
Stopping the sum at 2(p + q) terms (n = 2) is the sum of the terms on lines 43 and 44.
Stopping the sum at 3(p+ q) terms (n = 3) is the sum of the terms on lines 43, 44, and 45.
By looking at these terms we can conclude that the sum of (p + q)n terms (for a general
n ≥ 1) is the expression above (summed over all lines).
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As before we will separate the above into a couple of sums of the harmonic series
∑n

k=1
1
k
by

“adding and subtracting” the needed terms to make “complete” sums. Towards this end we
will write S(p+q)n as

S(p+q)n = 1 +
1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
+ · · ·+ 1

2np− 5
+

1

2np− 3
+

1

2np− 1

+
1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

2np− 4
+

1

2np− 2
+

1

2np

−
(

1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

2np− 4
+

1

2np− 2
+

1

2np

)

−
(

1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

2nq − 4
+

1

2nq − 2
+

1

2nq

)

.

By combining the first two rows we can write this as

S(p+q)n =

2np
∑

k=1

1

k
− 1

2

np
∑

k=1

1

k
− 1

2

nq
∑

k=1

1

k
,

or

S(p+q)n = log(2np) + γ2np −
1

2
(log(np) + γnp)−

1

2
(log(nq) + γnq) .

Taking the limit of n → ∞ as γn → γ we get

S(p+q)n → log(2) +
1

2
log(p/q) ,

as we were to show.

Exercise 7

This is the statement of Theorem 27 in this section with the terms an and bn in that theorem
taken to be the terms of the power series.

Exercise 8

Note that the given expression is equivalent to

A(x) = (1− x)
∞
∑

n=0

snx
n =

∞
∑

n=0

snx
n −

∞
∑

n=0

snx
n+1 =

∞
∑

n=0

snx
n −

∞
∑

n=1

sn−1x
n

= s0 +

∞
∑

n=1

(sn − sn−1)x
n .

If we write A(x) =
∑∞

n=0 anx
n we see that s0 = a0 and that

an = sn − sn−1 ,
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for n ≥ 1. Solving the above for s1 and s2 we find

s1 = a1 + s0 = a1 + a0

s2 = a2 + s1 = a2 + a1 + a0 .

In general the solution is

sn =

n
∑

k=0

an ,

which is the statement we were to show.

Exercise 9

Recall that

Ar
n =

(n+ r)!

n!r!
, (47)

with Ar
0 = 1. Then we want to show that

n
∑

ν=0

Ar
ν = Ar+1

n .

Let the sum on the left-hand-side be denoted S. We have that

S = Ar

0 +Ar

1 +Ar

2 + · · ·+Ar

n

= Ar

n

[

Ar

n

Ar
n

+
Ar

n−1

Ar
n

+ · · ·+ Ar

2

Ar
n

+
Ar

1

Ar
n

+
Ar

0

Ar
n

]

= Ar

n

[

1 +
(r + n− 1)!

r!(n− 1)!

r!n!

(n+ r)!
+

(r + n− 2)!

r!(n − 2)!

r!n!

(n+ r)!
+ · · ·+ (r + 2)!

r!2!

r!n!

(n+ r)!
+

(r + 1)!

r!1!

r!n!

(n+ r)!
+

r!n!

(n+ r)!

]

= Ar

n

[

1 +
n

n+ r
+

n(n− 1)

(n+ r)(n + r − 1)
+

n(n− 1)(n− 2)

(n+ r)(n + r − 1)(n+ r − 2)
+ · · ·

+
n(n− 1)(n− 2) · · · 4(3)(2)

(n+ r)(n+ r − 1)(n+ r − 2) · · · (r + 2)
+

n!

(n+ r)(n+ r − 1) · · · (r + 2)(r + 1)

]

.

Notice that the above is the statement given in the “hint” for this problem.

Next from the hint the expression in brackets above is equal to n+r+1
r+1

so we get

n
∑

ν=0

Ar
ν = Ar

n

(

n + r + 1

r + 1

)

=
(n+ r + 1)!

n!(r + 1)!
= Ar+1

n , (48)

as we were to show.

Here we prove the given hint. Notice that we can write

n + r + 1

r + 1
= 1 +

n

n + r

(

n + r

r + 1

)

.
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This has taken a fraction of the form n+r+1
r+1

into a fraction of the form n+r
r+1

where there n is
“one less” in the numerator than it was before. If we do that procedure a second time on
the term in parenthesis we get

n+ r + 1

r + 1
= 1 +

n

n+ r

[

1 +
n− 1

n− 1 + r

(

n− 1 + r

r + 1

)]

.

This gives a “new” term in parenthesis that we can we can apply our recursive relationship
to. We have

n+ r + 1

r + 1
= 1 +

n

n+ r

[

1 +
n− 1

n− 1 + r

[

1 +
n− 2

n− 2 + r

(

n− 2 + r

r + 1

)]]

= 1 +
n

n+ r
+

n(n− 1)

(n+ r)(n− 1 + r)

+
n(n− 1)(n − 2)

(n+ r)(n− 1 + r)(n− 2 + r)

[

1 +
n− 3

n− 3 + r

(

n− 3 + r

r + 1

)]

,

which is the hint given.

Exercise 10

We want to prove that

(1− x)−r−1 =
∞
∑

n=0

Ar
nx

n . (49)

We will prove this by induction. To start this process we let r = 0 where since

Ar
n = A0

n = 1 ,

we have the expression

(1− x)−1 =
∞
∑

n=0

xn ,

which is true and converges when |x| < 1. Next assume that Equation 49 is true for 0 ≤ r ≤ R
and let r = R + 1. Then using the inductive hypothesis we have

(1− x)−R−1−1 = (1− x)−R−1(1− x)−1 =

( ∞
∑

n=0

AR
nx

n

)( ∞
∑

m=0

xm

)

.

We will write this product as
∞
∑

n=0

Cnx
n ,

for some coefficients Cn. An expression for Cn, due to fact that it is the coefficient of the
product series, from two other power series means that we can write it as

Cn =

n
∑

ν=0

AR
ν 1

n−ν =

n
∑

ν=0

AR
ν = AR+1

n .
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Here we have used Equation 48 to simplify this. This means we have shown

(1− x)−(R+1)−1 =
∞
∑

m=0

AR+1
n xn ,

which is the required induction step.

Exercise 11

From the previous exercise we know that the coefficients in the Taylor series for

(1− x)−r−s−2 = (1− x)−(r+s+1)−1 ,

are Ar+s+1
n . Note that we can write this function as the product of the two functions (1 −

x)−r−1 and (1−x)−s−1 which have Taylor series coefficients given by Ar
n and As

n respectively.
Then from the formula for the coefficients of the product of two power series in terms of the
coefficients of the individual power series we have

Ar+s+1
n =

n
∑

ν=0

Ar
νA

s
n−ν ,

which is the expression we were trying to show.

Exercise 12

We can show (or have already shown) that E(x) converges absolutely for all x. Then using
the theorem on the product of two infinite series (proven in the book) we have

E(x)E(y) =
∞
∑

n=0

n
∑

k=0

(

xk

k!

)(

xn−k

(n− k)!

)

=

∞
∑

n=0

1

n!

n
∑

k=0

n!

k!(n− k)!
xkyn−k

=

∞
∑

n=0

1

n!

n
∑

k=0

(

n
k

)

xkyn−k .

Now using the Binomial theorem we have that

n
∑

k=0

(

n
k

)

xkyn−k = (x+ y)n , (50)

so that the expression for E(x)E(y) becomes

E(x)E(y) =
∞
∑

n=0

1

n!
(x+ y)n = E(x+ y) ,

as we were to show.
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Examples XV

Exercise 1

Part (a): Define the function f(x) to be

f(x) =
1√
2

∞
∑

n=1

(−1)n+1

n
xn ,

then we want to evaluate f(x)2. Note that the above series converges absolutely when |x| < 1
by comparison with the geometric series

∑∞
n=1 x

n. Then using Theorem 27 from the book
the value of f(x)2 is given by

∑∞
n=1 cn with cn given by

cn = anb1 + an−1b2 + an−2b3 + · · ·+ a2bn−1 + a1bn .

For the coefficients in the series expression for f(x) this evaluates to

cn =
1

2

(

(−1)n+1

n
xn

(

1

1
x

)

+
(−1)n

n− 1
xn−1

(−1

2
x2

)

+
(−1)n−1

n− 2
xn−2

(

1

3
x3

)

+ · · ·+
(

1

1
x

)(

(−1)n+1

n
xn

))

=
(−1)n+1xn+1

2

(

1

n
+

1

2(n− 1)
+

1

3(n− 2)
+ · · ·+ 1

n

)

=
(−1)n+1xn+1

2

n
∑

p=1

1

p(n− p+ 1)
.

Using partial fractions we can write

1

p(n− p+ 1)
=

1

(n+ 1)p
+

1

(n+ 1)(n− p+ 1)
.

Using this we can simplify the sum in the expression for cn as

n
∑

p=1

1

p(n− p+ 1)
=

1

n+ 1

n
∑

p=1

(

1

p
+

1

n− p+ 1

)

=
1

n+ 1

n
∑

p=1

1

p
+

1

n+ 1

n
∑

p=1

1

n+ 1− p

=
1

n+ 1

n
∑

p=1

1

p
+

1

n+ 1

n
∑

p=1

1

p

=
2

n+ 1

n
∑

p=1

1

p
. (51)

The expression for cn now looks like

cn =
(−1)n+1xn+1

n+ 2

n
∑

p=1

1

p
.

Thus the expression we have derived for f(x)2 takes the form

f(x)2 =
∞
∑

n=1

(−1)n+1

n+ 1
Hnx

n+1 , (52)
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where I have defined the numbers Hn as

Hn ≡
n
∑

p=1

1

p
. (53)

This is the expression we were trying to show.

Part (b): If x = 1 the left-hand-side of Equation 52 is the expression

f(1)2 =
1

2

(

1− 1

2
+

1

3
− 1

4
− · · ·

)2

=
1

2
(log(2))2 .

If x = 1 the right-hand-side of Equation 52 is the expression

∞
∑

n=1

(−1)n+1

(

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

)

1

n + 1
=

∞
∑

n=1

(−1)n+1 Hn

n+ 1
,

where Hn is defined by the sum above. As this series is obtained from the terms from the
product of two convergent series if this sum converges then by an application of Theorem 30
we can conclude that the two sides are equal.

To show that this series converges from the previous section we had

Hn = log(n) + γn ,

so the “right-hand-side” sum is given by

∞
∑

n=1

(−1)n+1 log(n)

n+ 1
+

∞
∑

n=1

(−1)n+1γn
n+ 1

.

Each of these series converges by the alternating series test and thus the original series
converges.

Exercise 2

From the geometric series we have

∞
∑

n=0

(−r)n =
1

1 + r
,

If we take r → x2 this is ∞
∑

n=0

(−1)nx2n =
1

1 + x2
.

If we integrate both sides we get

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
= tan−1(x) + C .
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If we take x = 0 as tan−1(0) = 0 we have that C = 0 and we thus have shown that

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
= tan−1(x) .

If we write this sum in starting at n = 1 it is

tan−1(x) =

∞
∑

n=1

(−1)n+1 x2n−1

2n− 1
. (54)

This series converges absolutely by comparison with the geometric series
∑∞

n=1 x
n. Then

using Theorem 27 from the book the value of (tan−1(x))2 is given by
∑∞

n=1 cn with cn given
by

cn = anb1 + an−1b2 + an−2b3 + · · ·+ a2bn−1 + a1bn . (55)

For the coefficients in the series expression for tan−1(x) this evaluates to

cn =

(

(−1)2x

1

)(

(−1)n+1x2n−1

2n− 1

)

+

(

(−1)3x3

3

)(

(−1)nx2n−3

2n− 3

)

+ · · ·+
(

(−1)n+1x2n−1

2n− 1

)(

(−1)2x

1

)

= (−1)n+1x2n

(

1

1(2n− 1)
+

1

3(2n− 3)
+ · · ·+ 1

(2n− 1)1

)

= (−1)n+1x2n
∑

p=1,3,5,...,2n−1

1

p(2n− p)
.

Using partial fractions we can write

1

p(2n− p)
=

1

2np
+

1

2n(2n− p)
.

Using this we can simplify the sum in the expression for cn as

∑

p=1,3,5,...,2n−1

1

p(2n− p)
=

∑

p=1,3,5,...,2n−1

1

2np
+

∑

p=1,3,5,...,2n−1

1

2n(2n− p)

=
1

n

∑

p=1,3,5,...,2n−1

1

p
.

The expression for cn now looks like

cn =
(−1)n+1x2n

n

∑

p=1,3,5,...,2n−1

1

p
.

Thus the expression we have derived for (tan−1(x))2 takes the form

(tan−1(x))2 =

∞
∑

n=1

(−1)n+1x2n

n

∑

p=1,3,5,...,2n−1

1

p
(56)

=

∞
∑

n=0

(−1)nx2n+2

n + 1

∑

p=1,3,5,...,2n+1

1

p
. (57)

which is the expression we were trying to show when we multiply both sides by 1
2
.
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Following the same arguments as in the previous exercise when x = 1 the series expansion
for tan−1(x) converges by the alternating series test. The right-hand-side of Equation 57
when x = 1 can be written as

∞
∑

n=0

(−1)n

n + 1

(

H2n −
1

2
Hn

)

,

using the fact that Hn = log(n) + γn we can show that the above series converges using the
alternating series test. Then using an application of Theorem 30 we can conclude that the
two expressions are equal (when x = 1).

Exercise 3

I think there is a typo in this exercise. I believe the statement “putting x = −y” should be
“putting x = −1”. The statement in Examples XIV 10 is given by Equation 49. If we take
x = −1 in that expression we get

2−r−1 =

∞
∑

n=0

(−1)nAr
n ,

which matches the desired expression in the book.

Exercise 4

Each of these series converges absolutely by comparison with the geometric series
∑∞

n=1 x
n.

Then an application of Theorem 29 gives that the limit as x → 1− tends to the expressions
given.

Exercise 5

Part (a): In this case
∑

an and
∑

bn are absolutely convergent so
∑

cn is absolutely
convergent and equal to the product of the two sums (using Theorem 27).

Part (b): In this case
∑

an and
∑

bn are convergent by the alternating series test (but not
absolutely convergent). The coefficients cn in this case can be written as

cn =

n
∑

p=1

(

(−1)p

p

)(

(−1)n−p+1

n− p+ 1

)

=
2(−1)n+1

n+ 1
Hn ,

using Equation 51. Using the fact that Hn = log(n) + γn we can show that
∑

cn converges
using the alternating series test. Then a use of Theorem 30 gives us that the product of
∑

an and
∑

bn is
∑

cn.
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Part (c): In this case
∑

an and
∑

bn are convergent by the alternating series test (but
not absolutely convergent). I claim that the sum

∑

cn does not converge and thus does not
equal product of

∑

an times
∑

bn. To show that this series does not converge note that the
coefficients cn in this case can be written as

cn =

n
∑

p=1

(

(−1)p√
p

)(

(−1)n−p+1

√
n− p + 1

)

= (−1)n+1
n
∑

p=1

1
√
p
√
n− p+ 1

.

To find a bound on cn recall the inequality

xy ≤ 1

2
(x2 + y2) ,

so that √
p
√

n− p+ 1 ≤ 1

2
(n+ 1) .

Using this we get
1

√
p
√
n− p+ 1

≥ 2

n + 1
.

Thus a bound for cn is

|cn| ≥
n
∑

p=1

2

n + 1
=

2n

n+ 1
,

Note that |cn| does not converge to zero as it must if
∑

cn was a convergent series.
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Chapter 11 (Uniform Convergence)

Examples XVI

Exercise 1

Part (i): For these we need to find bounds Mn for each of the terms where the bounding
sequence

∑

Mn converges. We can do that with

∣

∣

∣

∣

xn

n2

∣

∣

∣

∣

≤ 1

n2

∣

∣

∣

∣

xn

n(n+ 1)

∣

∣

∣

∣

≤ 1

n(n+ 1)
∣

∣

∣

∣

x2n

x2n + n2

∣

∣

∣

∣

≤ 1

x2n + x2
≤ 1

n2
.

Part (ii): In the same way as the previous part using the fact that

|xn| ≥ δn ,

and
|1 + xn| ≥ |xn| ≥ δn ,

we have

1

|xn| ≤
1

δn
∣

∣

∣

∣

1

1 + xn

∣

∣

∣

∣

<
1

|xn| ≤
1

δn
∣

∣

∣

∣

1

xn(1 + xn)

∣

∣

∣

∣

<
1

|x2n| ≤
1

δ2n
.

As
∑

1
δn

and
∑

1
δ2n

both converge by using Theorem 35 these sums converge uniformly.

Part (iii): As |xn| ≤ δn and
∑

δn converges the original sum converges uniformly.

For the second sum we can bound the terms by those of a convergent sum as

|xn|
n+ 1

< |xn| < δn .

For the third sum we can bound the terms by those of a convergent sum as

|(n+ 1)xn| ≤ (n + 1)δn .
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Here the sum with terms (n + 1)δn can be shown to converge using the ratio test.

For the fourth sum we can bound the terms by those of a convergent sum as

|n3xn| ≤ n3δn ,

and
∑

n3δn can be shown to converge using the ratio test.

Part (iv): For the first sum we can bound the terms by those of a convergent sum as

1

n4 + n2x2
=

1

n2(n2 + x2)
<

1

n2(n2)
=

1

n4
.

For the second sum we can bound the terms by those of a convergent sum as

1

n2 + n4x4
=

1

n2(1 + n2x2)
<

1

n2
.

Exercise 2

Let an(θ) = cos(nθ) then we can show that

sn(θ) =

n
∑

k=1

ak(θ) =

n
∑

k=1

cos(kθ) =
sin
(

nθ
2

)

cos
(

(n+1)θ
2

)

sin
(

θ
2

) . (58)

If an(θ) = sin(nθ) then we can also show that

sn(θ) =
n
∑

k=1

ak(θ) =
n
∑

k=1

sin(kθ) =
sin
(

nθ
2

)

sin
(

(n+1)θ
2

)

sin
(

θ
2

) . (59)

In both of these cases we have that

|sn(θ)| ≤
1

∣

∣sin
(

θ
2

)∣

∣

.

If we plot
∣

∣sin
(

θ
2

)∣

∣ as a function of θ over the range [0, 2π] we see it looks like a one-hump
function that starts at zero for θ = 0 and ends at zero for θ = 2π. Thus for θ ∈ [δ, 2π − δ]
we see that

∣

∣

∣

∣

sin

(

θ

2

)∣

∣

∣

∣

≥
∣

∣

∣

∣

sin

(

δ

2

)∣

∣

∣

∣

,

and thus we have the upper bound on sn(θ) of

|sn(θ)| ≤
1

∣

∣sin
(

δ
2

)∣

∣

.

If we seek to apply Theorem 36 (Dirichlet’s test) this is the value of K we could use. Next
as we are told to assume that vn → 0 by applying Dirichlet’s test we have that both of the
sums

∑

vn cos(nθ) and
∑

vn sin(nθ) converge uniformly for δ ≤ θ ≤ 2π − δ.
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Exercise 3

For the first two sums the desired conclusion follows as a direct application of what we have
shown in Exercise 2 with vn = 1

n
. For the second two sums using the fact that

∣

∣

∣

∣

sin(nθ)

n2

∣

∣

∣

∣

≤ 1

n2
and

∣

∣

∣

∣

cos(nθ)

n2

∣

∣

∣

∣

≤ 1

n2
,

for all θ from the Weierstrass M test we can conclude that they also converge uniformly.

Exercise 4

This sum can be written as

1 +

∞
∑

k=1

e−2kx

(2k)2 − 1
.

As
e−2kx

(2k)2 − 1
≤ 1

(2k)2 − 1
,

when x ≥ 0 by using the Weierstrass M test we can conclude that this sum converges
uniformly.

Exercise 5

This follows from Theorem 33 in that if we differentiate term-by-term that expression is
equal to the derivative of the function that is the sum of the terms (except possibly at the
end points of the domain). Thus since the sum converges to f(x) for x ≥ 0 the sum of the
first derivatives of the terms must converge to f ′(x) over x ≥ δ1 and the sum of the second
derivatives of the terms must converge to f ′′(x) over x ≥ δ2 ≥ δ1.

Exercise 6

As over 0 ≤ x ≤ 1 we have
∣

∣

∣

∣

xn

n2

∣

∣

∣

∣

≤ 1

n2
,

which converges by the Weierstrass M test this series converges uniformly. Because this sum
converges uniformly the integral of the sum of terms is equal to the sum of the integral of
each of the terms. Computing the integral of one of the terms we get

∫ 1

0

xn

n2
dx =

1

n2(n+ 1)
.

This with the above statement gives the desired conclusion.
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Exercise 7

To use Theorem 37 (Abel’s test) we need to write the sum as
∑

an(x)vn(x) where vn(x) is
monotonically decreasing/increasing,

∑

an(x) uniformly convergent, and |vn(x)| < K for all
n. In this sum if we take vn(x) = xn and an(x) = an then vn(x) is monotonically decreasing
for x ∈ [0, 1], |vn(x)| ≤ 1 for all n and

∑

an(x) is uniformly convergent. Thus we can
conclude that

∑

anx
n is uniformly convergent.

Exercise 8

From the previous exercise we know that
∑

anx
n is uniformly convergent for 0 ≤ x ≤ 1.

Using that, and continuity properties of uniformly convergent series, as anx
n is continuous

we have that
∑

anx
n is continuous for the domain 0 < x < 1 and that

lim
x→1−

∑

anx
n =

∑

an ,

which is the statement of Theorem 29.

Exercise 9

This sum can be written as (perhaps with an alternating factor of (−1)n inside the sum)

1

a
+ 2a

∞
∑

n=1

cos(nx)

a2 − n2
.

Following the hint we have
∣

∣

∣

∣

cos(nx)

a2 − n2

∣

∣

∣

∣

≤ 1

(1/2)n2
=

2

n2
.

An infinite sum of this upper bound converges and so by the Weierstrass M test this series
converges uniformly.

Exercise 10

I claim that this series converges uniformly for |x| ≤ δ < 1. In that case there is a N such
that

|x|n <
1

2
,

for all n > N . Then for these values of n we have

|1 + xn| > |1− |xn|| >
∣

∣

∣

∣

1− 1

2

∣

∣

∣

∣

=
1

2
,
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and thus
∣

∣

∣

∣

(−1)nxn

n(1 + xn)

∣

∣

∣

∣

≤ |x|n
n

<
δn

n
.

As the sum with these terms converges using the Weierstrass M test we have that our original
sum converges uniformly over the domain |x| ≤ δ < 1.

Exercise 11

As
∑

un(x) converges uniformly given an ǫ > 0 there exists a N such that

|uN(x) + uN+1(x) + · · ·+ uN+p(x)| < ǫ ,

for all p > 0. Note that for the sum
∑∞

n=1 un(x)F (x) given a ǫ > 0 the same value of N
(found above) will work in that

|F (x)uN(x) + F (x)uN+1(x) + · · ·+ F (x)uN+p(x)| = |F (x)||uN(x) + uN+1(x) + · · ·+ uN+p(x)|
< |uN(x) + uN+1(x) + · · ·+ uN+p(x)| < ǫ .

Thus
∑∞

n=1 un(x)F (x) also converges uniformly and because of that the integral of this sum
is the sum of the integrals (showing the desired expression).
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Chapter 12 (Binomial, Logarithmic, and Exponential)

Examples XVII

For this section we will need the Binomial theorem

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·+

(

n

r

)

xr + · · · , (60)

with
(

n

r

)

=
n(n− 1)(n− 2) · · · (n− r + 1)

r!
. (61)

Exercise 4

If we take n = m
2
in Equation 60 we get

(1 + x)
m
2 = 1 +

m

2
x+

1

2

(m

2

)

(

m− 2

2

)

x2 +
1

6

(m

2

)

(

m− 2

2

)(

m− 4

4

)

x3 + · · · ,

which is the desired expression.

Exercise 5

From the binomial theorem with n = −2 and replacing x → −x we get

(1− x)−2 = 1− 2(−x) +
(−2)(−3)

2
(−x)2 +

(−2)(−3)(−4)

3!
(−x)3 + · · ·

= 1 + 2x+ 3x2 + 4x3 + · · · ,

which is the desired expression.

From the binomial theorem with n = −3 and replacing x → −x we get

(1− x)−3 = 1− 3(−x) +
(−3)(−4)

2
(−x)2 +

(−3)(−4)(−5)

3!
(−x)3 + · · ·+ (−3)(−4)(−5) · · · (−3− r + 1)

r!
(−x)r

= 1 + 3x+
1

2
(3 · 4)x2 +

1

2
(4 · 5)x3 + · · ·+ (−1)r(3)(4)(5) · · · (3 + r − 1)

r!
xr

= 1 + 3x+
1

2
(3 · 4)x2 +

1

2
(4 · 5)x3 + · · ·+ 3 · 4 · 5 · · · r(r + 1)(r + 2)

r!
xr

= 1 + 3x+
1

2
(3 · 4)x2 +

1

2
(4 · 5)x3 + · · ·+ (r + 1)(r + 2)

2
xr .
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Exercise 6

Recalling that
1

1− x
=

∞
∑

l=0

xl ,

and using the binomial theorem we can write the given expression

(1− x)m

(1− x)
= (1− x)m−1 ,

as
( ∞
∑

k=0

(

m

k

)

(−1)kxk

)( ∞
∑

l=0

xl

)

=

∞
∑

n=0

(

m− 1

n

)

(−1)nxn . (62)

Computing the product on the left-hand-side of Equation 62 our expression is equal to

∞
∑

n=0

(

n
∑

l=0

(

m

l

)

(−1)l1n−l

)

xn =
∞
∑

n=0

(

m− 1

n

)

(−1)nxn .

If we equate powers of x we see that

(

m− 1

n

)

(−1)n =
n
∑

l=0

(

m

l

)

(−1)l

= 1−
(

m

1

)

+

(

m

2

)

−
(

m

3

)

+ · · ·+ (−1)n
(

m

n

)

.

which is the desired expression.

Exercise 7

We will use the binomial theorem to derive the power series representations of 1
1−x

and 1
(1−x)2

.
To start recall that using the binomial theorem we can write

1

1− x
= (1− x)−1 =

∞
∑

k=0

(−1

k

)

(−1)kxk .

Now the binomial coefficient above can be simplified as

(−1

k

)

=
(−1)(−2)(−3) · · · (−1− k + 1)

k!
=

(−1)kk!

k!
= (−1)k .

Putting this into the series above we find

1

1− x
=

∞
∑

k=0

(−1)k(−1)kxk =

∞
∑

k=0

xk , (63)
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the well known expansion for 1
1−x

.

Next we have
1

(1− x)2
= (1− x)−2 =

∞
∑

k=0

(−2

k

)

(−1)kxk .

In this case the binomial coefficient above can be simplified as

(−2

k

)

=
(−2)(−3)(−4) · · · (−2− k + 1)

k!
=

(−1)k2 · 3 · 4 · · ·k(k + 1)

k!
= (−1)k(k + 1) .

Putting this into the series above we find

1

(1− x)2
=

∞
∑

k=0

(k + 1)xk . (64)

Next we evaluate the expression

(1− x)m

(1− x)2
= (1− x)m−2 .

This becomes
( ∞
∑

j=0

(

m

j

)

(−1)jxj

)( ∞
∑

k=0

(k + 1)xk

)

=
∞
∑

n=0

(

m− 2

n

)

(−1)nxn . (65)

Computing the product on the left-hand-side of Equation 65 our expression is equal to

∞
∑

n=0

(

n
∑

l=0

(

m

l

)

(−1)l(n− l + 1)

)

xn =
∞
∑

n=0

(

m− 2

n

)

(−1)nxn .

If we equate powers of x we see that

(

m− 2

n

)

(−1)n =
n
∑

l=0

(

m

l

)

(−1)l(n− l + 1) ,

or
(

m− 2

n

)

=
n
∑

l=0

(

m

l

)

(−1)n−l(n− l + 1) .

In this last sum we will let k = n− l then the above becomes

(

m− 2

n

)

=
n
∑

k=0

(

m

n− k

)

(−1)k(k + 1) .

For the next identity
(1 + x)m(1 + x)2 = (1 + x)m+2 ,
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using the binomial theorem gives
( ∞
∑

n=0

(

m

n

)

xn

)

(1 + 2x+ x) =

∞
∑

n=0

(

m+ 2

n

)

xn ,

or ∞
∑

n=0

(

m

n

)

xn + 2
∞
∑

n=0

(

m

n

)

xn+1 +
∞
∑

n=0

(

m

n

)

xn+2 =
∞
∑

n=0

(

m+ 2

n

)

xn .

If we shift the indices of the sums on the left and release some terms we get

(

m

0

)

+

(

m

1

)

x+2

(

m

0

)

x+

∞
∑

n=2

[(

m

n

)

+ 2

(

m

n− 1

)

+

(

m

n− 2

)]

xn =

(

m+ 2

0

)

+

(

m+ 2

1

)

x+

∞
∑

n=2

(

m+ 2

n

)

xn .

Dropping common terms on both sides we get

∞
∑

n=2

[(

m

n

)

+ 2

(

m

n− 1

)

+

(

m

n− 2

)]

xn =

∞
∑

n=2

(

m+ 2

n

)

xn .

If we equate powers of x we see that we have
(

m+ 2

n

)

=

(

m

n

)

+ 2

(

m

n− 1

)

+

(

m

n− 2

)

,

for a second identity.

Exercise 8

To prove this, we start by noting that

r

(

n

r

)

=
rn!

(n− r)!r!
=

n!

(n− r)!(r − 1)!

=
n(n− 1)!

(n− 1− (r − 1))!(r − 1)!

= n

(

n− 1

r − 1

)

. (66)

Using this we find

n
∑

r=1

(−1)rr

(

n

r

)

= n

n
∑

r=1

(−1)r
(

n− 1

r − 1

)

= n

n−1
∑

r=0

(−1)r+1

(

n− 1

r

)

= −n

n−1
∑

r=0

(−1)r
(

n− 1

r

)

= −n(−1 + 1)n−1 = 0 , (67)

using the binomial theorem to “undo” the sum.
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To prove the second identity we will use mathematical induction. Thus we assume that

n
∑

r=1

(−1)rrm
(

n

r

)

= 0 ,

is true for all m = 1, 2, 3, · · · ,M − 1,M . We have shown this to be true for M = 1 in the
first part of this exercise. Now consider this expression for m = M +1 and we will removing
one r from the factor rM+1 using Equation 67 as

n
∑

r=1

(−1)rrM+1

(

n

r

)

=

n
∑

r=1

(−1)rrMn

(

n− 1

r − 1

)

= −n

n
∑

r=1

(−1)r−1rM
(

n− 1

r − 1

)

= −n

n−1
∑

r=0

(−1)r(r + 1)M
(

n− 1

r

)

. (68)

Now if we expand (r + 1)M using the binomial theorem again we get

(1 + r)M =
M
∑

j=0

(

M

j

)

rj ,

Note that the powers on r in this sum are all less than or equal to M . Thus by the inductive
hypothesis the sum over r of each of these terms vanishes. Thus the sum with m = M + 1
in Equation 68 also vanishes and we have shown the induction step.

Note: there must be a way to show this identity starting with a more obvious identity and
then perhaps expanding terms using the binomial theorem but I was not able to come up
with such a method. If anyone knows of one please contact me.

Exercise 9

To start this exercise note that for f(x) defined as

f(x) =
n
∏

r=1

(x− ar) ,

the x derivative of this is

f ′(x) =

n
∏

r=2

(x− ar) +

n
∏

r=1;r 6=2

(x− ar) +

n
∏

r=1;r 6=3

(x− ar) + · · ·+
n
∏

r=1;r 6=n

(x− ar)

=
n
∑

k=1

n
∏

r=1;r 6=k

(x− ar) .
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From this expression, if we evaluate this at x = ap for a p in the domain 1 ≤ p ≤ n we find

f ′(ap) = 0 + · · ·+ 0 +

n
∏

r=1;r 6=p

(ap − ar) + 0 + · · ·+ 0

=

n
∏

r=1;r 6=p

(ap − ar) . (69)

We will need that expression later.

Next if we use partial fractions to expand φ(x)
f(x)

we would have

φ(x)

f(x)
=

φ(x)
∏n

r=1(x− ar)
=

n
∑

r=1

Ar

x− ar
,

where Ar a constant. To evaluate the value of Ar we multiply the above by the f(x) =
∏n

r=1(x− ar) on both sides to get

φ(x) =
n
∑

r=1

Ar

n
∏

j=1;j 6=r

(x− aj) .

If we evaluate this at ar we get

φ(ar) = Ar

n
∏

j=1;j 6=r

(ar − aj) ,

so solving for Ar we get

Ar =
φ(ar)

∏n
j=1;j 6=r(ar − aj)

.

Then from Equation 69 we can write this as

Ar =
φ(ar)

f ′(ar)
.

With this coefficient we have

φ(x)

f(x)
=

n
∑

r=1

φ(ar)

f ′(ar)(x− ar)
. (70)

Now using
1

x− ar
= − 1

ar

(

1− x
ar

) = − 1

ar

∞
∑

k=0

xk

akr
,

which (as a truncated series) is more accurate when |x| ≪ 1 we get

φ(x)

f(x)
=

n
∑

r=1

φ(ar)

f ′(ar)

(

− 1

ar

∞
∑

k=0

xk

akr

)

= −
∞
∑

k=0

xk

{

n
∑

r=1

φ(ar)

f ′(ar)
a−k−1
r

}

. (71)
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On the other side if |x| is large (i.e. |x| ≫ 1) the series we use is given by

1

x− ar
=

1

x
(

1− ar
x

) =
1

x

∞
∑

k=0

akr
xk

.

In this case the sum we get is given by

φ(x)

f(x)
=

n
∑

r=1

φ(ar)

f ′(ar)

(

1

x

∞
∑

k=0

akr
xk

)

=
∞
∑

k=0

x−k−1

{

n
∑

r=1

φ(ar)

f ′(ar)
akr

}

. (72)

Exercise 10

This is a practical example of the expansion performed in Exercise 9 above. Using partial
fractions we would have

5x2 − 16x+ 13

(x− 1)(x− 2)(3x− 5)
=

A1

x− 1
+

A2

x− 2
+

A3

3x− 5
.

Evaluating the coefficients A1, A2, and A3 we find A1 = 1, A2 = 1, and A3 = −1 so the
expansion we have shown is

5x2 − 16x+ 13

(x− 1)(x− 2)(3x− 5)
=

1

x− 1
+

1

x− 2
− 1

3x− 5
.

We can write this as

5x2 − 16x+ 13

(x− 1)(x− 2)(3x− 5)
= − 1

1 − x
− 1

2
(

1− x
2

) +
1

5
(

1− 3x
5

)

= −
∞
∑

n=0

xn − 1

2

∞
∑

n=0

xn

2n
+

1

5

∞
∑

n=0

3nxn

5n

=
∞
∑

n=0

(

−1 − 1

2n+1
+

3n

5n+1

)

xn .

Exercise 11

Part (i): Note that by combining terms, we can write the terms of this series as

an ≡ 1

n
− 1

2n + 1
− 1

2n+ 2

=
1

n
− 4n+ 3

(2n+ 1)(2n+ 2)

=
9n+ 2

n(2n+ 1)(2n+ 2)
.
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We can show that the above sum converges using the ratio test by comparing these terms
with the terms of the convergent sum

∑

n
1
n2 .

Part (ii): For this part we will break the partial sums into harmonic sums and then express
these in terms of the natural log. Towards this end let

sn ≡
n
∑

k=1

ak ,

and simplify sn as

sn =
n
∑

k=1

1

k
−

n
∑

k=1

(

1

2k + 1
+

1

2(k + 1)

)

=
n
∑

k=1

1

k
−

n+1
∑

k=2

(

1

2k − 1
+

1

2k

)

=
n
∑

k=1

1

k
−
[

n
∑

k=1

(

1

2k − 1
+

1

2k

)

−
(

1 +
1

2

)

+

(

1

2n+ 1
+

1

2n+ 2

)

]

=
n
∑

k=1

1

k
−

2n
∑

k=1

1

k
+

3

2
−
(

1

2n + 1
+

1

2n + 2

)

=
3

2
+ log(n) + γn − (log(2n) + γ2n)−

(

1

2n+ 1
+

1

2n+ 2

)

=
3

2
− log(2) + γn − γ2n −

(

1

2n+ 1
+

1

2n+ 2

)

.

If we take the limit of the above as n → ∞ we see that

sn → 3

2
− log(2) = 0.8068528 .

Exercise 12

Lets define f(x) = log(1 + x3) so that

f ′(x) =
3x2

1 + x3
.

Note that we can expand 1
1+x3 in a power series to write

f ′(x) = 3x2

∞
∑

n=0

(−1)nx3n = 3

∞
∑

n=0

(−1)nx3n+2 .

The above series converges uniformly on any interval |x| ≤ δ with δ < 1. Thus for small x
we can integrate term by term from 0 to x to get

log(1 + x3) = 3
∞
∑

n=0

(−1)nx3n+3

3n+ 3
.
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For the next function
f(x) = log(1− x+ x2) ,

there are a couple of ways to perform this exercise but none of them seemed particularly
cleaver/easy so I leave it to the reader to fill in the details if desired. One way to solve this
exercise is to compute the derivatives of f(x) that are needed for the Taylor series. Another
is to factor the polynomial x2 − x+ 1 into two factors obtaining the roots of this quadratic
as

x2 − x+ 1 = (r1 − x)(r2 − x) ,

and then perform two Taylor expansions on the final two functions in

log(1− x+ x2) = log(r1 − x) + log(r2 − x) = log(r1r2) + log

(

1− x

r1

)

+ log

(

1− x

r2

)

,

using the known Taylor expansion for log(1−x) in Equation 73. For this quadratic the roots
r1 and r2 are complex and thus the algebra for this is complicated. Finally, one could use
the Taylor expansion of log(1− x) but then replace the x with x− x2 (to be considering the
function log(1−x+x2)) and expand as many powers of (x−x2)n as needed for the accuracy
desired. If anyone sees a simpler/better method please contact me.

Exercise 14

Let this ratio be given as

120 + 60x+ 12x2 + x3

120− 60x+ 12x2 − x3
= F (x) = f0 + f1x+ f2x

2 + f3x
3 + f4x

4 + · · · ,

Here F (x) is the function representing the given ratio and
∑

fnx
n is its power series. From

the above we have

120 + 60x+ 12x2 + x3 = (f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + · · · )(120− 60x+ 12x2 − x3) .

If we expand the right-hand-side we can equate powers of x with the left-hand-side and solve
for the coefficients of F (x). Expanding the right-hand-side gives

120 + 60x+ 12x2 + x3 = 120f0 − 60f0x+ 12f0x
2 − f0x

3

+ 120f1x− 60f1x
2 + 12f1x

3 − f1x
4

+ 120f2x
2 − 60f2x

3 + 12f2x
4 − f2x

5

+ 120f3x
3 − 60f3x

4 + 12f3x
5 − f3x

6 + · · ·
= 120f0 + (−60f0 + 120f1)x+ (12f0 − 60f1 + 120f2)x

2

+ (−f0 + 12f1 − 60f2 + 120f3)x
3 +O(x4) .

Setting the left-hand-side and the right-hand-side equal and equating powers of x we see that
f0 = 1, f1 = 1, f2 = 1

2
, and f3 = 1

6
. Note that these are the coefficients of the power series

of ex as we were to show. One could continue this process to as high an order as desired.
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Exercise 15

We will use

(1− x)−1 =
∞
∑

n=0

xn ,

and

log(1− x) = −
∞
∑

n=0

xn+1

n + 1
= −x

∞
∑

n=0

xn

n+ 1
. (73)

Taking the requested product we find

(1− x)−1 log(1− x) = −x
∞
∑

n=0

(

n
∑

k=0

1

k + 1

)

xn

= −
∞
∑

n=0

(

n
∑

k=0

1

k + 1

)

xn+1 .

If we integrate the left-hand-side from 0 to x we note that the left-hand-side is then

∫ x

0

(1− ξ)−1 log(1− ξ)dξ = −1

2
(log(1− ξ))2

∣

∣

x

0
= −1

2
(log(1− x))2 .

While the right-hand-side is then

−
∞
∑

n=0

(

1

n + 2

n
∑

k=0

1

k + 1

)

xn+2 .

Equating these two gives the desired expression.

Exercise 16

Using the two expansions

log(1− x) = −
∞
∑

n=0

xn+1

n+ 1
(74)

log(1 + x) = −
∞
∑

n=0

(−1)n+1xn+1

n + 1
, (75)
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we can compute the desired product and find

log(1 + x) log(1− x) =

( ∞
∑

n=0

(−1)n+1xn+1

n + 1

)( ∞
∑

n=0

xn+1

n + 1

)

= x2

( ∞
∑

n=0

(−1)n+1xn

n+ 1

)( ∞
∑

n=0

xn

n+ 1

)

= x2
∞
∑

n=0

(

n
∑

k=0

(−1)k+1

k + 1
· 1

n− k + 1

)

xn

=

∞
∑

n=0

(

n
∑

k=0

(−1)k+1

(k + 1)(n− k + 1)

)

xn+2 .

Expanding a few terms we have

log(1 + x) log(1− x) = − 1

1(1)
x2 +

(

− 1

1(2)
+

1

2(1)

)

x3

+

(

(−1)

1(3)
+

1

2(2)
− 1

3(1)

)

x4

+

(

(−1)

1(4)
+

1

2(3)
− 1

3(2)
+

1

4(1)

)

x5 + · · ·

= −x2 − 5

12
x4 +O(x6) .

From the above it looks like the above series has only even terms. We can simplify this inner
sum (and the full expression ) to emphasis this if we note that using partial fractions we
have

1

(k + 1)(n− k + 1)
=

1

n+ 2

(

1

k + 1

)

+
1

n + 2

(

1

n− k + 1

)

.

This means that when we sum for k = 0 to k = n we can simplify the second term to look
like the first. I find

n
∑

k=0

(−1)k+1

(k + 1)(n− k + 1)
=

1

n + 2

n
∑

k=0

(−1)k+1

k + 1
+

1

n+ 2

n
∑

k=0

(−1)k+1

n− k + 1

=
1

n + 2

n
∑

k=0

(−1)k+1

k + 1
+

(−1)n

n+ 2

n
∑

k=0

(−1)k+1

k + 1

=
(1 + (−1)n)

n+ 2

n
∑

k=0

(−1)k+1

k + 1
.

Note that this is zero if n is odd. Thus our product can be written as

log(1 + x) log(1− x) =
∞
∑

n=0,2,4,...

(

2

n+ 2

)

(

n
∑

k=0

(−1)k+1

k + 1

)

xn+2

= x2
∞
∑

n=0

(

1

n+ 1

2n
∑

k=0

(−1)k+1

k + 1

)

x2n .

Expanding a few terms of this series we get the same results as derived earlier.
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Exercise 17

Write this as
(1 + x)−1/2 = x−1/2

(

1 + x−1
)−1/2

,

and then use the binomial theorem on the second factor. To do that note that
(−1/2

0

)

= 1

(−1/2

1

)

= −1

2
(−1/2

2

)

=
(−1/2)(−1/2− 1)

2!
=

(−1/2)(−3/2)

2
=

1 · 3
2 · 4 .

Thus to the number of terms requested we have

(1 + x)−1/2 = x−1/2

(

1− 1

2
x−1 +

1 · 3
2 · 4x

−2 − · · ·
)

= x−1/2 − 1

2
x−3/2 +

1 · 3
2 · 4x

−5/2 − · · · .
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Chapter 13 (Power Series)

Notes on The Behavior of a Power Series on its Circle

We have

1 + z + z2 + · · ·+ zn−1 =
1− zn

1− z

∣

∣

∣

∣

z=eiθ
=

1− einθ

1− eiθ

(

e−
i
2
θn

e−
i
2
θn

)(

e−
i
2
θ

e−
i
2
θ

)

=
e−

i
2
nθ − e

i
2
nθ

e−
i
2
θ − e

i
2
θ

(

e−
i
2
θ

e−
i
2
θn

)

=
−2i sin

(

nθ
2

)

−2i sin
(

θ
2

) e
i
2
nθ− i

2
θ =

sin
(

1
2
nθ
)

sin
(

1
2
θ
) e

i
2
θ(n−1)

=
sin
(

1
2
nθ
)

sin
(

1
2
θ
)

(

cos

(

n− 1

2
θ

)

+ i sin

(

n− 1

2
θ

))

,

the expression in the book.

The fact that both
∑ cos(nθ)

n
and

∑ sin(nθ)

n
,

converge follows from a special case of “Dirichlet’s test” which states that if (vn) is any
monotonic sequence that converges to zero and (an) is a bounded sequence of numbers such
that

|a1 + a2 + · · ·+ an| < K ,

then
∑

anvn is convergent. Here vn = 1
n
a monotonic sequence and an is either cos(nθ) or

sin(nθ). The above sum of zn (when taking the real and imaginary parts) show that |∑ an|
is bounded allowing the use of Dirichlet’s test.

Examples XVIII

Exercise 1

This follows from Abel’s test (for uniform convergence). Here we write

∑

anx
n =

∑

anvn(x) ,

with vn(x) = xn. Now to apply Abel’s test note that vn(x) is monotonically decreasing in n
when x ∈ (0, 1). We also have that

•
∑

an is a uniformly convergent series
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• |vn(x)| = |xn| < 1 when x ∈ (0, 1).

Thus Abel’s test implies that
∑

anx
n converges uniformly for x ∈ (0, 1).

This also follows from Abel’s test (for uniform convergence). Here we write
∑

anx
n =

∑

(−1)nan(−x)n =
∑

(−1)nanvn(x) ,

with vn(x) = (−x)n. Now to apply Abel’s test note that vn(x) is monotonically decreasing
in n when x ∈ (−1, 0). We also have that

•
∑

(−1)nan is a uniformly convergent series

• |vn(x)| = |(−x)n| = |(−1)nxn| < 1 when x ∈ (−1, 0).

Thus Abel’s test implies that
∑

anx
n converges uniformly for x ∈ (−1, 0).

Exercise 2

This is a consequence of power series multiplication. For example we have

f(x)g(x) =
∑

n

anxn

∑

m

bmx
m

=
(

a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

) (

b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + · · ·

)

= a0b0 + a0b1x+ a0b2x
2 + a0b3x

3 + a0b4x
4 + · · ·

+ a1b0x+ a1b1x
2 + a1b2x

3 + a1b3x
4 + a1b4x

5 + · · ·
+ a2b0x

2 + a2b1x
3 + a2b2x

4 + a2b3x
5 + a2b4x

6 + · · ·
+ a3b0x

3 + a3b1x
4 + a3b2x

5 + a3b3x
6 + a3b4x

7 + · · ·
= a0b0

+ (a1b0 + a0b1)x

+ (a2b0 + a1b1 + a0b2)x
2

+ (a3b0 + a2b1 + a1b2 + a0b3)x
3 + · · · .

The general expression for the coefficient cn of x
n in the product for f(x)g(x) is the expression

given in the book.

Exercise 3

Define this expression fn(x). Then we have

f ′
n(x) =

(

1 + x+
x2

2!
+ · · ·+ xn−2

(n− 2)!

)

e−x −
(

1 + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!

)

e−x

= − xn−1

(n− 1)!
e−x .
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Now using e−x =
∑∞

k=0
(−1)kxk

k!
in the above we get

f ′
n(x) = − 1

(n− 1)!

∞
∑

k=0

(−1)kxk+n−1

k!
.

Integrating this we get

fn(x) = − 1

(n− 1)!

∞
∑

k=0

(−1)kxk+n

(k + n)k!
+ C ,

for some constant C. Taking x = 0 in the original expression for fn(x) we see that fn(0) = 1
and thus C = 1. This means that we have shown that

fn(x) = 1− xn

(n− 1)!

(

1

n
− x

n+ 1
+

x2

2!(n+ 2)
+

x3

3!(n+ 3)
+ · · ·

)

,

as we were to show.

Exercise 4

To study convergence of these infinite series we will use d’Alembert’s ratio test. To do that
we will need to compute limits of the ratio |un|

|un+1| .

Part (i): We find
|un|
|un+1|

=
n|z|n

(n+ 1)|z|n+1
=

(

n

n+ 1

)

1

|z| .

As n → ∞ this will be larger than one if |z| < 1. If |z| = 1 then the limit of the terms in
the sum don’t go to zero as n → ∞ and so the infinite sum cannot converge. To sum this
series we would recall Equation 78.

Part (ii): We find

|un|
|un+1|

=

(

(n + 1)|z|n
(n+ 2)(n+ 3)

)

×
(

(n + 3)(n+ 4)

(n+ 2)|z|n+1

)

=
(n+ 1)(n+ 4)

(n+ 2)2|z| .

As n → ∞ this will be larger than one if |z| < 1. If z = 1 then this sum diverges by
comparison with the terms of the series n−1. If z = −1 then this sum converges by the
alternating series test.

To sum this series note that using partial fractions we have

n+ 1

(n+ 2)(n+ 3)
= − 1

n + 2
+

2

n+ 3
.

This means that the sum we want to evaluate can be written as

∑ n+ 1

(n + 2)(n+ 3)
zn = −

∑ 1

n+ 2
zn + 2

∑ 1

n+ 3
zn .
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To sum these two sums on the right-hand-side we will write them so that we can evaluate
them using Equation 80. We have

∞
∑

n=0

zn

n+ 2
=

1

z

∞
∑

n=0

zn+1

n+ 2
=

1

z

∞
∑

n=1

zn

n+ 1
=

1

z

( ∞
∑

n=0

zn

n+ 1
− 1

)

∞
∑

n=0

zn

n+ 3
=

1

z2

∞
∑

n=0

zn+2

n + 3
=

1

z2

∞
∑

n=2

zn

n+ 1
=

1

z2

( ∞
∑

n=0

zn

n + 1
− 1− z

2

)

.

We would need to combine the two sums above to get the final sum/result.

Part (iii): We find

|un|
|un+1|

=
n2|z|n

(n+ 1)2|z|n+1
=

n2

(n+ 1)2|z| →
1

|z| ,

as n → ∞. This will be larger than one if |z| < 1. If |z| = 1 then the terms of this sum
don’t limit to zero as n → ∞ and the sum must diverge. To sum this series we would recall
Equation 79.

Part (iv): We find

|un|
|un+1|

=

(

n|z|n
(n + 1)2

)

×
(

(n+ 2)2

(n+ 1)|z|n+1

)

=
n(n + 2)2

(n+ 1)3|z| →
1

|z| ,

as n → ∞. This will be larger than one if |z| < 1. If z = 1 then this sum diverges by
comparison with the terms of the series n−1. If z = −1 then this sum converges by the
alternating series test. To sum this series we would recall Equation 82.

Exercise 5

Note that we can write the terms of this series as unz
n where

un =

(
∏n−1

i=0 (a + i)
) (
∏n−1

i=0 (b+ i)
)

n!
(
∏n−1

i=0 (c+ i)
) , (76)

for n ≥ 0. Here we are using the convention that
∏−1

i=0 f(i) = 1. The easiest way to “verify”
this is to check that these terms are correct by evaluating the above for n = 0, n = 1, and
n = 2.

To study convergence of the infinite series we will use d’Alembert’s ratio test. We first need
to compute the ratio |unzn|

|un+1zn+1| where we find

|unz
n|

|un+1zn+1| =
(

(
∏n−1

i=0 (a+ i)
) (
∏n−1

i=0 (b+ i)
)

|z|n

n!
(
∏n−1

i=0 (c+ i)
)

)

×
(

(n + 1)! (
∏n

i=0(c+ i))

(
∏n

i=0(a + i)) (
∏n

i=0(b+ i)) |z|n+1

)

=
(n+ 1)(c+ n)

(a + n)(b+ n)|z| →
1

|z| .
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Thus the limit of this fraction as n → ∞ is the value 1
|z| . By d’Alembert’s test our sum will

converge if 1
|z| > 1 which happens if |z| < 1. This test also tells us that the sum will diverge

if |z| > 1.

Exercise 6

Note that we can write F (a, b, c; z) as

F (a, b, c; z) =

∞
∑

n=0

unz
n ,

with un given by Equation 76.

Part (i): Using the above we have that

F ′(a, b, c; z) =
∞
∑

n=1

nunz
n−1 =

∞
∑

n=0

(n+ 1)un+1z
n .

From the expression for un we have that

(n+ 1)un+1 = (n+ 1)× (
∏n

i=0(a+ i)) (
∏n

i=0(b+ i))

(n+ 1)! (
∏n

i=0(c+ i))

=
ab

c
× (
∏n

i=1(a+ i)) (
∏n

i=1(b+ i))

n! (
∏n

i=1(c+ i))

=
ab

c
× (
∏n

i=1(a+ 1 + i− 1)) (
∏n

i=1(b+ 1 + i− 1))

n! (
∏n

i=1(c+ 1 + i− 1))

=
ab

c
×

(

∏n−1
i=0 (a+ 1 + i)

)(

∏n−1
i=0 (b+ 1 + i)

)

n!
(

∏n−1
i=0 (c+ 1 + i)

)

=
ab

c
× u′n .

Here the value of u′
n is Equation 76 but evaluated at a → a + 1, b → b + 1, and c → c + 1

slightly different than the normal definition of un. Thus if we denote the dependence on a,
b, and c explicitly in the expression for un we have just shown

F ′(a, b, c; z) =
ab

c

∞
∑

n=0

un(a + 1, b+ 1, c+ 1)zn =
ab

c
F (a+ 1, b+ 1, c+ 1; z) ,

as we were to show.

Part (ii): This relationship is known as “Euler’s transformation” of the hypergeometric
function3 and (from the research I did) seemed to be somewhat involved to prove. If anyone
has an easy proof of this relationship please contact me.

3https://en.wikipedia.org/wiki/Hypergeometric function
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Exercise 11

The terms of this sum can be written as

un =
[1 · 3 · 5 · · · (2n− 3)]x2n+1

[2 · 4 · 6 · · · (2n)](2n + 1)
.

for n = 1, 2, 3, . . . .

Part (i): For this we have

|un|
|un+1|

=

(

[1 · 3 · 5 · · · (2n− 3)]|x|2n+1

[2 · 4 · 6 · · · (2n)](2n+ 1)

)

×
(

[2 · 4 · 6 · · · (2n) · (2n + 2)](2n+ 3)

[1 · 3 · 5 · · · (2n− 3) · (2n− 1)]|x|2n+3

)

=
(2n+ 2)(2n+ 3)

(2n− 1)(2n+ 1)|x|2 .

If we take the limit as n → ∞ the above equals 1
|x|2 . This sum will converge if this limit is

larger than one which happens if |x| < 1.

Part (ii): If x = 1 then the test above is inconclusive. To determine convergence we will
use Rabbe’s test for which we need to compute

n

(

un

un+1

− 1

)

= n

(

(2n+ 2)(2n+ 3)

(2n− 1)(2n+ 1)
− 1

)

= n

(

10n+ 7

(2n− 1)(2n+ 1)

)

→ 10

4
=

5

2
> 1 ,

and thus this sum converges.

Exercise 12

The terms of this sum can be written as

un =
(n− 1)!xn

nn
.

for n = 1, 2, 3, . . . . For this we have

|un|
|un+1|

=

(

(n− 1)!|x|n
nn

)

×
(

(n+ 1)n+1

n!|x|n+1

)

=
1

|x|
(n+ 1)n+1

nn+1
=

1

|x|

(

1 +
1

n

)n+1

=
1

|x|

(

1 +
1

n

)n(

1 +
1

n

)

.

If we take the limit as n → ∞ the above equals 1
|x| × e × 1 = e

|x| . This sum will converge if

this limit is larger than one which happens if |x| < e.
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Exercise 14

To study convergence of this infinite series we will use d’Alembert’s ratio test. We first need
to compute the ratio |un|

|un+1| where we find

|un|
|un+1|

=

(

1 · 3 · 5 · 7 · · · (2n− 3) · (2n− 1)|x|n
2 · 5 · 8 · · · (3n− 4) · (3n− 1)

)

×
(

2 · 5 · 8 · · · (3n− 1) · (3n+ 2)

1 · 3 · 5 · 7 · · · (2n− 1)(2n+ 1)|x|n+1

)

=

(

3n+ 2

2n+ 1

)(

1

|x|

)

.

Thus the limit of this fraction as n → ∞ is the value 3
2|x| . By d’Alembert’s ratio test our

sum will converge if 3
2|x| > 1 which happens if |x| < 3

2
.

Sums involving zn

Recall that ∞
∑

n=0

zn =
1

1− z
, (77)

gives the sum of zn. Taking the z derivative of this gives

∞
∑

n=1

nzn−1 = − 1

(1− z)2
(−1) =

1

(1− z)2
.

Multiplying both sides by z gives

∞
∑

n=1

nzn =
z

(1− z)2
. (78)

This give the sum of nzn. Taking a z derivative of this gives

∞
∑

n=1

n2zn−1 =
1

(1− z)2
− 2z(−1)

(1− z)3
=

1− z + 2z

(1− z)3
=

1 + z

(1− z)3
.

Multiplying both sides by z gives

∞
∑

n=1

n2zn =
z(1 + z)

(1− z)3
. (79)

This give the sum of n2zn. We could continue this pattern for as long as needed to get other
sums of the form npzn.

Starting with Equation 77 and integrating both sides we get

∞
∑

n=0

zn+1

n+ 1
+ C = − ln(1− z) .
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Taking z = 1 we see that C = 0 and we have

∞
∑

n=0

zn

n+ 1
= −1

z
ln(1− z) . (80)

This gives sums of the form zn

n+1
. If we integrate the above from 0 to z (so that the sum is

only the terms zn+1

(n+1)2
) we get

∞
∑

n=0

zn+1

(n+ 1)2
= −

∫ z

0

1

x
ln(1− x)dx =

∫ 0

z

ln(1− x)

x
dx ≡ Li2(x) .

Where the integral on the right-hand-side is the dilogarithm4. Thus we have

∞
∑

n=0

zn+1

(n+ 1)2
= Li2(z) .

If we divide this by z we get
∞
∑

n=0

zn

(n+ 1)2
=

1

z
Li2(z) . (81)

This gives sums of the form zn

(n+1)2
. If we take the z derivative of this we get

∞
∑

n=1

nzn−1

(n + 1)2
= − 1

z2
Li2(z) +

1

z

d

dz
Li2(z)

= − 1

z2
Li2(z) +

1

z

(

−1

z
ln(1− z)

)

= − 1

z2
(Li2(z) + ln(1− z)) .

If we multiply this by z we get

∞
∑

n=1

nzn

(n+ 1)2
= −1

z
(Li2(z) + ln(1− z)) . (82)

4https://mathworld.wolfram.com/Dilogarithm.html
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Chapter 14 (Integral Test)

Notes on the Text: Proving the sn and In bounds

Starting with

f(n+ 1) <

∫ n+1

n

f(x)dx < f(n) , (83)

and following the suggestion in the text we write this for n = 1, 2, 3, · · · , n− 2, n− 1 as

f(2) <

∫ 2

1

f(x)dx < f(1)

f(3) <

∫ 3

2

f(x)dx < f(2)

...

f(n) <

∫ n

n−1

f(x)dx < f(n− 1) .

If we add these we get
sn − f(1) < In < sn − f(n) , (84)

which is Equation (2) in this section.

Notes on the Text: Bounding a sum with an integral

Here we write Equation 83 for n in {n, n+ 1, n+ 2, · · · , n+ k − 1} as

f(n+ 1) <

∫ n+1

n

f(x)dx < f(n)

f(n+ 2) <

∫ n+2

n+1

f(x)dx < f(n+ 1)

...

f(n+ k) <

∫ n+k

n+k−1

f(x)dx < f(n+ k − 1) .

If we then sum these we get

f(n+ 1) + f(n+2) + · · ·+ f(n+ k) <

∫ n+k

n
f(x)dx < f(n) + f(n+1) + · · ·+ f(n+ k− 1) . (85)

Using the sum of f(·) on the left-hand-side of Equation 85 to bound the sum of f(·) on the
the right-hand-side we get

f(n) + f(n+ 1) + · · ·+ f(n+ k − 1) <

∫ n+k−1

n−1

f(x)dx .
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In summary then, lower and upper bounds for the sum
∑n+k−1

i=n f(i) are given by

∫ n+k

n

f(x)dx < f(n) + f(n+ 1) + · · ·+ f(n+ k − 1) <

∫ n+k−1

n−1

f(x)dx . (86)

Lets consider some examples using Equation 86.

Bounding sums of 1
n

If f(x) = 1
x
then Equation 86 becomes in this case

∫ n+k

n

dx

x
<

1

n
+

1

n+ 1
+ · · ·+ 1

n+ k − 1
<

∫ n+k−1

n−1

dx

x
. (87)

Now note that

∫ n+k

n

dx

x
= ln(x)|n+k

n = ln(n+ k)− ln(n) = ln

(

n+ k

n

)

= ln

(

1 +
k

n

)

.

This means that Equation 87 becomes

ln

(

1 +
k

n

)

<
1

n
+

1

n + 1
+ · · ·+ 1

n+ k − 1
< ln

(

1 +
k

n− 1

)

, (88)

which is the statement given in the book.

Bounding sums of 1
n2

If f(x) = 1
x2 then Equation 86 becomes in this case

∫ n+k

n

dx

x2
<

1

n2
+

1

(n + 1)2
+ · · ·+ 1

(n + k − 1)2
<

∫ n+k−1

n−1

dx

x2
. (89)

Now note that

∫ n+k

n

dx

x2
= −1

x

∣

∣

∣

∣

n+k

n

= −
(

1

n+ k
− 1

n

)

=
1

n
− 1

n+ k
=

k

n(n+ k)
.

This means that Equation 89 becomes

k

n(n+ k)
<

1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(n+ k − 1)2
<

k

(n− 1)(n− 1− k)
, (90)

which is the statement given in the book.
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Bounding sums of 1
n3

If f(x) = 1
x3 then Equation 86 becomes in this case

∫ n+k

n

dx

x3
<

1

n3
+

1

(n + 1)3
+ · · ·+ 1

(n + k − 1)3
<

∫ n+k−1

n−1

dx

x3
. (91)

Now note that
∫ n+k

n

dx

x3
=

x−2

−2

∣

∣

∣

∣

n+k

n

=
1

2

(

1

n2
− 1

(n+ k)2

)

=
2nk + k2

2n2(n+ k)2
.

This means that Equation 91 becomes

2nk + k2

2n2(n+ k)2
<

1

n3
+

1

(n + 1)3
+ · · ·+ 1

(n+ k − 1)3
<

2(n− 1)k + k2

2(n− 1)2(n− 1 + k)2
. (92)

Bounding sums of 1
n2+1

If f(x) = 1
x2+1

then Equation 86 becomes in this case

∫ n+k

n

dx

x2 + 1
<

1

n2 + 1
+

1

(n+ 1)2 + 1
+ · · ·+ 1

(n+ k − 1)2 + 1
<

∫ n+k−1

n−1

dx

x2 + 1
. (93)

Now note that
∫ n+k

n

dx

x2 + 1
= tan−1(x)

∣

∣

n+k

n
= tan−1(n + k)− tan−1(n) . (94)

To further evaluate this we need to compute the difference on the right-hand-side. To do
this recall that

tan(x− y) =
tan(x)− tan(y)

1 + tan(x) tan(y)
, (95)

or

x− y = tan−1

(

tan(x)− tan(y)

1 + tan(x) tan(y)

)

.

Then if we take x → tan−1(X) and y → tan−1(Y ) the above is

tan−1(X)− tan−1(Y ) = tan−1

(

X − Y

1 +XY

)

. (96)

This means that Equation 94 becomes

tan−1(n+ k)− tan−1(n) = tan−1

(

n+ k − n

1 + (n+ k)n

)

= tan−1

(

k

n2 + kn+ 1

)

,

and thus Equation 93 becomes

tan−1

(

k

n2 + kn+ 1

)

<
1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(n+ k − 1)2
< tan−1

(

k

(n− 1)2 + k(n− 1) + 1

)

, (97)

which is the statement given in the book.
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Examples XIX

Exercise 2

To use the integral test on this series we would need to consider the integral

I =

∫ ∞

a

1

x log(x)p
dx .

If we take u = log(x) then du = dx
x

and we get that

I =

∫ ∞

log(a)

du

up
=

∫ ∞

log(a)

u−pdu .

The above converges if and only if p > 1 and thus the series converges for the same p values.

Exercise 3

Now since the integral
∫

dx
xp is convergent if and only if p > 1 by using the integral test on

this series we conclude that the series is convergent for the same p values.

To show the suggested bounds we will consider Equation 86 for n ≥ 2 where we need to
compute

In+k
n =

∫ n+k

n

dx

xp
=

1

1− p
x1−p

∣

∣

∣

∣

n+k

n

=
1

1− p

(

1

(n+ k)p−1
− 1

np−1

)

.

This means that

In+k−1
n−1 =

1

1− p

(

1

(n− 1 + k)p−1
− 1

(n− 1)p−1

)

.

In this notation with f(x) = 1
xp Equation 86 is

In+k
n <

n+k−1
∑

i=n

f(i) < In−1+k
n−1 .

If we take n = 2 we have

I2+k
2 <

k+1
∑

i=2

f(i) < Ik+1
1 .

The upper bound above becomes

Ik+1
1 =

1

1− p

(

1

(1 + k)p−1
− 1

1p−1

)

→ 1

p− 1
,
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as k → ∞. This means that ∞
∑

i=2

1

ip
<

1

p− 1
.

Adding one to both sides gives

∞
∑

i=1

1

ip
<

1

p− 1
+ 1 =

p

p− 1
,

as we were to show.

Exercise 4

For this exercise we will first prove the “hint”. Consider the function f(x) = x− log(1 + x).
Using the known power series of log(1 + x) of

log(1 + x) =

∞
∑

k=0

(−1)kxk+1

k + 1
, (98)

we will have that

f(x) = x− log(1 + x) =

∞
∑

k=1

(−1)k+1xk+1

k + 1
.

From this and using Taylor series we have that

x− log(1 + x) =
x2

2
− x3

3
+O(x4) <

x2

2

x− log(1 + x) =
x2

2
− x3

3
+

x4

4
+O(x5) >

x2

2
− x3

3
.

Thus we have just shown (the hint) that

x2

2
− x3

3
< f(x) <

x2

2
. (99)

Now the terms we are summing take the form an = f
(

1
n

)

and we are asked to sum “p terms
after an”. This is the expression

S ≡
p
∑

i=1

an+i =

p
∑

i=1

(

1

n + i
− log

(

1 +
1

n + i

))

=

n+p
∑

j=n+1

(

1

j
− log

(

1 +
1

j

))

.

Then using Equation 99 we can bound the above as

n+p
∑

j=n+1

(

1

j
− log

(

1 +
1

j

))

<
1

2

n+p
∑

j=n+1

1

j2
.

120



Then using Equation 90 with n → n+ 1 we get

S <
1

2

(

p

n(n + p)

)

,

which is one of the bounds we were to show.

Now to find a lower bound for S note that we have

S >

n+p
∑

j=n+1

(

1

2j2
− 1

3j3

)

.

Then using Equation 86 we have that

S >

∫ n+1+p

n+1

(

1

2x2
− 1

3x3

)

dx .

We will now evaluate this integral. We find

∫ n+1+p

n+1

(

1

2x2
− 1

3x3

)

dx =

(

1

2

x−1

(−1)
− 1

3

x−2

(−2)

∣

∣

∣

∣

n+1+p

n+1

= − 1

2x
+

1

6x2

∣

∣

∣

∣

n+1+p

n+1

=

(

1

2(n+ 1)
− 1

6(n+ 1)2

)

−
(

1

2(n+ 1 + p)
− 1

6(n+ 1 + p)2

)

=
1

2

p

(n+ 1)(n+ 1 + p)

(

1− 1

3

2(n+ 1) + p

(n + 1)(n+ 1 + p)

)

.

Note that this is similar (but not exactly the same) to the result given in the book. If anyone
sees anything wrong with what I have done please contact me.

Exercise 5

Using Equation 88 (which has f(x) = 1
x
) with n → n + 1 we get

ln

(

1 +
k

n+ 1

)

<
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ k
< ln

(

1 +
k

n

)

.

If we take k = n we get

ln

(

1 +
n

n+ 1

)

<
2n
∑

k=n+1

1

k
< ln

(

1 +
n

n

)

= ln(2) .

Taking the limit of this expression as n → ∞ we get that

lim
n→∞

2n
∑

k=n+1

1

k
= ln(2) .
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We verify this result in the R code examples xix exercise 5.R.

For the second example we will take f(x) defined as

f(x) ≡ 1

x+ 1
− 1

x+ 2
=

1

(x+ 1)(x+ 2)
.

Note that for this f(x) we have

f ′(x) = − 1

(x+ 1)2
+

1

(x+ 2)2
=

−(x+ 2)2 + (x+ 1)2

(x+ 1)2(x+ 2)2
=

−2x− 3

(x+ 1)2(x+ 2)2
< 0 ,

for all x > 0 and thus f(x) is a monotonically decreasing function.

Then the sum we seek we seek to evaluate is given by

f(n) + f(n+ 2) + f(n+ 4) + f(n+ 6) + · · · .

Without loss of generality lets assume that n is even. Then the final term in the sum above
will be when n+ 2i+ 2 = 2n or i = n

2
− 1 and the above sum is

n
2
−1
∑

i=0

f(n+ 2i) . (100)

Here there are n terms in the original sum and n terms in the sum above. In terms of f(x)
this is

n
2
−1
∑

i=0

(

1

n + 2i+ 1
− 1

n + 2i+ 2

)

=

n
2
−1
∑

i=0

1

(n+ 2i+ 1)(n+ 2i+ 2)
.

We will now use Equation 86 to bound this sum. Let In+k
n be the lower bounding integral

in Equation 86 such that

In+k
n ≡

∫ n+k

n

(

1

x+ 1
− 1

x+ 2

)

dx

= (ln(x+ 1)− ln(x+ 2)|n+k
n = ln

(

n+ k + 1

n+ k + 2

)

− ln

(

n + 1

n + 2

)

= ln

(

(n+ k + 1)(n+ 2)

(n+ k + 2)(n+ 1)

)

.

With this our bound in Equation 86 becomes

ln

(

(n+ k + 1)(n+ 2)

(n+ k + 2)(n+ 1)

)

<
n+k−1
∑

j=n

f(j) < ln

(

(n + k)(n+ 1)

(n + k + 1)n

)

. (101)

To get this to match Equation 100 we need the lower and upper limits of the sum to match.
As the lower limits match, we need to have k such that the upper limits match or

2n− 2 = n+ k − 1 so k = n− 1 .
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If we put this value for k into Equation 101 we get

ln

(

(2n)(n + 2)

(2n+ 1)(n+ 1)

)

<

2n−2
∑

j=n

f(j) < ln

(

(2n− 1)(n+ 1)

(2n)n

)

. (102)

Taking the limit of this expression as n → ∞ we get that

lim
n→∞

2n−2
∑

j=n

f(j) = 0 .

We also verify this result in the R code examples xix exercise 5.R.

Exercise 6

It looks like our sum is given by the following expression

∞
∑

n=0

x2(2n+1)

2n + 1

2n
∑

i=0

(−1)i

2i+ 1
. (103)

We can check this with a few cases. When n = 0 we get

x2

1
· (1) = x2 ,

which is correct. When n = 1 we get

x6

3

2
∑

i=0

(−1)i

2i+ 1
=

(

1− 1

3
+

1

5

)

x6

3
,

which is correct. When n = 2 we get

x10

5

4
∑

i=0

(−1)i

2i+ 1
=

(

1− 1

3
+

1

5
− 1

7
+

1

9

)

x10

5
,

which is correct. This means that the coefficient of our power series takes the form

an =
x4n+2

2n+ 1

2n
∑

i=0

(−1)i

2i+ 1
.

We will use d’Alembert’s ratio test. We consider

lim
n→∞

|an+1|
|an|

= lim
n→∞

|x4(n+1)+2|
∣

∣

∣

∑2n+2
i=0

(−1)i

2i+1

∣

∣

∣

2(n+ 1) + 1
× 2n+ 1

|x|4n+2

∣

∣

∣

∑2n+2
i=0

(−1)i

2i+1

∣

∣

∣

= lim
n→∞

(

2n+ 1

2n+ 3

)( |x|4n+6

|x|4n+2

)





∣

∣

∣

∑2n+2
i=0

(−1)i

2i+1

∣

∣

∣

∣

∣

∣

∑2n
i=0

(−1)i

2i+1

∣

∣

∣





= |x|4 lim
n→∞





∣

∣

∣

∑2n+2
i=0

(−1)i

2i+1

∣

∣

∣

∣

∣

∣

∑2n
i=0

(−1)i

2i+1

∣

∣

∣
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Lets now evaluate the limit of the ratio of the two sums above. Note that

lim
n→∞





∣

∣

∣

∑2n+2
i=0

(−1)i

2i+1

∣

∣

∣

∣

∣

∣

∑2n
i=0

(−1)i

2i+1

∣

∣

∣



 = lim
n→∞





∣

∣

∣

∑2n
i=0

(−1)i

2i+1
+ (−1)2n+1

2(2n+1)+1
+ (−1)2n+2

2(2n+2)+1

∣

∣

∣

∣

∣

∣

∑2n
i=0

(−1)i

2i+1

∣

∣

∣



 .

Now as the sum
∑∞

i=0
(−1)i

2i+1
converges (by the alternating series test) this ratio must converge

to one. Thus I have shown that

lim
n→∞

|an+1|
|an|

= |x|4 ,

and thus the series converges if |x|4 < 1 or |x| < 1 and diverges if |x| > 1. One would need
to consider the special cases x = ±1 separately.

We now show that this sum can be represented as the given product. Recall that in Exam-
ples XV that we derived the Taylor expansion of tan−1(x) given by Equation 54. Following
that derivation we have

1

1− x2
=

∞
∑

k=0

(x2)k =

∞
∑

k=0

x2k .

If we integrate both sides of this we get

tanh−1(x) + C =
∞
∑

k=0

x2k+1

2k + 1
.

Taking x = 0 we get that C = 0 and we have shown that

tanh−1(x) =
∞
∑

k=0

x2k+1

2k + 1
. (104)

From what we have shown above if we write the Taylor series of tan−1(x) and tanh−1(x) in
terms of “ones based” indexing we have

tan1(x) =

∞
∑

n=1

(−1)n+1x2n−1

2n− 1
=

∞
∑

n=1

an

tanh1(x) =

∞
∑

n=1

x2n−1

2n− 1
=

∞
∑

n=1

bn .

Then using Equation 55 we get

cn =

(

(−1)n+1x2n−1

2n − 1

)

(x

1

)

+

(

(−1)nx2n−3

2n− 3

)(

x3

3

)

+ · · ·+
(

(−1)3x3

3

)(

x2n−3

2n − 3

)

+

(

(−1)2x1

1

)(

x2n−1

2n− 1

)

=
(−1)n+1x2n

(2n − 1)(1)
+

(−1)nx2n

(2n− 3)(3)
+ · · · + (−1)3x2n

3(2n − 3)
+

x2n

(−1)2(2n − 1)

= x2n
∑

p=1,3,...,2n−3,2n−1

(−1)n+1−( p−1
2 )

(2n − p)p
.
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One can check that expression for the power of −1 gives the desired terms in the target sum.
We can continue to simplify this and find

cn = x2n(−1)n+1
∑

p=1,3,...,2n−3,2n−1

(−1)−(
p−1
2 )

(2n− p)p
= x2n(−1)n+1

∑

p=1,3,...,2n−3,2n−1

(−1)
p−1
2

(2n− p)p
.

In this last sum we will use partial fractions as

1

(2n− p)p
=

1

2np
+

1

2n(2n− p)
.

Using this I can write

(−1)n+1(2n)

x2n
cn =

∑

p=1,3,...,2n−3,2n−1

(−1)
p−1
2

p
+

∑

p=1,3,...,2n−3,2n−1

(−1)
p−1
2

2n− p
.

If we let q = p−1
2

then p = 2q+1 so 2n− p = 2n− 2q− 1 = 2(n− q)− 1. This means that as
p over the range above q ranges over 1, 3, 5, . . . , 2n− 5, 2n− 3, 2n− 1 we have that q ranges
over 0, 1, 2, . . . , n− 3, n− 2, n− 1. Thus we can write

(−1)n+1(2n)

x2n
cn =

n−1
∑

q=0

(−1)q

2q + 1
+

n−1
∑

p=0

(−1)q

2(n− q)− 1
.

In the second sum let q = n − r − 1 so that r + 1 = n − q then as q takes on values in
0, 1, 2, . . . , n− 3, n− 2, n− 1 we find that r + 1 takes on values in n, n− 1, n− 2, . . . , 3, 2, 1
and we can write

(−1)n+1(2n)

x2n
cn =

n−1
∑

q=0

(−1)q

2q + 1
+

n−1
∑

r=0

(−1)n−r−1

2r − 1
,

or
(−1)n+1(2n)

x2n
cn =

n−1
∑

q=0

(−1)q + (−1)n(−1)q(−1)

2q + 1
=

n−1
∑

q=0

(−1)q[1 + (−1)n+1]

2q + 1
.

Now if n is even this will vanish and we have cn = 0. If n is odd it will not vanish and we
take n = 2m+ 1 (with m ≥ 0). In that case the above is

(−1)2m+2(4m+ 2)c2m+1

x4m+2
=

2m
∑

q=0

(−1)q(2)

2q + 1
.

Solving this for c2m+1 we get

c2m+1 =
2x4m+2

4m+ 2

2m
∑

q=0

(−1)q

2q + 1
=

x4m+2

2m+ 1

2m
∑

q=0

(−1)q

2q + 1
,

which is the same coefficients as specified in Equation 103.
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Exercise 7

When −1 < p ≤ 0 the function xp is monotonic decreasing as x increases. Then using
theorem 49 the expression

n
∑

i=0

ip −
∫ n

0

xpdx =

n
∑

i=0

ip − xp+1

p+ 1

∣

∣

∣

∣

n

0

=

n
∑

i=0

ip − np+1

p + 1
,

tends to a finite limit (say C) and thus we have

lim
n→∞

(

n
∑

i=0

ip − np+1

p+ 1

)

= C .

If we “divide” this expression by np+1 we get

lim
n→∞

(

1

np+1

n
∑

i=0

ip − 1

p+ 1

)

= lim
n→∞

(

C

np+1

)

= 0 ,

and thus we have shown that

lim
n→∞

(

1

np+1

n
∑

i=0

ip

)

=
1

p+ 1
,

as we were to show.
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Chapter 15 (The Order Notation)

Notes on the convergence of 1
x
+ 2!

x(x+1)
+ 3!

x(x+1)(x+2)
+ · · ·

It looks like the general term in this series can be written as

un =
n!

∏n−1
k=0(x+ k)

,

for n ≥ 1. In that case we have

un

un+1
=

n!

(n+ 1)!
·
∏n

k=0(x+ k)
∏n−1

k=0(x+ k)
=

x+ n

n + 1

=
n+ 1 + x− 1

n+ 1
= 1 +

x− 1

n+ 1
= 1 +

x− 1

n

(

n

n+ 1

)

= 1 +
x− 1

n

(

n + 1− 1

n+ 1

)

= 1 +
x− 1

n

(

1− 1

n+ 1

)

= 1 +
x− 1

n
− x− 1

n(n + 1)
.

To put this in the form needed in this section we will let

An

nλ+1
≡ un

un+1
− 1− x− 1

n
= − (x− 1)

n(n + 1)
= − 1

n2

(

x− 1

1 + 1
n

)

.

This means that λ = 1 and

An = −x− 1

1 + 1
n

so |An| < |x− 1| .

Notes on Applications of Theorem 50

Part (i): In the first series we can use order notation as

un

un+1
=

n + x

n + 1
=
(

1 +
x

n

)

(

1− 1

n
+O

(

1

n2

))

= 1 +
x− 1

n
+O

(

1

n2

)

,

which gives the same conclusion as before.

127



Part (ii): The terms of this series un can be written as

un =

(

2 · 4 · 6 · 2n
3 · 5 · 7 · · · (2n+ 1)

)2

=

(

(2 · 4 · 6 · 2n)2
2 · 3 · 4 · 5 · 6 · 7 · · · (2n) · (2n+ 1)

)2

=

(

(2n · n!)2
(2n+ 1)!

)2

=
24n(n!)4

((2n+ 1)!)2
.

This means that we have

un

un+1
=

24n(n!)4

((2n+ 1)!)2
× ((2n+ 3)!)2

24n+4((n+ 1)!)4

=
1

24
((2n+ 3)(2n+ 2))2

(n + 1)4
=

(2n+ 3)2(n + 1)2

22(n+ 1)4
=

(2n+ 3)2

(2n+ 2)2
.

We can write this ratio as

un

un+1
=

(

1 + 3
2n

)2

(

1 + 1
n

)2 =

(

1 +
3

2n

)2(

1 +
1

n

)−2

=

(

1 +
3

n
+O

(

1

n2

))(

1− 2

n
+O

(

1

n2

))

= 1 +
3− 2

n
+O

(

1

n2

)

= 1 +
1

n
+O

(

1

n2

)

.

So in the notation of this section µ = 1 which is µ ≤ 1 and this series diverges.

We can also work this example without using the order notation in that we can write the
ratio un

un+1
above as

un

un+1
=

(2n+ 3)2

(2n+ 2)2
=

(

2n+ 2 + 1

2n + 2

)2

=

(

1 +
1

2n+ 2

)2

= 1 +
2

2(n+ 1)
+

1

4(n+ 1)2
.

If we set this equal to

1 +
1

n
+

An

n2
,

we can solve for An to get

An = − 1

n(n + 1)
+

1

4(n+ 1)2
.

From this form we see that |An| < K for some K and we again have that µ = 1.
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Examples XX

Exercise 1

The terms of this series take the form

un =

∏n−1
k=0(a+ k)

∏n−1
k=0(b+ k)

,

for n ≥ 1. Thus we see that we have

un

un+1
=

b+ n

a+ n
=

n+ a + b− a

n + a
= 1 +

b− a

n+ a

= 1 +
b− a

n
(

1 + a
n

) = 1 +
b− a

n

(

1 +
a

n

)−1

= 1 +
b− a

n
(

1 + a
n

) = 1 +
b− a

n

(

1− a

n
+O

(

1

n2

))

= 1 +
b− a

n
− a(b− a)

n2
+O

(

1

n3

)

.

Thus using Gauss’s ratio test with µ = b − a the series will converge if µ > 1 or b > a + 1
and diverge otherwise.

Exercise 2

The first part of this exercise is worked on Page 110 using d’Alembert’s ratio test. Using the
expression derived there when |z| = 1 we have

|un|
|un+1|

=
(n + 1)(γ + n)

(α + n)(β + n)

=

(

1 +
1

n

)

(

1 +
γ

n

)(

1 +
α

n

)−1
(

1 +
β

n

)−1

= 1 +
1 + γ − α− β

n
+O

(

1

n2

)

.

Thus using Gauss’s ratio test with µ = 1 + γ − α − β the series will converge if µ > 1 or
γ > α + β and diverge otherwise.

Exercise 3

The terms of this series take the form

un =
a
∏n

k=2(ka + 1)

b
∏n

k=2(kb+ 1)
,
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for n ≥ 1 where we use the convention that
∏1

k=2 f(k) = 1. Note that for un we have that

un

un+1
=

(n + 1)a+ 1

(n + 1)b+ 1
.

and thus
lim
n→∞

un

un+1
=

a

b
6= 1 ,

in general. If we assume that a
b
6= 1 we can conclude the series converges using d’Alembert’s

test. Thus our series converges if this limit is larger than one or

a

b
> 1 so a > b .

Now if a = b then each term in the series is one and the series must diverge.

Exercise 4

This series has terms that take the form

un =

(

µ(µ− 1)(µ− 2) · · · (µ− (n− 1))

n!

)2

,

for n ≥ 1. For this we have

un

un+1
=

(n + 1)2

(µ− n)2
=

(n + 1)2

(n− µ)2
.

Note that for this ratio we have un

un+1
→ 1 and thus we cannot use d’Alembert’s test.

Using Gauss’s test we have

un

un+1

=

(

1 +
1

n

)2
(

1− µ

n

)−2

=

(

1 +
2

n
+O

(

1

n2

))(

1 +
2µ

n
+O

(

1

n2

))

= 1 +
2 + 2µ

n
+O

(

1

n2

)

.

From this section for convergence we need 2 + 2µ > 1 or µ > −1
2
.

Exercise 5

The terms of this series take the form

un =
an

∏n
k=0(x+ k)

,
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for n ≥ 0. For this we find

un

un+1

=
an

∏n
k=0(x+ k)

×
∏n+1

k=0(x+ k)

an+1

=
an(x+ n+ 1)

an+1
=

n+ x+ 1

an + b+O(1/n)
.

As n → ∞ this goes to 1
a
. By taking the absolute values of the above then d’Alembert’s test

says this series converges when 1
|a| > 1 or |a| < 1.

If a = 1 then the above is

un

un+1
=

(

1 +
x+ 1

n

)(

1 +
b

n
+O

(

1

n2

))−1

= 1 +
x− b+ 1

n
+O

(

1

n2

)

.

From this section, this series will converge if x− b+ 1 > 1 or x > b.

Exercise 6

This statement is equivalent to

(

1 +
α

n

)−1
(

1 +
α

n
+O

(

1

n1+λ

))

= 1 +O

(

1

n1+λ

)

.

Now using
(

1 +
α

n

)k

= 1 +
kα

n
+O

(

1

n2

)

,

we can write the left-hand-side of the above as
(

1− α

n
+O

(

1

n2

))(

1 +
α

n
+O

(

1

n1+λ

))

Then using Theorem 52 (or multiplying out) this is

1 +
α− α

n
+O

(

1

n1+λ

)

= 1 +O

(

1

n1+λ

)

,

as we wanted to prove.

Taking the logarithm of both sides gives

log

(

1 +
α

n
+O

(

1

n1+λ

))

= log
(

1 +
α

n

)

+ log

(

1 +O

(

1

n1+λ

))

=
α

n
+O

(

1

n2

)

+ 0 +O

(

1

n2+2λ

)

=
α

n
+O

(

1

n2

)

.
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Exercise 7

Taking the logarithm of the given statement gives the second expression in Exercise 6 above.

Exercise 8

Taking powers of the first expression in Exercise 6 above gives

(

1 +
α

n
+

1

n1+λ

)k

=
(

1 +
α

n

)k
(

1 +O

(

1

n1+λ

))k

=

(

1 +
αk

n
+O

(

1

n2

))(

1 +O

(

1

nk+kλ

))

= 1 +
αk

n
+O

(

1

n1+θ

)

,

for θ > 0.
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Chapter 16 (Tannery’s Theorem)

Examples XXI

Exercise 1

Part (i): Following the book we define this expression as F (n) and then use the binomial
theorem to expand it as

F (n) = 1 + n
(a

n

)

+
n(n− 1)

2!

(a

n

)2

+

(

n
3

)

(a

n

)3

+ · · · ,

where there are n+ 1 terms in the above expansion. Lets write the above as

F (n) = 1+a+
a2

2!

(

1− 1

n

)

+
a3

3!

(

1− 1

n

)(

1− 2

n

)

+
a4

4!

(

1− 1

n

)(

1− 2

n

)(

1− 3

n

)

+ · · · .

Define these terms as vr(n) for r ∈ {2, 3, . . . , n− 1, n} where

vr(n) ≡
ar

r!

(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− r − 1

n

)

.

Then

F (n) = 1 + a+
n
∑

r=1

vr(n) ,

and we have now written F (n) in the form needed to apply Tannery’s theorem. To apply
Tannery’s theorem we need to find Mr such that |vr(n)| ≤ Mr and

∑

r Mr converges. From
the above form of vr(n) we see that

|vr(n)| ≤
ar

r!
.

Thus we should take Mr =
ar

r!
. Then the limit of F (n) as n → ∞ is equal to

∑

r wr where

wr = lim
n→∞

vr(n) =
ar

r!
.

Then by Tannery’s theorem we have

lim
n→∞

F (n) = 1 + a +
∞
∑

r=2

ar

r!
= ea ,

which is the desired limit.

Part (ii): We can perform all of the steps in the previous part when n is replaces by a real
number x and all of the steps in the above use of Tannery’s theorem will still hold. Thus
the conclusion still holds.
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Exercise 2

The function F (n) we are considering can be written as

F (n) =
n
∑

r=1

1

n+ r
.

For this F (n) we have

F (1) =

1
∑

r=1

1

1 + r
=

1

2
≥ 1

2

F (2) =

2
∑

r=1

1

2 + r
=

1

2 + 1
+

1

2 + 2
=

1

3
+

1

4
=

7

12
>

1

2
.

From these two evaluations of F note that F (2) > F (1). Based on this observation lets
compute the difference F (n+ 1)− F (n). We find

F (n+ 1)− F (n) =

n+1
∑

r=1

1

n + 1 + r
−

n
∑

r=1

1

n + r

=

n+2
∑

r=2

1

n + r
−

n
∑

r=1

1

n+ r

=
1

n+ n + 1
+

1

n + n+ 2
− 1

n+ 1

=
1

(2n+ 1)(2n+ 2)
> 0 ,

when we simplify. This means that F (n + 1) > F (n). Thus since F (3) > 1
2
and using the

above we have F (n) > 1
2
for all n ≥ 3.

Exercise 3

This is an application of Tannery’s theorem. Let vn(x) =
1

n2+n4

x2

then if we take Mn = 1
n2 we

know that
∑

n Mn converges and from the expression above for vn(x) we have that

|vn(x)| ≤
1

n2
= Mn .

Next note that

lim
x→∞

vn(x) = wn =
1

n2
,

so an application of Tannery’s theorem then states that

∞
∑

n=1

vn(x) →
∞
∑

n=1

1

n2
,

as x → ∞.
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Exercise 4

Lets let x = 1 + y with y > 0 so that we can write our sum as

S ≡
∞
∑

n=1

(−1)n−1n−1−y .

Now the limit x → 1+ is the same as the limit y → 0+. Based on the above form we will
write

S =

∞
∑

n=1

ann
−y ,

where an = (−1)n−1n−1. We now need to check the required conditions of Theorem 55 in
the book. We have that

∑

n an is a convergent series. The other factor vn(y) = n−y is
monotonically decreasing for each fixed y > 0 and we have that

|n−y| < 1 ,

for n large enough. In addition
lim
y→0+

n−y = 1 .

Based on all of these conditions we have that

S →
∞
∑

n=1

an =

∞
∑

n=1

(−1)n−1n−1 .

as y → 0+. The fact that the summation above evaluates to log(2) is discussed in the section
of the book entitled “Further results about rearrangements of series”.

Exercise 5

We can write this sum as

F (k) =
k
∑

i=1

(

k − (i− 1)

k

)

ai =
k
∑

i=1

(

k + 1− i

k

)

ai =
k
∑

i=1

(

1− i− 1

k

)

ai .

To apply Theorem 55 we let

vi(k) = 1− i− 1

k
,

if i ≤ k and zero otherwise. Then for a fixed k we have |vi(k)| < 1 and vi(k) → 1 as k → ∞.
An application of Theorem 55 then gives that

F (k) →
∞
∑

i=1

ai ,

as k → ∞.
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I was not sure how to use this result to show that

s1 + s2 + · · ·+ sn−1 + sn
n

→ s ,

when sn → s. This later result is discussed (and proved) in the section in the book on Cesàro
sums.

Exercise 6

To use Theorem 55 we need to factor the terms in the sum into two parts. The first is a
“constant” factor (denoted by an in the theorem) that does not depend on the variable we
will take the limit of. The second is a “variable” factor (denoted by vn(x) in the theorem)
that depends on the variable we will take the limit of (denoted by x in the theorem).

In the sum we are given lets take the “constant” factor to be

Ar ≡
(−1)rar
x− r

,

and the “variable” expression (here the variable we take the limit of is n) to be

vr(n) ≡
(n!)2

(n− r)!(n+ r)!
,

if 1 ≤ r ≤ n and vr(n) = 0 if r > n. Then the sum we are given can be written as

n
∑

r=1

vr(n)Ar .

We can apply Theorem 55 if we can prove certain things about these two factors. If we can,
then the conclusions of that theorem give us the desired conclusion for this exercise.

Starting with the expression for vr(n) written as

vr(n) =
n!

(n+ r)!
× n!

(n− r)!
,

we can write this as

vr(n) =

(

n!

(n+ r)(n + r − 1) · · · (n+ 2)(n + 1)n!

)

×
(

n(n− 1) · · · (n− r + 2)(n − r + 1)n!

n!

)

=
n(n− 1) · · · (n− r + 2)(n − r + 1)

(n+ r)(n + r − 1) · · · (n+ 2)(n + 1)

=

(

n

n+ r

)(

n− 1

n− 1 + r

)(

n− 2

n− 2 + r

)

· · ·
(

n− r + 3

n+ 3

)(

n− r + 2

n+ 2

)(

n− r + 1

n+ 1

)

(105)

=

(

1− r

n+ r

)(

1− r

n+ r − 1

)(

1− r

n+ r − 2

)

· · ·
(

1− r

n+ 3

)(

1− r

n+ 2

)(

1− r

n+ 1

)

. (106)

From the expression given in Equation 105 we see that for 1 ≤ r ≤ n we have that for a
fixed n that vr(n) is monotone decreasing as r increases to n. This is because every fraction
in that product decreases as r increases.
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Next using Equation 106 we see that

|vr(n)| < 1 ,

for 1 ≤ r ≤ n.

Finally using Equation 106 we see that

vr(n) → 1 ,

as n → ∞. As these are the conditions required for an application of Theorem 55 we can
use that theorem to conclude the statement given in this exercise.
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Chapter 18 (Infinite Products)

Notes on the Text

Note that given a product like
N
∏

n=1

un , (107)

we can write it the more “standard” form of
∏N

n=1(1 + an) by taking

N
∏

n=1

(1 + (un − 1)) ,

where now we see that
an ≡ un − 1 . (108)

Recall that from the book the definition of a product
∏

(1+ an) to be absolutely convergent
means that the sum

∑

log(1 + an) ,

is absolutely convergent. Using the above transformations we see that is equivalent to the
statement that for the product

∏

(1 + an) =
∏

un to be absolutely convergent means that
the sum

∑

log(1 + an) =
∑

log(un) , (109)

is absolutely convergent. Thus we can work with sums of the terms log(un).

In the same way a product is uniformly convergent if
∑

log(un) is uniformly convergent.

Examples XXIII

Exercise 1

When the first two products are written as
∏

n(1 + an) and
∏

n(1 − an) we have an = 1
n2 .

Since
∑

n an converges by using Theorem 59 in this section we have that the first two product
converge.

For the third product we have an = sin2
(

θ
n

)

. We can show that
∑

n an converges by applying
the “limit” form of the comparison test with bn = 1

n2 . To do this we need to evaluate

lim
n→∞

sin2
(

θ
n

)

1
n2

.
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If we let x = 1
n
then as n → ∞ we have x → 0+. This means that the limit above is

equivalent to

lim
x→0+

sin2(θx)

x2
= lim

x→0+

2 sin(θx) cos(θx)θ

2x

= θ lim
x→0+

sin(θx)

x

= θ lim
x→0+

θ cos(θx)

1
= θ2 .

This means that
∑

n an and
∑

n bn either both converge or both diverge. As
∑

n bn converges
so does

∑

n an. This later means that the given product converges.

Exercise 2

Matching these products to
∏

n(1 − an) we have an = 1
n
and an = x

n
respectively. Then

since
∑

n an diverges in both cases, Theorem 59 from this section tells us that each product
converges to zero.

Exercise 3

Now if x < 0 then we can write the given product as

N
∏

n=1

(

1 +
|x|
n

)

.

Then matching this to
∏

n(1 + an) we have an = |x|
n

and recall that
∑

n an diverges. Then
Theorem 59 from this section tells us that this product converges to infinity.

Exercise 4

Recall the Taylor series for log(1 + x)

log(1 + x) =
∞
∑

k=1

(−1)k+1xk

k
. (110)

This means that

log(1 + x)− x =

∞
∑

k=2

(−1)k+1xk

k
,

so that the absolute value of this (evaluated at x → x
n
) is given by

∣

∣

∣
log
(

1 +
x

n

)

− x

n

∣

∣

∣
=

∣

∣

∣

∣

∣

∞
∑

k=2

(−1)k+1xk

knk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

− x2

2n2
+

x3

3n3
− x4

4n4
+ · · ·

∣

∣

∣

∣

.
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We can create an upper bound by using the triangle rule (|x+ y| ≤ |x|+ |y|) and changing
all negatives to positives to get

∣

∣

∣
log
(

1 +
x

n

)

− x

n

∣

∣

∣
≤ |x|2

n2

∣

∣

∣

∣

1

2
+

|x|
3n

+
|x|2
4n2

+ · · ·
∣

∣

∣

∣

.

As each of 1
k
≤ 1 for k ≥ 1 a looser upper bound is

∣

∣

∣
log
(

1 +
x

n

)

− x

n

∣

∣

∣
≤ |x|2

n2

∣

∣

∣

∣

1 +
|x|
n

+
|x|2
n2

+ · · ·
∣

∣

∣

∣

, (111)

which is the given expression in the book. As the right-most sum is a geometric sum we can
write the above as

∣

∣

∣
log
(

1 +
x

n

)

− x

n

∣

∣

∣
≤ |x|2

n2

1

1−
(

|x|
n

) =
|x|2
n

(

1

n− |x|

)

. (112)

Now if |x| < A then Equation 111 becomes

∣

∣

∣
log
(

1 +
x

n

)

− x

n

∣

∣

∣
≤ A2

n2

∣

∣

∣

∣

1 +
|x|
n

+
|x|2
n2

+ · · ·
∣

∣

∣

∣

. (113)

Now as |x| < A we have |x|
n
< A

n
and if n > 2A then

A

n
<

A

2A
=

1

2
.

This means that Equation 113 becomes

∣

∣

∣
log
(

1 +
x

n

)

− x

n

∣

∣

∣
≤ A2

n2

∣

∣

∣

∣

∣

1 +
1

2
+

(

1

2

)2

+ · · ·
∣

∣

∣

∣

∣

=
A2

n2

∣

∣

∣

∣

1

1− 1
2

∣

∣

∣

∣

=
2A2

n2
. (114)

as we were to show.

Exercise 5

Part (i): From the comments above on this section we need to show that
∑

log(un) is
absolutely convergent. We have that

log(un) = log
[(

1 +
x

n

)

e−x/n
]

= log
(

1 +
x

n

)

− x

n
.

Now using Equation 112 we see that
∑

| log(un)| is convergent by comparing it to the series
∑

1
n2 .

Part (ii): Using Part (i) and Equation 114 we can see that
∑

log(un) is uniformly convergent
by using the Weierstrass M test with Mn =

∑

2A2

n2 .
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Exercise 6

Note that we can define bn = x2

n2π2 and then that
∏

(1− bn) =
∏

(1 + (−bn)) ,

so we can take an = −bn.

Part (i): From the text for this product to be absolutely convergent we need
∑

| log(1+an)|
to be convergent which will happen if and only if

∑ |an| is convergent. In this case as
|an| = O

(

1
n2

)

we have that
∑

|an| is convergent.

Part (ii): From the text for this product to be uniform convergent we need |an(x)| ≤ Mn

where Mn are terms of a positive convergent series. Note that when |x| ≤ A we have

|an(x)| =
∣

∣

∣

∣

x2

n2π2

∣

∣

∣

∣

≤ A2

n2π2
.

If we define Mn = A2

n2π2 we have that the product is uniformly convergent.

Exercise 7

Define Pn as

Pn =
n
∏

k=1

(

1− x

k

)

.

Then we have
P1 = 1− x

1
= 1− x ,

and

P2 =
(

1− x

1

)(

1− x

2

)

= 1− x

2
− x

1
+

x2

2
= 1− x+

x2 − x

2
= 1− x+

x(x− 1)

2
.

Thus we have shown that the given product on the left-hand-side equals the expansion on the
right-hand-side for n ∈ {1, 2}. Assume that the given expansion holds for n ≤ N . Consider
then constructing PN+1 from

(

1− x
N+1

)

and PN . Call that expression E. We have

E =
N+1
∏

k=1

(

1− x

k

)

= PN

(

1− x

N + 1

)

= PN +
x

N + 1
(−PN ) .

We now seek to evaluate x
N+1

(−PN). To do that we start with the definition of PN . We have

PN =
(

1− x

1

)(

1− x

2

)(

1− x

3

)

· · ·
(

1− x

N

)

=
1

N !
(1− x)(2− x)(3− x) · · · (N − x)

=
(−1)N

N !
(x− 1)(x− 2)(x− 3) · · · (x−N) .
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This means that

x

N + 1
(−PN) =

(−1)N+1x(x− 1)(x− 2)(x− 3) · · · (x−N)

(N + 1)!
,

and so we have

E = PN +
(−1)N+1x(x− 1)(x− 2)(x− 3) · · · (x−N)

(N + 1)!
,

which is the right-hand-side evaluated at n → N +1. Thus by induction we have shown the
given expression.

Exercise 8

Consider the product
m
∏

n=1

(

1− x

n

)

.

Then matching this to
∏

(1−an) we have an = x
n
. Now as

∑

an is divergent from Theorem 59
we have that the product above tends to the limit of zero. From the equivalence just shown
in Exercise 7 we have that the given polynomial sum (the one given in this exercise) tends
to zero as m → ∞. Note also this same conclusion is reached on Page 102 Eq. 6 in the book.

Exercise 9

All of these are products of the form
∏

(1±an) with an = O(q2n). A necessary and sufficient
condition for these products to be absolutely convergent is that

∑

|an| be convergent. In
this case

∑ |an| a geometric series and so is absolutely convergent. This means that we can
evaluate these products by taking the factors in the product in any order.

As we have absolute convergence we can change the order of factors the products. Thus

q0q3 =
∏

n≥1

(1− q2n)
∏

n≥1

(1− q2n−1)

= (1− q2)(1− q4)(1− q6)(1− q8) · · · (1− q)(1− q3)(1− q5)(1− q7) · · ·
= (1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6)(1− q7)(1− q8) · · ·
=
∏

n≥1

(1− q2n−1)(1− q2n) =
∏

n≥1

(1− qn) .
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In the same way

q1q2 =
∏

n≥1

(1 + q2n)
∏

n≥1

(1 + q2n−1)

= (1 + q2)(1 + q4)(1 + q6)(1 + q8) · · · (1 + q)(1 + q3)(1 + q5)(1 + q7) · · ·
= (1 + q)(1 + q2)(1 + q3)(1 + q4)(1 + q5)(1 + q6)(1 + q7)(1 + q8) · · ·
=
∏

n≥1

(1 + q2n−1)(1 + q2n) =
∏

n≥1

(1 + qn) .

To show the product q1q2q3 = 1 we will derive some “telescoping” factors and then argue
that the procedure we show can be continued an infinite number of times. Doing so will give
the required result. Towards that end we have

q1q2q3 =
∏

n≥1

(1 + q2n)
∏

n≥1

(1 + q2n−1)
∏

n≥1

(1− q2n−1)

=
∏

n≥1

(1 + q2n)
∏

n≥1

(1 + q2n−1)(1− q2n−1)

=
∏

n≥1

(1 + q2n)
∏

n≥1

(1− q2(2n−1)) . (115)

Now split the factors in the first product above into “even” and “odd” values for n say
n → 2n and n → 2n− 1. This gives

q1q2q3 =
∏

n≥1

(1 + q2(2n))
∏

n≥1

(1 + q2(2n−1))
∏

n≥1

(1− q2(2n−1)) .

Now multiply the two “right-most” products together term by term to get

q1q2q3 =
∏

n≥1

(1 + q2
2n)
∏

n≥1

(1− q2
2(2n−1)) . (116)

We can continue this process to show that the product on the right-hand-side evaluates
to one. Towards this end note that Equations 115 and 116 are specific examples of the
representation

q1q2q3 =
∏

n≥1

(1 + q2
pn)
∏

n≥1

(1− q2
p(2n−1)) . (117)

for p = 1 and p = 2 respectively. Assuming this form holds more generally we can “continue
this process” by splitting the factors in the first product above into “even” and “odd” values
for n say n → 2n and n → 2n− 1. This gives

q1q2q3 =
∏

n≥1

(1 + q2
p(2n))

∏

n≥1

(1 + q2
p(2n−1))

∏

n≥1

(1− q2
p(2n−1)) .

Multiplying the two “right-most” products together term by term we get

q1q2q3 =
∏

n≥1

(1 + q2
p+1n)

∏

n≥1

(1− q2
p+1(2n−1)) ,
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which is Equation 117 evaluated at p → p + 1. As Equation 117 must then hold as p → ∞
(and since |q| < 1) we must have

q1q2q3 = 1 .

To show the final result we “imagine” that we multiply by
∏

n≥1(1− q2n−1) and consider P
defined as

P =
∏

n≥1

(1 + qn)
∏

n≥1

(1− q2n−1) .

Then following the same ideas from the previous part of this problem we have

P =
∏

n≥1

(1 + q2n)
∏

n≥1

(1 + q2n−1)
∏

n≥1

(1− q2n−1)

=
∏

n≥1

(1 + q2n)
∏

n≥1

(1− q2(2n−1))

=
∏

n≥1

(1 + q2
pn)
∏

n≥1

(1− q2
p(2n−1)) for p = 1 .

Where in the last expression we have generalized the expression before it. We can write P
as

P =
∏

n≥1

(1 + q2
p+1n)

∏

n≥1

(1 + q2
p(2n−1))

∏

n≥1

(1− q2
p(2n−1))

=
∏

n≥1

(1 + q2
p+1n)

∏

n≥1

(1− q2
p+1(2n−1)) .

We can continue this procedure indefinitely. If we let p → ∞ we see that we must conclude

∏

n≥1

(1 + qn)
∏

n≥1

(1− q2n−1) = 1 ,

which is equivalent to the desired expression.

Exercise 10

Consider the product

P = (1− x2)
∏

n≥1

(1 + x2n) .

Based on this functional form we define PN as

PN = (1− x2)

N
∏

n=1

(1 + x2n) .

Then we have that
P1 = (1− x2)(1 + x2) = 1− x4 ,
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and

P2 = (1− x2)
2
∏

n=1

(1 + x2n) = P1(1 + x4) = (1− x4)(1 + x4) = 1− x8 .

We claim that limN→∞ PN = 1. From the above it looks like the functional form for PN is
given by

PN = 1− x2N+1

.

We have shown this expression is true for N = 1 and N = 2. Assuming this is true up to N
then for N + 1 we have

PN+1 = PN(1 + x2N+1

) = (1− x2N+1

)(1 + x2N+1

) = 1− x2N+2

,

showing that our expression is true for N + 1 also. Then as |x| < 1 we have xn → 0 as
n → ∞ and thus PN → 1 as N → ∞ showing the desired expression.

Exercise 11

We can get a hint at how to evaluate this by considering the expression for n = 1. This is

2 sin
(x

2

)

cos
(x

2

)

.

This looks very much like the identity 2 sin(v) cos(v) = sin(2v) and using that we see that
the above is sin(x). Now in

sin(x) = 2 sin
(x

2

)

cos
(x

2

)

.

If we keep replacing the sin(v) with sin(v) = 2 sin
(

v
2

)

cos
(

v
2

)

we get the given expression.
Doing this we have

sin(x) = 2 sin
(x

2

)

cos
(x

2

)

= 22 sin
(x

4

)

cos
(x

4

)

cos
(x

2

)

= 23 sin
(x

8

)

cos
(x

8

)

cos
(x

4

)

cos
(x

2

)

...

= 2n sin
( x

2n

)

cos
( x

2n

)

cos
( x

2n−1

)

· · · cos
(x

4

)

cos
(x

2

)

.

From this we can write

cos
( x

2n

)

cos
( x

2n−1

)

· · · cos
(x

4

)

cos
(x

2

)

=
sin(x)

2n sin
(

x
2n

) .

Notice that we can write
1

2n sin
(

x
2n

) =
1

x

(

x
2n

sin
(

x
2n

)

)
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Notice that as n → ∞ we have x
2n

→ 0 so that
x
2n

sin( x
2n )

→ 1 thus the product we seek is given

by

cos
( x

2n

)

cos
( x

2n−1

)

· · · cos
(x

4

)

cos
(x

2

)

=
sin(x)

x
,

as we were to show.

Exercise 13

The first two statements are simple algebra

1

t
− 1

t + 1
=

t + 1

t(t+ 1)
− t

t(t+ 1)
=

1

t(t + 1)
,

and

1

t
− 1

t+ 1
− 1

(t + 1)(t+ 2)
=

1

t(t+ 1)
− 1

(t+ 1)(t+ 2)

=
t+ 2

t(t+ 1)(t+ 2)
− t

t(t+ 1)(t+ 2)
=

2

t(t+ 1)(t + 2)
.

These are n = 1 and n = 2 of the general expression

1

t
− 1

t + 1
−

n−1
∑

r=1

r!

(t+ 1)(t+ 2) · · · (t+ r + 1)
=

n!

t(t + 1)(t+ 2) · · · (t+ n)
. (118)

If we assume that the above is true for n ≤ N then the right-hand-side of Equation 118 for
n → n + 1 is

1

t
− 1

t+ 1
−

n
∑

r=1

r!

(t+ 1)(t+ 2) · · · (t+ r + 1)
=

n!

t(t+ 1)(t+ 2) · · · (t+ n)
− n!

(t+ 1)(t+ 2) · · · (t+ n+ 1)

=
n!

(t+ 1)(t+ 2) · · · (t+ n)

(

1

t
− t

t+ n+ 1

)

=
n!

(t+ 1)(t+ 2) · · · (t+ n)

(

t+ n+ 1− t

t(t+ n+ 1)

)

=
(n + 1)!

t(t+ 1)(t+ 2) · · · (t+ n)(t+ n+ 1)
, (119)

showing that Equation 118 is true for N + 1 also.

Exercise 14

Consider the product on the right-hand-side of Equation 119 which is

1

t

∏

n≥1

n

t+ n
=

1

t

∏

n≥1

(

1− t

t+ n

)

.
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Now as
∑

t
t+n

diverges from this section of the book we know that the above product
converges to zero. Taking the limit of n → ∞ in Equation 119 we get

1

t
− 1

t+ 1
−

∞
∑

r=1

r!

(t + 1)(t+ 2) · · · (t+ r + 1)
= 0 ,

which is the desired expression.

Exercise 15

We are asked about the product
∏

n≥0

a+ n

b+ n
.

If we write
a + n

b+ n
=

b+ n+ a− b

b+ n
= 1 +

a− b

b+ n
= 1−

(

b− a

b+ n

)

,

or product is
∏

n≥0

(

1−
(

b− a

b+ n

))

.

As
∑

b−a
b+n

diverges this product must converge to zero.

147



Chapter 19 (Theorems on Limits: Cesàro Sums)

A comment about Theorem 62

While this theorem maybe somewhat difficult to remember it is made easier by the fact that
it is of the very same form as L’Hospital’s rule which is learned in calculus. For example if
we seek to evaluate the limit of

an
bn

,

we can do that by evaluating the limit of

an+1 − an
bn+1 − bn

,

which is a form that looks very much like a “derivative over a derivative” and is what we
would consider to evaluate certain limits of the form

f(x)

g(x)
.

Because of this I find it easier to recall this theorem as “a discrete L’Hospital’s rule”.

Examples XXIV

Example 1

Recall that S
(r)
n is defined as

S(r)
n = sn + rsn−1 +

r(r + 1)

2!
sn−2 + · · ·+ r(r + 1) · · · (r + n− 1)

n!
s0 .

Now from this we have that

S
(r)
n+1 = sn+1 + rsn +

r(r + 1)

2!
sn−1 + · · ·+ r(r + 1) · · · (r + n− 1)

n!
s1 +

r(r + 1) · · · (r + n)

(n+ 1)!
s0 .
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From these two we can compute the difference S
(r)
n+1 − S

(r)
n as

S
(r)
n+1 − S(r)

n = sn+1 + (r − 1)sn +

(

r(r + 1)

2
− r

)

sn−1

+

(

r(r + 1)(r + 2)

3!
− r(r + 1)

2!

)

sn−2 + · · ·+

+

(

r(r + 1) · · · (r + n− 1)

n!
− r(r + 1) · · · (r + n− 2)

(n− 1)!

)

s1

+

(

r(r + 1) · · · (r + n)

(n+ 1)!
− r(r + 1) · · · (r + n− 1)

n!

)

s0

= sn+1 + (r − 1)sn +
r

2
[r + 1− 2] sn−1 +

r(r + 1)

3!
[(r + 2)− 3] sn−2 + · · ·

+
r(r + 1) · · · (r + n− 2)

n!
[r + n− 1− n] s1

+
r(r + 1) · · · (r + n− 2)(r + n− 1)

(n+ 1)!
[r + n− (n+ 1)] s0

= sn+1 + (r − 1)sn +
(r − 1)r

2
sn−1 +

(r − 1)r(r + 1)

3!
sn−2 + · · ·

+
(r − 1)r(r + 1) · · · (r + n− 2)

n!
s1 +

(r − 1)r(r + 1) · · · (r + n− 2)(r + n− 1)

(n+ 1)!
s0 = S

(r−1)
n+1 .

Next for A
(r)
n we recall its definition

A(r)
n =

(r + 1)(r + 2) · · · (r + n)

n!
. (120)

From this definition we have

A
(r)
n+1 =

(r + 1)(r + 2) · · · (r + n)(r + n + 1)

(n+ 1)!
.

From these we compute the needed difference from

A
(r)
n+1 − A(r)

n =
(r + 1)(r + 2) · · · (r + n)

n!

[

r + n+ 1

n+ 1
− 1

]

=
(r + 1)(r + 2) · · · (r + n)

n!

[

r

n + 1

]

=
r(r + 1)(r + 2) · · · (r + n)

(n+ 1)!
= A

(r−1)
n+1 .

We are also told that
S
(r−1)
n+1

A
(r−1)
n+1

→ l .

If I use the two earlier derivations I can write this as

S
(r)
n+1 − S

(r)
n

A
(r)
n+1 − A

(r)
n

→ l . (121)

Now to show the desired result we will use Theorem 62 (the discrete L’Hospital’s Rule) with

an ≡ S
(r)
n and bn = A

(r)
n . Equation 121 gives one of the conditions needed for Theorem 62.
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The other is that bn = A
(r)
n is a sequence of positive numbers that increases steadily to positive

infinity. From the definition of bn given by Equation 120, we see that bn is a sequence of
positive numbers. To show that bn increases to positive infinity write it as

bn = A(r)
n =

(r + 1)(r + 2) · · · (r + n− 1)(r + n)

n!

=

[(

r + 1

1

)(

r + 2

2

)

· · ·
(

r + n− 1

n− 1

)](

r + n

n

)

= A
(r)
n−1 ×

(

r + n

n

)

= bn−1 ×
(

1 +
r

n

)

> bn−1 .

An application of Theorem 62 then shows that

S
(r)
n

A
(r)
n

→ l ,

also.

Example 2

Part (i): For this limit to use the “discrete L’Hospital’s rule” we let

an ≡ sn + 2sn−1 + · · ·+ ns1 ,

and bn ≡ n2. Note that bn > 0 and bn → ∞ as n → ∞.

For an our first difference is given by

an+1 − an = sn+1 + 2sn + 3sn−1 + · · ·+ ns2 + (n+ 1)s1

− sn − 2sn−1 − · · · − (n− 1)s2 − ns1

= sn+1 + sn + sn−1 + · · ·+ s2 + s1 ,

and for bn our first difference is given by

bn+1 − bn = (n+ 1)2 − n2 = 2n+ 1 .

The ratio needed for the discrete L’Hospital’s rule look like

2(an+1 − an)

bn+1 − bn
=

2(sn+1 + sn + · · ·+ s2 + s1)

2n+ 1
=

sn+1 + sn + · · ·+ s2 + s1
n+ 1

2

As sn → s the above ratio converges to s also (another application of the discrete L’Hospital’s
rule will also prove that statement). Thus by the discrete L’Hospital’s rule for sequences we
can conclude that

2an
bn

→ s ,

as n → ∞.

150



Part (ii): For this limit to use the “discrete L’Hospital’s rule” we let

an ≡
n
∑

k=1

sk

n
∑

l=k

1

l
.

and bn = n. Note that bn > 0 and bn → ∞ as n → ∞. For this definition of an we have

an+1 =

n+1
∑

k=1

sk

(

n+1
∑

l=k

1

l

)

,

and thus the first difference is given by

an+1 − an =

n+1
∑

k=1

sk

(

n+1
∑

l=k

1

l

)

−
n
∑

k=1

sk

(

n
∑

l=k

1

l

)

= sn+1

(

n+1
∑

l=n+1

1

l

)

+

n
∑

k=1

sk

(

n+1
∑

l=k

1

l
−

n
∑

l=k

1

l

)

=
sn+1

n+ 1
+

n
∑

k=1

sk
n + 1

=
1

n+ 1

n+1
∑

k=1

sk .

The first difference of bn is bn+1 − bn = 1. Thus we need to consider the limit as n → ∞ of

an+1 − an
bn+1 − bn

=
1

n + 1

n+1
∑

k=1

sk .

as discussed in the book the above limit tends to s as n → ∞ (another application of the
discrete L’Hospital’s rule will also prove this). Thus by the discrete L’Hospital’s rule for
sequences we can conclude that

an
bn

→ s ,

as n → ∞.

Example 3

From the description of P (n) I believe we can write it as

P (n) =
n
∑

1≤i≤n;1≤j≤n

ipjp .

We can modify how we write this if we note that

(1p + 2p + 3p + · · ·np)(1p + 2p + 3p + · · ·np) = 1p · 1p + 1p · 2p + 1p · 3p + · · ·+ 1p · np

+ 2p · 1p + 2p · 2p + 2p · 3p + · · ·+ 2p · np

· · ·
+ np · 1p + np · 2p + · · ·+ np · np .
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Thus based on this we have

P (n) =

(

n
∑

k=1

kp

)2

= (1p + 2p + 3p + · · ·+ (n− 1)p + np)2 .

To use the discrete L’Hospital’s rule for sequences we will take

an ≡ P (n) and

bn ≡ (n+ 1)2p+2 .

Note that bn > 0 and bn → ∞ as n → ∞.

For the sequence P (n) we have

P (n+ 1)− P (n) =

(

n+1
∑

k=1

kp

)2

−
(

n
∑

k=1

kp

)2

=

(

n+1
∑

k=1

kp −
n
∑

k=1

kp

)(

n+1
∑

k=1

kp +
n
∑

k=1

kp

)

= (n+ 1)p

(

(n+ 1)p + 2
n
∑

k=1

kp

)

.

Now to evaluate
∑n

k=1 k
p in the above expression we will use the fact that for large n we

have
n
∑

k=1

kp ∼ (n + 1)p+1

p+ 1
.

This means that

P (n+ 1)− P (n) ∼ (n+ 1)p
[

(n+ 1)p + 2
(n+ 1)p+1

p+ 1

]

= (n + 1)2p +
2

p+ 1
(n+ 1)2p+1 .

For large n this tends to

P (n+ 1)− P (n) → 2

p + 1
(n + 1)2p+1 .

For bn it can be shown that

bn+1 − bn = ∆(n + 1)2p+2 = (2p+ 2)(n+ 1)2p+1 ,

for large n. This is related to a similar relationship for derivatives i.e. d
dx
xr = rxr−1.

Using these we have

an+1 − an
bn+1 − bn

→
2

p+1
(n + 1)2p+1

(2p+ 2)(n+ 1)2p+1
=

1

(p+ 1)2
.

Note that the answer above is different than the one in the book by a factor of 1
2
. If anyone

sees anything wrong with what I have done please contact me.
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Example 4

The sequence of partial sums sn =
∑n

k=1 ak of this series takes the form

sn =

{

0 n even
1 n odd

.

To compute the (C, 1) sum we need to compute

tn =
1

n

n
∑

k=1

sk =
1

n
(number of odd numbers between 1 and n)

=
1

n

{

n
2

n even
n+1
2

n odd
=

{

1
2

n even
1
2
+ 1

2n
n odd

.

The limit of this sequence is 1
2
as n → ∞.

Example 5

In this example the book gives a proof of this statement when a = b = 0.

This statement can also be proved when a = 0 and b 6= 0 and we will give a sketch of this
proof here. As an and bn are convergence sequences, they are bounded so there exists an A
and B such that |an| < A and |bn| < B for all n. As an converges to zero i.e. an → 0 if we
are given a value of ǫ > 0 (and k > 0) we can find a N such that

|an| < kǫ ,

for all n ≥ N . Define the expression we seek to take the limit of as en so that

en ≡ 1

n
(a1bn + a2bn−1 + · · ·+ anb1) =

1

n

n
∑

j=1

ajbn+1−j .

Note that

|en| ≤
1

n

n
∑

j=1

|ajbn+1−j | <
B

n

n
∑

j=1

|aj| .

Taking n > N and breaking the above sum up into two parts we have

|en| ≤
B

N

(

N
∑

j=1

|aj |+
n
∑

j=N+1

|aj|
)

<
B

n
(AN + kǫ(n−N))

=
(A− kǫ)BN

n
+Bkǫ .

By making n large we can make the first term as small as we like and the second term
can be made as small as we like by selecting a specific value for k. Thus we can make the
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right-hand-side of this expression as small as we like (when n is large enough). This is the
statement that |en| → 0 as n → ∞ and thus en → 0.

Note that the arguments used above, to prove that limn→∞ en = 0 when a = 0 and b 6= 0 are
symmetric and the above proof works to prove this statement when a 6= 0 and b = 0 as well.

Next we will consider the case where both a 6= 0 and b 6= 0. To do that, lets write the
expression for en as

en =
1

n
(a1bn + a2bn−1 + · · · anb1 − nab)

=
1

n
((a1bn − ab) + (a2bn−1 − ab) + · · ·+ (anb1 − ab))

=
1

n

(

n
∑

j=1

(ajbn+1−j − ab)

)

.

Note that each term in the above sum is trivially bounded as

|ajbn+1−j − ab| ≤ |ajbn+1−j |+ |ab| ≤ AB + |ab| ≡ K .

Here K is an upper bound on each of these terms.

Now as in the notes with this example if n > 2N then one of the subscripts j or n + 1 − j
must be larger than N when n > 2N . Thus lets consider the value of en when n > 2N when
broken down into two sums as

en =
1

n

(

2N
∑

j=1

(ajbn+1−j − ab) +

n
∑

j=2N+1

(ajbn+1−j − ab)

)

,

so that we can bound |en| as

|en| ≤
1

n
(2NK) +

1

n

n
∑

j=2N+1

|ajbn+1−j − ab| .

At this point we have not specified what the value N should be. Note that because an and
bn converge to a and b respectively if we are given a value of ǫ > 0 we can find values Na

and Nb such that
|an − a| < kaǫ and |bn − b| < kbǫ ,

when n ≥ Na and n ≥ Nb for any ka > 0 and kb > 0. To use this we will break the difference
above into two different differences that we can bound. We do that with

|ajbn+1−j − ab| = |ajbn+1−j − ajb+ ajb− ab|
= |aj(bn+1−j − b) + b(aj − a)|
≤ A|bn+1−j − b|+B|aj − a|
= Akaǫ+Bkbǫ = (Aka +Bkb)ǫ .

154



This is valid if n > 2N where N > max(Na, Nb). If we use this we can find an upper bound
on |en| as

|en| ≤
2NK

n
+

1

n
(n− 2N)(Aka +Bkb)ǫ

=
2NK

n
+

(

n− 2N

n

)

(Aka +Bkb)ǫ

= 2N(K − (Aka +Bkb)ǫ)
1

n
+ (Aka +Bkb)ǫ .

By making n large we can make the first term as small as we like and the second term can
be made as small as we like by selecting specific values for ka and kb. Thus we can make the
right-hand-side of this expression as small as we like (when n is large enough). This is the
statement that |en| → 0 as n → ∞. Thus en → 0.

Example 6

Define

an ≡
n
∑

k=1

dk

bn ≡
n
∑

k=1

ck ,

Note that bn > 0 and bn tends to infinity as n does. The first difference of these two sequences
is given by

an+1 − an = dn+1

bn+1 − bn = cn+1 .

Thus the ratio of the differences equals

an+1 − an
bn+1 − bn

=
dn+1

cn+1

.

This tends to s as n → ∞. By the discrete L’Hospital’s rule for sequences the limit of an
bn

is
also s.
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Chapter 20 (Fourier Series)

Notes on The Proof of Theorem 65

Recalling Equation 33 if we start the sum at r = 1 and “expand” the right-hand-side we get

1 +
n
∑

r=1

cos(rθ) =
sin
(

θ
(

n + 1
2

))

2 sin(θ/2)
+

1

2
,

which simplifies to a result used in this proof.

As a second lemma we will derive the sine sum needed in the evaluation of σn which is

n
∑

k=1

sin

((

k − 1

2

)

x

)

=
n
∑

k=1

sin

(

2k − 1

2
x

)

. (122)

To evaluate this sum note that because Euler’s identity of

eix = cos(x) + i sin(x) ,

we note that sums of sin(x) can be expressed as the imaginary part of sums of terms eix.
Thus we look to evaluate

n
∑

k=1

ei(k−
1
2)x = e−

x
2
i

n
∑

k=1

eikx .

For the sum above we have

n
∑

k=1

eikx =
eix − ei(n+1)x

1− eix

=
(eix − ei(n+1)x)(1 + e−ix)

(1− eix)(1 + e−ix)
=

eix − ei(n+1)x + 1− einx

1− eix + e−ix − 1

=
eix − ei(n+1)x + 1− einx

−(eix − e−ix)
=

eix − ei(n+1)x + 1− einx

−2i sin(x)
.

If we multiply this by e−
x
2
i we get

i

2 sin(x)

(

e
x
2
i − ei(n+

1
2)x + e−

x
2
i − ei(n−

1
2)x
)

.

The imaginary part of this is

1

2 sin(x)

(

cos
(x

2

)

− cos

((

n+
1

2

)

x

)

+ cos
(x

2

)

− cos

((

n− 1

2

)

x

))

.

Lets expand the cos
((

n± 1
2

)

x
)

terms to get

1

2 sin(x)

(

2 cos
(x

2

)

− cos(nx) cos
(x

2

)

+ sin(nx) sin
(x

2

)

− cos(nx) cos
(x

2

)

− sin(nx) sin
(x

2

))

,
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or
cos
(

x
2

)

sin(x)
(1− cos(nx)) .

Using sin(x) = 2 sin
(

x
2

)

cos
(

x
2

)

the above is

1

2 sin
(

x
2

)(1− cos(nx)) .

Using

cos(2x) = cos2(x)− sin2(x)

= cos2(x)− 1 + cos2(x) = 2 cos2(x)− 1 .

This means that

1− cos(2x) = 2− 2 cos2(x) = 2(1− cos2(x)) = 2 sin2(x) ,

so the above can be written as
sin
(

nx
2

)

sin
(

x
2

) ,

which is the argument of the integrand in the expression for σn.

Examples XXV

Exercise 1

If we look at the example in this chapter under “intervals other than (−π, π) we compute
the Fourier coefficients of x under the interval (0, 2π) where one derives

x = π − 2
∞
∑

n=1

sin(nx)

n
, (123)

which is a transformation of the desired result.

Exercise 2

Warning: I was not able to finish this problem. If anyone has any insight as for ways to
proceed please let me know.

Using the results of Section 5.2 with a = −α and b = 2π − α we have b− a = 2π. Then the
formula for ak is given by

πak =
2π

2π

∫ 2π−α

−α

f(θ) cos

(

πk(2θ + α− 2π + α)

2π

)

dθ =

∫ 2π−α

−α

f(θ) cos

(

k

2
(2θ − 2π + 2α)

)

dθ

=

∫ 2π−α

−α

f(θ) cos(kθ − kπ + kα)dθ = cos(πk)

∫ 2π−α

−α

f(θ) cos(k(θ + α))dθ .

157



Using this we have

πak
cos(πk)

=
1

2
(π − α)

∫ α

−α

θ cos(k(θ + α))dθ +
1

2
α

∫ 2π−α

α

(π − θ) cos(k(θ + α))dθ .

In both of these we will let v = θ + α to get

πak
cos(πk)

=
1

2
(π − α)

∫ 2α

0

(v − α) cos(kv)dv +
1

2
α

∫ 2π

2α

(π − (v − α)) cos(kv)dv .

Integrating this I was not able to get an expression that looked like that given in the book.

Exercise 3

We extend x evenly so that our function f(x) would be defined as

f(x) =

{

−x −π < x < 0
x 0 < x < π

This means that bn = 0 for n ≥ 1 and that

πan =

∫ π

−π

f(x) cos(nx)dx = 2

∫ π

0

x cos(nx)dx .

for n ≥ 0. If n = 0 this is

πa0 = 2

∫ π

0

xdx = x2
∣

∣

π

0
= π2 so a0 = π .

If n ≥ 1 then using integration by parts this is

πan = 2

(

x sin(nx)

n

∣

∣

∣

∣

π

0

− 2

∫ π

0

sin(nx)

n
dx

= 0 +
2

n

(

cos(nx)

n

∣

∣

∣

∣

π

0

=
2

n2
((−1)n − 1) .

This means that when n is even an = 0 and when n is odd we have

an = − 4

πn2
.

This means that our Fourier series for f(x) is given by

f(x) =
1

2
a0 +

∑

n=1,3,5,...

an cos(nx)

=
π

2
− 4

π

∞
∑

n=0

cos((2n+ 1)x)

(2n+ 1)2

=
π

2
− 4

π

(

cos(x) +
1

32
cos(3x) +

1

52
cos(5x) + · · ·

)

.
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Exercise 4

For an even function over (−π, π) the Fourier cosign series takes the form

f(x) =
a0
2

+
∞
∑

n=1

an cos(nx) ,

with (when f(x) = x2)

πan =

∫ π

−π

f(x) cos(nx)dx = 2

∫ π

0

x2 cos(nx)dx .

Integrating once (when n 6= 0) we get

π

2
an =

x2 sin(nx)

n

∣

∣

∣

∣

π

0

− 2

∫ π

0

x sin(nx)

n
dx

= −2

n

∫ π

0

x sin(nx)dx .

Thus integrating a second time

−πn

4
an = − x cos(nx)

n

∣

∣

∣

∣

π

0

+

∫ π

0

cos(nx)

n
dx

= −π

n
cos(nπ) +

1

n

(

sin(nx)

n

∣

∣

∣

∣

π

0

= −π

n
cos(nπ) .

This means that

an =
4

n2
(−1)n .

For n = 0 we have

πa0 = 2

∫ π

0

x2dx =
2

3
x3
∣

∣

π

0
=

2

3
π3 so a0 =

2π2

3
.

Using all of these we find

x2 =
π2

3
− 4

∞
∑

n=1

(−1)n

n2
cos(nx) . (124)

Exercise 5

Warning: I was not able to finish this problem. If anyone has any insight as for ways to
proceed please let me know.

We consider the odd extension of this function from (0, π) to (−π, 0) then an = 0 and

πbn = 2

∫ π

0

f(x) sin(nx)dx .
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Given the definition of f(x) we can evaluate the integral above. We find

π

2
bn =

∫ π/3

0

π

3
sin(nx)dx+

∫ 2π/3

π/3

0 sin(nx)dx−
∫ π

2π/3

π

3
sin(nx)dx

= −π

3

(

cos(nx)

n

∣

∣

∣

∣

π/3

0

+
π

3

(

cos(nx)

n

∣

∣

∣

∣

π

2π/3

= − π

3n

(

cos
(nπ

3

)

− 1
)

+
π

3n

(

(−1)n − cos

(

2π

3
n

))

,

which seems different from the expression given in the book.

Exercise 6

We have computed the Fourier expansion of x in Equation 123 and the Fourier expansion of
x2 in Equation 124 adding these two we get the Fourier expansion of x+ x2.

Exercise 7

We have computed the Fourier expansion of x2 in Equation 124. We can subtract this
expression from π2 to get the Fourier expansion of π2 − x2.
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Miscellaneous Examples

Exercise 1

To study convergence of the infinite series we will use d’Alembert’s test. We first need to

compute the ratio |nkzn|
|(n+1)kzn+1| where we find

|nkzn|
|(n+ 1)kzn+1| =

1

|z|
nk

(n + 1)k
.

Thus the limit of this fraction as n → ∞ is the value 1
|x| . By d’Alembert’s test our sum will

converge if 1
|x| > 1 which happens if |x| < 1. This test also tells us that the sum will diverge

if |x| > 1. If x = ±1 then the terms of the series don’t limit to zero as n → ∞ and thus the
sum also diverges.

Next we define

Fk(z) ≡
∞
∑

n=1

nkzn .

As discussed above Fk(z) is absolutely convergent on |z| < 1. Thus we can take the derivative
of Fk(x) term-by-term and find

F ′
k(z) =

∞
∑

n=1

nk+1zn−1 ,

so multiplying both sides by z we get

zF ′
k(z) =

∞
∑

n=1

nk+1zn . (125)

The right-hand-side of this is equal to the definition of Fk+1(z).

If we take k = 1 we find that

F1(z) =

∞
∑

n=1

nzn .

This sum can be evaluated explicitly by taking the derivative of the expression
∑∞

n=0 x
n =

1
1−x

or we can “look it up” to find that

F1(z) =
∞
∑

n=1

nzn =
z

(1− z)2
.

Lets write this as

−
( −z

(1− z)2

)

= −
(

1− z − 1

(1− z)2

)

= −
(

1

1− z
− 1

(1− z)2

)

=
1

(1− z)2
− 1

1− z
,
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which is of the desired summation form for F1(z) of

1
∑

r=0

(−1)rAr

(1− z)2−r
,

with A0 = 1 and A1 = 1 (both positive constants). To use induction we now assume that
Fk(z) is of this form for all k ≥ K that is

Fk(z) =

k
∑

r=0

(−1)rAr

(1− z)k−r+1
,

for all 1 ≤ k ≤ K and consider FK+1(z) via Equation 125 (for notational simplicity we take
K → k). We find

Fk+1(z) = z
d

dz

k
∑

r=0

(−1)rAr

(1− z)k−r+1

= z

k
∑

r=0

(−1)r(−1)(k − r + 1)Ar(−1)

(1− z)k−r+2
= z

k
∑

r=0

(−1)r(k − r + 1)Ar

(1− z)k−r+2

= (−z)
k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k−r+2
= (1− z − 1)

k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k−r+2

=
k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k−r+1
−

k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k−r+2
.

We “increment” k in the denominator of fractions in the first sum above to write Fk+1(z) as

Fk+1(z) =
k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k+1−(r+1)+1
−

k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k+1−r+1
.

We next adjust the summation index in the first sum up by one to get

Fk+1(z) =
k+1
∑

r=1

(−1)r(k − r + 2)Ar−1

(1− z)k+1−r+1
−

k
∑

r=0

(−1)r+1(k − r + 1)Ar

(1− z)k+1−r+1
.

Release the first term in the first sum to get

Fk+1(z) =
(k + 1)A0

(1− z)k+1+1
+

k+1
∑

r=1

(−1)r

(1− z)k+1−r+1
[(k − r + 2)Ar−1 + (k − r + 1)Ar] .

If we introduce

Ã0 = (k + 1)A0

Ãr = (k − r + 2)Ar−1 + (k − r + 1)Ar for 1 ≤ r ≤ k + 1 ,

Notice that the above sum is equal to

Fk+1(z) =

k+1
∑

r=0

(−1)rÃr

(1− z)k+1−r+1
,

with Ãr > 0 and proving the summation expression for Fk(z).
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Exercise 3

Assume that limn→∞ an = L 6= 0. Then comparing the terms an
1+n2an

to the convergent series
1
n2 we have

lim
n→∞

(

1
n2

an
1+n2an

)

= lim
n→∞

1

n2

(

1 + n2an
an

)

= lim
n→∞

1
n2 + an

an
=

0 + L

L
= 1 ,

and thus by the comparison test in limiting form we have that the series with terms an
1+n2an

converges also. If limn→∞ an = ∞ we can write the above limit as

lim
n→∞

1
n2an

+ 1

1
= 1 ,

and again have shown convergence of
∑

an
1+n2an

.

If
∑

an is divergent then and limn→∞ an = L 6= 0 then

lim
n→∞

an
1 + an

=
L

1 + L
6= 0 ,

and the series
∑

an
1+an

diverges.

Warning: I was not able to show the desired result when limn→∞ an = 0. If anyone sees
how to do this please contact me.

Exercise 6

Part of this is worked in Exercise 10 in Examples XVI (uniform convergence) on Page 94.

Exercise 7

Notice that both of these sums are absolutely convergence by the comparison test with a
series with terms 1

n3 and thus the sums can be evaluated in any order.

Part (i): Note that

1

9n3 − n
=

1

n(9n2 − 1)
=

1

n(3n− 1)(3n+ 1)
.

From “partial fractions” we can write this as

1

n(3n− 1)(3n+ 1)
=

A

n
+

B

3n− 1
+

C

3n+ 1
,
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with A = −1, B = 3
2
, and C = 3

2
so that

1

n(3n− 1)(3n+ 1)
= −1

n
+

3

2(3n− 1)
+

3

2(3n+ 1)
.

Based on this lets define the partial sum of n terms sn as

sn =
n
∑

k=1

ak = −
n
∑

k=1

1

k
+

3

2

n
∑

k=1

1

3k − 1
+

3

2

n
∑

k=1

1

3k + 1
.

We will now work each of these individual sums into harmonic sums of the form

n
∑

k=1

1

k
= log(n) + γn , (126)

and then evaluate them by taking the limit as n → ∞. To do this we will write sn as

sn = −
n
∑

k=1

1

k
+

3

2

[

n
∑

k=1

1

3k − 1
+

n
∑

k=1

1

3k
+

n
∑

k=1

1

3k + 1

]

− 1

2

n
∑

k=1

1

k

= −
n
∑

k=1

1

k
+

3

2

3n+1
∑

k=2

1

k
− 1

2

n
∑

k=1

1

k
= −3

2

n
∑

k=1

1

k
+

3

2

[

3k+1
∑

k=1

1

k
− 1

]

.

Changing these sums using Equation 126 we get

sn = −3

2
(log(n) + γn) +

3

2
(log(3n+ 1) + γ3n+1 − 1)

=
3

2

(

log

(

3n+ 1

n

))

− 3

2
γn +

3

2
γ3n+1 −

3

2
.

Taking the limit n → ∞ gives

sn → 3

2
ln(3)− 3

2
=

3

2
(ln(3)− 1) .

In the R code misc examples viii xxv exercise 7.R we numerically evaluate the given
summation and “verify” graphically that the summation limits to the above number.

Part (ii): Note that using “partial fractions” we can write this as

1

(n+ 1)(2n+ 1)
=

A

n+ 1
+

B

2n+ 1
,

with A = −1, and B = 2 so that

1

(n+ 1)(2n+ 1)
= − 1

n + 1
+

2

2n+ 1
.
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Evaluating the sequence of partial sums sn we find

sn = −
n
∑

k=1

1

k + 1
+ 2

n
∑

k=1

1

2k + 1

= −
n
∑

k=1

1

k + 1
+ 2

[

n
∑

k=1

1

2k + 1
+

n
∑

k=1

1

2k

]

− 2
n
∑

k=1

1

2k

= −
n+1
∑

k=2

1

k
+ 2

[

2n+1
∑

k=1

1

k
− 1

]

−
n
∑

k=1

1

k

= −1 + 2
2n+1
∑

k=1

1

k
− 2

n
∑

k=1

1

k
− 1

n + 1
.

Changing these sums using Equation 126 we get

sn = −1 + 2(ln(2n+ 1) + γ2n+1)− 2(ln(n) + γn)−
1

n+ 1

= −1 + 2 ln

(

2n+ 1

n

)

+ 2γ2n+1 − 2γn −
1

n + 1
.

Taking the limit n → ∞ gives
sn → 2 ln(2)− 1 .

In the R code misc examples viii xxv exercise 7.R we numerically evaluate the given
summation and “verify” graphically that the summation limits to the above number.

Exercise 9

Now if |anφ(n)| converges then |nkan| converges by Theorem 9 i.e. if un

vn
→ L > 0 then un

and vn either both converge or both diverge. Then if we take un ≡ nkak and assume that
un ≥ un+1 i.e. that un is monotonically decreasing we can use Pringsheim’s theorem directly
to show that

nun = nk+1an → 0 .

Exercise 10

As we are told that
∑

anx
n is absolutely convergent when |x| ≤ R we know that

lim
n→∞

|un|
|un+1|

= lim
n→∞

|anxn|
|an+1xn+1| = lim

n→∞

|an|
|an+1x|

= l ,

with l ≥ 1. If this was not true then our series would diverge. We thus have

lim
n→∞

|anxn|
n!

× (n+ 1)!

|an+1xn+1| = lim
n→∞

|an|(n+ 1)

|an+1||x|
= ∞ ,

for all x. As this is larger than one this series converges for all x.
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Exercise 11

From the given expression it looks like the terms of this series
∑

un can be written as

un =
(2n)!

(2 · 4 · · ·2n)2

(

n
∑

k=1

1

k

)

x2n =
(2n)!

(2nn!)2

(

n
∑

k=1

1

k

)

x2n .

To evaluate the radius of convergence we will use d’Alembert’s test. We consider

|un|
|un+1|

=
(2n)!

(
∑n

k=1
1
k

)

|x|2n
(2nn!)2

× (2n+1(n+ 1)!)2

(2(n+ 1))!
(
∑n+1

k=1
1
k

)

|x|2(n+1)

=

(

(2n)!

(2n+ 2)(2n+ 1)(2n!)

)

(

∑n
k=1

1
k

∑n+1
k=1

1
k

)

(

22n+2(n+ 1)2(n!)2

22n(n!)2

)(

1

|x|2
)

=

(

1

(2n+ 2)(2n+ 1)

)

(

∑n
k=1

1
k

∑n+1
k=1

1
k

)

(

22(n+ 1)2

1

)(

1

|x|2
)

=
4

|x|2
(

n+ 1

2n+ 2

)(

n+ 1

2n + 1

)(

ln(n) + γn
ln(n+ 1) + γn+1

)

.

This tends to
1

|x|2 ,

as n → ∞. For convergence we need this limit to be larger than one or |x| < 1.

Exercise 12

From the observation that

(1− reiθ)(1− re−iθ) = 1− r(eiθ + e−iθ) + r2 = 1− 2r cos(θ) + r2 ,

using partial fractions we can write

1

1− 2r cos(θ) + r2
=

1

(1− reiθ)(1− re−iθ)
=

A

1− reiθ
+

B

1− re−iθ
.

Cross multiplying and setting the real and imaginary parts equal gives A = B and

A =
1

2(1− r cos(θ))
.

This means that we have shown that

1− r cos(θ)

1− 2r cos(θ) + r2
=

1

2

(

1

1− reiθ

)

+
1

2

(

1

1− re−iθ

)

.
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Using geometric sums for the two expressions on the right-hand-side of the above gives

1− r cos(θ)

1− 2r cos(θ) + r2
=

1

2

∞
∑

k=0

rkeikθ +
1

2

∞
∑

k=0

rke−ikθ =
1

2

∞
∑

k=0

rk(eikθ + e−ikθ)

=

∞
∑

k=0

rk cos(kθ)

= 1 + r cos(θ) + r2 cos(2θ) + r3 cos(3θ) + · · ·

which is the desired expression.
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