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Introduction

Géron’s book on machine learning is such a great book on the practical aspects of machine
learning and I would recommend everyone who works in this area to read his book. I actually
read the book twice once for each of the two editions. The second time, to challenge myself
and gain a better understanding of the material I decided to work the questions given in the
back of each chapter. This document represents my answers to these questions. Its my hope
that other students of machine learning might find my answers helpful for self study.

At the end of most of the chapters Géron has provided a number of interesting computational
problems. Many of these extend the concepts discussed in the given chapter and provide
further details. Some of his problems are quite involved and to do these problems “from
scratch” could requires a great deal of time. Unfortunately, I didn’t feel that I had the
time to work all the computational problems to the point where I would feel acceptable
presenting them. Fortunately for many of them, Géron has provided us with notebooks that
implement them in great detail. I think following along with his code is a good way to learn
the additional material without such a large investment in time. That was the approach I
took. If I had something interesting to say about his approach I will present it in these notes
but often his code was so straightforward that no comments were needed. I would advise
everyone to read Géron’s solutions as they read the main text. For the problems that Géron
did not work I attempted to work them myself. Python notebooks to my solutions can be
found at my web site.

∗
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Chapter 1 (The Machine Learning Landscape)

Exercise 1

Machine learning attempts to use data and a model on how variables in the data should
be related to one-another to build predictive relationships between variables. Once this
relationship is defined (and estimated) predictions can be made for variables of interest
when presented with new data.

Exercise 2

The book discusses solutions where machine learning works well

• If the solutions require a lot of hand tuning.

• Very complex problems where a traditional method to approach the solution is not
fully known.

• Environments where the input data can change.

• Building understanding on very complex problems that can have large amounts of data.

Exercise 3

A labeled set is a set of data where the desired output is known. Thus for these problem
instances we know the “answer”.

Exercise 4

The two most common supervised tasks are regression (predicting a real valued output) and
classification (predicting a class label).

Exercise 5

Four common types of unsupervised learning tasks (mentioned in the book) include

• Clustering.



• Anomaly and novelty detection.

• Visualization and dimensionally reduction.

• Association rule learning.

Exercise 6

This robot would have to learn to adapt and not fall in the different environments. Given
that it would have to adapt its behavior (learning “not” to do things when they resulted in it
falling over). I would think that reinforcement learning would be the appropriate technique
to use in this case.

Exercise 7

This seems like a use case for a clustering algorithm. Here we are looking for clusters of
similar customers.

Exercise 8

Most projects of this type have a large corpus of spam emails and so we should use supervised
learning to solve this problem.

Exercise 9

Typically “online” means learning that is done incrementally as opposed to batch learning.
This may mean that an online system can adjusts its behavior as it is operating. Thus an
online system may use data that was not present during development to change its future
decisions. One way this could be done is by using this new data as new training samples.

Exercise 10

Out-of-core learning is a term used when the dataset is so large that it cannot fit into a
single machines memory. Typically parallel processing must be done in some way to process
this data and the individual results combined to produce the final learning algorithm.



Exercise 11

Local algorithms like the k-nearest neighbors algorithm needs a distance (similarity) metric
to determine if points in the feature space are close to each other.

Exercise 12

A hyperparameter is a parameter that controls how learning is performed and a parameter is
what is learned. Once learning is performed the model parameters are estimated. Changing
the hyperparameter to a different value (and relearning) will result in a novel set of model
parameters. Often hyperparameters are used to control the bias-variance trade-off required
to prevent overfitting.

Exercise 13

Model based learning algorithms seek to find parameters that make the observed data con-
sistent with the given model. They can find these parameters by optimization, maximizing
things like the likelihood of the data given the model (and parameters). These algorithms
then make predictions by evaluating their representative model on new input points using
the estimated parameters.

Exercise 14

The book mentions four challenges that all users of machine learning will face or at least
must be able to handle

• Not enough training data.

• Non-representative training data.

• Overfitting the training data (learning the noise).

• Underfitting the training data (not learning all of the signal).

Exercise 15

You are overfitting your training set i.e. learning the noise found in your training set. You
can



• Regularize your learning algorithm i.e. select one with less variance.

• Reduce the number of features you are considering and/or fix known data errors.

• Get more representative training data.

Exercise 16

The test set is a set of data held out during development and that is used during the final
stages of your algorithm development to estimate performance of the algorithm on new data.
One would use this set only to report how your final algorithm would perform on novel data.
If your unhappy with that performance (and you seek to be unbiased in your estimates)
there is nothing you can do. Well, you could keep working on your algorithm but then to
really determine its out-of-sample performance you would need to obtain a different test set.

Exercise 17

The validation set is used to select the hyperparameters. For a fixed set of hyperparameters
the training set is used to estimate the model parameters. The performance of this algorithm
(with the just estimated parameters) is then evaluated on the validation set. For each set of
hyperparameters we now have an estimate of the performance on a “novel” dataset. Finally,
we then select the hyperparameters that give the best validation set performance.

Exercise 18

If you tune the hyperparameters in the testing set you would select the hyperparameters that
give the algorithm the greatest variance i.e. the greatest amount of power to fit the testing
set. The resulting algorithm would not generalize well to new data as you are overfitting the
test set.

Exercise 19

In k-fold cross validation one first breaks the data into k groups of roughly equal size. Each
of these groups is called a fold. Then specifying one of the folds as the hold-out set we train
our algorithm using all k − 1 other folds as the data and then test on the held-out fold. If
we do that for each of the k folds we get k estimates of the performance of our algorithm on
data not seen during training. These can be used to give an estimate of the out-of-sample
performance of our learning algorithm. This is better than a single validation set in that we
now have k estimates of this same number and the average of them will have less variance
than a single measurement (like what would be obtained if we only had the single validation
set).



Chapter 2 (End-to-End Machine Learning Project)

Here I look at the exercises for this chapter. Note that these exercise are worked in notebooks
presented by the book and thus one can get solutions there if desired. At the time of this
writing the book’s solutions can be found

https://github.com/ageron/handson-ml2/blob/master/02_end_to_end_machine_learning_project.ipynb

As these solutions are quite good instead of “reinventing the wheel” I read the provided
notebooks/solutions, ran the resulting codes, and used them as a starting point for any
further analysis (if I had time to do any). In these notes I’m simply providing comments on
anything interesting I observed as I followed that procedure.

Exercise 1

We specify a relatively large parameter grid to search using the function GridSearchCV.
Due to the large number of parameters running that code takes quite a bit of time to run.
Currently the best RMSE error is from the RandomForestRegressor with a value of about
49000 for max features of seven and n estimators of 180. The cross-validated SVR model
is much worse with a RMSE of around 70000.

We notice that when using the parameters given in the notebook the best result happens
at the value of C = 30000 which is the largest one tested. To following the suggestions in
the notebook we should remove the smaller values of C and test larger ones. Given that
there is such a discrepancy between the the best SVR RMSE and the best RMSE from the
RandomForestRegressor I assume that this change will not produced a SVR model that is
better than the RandomForestRegressor and thus I choose not to implement it.

Exercise 2

We next try to fit the housing data using RandomizedSearchCV which takes “distributions”
(or lists) over the parameters we want to test and then performs cross-validation over a fixed
number of such parameter settings. This is quite nice in that we can very easily test as many
parameter variations as we have time for.

Running the code there, we able to find parameter settings that work much better than we
found with GridSearchCV getting a RMSE of around 55000 which is much closer to that
obtained by the RandomForestRegressor. Note that the optimal value of C obtained is
much larger than the 30000 tested in the previous exercise.

The use of the “reciprocal” distribution to find hyperparameters when you have very little
knowledge of the value of the hyperparameters value is quite interesting.



Chapter 3 (Classification)

Here I look at the exercises for this chapter. Note that these exercise are worked in notebooks
presented by the book and thus one can get solutions there if desired. At the time of this
writing the book’s solutions can be found

https://github.com/ageron/handson-ml2/blob/master/03_classification.ipynb

As these solutions are quite good instead of “reinventing the wheel” I read the provided
notebooks/solutions, ran the resulting codes, and used them as a starting point for any
further analysis (if I had time to do any). In these notes I’m simply providing comments on
anything interesting I observed as I followed that procedure.

One of the exercises for this chapter (spam email classification) could be expanded into a
chapter of a book given the level of detail in which Auélien’s presents its solutions. It seemed
very hard to improve much on his solution to this question!

Exercise 1

This is done in the accompanying notebook. Running the code took several hours for me.
This was mostly due to the cost of the GridSearchCV call.

Exercise 2

This is done in the accompanying notebook. Running that code we see that by augmenting
our data we get a classifier with a larger accuracy. Note that the predict method takes a
very long time on this data. In this exercise the augmentations resulted in “valid” images
and hence valid training samples. This makes me wonder if one has a machine learning
problem with a lot of noise one might be able to improve on baseline results by adding
noised samples from the original dataset. This seems like the procedure “bagging” but
involves only modifying the training data and not producing multiple classifiers/predictors.

Exercise 3

Here Auélien presents some solutions with different performance measures (accuracies). He
gets a jump in performance by using a RandomForestClassifier. Random forests are well
known to be very good learning models. He then suggests a couple of preprocessing steps
one could take to potentially produced more informative features.



Exercise 4

Here to do this exercise Auélien must load and parse the raw emails we are instructed to
download. This alone seems to involve a great deal of work/code. Its great to see such a
complete data pipeline for a somewhat complicated application. This “exercise” is really the
start of a suite of tool for extracting features from actual emails as the application of the
machine learning part is only a few lines of code once the preprocessing is done!



Chapter 4 (Training Models)

Exercise 1

If you have millions of features the naive implementation of linear regression using the
normal equations would be too difficult computationally to perform. One could instead use
a gradient decent technique (like stochastic gradient decent or mini-batch gradient decent)
which requires only inner products and avoids the matrix inversion required in the normal
equations.

Exercise 2

The minimization surface that represents the error obtained when using a model with differ-
ent coefficients can have a high curvature if the features have very different scalings. This can
cause fitting routines to have numerical difficulties finding the optimal parameters and/or
take a very long time to converge. I think in general most algorithms will have some de-
gree of difficulty if the feature scaling is too extreme. To work around this issue one can
“standardize” the features (subtract the mean and divide by the standard deviation) before
providing them to an upstream machine learning algorithm.

Exercise 3

Gradient decent cannot get stuck in a local minimum when training a logistic regression
model as the error surface is convex and thus has only one minimum.

Exercise 4

Gradient decent algorithms have various parameters and if these are not set correctly the
algorithm may not even converge. If the parameters are set correctly for convergence some
gradient decent techniques like stochastic gradient decent will “oscillate” around the global
minimum will will never converge to the exact minimum as specified by the solution to the
normal equations. For linear regression and logistic regression which are convex problems
the minimum selected for all of these techniques (when they converge) will be quite close
and the resulting models very similar.



Exercise 5

If the validation error is increasing it means that the learning rate parameter η, is too large.
You should decrease your stepsize parameter and run again.

Exercise 6

Due to the random nature of mini-batch gradient decent the algorithm is not guaranteed
to decrease the MSE at every iteration (just on average). Thus you might want to run the
algorithm for a bit longer and output the parameter setting that gave the smallest validation
error form all mini-batch steps.

Exercise 7

Stochastic gradient decent will reach the vicinity of the minimum first but will oscillate
around the minimum forever (unless you decrease the learning rate η). Only batch gradient
decent will actually converge.

Exercise 8

This looks like a symptom of overfitting the training set. One solution would be to reduce
the dimension of the polynomial or add a regularization penalty to the fit.

Exercise 9

I would say high bias as the model is not fitting the data very well (it is biased away from the
true signal) and maybe underfitting the data. One would want to reduced the regularization
parameter α i.e. make the model less regularized.

Exercise 10

• We would use ridge regression instead of linear regression if we had a large number of
features and felt we would overfit our training data if we didn’t have any regularization.

• You would prefer lasso rather than ridge regularization if you wanted the ability to
drop features as the lasso has an ℓ1 penalty which performs some amount of feature
selection automatically when fitting the model with this penalty. If you expect that
only a few features actually matter you should prefer the lasso regression otherwise
prefer ridge regression.



• The elastic net is a fitting procedure that has two hyperparameters (one for the ℓ1
constraint and another for the ℓ2 constraint). Fitting an elastic net model can provide
some of the benefit of each of the two types of models.

Exercise 11

Notice that these four states are not mutually exclusive i.e. one could be outdoors during
the day or night. Because of this one should two logistic regression classifiers rather than
one softmax regression classifier. The softmax classifier would perform better with states
that are mutually exclusive.

Exercise 12

This would be implemented in much the same way as the early stopping using stochastic
gradient decent but using vector operations to compute the gradient of the cross-entropy with
respect to the parameters (rather than compute a single step with a call to SGDRegressor).
Again the computational solutions provided by Auélien are so good that for my purposes
it is enough to read and understand the code he provides. The solutions he provides don’t
actually implement early stopping in the learning loops but that is easy enough to add by
following the discussion in the book on that topic.

It is instructive to consider some simplifications that can be made when there are only two
classes and we use softmax regression. In using the softmax regression each class is modeled
with a linear logit as

sk(x) = βk,0 + βT
k x .

These logits are combined to produce a probability as

Pk =
esk(x)

∑k

j=1 e
sj(x)

.

Now if there are only two classes we have sk(x) for k ∈ {1, 2} and

P1 =
es1(x)

es1(x) + es2(x)
=

1

1 + es1(x)−s2(x)

and

P2 =
es2(x)

es1(x) + es2(x)
=

es2(x)−s1(x)

1 + es1(x)−s2(x)
.

Thus in this formulation since

s1(x)− s2(x) = β1,0 + βT
1 x− (β2,0 + βT

2 x) = β1,0 − β2,0 + (β1 − β2)
Tx = β̃0 + β̃Tx .

we have

P1 =
1

1 + eβ̃0+β̃x
,



with a similar expression for P2. This has changed our problem from one with “four”
unknowns

β1,0 , β1 , β2,0 , β2 ,

to one with only “two”
β̃0 , β̃1 .

Some software packages only understand one of these parameterization and its helpful to be
able to translate between the two representations.



Chapter 5 (Support Vector Machines)

Exercise 1

The idea of a support vector machine is to place a hyperplane (the decision boundary) in
between the training data in such a way that it separates the two classes “maximally”. That
is we desire the distance between the data in each class and the hyperplane to be as large
as it can be. From the decision boundary the algorithm would measures how far away the
nearest point in each class is from the decision boundary. This width is called the “margin”
and if the classes are linearly separable is a well defined thing. In that case the margin is
called “hard”. In non-linearly separable classes the margin is called “soft” due to the fact
that there maybe misclassified points.

Exercise 2

After training a support vector machine the final prediction is made based on the test points
location with respect to the learned hyperplane. Thus if we seek to classify x then we
compute

ŷ =

{

0 ŵTx+ b̂ < 0

1 ŵTx+ b̂ ≥ 0
.

Here ŵ and b̂ are learned from the training procedure. In fact a formula for ŵ can be given
by

ŵ =

m
∑

i=1

α̂(i)t(i)x(i) .

Here t(i) ∈ {0, 1} are the class “labels” for the ith training instance, x(i) is the ith feature
vector, and α̂(i) are the output from the dual form of the linear SVM. In that optimization
many of α̂(i) are zero. The features x(i) with α̂(i) > 0 are the support vectors. Any vector that
is not a support vector can be removed and it will have no effect on the decision boundary.

Exercise 3

As the optimization problem in SVM involves maximizing a “distance” in the features space
it is important to have each feature have the same scaling. For example, if one feature
is gross domestic product (GDP) measured in billions of dollars and another feature is a
person’s height measured in feet, then any distance measured between these two vectors
will be dominated by the GDP numbers. Scaling each feature by using StandardScalar

in sklearn.preprocessing will turn each feature into a z-score which will allow feature
vectors to be compared with respect to distances.



Exercise 4

The SVM can output the distance x is from the learned hyperplane i.e. |ŵTx + b̂| which
could be used as a confidence. There is no natural notion of a probability in SVM classifiers
but one could be learned by using these confidence scores as input to a logistic regression
classifier. Setting probability=True when creating a SVM in Scikit-Learn will perform
these steps automatically and allow probability to be calculated in this way.

Exercise 5

We are told that our problem has m = O(106) and n = O(102) so we have m ≫ n i.e. more
training instances than number of features. In this case the direct problem formulation is
easier (computationally) to solve.

Exercise 6

The Gaussian RBF takes the form

φγ(x, l) = exp
{

−γ||x− l||2
}

.

Thinking of the parameter γ as an “inverse variance” we see that when γ ≫ 1 (so that
1
γ
≪ 1) that the φ functions are highly peaked around the l vector and the classifier would

have high variance with low bias. If γ ≪ 1 (so that 1
γ
≫ 1) then the φ function are more

diffuse around the l vector and the classifier would have low variance and high bias. Since
we are told that our classifier is underfitting we should make γ larger (to move it into the
low bias regime).

In Scikit-Learn the C parameter is used to regularize the solution where the strength of the
regularization is proportional to 1

C
. As we are underfitting we are too regularized and we

should increase the value of C (to make 1
C
smaller).

Exercise 7

Recall that in the notation of the textbook m is the number of training samples and n is the
number of features.

The soft margin problem for the linear SVM classifier is to minimize (over the variables w,
b, and ζ) the objective

1

2
wTw + C

m
∑

i=1

ζ (i) . (1)



subject to the constraints
t(i)(wTx(i) + b) ≥ 1− ζ (i) , (2)

and
ζ (i) ≥ 0 , (3)

for i = 1, 2, . . . , m.

Now to use an off-the-shelf QP solver we will define the vector of unknowns p to be

p =





w

b

ζ



 .

Each of these vectors is vertically concatenated and thus the size of vector is np = n+1+m =
m+ n + 1. Next H is a block diagonal matrix with blocks

• In×n (the n× n identity matrix)

• 01×1 (a 1× 1 zero matrix)

• 0m×m (a m×m zero matrix)

This means that H is a matrix of size (m+ n+ 1)× (m+ n+ 1). Next note that the vector
f is a “block” column vector with n zeros, one zero, and n C’s.

To determine the A in the off-the-shelf constraint Ap ≤ b we write Equation 2 as

−t(i)(wTx(i) + b) ≤ ζ (i) − 1 ,

or
−t(i)wTx(i) − t(i)b− ζ (i) ≤ −1 , (4)

for 1 ≤ i ≤ m. Then we write Equation 3 as

−ζ (i) ≤ 0 , (5)

for 1 ≤ i ≤ m.

From these expressions we see that the matrix A is of size 2m×(m+n+1). From Equation 4
we see that first 1 ≤ i ≤ m rows of A have the ith row taking the block form of

[−t(i)x(i)T , −t(i), −I(i)] .

Here I(i) is a row vector of zeros (of size 1×m) except for a one in the ith spot. The second
set of m rows look like the first set but with the first two parts zero or

[01×n, 01×1, −I(i)] .

Finally, the column vector b has m negative ones followed by m zeros.



Exercise 8

Here I again simply followed Auélien’s excellent solutions. This exercise seemed mostly aimed
at exercising the functionality of LinearSVC, SVC(kernel=’linear’), and SGDClassifier.

Exercise 9

Here I again followed Auélien’s solutions. The key idea I took from this exercise is that one
can do model selection on a small subset of data (so that the grid searches are much faster
to execute than they would be on the full dataset) and then use the best performing models
as “initial guesses” to be used for retraining on the full dataset. This initial training subset
can help eliminate very poor hyperparameters from being considered further and greatly
facilitate getting to a good set of hyperparameters in a shorter period of time. This idea
seems to have other possible generalizations.

Exercise 10

Here I simply followed Auélien’s solutions. We see that a SVR using radial basis functions
can cut the error of a LinearSVR by about 50% which is a significant improvement.



Chapter 6 (Decision Trees)

Exercise 1

If each sample ends up at a leaf then there will need to be log2(m) levels to this tree. When
m = 106 this number is 19.93157.

Exercise 2

At a high level, the splitting we are doing at each parent node is to make the two child nodes
more pure the impurity should shrink (i.e. lower) as we progress down through the tree. The
impurity of the child notes will generally be lower but is not required to be lower than that
of the parent node. This is because, if during training, a split is chosen to take the parent
into a “small” and a “large” child node then it is possible for a smaller child to have a larger
impurity than the parent if the corresponding larger child has its impurity smaller smaller
than the parent node. The first edition of this text gives a nice toy example where this can
happen.

Exercise 3

Yes. This will make the trees shallower and less dependent on the data thus helping to
reduce overfitting. The shallowest tree is one with a depth of one and is called a “stump”.
By reducing the parameter max depth you are constraining the fitting algorithm which is
how one combats overfitting.

Exercise 4

No. Scaling the input features has no effect on the performance of decision trees. This is
a benefit of using CART decision trees in that less initial work needs to be done to get a
working model.

Exercise 5

From the book the training time of a CART tree is O(nm log(m)) where n is the number of
features and m is the number of samples. When m = 106 we are told that this expression
approximately equals one hour. If now m increases by a factor of ten out training time would
be (dropping the O notation for now)

n(10m) log(10m) = 10(nm log(m) + nm log(10)) ≈ 10nm log(m) .



Thus it will take about ten times as long or ten hours.

Exercise 6

From the book, setting the parameter presort=True will speed up training for small datasets
and will dramatically slow down the training of large datasets. Small here seems to be
m ≈ O(103). The value of m in this exercise is too large for presort to help.

Exercise 7-8

Here I simply followed Auélien’s provided solutions as they are an excellent learning tool.



Chapter 7 (Ensemble Learning and Random Forests)

Exercise 1

We can understand the improvement we might obtain if the errors made by each classifier
are independent. If we assume a binary classification problem and combine the five classifiers
using majority voting we will classify a class as “one” if three or more of the classifiers vote
for “one”. An error will then take place if three or more classifiers vote “zero”. From the
problem each classifier makes an error with a probability of 0.05. Thus the ensemble will
make an error if three or more classifiers do. This will happen with a probability of

(

5

3

)

e3(1− e)2 +

(

5

4

)

e4(1− e)1 +

(

5

5

)

e5(1− e)0 .

Here e is the error probability e = 0.05. If we evaluate this we get 0.001158125 an error
much smaller than any individual classifier. This result is optimistic because the classifiers
are most likely not independent but are correlated. That fact will worsen our results above.
In practice, the most improvements in using this method are found when the classifiers used
are “very different”.

Exercise 2

In-hard voting each classifier in the ensemble provides a single label of an instance and
ensemble fusion is performed using these labels. A common method is by voting (selecting
the class with the largest number of votes). In soft voting each classifier provides a set
of numbers which represent what that classifier believes to be the strength of that data
sample’s membership in the possible target classes. Many times each classifier outputs a set
of probabilities. Classifier fusion is done with these set of numbers. Often by averaging or
other such numerical procedures.

Exercise 3

This question asks us to think about how hard/easy it would be to parallelize some of the
ensemble algorithms from this chapter.

• For bagging, each predictor is built from a random draw (with replacement) of data
drawn from the original training set. This sampling can easily be done in parallel.

• For pasting, each predictor is built from a random draw (without replacement) of data
drawn from the original training set. In this case we must build our predictor on a
smaller dataset that the original one or else we will get the same predictor each time.
This can also easily be done in parallel.



• In boosting ensembles, the next tree added to the ensemble is used to predict the error
made by the previous ensemble of predictors. Thus one can only fit ensembles like this
sequentially.

• In random forests each tree in the ensemble is build from a bootstrap sample of the
training dataset. In addition, at each node in the tree the decision the variables we can
consider to use for splitting is restricted to a random subset of all possible variables.
These procedures are easily parallelized.

• In stacking ensembles, we learn optimal ways to blend the outputs from the base
predictors in our ensemble to predict the full outputs of interest. As we must have the
output of all of the trained elements in our ensemble it is hard to parallelize this final
set. We could parallelize the building of the “first layer” or the individual ensemble
predictors but not so easily the learning of their optimal fusion parameters

Exercise 4

The benefit of out-of-bag evaluation is that you are evaluating each trees performance on
data that was not used in generating that tree. Thus in using out-of-bad evaluation you get
a “free” unbiased estimate of that trees performance on unseen data.

Exercise 5

Extra-trees introduce a random split point at each decision node rather than searching each
predictor to find the optimal split point. This gives extra-tree a larger degree of randomness
(since the split points values are decided randomly). This extra randomness will mean that
each tree will be produced with less influence from the actual dataset and the total ensemble
predictor will then have less variance (multiple “samples” of this entire learning algorithm
will be quite stable) and more bias (multiple “samples” of this entire learning algorithm will
be the same “distance” from the true distribution of the data). This increase in bias and
decrease in variance can be good if an original random forest ensemble is overfitting the
data. This might happen if we have a situation where we have very few samples m but each
sample has a very large number of features n i.e. m ≪ n.

Extra-trees will be faster to train than random forests as there is no search to find the
optimal predictor split point at each node. When making predictions extra-tree and random
forest take the same amount of time

Exercise 6

In AdaBoost there is a learning rate parameter named η that controls how much to the jth
model affects the final prediction. “Large” values of η will fit the data more tightly with



fewer iterations and potentially overfit the data while values that are too small will cause
the algorithm to underfit. If we observe underfitting then we should increase the value of η.
Too large a value of η can cause the model to diverge so one should not increase η too much.

One can also increase the number of trees we use to build the ensemble. More trees will
allow more complicated patterns to be fit and thus reduce underfitting.

Finally, the degree of overfitting in the ensemble can be controlled by controlling the degree
of overfitting of the base predictors. If one reduces the regularization parameters in the
base model (reducing the underfitting in the base model) this should help the underfitting
problem in the ensemble.

Exercise 7

If you find your gradient boosting predictor is overfitting one can increase the regularization
of the base predictors one way (when your base predictors are CART trees) is to reduce the
value of the max depth parameter. Another thing to do is to find the optimal number of
trees (you might have too many trees if you find you are overfitting). Another thing one
can do is to decrease the value of the parameter learning rate as a smaller learning rate
parameter avoids overcommitting to the errors in each subsequent fitting.



Chapter 8 (Dimensionality Reduction)

Exercise 1

Reducing a dataset will normally produce a dataset with a smaller number of variables. This
means that most algorithms that will be learning off of this reduced dataset will do so faster
than the would on the original dataset. The hope is that by reducing dimensions one is
mostly removing noise (and not signal). As the noise is not predictive of anything there is
no need to “keep it around”.

If the dimensionality is reduced to 1-d, 2-d, or 3-d then visualizations of the dataset are
possible. This can be a motivation for reducing dimensionality.

Drawbacks could include cases where we have removed signal rather than noise and subse-
quent learning algorithms would then perform worse. In addition, the transformed features
are more difficult to interpret as they are now “blends” of more “base” predictors.

Exercise 2

The curse of dimensionality is the general understanding that increasing the dimension of a
system will not necessarily bring algorithmic improvements. Increasing the dimension of the
features to a machine learning system is problematic in that now each data sample is very
likely to be “very far” from all of the others. Thus as we increase the dimensionality of our
dataset we are simultaneously making it more sparse at a much greater rate.

Exercise 3

In general no. If you remove information (even if its noise) it is impossible to “add it back
in” as you don’t have access to it any longer. Some dimensionality reduction algorithms
have a “reverse” method that will give you back a dataset of the same dimension as the
original but some information is lost and not all dimensionality reduction algorithms have
this method.

Exercise 4

Yes, PCA can be used to reduce the dimension of any dataset. Whether learning using
the PCA reduced dataset results in performance that is much worse than learning using
the original dataset is problem dependent. The fact that PCA is a linear technique and we
are told to assume that our dataset is highly nonlinear indicates that performance on the



reduced dataset will most likely be worse than on the original dataset especially if we are
using a nonlinear learning technique that can model the nonlinear relationships.

Exercise 5

If the variance is distributed uniformly in the 1000 dimensional space (as it would be if
the data was drawn from a 1000 dimensional unit cube) then we would expect to have
1000(0.95) = 950 remaining dimensions after reduction. Most real world datasets that one
would want to learn from have a large degree of “structure” to them so that they are not
just uniformly spaced and reducing the dimension to 95% of the variance should result in
many fewer final dimensions (than 950).

Exercise 6

Vanilla PCA is a good technique to try if there are no other constrains on the problem and
should probability be tried first. Other PCA techniques hope to “solve” some of the problems
that you might find with vanilla PCA. For example, incremental PCA is helpful when the
full dataset cannot fit into your machines memory. In that case, incremental PCA will feed
sequential batches of data (that will fit into memory) until the full dataset is processed.

If you think you are only looking for the first d principal components (where d ≪ n) then
randomized PCA will use a randomized algorithm to quickly find these. This can be much
faster than using the full SVD algorithm (which computes all of the principle components).

At a heuristic level, kernel PCA uses the “kernel trick” to map the original feature space
into an infinite dimensional one which holds nonlinear powers of the features and then
applies PCA in that higher dimensional space. This allows kernel PCA to better deal with
nonlinearity in the dataset

Exercise 7

If the dimensional reduction technique has an “inverse” method producing points with the
same dimension as the original dataset then one can measure the l1 or the l2 reconstruction
error. Minimizing this error can say to not perform any dimensionality reduction however
(as then the reconstruction error is zero). If the dimensionality reduction technique is used
as a preprocessing technique then it should keep most of the signal and drop some noise.
That means that a learning algorithm trained on the smaller dimensional dataset should
perform almost as well as one trained on the full dataset.



Exercise 8

If the dataset has a very large feature dimension n a quick dimensionality reduction algorithm
(like using randomized PCA) can produce a much smaller dataset that eliminates many
“noise features”. A slower more computationally intensive algorithm can then be run on
this preprocessed dataset to reduce the dimension further down to only the “informative”
features.



Chapter 9 (Unsupervised Learning Techniques)

Exercise 1

Clustering is an algorithmic procedure that aims to group data points into a finite number
of “clusters” such that all of the data in a given cluster is “close to” all other data in that
same cluster.

Some clustering algorithms areK-means, DBSCAN, agglomerative clustering, BIRCH, Mean-
Shift, affinity propagation, spectral clustering, and Gaussian mixtures.

Exercise 2

Clustering can be used for learning more about your data. In this chapter of the book there
is some discussion about various uses of clustering techniques. Some from that list include
customer segmentation, data analysis, dimensionality reduction, and outlier detection to
name a few possibilities.

Exercise 3

One method is the “elbow method” where we plot the inertia of the final model as a function
of the number of clusters We then look for a “kink” or an “elbow” in that curve where
the addition of another cluster does not cause the inertia to decrease as fast as it had been
previously. This is a heuristic technique that one can use to decide on the number of clusters.

Another method is to use the silhouette scores for each of several potential clusterings. By
plotting the silhouette score as a function of the number of clusters k the cluster number
that gives the largest silhouette score is a good number of clusters to use.

Exercise 4

Label propagation is where we have labels for the cluster centers and then use these labels
to propagate a label for all samples belonging to the same cluster. To implement this one
would cluster our data, label the cluster centers with their corresponding class, and then
with the corresponding cluster labels assign labels to all of the data points in each of the
clusters.



Exercise 5

Most clustering algorithms have an incremental “batch” version where one can feed sequen-
tially feed the algorithm batches of data (and not the full dataset) to allow it to scale to much
larger datasets. K-means has an implementation of this in sklearn called MiniBatchKMeans.

Clustering algorithms that look for regions of high density include DBSCAN and Gaussian
mixture models.

Exercise 6

Active learning is where you ask for help in labeling cases that the current algorithm has a
hard time labeling. In detail, the current algorithm is used to predict labels on all unlabeled
instances and the ones with the lowest confidence are presented to the user for labeling. Once
these instances are labeled we can refit using all labeled instances and repeat by presenting
the user the cases which are the most difficult to predict. One could iterate this procedure
until the algorithmic improvements are not worth the labeling effort.

Exercise 7

Anomaly detection is used to identify samples that are sufficiently removed from the “bulk”
of the data. These samples might be considered outliers and should be inspected/studied to
make sure that they are not the cause of some sort of faulty processing or data entry errors.

Operationally novelty detection is done the same way as anomaly detection but the difference
is that in novelty detection it is assumed that the model is built using a clean dataset
uncontaminated by outliers. In that case samples removed from the “bulk” of the data are
“valid” data but could be considered novel samples.

Exercise 8

A Gaussian mixture is a generative data model where the samples of data one observes are
assumed to be generated from a number of “sources”. Each source is a multidimensional
Gaussian random variable. When given the parameters of the generative model one can
generate samples. Given data one can estimate the parameters of the mixture. These
parameters then provide a soft clustering of the dataset This type of model is good for
density estimation, anomaly detection, and soft clustering.



Exercise 9

One can find a model that minimizes an information criterion like BIC or AIC. The GaussianMixture
class has methods bic and aic that return these two numbers. Another method one can use
is to fit a BayesianGaussianMixture with a large number of clusters (more than you expect
to actually be found in the data). This later method will set a clusters sampling weight to
a very small number if it is not likely to actually be a cluster.

Exercise 10

The output of sklearn.datasets.fetch olivetti faces is a “Bunch” object that has

dict_keys([’data’, ’images’, ’target’, ’DESCR’])

for its keys.

Next I split the data up into training, validation, and testing datasets. Using the training
data I cluster using K-means clustering and look for the optimal number of clusters using
the “elbow in the inertia plot”. This gives me an “optimal” k of k = 4 which is much smaller
than the forty different people used in creating the dataset.

I then show the first 10 faces in each of the four clusters using imshow. The faces I observe
seem to look similar but I think that is somewhat hard to quantify directly. Even in the
small view I produced (with only ten faces for each cluster) in each cluster one often sees
the same ”person” a couple of times. For example, the person with index one had all of
their five training faces assigned to the cluster with index three. Many of the forty people
had all of their faces assigned to just one cluster. The number of people that had their faces
assigned to one, two, and three clusters is given by:

How many people were assigned to 1, 2, 3, or 4 clusters:

1 14

2 19

3 7

Note that no person had their five faces assigned to more than three clusters.

Exercise 11

To start, I used logistic regression on the image data directly to predict the person in the
image. As this dataset is rather small we expect overfitting (which we see below) where I
found



Training score= 1.000000; Validation score= 0.940299

Then as suggested, I first tried to use K-means as a dimensionality reduction tool by using it
to map each of the images to distances from some fixed k number of cluster centers. Under
these new features the data is of size m × k and will be of a smaller dimension if k < n. I
then built a logistic regression model to predict the person in the image using this reduced
dataset. For these results I got very poor performance when the number of clusters was
quite small. As I increased the value of k results improved

k= 31; Training score= 0.9950; Validation score= 0.8358

k= 32; Training score= 0.9950; Validation score= 0.8507

k= 33; Training score= 1.0000; Validation score= 0.8507

k= 34; Training score= 1.0000; Validation score= 0.8657

k= 35; Training score= 1.0000; Validation score= 0.8657

k= 36; Training score= 1.0000; Validation score= 0.8507

k= 37; Training score= 1.0000; Validation score= 0.8507

k= 38; Training score= 1.0000; Validation score= 0.8657

k= 39; Training score= 1.0000; Validation score= 0.8507

k= 40; Training score= 1.0000; Validation score= 0.8657

k= 41; Training score= 1.0000; Validation score= 0.8657

k= 42; Training score= 1.0000; Validation score= 0.8657

k= 43; Training score= 1.0000; Validation score= 0.8806

k= 44; Training score= 1.0000; Validation score= 0.8806

Notice that none of these validation scores is as large as the original one indicating that the
K-means features by themselves are perhaps not as good of features as the original data.

Next and again following the book, I appended the raw data with the distance to the k

cluster centers creating an expanded dataset. The results I found were quite surprising. Here
for small k the validation score was better than any seen thus far. I found

k= 1; Training score= 1.0000; Validation score= 0.9701

k= 2; Training score= 1.0000; Validation score= 0.9701

k= 3; Training score= 1.0000; Validation score= 0.9701

k= 4; Training score= 1.0000; Validation score= 0.9701

k= 5; Training score= 1.0000; Validation score= 0.9552

k= 6; Training score= 1.0000; Validation score= 0.9552

k= 7; Training score= 1.0000; Validation score= 0.9552

k= 8; Training score= 1.0000; Validation score= 0.9552

k= 9; Training score= 1.0000; Validation score= 0.9552

At this point for larger k the validation results started to get worse. Thus by using one
additional feature K-means feature we can increase our accuracy by over 3%.



Exercise 12

I implemented most of this problem in the associated notebook. Fitting the Gaussian mixture
model is just an application of using the sklearn library. Calling the sample method on
the resulting Gaussian mixture object gives us an array that we can reshape and view as an
image. Some of these images look very realistic but some have “smears” or “scars” on their
faces which make them look less like real faces.

The next steps in this exercise are straight forward (but unimplemented). We would trans-
form some of the initial images (or obtain images from an external source). We then would
transform the images using the transform method on our fitted pca object. We could then
call the score samples method from our Gaussian mixture model object on these novel
images. If our images come from the same set of data that the mixture model was trained
on we expect the output from that method to “large” while if the data comes from another
distribution we expect the output from score samples to be “small”. If we have produced
different enough looking images we should be able to detect that they don’t look the same
as the training images.

Exercise 13

For this exercise I looked at the histogram of the reconstruction error (computed on each
image). This is plotted in the notebook but I found statistics on these values to be

mse (per image); mean= 0.000187; median= 0.000171; min= 0.000009; max= 0.000421

I then took the first training image and rotated it 90 degrees counter-clockwise. This is
plotted in the notebook. For this bad image I then transformed it using the PCA transform

method and then transformed it back to the original image space. This procedure has a
reconstruction error of

One "bad" image; reconstruction_mse= 0.005352

Note that this is more than 10 times the largest reconstruction error seen in the training
data. This large magnitude indicates an outlier. If we then plot this reconstructed image we
see a face in the normal orientation and not rotated! Given that the starting image was in
a different orientation its not surprising that the reconstruction error is so large.



A B A⊕ B

0 0 0
0 1 1
1 0 1
1 1 0

Table 1: The XOR operation.

Chapter 10 (Introduction to Artificial Neural Networks

with Keras)

Exercise 1

Experimenting with the TensorFlow Playground is a great way to get some visual and in-

tuitive experience with neural networks. If you’ve never seen such an application I would
highly recommend doing these experiments.

Exercise 2

In my version of the book there was a parenthesis missing from the XOR formula. It should
be

A⊕ B = (A ∧ ¬B) ∨ (¬A ∧B) . (6)

In binary notation the XOR operation can be expressed in Table 1. We can check that the
formula given in true in Equation 6 is true in Table 2. Looking at that table we compute
each column and then finally the expression given by Equation 6. Note that this column
equals the A⊕ B column in Table 6.

Now to evaluate the right-hand-side of Equation 6 graphically in the book we can first
compute C ≡ A ∧ ¬B and then D ≡ ¬A ∧ B and then link C and D with a logical or.
The book shows how to evaluate C in Figure 10-3. Note that in evaluating this we do it
by “summing” and then sending out a “1” if the sum is larger than or equal to 2. Thus if
A = 0 and B = 0 then the formula for C we start by evaluating

0 + 0− 0 = 0 ,

which is less than 2 so C = 0. If A = 0 and B = 1 we see that

0 + 0− 1 = −1 ,

which is less than 2 so C = 0. If A = 1 and B = 0 we see that

1 + 1− 0 = 2 ,



which is greater than or equal to 2 so C = 1. Finally, if A = 1 and B = 1 we see that

1 + 1− 1 = 1 ,

which is less than 2 so C = 0.

To finish this problem we compute D using the “same” type network as we had for C and
then combine C and D using a logical or.

Exercise 3

A perceptron will adjust the parameters of the linear separating hyperplane until the two
classes are separated. It will always converge if the points are linearly separable. If the points
are not linearly separable then the perceptron (as normally considered) will not converge.
In contrast, in logistic regression the problem is convex and there is a well defined minimum
that the fitting routine seeks regardless of the separability of the points. Thus in some sense
the logistic regression optimum is “well defined”. In addition, the logistic regression can be
used to estimate class probabilities.

Exercise 4

For some background on notation, a sigmoidal function is one that has a characteristic “S”
shape. The logistic function l(x) given by

l(x) =
1

1 + e−x
, (7)

is an example of such a sigmoidal function The logistic activation function has a particularly
simple derivative l′(x) = l(x)(1 − l(x)) and thus it was easier to implement the backprop-
agation algorithm using it since the derivative is always nonzero, continuous, and can be
computed in closed form. Having a continuous nonzero derivative means that gradient de-
cent can sequentially step to better and better minimums.

Exercise 5

Three popular activation functions are the logistic function given by Equation 7, the hyper-
bolic tangent tanh(x), and the regularized linear unit denoted ReLU(x).

Exercise 6

This number of neurons in the pass though layer must equal the number of features or
n = 10. The input matrix would be of size m× 10 where m is the number of samples. The



A B ¬A ¬B A ∧ ¬B ¬A ∧ B (A ∧ ¬B) ∨ (¬A ∧B)
0 0 1 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 1 0 1
1 1 0 0 0 0 0

Table 2: The XOR operation from Equation 6.

hidden layers weight vector Wh should be dimensioned such that for the input matrix vector
X the vector XWh should be of dimension m × 50. To this matrix we will add the bias
vector/matrix to get XWh+Bh. This means that Bh should be a matrix of size m×50. We
don’t want typically want a different vector to be added to each row of XWh so we would
decompose the matrix Bh as

Bh = 1m×1b1×50 ,

where 1m×1 is a m dimensional column vector of all ones and b1×50 is a row vector of length
50. If we can use “broadcasting” in our implementation we might not need to create a matrix
Bh but could do something like

XWh + b1×50 .

To the above output we will apply our activation function to to get

Z ≡ ReLU(XWh + b1×50) ,

where I have defined the matrix Z above. This matrix is then multiplied on the right by Wo

so that
ZWo ,

is a matrix of size m× 3. This means that Wo should be a matrix of size 50× 3. To this is
added a vector bo (again using broadcasting) a vector of size 1 × 3. To the above we would
again apply our activation function to get a final output of

Y = ReLU(ZWo + bo) .

This would be a matrix of size m× 3.

Exercise 7

Spam vs. ham is a binary classification problem thus we only need a single output neuron
which would represents the probability that the email is spam (the probability an email
is ham is then the complement). To obtain this we would use the logistic function as an
activation function for this final node.

As MNIST is a classification task where there are ten classes (the digits 0−9) we would want
ten nodes in the output layer. The final activation function in this case would be the softmax
function which would convert the linear sums into probabilities for each of the digits.

For regression problems you only need one output neuron without a final activation function
as the output does not need to be restricted in anyway.



Exercise 8

Backpropagation refers to the technique by which we train neural networks by estimating
the derivative of the networks output nodes with respect to the networks parameters and
then use an optimization procedure (like gradient decent) to adjust the network parameters
to improve the network’s performance on the training data.

Reverse-mode autodiff is an efficient technique used to compute a networks derivative. This
computation can then be used as a part of the full backpropagation procedure for model
fitting.

Exercise 9

Hyperparameters we can tweak include

• number of hidden layers

• number of neurons in each hidden layer

• learning rate

• batch size

• number of epochs to use in training

• method used to initialize the parameters of the network

• the activation function used at each layer

• regularization method i.e. L1 or L2

• regularization coefficient

More layers and more neurons in each layer make the network more likely to overfit. If
the network is overfitting reducing these numbers should help. In addition, if the network
overfits adding (if its not already there) and increasing the regularization coefficient should
reduce overfitting.



Chapter 11 (Training Deep Neural Networks)

Exercise 1

I would think one would have trouble with symmetry breaking if all weights were initiated
to the same value regardless of the method used to select that constant.

Exercise 2

Yes. The bias term is a single scalar constant (per layer) that is shared and used to contribute
to the sums in each of the neurons in the given layer. The fact that the weights are different
(initialized randomly to different constants) means that the bias will affect each neuron
slightly differently.

Exercise 3

SELU stands for “scaled ELU” or scaled “exponential linear units”. Some of the benefits
that SELU have over ReLU are that

• Like ELU in that it has negative values for negative z which helps have the average
output closer to zero.

• Like ELU in that it has a nonzero gradient for negative z which helps avoid the dead
neuron problem.

• Is “closer” to continuous for x ≈ 0.

• Under the conditions given in the text, if all of the layers in the network use the
SELU activation function the network will “self-normalize” i.e. the output of each
layer will have a mean of zero and a standard deviation of one. This will solve the
exploding/vanishing gradient problem.

Exercise 4

I would think the different activation function would have benefit in various ways

• SELU activation is a good choice for stacked networks of dense layers (a very com-
mon type) and helps to improve the vanishing/exploding gradient problem by self-
normalizing the layers.



• leaky ReLU should be used if you need very fast inference (it will be faster than SELU).

• ReLU is a good default activation but is often outperformed by leaky ReLU and SELU.

• tanh and logistic should probably not be used given other more modern (and better
choices).

• the logistic activation function could be used as the final layer of a classification problem
producing values between zero and one.

• softmax should be used as in the final layer of a multiple output classification problem.

Exercise 5

A momentum value too close to one will give very little change to the v̂ vector as new data
comes in. This means that momentum values close to one will produce v̂ vectors that have
low variance but also high bias. Intuitively a momentum value close to one means “fully
propagate the known information” and “ignore” new information.

This can result in the SGD algorithm overshooting the minimum and ending up “cross” the
bowl shaped error surface. Further iterations will cause the estimates to oscillate around the
minimum location. This can cause the total optimization procedure to take more time than
it would have otherwise undoing all of these oscillations.

Exercise 6

A sparse model can be produced by using

• Force small weights after training to zero. Note that this is an unprincipled technique
and will most likely result in a worse model on the training dataset (and perhaps the
testing set).

• Strong l1 regularization during training.

• The TensorFlow Model Optimization Toolkit (TF-MOT) has an API that is able to
produce sparse models.

Exercise 7

Dropout can slow training significantly but the final model can be much better than one
trained without dropout. During inference there is no slowdown as the final weights are
used (none are zeroed). In MC dropout we set training=True when making predictions
and do this B number of times. This means that on each prediction we will randomly drop



some number of neurons (set their outputs equal to zero) and get a prediction under that
configuration. We will then average the predictions from all of these B networks. This will
increase inference making it B times slower.

Exercise 8-10 (book & notebook)

The exercises at the end of this chapter only had one computational problem (deep learning
on the CIFAR10 dataset) while the Jupyter notebooks that I originally downloaded with the
book had three:

• Exercise 8: Building DNNs on the MNIST dataset

• Exercise 9: Transfer learning

• Exercise 10: Pretraining on an auxiliary task

In the notebooks that came with the book these problems were unworked. Upon further
study these were found to be the problems from the first edition of this book. There the
version of TensorFlow used was 1.x while in the second edition of this book it is TensorFlow
2.x. As it seemed like these would be valid problems to work in TensorFlow 2.x I’ve worked
them here and their solutions can be found in the ipython notebook for this chapter.

Exercise 8: Building DNNs on the MNIST dataset:

To start, I build a DNN on all of the digits as specified: using five hidden layers of 100
neurons each, He initialization, and the ELU activation function. After fitting this model
gave

5 layers 100 neurons (digits 0-9): validation accuracy= 0.940600; testing accuracy= 0.937500

Next, I split the data into the first five digits and build a model to predict their labels (I
changed the optimization procedure to Adam optimization with early stopping but kept the
underlying network the same). This gave

5 layers 100 neurons (digits 0-4): validation accuracy= 0.992572; testing accuracy= 0.993968

Note that this result is significantly better than the previous result.

Next I tried to find optimal hyperparameters for this DNN by keeping the Adam optimizer
but changing the hyper-parameters that determine how the DNN is built. Specifically I
changed the number of hidden layers, the number of neurons in each hidden layer, and
three parameters specific to the Adam optimizer (the learning rate and the parameters β1

and β2). Even though one can search over values for β1 and β2 I don’t think its very



productive. It seems that for many choices for these parameters (i.e. when they are different
from the defaults) the resulting DNN gives very poor performance. Searching over the
learning rate to use in Adams optimization does seem to provide some benefit however.
Using RandomizedSearchCV to look for optimal parameters we finally end with

{’learning_rate’: 0.0033625641252688094, ’n_hidden’: 2, ’n_neurons’: 55}

which gives an final accuracy of

validation accuracy (after hyperparameter optimization) = 0.992572; testing accuracy= 0.992995

This is again an improvement.

Next we apply batch normalization to the “default” DNN by placing BatchNormalization
layers after each Dense layer. Fitting this model gives

validation accuracy (after batch normalization)= 0.987490; testing accuracy= 0.989881

which seems slightly worse than the result we obtained after hyperparameter optimization.
We could perhaps get better results using batch normalization if we also attempted to opti-
mize our hyperparameters. Plots of the learning curves indicate that learning is quite fast
in this case (converges after only a few epochs).

Next we add dropout. From what I can tell this can be done with or without batch normal-
ization. The results under either way seem very similar

validation accuracy (with Dropout only) = 0.993354; testing accuracy= 0.992216

validation accuracy (with Dropout+BN only) = 0.988272; testing accuracy= 0.990854

From these results it seems that dropout by itself (without batch normalization) seems to
give better results.

Exercise 9: Transfer learning:

Here I load one of the models trained above (five hidden layers followed by batch normal-
ization), “clone” it, add a new final softmax layer, and turn off training for all but the
final (softmax) layer. I then trained over 10 epochs trying to recognize the digits 5-9. The
validation accuracy started poor but ended up with an accuracy of about 0.68.

I was not sure what the definition of caching but I found that if I unfroze the initial five
dense layers and trained again for another 10 epochs, the accuracy after this method was
around 0.921. We expect to achieve a much better accuracy as we now have many more
weights to learn and we are not really using “transfer learning” as much in this case. As



these results were so much better than the previous attempt (using transfer learning with a
small modification) I think what I did was not the intended result.

Instead, it seemed more relevant to the idea of “transfer learning” to make more small scale
changes to the initial model and then add only few trainable layers “on-top-of” this initial
model. In order to do this I then copied the first four layers (with batch normalization)
while dropping the last hidden layer and then again adding a new softmax output node. I
then froze all but the last softmax layer and fit for 10 epochs. This gave an accuracy of
around 0.76 on the validation data. Note that this is a slight improvement in accuracy over
just appending a softmax layer (where we obtained a validation accuracy of 0.68). This also
adds a bit of an argument to the idea that in a deep neural network the initial layers are
often feature extractor layers and the higher layers combined these features to perform the
final discrimination.

I then unfroze the top two layers and refit for another 10 epochs. The total accuracy on the
validation data was then found to be 0.87. This is significantly larger than the previous two
results and was obtained using a very small training set. Thus we have been able to improve
our accuracy while keeping much of the existing network unchanged. This seems to be more
inline with the idea of “transfer learning”.

Exercise 10: Pretraining on an auxiliary task:

Here I followed the suggested graph building instructions. Because the routine I wrote to
generate training data produced datasets with a large memory footprint I implemented a
loop where I would generate training and validation data, train the model for some number
of epochs with early stopping, and then repeat this procedure for several times in a loop
each time generating new sets of training/validation data. This seemed to be a valid way
of handling datasets that are larger than be held entirely in main memory. Once I finished
training I was able to get an accuracy of around 0.81 on the validation set and 0.89 on the
testing set.



Chapter 12 (Custom Models and Training with Tensor-

Flow)

Exercise 1

TensorFlow is an open source numerical library aimed at doing computations with tensors

or multidimensional arrays of numbers. It has been coded to run on CPU’s, GPU’s, and
special purpose hardware. It has strong support for large-scale machine learning applications
specifically building, training, and running neural networks.

Other popular deep learning libraries include PyTorch and Theano and others.

Exercise 2

TensorFlow is not a drop in replacement for numpy. TensorFlow can be specified to run
on various hardware (for improved performance) while numpy runs primarily on the CPU.
TensorFlow does offer many of the functionality that numpy offers but the design decisions
in implementing TensorFlow were made to make it more suited for the large-scale numerical
computations needed for machine learning.

There are also a few differences between the two API’s. The names of methods that do the
same operation can be different (i.e. tf.reduce sum vs. np.sum) and the results of various
operations can be somewhat different (i.e. transpose in TensorFlow vs. T in numpy).

Exercise 3

The default number of bits for variables in TensorFlow is 32 while in numpy the default
number of bits is 64. Thus the first case our integers are 32-bit while in the second they are
64-bit.

Exercise 4

Some other data structures in TensorFlow (besides Tensor) include

• tf.SparseTensor

• tf.TensorArray

• tf.RaggedTensor



• tf.string

• tf.sets

• tf.queue

Exercise 5

Writing a function is a very simple way to implement a loss function. When saving your
model you will have to manually remember any parameters that went into the function(such
as thresholds) and the function definition must be available when loading the model.

Writing a class that subclasses from the keras.losses.Loss class allows more uniform
behavior in the saving and loading of models. By implementing the get config method to
return any needed parameters subsequent call made to the from config method (when the
model is loaded) will load the correct parameters.

Exercise 6

If the mean of the desired metric over an epoch can be computed as the mean of the metric
over the batches then a function argument to the metrics call will work. If the desired metric
is a streaming metric (stateful metric) then you need to subclass the keras.metrics.Metric
class.

Exercise 7

For any custom layer one might define one could create a custom model that implemented the
same functionality. The choice of one or the other depends on how simple it is to understand
the code written. The layer class is for defining components of your model and the model
class is for defining how the layers stack together.

Exercise 8

Some architectures require more control over the fitting procedure and would require one to
write your own custom fitting routines (these would often be research models). In addition,
writing a custom fitting routine can create a better understand how the default fit method
works.



Exercise 9

It is preferable to have the components convertible to TF Functions. There are methods one
can use to include arbitrary python code but they need to be treated somewhat specially.

Exercise 10

From the section in this chapter on TF Function Rules one common theme is to “be careful
calling external libraries”.

Exercise 11

A dynamic Keras model might be helpful if one is debugging as one can use a python
debugger to debug ones code. Making a model dynamic, however, will prevent TensorFlow
from using any of its graph features which will slow down the model training and inference.

Exercise 12

Part (a): See the ipython notebook where we implement a custom layer as requested.

Part (b-c): As this layer is very similar (exactly the same) as a keras.layers.LayerNormalization
layer I show that numerically that the output from the layer I implement and the Keras layer
gives the same results. Next I build a simple NN without my layer (to get a baseline for
performance) and then a NN that uses my layer. Training the first net gives

Initial model: test loss(MSE)= 0.441, test mae= 0.473

Training the second net (the one with my custom layer) gives

MyNormalizingLayer model: test loss(MSE)= 0.412, test mae= 0.468

As the results are very similar we have an indication that adding layer normalization will
not help this problem much and that these two models give similar results on this dataset.

Exercise 13

Part (a): To implement this we can write code similar to that given in the book. There we
implement a custom training loop and compare the loss and accuracy obtained with using



the more standard Keras fit method.

On the test set the standard Keras method gives

ReLU model: test loss= 0.514, test accuracy= 0.824

while the custom fitting code gives

Custom fit model: test loss= 0.437, test accuracy= 0.858

As the results on the test set are very similar we will take that as an indication that our
custom fitting routine was implemented correctly.



Chapter 13 (Loading and Preprocessing Data with Ten-

sorFlow)

Exercise 1

Loading and preprocessing data is an important part of building machine learning models.
The tf.data API makes many of the common operations easier to perform and does not
require one to write processing code for each project.

Exercise 2

Several files would be easier to transport and process in parallel in that most processing
steps are easier to perform when working with several smaller files rather than one huge one.

Exercise 3

If loading a batch of data is much slower than training on that batch then the pipeline
would be the bottleneck. TensorBoard has some visualization tools that can help. If you
find that your GPU is not working at 100% then your input processing is likely a bottleneck.
Reworking the input processing to run in parallel threads can help speed this up.

Exercise 4

One can save any binary data to a TFRecord file as a TFRecord file is just a sequence of
binary records. Each records can/could be a protobuf and there are various reasons why that
would be advantageous.

Exercise 5

Converting ones data to the Example protobuf format (rather than a custom protobuf for-
mat) will allow you to use the tf.io.parse single example (and other) methods to parse
protobufs in that format. If it is not sufficient general for your application one can define
ones own format but there will be more work to be done.



Exercise 6

Compression helps most if the data will be read over a network connection where bandwidth
is limited. Doing it systematically will slow down some processing as the CPU will need to
spend time compressing and uncompressing. Compression helps if the transmit time of the
raw data is larger than the time required to uncompress the compressed data.

Exercise 7

The more preprocessing that is done “in the model” the slower training will be as that
preprocessing has to be done on each batch. If one can preprocess the data and remove
any needed computation from the model building part the entire training will be faster.
Of course any preprocessing done in this way will also need to be done to all new data
and separating the preprocessing and model evaluation runs the risk of introducing errors if
the preprocessing is not done to the raw data before being presented to the model. If the
preprocessing is done “in the model” then there is less risk of an error of this type.

Exercise 8

One can encode them “as is” that is using an integer (numeric) representation for the fea-
ture value. This would be the desired approach if differences in the values of two features
represented something of meaningful. If the integers represented color then this would not
be true. If they represented intensity of some process then it would be.

Another way to encode these is using one-hot encoding. This would be the valid choice if
the integers represented something that could not easily be compared like color in the above
example.

Another way to encode these would be with an embedding layer. In that case each unique
integer is mapped to a vector in R

e for some embedding dimension e and that mapping is
learned during the model fitting.

Text can be encoded in several different ways. A “bag-of-words” approach is one method,
another is by using term frequency-inverse document frequency (tf-idf) encoding, and yet
another is via embedding (currently the state of the art). For word/sentence encodings using
embedding the dimension e can be quite large and is learned during model fitting.



Chapter 14 (Deep Computer Vision Using Convolutional

Neural Networks)

Exercise 1

Modern image processing uses CNN for many reasons

• A CNN can take advantage of the spatial structure in an image where a DNN cannot
(without additional architecture design).

• A CNN can use many fewer parameters than a full connected DNN because the feature
maps have parameters that can be shared when the feature map is applied to different
regions of the image. This makes it less likely to overfit and faster to train.

• Feature maps in a CNN can “recognize” the same feature in different parts of the image
making it easier for the CNN to generalize.

Exercise 2

In the first layer, each 3×3 kernel move though a single image which has a depth of three (for
the RGB components). This means it has 3 × 3× 3 = 27 weights. To this we add one bias
weights for a total of 28 weights/parameters. The lowest layer then will have 100×28 = 2800
weights.

A single input to the middle layer is an “image” from the lowest layer which has a depth of
100 and so a 3× 3 kernel will have 3× 3× 100 = 900 weights plus a bias term for a total of
901 weights. The middle layer will then have 901× 200 = 180200 weights.

A single input to the top layer is an “image” from the middle layer will has a depth of 200
and so a 3 × 3 kernel will have 3 × 3 × 200 = 1800 weights plus a bias term for a total of
1801 weights. The top layer will then have 1801× 400 = 720400 weights.

This is a total of
2800 + 180200 + 720400 = 903400 .

The weights will take 903400× 32 bits or

903400× 32

8
= 3613600 ,

bytes or
3613600

106
= 3.6136 ,

megabytes.



As we have a stride of two the “dimensions” of the feature maps will be reduced by two at
each step. As the original image is 200× 300 the size of the feature maps at each layer is

100× 150 , 50× 75 , 25× 38 ,

where 38 ≈ 75
2
. Given the number of feature maps held at each layer the number of floats

held is
100× 100× 150 , 200× 50× 75 , 400× 25× 38 .

This is 2630000 floats. As each occupies 32 bits or 4 bytes this is 2630000(4)
106

= 10.52 megabytes.
To this we need to add the memory storage requirements of the weights computed above
This gives around 10.52 + 3.6 = 14.12 megabytes.

Note that the above is an overestimate as once we have computed a layer we can dispose of
it and can release the memory it occupied.

On a mini-batch of 50 we would multiply the above by 50.

Exercise 3

If our GPU runs out of memory then we can

• Make the mini-batchs size smaller.

• Make the kernel sizes smaller (fewer parameters to learn).

• Add some max pooling layers to introduce down-sampling.

• Reduce dimensionality by increasing the stride.

• Remove some horizontal layers.

• Use variables with smaller word sizes (i.e. single vs double precision).

• Distribute the CNN computation across multiple devices.

Exercise 4

As the two layers reduce the feature maps by the same amount there is no memory advantage
of one over the other.

A max pooling layer can provide some level of translation invariance over the image as the
maximum over a region does not change as the kernel is moved slightly around the pixel that
gives the maximum output. Another reason to prefer a max pooling layer is that it has no
parameters. This means that introducing one does not increase the number of parameters
we have to learn.



Exercise 5

Local feature normalization was a transformation first applied to the feature maps in AlexNet
to allow the most strongly signaling neuron at one depth of the output feature maps to inhibit
the activation of the neurons at the same row and column as the strongest. This forces each
layer to learn different features forcing the strong output to be localized.

Exercise 6

The book discusses the various changes as each new network was considered.

LeNet-5 used convolutions and average pooling nets to process the image followed by a fully
connected softmax layer. I believe it was the first to consider using convolutional processing
parts to process images.

AlexNet stacked convolutional layers on top of each other (rather than following each convo-
lutiona1 layer with a pooling layer) and several fully connected layers at the top to provide
lower level feature interpretation. AlexNet used dropout on some of the upper layers and
data augmentation to provide a more diverse training dataset. Finally AlexNet introduced
a “competitive normalization” step immediately after the ReLU step the goal of which was
to localize strong responses in a given feature map (and dampen them in adjacent features
maps).

GoogLeNet was much deeper than AlexNet with the introduction of inception modules which
allow the sharing of parameters. The network is somewhat complex and is described in better
detail in the text.

ResNet was a very deep network that had “skip connections” that allowed the input vector
x to be combined with several layers of processing. These skip connections enable all layers
of the network to start learning right away (as their inputs are far from zero on average).

Xception introduced the ideas of using convolutional filters that are separable (i.e. one
dimensional). These separable convolutional layers use fewer parameters and less memory
than nonseparable layers.

SENet which stands for Squeeze-and-Excitation Network. This architecture essentially ex-
tends inception and ResNet architectures. The network is somewhat complicated and is
described in more detail in the text.



Exercise 7

In a fully convolutional network we replace the dense topmost layer with another convolu-
tional layer.

Exercise 8

In semantic segmentation we seek to classify each and every pixel in an image. The main
difficulty in using CNN for semantic segmentation is that the image looses resolution as it
moves up the network flow. This is especially true with pooling layers and convolutional
layers with larger strides (greater than one). The detailed pixel information needs to be
retained somehow for use in the higher level classification performed at the topmost layers.



Chapter 15 (Processing Sequences Using RNNs and CNNs)

Exercise 1

WWX: Working here.



Chapter 16 (Natural Language Processing with RNNs

and Attention)

Exercise 1

WWX: Working here.



Chapter 17 (Autoencoders, GANs, and Diffusion Mod-

els)

Exercise 1

WWX: Working here.



Chapter 18 (Reinforcement Learning)

Exercise 1

WWX: Working here.


