
Worked Examples and Solutions for the Book:

Classification, Parameter Estimation,

and State Estimation

by F. van der Heijden, R. P. W. Duin,

D. de Ridder, and D. M. J. Tax

John L. Weatherwax∗

April 17, 2011

∗
wax@alum.mit.edu

1

Chapter 2: Detection and Classification

Exercise Solutions

Exercise 3 (sorting tomatoes)

In terms of the quality of the objects representing the three classes we are told to assume
that A > B > C. Then the expression, C(ω̂i|ωk), represents the damage or loss of value if we
pick the class ω̂i for a tomato when the true class is in fact ωk. We will use these expressions
to derive the expected cost under the distribution of classes given we have observed a certain
feature z. If we assume that we select class ω̂i after taking or receiving measurement z the
expected cost at making this decision is given by

R(ω̂i|z) = E[C(ω̂i|ωk)|z] =
K
∑

k=1

C(ω̂i|ωk)P (ωk|z) . (1)

In the given hypothesis for this problem we are assuming that the cost of mistaking a class k
tomato as a class i tomato where i is a lesser class (i.e. assigning a class B tomato to a class
C tomato) will result in a given loss say l1. At the same time assigning a class k tomato
to the class i where i is a greater class (i.e. assigning a class B tomato to the class A) will
result in a greater loss, say l2, than previously. Thus we conclude that l2 > l1. With this
formulation our cost matrix is given by something that looks like

C(ω̂i|ωk) =

0 l2 l2
l1 0 l2
l1 l1 0

 .

Here we have assumed the “loss” due to correct classification is zero. The extra information
(assumed here to be zero) is the actual reward (negative cost) received when we perform
correct classification.

Exercise 4 (changing the prior)

Bayesian based classification, says to select the class that has the minimum risk associated
with that decision, where the risk associated with selecting class ω̂i, given an measurement
z, is given by

R(ω̂i|z) =

K
∑

k=1

C(ω̂i|ωk)P (ωk|z)

=
1

p(z)

K
∑

k=1

C(ω̂i|ωk)p(z|ωk)P (ωk) . (2)

Here C(ω̂i|ωk) is the cost or loss associated with the classification of an object from the true
class ωk as an object from the class ωi. Since the value of p(z) is the same for all classes once

the measurement is taken its value makes no difference in the selection of the minimal risk
class and thus does not need to be considered when performing classification. In the same
way, if we estimate the prior probabilities of each class from a set of training samples as

P (ωk) ≈
Nk

N
.

Here Nk is the number of observed object from class k and N is the total number of objects
from all classes. Then the optimal Bayesian classification can still be made by using this
approximation in Equation 2 by selecting the class i that has the smallest value for

K
∑

k=1

C(ω̂i|ωk)p(z|ωk)
Nk

N
,

or since N is the same for all classes this is equivalent to selecting the class i that has the
smallest value for

K
∑

k=1

C(ω̂i|ωk)p(z|ωk)Nk . (3)

With this expression we see how to answer the given question. If the number of objects in
the scrap class was to double, then Nscrap → 2Nscrap and in order for the decision region to
not change we require Equation 3 (with possibly modified cost functions C̃(ω̂i|ωk)) evaluate
to the same numerical value for each i. This implies that that the new set of cost functions
C̃(ω̂i|ωk) be the same for all classes except when the summation index k corresponds to the
scrap class. In that case we need to take new costs given by

C̃(ω̂i|ωscrap) =
1

2
C(ω̂i|ωscrap) ,

in order that the fact that we have doubled the number of scrap objects not influence our
classification decision. Thus we make the scrap column in the entire cost matrix equal to
one half of the cost of the scrap column in the old cost matrix.

Exercise 5 (inputs for Bayesian classification)

To compute a Bayes classification one needs three things

• A representation of how likely each object/class is given no other information. Math-
ematically this is represented by a prior probability, P (ωk), for each class.

• A representation for how the observed features are related to the given classes. Math-
ematically this is given by the likelihood functions p(z|ωk).

• A cost associated with the action of deciding an object is a member of class i when
in-fact it is a member of class k. Mathematically this is given by a cost matrix C(ω̂i|ωk).

The first two items above would be estimated from past examples of the objects in each class,
while the costs have to be determined by the preferences of the users of the classification
algorithm.

Exercise 6 (decision regions for normally distributed features)

For any cost matrix C(ω̂i|ω) the Bayes’ decision boundary is given by selecting the conditional
risk that is smallest, where the expression for the conditional risk, R(ω̂i|x), is defined in
Equation 2. That is our classification rule is

classify z in ωi if R(ω̂i|z) < R(ω̂j|x) ∀j 6= i .

Using Bayes’ rule to express P (ωi|z) in the definition of the conditional risk in terms of p(z|ωi)
we can transform this rule into the following decision rule. We classify z as a member of ωi

if
K
∑

k=1

C(ω̂i|ωk)p(z|ωk)P (ωk) <

K
∑

k=1

C(ω̂i|ωk)p(z|ωk)P (ωk) ∀j 6= i .

For any given functional form for the conditional density p(z|ωk) (including normal) the
above expression can be evaluated and a classification decision made.

Exercise 7 (equal covariance matrices)

A feature that is a physical trait like the heights or weights of animals may be approximately
normal and have approximately the same “spread” of values around its mean depending on
whether one is considering males or females of the species. This equivalent spread implies
equivalent class covariances.

Exercise 8 (some specific ROC curves)

The classical ROC analysis for a given detection problem is a plot of the probability of a
false alarm Pfa = P (ω̂2|ω1) as the dependent variable and the probability of detection Pd =
P (ω̂2|ω2) as the independent variable. Here we are assuming that the class ω1 corresponds
to “noise” and is uninteresting while the class ω2 corresponds to an object of interest we
would like to detect. In the case when the two distributions of x have no overlap we expect
Pfa ≈ 0 and Pd ≈ 1 because we will never make a mistake when we perform the classification
problem. Thus in this case the ROC curve becomes more of a point (rather than a curve)
and we have

(Pfa, Pd) = (0, 1) .

This result can also be seen from the explicit expressions derived in the text for Pfa and Pd

since in the no overlap case the discriminant expression d defined as

d2 = (µ1 − µ2)
TC−1(µ1 − µ2) ,

is very large as there is no overlap so µ1 ≪ µ2. Thus we see that

Pfa =
1

2
+

1

2
erf

(

T − 1
2
d2

d
√
2

)

→ 1

2
+

1

2
erf(−∞) =

1

2
+

1

2
(−1) = 0

Pmiss =
1

2
− 1

2
erf

(

T + 1
2
d2

d
√
2

)

→ 1

2
− 1

2
erf(+∞) =

1

2
− 1

2
= 0 so

Pd = 1− Pmiss = 1 .

If the two distributions have zero overlap then d = 0 since zero since µ1 = µ2 and we
have no information as to the class from the measurement z and the class priors determine
everything. Thus if P (ω1) > P (ω2) we should aways pick the first class and if the opposite

inequality holds we would always pick the second class. Since T is defined as log(P (ω2)
P (ω1)

) in
terms of T , if T < 0 we would always pick class “one” while if T > 0 we would always pick
class “two”. Continuing this line of reasoning, if T < 0 we are always picking class one so
our probability of false alarm is zero (since we never declare class two), while our probability
of detection is always zero (for the same reason). If T > 0 as we are always selecting class
two our probability of false alarm is one and our probability of detection is also one. We can
verify these results using the expressions for Pfa(T) and Pd(T) given in the text. We have

Pfa(T) =

{

1
2
+ 1

2
erf(−∞)

1
2
+ 1

2
erf(+∞)

=

{

1
2
+ 1

2
(−1) = 0 when T < 0

1
2
+ 1

2
(1) = 1 when T > 0

Pd =

{

1
2
+ 1

2
erf(−∞)

1
2
+ 1

2
erf(+∞)

=

{

1
2
+ 1

2
(−1) = 0 when T < 0

1
2
+ 1

2
= 1 when T > 0

,

which verify the arguments given above.

Exercise 9 (changes to the ROC curve depending on the priors)

The ROC curve of a detector is a plot of Pd as a function Pfa as we very the detection thresh-
old T . In the case of Gaussian measurement vectors with equal class conditional covariance
matrices (denoted C) and means µ1 and µ2 one can derive the following expressions for Pfa

and Pd

Pfa =
1

2
+

1

2
erf

(

T − 1
2
d2

d
√
2

)

Pd = 1− Pmiss

=
1

2
+

1

2
erf

(

T + 1
2
d2

d
√
2

)

,

where d2 = (µ1−µ2)
tC−1(µ1−µ2), is the Mahalanobis distance between the two means, and

T is the threshold defined in terms of the class priors as

T = log

(

P (ω2)

P (ω1)

)

= log

(

1− P (ω1)

P (ω2)

)

= log

(

1

P (ω1)
− 1

)

. (4)

In general one plots the probability of false alarm and detection as a function of this threshold
T . When we do this as we change T we sweep over the points on the ROC curve. For given
prior probabilities P (ω1) a specific point on the ROC curve (corresponding to the computed
T value) is determined. If we consider how the value of T changes as we change the prior
probabilities we see that as a function of P (ω1) since 0 < P (ω1) < 1, that when P (ω1) ∼ 0
we have

T = log

(

1

P (ω1)
− 1

)

∼ +∞ .

So that Pfa ∼ 1 and Pd ∼ 1, which is to be expected since when P (ω1) ∼ 0 we will always
classify as class two. In the case when P (ω1) ∼ 1 we have

T = log

(

1

P (ω1)
− 1

)

∼ −∞ .

So that Pfa ∼ 0 and Pd ∼ 0, which is to be expected since when P (ω1) ∼ 1 we will always
classify as class one.

Exercise 10 (the class conditional probabilities from the ROC curve)

For this problem we assume that we are given the ROC curve (Pfa(T), Pd(T)) and we will
compute the class conditional distribution of the log-likelihood ratio Λ i.e. pΛ(Λ|ωi) for both
classes i = 1, 2 from it. Here Λ is the log-likelihood ratio given by

Λ = log

(

p(z|ω1)

p(z|ω2)

)

.

Recalling the definitions of Pfa and Pd in terms of Λ we have

Pfa(T) = P (Λ(z) < T |ω1) =

∫ T

−∞

pΛ(Λ|ω1)dΛ

Pmiss(T) = P (Λ(z) > T |ω2) =

∫ ∞

T

pΛ(Λ|ω2)dΛ

Pd(T) = 1− Pmiss(T) .

Taking the derivatives of Pfa(T) and Pd(T) with respect to T we find

dPfa

dT
= pΛ(T |ω1)

dPd

dT
= −pΛ(T |ω2) = −(1− pΛ(T |ω1)) .

Dividing these two expressions we find

dPd

dPfa
= −(1− pΛ(T |ω1))

pΛ(T |ω1)
= 1− 1

pΛ(T |ω1)
,

so solving for the conditional density function pΛ(T |ω1) we find

pΛ(T |ω1) =
1

1− dPd

dPfa

, (5)

implying that pΛ(T |ω2) is given by a similar expression

pΛ(T |ω2) = 1− pΛ(T |ω1) =

dPd

dPfa

dPd

dPfa
− 1

. (6)

Both of these are true provided that dPd

dPfa
6= 1. Thus given the ROC curve we can compute

its slope dPd

dPfa
and use Equations 5 and 6 to derive the desired class conditional densities.

Chapter 3: Parameter Estimation

Notes on the Text

An estimator of the backscattering coefficient

We are told to assume that for fixed x the fraction
Nprobesz

x
is a Gamma distribution with

parameter Nprobes. Then if we define u =
Nprobesz

x
, the probability of z given x is given by the

transformation of probability distributions rule

pZ(z|x) = pU(u(z)|x)
du(z)

dz

= gamma pdf

(

Nprobesz

x
;Nprobes

)

Nprobes

x
,

which is equation 3.5 in the book.

the MAP estimator

Our cost function in this case is given by

C(x̂|x) =
{

1 ||x̂− x||1 > ∆
0 ||x̂− x||1 < ∆

(7)

Our conditional risk under this cost function is given by

R(x̂|z) =

∫

X

C(x̂|x)p(x|z)dx

=

∫

X

1p(x|z)dx−
∫

||x̂−x||1<∆

1p(x|z)dx

≈ 1− p(x̂|z)∆ as ∆ → 0 ,

which is the expression given in the book.

Exercise Solutions

Exercise 1 (a linear MMSE estimator)

If we assume a form for our estimator given by x̂lMMSE(z) = Kz, with K an unspecified (as
of yet) matrix. We can begin by computing the overall risk R in terms of the conditional
risk R(x̂|z) using such a decision rule as

R =

∫

Z

R(x̂(z)|z)p(z)dz .

Using the definition of the conditional risk as the expectation of a mean square cost C as
R(x̂|z) = E[C(x̂|x)|z] =

∫

X
C(x̂|x)p(x|z)dx, we obtain

R =

∫

Z

∫

X

C(x̂|x)p(x|z)p(z)dxdz

=

∫

Z

∫

X

(Kz − x)T (Kz − x)p(x|z)p(z)dxdz .

We now want to minimize this expression with respect to the parameter matrix K. Expand-
ing out the quadratic term in the integrand we have

(Kz − x)T (Kz − x) = zTKTKz − zTKTx− xTKz + xTx .

So that our overall risk R becomes

R =

∫

Z

∫

X

(zTKTKz − zTKTx− xTKz + xTx)p(x|z)p(z)dxdz .

To minimize this expression with respect toK we take theK derivative of it, set the resulting
expression equal to zero, and solve for K. To do this recall the matrix derivative identity
that for matrices X and C and vectors a and b we have

∂(aTXTCXb)

∂X
= CTXabT + CXbaT . (8)

From which we derive

∂(zTKTKz)

∂K
= KzzT +KzzT = 2KzzT .

Next recalling the identities

∂(aTXb)

∂X
= abT and

∂(aTXT b)

∂X
= baT , (9)

we have that
∂(xTKz)

∂K
= xzT and

∂(zTKTx)

∂K
= xzT .

Thus we find the expression ∂R
∂K

= 0 becomes

∂R

∂K
=

∫

Z

∫

X

(2KzzT − xzT − xzT)p(x, z)dxdz = 0 ,

or

K

∫

Z

∫

X

zzT p(x, z)dxdz =

∫

Z

∫

X

xzT p(x, z)dxdz ,

or

K

∫

Z

zzT p(z)dz = E[xzT]

or
KE[zzT] = E[xzT] ,

so that K is given by K = E[xzT]E[zzT]−1. Thus the optimal linear MMSE estimator is
given by

x̂lMMSE(z) = E[xzT]E[zzT]−1z . (10)

As an aside we note that we can prove the stated matrix identities used in this problem
and given in Equations 8 and 9 by considering the Einstein notation for the inner products

involved. To demonstrate, consider the identity ∂(zTKTx)
∂K

= xzT . In Einstein notation we
have the function we want to take the derivative of given by

zi(K
T)ijxj = ziKjixj .

From which we see that the derivative of this expression becomes

∂(zTKTx)

∂Kij
= xizj = (xzT)ij ,

the ij-th component of the product xzT proving the stated identity.

Exercise 2 (non-singular covariance matrices)

If Cx is not invertible then some of the elements of x must be linearly dependent on the
others. That is given some subset of the elements of x the remaining elements can be
predicted exactly from them. This is assuming that the reason for Cx being singular is not
because we simply don’t have enough data to estimate it properly. The same comments hold
for the covariance matrix Cv. If this situation holds (in that we have a singular covariance
matrix) we must reduce the dimension of x and v until we are considering a subset of variables
that is linearly independent. Principal component analysis will do this for you.

Exercise 3 (a proof that p(x|z) is Gaussian)

In the Gaussian case with linear sensors we will assume that x is normal with mean µx and
covariance Cx and the measurement z = Hx + v, where v is a Gaussian random variable
with zero mean and a covariance given by Cv. To evaluate the conditional density p(x|z) we
will use Bayes’ rule

p(x|z) = p(z|x)p(x)
p(z)

.

From the given assumptions on x and z we can conclude that

p(z|x) = N (z;Hx,Cv)

p(x) = N (x;µx, Cx)

p(z) = N (z;Hµx, HCxH
T + Cv) ,

as stated in the books equation 3.32 and derived in Exercise 4 below. In this case then the
functional form for the p(x|z) from Bayes’ rule is given by

1
(2π)N/2|Cv|1/2

exp
{

−1
2
(z −Hx)TC−1

v (z −Hx)
}

1
(2π)M/2|Cx|1/2

exp
{

−1
2
(x− µx)

TC−1
x (x− µx)

}

1
(2π)N/2|HCxHT+Cv|1/2

exp
{

−1
2
(z −Hµx)T (HCxHT + Cv)−1(z −Hµx)

} ,

or simplifying this expression some

p(x|z) =

(

1

(2π)M/2

)(|HCxH
T + Cv|1/2

|Cv|1/2|Cx|1/2
)

e−
1
2
L with

L = (z −Hx)TC−1
v (z −Hx) + (x− µx)

TC−1
x (x− µx)

− (z −Hµx)
T (HCxH

T + Cv)
−1(z −Hµx)

The argument of this exponential L (for log-likelihood) when we expand the quadratics to
group by “powers” of the variable x becomes

L = zTC−1
v z − zTC−1

v Hx− (Hx)TC−1
v z + (Hx)TC−1

v Hx (11)

+ xTC−1
x x− xTC−1

x µx − µT
xC

−1
x x+ µT

xC
−1
x µx

− (z −Hµz)
T (HCxH

T + Cv)
−1(z −Hµx)

= xTHTC−1
v Hx+ xTC−1

x x− 2xTHTC−1
v z − 2xTC−1

x µx (12)

+ zTC−1
v z + µT

xC
−1
x µx

− (z −Hµz)
T (HCxH

T + Cv)
−1(z −Hµx)

= xT (HTC−1
v H + C−1

x)x− 2xT (HTC−1
v z + C−1

x µx) (13)

+ zTC−1
v z + µT

xC
−1
x µx − (z −Hµz)

T (HCxH
T + Cv)

−1(z −Hµx) .

Where in going from Equation 11 to 12 are grouping by “powers” of x and in going from
Equation 12 to 13 we are combining these powers. We now introduce an as yet unknown
vector m such that the above can be written as

L = (x−m)T (HTC−1
v H + C−1

x)(x−m)

+ 2xT (HTC−1
v H + C−1

x)m−mT (HTC−1
v H + C−1

x)m

− 2xT (HTC−1
v z + C−1

x µx)

+ zTC−1
v z + µT

xC
−1
x µx − (z −Hµz)

T (HCxH
T + Cv)

−1(z −Hµx) .

We can make the terms linear in x vanish if we take m such that

(HTC−1
v H + C−1

x)m = HTC−1
v z + C−1

x µx ,

or
m = (HTC−1

v H + C−1
x)−1(HTC−1

v z + C−1
x µx) . (14)

so that the above becomes (with m replaced only in the mT (·)m term)

L = (x−m)T (HTC−1
v H + C−1

x)(x−m)

− (HTC−1
v z + C−1

x µx)
T (HTC−1

v H + C−1
x)−1(HTC−1

v z + C−1
x µx)

+ zTC−1
v z + µT

xC
−1
x µx − (z −Hµz)

T (HCxH
T + Cv)

−1(z −Hµx) .

To further simplify this expression we recall the matrix identity given by Equation 21. Defin-
ing the matrix Cx|z as

Cx|z ≡ (C−1
x +HTC−1

v H)−1 , (15)

we will use Equation 21 to write (HCxH
T + Cv)

−1 in terms of Cx|z. We find

(Cv +HCxH
T)−1 = C−1

v − C−1
v H(HTC−1

v H + C−1
x)−1HTC−1

v (16)

= C−1
v − C−1

v HCx|zH
TC−1

v . (17)

So we now have

L = (x−m)TC−1
x|z(x−m)

− (HTC−1
v z + C−1

x µx)
TCx|z(H

TC−1
v z + C−1

x µx)

+ zTC−1
v z + µT

xC
−1
x µx

− (z −Hµx)
T
[

C−1
v − C−1

v HCx|zH
TC−1

v

]

(z −Hµx) .

expanding everything we find that the non quadratic parts of the above become

− zTC−1
v HCx|zH

TC−1
v z − 2zTC−1

v HCx|zC
−1
x µx − µT

xC
−1
x Cx|zC

−1
x µx

+ zTC−1
v z + µT

xC
−1
x µx

− zTC−1
v z + 2zTC−1

v Hµx − µT
xH

TC−1
v Hµx

+ zTC−1
v HCx|zH

TC−1
v z − zTC−1

v HCx|zH
TC−1

v Hµx − µT
xH

TC−1
v HCx|zH

TC−1
v z

+ µT
xH

TC−1
v HCx|zH

TC−1
v Hµx

= −2zT
(

C−1
v HCx|zC

−1
x − C−1

v H + C−1
v HCx|zH

TC−1
v H

)

µx

− µT
x

(

C−1
x Cx|zC

−1
x − C−1

x +HTC−1
v H −HTC−1

v HCx|zH
TC−1

v H
)

µx .

Now consider the matrix between zT and µx or C
−1
v HCx|zC

−1
x −C−1

v H+C−1
v HCx|zH

TC−1
v H .

We see that it can be written by some simple factoring as

C−1
v H(Cx|zC

−1
x − I + Cx|zH

TC−1
v H) = C−1

v H(Cx|z(C
−1
x +HTC−1

v H)− I) = 0 .

Now consider the matrix between µx and µx which we define to be B. That is

B ≡ C−1
x Cx|zC

−1
x − C−1

x +HTC−1
v H −HTC−1

v HCx|zH
TC−1

v H .

Under some simple factorizations we can simplify this considerably

B = C−1
x (Cx|zC

−1
x − I) +HTC−1

v H −HTC−1
v HCx|zH

TC−1
v H

= C−1
x Cx|z(C

−1
x − C−1

x|z) +HTC−1
v H −HTC−1

v HCx|zH
TC−1

v H

= C−1
x Cx|z(C

−1
x − C−1

x −HTC−1
v H) +HTC−1

v H −HTC−1
v HCx|zH

TC−1
v H

= −C−1
x Cx|zH

TC−1
v H +HTC−1

v H −HTC−1
v HCx|zH

TC−1
v H

= (−C−1
x Cx|z + I −HTC−1

v HCx|z)H
TC−1

v H

= (−C−1
x −HTC−1

v H + C−1
x|z)Cx|zH

TC−1
v H = 0 .

Thus we have shown that with the definitions of m and Cx|z the density p(x|z) is given by

p(x|z) =
(

1

(2π)M/2

)(|HCxH
T + Cv|1/2

|Cv|1/2|Cx|1/2
)

e
− 1

2
(x−m)TC−1

x|z
(x−m)

.

Since the only way this function can normalize to one when integrated over x and represent
a valid probability density function is if the coefficient in front of the exponential satisfies

|HCxH
T + Cv|1/2

|Cv|1/2|Cx|1/2
=

1

|Cx|z|1/2
. (18)

This is trivially shown if we use the following determinant identity

|A+XBXT | = |B||A||B−1 +XTA−1X| . (19)

Using this we have

|Cv +HCxH
T | = |Cv||Cx||C−1

x +HTC−1
v H| = |Cv||Cx||C−1

x|z| ,
which proves Equation 18 and completes the derivation of the fact that p(x|z) is Gaussian

with a mean m given by Equation 14 and a covariance matrix Cx|z given by Equation 15.

Exercise 4 (covariance identities)

We consider a linear measurement model for z given by

z = Hx+ v .

Here x is a random variable with mean µx with covariance matrix Cx, and v a random
variable with zero mean and a covariance matrix given by Cv that is uncorrelated from x.
By linearity of the expectation we directly have the mean of z given by

µz = Hµx .

From the definition of the covariance we can compute the covariance matrix for z in terms
of that of x and v. We find

Cz = E[(z − µz)(z − µz)
T]

= E[(Hx+ v −Hµx)(Hx+ v −Hµx)
T]

= E[(H(x− µx) + v)(H(x− µx) + v)T]

= E[(H(x− µx) + v)((x− µx)
THT + vT)]

= E[H(x− µx)(x− µx)
THT] + E[H(x− µx)v

T] + E[v(x− µx)
THT] + E[vvT] .

Now since x and v are assumed uncorrelated the two cross terms vanish. For example

E[H(x− µx)v
T] = HE[x− µx]E[vT] = 0 .

We are left with
Cz = HCxH

T + Cv ,

the desired result.

Using the definitions of the cross covariances Cxz and Czx we find

Cxz = E[(x− µx)(z − µz)
T]

= E[(x− µx)(Hx− v −Hµz)
T]

= E[(x− µx)(x− µx)
T]HT − E[(x− µx)v

T]

= CxH
T ,

and

Czx = E[(z − µz)(x− µx)
T]

= E[(Hx− v −Hµz)(x− µx)
T]

= E[H(x− µx)(x− µx)
T] + E[v(x− µx)

T]

= HCx ,

as claimed.

Exercise 5 (the equivalence of the Kalman form)

From Equation 3.20 in the book we have that

x̂MMSE(z) = (HTC−1
v H + C−1

x)−1(HTC−1
v z + C−1

x µx) . (20)

Recalling the matrix inversion lemma given by

(A−1 +HTB−1H)−1 = A−AHT (HAHT +B)−1HA , (21)

we see that on the matrix Ce defined as (HTC−1
v H + C−1

x)−1 we obtain

Ce = (C−1
x +HTC−1

v H)−1 (22)

= Cx − CxH
T (HCxH

T + Cv)
−1HCx . (23)

Using this the expression in Equation 20 and expanding we obtain

x̂MMSE(z) =
[

Cx − CxH
T (HCxH

T + Cv)
−1HCx

]

(HTC−1
v z + C−1

x µx)

= µx + CxH
TC−1

v z

− CxH
T (HCxH

T + Cv)
−1HCxH

TC−1
v z

− CxH
T (HCxH

T + Cv)
−1Hµx

= µx + CxH
T (HCxH

T + Cv)
−1(HCxH

T + Cv)C
−1
v z

− CxH
T (HCxH

T + Cv)
−1HCxH

TC−1
v z

− CxH
T (HCxH

T + Cv)
−1Hµx

= µx + CxH
T (HCxH

T + Cv)
−1

×
[

HCxH
TC−1

v z + z −HCxH
TC−1

v z −Hµx

]

= µx + CxH
T (HCxH

T + Cv)
−1(z −Hµx) ,

which is the expression for x̂MMSE(z) as we were to show.

Exercise 7 (the unbiased MMSE is indeed unbiased)

The unbiased linear MMSE estimator is given by

x̂ulMMSE(z) = Kz + a ,

with K = CxzC
−1
z and a = µx −Kµz. To show that this estimator is unbiased we take the

expectation of x̂ulMMSE(z). We find

E[x̂ulMMSE(z)] = KE[z] + a

= Kµz + µx −Kµz = µx ,

as required for an unbiased estimator.

Exercise 8 (ML estimation of a binomial distribution)

We are told that z is distributed as a binomial random variable with parameters (x,M).
This means that the probability we observe the value of z after M trials is given by

p(z|x) =
(

M
z

)

xz(1− x)M−z for 0 ≤ z ≤ M .

We desire to estimate the probability of success, x, from the measurement z.

Part (a): To compute the maximum likelihood (ML) estimate of x we compute

x̂ML(z) = argmaxxp(z|x) = argmaxx

(

M
z

)

xz(1− x)M−z .

To compute this maximum we can take the derivative of p(z|x) with respect to x, set the
resulting expression equal to zero and solve for x. We find the derivative equal to

(

M
z

)

(

zxz−1(1− x)M−z + xz(M − z)(1 − x)M−z−1(−1)
)

= 0 .

Dividing by xz−1(1− x)M−z−1 to get

z(1 − x) + x(M − z)(−1) = 0 ,

and solving for x gives or ML estimate of

x̂ML(z) =
z

M
. (24)

Part (b): Lets compute the bias and variance of this estimate of x. The bias, b(x), is
defined as

b(x) = E[x̂− x|x] = E[x̂|x]− x

= E
[z

M
|x
]

− x =
1

M
E[z|x]− x .

Now since z is drawn from a binomial random variable with parameters (M,x), the expecta-
tion of z is xM , from which we see that the above equals zero and our estimator is unbiased.
To study the conditional variance of our error (defined as e = x̂− x) consider

σ2
e(x) = E[(e−E[e])2|x] = E[e2|x] = E[(x̂− x)2|x]

= E[

(

1

M
z − x

)2

|x] = 1

M2
E[(z −Mx)2|x]

=
1

M2
(Mx(1 − x)) =

x(1− x)

M
. (25)

In the above we have used the result that the variance of a binomial random variable with
parameters (M,x) is Mx(1 − x). In developing a ML estimator x is not considered random
and as such the above expression is the desired variance of our estimator.

To work Exercise 9 below, where we assume that x is a uniform random variable between
0 < x < 1 we now compute the total variance of our estimator, Ce, we recall

Ce = Me − bbT = Me = E[Me(x)]

= E[b(x)b(x)T + Ce(x)] = E[Ce(x)]

= E[
x(1− x)

M
] =

1

M
E[x(1 − x)] ,

where the expectation is taken over the randomness in x. Under the uniform random variable
assumption for x, the above expression for, Ce, becomes

1

M
E[x(1− x)] =

1

M

∫ 1

0

x(1 − x)dx =
1

6M
. (26)

Exercise 9 (MMSE and MAP estimation of a binomial distribution)

For this exercise We are told that the prior distribution on x is uniform between 0 and 1.
That is p(x) = 1 when 0 < x < 1 and is 0 otherwise. After observing the measurement z
(the number of success in M trials) we will have a posteriori estimate of x given by Bayes’
rule

p(x|z) = p(z|x)p(x)
p(z)

=
p(z|x)p(x)

∫

p(z|x)p(x)dx .

From the information provided p(z) can be calculated as

p(z) =

∫

p(z|x)p(x)dx =

∫ 1

0

(

M
z

)

xz(1− x)M−z1dx

=

(

M
z

)
∫ 1

0

xz(1− x)M−zdx .

This will be evaluated with the help of the Beta function defined as

B(p, q) =

∫ 1

0

vp−1(1− v)q−1dv , (27)

which can be evaluated when p and q have positive real parts to

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
, (28)

where Γ(p) is the Gamma function defined as

Γ(z) =

∫ ∞

0

tz−1e−tdt . (29)

When p and q are positive integers the above expression for the Gamma functions simplify
and we obtain

∫ 1

0

vp−1(1− v)q−1dv = B(p, q) =
(p− 1)!(q − 1)!

(p+ q − 1)!
. (30)

In words this states that to evaluate the integral on the left we take the factorials of the
powers (p − 1 and q − 1) of v directly in computing the numerator and then divide by the
factorial of the sum of the two powers of v (plus one). With this background, our problem
then gives for p(z) the following expression

p(z) =

(

M
z

)

B(z + 1,M − z + 1) =

(

M
z

)(

Γ(z + 1)Γ(M − z + 1)

Γ(z + 1 +M − z + 1)

)

=

(

M !

(M − z)!z!

)(

z!(M − z)!

(M + 1)!

)

=
1

M + 1
,

which in words states that the probability we obtain any measurement z, for z ∈ 0, 1, · · · ,M
is equally likely. Thus we have shown that

p(x|z) =

(M + 1)

(

M
z

)

xz(1− x)M−z 0 ≤ x ≤ 1

0 otherwise
(31)

is the posteriori density p(x|z) of x.

The MMSE estimator is given by the expectation of x under this density so x̂MMSE(z) =
E[x|z], and since we have an explicit expression for the density p(x|z) we can compute this
directly. We find

E[x|z] =

∫ 1

0

xp(x|z)dx = (M + 1)

(

M
z

)
∫ 1

0

xz+1(1− x)M−zdx

= (M + 1)

(

M
z

)

(z + 1)!(M − z)!

(z + 1 +M − z + 1)!

=
z + 1

M + 2
. (32)

The MAP estimator x̂MAP for x is given by

x̂MAP = argmaxxp(x|z) = argmaxxp(z|x)p(x) .

Again, since we have an explicit representation for p(x|z) we can find the maximum explicitly
by taking the derivative of the expression p(z|x)p(x) with respect to x, set the result equal to
zero and solve for x. When we do this find the same solution as in Exercise 8 of x̂MAP(z) =

z
M
.

From Exercise 8 we know that x̂MAP(z) is unbiased and has a variance given by Equation 26.

For x̂MMSE(z) we have a conditional bias given by

b(x) = E[x̂− x|x] = E[x̂MMSE(z)|x]− x

= E

[

z + 1

M + 2
|x
]

− x

=
1

M + 2
(E [z|x] + 1)− x

=
1

M + 2
(Mx + 1)− x

=
1− 2x

M + 2
.

The total bias b is given by integrating this expression with respect to p(x) i.e.

b =

∫

b(x)p(x)dx =

∫ 1

0

(

1− 2x

M + 2

)

dx

=
1

M − 2
− 2

M − 1

(

x2

2

∣

∣

∣

∣

1

0

=
1

M − 2
− 1

M − 1
= 0 ,

showing that this estimator x̂MMSE is unbiased.

The conditional variance of the error in our MMSE estimator is given by

Ce(x) = E[(e− E[e])2|x] = E[(x̂(z)− (x+ b(x)))2|x]

= E

[

(

z + 1

M + 2
− x− 1− 2x

M + 2

)2

|x
]

=

[

(

z

M + 2
− x(M + 2)

M + 2
+

2x

M + 2

)2

|x
]

=
1

(M + 2)2
E[(z − xM)2|x]

=
1

(M + 2)2
(Mx(1 − x)) ,

using the known expression for the variance of a binomial random variable. Thus

Me(x) = b(x)2 + Ce(x) =
(1− 2x)2

(M + 2)2
+

Mx(1 − x)

(M + 2)2
.

So we derive

Me =

∫

Mc(x)p(x)dx =
1

(M + 2)2

[
∫ 1

0

((1− 2x)2 +Mx(1 − x))dx

]

=
1

6(M + 2)
,

for the expression for the total variance of the MMSE estimator for x.

Exercise 10 (estimators for a Poisson distribution)

Part (a): Given the number of counts z is distributed as a Poisson random variable with
rate λ we have

p(z|λ) = λze−λ

z!
for z = 0, 1, 2, · · · ,

so that a maximum likelihood estimated for λ after having observed z counts is

λ̂ML(z) = argmaxλp(z|λ) = argmaxλ

(

λze−λ

z!

)

.

To find this maximum we take the derivative of p(z|λ) with respect to λ, set the resulting
expression equal to zero, and solve for λ. Taking the derivative we find

zλz−1e−λ + λz(−e−λ) = 0 ,

when we multiply by λ−(z−1)eλ and solve for λ we get

λ̂ML = z , (33)

The conditional bias b(λ) for the ML estimator is given by

b(λ) = E[λ̂ML(z)− λ|λ] = E[z − λ|λ] = 0 ,

since the expectation of a Poisson random variable with parameter λ is given by λ. Thus we
see that the ML estimator will be absolutely unbiased. To compute the variance of the ML
estimator we first compute the conditional error variance Ce(λ) as

Ce(λ) = E[(e− E[e])2|λ]
= E[(λ̂ML(z)− λ)2|λ] = E[(z − λ)2|λ] = λ ,

using the fact that the variance of a Poisson random variable with rate λ is λ. Then Me(λ) =
b(λ)2 + Ce(λ) = Ce(λ) as b(λ) is zero. The total variance, Ce, of our estimator λ̂ML is given
by

Ce = Me − bbT = Me =

∫

Me(λ)p(λ)dλ

=

∫

λp(λ)dλ =
1

L

∫ L

0

λdλ =
L

2
.

Part (b): The MAP estimation for λ is given by

λ̂MAP(z) = argmaxλp(λ|z) = argmaxλ
p(z|λ)p(λ)

p(z)

= argmaxλ

(

λze−λ

z!

1

L

)

,

which will have the same argument for its maximum as the ML estimate, but truncated at
a finite value of L. That is

λ̂MAP(z) =

{

z z ≤ L
L z > L

. (34)

From this expression, the conditional bias b(λ) for the MAP estimator is given by

b(λ) = E[λ̂MAP(z)− λ|λ] = E[λ̂MAP(z)|λ]− λ

=
L
∑

z=0

λ̂MAP(z)P{Z = z} +
∞
∑

z=L+1

λ̂MAP(z)P{Z = z} − λ

=
L
∑

z=0

zP{Z = z}+
∞
∑

z=L+1

LP{Z = z} − λ

=
∞
∑

z=0

zP{Z = z} −
∞
∑

z=L+1

zP{Z = z} +
∞
∑

z=L+1

LP{Z = z} − λ

= −
∞
∑

z=L+1

(z − L)P{Z = z} ,

Since E[z|λ] = ∑∞
z=0 zP{Z = z} = λ. Now in this later sum z > L so z − L > 0 showing

that

−
∞
∑

z=L+1

(z − L)P{Z = z} < 0 ,

and never zero. Note that this sum does decrease in magnitude as we take the value of L
larger. Then the expression for b(λ) is never zero, and as p(λ) > 0 for all λ the total bias of
the MAP estimator b =

∫

b(λ)p(λ)dλ is a non-zero negative number, which shows that the
ML estimator is biased.

Chapter 4: (State Estimation)

Notes on the Text

Linear-Gaussian state space models

For the given linear-Gaussian discrete system

x(i+ 1) = F (i)x(i) + L(i)u(i) + w(i) , (35)

The expectation of x(i) can be computed directly as L(i) and u(i) are deterministic as

E[x(i+ 1)] = F (i)E[x(i)] + L(i)u(i) . (36)

Then computing Cx(i+ 1) directly we find

Cx(i+ 1) = E
[

(x(i+ 1)− E[x(i+ 1)])(x(i+ 1)− E[x(i+ 1)])T
]

= E
[

(F (i)(x(i)− E[x(i)]) + w(i))(F (i)(x(i)−E[x(i)]) + w(i))T
]

= E
[

(F (i)(x(i)− E[x(i)]) + w(i))((x(i)− E[x(i)])TF (i)T + w(i)T)
]

= E
[

F (i)(x(i)− E[x(i)])(x(i)− E[x(i)])TF (i)T
]

+ E
[

F (i)(x(i)− E[x(i)])wT (i)] + E[w(i)(x(i)− E[x(i)])TF (i)T
]

+ E
[

w(i)w(i)T
]

= F (i)Cx(i)F (i)T + Cw(i) ,

Since both middle terms E[F (i)(x(i) − E[x(i)])wT (i)] and E[w(i)(x(i) − E[x(i)])TF (i)T]
evaluate to zero. The two equations are the books equations 4.13.

Special State Space Models: The Random Walk

At the time i we have undergone n(i) increments and i−n(i) decrements since these are the
only possibilities. Thus we will find ourself located at the position x(i) given by

x(i) = dn(i)− d(i− n(i))

= 2dn(i)− di .

Now n(i) has a binomial distribution with parameters (i, 1
2
) so has a mean i

2
, so we find the

expectation of x(i) given by

E[x(i)] = 2dE[n(i)]− di

= 2d

(

i

2

)

− di = 0 .

The variance of our position, x(i), is given by (since di is a constant at the ith timestep)

σ2
x(i) = (2d)2Var(n(i))

= 4d2
(

1

2

)(

1

2

)

i = d2i .

Special State Space Models: Second Order Autoregressive Model

We consider a process x(i) given by

x(i+ 1) = αx(i) + βx(i− 1) + w(i) ,

We can compute the discrete Lyapunov equation form the vector state space representation
for this process given in the book. From that representation the covariance matrix Cx (in
steady-state) is given by

Cx =

[

σ2
x(∞) R1

R1 σ2
x(∞)

]

.

Where we have defined R1 and r1 as

R1 ≡ lim
i→∞

E [(x(i+ 1)−E[x(i+ 1)])(x(i)−E[x(i)])] ≡ σ2
x(∞)r1 .

Using the shorthand σ2
x ≡ σ2

x(∞) we find for the discrete Lyapunov equation 42 given by
the following

[

σ2
x σ2

xr1
σ2
xr1 σ2

x

]

=

[

α β
1 0

] [

σ2
x σ2

xr1
σ2
xr1 σ2

x

] [

α 1
β 0

]

+

[

σ2
w 0
0 0

]

.

Dividing both sides by σ2
x and multiplying the three matrices on the right-hand side together

we find
[

1 r1
r1 1

]

=

[

α2 + 2αβr1 + β2 α + βr1
α + βr1 1

]

+
σ2
w

σ2
x

[

1 0
0 0

]

.

Equating the components corresponding to the (1, 2) element of the matrices on both sides
of the above equation gives the following

r1 = α + βr1 so r1 =
α

1− β
,

and is the same expression found in the book. Equating the components corresponding to
the (1, 1) element of both sides gives the equation

1 = α2 + 2α2βr1 + β2 +
σ2
w

σ2
x

.

Which when we solve for σ2
x gives

σ2
x =

σ2
w

1− α2 − 2αβr1 − β2
,

and can be shown to be equivalent to the expression for σ2
x presented in the book.

The derivation of the discrete algebraic Ricatti equation

Assuming convergence the Kalman Filtering (KF) equations the covariance estimates C(i+
1|i) = C(i|i− 1) so putting the measurement induced covariance update equation

C(i|i) = C(i|i− 1)−K(i)S(i)K(i)T , (37)

into the dynamic covariance update equation

C(i+ 1|i) = F (i)C(i|i)F (i)T + Cw(i) , (38)

and defining the limiting covariance matrix as P we have

P = F (P −KSKT)F T + Cw

= FPF T + Cw − FKSKTF T

= FPF T + Cw − F (PHTS−1)S(S−THP)F T

= FPF T + Cw − FPHT (HPHT + Cv)
−1HPF T , (39)

which is called the discrete Ricatti equation. Note we have used the definition of the Kalman
matrix K and the innovation matrices S given by

S = HPHT + Cv (40)

K = PHTS−1 . (41)

Exercise Solutions

Exercise 1 (a state-space model of a random constant)

The given discrete system has F = 1 and Cw = 0 so the steady-state Lyapunov equation

Cx = FCxF
T + Cw , (42)

for this system becomes the identity statement

σ2
x = σ2

x ,

which implies that σ2
x can be anything. If we assume that the state estimate x̄(i|i) in the

discrete Kalman filter converges to the unknown constant then the limiting steady-state
covariance estimate must be zero.

Exercise 2 (the discrete Kalman filter for a random constant)

For this problem we specify the discrete Kalman filter equations given in the book in equa-
tions 4.27 to the specific scalar discrete-time model of a random constant given in this
problem. For this discrete time system everything is a scalar, F = 1, H = 1, Cv = σ2

v and
we find

ẑ(i) = x̄(i|i− 1) (43)

s(i) = c(i|i− 1) + σ2
v (44)

k(i) =
c(i|i− 1)

s(i)
=

c(i|i− 1)

c(i|i− 1) + σ2
v

(45)

x̄(i|i) = x̄(i|i− 1) + k(i)(z(i)− ẑ(i)) (46)

c(i|i) = c(i|i− 1)− s(i)k(i)2 = σ2
v

(

c(i|i− 1)

c(i|i− 1) + σ2
v

)

(47)

After incorporating the measurement we then assign new estimates of our state x as equa-
tions 4.28

x̄(i+ 1|i) = x̄(i|i)
c(i+ 1|i) = c(i|i) .

With x̄(i+1|i) and c(i+1|i) specified we increment i and continue the iterative process with
Equation 43.

We now explicitly iterate these equations for i = 0, 1, 2 and 3. Starting with the assumption
that x̄(0|−1) and c(0|−1) are initial state and covariance given as

x̄(0|−1) = E[x(0)|z(−1)] = E[x(0)|{·}] = E[x(0)] = 0

c(0|−1) = σ2
x(0) = +∞ .

Then taking i = 0 and the initial conditions given above we find the measurement update
steps become

ẑ(0) = x̄(0|−1) = 0

s(0) = c(0|−1) + σ2
v = +∞

k(0) =
c(0|−1)

s(0)
=

c(0|−1)

c(0|−1) + σ2
v

= 1

x̄(0|0) = 0 + 1(z(0)− 0) = z(0)

c(0|0) = σ2
v

(

c(0|−1)

c(0|−1) + σ2
v

)

= σ2
v ,

and the state propagation update equations are given by

x̄(1|0) = x̄(0|0) = z(0)

c(1|0) = c(0|0) = σ2
v .

Incrementing our counter to i = 1 we follow the measurement update steps combined with
the state propagation steps to obtain

ẑ(1) = x̄(1|0) = z(0)

s(1) = c(1|0) + σ2
v = 2σ2

v

k(1) =
σ2
v

2σ2
v

=
1

2

x̄(1|1) = z(0) +
1

2
(z(1)− z(0)) =

1

2
(z(0) + z(1))

c(1|1) = σ2
v

(

σ2
v

2σ2
v

)

=
1

2
σ2
v

x̄(2|1) = x̄(1|1) = 1

2
(z(0) + z(1))

c(2|1) =
1

2
σ2
v .

Incrementing our counter to i = 2 we follow the above steps to get

ẑ(2) =
1

2
(z(0) + z(1))

s(2) =
1

2
σ2
v + σ2

v =
3

2
σ2
v

k(2) =
1/2

1 + 1/2
=

1

3

x̄(2|2) =
1

2
(z(0) + z(1)) +

1

3
(z(2)− 1

2
(z(0) + z(1)))

=
1

3
(z(0) + z(1) + z(2))

c(2|2) = σ2
v

(

1/2

1/2 + 1

)

=
1

3
σ2
v

x̄(3|2) =
1

3
(z(0) + z(1) + z(2))

c(3|2) =
1

3
σ2
v .

Finally, for i = 3 we obtain

ẑ(3) =
1

3
(z(0) + z(1) + z(2))

s(3) =
4

3
σ2
v

k(3) =
1/3

1 + 1/3
=

1

4

x̄(3|3) =
1

4
(z(0) + z(1) + z(2) + z(3))

c(3|3) = σ2
v

(

1/3

1/3 + 1

)

=
1

4
σ2
v

x̄(4|3) =
1

4
(z(0) + z(1) + z(2) + z(3))

c(4|3) =
1

4
σ2
v .

These equations can be solved in general, see the next problem.

Exercise 3 (the solution to the KF equations in exercise 2)

By mathematical induction, the general solution seems to be

ẑ(i) =
1

i
(z(0) + z(1) + · · ·+ z(i− 1)) (48)

s(i) =
i+ 1

i
σ2
v (49)

k(i) =
1

i+ 1
(50)

10 20 30 40 50 60 70 80 90 100

−15

−10

−5

0

5

10

Figure 1: Three representative Kalman filtering results for Exercise 3, involving estimating a
constant from noisy measurements. The x-axis represents is the iteration timestep (denoted
in the text as i).

c(i|i−1) =
1

i
σ2
v (51)

c(i|i) =
1

i+ 1
σ2
v , (52)

These expressions reproduce the results generated by iterating the Kalman Filter equations
with i = 0, 1, 2 and 3 given above in exercise 2 as can be checked. To show that these give
the general solution note that if Equation 51 is true then Equations 49, 50, and 52 follow
from Equations 44, 45, and 47 respectively. Thus everything above is true if we are able to
prove that Equation 51 is true. To do that we use Equation 48 to write it as

c(i+ 1|i) = σ2
v

(

c(i|i− 1)

c(i|i− 1) + σ2
v

)

,

which is a first order difference equation for c(i+ 1|i), considered as a function of the single
argument i. The fact that Equation 51 solves this difference equation can be seen by directly
substituting it in to the equation above and verifying that it indeed is a solution.

A MATLAB/OCTAVE implementation of the Kalman filter outlined above for this discrete
system can be found in the script ex 1 kalman filter.m. Three examples obtained when
running this code are shown in Figure 1 where we represent the true constant we are at-
tempting to estimate as a green line, the time varying estimate of this constant produced
by the Kalman filter as a blue line and the observed random measurements as red circles.
We note that the Kalman results converge quite nicely to the true constant values they are
attempting to estimate. For many of the results the difference between the constant we are
trying to estimate (the green curve) and our approximation of it (the blue curve) are too
small to be distinguished by eye.

Exercise 4 (a scalar linear-Gaussian system)

The given system is a first order autoregressive model and the discrete steady-state Lyapunov
equation 42 in this case is given by

σ2
x = ασ2

xα + σ2
w .

Here σ2
x ≡ σ2

x(∞). When we solve for σ2
x we find

σ2
x =

σ2
w

1− α2
,

for the solution. The condition required for the existence of the solution is then that α 6= 1.
In addition, since σ2

x > 0 (variances are positive) we need to have α2 < 1 or |α| < 1.

Exercise 5 (the steady-state covariance matrices)

When our system is operating in steady-state, the covariance matrix C(i+1|i) is independent
of time and its limiting value (denoted by P) must solve the discrete Ricatti Equation 39.
For this scalar problem we have F = α, Cw = σ2

w, H = 1, and Cv = σ2
v so the Ricatti

equation in this case becomes

P = α2P + σ2
w − αP (P + σ2

v)
−1Pα ,

or
P 2 + ((1− α2)σ2

v − σ2
w)P − σ2

wσ
2
v = 0 .

Solving this quadratic equation we find

P =
−((1 − α2)σ2

v − σ2
w)±

√

((1− α2)σ2
v − σ2

w)
2 + 4σ2

vσ
2
w

2
. (53)

Since P represents a variance we require that P > 0 and so we need to take the positive root
in the above expression and we have the limiting value for C(i|i − 1) as i → ∞. Using the
above expression the limiting values for S(i), K(i), and C(i|i) are given by

S = HPHT + Cv = P + σ2
v

=
((1 + α2)σ2

v + σ2
w) +

√

((1− α2)σ2
v − σ2

w)
2 + 4σ2

vσ
2
w

2
K = PHTS−1

=
−((1 − α2)σ2

v − σ2
w) +

√

((1− α2)σ2
v − σ2

w)
2 + 4σ2

vσ
2
w

((1 + α2)σ2
v + σ2

w) +
√

((1− α2)σ2
v − σ2

w)
2 + 4σ2

vσ
2
w

Finally since KSKT is given by

KSKT =
1

2

(

((1− α2)σ2
v − σ2

w)−
√

((1− α2)σ2
v − σ2

w)
2 + 4σ2

vσ
2
w

((1 + α2)σ2
v − σ2

w) +
√

((1− α2)σ2
v − σ2

w)
2 + 4σ2

vσ
2
w

)

,

the limiting value for C(i|i) is given by the difference of P and KSKT as

C(i|i) = P −KSKT .

Exercise 6 (iterating the KF for a first order autoregressive model)

For this problem we consider the discrete Kalman filter equations given in the book in
equations 4.27 as applied to the specific scalar first order autoregressive discrete-time model
given in this problem. For the given discrete time model everything is a scalar, F = α,
H = 1, Cv = σ2

v , Cw = σ2
w and we find

ẑ(i) = x̄(i|i− 1) (54)

s(i) = c(i|i− 1) + σ2
v (55)

k(i) =
c(i|i− 1)

s(i)
=

c(i|i− 1)

c(i|i− 1) + σ2
v

(56)

x̄(i|i) = x̄(i|i− 1) + k(i)(z(i)− ẑ(i)) (57)

c(i|i) = c(i|i− 1)− s(i)k(i)2 = σ2
v

(

c(i|i− 1)

c(i|i− 1) + σ2
v

)

(58)

Note that these are the same equations as in Exercise 2 above. The difference between this
problem and the previous one comes when we assign a new estimates of our state x using
the dynamic equations 4.28 as

x̄(i+ 1|i) = αx̄(i|i) (59)

c(i+ 1|i) = α2c(i|i) + σ2
w , (60)

With x̄(i + 1|i) and c(i + 1|i) specified as above we increment our counter variable i and
continue the iterative process with Equation 54.

We will now explicitly iterate these equations for i = 0, 1, 2 and 3. Starting with the as-
sumption that x̄(0|−1) and c(0|−1) are initial state and covariance given as

x̄(0|−1) = E[x(0)|z(−1)] = E[x(0)|{·}] = E[x(0)] = 0

c(0|−1) = σ2
x(0) = +∞ .

Then taking i = 0 and using the initial conditions given above we find the measurement
update steps become

ẑ(0) = x̄(0|−1) = 0

s(0) = c(0|−1) + σ2
v = +∞

k(0) =
c(0|−1)

s(0)
=

c(0|−1)

c(0|−1) + σ2
v

= 1

x̄(0|0) = 0 + 1(z(0)− 0) = z(0)

c(0|0) = σ2
v

(

c(0|−1)

c(0|−1) + σ2
v

)

= σ2
v ,

and the state propagation update equations given by

x̄(1|0) = αx̄(0|0) = αz(0)

c(1|0) = α2c(0|0) + σ2
w = α2σ2

v + σ2
w .

Incrementing our counter to i = 1 we follow the measurement update steps combined with
the state propagation steps to obtain

ẑ(1) = x̄(1|0) = αz(0)

s(1) = c(1|0) + σ2
v = (1 + α2)σ2

v + σ2
w

k(1) =
c(1|0)

c(1|0) + σ2
v

=
α2σ2

v + σ2
w

(1 + α2)σ2
v + σ2

w

x̄(1|1) = x̄(1|0) + k(1)(z(1)− ẑ(1))

= αz(0) +

(

α2σ2
v + σ2

w

(1 + α2)σ2
v + σ2

w

)

(z(1)− αz(0))

= α

(

σ2
v

(1 + α2)σ2
v + σ2

w

)

z(0) +

(

α2σ2
v + σ2

w

(1 + α2)σ2
v + σ2

w

)

z(1)

c(1|1) = σ2
v

(

α2σ2
v + σ2

w

(1 + α2)σ2
v + σ2

w

)

x̄(2|1) = αx̄(1|1) =
(

α2σ2
v

(1 + α2)σ2
v + σ2

w

)

z(0) +

(

α2σ2
v + σ2

w

(1 + α2)σ2
v + σ2

w

)

αz(1)

c(2|1) = α2σ2
v

(

α2σ2
v + σ2

w

(1 + α2)σ2
v + σ2

w

)

+ σ2
w =

α4σ4
v + (1 + 2α2)σ2

vσ
2
w + σ4

w

(1 + α2)σ2
v + σ2

w

.

At this point the algebra in these iterations starts to get tedious. Moving to Mathematica,
in the script ex 8 algebra.nb, we implement the remaining iterations. The results are more
complicated but in principle one could iterate and compute ẑ(i), s(i), k(i), x̄(i|i), c(i|i),
x̄(i+ 1|i), and c(i+ 1|i) to any desired order.

Exercise 7 (solving the discrete autoregressive KF equations)

For the first order autoregressive model given above, if we can explicitly compute a func-
tional form for c(i + 1|i), then we can also explicitly compute s(i), k(i), and c(i|i) using
equations, 55, 56, and 58 respectively. Thus it seems valid to try to first determine c(i+1|i).
We begin by observing that a difference equation for c(i+1|i), can be obtained using Equa-
tion 58 and 60 as follows

c(i+ 1|i) = α2c(i|i) + σ2
w

= σ2
vα

2

(

c(i|i− 1)

c(i|i− 1) + σ2
v

)

+ σ2
w .

It is this difference equation we will solve for the functional form for c(i+1|i). In the above

expression define d(i) ≡ c(i+1|i)
σ2
v

, so that the difference equation for the unknown d(i) then
becomes

d(i+ 1) = α2

(

d(i)

d(i) + 1

)

+ r2 , (61)

where we have defined r2 as the ratio of variances r2 = σ2
w

σ2
v
, and d(i) has an initial condition

given by

d(0) =
c(1|0)
σ2
v

=
α2σ2

v + σ2
w

σ2
v

= α2 + r2 .

To solve Equation 61, we multiply both sides by the expression d(i) + 1 to obtain

d(i+ 1)d(i) + d(i+ 1)− α2d(i)− r2 = 0 ,

which is in the standard form of a Ricatti difference equation [6]. To solve this equation
we derive an associated linear equation for a new function z(i) (unrelated to any measurement
function) when we use the substitution

d(i) =
z(i + 1)

z(i)
− 1 . (62)

We find the function z(i) must satisfy

z(i+ 2) + (−α2 − 1)z(i+ 1) + (−r2 + α2)z(i) = 0 .

Which is a second order linear difference equation for z(i). The characteristic roots of this
equation are given by solving the following quadratic equation for the root x

x2 − (α2 + 1)x+ (−r2 + α2) = 0 . (63)

Thus we find two roots given by x± of

x± =
α2 + 1±

√

(α2 + 1)2 + 4(r2 − α2)

2

=
α2 + 1±

√

(α2 − 1)2 + 4r2

2
. (64)

With these two roots, x±, the solution for z(i) is thus given by

z(i) = Axi
+ +Bxi

− ,

in terms of two as yet unknown constants A and B. From this and Equation 62, d(i) is then
given by

d(i) =
Axi+1

+ +Bxi+1
−

Axi
+ +Bxi

−

− 1

=
xi
+(x+ − 1) + Cxi

−(x− − 1)

xi
+ + Cxi

−

, (65)

where we have assumed that A 6= 0 and then divided the top and bottom of the above
fraction by it, and finally defined C = B

A
. The initial condition on d(i) requires that C is

determined by

d(0) =
x+ − 1 + C(x− − 1)

1 + C
= α2 + r2 or

C = −
(

α2 + r2 − x+ + 1

α2 − r2 − x− + 1

)

. (66)

Where it should be remembered that x± are both known functions of r and α given by
Equation 64. From this explicit solution for d(i) given by Equations 65 and 66 we can derive
an explicit solution for our a-priori variance c(i|i− 1) given by

c(i|i− 1) = σ2
vd(i− 1) .

Thus given the explicit form of the first order autoregressive model the above formulation
provides an explicit solution for all the quantities of interest.

Note we can also obtain an explicit difference equation for the a-priori mean, x̄(i|i − 1), in
the case of a first order autoregressive model as follows

x̄(i+ 1|i) = αx̄(i|i)
= αx̄(i|i− 1) + αk(i)(z(i)− ẑ(i))

= αx̄(i|i− 1) + α

(

c(i|i− 1)

c(i|i− 1) + σ2
v

)

(z(i)− x̂(i|i− 1))

= α

(

σ2
v

c(i|i− 1) + σ2
v

)

x̄(i|i− 1) + α

(

c(i|i− 1)

c(i|i− 1) + σ2
v

)

z(i) .

This is a first-order linear difference equation with known coefficients for the unknown a-
priori mean x̄(i|i−1). These facts allow an explicit solution to be written down for x̄(i|i−1)
in terms of the known functions c(i|i−1) and z(i). See reference [6] for a detailed description
of the solution to difference equations like this.

Exercise 8 (a second order autoregressive model)

Following the discussion in the book, for a second order autoregressive processes we can
define the system state vector x(i+ 1) as

x(i+ 1) =

[

x(i+ 1)
x(i)

]

.

Then the given linear state equation or linear plant equation for the given discrete time
system can be written in terms of the vector state x as

x(i+ 1) =

[

x(i+ 1)
x(i)

]

=

[

1/2 1/4
1 0

] [

x(i)
x(i− 1)

]

+

[

w(i)
0

]

.

The measurement equation for this system, in terms of the discrete vector state x, is given
by

z(i) = x(i) + v(i) or

=
[

1 0
]

[

x(i)
x(i− 1)

]

+ v(i) =
[

1 0
]

x(i) + v(i) .

The discrete Lyapunov Equation 42 that the covariance of x must satisfy in steady-state for
this system is then given by

[

σ2
x σ2

xr1
σ2
xr1 σ2

x

]

=

[

1/2 1/4
1 0

] [

σ2
x σ2

xr1
σ2
xr1 σ2

x

] [

1/2 1
1/4 0

]

+ σ2
w

[

1 0
0 0

]

.

As this expression is the exact same functional form as the discrete Lyapunov equation model
for the second order autoregressive process discussed in the book and considered on Page 21

we can just use the results from that section. We find

r1 =
1/2

1− 1/4
=

2

3
= 0.66667

r2 =
1/4 + 1/4− 1/16

1− 1/4
=

7

12
= 0.58333

σ2
x =

1

1− 1/2(2/3)− 1/4(7/12)
= 1.92 .

Thus the covariance matrix of our state, Cx, when in steady state is given by

Cx =

[

1.92 1.28
1.28 1.92

]

.

These simple numerical calculations are done in the MATLAB script ex 8.m.

To find the long term limiting values for the innovations matrix, S, and the Kalman gain
matrix, K, we will use Equations 40 and 41. We thus need to find the limiting values for
P or limi→∞C(i|i − 1) by using the discrete Ricatti Equation 39. To numerically solve for
P in Equation 39 we will use a simple iterative scheme where we take P (0) = Cx (computed
above) and iterate the following equation

P (n+1) = FP (n)F T + Cw − FP (n)HT (HP (n)HT + Cv)
−1HP (n)F T .

We find P ≡ P (∞) using this method in the script ex 8.m by

P =

[

1.2029 0.3080
0.3080 0.5461

]

.

A MATLAB implementation of the Kalman filter for this discrete dynamical system can be
found in the script ex 8 kalman filter.m. Some results obtained when we run this script
can be seen in Figure 2. In Figure 2 (left) we show a single filtering run, where we have
taken a measurement noise variance of σ2

v = 1. In Figure 2 (right) we show three additional
runs, shifted upwards from the origin by a constant amount (for visibility) and with noise
variances σ2

v given by 1/2 (for the bottom), 1 (for the middle), and 3/2 (for the top). We
see that the Kalman filter estimate does quite a good job tracking the truth value (drawn in
green).

Exercise 9 (a moving average model)

For this exercise, if we define the state vector x(i) as simply the scalar x(i) and define

a lagged noise vector w(i) as w(i) =

[

w(i)
w(i− 1)

]

, we then have a dynamic equation in

state-space form given by

x(i+ 1) =
[

1
2

1
2

]

[

w(i)
w(i− 1)

]

≡ G(i)w(i) . (67)

50 100 150 200 250 300

−2

0

2

4

6

8

10

estimate
truth
measurement

50 100 150 200 250 300

0

5

10

15

20

25

estimate
truth
measurement

Figure 2: Left: A single representative Kalman filtering result for estimating the state x(i)
for a second order autoregressive process from noisy measurements. This is the discrete-time
dynamical system described in Exercise 8. We plot the Kalman filtered computed estimate,
x̄(i|i), along with the true value of x(i) at the i-th step. The x-axis represents is the iteration
timestep (denoted in the text as i). Right: Multiple examples of applying Kalman filtering
to the second order autoregressive model. Note the oscillatory nature of the truth curve
which is a characteristic of second order autoregressive systems.

Note that this is a slightly modified form of the dynamic state equation given in the text, in
that it has a matrix G(i) ≡

[

1
2

1
2

]

multiplying the noise vector w(i), where as in the text
we have the identity matrix. Notice that we have written the matrix G as a function of i
(even thought in this specific dynamical system it is actually time independent) to indicate
that the following results hold more generally for a time dependent G. To incorporate this
generalization of the dynamic model, the only equation in the discrete Kalman filtering
algorithm that is modified is the covariance propagation equation which was

C(i+ 1|i) = F (i)C(i|i)F (i)T + Cw(i) .

This equation will now become

C(i+ 1|i) = F (i)C(i|i)F (i)T +G(i)Cw(i)G(i)T , (68)

Note the presence of the G(i)Cw(i)G(i)T term, see the reference [4]. A MATLAB imple-
mentation of the Kalman filter for this discrete dynamical system can be found in the script
ex 9 kalman filter.m. Some results obtained when we run this script can be seen in Fig-
ure 3. In that figure we show a single filtering run, where we have taken a measurement
noise variance of σ2

v = 1. Running experiments with this code is a good way to observe that
the Kalman filter doing quite a good job tracking the truth state value x(i) (drawn as a line
in green).

10 20 30 40 50 60 70 80 90 100

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Kalman estimate
Truth
Measurements

Figure 3: A single representative Kalman filtering result for estimating the state x(i) for a
first order moving average process. This is the discrete-time dynamical system described in
Exercise 9. We plot the Kalman filtered computed estimate, x̄(i|i), (in black) along with the
true value of x(i) (in green) at the i-th step. The x-axis represents is the iteration timestep
(denoted in the text as i). The noisy measurements are plotted as red circles.

Exercise 10 (a combined autoregressive/moving average model)

Following the discussion in the book and the two exercises above we will define the system
state vector x(i+ 1) as

x(i+ 1) =

[

x(i+ 1)
x(i)

]

,

and a lagged noise vector w(i) as w(i) =

[

w(i)
w(i− 1)

]

. With these definitions we then have

a dynamic equation for x(i) in state-space form given by

x(i+ 1) =

[

x(i+ 1)
x(i)

]

=

[

1/2 1/2
1 0

] [

x(i)
x(i− 1)

]

+
1

2

[

1 1
0 0

] [

w(i)
w(i− 1)

]

=

[

1/2 1/2
1 0

]

x(i) +
1

2

[

1 1
0 0

]

w(i) . (69)

The measurement equation for this system, in terms of the discrete vector state x, is given
by exactly the same expression in exercise 8 of

z(i) =
[

1 0
]

x(i) + v(i) .

Thus with the process noise modification given in Exercise 9 the above, this discrete sys-

tem has process and measurement matrices given by F =

[

1/2 1/2
1 0

]

, G = 1
2

[

1 1
0 0

]

,

H =
[

1 0
]

, Cw =

[

1 0
0 1

]

, and Cv = σ2
v . From this discussion a MATLAB implemen-

10 20 30 40 50 60 70 80 90 100

−2

−1

0

1

2

3

noise variance = 1.00

Kalman estimate
Truth
Measurements

10 20 30 40 50 60 70 80 90 100

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

noise variance = 0.50

Kalman estimate
Truth
Measurements

10 20 30 40 50 60 70 80 90 100

−2

−1.5

−1

−0.5

0

0.5

1

1.5

noise variance = 0.20

Kalman estimate
Truth
Measurements

Figure 4: Some representative Kalman filtering results for estimating the state x(i) for a
ARMA(2,1) process. This is the discrete-time dynamical system described in Exercise 10.
We plot the Kalman filtered computed estimate, x̄(i|i), (in black) along with the true value
of x(i) (in green) at the i-th step. The x-axis represents is the iteration timestep (denoted
in the text as i). The noisy measurements are plotted as red circles. Left: With a noise
variance σ2

v = 1.0. Middle: With a noise variance σ2
v = 0.5. Right: With a noise variance

σ2
v = 0.2. Note that as the noise variance is reduced the filter results get better in that the

black and green lines approach each other.

tation of the Kalman filter for this discrete dynamical system can be found in the script
ex 10 kalman filter.m. Some results obtained when we run this script can be seen in
Figure 4.

Exercise 11 (discrete KF implementations)

MATLAB/OCTAVE implementations of the discrete Kalman filters for the various discrete
systems represented in the exercises can be found in the scripts ex 1 kalman filter.m,
ex 8 kalman filter.m, ex 9 kalman filter.m, and ex 10 kalman filter.m.

Chapter 5: (Supervised Learning)

Notes on the Text

The error associated with the elements of the covariance matrix

Given that we know the distribution of the random variables in Ĉk is given by a Wishart

distribution and that the variances of each matrix element could be computed using

Var[Ĉki,j] =
1

Nk

(Cki,iCkj,j − C2
ki,j

) , (70)

we could substitute the estimated values of Cki,j into the right-hand-side of this formula
to ensure that (or warn otherwise) the elements of our covariance matrix are computed
accurately enough. That is we could estimate the relative error, ηij , of the ij-th element of
our covariance matrix as

ηij ≡

√

Var[Ĉki,j]

Ĉki,j

=

√

1
Nk

(Ĉki,iĈkj,j + Ĉ2
ki,j

)

Ĉki,j

=
1√
Nk

√

√

√

√

(

Ĉki,iĈkj,j

Ĉ2
ki,j

+ 1

)

.

If these relative errors ηij are too large relative to a fixed threshold then one needs to obtain
more samples from class k.

Notes on regularizing the covariance matrix

In this section of the text several regularization techniques are discussed for reducing the
sensitivity of of Ĉ to statistical errors. The first modifies Ĉ by adding a multiple of the
identity as

Ĉregularized = (1− γ)Ĉ + γ
trace(Ĉ)

N
I . (71)

Here γ represents the amount of regularization to apply and is confined to be 0 ≤ γ ≤ 1.
Note that for all possible values of γ, the trace of Ĉregularized is equal to that of Ĉ and hence the

regularized matrix has the same sum of the eigenvalues as the original matrix Ĉ. When γ = 0
no regularization is applied, while when when γ = 1 we replace Ĉ with a diagonal matrix.
This regularization technique is implemented in the C++ code trace regularization.cpp.

An alternative regularization technique suggested in the book is to suppress the off diagonal
elements of Ĉ by some factor. If again we let γ be such that 0 ≤ γ ≤ 1 then this procedure
is simply

Ĉregularized,ij = (1− γ)Ĉij for i 6= j . (72)

As in the previous technique above γ = 0 is no regularization and γ = 1 corresponds
to a diagonal matrix. This regularization technique is implemented in the C++ code
scale regularization.cpp.

An additional technique that is not discussed in the book but which might be helpful in
practice is to compute the correlation matrix R from the estimated covariance matrix Ĉ by
computing a matrix with elements

Rij =
Ĉij

√

ĈiiĈjj

.

Since these numbers are estimates of the Pearson correlation between the ith and j features
we can use statistical hypothesis testing to determine if this sample based estimate of the
population correlation is sufficiently large to reject the hypothesis H0 : ρ = 0. Pairs of fea-
tures that don’t reject this hypothesis are set equal to zero. Hypothesis testing of correlations
is discussed in Chapter 8 of [8] and this hypothesis testing based regularization procedure
is implemented in the C++ file ht regularization.cpp. Again there is a regularization
parameter γ that controls how many elements are set equal to zero. A modification (not
implemented) of the above scheme would be to compute the p-values for each entry in the R
matrix and then set the threshold for zeroing elements based on these p-values. I have not
seen this method discussed else where. If anyone knows any references to such a procedure
or has seen anything similar in the literature I would be interested in hearing about it.

Estimation of Prior Probabilities P (ωk)

Since the numberNk follows a multinomial distribution with parameters (P (ω1), P (ω2), · · · , P (ωk);NS)
the estimator of P (ωk) denoted P̂ (ωk) and defined as

P̂ (ωk) =
Nk

NS
, (73)

has an expectation given by

E[P̂ (ωk)] =
1

NS

E[Nk] =
NSP (ωk)

NS

= P (ωk) ,

showing that the estimate P̂ (ωk) =
Nk

NS
is unbiased. The estimate P̂ (ωk) =

Nk

NS
has a variance

given by

Var[P̂ (ωk)] =
1

N2
S

Var[Nk] .

Since we can view Nk as a draw from a binomial distribution with parameters (P (ωk), NS)
in this light it has a variance given by Var[Nk] = NSP (ωk)(1 − P (ωk)), so that the above
expression becomes

Var[P̂ (ωk)] =
P (ωk)(1− P (ωk))

NS

, (74)

which is the books equation 5.19.

To get an order of magnitude estimate of the number of samples NS required to estimate
P (ωk) with sufficient precision, we will determine NS such that the percent error (or relative
error) in our estimate of P (ωk) is significantly small. Thus we desire

√

Var[P̂ (ωk)]

P (ωk)
≈ η , (75)

with the value of η ≪ 1. Using Equation 74 the above expression is equivalent to

NS ≈ 1− P (ωk)

η2P (ωk)
. (76)

Thus if we anticipate that some class, k has P (ωk) = 0.01 and we want to enforce a relative
error of η = 0.2 (or 20 %) using Equation 76 we find NS ≈ 2475 required samples. Note
that Equation 76 can be used to signal classes for which we may not have enough samples to
estimate their probabilities sufficiently accurately. That is, one begins by computing P̂ (ωk)
from the unbiased estimate Nk

NS
and Var[P̂ (ωk)] from Equation 74 using the estimate P̂ (ωk)

for the population parameter P (ωk). Next estimate the relative error η in the estimate of
P (ωk) using Equation 75. If this value is too large relative to the accuracy required then
more samples NS are needed.

Binary measurements

Problems using the estimator in Equation 73 can occur if we have a very large number k
of classes to estimate probabilities for. As an example, if we assume that we have a state
dimension of N = 10, then we have 210 = 1024 possible discrete measurements z and we
expect our probabilities

P (z|ωk) = O(1/1024) = O(10−3) .

To have a relative error of 10 % in our estimates of P̂ (z|ωk) requires η = 0.1, using Equa-
tion 76 requires

Nk(z) =
1− 10−3

(0.1)2(10−3)
≈ 105 ,

which may be too large for many applications. A solution to this difficulty is to take as a
prior estimate that P (z|ωk) = 2−N and then using the fact that we observe Nk(z) elements
that have feature measurements z from a set of Nk =

∑

z Nk(z) elements to compute a
posteriori estimate of P (z|ωk). To derive the expression presented in the book we need to
understand how to perform Bayesian estimation on the parameters in multinomial models
(discussed in the next paragraph).

As some background to estimating parameters in a multinomial model, the reference [3]
provides a description of how to perform Bayesian estimation using multinomial models.
There it is discussed that the conjugate prior of a multinomial distribution is theDirichlet
distribution. Using the notation in that reference, this means that if the prior distribution
of the parameters in a multinomial distribution are distributed as a Dirichlet distribution
i.e.

θ ∼ Dirichlet(α1, α2, · · · , αk) ,

then the posteriori distribution of the parameters of our multinomial distribution θ|y after
observing yi objects of type i from a total of N =

∑

i yi is given by another Dirichlet
distribution such that

θ|y ∼ Dirichlet(y1 + α1, y2 + α2, · · · , yk + αk) .

From this functional form for the posteriori distribution of our parameters θ|y the posteriori
expectation of a single probability parameter say θj (also known as the optimal mean-square
estimator of θj) is given by

E(θj) =
yj + αj

∑k
j=1(yj + αj)

. (77)

Finally, as additional background needed to derive the expression for P̂ (z|ωk) given in the
book we need the information/fact that a uniform prior on the parameters of our multinomial
distribution means that our Dirichlet prior is given by αj = 1 for all j.

Back to the notation used in the book. The uniform prior on the 2N parameters we wish
to estimate P (z|ωk), means that they are initially distributed as a Dirichlet(1, 1, 1, · · · , 1)
distribution (here there are 2N values of αj all of which have the same value 1. Then after
having observed Nk(z) values of the feature z from

∑

z Nk(z) = Nk total values we can use
Equation 77 to find the posteriori expectation of the parameters P (z|ωk). We find

P̂ (z|ωk) =
yj + αj

∑2N

j=1(yj + αj)
=

yj + αj
∑2N

j=1 yj +
∑2N

j=1 αj

=
Nk(z) + 1

∑

z Nk(z) +
∑2N

j=1 1

=
Nk(z) + 1

Nk + 2N
, (78)

which is the expression 5.22 given in the book. The variance of this expression can be
computed using standard techniques. We find

Var[P̂ (z|ωk)] =
Var[Nk(z) + 1]

(Nk + 2N)2
=

Var[Nk(z)]

(Nk + 2N)2

=
NkP (z|ωk)(1− P (z|ωk))

(Nk + 2N)2
, (79)

which agrees with the expression 5.23 given in the book.

Notes on the preceptron learning algorithm

From the definition of the sets Y1 and Y2 given in the book when y ∈ Y1 the product wTy is
negative, while if y ∈ Y2 then the product wTy is positive. Thus Jpreceptron defined by

Jpreceptron ≡ −
∑

y∈Y1

wTy +
∑

y∈Y2

wTy , (80)

is a classification performance metric that gets larger the more elements are misclassified by
the linear discriminant g(y) = wTy. To minimize this metric we will use the gradient decent
algorithm

w(i+ 1) = w(i)− η(i)∇J(w(i)) , (81)

where we compute a derivative for Jpreceptron as

∇Jpreceptron = −
∑

y∈Y1

y +
∑

y∈Y2

y . (82)

Note in fact for this problem ∇Jpreceptron does not depend on the current vector w(i). Im-
plementing the derivative of Jpreceptron in this way is called the batch algorithm since we
use all of the misclassified data points in computing summations needed in the derivative
above. An alternative method would be to we consider only one sample, say yn, at a time
(imagining a data set with only one point) then if yn is in the first class and is misclassified
by our linear machine then we would update the weight vector now using Equation 82 but
specified to only the point yn as

w(i+ 1) = w(i)− η(i)(−yn) = w(i) + η(i)yn .

In the same way if yn is in the second class and is misclassified by our linear machine then
we would update the weight vector as

w(i+ 1) = w(i)− η(i)yn = w(i)− η(i)yn .

Thus if we introduce the variable cn as cn = +1 if yn is misclassified and in the first class
and cn = −1 if yn is misclassified and in the second class then the two update rules above
can be combined as

w(i+ 1) = w(i) + cnη(i)yn , (83)

which is the books equation 5.45. Note if yn is classified correctly we could assign cn = 0
and use Equation 83 on all of the data points.

Notes on the least squared error learning algorithm

In this subsection we comment on how to use the matrix WLS once it is computed to classify
a new sample z. From the construction of the matrices T and Y given in this section we
determine that T is of dimension NS × K, while Y is of dimension Ns × (N + 1). From
these two dimensions we conclude that Y TY is of dimension (N + 1)×K and so WLS is of
dimension (N + 1) ×K also. Thus given a new measurement vector z of dimension N × 1
we compute the augmented vector y of dimension (N + 1)× 1. With this vector y we then
compute a vector t̂ defined by

t̂ = W T
LSy =

wT
1 y

wT
2 y
...

wT
Ky

,

which will be a vector of size K × 1. We then assign the object that generated the feature
vector z to belong in the class k where k is chosen such that

k = Argmin1≤k≤K ||tk − t̂|| ,

i.e. to the class with the closest target vector.

Notes on the kernel trick

We can greatly generalize the ability of support vector classifiers by recognizing that the
classification decision made by a support vector classifier depends only on the evaluation of
inner products. To see this note that in the training and the use of a support vector classifier
we would perform the following steps

• Maximize the dual-form of L defined as

NS
∑

n=1

αn −
1

2

NS
∑

n=1

NS
∑

m=1

cncmαnαmz
T
n zm , (84)

over the values of α using a “standard” quadratic optimization solver.

• With these values of αn, the weight vector w used for classification is then given as

w =

NS
∑

n=1

αncnzn . (85)

• Classifications of a new feature vector z, are based on the sign of the expression g(z) =
wTz.

To generalize these procedures to nonlinear spaces we introduce a mapping y(z) that would
take the given input vector z and map it into a higher dimensional nonlinear space. For
example, given linear combinations of the simple features z1 and z2 in a two dimensional
feature vector z, the support vector classifier is capable of finding linear separating decision
boundaries only. If we map these inputs into quadratic functions of the base inputs we can
expand this linear space to include quadratic decision boundaries. For example, consider the
mapping y(z) that takes an input vector z and returns the following larger vector y

z =

[

z1
z2

]

→

z1
z2
z21
z22
z1z2

= y(z) .

To naively apply the above support vector classifier training procedure in the new higher
dimensional space we would apply our nonlinear mapping y(·) to every sample point zn and

then develop a classifier using these new points yn. This could be very time and memory
demanding if the space y is very large. A considerably simpler approach is to recognized that
in solving the quadratic programming problem for αn in Equation 84 all that are needed are
the inner-product calculations of the mapped training set or y(zn)

Ty(zm). In addition, to
classify a new feature z we would need to evaluate g(z) = wTy(z), which under the support
vector classifier framework in the expanded space where w =

∑NS

n=1 αncny(zn) is given by

wTy(z) =

NS
∑

n=1

αncny(zn)
Ty(z) =

NS
∑

n=1

αncnK(zn, z) ,

which again only depends on the evaluation of the specific inner products y(zn)
Ty(z) and

in the above notation we have defined the “kernel” K function as K(zn, zm) = zTn zm. Thus
to train and evaluate a support vector classifier even in this higher dimensional space we
only need to be able to compute the evaluation of the inner product kernel K(zn, z) easily.
Another generalization of support vector classifiers that is simple involves replacing these
inner product kernel’s with another functional form, for example Gaussian kernels are often
used.

Exercise Solutions

Exercise 1 (the covariance for the average of N realizations of z)

Lets consider, x to be the average of N realizations of the random variable Z. Then x =
1
N

∑N
k=1 zk and the expectation of x is given by

E[x] =
1

N

N
∑

k=1

E[zk] = E[Z] .

Using this, the covariance matrix of x is given by

E[(x− E[x])(x− E[x])T] = E

(

1

N

N
∑

k=1

zk − E[Z]

)(

1

N

N
∑

k=1

zk −E[Z]

)T

=
1

N2

N
∑

k=1

N
∑

j=1

E
[

(zk − E[Z])(zj −E[Z])T
]

.

Now the argument of the double summation above (by independence of the samples zk) is
equal to

E
[

(zk − E[Z])(zj − E[Z])T
]

=

{

E[zk −E[Z]]E[zj −E[Z]]T k 6= j
E[(zk −E[Z])(zk −E[Z])T] k = j

=

{

0 k 6= j
Cz k = j

,

since when k 6= j we are assuming that zk and zj are independent draws, we have E
[

(zk −E[Z])(zj − E[Z
E[zk − E[Z]]E[zj − E[Z]]T , and E[zk − E[Z]] = 0. When k = j this pairwise expectation

is the covariance of the random variable Z or Cz. Thus we have for the covariance of x the
following now

Cx =
1

N2

N
∑

k=1

N
∑

j=1

Czδkj =
Cz

N2

N
∑

k=1

1 =
1

N
Cz ,

as we were to show.

Exercise 2 (regularizing a covariance matrix)

Given that equation 5.16 in the book is

Ĉ−1
regularized = V̂

(

(1− γ)Λ̂ + γ
trace(Λ̂)

N
I

)−1

V̂ T , (86)

we can use the eigenvector decomposition of the matrix Ĉ given by Ĉ = V̂ Λ̂V̂ T to “move”
V̂ inside the inverse above to find

Ĉ−1
regularized =

(

V̂ −T (1− γ)Λ̂V̂ −1 +
γ

N
trace(Λ̂)V̂ −T V̂ −1

)−1

.

Since in the eigenvector expansion of a symmetric matrix Ĉ the matrix of eigenvectors V̂ is
orthogonal i.e. V̂ −1 = V̂ T we conclude that V̂ −T V̂ −1 = I, and V̂ −T Λ̂V̂ −1 = V̂ Λ̂V̂ T = Ĉ.
With these substitutions and recalling the trace identity of

trace(Ĉ) = trace(Λ̂) , (87)

we have demonstrated equation 5.17 or

Ĉ−1
regularized =

(

(1− γ)Ĉ +
γ

N
trace(Ĉ)I

)−1

. (88)

Exercise 3 (Fisher’s linear discriminant)

WWX: finish this problem

I think I need to apply gaussian ellimination to explicitly determine the scalar equation for
WLS below, but I ran out of time for this.

Equation 5.50 in the book that determines the weight matrix W that provides the optimal
least squares classifier is

WLS = (Y TY)−1Y TT . (89)

Here the matrix W is W = [w1, · · · ,wK] or K columns of w vectors each of length N + 1.
The matrix Y is constructed as [y1, . . .yNs]

T with y augmented feature vectors

y =

[

z
1

]

.

Finally the matrix T is a matrix of target vectors [t1, . . . tNs]
T with tn a target vector with

elements

tn,k =

{

1 if θn = ωk

0 otherwise
.

Now to specify the above description to the two-class case K = 2 we begin by constructing
the matrix T (by rearranging the order of the samples if needed) so that it has the following
form

T =

[

1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1

]T

,

i.e. all of the class one objects are ordered before the class two objects. Next the matrix Y
in terms of z is given by

Y =

[

z1,1 z1,2 · · · z1,N1 z2,1 z2,2 · · · z2,N2

1 1 · · · 1 1 1 · · · 1

]T

.

Here in the subscripts of zk,n the first element k is the class label, while the second element n
is the sample index. Using this expression the required product Y TY in Equation 89 becomes

Y TY =

[

z1,1 z1,2 · · · z1,N1 z2,1 z2,2 · · · z2,N2

1 1 · · · 1 1 1 · · · 1

]

zT1,1 1
zT1,2 1
...

...
zT1,N1

1
zT2,1 1
zT2,2 1
...

...
zT2,N2

1

=

[
∑N1

n=1 z1,nz
T
1,n +

∑N2

n=1 z2,nz
T
2,n

∑N1

n=1 z1,n +
∑N2

n=1 z2,n
∑N1

n=1 z
T
1,n +

∑N2

n=1 z
T
2,n N1 +N2

]

=

[
∑N1

n=1 z1,nz
T
1,n +

∑N2

n=1 z2,nz
T
2,n N1µ̂1 +N2µ̂2

N1µ̂
T
1 +N2µ̂

T
2 NS

]

,

where we have used the definition µ̂1 =
1
N1

∑N1

n=1 z1,n and the same for µ̂2. The next required

product in Equation 89 is Y TT and is given by

Y TT =

[

z1,1 z1,2 · · · z1,N1 z2,1 z2,2 · · · z2,N2

1 1 · · · 1 1 1 · · · 1

]

1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1

=

[

N1µ̂1 N2µ̂2

N1 N2

]

Consider now the representation for the two class projection matrix W denoted Fisher’s

linear discriminant and discussed in Chapter 6 of the book. There we find that W =
(µ̂1 − µ̂2)

TS−1
w , where

Sw =
1

NS

K
∑

k=1

Nk
∑

n=1

(zk,n − µ̂k)(zk,n − µ̂k)
T . (90)

Lets see how we can rewrite the above expression for Sw in the two class case. We find

Sw =
1

NS

2
∑

k=1

Nk
∑

n=1

(zk,nz
T
k,n − zk,nµ̂

T
k − µ̂kz

T
k,n + µ̂kµ̂

T
k)

=
1

NS

2
∑

k=1

Nk
∑

n=1

zk,nz
T
k,n −

1

NS

2
∑

k=1

(

Nk
∑

n=1

zk,n

)

µ̂T
k

− 1

NS

2
∑

k=1

µ̂k

(

Nk
∑

n=1

zTk,n

)

+
1

NS

2
∑

k=1

Nkµ̂kµ̂
T
k

=
1

NS

2
∑

k=1

Nk
∑

n=1

zk,nz
T
k,n −

1

NS

2
∑

k=1

Nkµ̂kµ̂
T
k

− 1

NS

2
∑

k=1

µ̂kNkµ̂
T
k +

1

NS

2
∑

k=1

Nkµ̂kµ̂
T
k

=
1

NS

2
∑

k=1

Nk
∑

n=1

zk,nz
T
k,n −

1

NS

2
∑

k=1

Nkµ̂kµ̂
T
k . (91)

Thus from this we see that the sum
∑2

k=1

∑Nk

n=1 zk,nz
T
k,n is equal to

2
∑

k=1

Nk
∑

n=1

zk,nz
T
k,n = NSSw +

2
∑

k=1

Nkµ̂kµ̂
T
k .

Note this involves inverting the matrix Y TY . From the calculations above we see that this
is a block matrix as

Y TY =

[

Σ c
cT s

]

.

Exercise 4 (the behavior of two estimators for P (z|ωk))

The two estimators for P (z|ωk) discussed in the book were

P̂ (z|ωk) =
Nk(z)

Nk
, (92)

and

P̂ (z|ωk) =
Nk(z) + 1

Nk + 2N
. (93)

The bias and variance for the estimator given by Equation 92 can be derived in exactly the
same way as discussed on Page 36, for estimating P (ωk). We find that this estimator is
unbiased and to have a variance given by

Var[P̂ (z|ωk)] =
P (z|ωk)(1− P (z|ωk))

Nk
. (94)

While this estimator is unbiased it can have a very large variance making it undesirable
to use in practice especially in the “small sample” limit i.e. where Nk ≪ 2N . To show
an example where this is true lets assume Nk ≪ 2N so Nk

2N
≪ 1 and take N = 10 with

Nk ≈ 50 ≪ 210 = 1024. Then P (z|ωk) = O(2−10) = O(10−3) we when see that the variance
of our estimator using Equation 94 would be

Var(P̂ (z|ωk)) =
10−3(1− 10−3)

50
= 1.99 10−5 ,

so the standard error would then be
√

Var(P̂ (z|ωk)) = 4.46 10−3 .

From this the relative error in estimating P̂ (z|ωk) using
Nk(z)
Nk

is

√

Var(P̂ (z|ωk))

P (z|ωk)
=

4.46 10−3

10−3
= 4.46 = 446% ,

a very poor estimate. If, however, we use the estimate given by Equation 93 of

P̂ (z|ωk) =
Nk(z) + 1

Nk + 2N
,

then the expectation of this estimate becomes

E[P̂ (z|ωk)] =
NkP (z|ωk) + 1

Nk + 2N

=
(Nk + 2N − 2N)P (z|ωk) + 1

Nk + 2N

= P (z|ωk) +
1− 2NP (z|ωk)

Nk + 2N
,

which can be seen to be a biased estimate. The variance of this estimator was derived earlier
and is given by Equation 79. If we compute the value of these two expressions using the
numeric quantities given above we find

E[P̂ (z|ωk)] = P (z|ωk) +
1− 210(10−3)

50 + 210
= P (z|ωk)− 2.234 10−5 ≈ P (z|ωk)

Var[P̂ (z|ωk)] =
50(10−3)(1− 10−3)

(50 + 210)2
= 4.33 10−8 so

√

Var[P̂ (z|ωk)]

P (z|ωk)
=

√
4.33 10−8

10−3
= 0.20 ,

which is not a stellar relative error but is certainly better than the previous estimate. In the
opposite limit of Nk where Nk ≫ 2N we have 2N

Nk
≪ 1 and the variance of our two estimates

become

Var[P̂ (z|ωk)] =
P (z|ωk)(1− P (z|ωk))

Nk

≪ P (z|ωk)(1− P (z|ωk))

2N

Var[P̂ (z|ωk)] =
P (z|ωk)(1− P (z|ωk))
(

1 + 2N

Nk

)

(Nk + 2N)
≈ P (z|ωk)(1− P (z|ω))

Nk + 2N

≪ P (z|ωk)(1− P (z|ωk))

2N
.

Thus both estimators have similar variances that improve the larger the value ofNk is relative
to 2N .

Exercise 5 (Bayesian learning of the error rate E)

Given a classifier system with an unknown error rate, E, initially assumed uniformly dis-
tributed between 0 and 1/K and the knowledge that when we attempt to classify Ntest

independent samples we obtain nerror classification errors allows us to refine our degree of
believe as to the unknown error rate E. To do that we will use Bayes’ rule as to update
p(E) after having observed nerror as

p(E|nerror, Ntest) =
p(nerror, Ntest|E)p(E)

p(nerror, Ntest)

=
p(nerror, Ntest|E)p(E)

∫

e
p(nerror, Ntest|E = e)p(E = e)de

. (95)

Because the initial probability of E was assumed uniform p(E) is given by

p(E = e) =

{

K 0 ≤ e ≤ 1/K
0 otherwise

. (96)

Now the expression for p(nerror, Ntest|E) can be derived as follows. Given the error rate E the
density p(nerror, Ntest|E) is the probability of obtaining nerror errors when performing Ntest

trials. This is equivalent to stating that nerror is distributed as a Binomial distribution with
parameters (E,Ntest). Thus

p(nerror, Ntest|E) =

(

Ntest

nerror

)

Enerror(1− E)Ntest−nerror . (97)

Now to compute p(nerror, Ntest) we have to evaluate the following integral

p(nerror, Ntest) =

∫ 1/K

0

p(nerror, Ntest|E = e)p(E = e)de

=

(

Ntest

nerror

)

K

∫ 1/K

0

enerror(1− e)Ntest−nerrorde .

This expression, when viewed as a function of the upper limit of integration (which in this
case is 1/K) is an example of what is called the Incomplete Beta function. The Beta
function was defined in Equation 27, and the Incomplete Beta function is defined as

B(x; p, q) =

∫ x

0

vp−1(1− v)q−1dv . (98)

Note the upper limit of integration in the above is now x rather than the fixed value of 1
in the definition of the beta function. Using these three pieces given by Equations 96, 97
and 98 into Equation 95 we have derived the desired expression for p(E|nerror, Ntest).

Exercise 6 (the dual formulation of the support vector classifier)

The Lagrangian we want to consider is given by

L =
1

2
||w||2−

NS
∑

n=1

αn(cn(w
Tzn + b)− 1) for αn ≥ 0 . (99)

Note that the sign of the second term in the above is correct but that the sign of this term
in the in the book is incorrect, see [5] page 374 or [2] page 263. To minimize L by taking the
required derivatives recall that

||w||2 = w2
1 + w2

2 + · · ·+ w2
N ,

so that the derivative of ||w||2 with respect to w is given by

∂||w||2
∂w

= 2w .

Taking the needed derivative of L with respect to w and b and setting these equal to zero
we obtain

∂L

∂w
= w −

NS
∑

n=1

αncnzn = 0

∂L

∂b
=

NS
∑

n=1

αncn = 0 . (100)

Solving the first equation gives

w =

NS
∑

n=1

αncnzn . (101)

We now write L in a more “matrix” like form as

L =
1

2
wTw − wT

(

NS
∑

n=1

αncnzn

)

− b

NS
∑

n=1

αncn +

NS
∑

n=1

αn .

When we up Equation 101 and 100 into this expression for L we find

L =
1

2

(

NS
∑

n=1

αncnzn

)T (NS
∑

n=1

αncnzn

)

−
(

NS
∑

n=1

αncnzn

)T (NS
∑

n=1

αncnzn

)

+

NS
∑

n=1

αn

= −1

2

(

NS
∑

n=1

αncnzn

)T (NS
∑

n=1

αncnzn

)

+

NS
∑

n=1

αn

=

NS
∑

n=1

αn −
1

2

NS
∑

n=1

NS
∑

m=1

αnαmcncmz
T
n zm ,

which is the desired expression.

Exercise 7 (slack variables in support vector classifiers)

Following the book we note that our original constraints in the linearly separable problem
which were

wTzn + b ≥ 1 when cn = +1

wTzn + b ≤ −1 when cn = −1 ,

become in the non-linearly separable case

wTzn + b ≥ 1− ξn when cn = +1

wTzn + b ≤ −1 + ξn when cn = −1 ,

for some ξn and we seek a minimum of ||w|| subject to the constraints that ξn ≥ 0. Thus
our problem becomes to minimize L where L is defined as

L =
1

2
||w||2 + C

NS
∑

n=1

ξn −
NS
∑

n=1

αn(cn(w
T zn + b)− 1 + ξn)−

NS
∑

n=1

γnξn ,

with Lagrange multipliers taken αn ≥ 0 and γn ≥ 0. Taking the derivatives of L with respect
to w, ξ, and b and setting them equal to zero gives.

∂L

∂w
=

1

2
(2w)−

NS
∑

n=1

αncnzn = 0 (102)

∂L

∂ξn
= C − αn − γn = 0 (103)

∂L

∂b
= −

NS
∑

n=1

αncn = 0 . (104)

Next put the above expressions into L we will write L in a “matrix” like representation as

L =
1

2
wTw + C

NS
∑

n=1

ξn − wT

NS
∑

n=1

αncnzn

− b

NS
∑

n=1

αncn +

NS
∑

n=1

αn(1− ξn)−
NS
∑

n=1

γnξn

Solving Equation 103 for γn gives γn = C − αn. Using this expression and Equation 102
solved for w and Equation 104 directly we find L now looks like

L = −1

2

(

NS
∑

n=1

αncnzn

)T (NS
∑

n=1

αncnzn

)

+ C

NS
∑

n=1

ξn +

NS
∑

n=1

αn(1− ξn)−
NS
∑

n=1

(C − αn)ξn

=

NS
∑

n=1

αn −
1

2

NS
∑

n=1

NS
∑

m=1

αnαmcncmz
T
n zm , (105)

which is the same as the books equation 5.56. Note that the requirement that the Lagrange
multipliers be non-negative γn ≥ 0 is equivalent to γn = C − αn ≥ 0 and thus requires
the constraint that αn ≤ C when solving the quadratic programming problem to maximize
Equation 105 over αn.

Exercise 8 (deriving the neural network weight update rules)

Recall the error criterion function JSE defined by

JSE =
1

2

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)
2 , (106)

where the output from the k-th element in the outer layer, gk(y), given by

gk(y) = f

(

H
∑

h=1

vk,hf(w
T
h y) + vk,H+1

)

.

The k, h notation in vk,h means that the flow of information is into k from h. First, the
update to the weights v that would be specified by a gradient-decent like procedure would
be given by

∆vk,h = −η
∂JSE

∂vk,h

= −η

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)
∂gk(yn)

∂vk,h
. (107)

To compute ∂gk(yn)
∂vk,h

we find

∂gk(yn)

∂vk,h
= ḟ

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

∂

∂vk,h

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

.

The remaining derivative with respect to vk,h is different depending on the value of h. If we
have 1 ≤ h ≤ H then

∂

∂vk,h

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

= f(wT
h yh) ,

and Equation 107 becomes

∆vk,h = −η

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)ḟ

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

f(wT
h yn) .

While if h = H + 1 we obtain

∂

∂vk,h

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

= −1 ,

and Equation 107 becomes

∆vk,H+1 = η

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)ḟ

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

.

These correspond to the equation 5.65 in the book. Second, the update to the weights w
that would be specified by a gradient-decent like procedure would be given by

∆wh,i = −η
∂JSE

∂wh,i

= −η

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)
∂gk(yn)

∂wh,i

. (108)

To compute ∂gk(yn)
∂wh,i

we find

∂gk(yn)

∂wh,i
= ḟ

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

∂

∂wh,i

(

H
∑

h=1

vk,hf(w
T
h yn)

)

= ḟ

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

(

vk,hḟ(w
T
h yn)yn,i

)

.

Thus in summary then we have

∆wh,i = −η

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)
(

vk,hḟ(w
T
h yn)yn,i

)

ḟ

(

H
∑

h=1

vk,hf(w
T
h yn)− vk,H+1

)

,

which is the books equation 5.66.

Exercise 9 (limiting the nonlinearity in neural networks)

To avoid large values for the network weights one could add a penalty term to the cost
function we seek to minimize and given in Equation 106 . For example we would attempt to
minimize

JSE =
1

2

NS
∑

n=1

K
∑

k=1

(gk(yn)− tn,k)
2 +

C

2
||w||2 ,

where C is a non-negative constant that could be chosen by cross-validation.

Exercise 10 (optimization techniques in neural network training)

Better optimization techniques like the Levenberg-Marquardt algorithm that in fact is coded
in the Pattern Recognition Toolbox algorithm lmnc.m can speed up the time required until
the algorithm converges. Thus second order algorithms may be quicker to run overall.

Chapter 6: (Feature Extraction and Selection)

Notes on the Text

Notes on the inter/intra distance

We will apply a linear transformation to each original feature vector zn as yn = Azn, where
A is chosen so that ASwA

T = I, which when we diagonalize A as Sw = V ΛV T requires that
A = Λ1/2V T . Then in the transformed space (denoted with a prime over each vector) we
have new mean vectors given by

µ̂′
k = Λ−1/2V T µ̂k

µ̂′ = Λ−1/2V T µ̂ ,

so that the between class scatter matrix Sb defined as

Sb =
1

NS

K
∑

k=1

Nk(µ̂k − µ̂)(µ̂k − µ̂)T , (109)

transforms as

S ′
b =

1

NS

K
∑

k=1

Nk(µ̂
′
k − µ̂′)(µ̂′

k − µ̂′)T

=
1

NS

K
∑

k=1

NkΛ
1/2V T (µ̂k − µ̂)(µ̂k − µ̂)T (Λ−1/2V T)T

= Λ−1/2V T

(

1

NS

K
∑

k=1

(µ̂k − µ̂)(µ̂k − µ̂)T

)

V Λ−1/2

= Λ−1/2V TSbV Λ−1/2 = ASbA
T .

The the matrix Sw will transform in the same way under the linear operator A. Thus in the
transformed space the trace of S ′

w is a constant

trace(S ′
w) = trace(ASwA

T) = trace(I) = N ,

the dimension of the state x. Because of this, the metric suggested in the book JINTER

JINTRA
depends

only on the trace of S ′
b. To compute this later expression we recall that taking the trace

of a matrix product allows rotation inside the argument i.e. trace(ABC) = trace(CAB)
assuming all products are defined. Thus

trace(S ′
w) = trace(Λ−1/2V TSbV Λ−1/2) = trace(V Λ−1/2Λ−1/2V TSb)

= trace(V Λ−1V TSb) = trace(S−1
w Sb) .

This later expression is called the inter/intra distance.

Notes on Chernoff-Bhattacharyya distances

Here we will derive the integral expression used to prove the Bhattacharyya error rate bound.
Recall that the smallest error Emin is obtained when we classify according to the Bayes’
criterion in that case Emin becomes

Emin =

∫

z

P (error, z)dz =

∫

z

P (error|z)p(z)dz . (110)

where the conditional probability of error, P (error|z), since this is a two class problem is
given by

P (error|z) = min[P (ω1|z), 1− P (ω1|z)]
= min[P (ω1|z), P (ω2|z)]
= 1−max[P (ω1|z), P (ω2|z)] .

Thus by Bayes’ rule we have the product

min[P (ω1|z), P (ω2|z)]p(z) = min[
p(z|ω1)P (ω1)

p(z)
,
p(z|ω2)P (ω2)

p(z)
]p(z)

= min[p(z|ω1)P (ω1), p(z|ω2)P (ω2)] . (111)

which when we integrate over z to get the entire error gives the books equation 6.12.

By generalizing the inequality min(a, b) ≤
√
ab for positive a and b, we can derive the so

called Chernoff error rate bound which is more general than the Bhattacharyya bound and
produces a distance metric (the Chernoff distance metric). Given the books expression for the
Chernoff distance between two probability densities p(z|ωk) for k = 1, 2 when these densities
are multidimensional Gaussians we can derive an equivalent expression for the distance
measure. Below we include a derivation of the Chernoff distance. It is quite detailed and
could be skipped on first reading.

The derivation of the Chernoff distance

The generalization to min(a, b) ≤
√
ab we need is the identity that min(a, b) ≤ asb1−s for

positive a and b and 0 < s < 1. Then using Equation 110 and 111 we can bound Emin as

Emin ≤ P (ω1)
sP (ω2)

1−s

∫

p(x|ω1)
sp(x|ω2)

1−sdx for 0 ≤ s ≤ 1 . (112)

When the densities p(x|ωk) for k = 1, 2 are d-dimensional multidimensional Gaussians then

p(x|ωi) =
1

(2π)d/2|Ci|1/2
exp

{

−1

2
(x− µi)

TC−1
i (x− µi)

}

, (113)

so the product in the integrand in Equation 112 is given by

p(x|ω1)
sp(x|ω2)

1−s =
1

(2π)
ds
2 (2π)

d(1−s)
2 |C1|

s
2 |C2|

1−s
2

× exp

{

−s

2
(x− µ1)

TC−1
1 (x− µ1)−

(1− s)

2
(x− µ2)

TC−1
2 (x− µ2)

}

.

Expanding the terms in the exponential we find (ignoring for now the factor −1
2
)

sxTC−1
1 x− 2sxTC−1

1 µ1 + sµT
1C

−1
1 µ1 + (1− s)xTC−1

2 x− 2(1− s)xTC−1
2 µ2 + (1− s)µ2C

−1
2 µ2 .

Grouping the quadratic, linear, and constant terms we find

xT (sC−1
1 + (1− s)C−1

2)x− 2xT (sC−1
1 µ1 + (1− s)C−1

2 µ2) + sµT
1C

−1
1 µ1 + (1− s)µT

2C
−1
2 µ2 .

Using this expression the product we are considering then becomes

p(x|ω1)
sp(x|ω2)

1−s =
1

(2π)
d
2 |C1|

s
2 |C2|

1−s
2

exp

{

−1

2

(

sµT
1C

−1
1 µ1 + (1− s)µT

2C
−1
2 µ2

)

}

(114)

× exp

{

−1

2

(

xT (sC−1
1 + (1− s)C−1

2)x− 2xT (sC−1
1 µ1 + (1− s)C−1

2 µ2)
)

}

.

Thus we want to integrate this expression over all possible x values. The trick to evaluating
an integral like this is to convert it into an integral that we know how to integrate. Since this
involves the integral of a Gaussian like kernel we might be able to evaluate this integral by
converting exactly it into the integral of a Gaussian. Then since it is known that the integral
over all space of a Gaussians is one we may have evaluated indirectly the integral we are
interested in. To begin this process we first consider what the argument of the exponential

(without the −1/2) of a Gaussian with mean θ and covariance A would look like

(x− θ)TA−1(x− θ) = xTA−1x− 2xTA−1θ + θTA−1θ . (115)

Using this expression to match the arguments of the quadratic and linear terms in the
exponent in Equation 114 would indicate that

A−1 = sC−1
1 + (1− s)C−1

2 and

A−1θ = sC−1
1 µ1 + (1− s)C−1

2 µ2 .

Thus the Gaussian with a mean value θ and covariance A given by

A = (sC−1
1 + (1− s)C−1

2)−1 (116)

θ = A(sC−1
1 µ1 + (1− s)C−1

2 µ2)

= (sC−1
1 + (1− s)C−1

2)−1(sC−1
1 µ1 + (1− s)C−1

2 µ2) , (117)

would evaluate to having exactly the same exponential terms (modulo the expression θTA−1θ).
The point of this is that with the definitions of A and θ we can write

xT (sC−1
1 + (1− s)C−1

2)x− 2xT (sC−1
1 µ1 + (1− s)C−1

2 µ2) = (x− θ)TA−1(x− θ)− θTA−1θ ,

so that the integral we are attempting to evaluate can be written as
∫

p(x|ω1)
sp(x|ω2)

1−sdx =
1

(2π)
d
2 |C1|

s
2 |C2|

1−s
2

× exp

{

−1

2

(

sµT
1C

−1
1 µ1 + (1− s)µT

2C
−1
2 µ2

)

}

exp

{

1

2
θTA−1θ

}

×
∫

exp

{

−1

2
(x− θ)TA−1(x− θ)

}

dx .

In effect what we are doing is “completing the square” of the argument in the exponential.
Since we know that multidimensional Gaussians integrate to one, this final integral becomes

∫

exp

{

−1

2
(x− θ)TA−1(x− θ)

}

dx = (2π)d/2|A|1/2 . (118)

In addition, the argument in the exponential in front of the (now evaluated) integral is given
by

sµT
1C

−1
1 µ1 + (1− s)µT

2C
−1
2 µ2 − θTA−1θ . (119)

When we put in the definition of A and θ given by Equations 116 and 117 we have that
θTA−1θ is equivalent to three (somewhat complicated) terms

θTA−1θ = (sµT
1C

−1
1 + (1− s)µT

2C
−1
2)(sC−1

1 + (1− s)C−1
2)−1(sC−1

1 µ1 + (1− s)C−1
2 µ2)

= s2µT
1C

−1
1 (sC−1

1 + (1− s)C−1
2)−1C−1

1 µ1

+ 2s(1− s)µT
1C

−1
1 (sC−1

1 + (1− s)C−1
2)−1C−1

2 µ2

= (1− s)2µT
2C

−1
2 (sC−1

1 + (1− s)C−1
2)−1C−1

2 µ2 .

Given that we still have to add the terms sµT
1C

−1
1 µ1+(1−s)µT

2C
−1
2 µ2 to the negative of this

expression we now stop and look at what our end result should look like in hopes of helping
motivate the transformations to take next. Since we might want to try and factor this into
an expression like (µ1 − µ2)

TB(µ1 − µ2) by expanding this we see that we should try to get
the expression above into a three term form that looks like

µT
1Bµ1 − 2µT

1Bµ2 + µT
2Bµ2 , (120)

for some matrix B. Thus lets add sµT
1C

−1
1 µ1 + (1 − s)µT

2C
−1
2 µ2 to the negative of θTA−1θ

and write the result in the three term form suggested by Equation 120 above. We find that
Equation 119 then becomes when factored in this way

sµT
1

[

C−1
1 − sC−1

1 (sC−1
1 + (1− s)C−1

2)−1C−1
1

]

µ1 (121)

− 2s(1− s)µT
1

[

C−1
1 (sC−1

1 + (1− s)C−1
2)−1C−1

2

]

µ2 (122)

+ (1− s)µT
2

[

C−1
2 − (1− s)C−1

2 (sC−1
1 + (1− s)C−1

2)−1C−1
2

]

µ2 . (123)

We now use the inverse of inverse matrix sums lemma (IIMSL) given by

(A−1 +B−1)−1 = A(A+B)−1B = B(A+B)−1A , (124)

to write the matrix products in the middle term of the above expression as

C−1
1 (sC−1

1 + (1− s)C−1
2)−1C−1

2 = ((1− s)C1 + sC2)
−1 . (125)

Recognizing this matrix as one that looks familiar and that we would like to turn the others
into lets now “hope” that the others can be transformed into a form that looks like that. To
further see if this is possible, and to motivate the transformations done next, consider how
the desired expression would look like expanded as in Equation 120. We have without the
factor of −1

2
s(1− s) the following

(µ1 − µ2)
T ((1− s)C1 + sC2)

−1(µ1 − µ2) = µT
1 ((1− s)C1 + sC2)

−1µ1 (126)

− 2µT
1 ((1− s)C1 + sC2)

−1µ2 (127)

+ µT
2 ((1− s)C1 + sC2)

−1µ2 . (128)

Since as just shown the middle terms match as desired, looking at the terms Equation 121
and 126, to have the desired equality we want to show if we can prove

s
[

C−1
1 − sC−1

1 (sC−1
1 + (1− s)C−1

2)−1C−1
1

]

= s(1− s)((1− s)C1 + sC2)
−1 , (129)

and

(1−s)
[

C−1
2 − (1− s)C−1

2 (sC−1
1 + (1− s)C−1

2)−1C−1
2

]

= s(1−s)((1−s)C1+sC2)
−1 , (130)

the similar expression for the terms Equation 123 and 128. To show that in fact this matrix
difference is correct we will use another matrix identity lemma. This time we will use the
Woodbury identity which can be written as

(A+ UCV)−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 . (131)

If we specialize this identity by taking C and V to both be identity matrices we obtain

(A+ U)−1 = A−1 − A−1U(I + A−1U)−1A−1

= A−1 − A−1(U−1 + A−1)−1A−1 .

Using this last expression with A = sC−1
1 and U = (1− s)C−1

2 we can derive that

(sC−1
1 + (1− s)C−1

2)−1 =
1

s
C1 −

1

s
C1

(

1

1− s
C2 +

1

s
C1

)−1
1

s
C1

=
1

s
C1 −

(1− s)

s
C1 ((1− s)C1 + sC2)

−1C1 .

Multiplying this last expression by sC−1
1 on the left and C−1

1 on the right to get

sC−1
1 (sC−1

1 + (1− s)C−1
2)−1C−1

1 = C−1
1 − (1− s)((1− s)C1 + sC2)

−1 .

This last expression gives that

C−1
1 − sC−1

1 (sC−1
1 + (1− s)C−1

2)−1C−1
1 = (1− s)((1− s)C1 + sC2)

−1 ,

which is equivalent to the desired Equation 129. Using exactly the same steps one can prove
Equation 130. In summary then we have shown that

∫

p(x|ω1)
sp(x|ω2)

1−sdx =
|A|1/2

|C1|
s
2 |C2|

1−s
2

× exp

{

−1

2
s(1− s)(µ1 − µ2)

T ((1− s)C1 + sC2)
−1(µ1 − µ2)

}

.

It remains to evaluate the coefficient |A|1/2

|C1|
s
2 |C2|

1−s
2
. Taking the determinant of both sides of

Equation 125 and solving for the expression A defined in Equation 116 we find

|A| = |C1||C2|
|(1− s)C1 + sC2|

. (132)

When we put this into what we have found for
∫

p(x|ω1)
sp(x|ω2)

1−sdx we obtain

∫

p(x|ω1)
sp(x|ω2)

1−sdx =
|C1|

1−s
2 |C2|

s
2

|(1− s)C1 + sC2|
1
2

× exp

{

−1

2
s(1− s)(µ1 − µ2)

T ((1− s)C1 + sC2)
−1(µ1 − µ2)

}

.

If we define the above expression equal to e−k(s) we see that k(s) is given by

k(s) =
1

2
s(1− s)(µ1 − µ2)

T ((1− s)C1 + sC2)
−1(µ1 − µ2) (133)

+
1

2
log

{ |(1− s)C1 + sC2|
|C1|1−s|C2|s

}

. (134)

When this is combined with Equation 112 we have the expression given in the books equa-
tion 6.19 also known as the Chernoff distance.

Notes on feature extraction based on the Bhattacharyya distance

The Chernoff distance between to multidimensional Gaussians (derived above) is given by

JC(s) =
1

2
s(1− s)(µ2−µ1)

T [(1− s)C1+ sC2]
−1(µ2−µ1)+

1

2
ln

[|(1− s)C1 + sC2|
|C1|1−s|C2|s

]

. (135)

when s = 1/2 this becomes the Bhattacharyya distance and is given by

JBHAT =
1

4
(µ2 − µ1)

T [C1 + C2]
−1 (µ2 − µ1) +

1

2
ln

[|C1 + C2|
2N |C1|1/2|C2|1/2

]

, (136)

where N is the dimension of the state space. If C1 = C2 = C then this simplifies to give

JBHAT =
1

8
(µ2 − µ1)

TC−1(µ2 − µ1) . (137)

If we now desire to transform our initial vectors z as y = Wz the means of our distribu-
tion transform as Wµk and the covariance matrices will transform as WCkW

T . Thus the
Bhattacharyya distance in Equation 136 becomes

JBHAT =
1

4
(Wµ2 −Wµ1)

T
[

WC1W
T +WC2W

T
]−1

(Wµ2 −Wµ1) (138)

+
1

2
ln

[|WC1W
T +WC2W

T |
2N |WC1W T |1/2|WC2W T |1/2

]

,

which is the books equation 6.35, when we define m = µ1 − µ2 and recall that N is the
dimension of the state vector.

Exercise Solutions

Exercise 1 (simplifying ρ2)

Recall the books equation 6.4 or the average squared distance between points, ρ2, of

ρ2 =
1

N2
S

NS
∑

n=1

NS
∑

m=1

(zn − zm)
T (zn − zm) . (139)

To solve this exercise lets follow the hint and write the difference zn − zm as

zn − zm = zk,n − zl,m , (140)

where we have assumed that the sample zn is in class k and the sample zm is in class l. Now
by writing the sum over all samples as a paired sum first over classes and second over the
points that are members of each class as

NS
∑

n=1

=
K
∑

k=1

Nk
∑

n=1

,

we see that ρ2 becomes under this convention

ρ2 =
1

N2
S

K
∑

k=1

Nk
∑

n=1

K
∑

l=1

Nl
∑

m=1

(zk,n − zl,m)
T (zk,n − zl,m) .

Now use the decomposition

zk,n − zl,m = (zk,n − µ̂k) + (µ̂k − µ̂) + (µ̂− µ̂l) + (µ̂l − zl,m) ,

when we put all the “square” terms first and the cross terms second we can simplify the
inner product in the summation above as

(zk,n − zl,m)
T (zk,n − zl,n) = (zk,n − µ̂k)

T (zk,n − µ̂k) + (µ̂k − µ̂)T (µ̂k − µ̂)

+ (µ̂− µ̂l)
T (µ̂− µ̂l) + (µ̂l − zl,m)

T (µ̂l − zl,m)

+ 2(zk,n − µ̂k)
T (µ̂k − µ̂) + 2(zk,n − µ̂k)

T (µ̂− µ̂l)

+ 2(zk,n − µ̂k)
T (µ̂l − zl,m)

+ 2(µ̂k − µ̂)T (µ̂− µ̂l) + 2(µ̂k − µ̂)T (µ̂l − zl,m)

+ 2(µ̂− µ̂l)
T (µ̂l − zl,m) .

Using this decomposition we will now perform the summation
∑K

k=1

∑Nk

n=1

∑K
l=1

∑Nl

m=1(·)
“on” each term. Remembering that

∑K
k=1

∑Nk

n=1 1 = NS, we find the sums of the first term
given by

NS

K
∑

k=1

Nk
∑

n=1

(zk,n − µ̂k)
T (zk,n − µ̂k) . (141)

The sums of second term given by

NS

K
∑

k=1

Nk(µ̂k − µ̂)T (µ̂k − µ̂) . (142)

The sums of the third term given by

NS

K
∑

l=1

Nl(µ̂− µ̂l)
T (µ̂− µ̂l) , (143)

which equals the sums of the second term Equation 142 . The sums of the fourth term given
by

NS

K
∑

l=1

Nl
∑

m=1

(µ̂l − zl,m)
T (µ̂l − zl,m) , (144)

which equals the sums of the first term Equation 141. For the sums of the fifth term we find

2NS

K
∑

k=1

Nk
∑

n=1

(zk,n − µ̂k)
T (µ̂k − µ̂) = 2NS

K
∑

k=1

(

Nk
∑

n=1

(zk,n − µ̂k)
T

)

(µ̂k − µ̂)

= 2NS

K
∑

k=1

(

Nk
∑

n=1

(zTk,n − µ̂T
k)

)

(µ̂k − µ̂) ,

but this inner sum simplifies greatly

Nk
∑

n=1

(zTk,n − µ̂T
k) = Nkµ̂

T
k −Nkµ̂

T
k = 0 ,

and so this term vanishes. Using the same logic as in computing the fifth term we see that
the sixth, seventh, ninth, and tenth terms also vanish. The only remaining term is then the
eighth and we have

2

K
∑

k=1

Nk
∑

n=1

K
∑

l=1

Nl
∑

m=1

(µ̂k − µ̂)T (µ̂l − µ̂) = 2

K
∑

k=1

K
∑

l=1

NkNl(µ̂k − µ̂)T (µ̂l − µ̂)

= 2
K
∑

l=1

Nl

(

K
∑

k=1

Nk(µ̂k − µ̂)T

)

(µ̂− µ̂l) .

The inner sum in the above simplifies greatly and its transpose is given by

K
∑

k=1

Nk(µ̂k − µ̂) =
K
∑

k=1

Nkµ̂k − µ̂
K
∑

k=1

Nk

=

K
∑

k=1

Nk
∑

n=1

zk,n −NSµ̂

=
K
∑

k=1

Nk
∑

n=1

zk,n −
NS
∑

n=1

zn = 0 .

Thus using all of these relations we find

ρ2 =
2

NS

K
∑

k=1

Nk
∑

n=1

(zk,n − µ̂k)
T (zk,n − µ̂k) +

2

NS

K
∑

k=1

Nk(µ̂− µ̂k)
T (µ̂− µ̂k)

=
2

NS

K
∑

k=1

[

Nk
∑

n=1

(

(zk,n − µ̂k)
T (zk,n − µ̂k) + (µ̂− µ̂k)

T (µ̂− µ̂k)
)

]

, (145)

which is the books equation 6.4 and was we were to show.

Exercise 3 (l-takeaway-r with l > r vs. plus-l-takeaway-r selection with l < r)

A problem where the features are highly or largely independent would do best with plus-l-
takeaway-r selection since on each evaluation of the classifier when the features are indepen-
dent we expect sequential forward search (SFS) to work quite well as each new feature adds
novel information. If certain features are in fact more informative than others these features
would be selected early on and keep during the entire search process.

In contrast, we would prefer backwards selection or l-takeaway-r if the features are expected
to be highly correlated. In that case only when the features are considered in total (i.e. as
a group) would we expect to get the maximal information out of them.

Exercise 4 (W = mTC−1 when we maximize the Bhattacharyyaa distance)

Before we begin this problem we note one point that is easy to become confused about.
As suggested, if we assume our covariance matrices are equal than C = C1 = C2 and
Equation 138 becomes

JBHAT(W) =
1

8
mTW T (WCW T)−1Wm.

We might (incorrectly) think that we can simplify the matrix product in the above using

W T (WCW T)−1W = W TW−TC−1W−1W = C−1 ,

giving a result which is independent of W ! The reason these transformation are not legal
is because W is a feature projection matrix of dimension D × N with D ≪ N and so is
not invertable. Thus the matrix W−1 is not defined and cannot be used as above. The
apporporiate way to solve this problem is to consider JBHAT(W) as a function of W defined
above, compute its first derivative J ′

BHAT(W) with respect to this argument, set it equal to
zero and solve for W . We could compute the derivative of JBHAT(W) as expressed above but
we can be slightly more general and compute the derivative of the Chernoff distance function
under the linear transformation implied by W . In deriving the results of this derivative we
note that they rely heavily on the results from the theory of matrix derivatives of scalars
functions of matrices. Results on this topic are nicely explained and derived in [1]. The
associated study guide [7], has additional algebra and comments on these derivations.

To begin the derivation of the derivative of the Chernoff distance metric JC(W), we will
modify slighlty how we derive our linearly transformed vectors y are obtained from our raw
input vectors z via the linear mapping y = W tz. Note this definition just uses the transpose
of W to perform our mapping rather than W directly. Now as the expression for JC(W) is
a scalar we can take the trace of its expression and use the properties of the trace operator
to simplify some resulting expressions. Taking this trace, the Chernoff separability measure
can be transformed as

JC(W) =
1

2
s(1− s)tr

{

(µ2 − µ1)
tW
[

(1− s)W tC1W + sW tC2W
]−1

W t(µ2 − µ1)
}

(146)

+
1

2
ln |(1− s)W tC1W + sW tC2W |

− 1− s

2
ln |W tC1W | − s

2
ln |W tC2W | .

To simplify the notation we will define the matrix L as

L ≡
[

(1− s)W tC1W + sW tC2W
]−1

.

Since we can cyclically permute the arguments of a trace we have that the first term in
Equation 146 can be written as

tr
{

(µ2 − µ1)
tWLW t(µ2 − µ1)

}

= tr
{

W t(µ2 − µ1)(µ2 − µ1)
tWL

}

.

Lets also define the matrix M as M ≡ (µ2 − µ1)(µ2 − µ1)
t. To evaluate the value of W at

which we will maximize the value of JC(W) we need to compute the first derivative of the
scalar JC(W) with respect to the matrix W . To compute this lets take the derivative of each
term one at a time. Using the results from [1] and [7] we find this matrix derivative then
becomes

∂tr (W tMWL)

∂W
= 2MWL− 2((1− s)C1W + sC2W)LW tMWL .

Next we need to take the derivatives with respect to W of the expressions

ln |(1− s)W tC1W + sW tC2W | , ln |W tC1W | , and ln |W tC2W | .

Since we can write

(1− s)W tC1W + sW tC2W = W t((1− s)C1 + sC2)W ,

all of these expressions have similar derivatives. Taking the derivative of ln |W tC2W | we find

∂ ln |W tC2W |
∂W

= 2C2W (W tC2W)−1 .

All the other derivatives are similar. For example

∂ ln |(1− s)W tC1W + sW tC2W |
∂W

= 2((1− s)C1 + sC2)W (W t((1− s)C1 + sC2)W)−1

= 2((1− s)C1W + sC2W)((1− s)W tC1W + sW tC2W)−1

= 2((1− s)C1W + sC2W)L .

Thus combining everything we finally find that our first derivative of JC(W) is given by

∂JC(W)

∂W
= s(1− s)

{

MWL− ((1− s)C1W + sC2W)LW tMWL
}

+ ((1− s)C1W + sC2W)L

− (1− s)C1W (W tC1W)−1 − sC2W (W tC2W)−1 .

To find the maximum of JC(W) we set J ′
C(W) equal to zero to derive an equation for W

which would then need to be solved for W . Assuming L is non-singular we can premultiply
by L−1 and divide by s(1− s) to get the following equation equivalent to J ′

C(W) = 0

MW − [(1− s)C1W + sC2W]LW tMW +
1

s(1− s)
[(1− s)C1W + sC2W] (147)

− 1

s
C1W (W tC1W)−1[(1− s)W tC1W + sW tC2W] (148)

− 1

1− s
C2W (W tC2W)−1[(1− s)W tC1W + sW tC2W] = 0 . (149)

Note that in the above the last two terms can be expanded and written as

−1

s
C1W [(1− s)I + s(W tC1W)−1W tC2W]− 1

1− s
C2W [(1− s)(W tC2W)−1W tC1W + sI] .

We can further combine these terms with 1
s(1−s)

[(1 − s)C1W + sC2W] the third term on
line 147 above to get

C1W + C2W − C1W (W tC1W)−1W tC2W − C2W (W tC2W)−1W tC1W

= C1W [I − (W tC1W)−1W tC2W] + C2W [I − (W tC2W)−1W tC1W] .

Combining these gives the following

MW − [(1− s)C1W + sC2W]LW tMW

+ C1W [I − (W tC1W)−1W tC2W] + C2W [I − (W tC2W)−1W tC1W] = 0 (150)

In the special case where both Gaussians have the same covariance matrix then C1 = C2 = Σ
and the last two terms in Equation 150 vanish so that Equation 150 becomes

MW − ΣW (W tΣW)−1W tMW = 0 . (151)

Performing an eigenvector-eigenvalue decomposition of (W tΣW)−1W tMW to write this ma-
trix as UΛU−1 we have

MW − ΣWUΛU−1 = 0 ,

or
Σ−1MWU −WUΛ = 0 . (152)

Now since we don’t explicitly know the value W we don’t explicitly know the values of Λ or
U and they are effectively functions of the matrix W . We will see below how to compute
these matrices. On grouping some terms together we find

Σ−1M(WU) = (WU)Λ .

Since Λ is a diagonalmatrix containing the eigenvalues of (W tΣW)−1W tMW , multiplication
on the right by this matrix Λ is equivalent to multiplying each column of the matrix WU
by the corresponding eigenvalue. Comparing each side of this equation column by column
we see that the columns of WU must be the eigenvectors of the matrix Σ−1M . From this
we can compute the eigenvectors of Σ−1M and place them as columns of the matrix say V .
Then since V = WU for some as yet unknown U , W would be given by W = V U−1. The
point to note now is that in fact the multiplication of V by an invertible matrix U−1 does
not in fact change the value of JC and it can be ignored. The fact that multiplication by
U−1 on the left does not change the value of JC can be seen by first considering JC(W) with
equal covariance matrices. We find

JC(W) =
1

2
s(1− s)tr

{

W tMW (W tΣW)−1
}

+
1

2
ln |W tΣW | − 1− s

2
ln |W tΣW | − s

2
ln |W tΣW |

=
1

2
s(1− s)tr

{

W tMW (W tΣW)−1
}

.

If we consider JC(WU−1) we find

JC(WU−1) =
1

2
s(1− s)tr

{

U−tW tMWU−1(U−tW tΣWU−1)−1
}

=
1

2
s(1− s)tr

{

U−tW tMWU−1U(W tΣW)−1U t
}

=
1

2
s(1− s)tr

{

U tU−tW tMW (W tΣW)−1
}

= JC(W) .

Since the value of U−1 does not matter we can effectively ignore this matrix (take U = I).
Then the matrix W has columns that are simply the eigenvectors of Σ−1M . When we use
the decomposition (W tΣW)−1W tMW = UΛU−1 in the above expression for JC(W) we find

JC(W) =
1

2
s(1− s)tr

{

W tMW (W tΣW)−1
}

=
1

2
s(1− s)tr

{

UΛU−1
}

=
1

2
s(1− s)tr

{

U−1UΛ
}

=
1

2
s(1− s)tr {Λ} .

Since M is of rank one the product Σ−1M will also be of rank one and only have one non-
zero eigenvalue. Thus the matrix W will thus in fact be only a column vector and not a
matrix. To find its value we could explicitly compute the non-zero eigenvector of Σ−1M , but
an easier method it to write Equation 152 when W is a column vector say v1 as

Σ−1(µ2 − µ1)(µ2 − µ1)
tv1 = λv1 .

Since (µ2 − µ1)
tv1 is an inner product and is therefore a scalar we can factor it out to get

(

(µ2 − µ1)
tv1
)

Σ−1(µ2 − µ1) = λv1 .

Comparing vectors (and the corresponding multiplying scalars) on each side of this expression
we see that

v1 = Σ−1(µ2 − µ1) (153)

λ = (µ2 − µ1)
tv1 = (µ2 − µ1)

tΣ−1(µ2 − µ1) .

Equation 153 is the optimal Chernoff feature transformation

y = vt1z = (µ2 − µ1)
tΣ−1z , (154)

for the case when the covariance matrices of the two densities are equal.

Exercise 7 (optimizing the number of features to retain on the training set)

The problem with optimizing the number of features to use for classification on the training
set is that due to the finite nature of the samples in the training set we might incorrectly
optimized based on the noise in the data set rather than on something statistically stable.
Recall the books Figure 6.1 where the classification error rate is viewed as a function of
the measurement space dimension for several values of the number of samples NS. In a
given classification problem NS will be specified at the outset of the problem and picking
the number of features based on attempting to achieve an minimum error rate will certainly
not be optimal as we can see from the two examples with NS = 20 and NS = 80 in this
figure. There, the finite sample minimum is not equal to the theoretical minimum (where
N → ∞). We can avoid this problem by selecting the features subsets using cross-validation
by evaluating the classifier on a set of date not used for the feature selection process.

Chapter 7: (Unsupervised Learning)

Notes on the text

Notes on Multi-dimensional scaling

From the given stress measure ES

ES =

∑NS

i=1

∑NS

j=i+1(δij − dij)
2

∑NS

i=1

∑NS

j=i+1 δ
2
ij

, (155)

when dij is defined as a Euclidean distance on D dimensional vectors then

dij =

√

√

√

√

D
∑

l=1

(yl(zi)− yl(zj))2 ,

and the derivative with respect to the l-th component of y(zi) is given by (these are scalar
derivatives)

∂dij
∂yil

=
2(yl(zi)− yl(zj))

2
√

∑D
l=1(yl(zi)− yl(zj))2

=
yl(zi)− yl(zj)

dij
.

Which in vector form looks like
∂dij
∂yi

=
yi − yj

dij
. (156)

Thus the yi derivative of ES is given by

∂ES

∂yi
= −

(

2
∑NS

i=1

∑NS

j=i+1 δ
2
ij

)

NS
∑

j=i+1

(δij − dij)
∂dij
∂yi

= −
(

2
∑NS

i=1

∑NS

j=i+1 δ
2
ij

)

NS
∑

j=i+1

(δij − dij)

dij
(yi − yj) ,

the result given in the book.

Notes on clustering via mixtures of Gaussians

Here we present some notes on the EM derivation from this section. Since the vector xn has
position coding (the K components of this vector xn,k for k = 1, 2, · · ·K are 1 if k is the
index of the cluster that the sample yn belongs to and 0 otherwise) and the prior probability
the k-th component of xn will take the value of 1 is given by πk as shorthand we can write
this as

p(xn|Ψ) =
K
∏

k=1

π
xn,k

k ,

since xn,k is zero for all but one element say k′ and that element is 1 i.e. xn,k′ = 1. In the
same way the probability we obtain feature vector zn depends on which cluster zn originates
from. Using the same shorthand as above we have

p(zn|xn,Ψ) =

K
∏

k=1

(N(zn|µk, Ck))
xn,k .

Thus the joint distribution p(zn, xn|Ψ) is given by the product of these two expressions

p(zn, xn|Ψ) = p(zn|xn,Ψ)p(xn|Ψ)

=

K
∏

k=1

(N(zn|µk, Ck))
xn,k ×

K
∏

k=1

π
xn,k

k

=
K
∏

k=1

(N(zn|µk, Ck)πk)
xn,k ,

in agreement with the equation 7.16 given in the book.

To derive the EM algorithm lets recall the definitions of the vectors Z, Ψ(i), X, and Y =
[

Z
X

]

that will be used in the notation that follows. We have

• Z the observed data for which we have realizations of.

• Ψ(i) the parameter of the distribution Z under the assumption that Z is distributed
as a Gaussian mixture model. Thus Ψ(i) is represented by K mean vectors µk and K
covariance matrices Ck.

• X the missing data that we don’t have realizations of. In this case this can considered
to be the class labels of the data samples zn.

• Y the vector of combined observed data zn and the missing data xn.

With these definitions the EM algorithm specifies that we iterate the following two equations
(an expectation step followed by an maximization step):

EY [L(Y |X)|Z] =

∫

ln(p(Y |Ψ)p(Y |Z,Ψ(i))dY (157)

Ψ(i+1) = argmaxΨ{EY [L(Y |X)|Z]} . (158)

In the case where the missing data represents the cluster labels (the cluster that each sample
zn is drawn from) then one way to represent this information is to provide xn as “position
coded” (see above). With this notation, the log likelihood of all of the data given our
parameters of the model takes the form

L(Y |Ψ) =
K
∑

k=1

NS
∑

n=1

xn,k ln(N(zn|µk, Ck)) + xn,k ln(πk) . (159)

Since we have an expression for L(Y |Ψ) we need an expression for p(Y |Z,Ψ(i)) from which
to take the expectation with as specified in Equation 157. As Y represents all of the possible
data (Z and X combined) we see that conditioning on Z we have

p(Y |Z,Ψ(i)) = p(Z,X|Z,Ψ(i)) = p(X|Z,Ψ(i)) ,

so the density in expectation step in the EM-algorithm (Equation 157) becomes
∫

L(Y |Ψ)p(Y |Z,Ψ(i))dY =

∫

L(Y |Ψ)p(X|Z,Ψ(i))dX

=

∫

L(X,Z|Ψ)p(X|Z,Ψ(i))dX . (160)

Now from Equation 159 we see that L(Y |Ψ) is linear in the variable X , implying that the
expectation of L in Equation 160 is simply evaluating L at the expected value of X as

EY [L(Y |X)|Z] =

∫

L(X,Z|Ψ)p(X|Z,Ψ(i))dX

= L

(
∫

Xp(X|Z,Ψ(i)), Z|Ψ
)

dX

= L
(

X,Z|Ψ
)

. (161)

Here X the expectation of the data we don’t have under the assumption that we know Z
and Ψ(i) i.e. the data cluster labels and the parameters. Computing this expectation since
xn,k is an indicator random variable expectations become probabilities and we see that

x̄n,k = E[xn,k|zn,Ψ(i)] = P (xn,k|zn,Ψ(i)) .

From Bayes’ rule this probability can be written as

p(xn,k|zn,Ψ(i)) =
p(zn|xn,k,Ψ

(i))

p(zn|Ψ(i))

=
N(zn|µ(i)

k , C
(i)
k)π

(i)
k

∑K
k=1N(zn|µ(i)

k , C
(i)
k)π

(i)
k

.

Where the variable x̄k,n is called the ownership. For the M-step we maximize over the
parameters Ψ the expression

E[L(Y |Ψ)|Z] = L[x̄, Z|Ψ]

=
K
∑

k=1

NS
∑

n=1

xn,k ln(N(zn|µk, Ck)) + xn,k ln(πk) .

Here the parameters to maximize over are µk, Ck, and πk, subject to the constraint that
∑

k πk = 1. The classical way to solve this maximization is using the method of Lagrange
multipliers. In that method we would extend L(Y |Ψ), creating a new objective function
L′(Y |Ψ), to include a Lagrange multiplier (denoted by λ) to enforce the constraint that
∑

k πk = 1 as

L′(Y |Ψ) =
K
∑

k=1

NS
∑

n=1

xn,k ln(N(zn|µk, Ck)) + xn,k ln(πk)− λ

(

K
∑

k=1

πk − 1

)

. (162)

We then proceed to maximize this expression by taking derivatives with respect to the
variables µk, Ck, and πk, setting the resulting expressions equal to zero, and solving the
resulting equations for them. We begin by taking ∂

∂µk
of E[L(Y |Ψ)|Z]. We find

∂

∂µk

E[L(Y |Ψ)|Z] =
K
∑

k=1

x̄n,k

(

1

N(zn|µk, Ck)

)(

∂

∂µk

N(zn|µk, Ck)

)

.

This derivative required in the above is given by

∂

∂µk

N(zn|µk, Ck) = N(zn|µk, Ck)
∂

∂µk

(

−1

2
(zn − µk)

tC−1
k (zn − µk)

)

=
1

2
N(zn|µk, Ck)

(

C−1
k + C−T

k

)

(zn − µk)

= N(zn|µk, Ck)C
−1
k (zn − µk) . (163)

Thus
∂

∂µk
E[L(Y |Ψ)|Z] =

NS
∑

n=1

x̄n,kC
−1
k (zn − µk) , (164)

which is the books equation 7.20. Setting this expression equal to zero and solving for µk

we have

µk =

∑NS

n=1 x̄n,kzn
∑NS

n=1 x̄n,k

, (165)

which is the books equation 7.21. Next we take the derivative of E[L(Y |Ψ)|Z] with respect
to Ck. Which we will evaluate using the chain rule transforming the derivative with respect
to Ck into one with respect to C−1

k . We have

∂

∂Ck
E[L(Y |Ψ)|Z] = ∂

∂Ck
−1E[L(Y |Ψ)|Z] ∂Ck

−1

∂Ck
.

Thus if ∂
∂Ck

−1E[L(Y |Ψ)|Z] = 0, we have that ∂
∂Ck

E[L(Y |Ψ)|Z] = 0 also. From this we can
look for zeros of the derivative by looking for values of Ck where the derivative of the inverse
of Ck vanishes. Taking the derivative of E[L(Y |Ψ)|Z] with respect to Ck

−1 we find

∂

∂Ck
−1E[L(Y |Ψ)|Z] =

NS
∑

n=1

x̄n,k
∂

∂Ck
−1 ln(N(zn|µk, Ck))

=

NS
∑

n=1

x̄n,k

(

1

N(zn|µk, Ck)

)

∂

∂Ck
−1N(zn|µk, Ck) .

From which we see that as a sub problem we need to compute ∂
∂Ck

−1N(zn|µk, Ck), which we
now do

∂

∂Ck
−1N(zn|µk, Ck) =

∂

∂Ck
−1

(

1

(2π)N |Ck|1/2
exp

{

−1

2
(zn − µk)

TCk
−1(zn − µk)

})

=
1

(2π)N
∂

∂Ck
−1

(

1

|Ck|1/2
)

exp

{

−1

2
(zn − µk)

TCk
−1(zn − µk)

}

+
1

(2π)N
1

|Ck|1/2
∂

∂Ck
−1 exp

{

−1

2
(zn − µk)

TCk
−1(zn − µk)

}

,

using the product rule. To evaluate the first derivative in the above we note that

∂

∂Ck
−1

(

1

|Ck|1/2
)

=
∂

∂Ck
−1 |Ck

−1|1/2

=
1

2
|Ck

−1|−1/2 ∂

∂Ck
−1 |Ck

−1| ,

but using the following matrix derivative of a determinant identity

∂

∂X
|AXB| = |AXB|(X−1)T = |AXB|(XT)−1 , (166)

with A = B = I we have ∂
∂X

|X| = |X|(X−1)T and the derivative ∂
∂Ck

−1

(

1
|Ck|1/2

)

becomes

∂

∂Ck
−1

(

1

|Ck|1/2
)

=
1

2
|Ck

−1|−1/2|Ck
−1|Ck

T

=
1

2

1

|Ck|1/2
Ck .

Next using the matrix derivative of an inner product is given by

∂

∂X
(aTXb) = abT , (167)

we have the derivative of the inner product expression

∂

∂Ck
−1

{

−1

2
(zn − µk)

TCk
−1(zn − µk)

}

= −1

2
(zn − µk)(zn − µk)

T .

Putting everything together we find that

∂

∂Ck
−1N(zn|µk, Ck) =

1

2

1

(2π)N
1

|Ck|1/2
exp

{

−1

2
(zn − µk)

TCk
−1(zn − µk)

}

Ck

− 1

2
N(zn|µk, Ck)(zn − µk)

T (zn − µk)

=
1

2
N(zn|µk, Ck)

(

Ck − (zn − µk)(zn − µk)
T
)

. (168)

So combining these subproblems we finally find

∂

∂Ck
−1 ln(N(zn|µk, Ck)) =

1

2

(

Ck − (zn − µk)(zn − µk)
T
)

, (169)

or the books equation 7.22. Using this in the expression for ∂
∂Ck

−1E[L(Y |Ψ)|Z] = 0, we find
the equation

NS
∑

n=1

x̄n,kCk −
NS
∑

n=1

x̄n,k(zn − µk)(zn − µk)
T = 0 .

Which when we solve for Ck we find

Ck =

∑NS

n=1 x̄n,k(zn − µk)(zn − µk)
T

∑NS

n=1 x̄n,k

, (170)

which is the books equation 7.23. To complete a full maximization of L′(Y |Ψ) with we still

need to determine πk the priori probabilities of the k-th cluster. Setting ∂L′(Y |Ψ)
∂πk

= 0 gives

NS
∑

n=1

x̄n,k

πk
− λ = 0 ,

or

λπk =

NS
∑

n=1

x̄n,k .

Summing this equation over k for k = 1 to K since
∑K

k=1 πk = 1 we have

λ =
K
∑

k=1

NS
∑

n=1

x̄n,k .

This can be simplified by observing that

λ =

K
∑

k=1

NS
∑

n=1

x̄n,k =

K
∑

k=1

NS
∑

n=1

p(xn,k|zn,Ψ(i)) =

NS
∑

n=1

K
∑

k=1

p(xn,k|zn,Ψ(i)) =

NS
∑

n=1

1 = NS .

Where we have used the fact that p(xn,k|zn,Ψ(i)) is a probability that the sample zn is from
cluster k. Since there are 1, 2, . . . , K clusters summing this probability gives one. Thus

πk =
1

NS

NS
∑

n=1

x̄n,k , (171)

which is the books equation 7.27. Combining this expression with Equations 165 and 170
gives the EM algorithm.

Exercise solutions

Exercise 4 (deriving the EM algorithm for mixtures of Gaussians)

See the notes that begin on page 65 for these derivations.

Exercise 5 (what data will be clustered and what data will be along a subspace)

Data that is generated from class specification that is which comes from class specific prob-
ability densities would be expect to be distributed in clusters. Clustering is used to group
together the measurements which are most similar. This is like determining the classifica-
tion of a set of features and one would expect that if the observed data was generated from
different classes it would belong in different clusters. One would expect data that is subject
to a constraint would like on a lower dimensional surface. This lower dimensional surface

can come from a physical constraint that must hold true on the object observed or from a
mathematical constraint required by the representation of the data points. A very simple
example of this later type of constraint would be if the object observed was constrained to
lie on the unit sphere and was describe by

x =

[

sin(θ)
cos(θ)

]

,

where θ is the angle with the object location on the unit circle and the x-axis. In this case
the object in the representation above is over-parameterized and the components of each x
vector must satisfy

x2
1 + x2

2 = 1 ,

i.e. belong on a lower dimensional subspace.

Exercise 6 (desirable properties of clustering algorithms)

One very simple desirable property of a cluster algorithm is repeatability. That is running
the same algorithm on the same set of data should give the same set of cluster. For many
clustering algorithms such as K-mean clustering which uses initial cluster centers distributed
randomly this property is not explicitly satisfied.

Exercise 7 (K-means minimized |Sw|)

The K-means algorithm minimizes |Sw| or the volume occupied by the within-class scatter
matrix Sw, since if a point is too far from its currently assumed cluster center µ̂k it will be
relocated/reassigned to another cluster effectively reducing the volume occupied by

Sw =
1

NS

K
∑

k=1

Nk
∑

n=1

(zk,n − µ̂k)(zk,n − µ̂k)
T .

Exercise 8 (when does the EM algorithm degenerate to the K-means algorithm)

From Equations 165 and 170 the EM algorithm will become the K-means algorithm if the
distance between cluster centers and the data points becomes the Euclidean distance, which
will happen if the class covariance converge to the identity matrix (or a constant multiple of
it). In addition, the ownership x̄n,k needs to converge to an indicator function

x̄n,k →
{

1 zn ∈ ωk

0 otherwise
,

so that the update Equation 165 converges to the K-means update equation

µ̂k =
1

Nk

∑

zi∈Ck

zi . (172)

Exercise 9 (avoiding local minimums)

The easiest way to avoid local minimum is to perform multiple (or random) restarts of the
clustering algorithm. With this simple technique one runs the same cluster algorithm several
times with different initial conditions and ultimately returns the result that has the best fit
with the data.

Exercise 10 (parameters controlling generalization)

For the self-organizing map (SOM) the parameters that most strongly control the general-
ization ability are the dimension of the grid and the number of neurons in the grid. For
most neural net based techniques the more complicated the network the more capability the
net has to generalize. The drawback is that the net also has a much stronger propensity to
overfit the data and learn spurious relationships.

Chapter 8: (State Estimation in Practice)

Notes on the Text

Notes on Dynamic Stability and Steady-State Solutions

If we assume that our Kalman filter is operating on a linear time invariant system we can
derive a recursive update equation for x̄(i|i) using the Kalman filtering equations. We find

x̄(i|i) = x̄(i|i− 1) +K(z(i)−Hx̄(i|i− 1))

= (I −KH)x̄(i|i− 1) +Kz(i)

= (I −KH)(F x̄(i− 1|i− 1) + Lu(i− 1)) +Kz(i)

= (I −KH)F x̄(i− 1|i− 1) + (I −KH)Lu(i− 1) +Kz(i) ,

which is the book’s equation 8.25. Since the stability of this system does not depend on
the measurements z(i) or control u(i) we can take these these equal to zero in the above to
obtain

x̄(i|i) = (I −KH)F x̄(i− 1|i− 1) ,

which is the book’s equation 8.21.

Now if we define P (i) to be P (i) ≡ C(i+1|i) or the covariance matrix of the predicted state
we can derive a recursive equation for the predicted state covariance as

P (i) = C(i+ 1|i)
= F (i)C(i|i)F (i)T + Cw(i)

= F (i)(C(i|i− 1)−K(i)S(i)KT (i))F T (i) + Cw(i)

= F (i)P (i− 1)F (i)T + Cw(i)− F (i)K(i)S(i)KT (i)F T (i) , (173)

which is the book’s equation 8.22 and is known as the discrete Riccati equation.

A fundamental theorem presented in this section is the sufficient condition for system stabil-
ity. The conclusion that our system will be stable depends on the two previously introduced
notions of observability and controllability. The theorem presented in the book is as follows.
If (F,H) is completely observable and (F,G) is completely controllable then for any initial
condition P (0) = Cx(0) then the solution to the Riccati equation converges to a unique,
finite, invertible steady state covariance matrix denoted P (∞). This theorem is followed by
several examples that show that systems can still be steady if some of the initial conditions
above do not hold true. Some of these examples are worked in more detail below.

Notes on Example 8.7: Stability of a system that is not observable

This example shows that a system can be stable even if its not observable. See the MATLAB
script example 8 7.m for the MATLAB code that duplicates this example.

100 200 300
−10

−5

0

5

10
measurements

100 200 300

−20

0

20

first state

100 200 300

−20

0

20

second state

100 200 300
−5

0

5
error in first state

100 200 300
−5

0

5
error in second state

100 200 300
−5

0

5
innovations

100 200 300
0

5

10
nees

100 200 300
0

2

4

6

8
nis

100 200 300
0

5

10
periodogram

Figure 5: Innovations and normalized errors of a state estimator for a second order system.
This figure is a duplication of the books Figure 8.12.

Notes on Example 8.15: Consistency checks applied to a second order system

In this example, we perform optimal Kalman filtering on a second order system. We then
compute the three consistency checks for optimal filtering presented in the book. For review,
the first is the NEES normalized estimation error squared or

Nees(i) = eT (i|i)C−1(i|i)e(i|i) = (x(i|i)− x̂(i|i))TC−1(i|i)(x(i|i)− x̂(i|i)) .

The second is NIS the normalized innovation squared given by

Nis(i) = z̃TS−1(i)z̃(i) .

The third criterion is the whiteness of the residuals z̃(i) which is determined based on a scaled
version of the periodogram. All three of these items have known statistical properties. If
the computed value of any one of them diverges from the known distributions this can be
an indication that something has changed or that our model is not valid. In this example
we apply these consistency checks to a perfectly matched filter. See the MATLAB script
example 8 15.m for the MATLAB code that duplicates this example. When that script is
run it produces the plot shown in Figure 5. Since the distributions from which the above
residual errors arise are for filtering in steady-state, in the MATLAB script we generate some
initial set of data to be discarded and then compute statistics over the second portion of
the data where we hope the filtering is in steady-state. This procedure made the present
example look quite different with the next one where we filter the measurements with an
incorrect F matrix. Since in steady-state we know the distribution of from which Nees(i)
and Nis(i) we can compute quantiles of the given distributions and count how many times
the empirical measurements fall outside of these quantiles. Taking the 95% quantiles for this
example we find

100 200 300
−10

−5

0

5

10
measurements

100 200 300

−20

0

20

first state

100 200 300

−20

0

20

second state

100 200 300
−5

0

5
error in first state

100 200 300
−5

0

5
error in second state

100 200 300
−5

0

5
innovations

100 200 300
0

5

10

15
nees

100 200 300
0

5

10
nis

100 200 300
0

10

20

30
periodogram

Figure 6: Innovations and normalized errors of a state estimator based on a mismatched

model. This figure is a duplication of the books Figure 8.13. See the text for more details.

percentage of NESS points greater than c_95= 0.036667

percentage of NIS points greater than c_95= 0.046667

percentage of P_1k points greater than c_95= 0.050000

Since we expect that 5% of the points to fall outside of the computed quantile values these
numbers are consistent with the given assumptions. Thus we can informally conclude that
our filtering is “correct”.

Notes on Example 8.17: Consistency checks on a mismatched system

This is a continuation of Example 8.15 but in this case we use a system matrix F for filtering
the measurements z that is incorrect. We expect that the diagnostics procedures introduced
above should show this as a mismatched model. In the MATLAB script example 8 17.m we
perform the requested filtering. When we do that we get the result show in Figure 6. In
the resulting figure we see that the three diagnostic tools Nees, Nis, and the periodogram
all look to be well beyond expected values. We can again look and see how many empirical
points from Nees(i), Nis(i), and 2Pn(k)

σ2
n

are beyond their expected thresholds. In the model
mismatched case we find

percentage of NESS points greater than c_95= 0.886667

percentage of NIS points greater than c_95= 0.396667

percentage of P_1k points greater than c_95= 0.013333

A huge number of Ness(i) and Nis(i) data are too large and in addition the periodogram has
a huge peak all of which indicate that the model we are using to filter is incorrect. Note that
in this case even though the state estimates visually look similar to the true measurements,
the actual errors in the first and second states are larger than specified by the components
of the steady state covariance matrix.

Notes on autocorrelated measurement noise

If we assume a model for the measurement noise, v(i) of the form

v(i+ 1) = Fvv(i) + ṽ(i) ,

by state augmentation, we can produce an alternative system that is amenable to a direct

Kalman formulation. We form the augmented state given by

[

x(i)
v(i)

]

which has the following

system and measurement equations

[

x(i+ 1)
v(i+ 1)

]

=

[

F 0
0 Fv

] [

x(i)
v(i)

]

+

[

I
0

]

w(i) +

[

0
I

]

ṽ(i)

z(i) =
[

H I
]

[

x(i)
v(i)

]

.

Now the process noise is given by the two terms

[

I
0

]

w(i) +

[

0
I

]

ṽ(i) and will have a

covariance matrix given by

[

I
0

]

Cw

[

I 0
]

+

[

0
I

]

Cṽ

[

0 I
]

=

[

Cv 0
0 0

]

+

[

0 0
0 Cṽ

]

=

[

Cv 0
0 Cṽ

]

.

Since there is no measurement noise, the book then says to consider as measurement the
difference z(i)− Fvz(i− 1), where we find

y(i) = z(i)− Fzz(i− 1) = Hx(i) + v(i)− Fvz(i− 1) .

But using z(i− 1) = Hx(i− 1) + v(i− 1) in the above we find

y(i) = Hx(i) + v(i)− FvHx(i− 1)− Fvv(i− 1)

= Hx(i)− FvHx(i− 1) + v(i)− Fvv(i− 1)

= Hx(i)− FvHx(i− 1) + ṽ(i− 1) ,

which has a nontrivial covariance expression of Cṽ.

Exercise Solutions

Exercise 1 (an AR process)

The estimation of the parameters of an AR(M) model

x(i) =

M
∑

n=1

αnx(i− n) + w(i) , (174)

can be done by solving the Yule-Walker equations which are given by

r1
r2
r3
...
rM

=

1 r1 r2 r3 · · · rM−1

r1 1 r1 r2 · · · rM−2

r2 r1 1 r1 · · · rM−3
...

...
...

...
. . .

...
rM−1 rM−2 rM−3 rM−4 · · · r1

α1

α2

α3
...

αM

, (175)

where rk ≡ 1
σ2
x
E[x(i)x(i − k)] is the sample autocorrelation of x(i). Now σ2

w is given by

multiplying Equation 174 by x(i) and taking expectations. We get

σ2
x =

M
∑

n=1

αnrnσ
2
x + E(w(i)x(i)) .

We can evaluate this last term as

E(w(i)x(i)) = E

(

w(i)

(

M
∑

n=1

αnx(i− n) + w(i)

))

= σ2
w +

M
∑

n=1

αnE(w(i)x(i− n)) = σ2
w ,

where the summation vanishes since the terms w(i) and x(i−n) are independent when n ≥ 1
and w(i) is a zero mean process. Thus we get

σ2
x =

M
∑

n=1

αnσ
2
xrn + σ2

w ,

as the equation that can be solved for σ2
w once we know αn.

The previous discussion aims at determining the coefficients of the AR(M) model. This
does not discuss how to determine the order of the AR(M) model that best fits the data.
The order of an AR sequence x(i) is obtained by the partial autocorrelation function. To
compute this function we fit an AR(M̂) model for M̂ = 1, 2, · · · and obtaining coefficients
α̂n,M̂ that are estimates of the AR coefficients in Equation 174 for 1 ≤ n ≤ M̂ . We then
produce a partial autocorrelation function plot by plotting the last of these coefficients or
αM̂,M̂ for each model. The selection of the correct AR model is based on the fact that a true

AR(M) model has the property that αM̂,M̂ = 0 when M̂ > M . This motivated the practical
procedure often used where the index at which our partial autocorrelation function falls to
zero is taken to be the order of the AR model.

In the R file ex 1.R we compute the sample partial autocorrelation function on this data
set and find that it has a significant component at the n = 1 lag indicating that this data
looks to be coming from an AR(1) model. We next fit an AR(1) model to this data and
to verify the completeness of our model look at the resulting partial autocorrelation and
autocorrelation function of the residuals. If the AR(1) model is sufficient to describe this
data these two functions should be insignificant. From the sample autocorrelation plot of the
residuals they look to be coming from a moving average process since they have a significant
component at the n = 1 lag. Thus to the original model we include a MA(1) term. The
final result is that this data seems to be coming from an ARIMA(1,0,1) model. In addition,
we found that another potential model could arise by taking the first difference of the time
series data and then fitting an MA(1) model to it. This second approach also seems to yield
statistically negligible autocorrelation and partial autocorrelation terms.

Exercise 2-6 (observability and controllability of some linear systems)

To solve these exercises one needs to recall the definitions of observability and controllability
of linear systems. These two notions can be determined for a given linear system by looking
at the Gramian or matrix representation or observability or controllability. For observability,
a time-dependent system has a Gramian given by

G = HT (i)H(i) +

n
∑

j=1

(

H(i+ j)

j−1
∏

k=0

F (i+ k)

)T (

H(i+ j)

j−1
∏

k=0

F (i+ k)

)

, (176)

The observability Gramian for a linear-time invariant system then simplifies to

G =
n
∑

j=0

(HF j)T (HF j) , (177)

For our given system to be observable we must have the observability Gramian have a rank
M (the dimension of the state space) or equivalently for G to be positive definite. In this case
we can extract all the parameters of x(i). We can check the observability (after observing
an infinite number of measurements z(i) by letting n → ∞). We can also construct the
observability matrix M which has its definition motivated by stacking z(i), z(i+1), z(i+2)
etc. into one column and relating the entire sequence of measurements to the initial state
vector x(i). This gives the observability matrix or

M =

H
HF
HF 2

...
HFM−1

. (178)

As with the observability Gramian the matrix M must have a rank of M . This definition
of observability assumes that there is no observation noise. When there is observation noise
v(i) with a covariance matrix given by Cv the discussion in the text indicates that the matrix
one wants to consider in that case is given by

i
∑

j=0

((F−1)T)jHTC−1
v H(F−1)j .

To be observable in the presence of noise requires that this matrix have rank M . Note that
if Cv is a scalar so that our measurement z is a scalar then the noise covariance does not
really play a roll in the determination of the observability since it won’t affect the rank of
the above expression.

The controllability Gramian is not defined in this book and instead the focus presented here
is on the controllability matrix which for linear time invariant systems is defined by

[

L FL F 2L · · · FM−1L
]

, (179)

where the M in the final power of F above is the dimension of the state vector x. If the
controllability matrix has rank M then the system is said to be controllable. Note that
for observability say one can look at the eigenvalues of the observability Gramian or the
singular values of the observability matrix and take the ratio of the smallest value to the
largest value. This ratio determines “how” observable a system is. The smaller this number
(the smallest it can and still have the system observable be is zero) the less observable the
system is. Similar comments hold for controllability.

For the given F and H we find numerically that the observability Gramian and observability
matrix are given by

G =

[

426.1918 213.0752
213.0752 106.5273

]

M =

[

10.0000 5.0000
9.0002 4.4999

]

.

One eigenvalues in each matrices is near zero and the other one is considerable larger. The
ratio of smallest eigenvalue to largest eigenvalue for each matrix is given by

9.5300 10−11 and − 1.1415 10−5 .

The fact that these are so small indicates while this system is observable it is very weakly
so. This means that we should expect to have to process many measurements to obtain
reasonable estimate of the state.

Exercise 3 (examples with observability and controllability)

For this system definition in the MATLAB file ex 3.m we find that the system is both
observable and controllable. From the theorem presented above this indicates that the
steady-state Kalman filter does exist. We can then compute the steady state value of P

by iterating Equation 173. Once this is done we can determine the steady-state innovation
matrix S and Kalman gain using Equations 40 and 41 respectively. We find

S = 1.5827 and K =

[

0.0313
0.3368

]

.

We can compute the steady-state error covariance matrix Cx(∞) by solving Equation 42
repeated here for convenience

Cx(∞) = FCx(∞)F T + Cw ,

which when we do this we get

Cx(∞) =

[

0.1459 −0.1039
−0.1039 0.7537

]

.

Exercise 4 (more examples of observability and controllability)

This problem is worked in the MATLAB script ex 4.m. When it is run we see that F is has
eigenvalue greater than one and thus this system will not be stable. We find that the system
is not observable but is controllable. Thus we cannot conclude that a steady-state solution
to the Riccati equation will exist. In any case, it seems to exist and can be computed by
iteration. Thus the steady-state Kalman gain and innovation matrix also exist. Attempting
to compute the discrete Lyapunov equation by iteration fails.

Exercise 5 (more examples of observability and controllability)

This problem is worked in the MATLAB script ex 5.m. When it is run we see that F is one
eigenvalue less than one and one eigenvalue equal to one. We find this system is observable
and controllable and therefore we know that a steady-state solution to the Lyapunov equation
exists.

Exercise 8 (drift in the measurements)

To solve this problem with a discrete Kalman filter we will let our state be x(i) =

[

x(i)
v(i)

]

,

then the dynamics for a vector state like this can be derived as

x(i+ 1) =

[

x(i+ 1)
v(i+ 1)

]

=

[

αx(i) + w(i)
βv(i) + ṽ(i)

]

=

[

α 0
0 β

] [

x(i)
v(i)

]

+

[

w(i)
ṽ(i)

]

.

Now our vector noise is given

[

w(i)
ṽ(i)

]

∼ N(0, Cw) where Cw(i) =

[

σ2
w 0
0 σ2

ṽ

]

=

[

0.0975 0
0 0.002

]

and the measurement equation is given by

z(i) = x(i) + v(i) =
[

1 1
]

[

x(i)
v(i)

]

,

which has no noise i.e. Cv the measurement noise covariance is zero. So for this system we
have found

F =

[

α 0
0 β

]

, H =
[

1 1
]

, Cw(i) =

[

0.0975 0
0 0.002

]

, Cv(i) = 0 ,

for the state space model.

The observability of this system is given by looking at the Gramian

G =

n
∑

j=0

(HF j)T (HF j) .

Because F is diagonal the values of α and β are the same as the eigenvalues of F . When
α = 0.95 and β = 0.999 since they are both less than one we see that our system is
therefore stable. We can compute the observability Gramian by taking n → ∞ in the above
summation. Since the magnitude of the eigenvalues of F are so close to 1 we will need a
large number of terms in the summation to guarantee convergence. Taking 20000 terms we
find

G =

[

9.2564 18.6271
18.6271 499.2501

]

.

which has rank 2 showing that this system is observable. To determine the controllability
of this system consider the deterministic system with the addition of a term Lu(i) giving

x(i+ 1) = Fx(i) + Lu(i) .

the theory of controllability is general enough to consider an arbitrary matrix L but since it
is not directly specified in the problem statement we may take it to be the identity. Then
the system controllability is determined by the matrix

[

L FL F 2L · · · FM−1L
]

=
[

I F F 2 · · · FM−1
]

.

Where M is the dimension of the state space x which in this case is 2. When we construct
this matrix we find

[

1 0 0.95 0
0 1 0 0.99

]

,

which has rank two showing that this system is controllable.

The discrete Lyapunov equation is given by

Cx(∞) = FCx(∞)F T + Cw ,

which we will solve numerically by iteration. We find

Cx(∞) =

[

1 0
0 1.0005

]

.

The numerical computations for this problem are performed in the MATLAB script ex 8.m.

References

[1] P. A. Devijver and J. Kittler. Pattern recognition: A statistical approach. Prentice Hall,
1982.

[2] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience
Publication, 2000.

[3] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis, Second

Edition. Chapman & Hall/CRC, July 2003.

[4] M. S. Grewal and A. P. Andrews. Kalman Filtering : Theory and Practice Using MAT-

LAB. Wiley-Interscience, January 2001.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
New York, 2001.

[6] W. G. Kelley and A. C. Peterson. Difference Equations. An Introduction with Applica-

tions. Academic Press, New York, 1991.

[7] J. Weatherwax. A Solution Manual and Study Guide for: Pattern recognition: A statis-

tical approach by Pierre A. Devijver and Josef Kittler. 2009.

[8] R. R.Wilox. Basic Statistics: Understanding Conventional Methods and Modern Insights.
Prentice Hall, 2002.

