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To my family.
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Introduction

As a final comment, I’ve worked hard to make these notes as good as I can, but I have no
illusions that they are perfect. If you feel that that there is a better way to accomplish
or explain an exercise or derivation presented in these notes; or that one or more of the
explanations is unclear, incomplete, or misleading, please tell me. If you find an error of
any kind – technical, grammatical, typographical, whatever – please tell me that, too. I’ll
gladly add to the acknowledgments in later printings the name of the first person to bring
each problem to my attention.
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Review

Ordinary and Singular Points

Exercise 1.1

Part (a): All points are ordinary points.

Part (b): All points are ordinary points.

Part (c): Write this differential equation as

y′′ − 1

x
y = 0 .

Now x = 0 is a singular point and all others are ordinary points.

Part (d): Write this differential equation as

y′′ +
x+ 1

x(x− 1)
y′ +

x+ 2

x(x− 1)
y = 0 .

Now x = 0 and x = 1 are a singular points and all others are ordinary points.

Part (e): Write this differential equation as

y′′ +

(

x2 + x+ 1

x2 + x− 6

)

y′ +

(

x− 1

x2 + x− 6

)

y = 0 ,

or

y′′ +

(

x2 + x+ 1

(x+ 3)(x− 2)

)

y′ +

(

x− 1

(x+ 3)(x− 2)

)

y = 0 .

Now x = −3 and x = 2 are a singular points and all others are ordinary points.

Exercise 1.2

Part (a): As both sin(x) and ex are analytic for all x all points are ordinary points.

Part (b): Write this differential equation as

y′′ − x

3
√
x+ 1

y′ +

√
x− 1√
x+ 1

y = 0 .

We can expand the coefficients of y′ and y in a Taylor series only when x > −1. Thus all
these points are ordinary points and all others are singular points.
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Part (c): Write this differential equation as

y′′ +
cos(x)

sin(x)
y′ +

x

sin(x)
y = 0 .

The coefficients of y′ and y are singular when x = nπ for n ∈ Z. For x ∈ [−2π, 2π] the only
points singular points are then x ∈ {−2π,−π, 0, π, 2π} all other points are ordinary points.

Part (d): The coefficient of y′ is the Taylor series for ex and the coefficient of y is the Taylor
series of cosh(x) both of which are analytic for all x. Thus there are no singular points of
this differential equation and all points are ordinary points.
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Boundary Value Problems

Introduction

Exercise 1.1

The reduced homogeneous system sets the right-hand-sides of both the differential equation
and the boundary conditions to zero.

Part (a): The homogeneous system takes the form

x2y′′ + xy′ + y = 0

y(0) + y′(0) = 0

y(0)− 3y(5) = 0

y′(0) = 0 .

Part (a): The homogeneous system takes the form

y(iv) + 6y′′ + 9y = 0

y(a)− 2y′(a) + 3y(b) = 0

y′′′(b) = 0

y′′(a)− y′′′(a)− 2y(b)− 3y′(b) = 0 .

Exercise 1.2

This would be 2n with n the order of the differential equation. Thus in this case this is
2(5) = 10.

Exercise 1.3

Part (a): Our boundary value problem is

y′′(x) + 4y(x) = 0

y(0) + y′
(π

2

)

= 0 .

Here m = 1 (that is there is one boundary condition). Two linear independent solutions to
the homogeneous equation are

y1(x) = cos(2x)

y2(x) = sin(2x) .
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The boundary condition matrix U (defined in the book) is

U =
[

U1(y1) U1(y2)
]

=
[

U1(cos(2x)) U1(sin(2x))
]

.

Now

U1(cos(2x)) = 1− 2 sin(2x)|x=π

2

= 1− 2 sin(π) = 1

U1(sin(2x)) = 0 + 2 cos(2x)|x=π

2

= 2 cos(π) = −2 .

Using these two we have
U =

[

1 −2
]

.

This matrix has rank of one thus the system is n − r = 2 − 1 = 1-ply i.e. there is one
linearly independent solution to this boundary value problem. To find the constraints we
must impose on y1(x) and y2(x) we want to solve

Uc =
[

1 −2
]

[

c1
c2

]

= 0 so c1 = 2c2 .

Taking c2 = 1 a solution is
yA(x) = 2 cos(2x) + sin(2x) .

For this function we see that

y′A(x) = −4 sin(2x) + 2 cos(2x) .

Thus we have that
yA(0) + y′A

(π

2

)

= 2− 2 = 0 ,

as it should.

Part (b): This is the same differential equation as in Part (a) thus we will use the same
linear independent solutions to the homogeneous differential equation as above. Now we
have we have m = 2 boundary conditions and the matrix U looks like

U =

[

U1(cos(2x)) U1(sin(2x))
U2(cos(2x)) U2(sin(2x))

]

=

[

1 −2
U2(cos(2x)) U2(sin(2x))

]

.

In my version of the book the second boundary condition could be

y
(π

2

)

= 0 ,

in which case we would compute

U2(cos(2x)) = cos(2x)|x=π

2

= cos(π) = −1

U2(sin(2x)) = sin(π) = 0 ,

so that

U =

[

1 −2
−1 0

]

.
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This matrix has a rank of two. Thus this system is n− r = 2− 2 = 0-ply. The only solution
to Uc = 0 is c = 0. This means that the only solution is y(x) = 0.

If the the second boundary condition is be

y′
(π

2

)

= 0 ,

in which case we would compute

U2(cos(2x)) = −2 sin(2x)|x=π

2

= 0

U2(sin(2x)) = 2 cos(π) = −2 ,

so that

U =

[

1 −2
0 −2

]

.

This matrix also has a rank of two, so the system is n− r = 2 − 2 = 0-ply. Again the only
solution to Uc = 0 is c = 0. This means that the only solution is y(x) = 0.

Part (c): For the homogeneous differential equation two linearly independent solutions are

y1(x) = e−3x so y′1(x) = −3e−3x

y2(x) = e3x so y′2(x) = 3e3x .

Here we have m = 2 < 2n = 2(2) = 4. For these two boundary values the matrix U is given
by

U =

[

U1(y1) U1(y2)
U2(y1) U2(y2)

]

=

[

1 + e−3 1 + e3

−3 + 3e−3 3− 3e3

]

.

Using elementary row operations we can transform U into the matrix

[

1 1+e3

1+e−3

0 0

]

,

thus this matrix has rank one. This system is then n− r = 2− 1 = 1-ply. To find that one
linearly independent solution we need to enforce the constraint

c1 +
1 + e3

1 + e−3
c2 = 0 .

If we take c2 = −(1 + e−3) then we should take

c1 = 1 + e3 ,

so that the solution is
yA(x) = (1 + e3)e−3x − (1 + e−3)e3x .

As a check using the above we find

yA(0) + yA(1) = (1 + e3)− (1 + e−3) + (1 + e3)e−3 − (1 + e−3)e3

= e3 − e−3 + e−3 + 1− e3 − 1 = 0 ,
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and that

y′A(0)− y′A(1) = −3(1 + e3)− 3(1 + e−3)− (−3(1 + e3)e−3 − 3(1 + e−3)e3) = 0 ,

when we simplify.

Part (d): Here the degree is n = 3 and to find linearly independent solution to the homo-
geneous equation we let y(x) = erx to get the characteristic equation of

r3 − r2 + r − 1 = 0 .

This has roots r = ±i and r = 1 so the homogeneous solutions are

y1(x) = ex

y2(x) = cos(x)

y3(x) = sin(x) .

The matrix U for these boundary conditions is

U =





U1(y1) U1(y2) U1(y3)
U2(y1) U2(y2) U2(y3)
U3(y1) U3(y2) U3(y3)



 =





1 1 0
1 + eπ 1− cos(π) 0− sin(π)
eπ − cos(π) − sin(π)



 =





1 1 0
1 + eπ 2 0
eπ 1 0



 .

This matrix has a rank of two. This system is then n− r = 3−2 = 1-ply. To determine how
to constrain the solutions to the homogeneous equation so that they satisfy the boundary
conditions we next need to solve Uc = 0. Using elementary row operations we can reduce
the system Uc = 0 to the system





1 0 0
0 1 0
0 0 0



 c =





0
0
0



 .

This means that c1 = c2 = 0 and c3 is arbitrary. Thus if we take c3 = 1 we get the solution

yA(x) = sin(x) .

For this solution we have y′′A(x) = − sin(x) from which we see that this solution does satisfy
all of the required boundary conditions.

Part (e): The degree of this equation is n = 4 and to find linearly independent solution
to the homogeneous equation we will let y(x) = erx. Putting this into the homogeneous
equation we get

r4 − r3 = r3(r − 1) = 0 ,

for the characteristic equation. This equation has roots r = 0 (with an algebraic multiplicity
of three) and r = 1 so a set of linearly independent homogeneous solutions are

y1(x) = 1

y2(x) = x

y3(x) = x2

y4(x) = ex .
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With only one boundary condition the matrix U is a row vector and takes the form

U =
[

2 0 + 1 0 + 12 1 + e1
]

=
[

2 1 1 1 + e1
]

.

This “matrix” has a rank of one. Thus our system is n − r = 4 − 1 = 3-ply. To find these
three linearly independent solutions to our boundary value problem we need to solve Uc = 0
for c. This is the equation

2c1 + c2 + c3 + (1 + e)c4 = 0 .

We can get three linearly independent solutions to this constraint by taking

c2 = 2 , c3 = 0 , c4 = 0 so c1 = −1 ,

c2 = 0 , c3 = 2 , c4 = 0 so c1 = −1 ,

c2 = 0 , c3 = 0 , c4 = 2 so c1 = −1 − e .

Using these constants, three linearly independent solutions are then

yA(x) = −1 + 2x

yB(x) = −1 + 2x2

yC(x) = −1− e+ 2ex .

We next check that each of these satisfies the boundary conditions

yA(0) + yA(1) = −1 + 1 = 0

yB(0) + yB(1) = −1 + 1 = 0

yC(0) + yC(1) = (−1− e+ 2) + (−1 − e+ 2e) = 0 ,

as they should. Using these three functions the general solution to this boundary value
problem is

y(x) = c1yA(x) + c2yB(x) + c3yC(x) .

Part (f): For the homogeneous differential equation y(iv)(x) = 0 if we let y(x) = erx then we
get the characteristic equation r4 = 0. We can take n = 4 linearly independent homogeneous
solutions to be (I also compute the x derivatives of each since I’ll need them later)

y1(x) = 1 y′1(x) = 0

y2(x) = x y′2(x) = 1 y′′2(x) = 0

y3(x) = x2 y′3(x) = 2x y′′3(x) = 2 y′′′3 (x) = 0

y4(x) = x3 y′4(x) = 3x2 y′′4(x) = 6x y′′′4 (x) = 6 y
(4)
4 (x) = 0 .

For the four boundary conditions given and the homogeneous solutions above the matrix U
takes the form

U =









1− 0 0− 1 0− 2 0− 3
0 0 2 0

0 + 0 1 + 0 0 + 2 0 + 6
0− 0 0− 0 0− 0 6− 6









=









1 −1 −2 −3
0 0 2 0
0 1 2 6
0 0 0 0









.
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We can show that this matrix has a rank of three. Thus this system is n− r = 4−3 = 1-ply.
To find the constraint needed to apply to the functions y1(x), y2(x), y3(x), y4(x) we need to
solve Uc = 0 for c. Using elementary row operations we can write the system Uc = 0 as









1 0 0 3
0 1 0 6
0 0 1 0
0 0 0 0









c = 0 .

This means that c1 = −3c4, c2 = −6c4, c3 = 0, and c4 is arbitrary. Taking c4 = 1 this means
that the only solution to the boundary value problem is

yA(x) = −3− 6x+ x3 .

The derivatives of this are given by

y′A(x) = −6 + 3x2

y′′A(x) = 6x

y′′′A (x) = 6 .

Thus we see that yA(x) satisfies all of the boundary conditions as

yA(0)− y′A(1) = −3− (−3) = 0

y′′A(0) = 0

y′A(0) + y′′A(1) = −6 + 6 = 0

y′′′A (0)− y′′′A (1) = 6− 6 = 0 ,

as it should.

Part (g): Putting y(x) = xr into the differential equation we get

r(r − 1) + r + 1 = 0 ,

which has solutions r = ±i. This means that two linearly independent solutions to the
homogeneous problem are (here I also compute their derivatives)

y1(x) = cos(ln(x)) y′1(x) = −sin(ln(x))

x

y2(x) = sin(ln(x)) y′2(x) =
cos(ln(x))

x
.

With only one boundary condition the matrix U is a single row and takes the form

U =
[

cos(ln(1))− sin(ln(1))
1

sin(0) + cos(0)
1

]

=
[

1 1
]

.

This has a rank of one. Thus this system is n− r = 2− 1 = 1-ply. To find our one linearly
independent solution we need to solve Uc = 0 for c. This is the requirement that c1 = −c2.
We can get our one solution to this by taking c2 = 1 so that c1 = −1. Then one solution to
our boundary value problem is then

yA(x) = − cos(ln(x)) + sin(ln(x)) .
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For this function we have

y′A(x) =
sin(ln(x))

x
+

cos(ln(x))

x
.

Thus we have

yA(1) + y′A(1) = − cos(0) + sin(0) + sin(0) + cos(0) = 0 ,

as it should.

Exercise 1.4

Part (a): The solution to our homogeneous differential equation y′(x) = 0 is y1(x) = 1.
A particular solution is yp(x) = x. As there are two boundary conditions the U matrix is

U =

[

1
1

]

and is rank one. The matrix Uγ is

Uγ =

[

1 0− 0
1 3− 2

]

=

[

1 0
1 1

]

,

which has rank two. As the rank of U and Uγ are not equal there no solutions to this system.

This made me wonder if there is a typo on this problem. Note that the general solution to
this differential equation is

y(x) = c1 + x .

Now to have y(0) = 0 we have c1 = 0 so that y(x) = x. Note that in that case the second
boundary condition won’t hold true as y(2) = 2 6= 3. Lets assume that there is a typo in the
book and the boundary condition should have been y(2) = 2 (for then we know there will
be a solution). In that case we have

Uγ =

[

1 0
1 2− 2

]

=

[

1 0
1 0

]

,

which has rank one. Following the book we now want to solve the linear system of Uc set
equal to the last column of Uγ . This is the system

[

1
1

]

c1 =

[

0
0

]

.

To make this true we must take c1 = 0 and we get yA(x) = x.

Part (b): By putting y(x) = erx into the homogeneous equation we get r2 + 16 = 0 which
means that two solutions to the homogeneous solutions are given by

y1(x) = cos(4x) so y′1(x) = −4 sin(4x)

y2(x) = sin(4x) so y′2(x) = 4 cos(4x) .
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A particular solution to this differential will take the form yp(x) = Ax + B. For this form
we have y′p(x) = A and y′′P (x) = 0. Putting this into our differential equation we require

16(Ax+B) = x .

This means that A = 1
16

and B = 0 and we have shown that

yp(x) =
1

16
x .

For these two boundary conditions the U matrix looks like

U =

[

1− 4 sin(4π) 0 + 4 cos(4π)
−4 sin(0) 4 cos(0)

]

=

[

1 4
0 4

]

.

This matrix has rank two. Next we have

Uγ =

[

1 4 0− U1(yp)
0 4 2− U2(yp)

]

=

[

1 4 0− (0 + 1
16
)

0 4 2− 1
16

]

=

[

1 4 − 1
16

0 4 31
16

]

,

which also has rank two. Next using elementary row operations we can transform the system
where we have Uc set equal to the last column of Uγ into

[

1 0
0 1

] [

c1
c2

]

=

[

−2
31
64

]

.

This means that c1 = −2 and c2 =
31
64

so the solution looks like

yA(x) = −2 cos(4x) +
31

64
sin(4x) +

1

16
x .

For this expression we find

y′A(x) = 8 sin(4x) +
31

16
cos(4x) +

1

16
.

This means that

yA(0) + y′A(π) = −2 +
31

16
+

1

16
= 0

y′A(0) =
31

16
+

1

16
= 2 ,

as it should.

Part (c): For the homogeneous solution we have

y1(x) = cos(3x) so y′1(x) = −3 sin(3x)

y2(x) = sin(3x) so y′2(x) = 3 cos(3x) .

A particular solution takes the form

yp(x) = A cos(x) +B sin(x) .
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This means that
y′′p(x) = −A cos(x)−B sin(x) .

If we put this into the differential equation we get

(−1 + 9)A cos(x) + (−1 + 9)B sin(x) = sin(x) .

Solving we have that

A = 0 and B =
1

8
,

so we get

yp(x) =
1

8
sin(x) .

Next consider the U matrix which for this boundary condition looks like

U =
[

cos(0)− 3 sin(0) sin(0) + 3 cos(0)
]

=
[

1 3
]

,

which has rank one. Next consider

Uγ =
[

1 3 1− U1

(

1
8
sin(x)

) ]

=
[

1 3 1− 1
8

]

=
[

1 3 7
8

]

.

Which also has a rank of one. Thus this system is 2− 1 = 1-ply. The system where we have
Uc set equal to the last column of Uγ gives

[

1 3
]

[

c1
c2

]

=
7

8
.

This means that

c1 = −3c2 +
7

8
.

Thus taking c2 =
(

1
3

) (

7
8

)

= 7
24

gives c1 = 0 and we get

yA(x) =
7

24
sin(3x) +

1

8
sin(x) .

For this expression we have

y′A(x) =
7

8
cos(3x) +

1

8
cos(x) .

Thus

yA(0) + y′A(0) = 0 +
7

8
+

1

8
= 1 ,

as it should.

Part (d): To find homogeneous solutions we take y(x) = erx and put this into the differential
equation where we get

r2 − 2r − 3 = (r − 3)(r + 1) = 0 .
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This means that r = 3 and r = −1 so that two linearly independent solutions to the
homogeneous equation are

y1(x) = e−x so y′1(x) = −e−x

y2(x) = e3x so y′2(x) = 3e3x .

A particular solution is given by yp(x) = Aex. If we put this into the differential equation
we get

Aex − 2Aex − 3Aex = ex so A = −1

4
.

This means that

yp(x) = −1

4
ex .

Next the U matrix (with three boundary conditions) looks like

U =





1 1
−1 3

e−1 − e−1 e3 + 3e3



 =





1 1
−1 3
0 4e3



 .

This matrix has rank of two. Next consider

Uγ =





1 1 1−
(

−1
4

)

−1 3 0−
(

−1
4

)

0 4e3 2−
(

−1
4
e− 1

4
e
)



 =





1 1 5
4

−1 3 1
4

0 4e3 2 + 1
2
e



 .

This matrix has a rank of three. As this is not equal to the rank of U there are no solutions
to this boundary value problem. To create a problem that has a solution if we change the
third boundary condition so that the last row in the Uγ matrix is exactly the sum of the two
previous rows (when multiplied by e3) that is

γ3 −
(

−1

4
e− 1

4
e

)

=

(

5

4
+

1

4

)

e3 =
3

2
e3 .

This means that

γ3 =
3

2
e3 − 1

2
e .

Thus lets assume that the third boundary condition should be

y(1) + y′(1) =
3

2
e3 − 1

2
e . (1)

Then the matrix Uγ is

Uγ =





1 1 5
4

−1 3 1
4

0 4e3 3
2
e3 − 1

2
e−

(

−1
4
e− 1

4
e
)



 =





1 1 5
4

−1 3 1
4

0 4e3 3
2
e3



 .

As the last row is a linear combination of the previous two rows this matrix has a rank of
two. This system is then 2 − 2 = 0-ply compatible which means there is only one solution
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but that linear multiples of it are not solutions. To find the solution we need to solve the
system where we have Uc set equal to the last column of Uγ gives which is





1 1
−1 3
0 4e3





[

c1
c2

]

=





5/4
1/4

(3/2)e3



 .

Applying elementary row operations we get the following sequence of manipulations





1 1
0 4
0 4e3





[

c1
c2

]

=





5/4
3/2

(3/2)e3



 ,

and




1 1
0 1
0 4e3





[

c1
c2

]

=





5/4
3/8

(3/2)e3



 ,

and




1 1
0 1
0 0





[

c1
c2

]

=





5/4
3/8
0



 ,

and




1 0
0 1
0 0





[

c1
c2

]

=





7/8
3/8
0



 .

This means that the only solution is

yA(x) =
7

8
e−x +

3

8
e3x − 1

4
ex .

Lets check that this solution satisfies the boundary conditions (as it should)

yA(0) =
7

8
+

3

8
− 1

4
= 1 .

as it should be. The derivative of yA(x) is given by

y′A(x) = −7

8
e−x +

9

8
e3x − 1

4
ex ,

so that

y′A(0) = −7

8
+

9

8
− 1

4
= 0 .

Finally for the third boundary condition see that

yA(1) + y′A(1) =
7

8
e−1 +

3

8
e3 − 1

4
e1 +

(

−7

8
e−1 +

9

8
e3 − 1

4
e1
)

=
3

2
e3 − 1

2
e .

which is the modified boundary condition we constructed in Equation 1.
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