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Introduction

Here you’ll find solutions to the problems that I wrote up as I worked through this excellent
book. I would say that the problems you will find here are more challenging than the ones
found in a typical a first year calculus course. They are a great introduction to some more
advanced techniques. For some of the problems I used R to perform any needed calculations
or plots. Any code snippets for various exercises can be found at the following location:

http://www.waxworksmath.com/Authors/A_F/Ferrar/ferrar.html

I’ve worked hard to make these notes as good as I can, but I have no illusions that they
are perfect. If you feel that that there is a better way to accomplish or explain an exercise
or derivation presented in these notes; or that one or more of the explanations is unclear,
incomplete, or misleading, please tell me. If you find an error of any kind – technical,
grammatical, typographical, whatever – please tell me that, too. I’ll gladly add to the
acknowledgments in later printings the name of the first person to bring each problem to my
attention.

4



Chapter 1: Mathematical Models

An Illustrative Example of Inventory Control

Exercise 1

The answers to these would really depend on

• Whether a solvable mathematical model could be developed under the assumptions.

• The requirement that the mathematical model gives solutions that are “close” to ob-
served reality.

Part (a): As a point particle circling another point particle each with different masses.

Part (b): As a flat surface on which the ship sails.

Part (c): As a large sphere with the helicopter hovering above it.

Part (d): As a large sphere with a point particle circling above it.

Exercise 2

Part (a): In this case the new total cost function is

c(k) = 100

[

100 + 9k +
140

k

]

.

Part (b): In this case the new total cost function is

c(k) = 100

[

100 + 9k +
81

k

]

.

The following R code evaluate this expression at different values of k is given by

ks = seq(1, 11)

Cs = 100 * ( 100 + 9*ks + 81/ks )

print(data.frame(k=ks, C=Cs))

which gives
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k C

1 1 19000.00

2 2 15850.00

3 3 15400.00

4 4 15625.00

5 5 16120.00

6 6 16750.00

7 7 17457.14

8 8 18212.50

9 9 19000.00

10 10 19810.00

11 11 20636.36

This has a minimum at k = 3 as stated in the problem. As 100

k
= 33.33333 is not an integer

we might ship 33 out of the warehouse every 33 days and then ship 34 out of the warehouse
the last time to still make a total of 100. This should have a cost approximately equal to
that of the optimal strategy but allows integer numbers.

Exercise 3

We would need to know the current distribution of the population i.e. what mix people
do we currently have and what is the distribution of people coming into the country. Our
mathematical model would be one of modeling the change from the initial population distri-
bution to one that would more closely match the incoming population distributing. Models
of these types are commonly called ”dynamic population models”. A simple model of this
type is the logistic equation.

Exercise 4

Recall that an egg is made up of the “egg yoke” and the “egg white” with the yoke a mostly
spherical region in the center of the egg. Assuming a spherical.egg, one might model an
egg cooking as the change that takes place to the spherical yoke and white outside the yoke
but inside the spherical shell of the egg. In this formulation, the modeling is specifically
constructed to model things like the density change in the various regions as the cooking
takes place. Obviously the chemical process that takes place during the cooking process is
complicated and could involve as many modeling assumptions as desired.
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Chapter 2: Linear Programming

Introductory Example

Exercise 1

For this expression for f we find

f(kx, ky, kz) = akx+ bky + ckz = k(ax+ by + cz) = kf(x, y, z) ,

and that

f(x1, y1, z1) + f(x2, y2, z2) = ax1 + by1 + cz1 + ax2 + by2 + cz2

= a(x1 + x2) + b(y1 + y2) + c(z1 + z2)

= f(x1 + x2, y1 + y2, z1 + z2) .

Exercise 2

Part (a): Similar to the above we would have functions of the form

n
∑

i=1

aixi .

Part (b): Note that for this f we have

f(kx, ky) = akx+ bky + c = k(ax+ by) + c 6= kf(x, y) ,

and thus is not a linear function.

Part (c): We have
f(kx) = (kx)2 = k2x2 6= kf(x) .

Linear Inequalities

Exercise 1

In each of these plots we have drawn the x-y Cartesian coordinate axis along with lines
representing the decision boundaries. The solution set for each part is drawn in gray.

Part (a-b): See Figure 1.
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Figure 1: Left: The solution set for Part (a). Right: The solution set for Part (b).

−20 −10 0 10 20

−1
5

−1
0

−5
0

5
10

15

x

y

Part (c)

−20 −10 0 10 20

−1
5

−1
0

−5
0

5
10

15

x

y

Part (d)

Figure 2: Left: The solution set for Part (c). Right: The solution set for Part (d).
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Figure 3: The solution set for Part (e).

Part (c-d): See Figure 2.

Part (e): See Figure 3.

Exercise 2

Lets denote these points as A = (0, 0), B = (1, 2), and C = (−2, 4) then

• The line connecting the points A and B is given by y = 2

1
x = 2x.

• The line connecting the points B and C is given by

y − 2 =
4− 2

(−2 − 1)
(x− 1) ,

which becomes

y = −2

3
x+

8

3
,

when we simplify.

• The line connecting the points C and A is given by y =
(

4−0

−2−0

)

x = −2x.

To denote the interior of the triangle we would need to specify inequalities on the ”lines”
above to be

y − 2x ≥ 0

3y + 2x ≤ 0

y + 2x ≥ 0 .
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Figure 4: Left: The solution set for Part (c). Right: The solution set for Part (d).

Exercise 3

These would be

x2 + y2 ≤ 22

x ≤ 0 .

Two Examples

Exercise 1

Part (a): See Figure 4 (left). There we increase the value of the contours of P (x, y) =
4x+ y = a for different values of a we get the black, blue, and red lines. These lines step to
the right as a increases. From this behavior it looks like the largest value for P (x, y) will be
when it passes though the ”right most” corner of the square which is the point (x, y) = (4, 2).
There the value is P (4, 2) = 18.

Part (b): See Figure 4 (right). There we increase the value of the contours of P (x, y) =
x+ y = a for different values of a we get the black, blue, and red lines. These lines step to
the right as a increases. From this behavior it looks like the smallest value for P (x, y) will
be when it passes though the ”bottom-left” side of the square which is a line segment going
through the points (0, 2) and (2, 0). That line segment is the line y = 2−x for 0 ≤ x ≤ 2 and
there is no unique optimum location but the smallest value on this segment is P (x, y) = 2.
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Figure 5: The level curves for x, 2x− 4y, and x2 + y2.

Exercise 2

This can often be done using the contour function in R. In the R code chap 2 sect 4 prob 2.R

we do this for each of the five given expressions. The first three are plotted in Figure 5 and
the last two are plotted in Figure 6. Notice that level curves for the first three are vertical
lines, diagonal lines, and circles respectively.

Level curves for the second two would be x
y
= k0 (or x = k0y) and

x
y2

= k0 (or x = k0y
2).

Notice that in their ”ratio” form there will be singularities when y = 0. Thus the two forms
x = k0y and x = k0y

2 would be preferable for analytic purposes.

Exercise 3

Part (a): See Figure 7 where the set S is plotted in gray.

Part (b): In that figure the lines f(x, y) = 6x + 2y = k0 are plotted for k0 = 7 (green),
k0 = 10 (blue), and k0 = 15 (red). Based on this plot we see that the smallest value for f
will be when this line passes though (0, 0) giving a value of f = 0. The largest value for this
function is when (x, y) = (4, 1) to give a value of f = 26.
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Figure 7: The feasible region and several level set of the function f(x, y) for Exercise 3.
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Figure 8: The feasible region and several level set for profit P for Exercise 4.

Exercise 4

Let b be the acres planted in beets and c the acres planted in corn. Then from the description
of the problem we have the constraints

b+ c ≤ 35 (1)

50b+ 30c ≤ 1300 (2)

2b+ 4c ≤ 80 . (3)

Under these we seek to maximize the profit P = 100b+ 100c.

See Figure 8 where this region is plotted. Notice that the green line corresponding to the
constraint b+ c ≤ 35 is never an actual constraint as the feasible region (in gray) is entirely
below this line. A single level curve P (b, c) = 1400 is plotted as a black line. Increasing
the value of P (b, c) will correspond to moving that line upwards (as we are increasing the c
intercept).

From this discussion the largest profit corresponds to the (b, c) at the “corner” of the gray
region. This is given by the intersection of the red and blue lines or

2b+ 4c = 80

50b+ 30c = 1300 .

The intersection of these two lines is (b, c) = (20, 10) (shown as a black dot) where we find
P (20, 10) = 3000.
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Figure 9: The feasible region and several level set for cost C for Exercise 5.

Exercise 5

Let r be the amount of material R1 (in tons) and s be the amount of material R2 (also in
tons). Then from the problem description into how a ton of R1 (and R2) is broken down
into M1, M2, and M3 we have

0.03r + 0.6s ≥ 30 (4)

0.125r + 0.25s ≥ 25 (5)

0.4r + 0.05s ≥ 20 . (6)

Under these we seek to minimize the cost C = 250r + 200s.

See Figure 9 where this region is plotted. In this case the feasible region is the region in
the ”upper-right” corner of the graph. A single level curve of c(r, s) = 40000 is plotted as a
black line. Increasing the value of c(r, s) will correspond to moving that line upwards (we
are increasing the s intercept). From this discussion the smallest cost corresponds to the
(r, s) at one of the ”corners” of the gray region. This is given by the intersection of the red
and blue lines or

0.125r + 0.25s = 25

0.4r + 0.05s = 20 .

The intersection of these two lines is (r, s) = (40, 80) (shown in black). At that point we
find c(40, 80) = 26000.

14



−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

d

s

Figure 10: The feasible region for Exercise 6.

Exercise 6

Let s be the amount (in boxes) of Scumptious cookies and d the amount (in boxes) of
Delicious cookies. Then as Jimmy can only carry a total of ten boxes we have s + d ≤ 10.
The constraints on the number of types of cookies are given by

20s+ 50d ≥ 4(20) = 80 (7)

40s+ 18d ≥ 4(28) = 112 (8)

15s+ 10d ≥ 4(10) = 40 . (9)

Under these we seek to minimize the cost C(s, d) = 2.5s + 2d. See Figure 10 where this
region is plotted.

In this case the feasible region is the region in the ”upper-right” corner of the graph. A
single level curve of c(d, s) = 16 is plotted as a black line thought the feasible region.
Increasing the value of c(d, s) will correspond to moving that line upwards (we are increasing
the y intercept). From this discussion the smallest cost corresponds to the (d, s) at one of
the ”corners” of the gray region. This is given by the intersection of the green and blue
lines. This happens at the point (d∗, s∗) = (0.5853659, 2.5365854) with an optimal cost of
C = 7.512195. This is not an integer solution as required by the understanding of what d
and s represent (you can’t bring 0.5853659 of a box of Delicious cookies). Because of this
we need to evaluate C for integer values of (d, s) around the point (d∗, s∗) that are still
feasible. Based on the feasible region the point closest to (d∗, s∗) and still in the feasible
region would be (d, s) = (1, 3) (drawn in the graph as a black point). The cost of this
solution is c(1, 3) = 9.5.
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Figure 11: Left: Level sets for x+ y. Right: Level sets for −y.

Exercise 7

Part (b-i): See Figure 11 (left) where this region is plotted. As the level sets of x + y
increase the black line in that graph moves upwards (we are increasing the y intercept).
Eventually this line will go through the point that is the intersection of the two curves

y = x+ 1

y = x2 − 2x+ 1 .

This point of intersection is (x, y) = (3, 4) to give a maximum of x+ y = 75.

Part (b-ii): See Figure 11 (right) where this region is plotted. As the level sets of −y
increase the black vertical line in that graph moves to the left. Eventually this line will go
through the point that is the other intersection of the two curves above. This is the point
(x, y) = (0, 1) to give a maximum of −y of −1.

Exercise 8

See Figure 12 where the curves defining this region are plotted. The feasible region is then
the region below the red line, inside the green circle, and with x ≥ 0. A level set of the
objective 3x+ 2y = k0 (for k0 = 12) is also plotted as a black line. As k0 increase the black
line in that graph moves upwards (we are increasing the y intercept). Eventually this line
will pass thought the red line that it inside the green circle. The largest value it can take is
when it passes through the ”upper” point that is the intersection of the two curves

y + 2x = 10

y =
√
25− x2 .
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Figure 12: The feasible region for Exercise 8.

This point of intersection is (x, y) = (3, 4) (shown as a black dot) to give a maximum of
3x+ 2y = 17.

Exercise 9

Imagine our rectangle with a horizontal length of x and a vertical length of y then the
perimeter is P = 2x+ 2y. The constraint conditions can be written as

√

x2 + y2 ≤ 5 (10)
y

x
≥ 4 . (11)

See Figure 13 where the curves defining this region are plotted.

The feasible region is then the region above the red line, inside the green circle, with x > 0
and y > 0. A level set of the objective 2x+2y = k0 (for k0 = 8) is also plotted as a black line.
As k0 increase the black line in that graph moves upwards (we are increasing the y intercept).
We can move this line upwards until eventually it will pass thought the intersection of the
red line and the green circle (shown as a black dot). This is the point where

y = 4x
√

x2 + y2 = 5 .

This point of intersection is (x, y) =
(

5√
17
, 20√

17

)

to give a maximum of 2x+ 2y = 50√
17
.
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Exercise 10

See Figure 14 where the curves defining this region are plotted. The feasible region is then
the region inside the green circle and to the left of the red line. As the grass is ”better” when
3y − x is ”smallest” we also plot a level set of the objective 3y − x = k0 (for k0 = 45) as a
black line. As k0 decreases the black line in that graph moves downwards (we are decreasing
the y intercept). We can move this line downwards until eventually it will pass thought the
bottom intersection of the red line and the green circle (shown as a black dot). This is the
point where

x = 15
√

x2 + y2 = 39 .

This point of intersection is (x, y) = (15,−36) to give a minimum of 3y − x = −123.

A Metamorphosis

Exercise 1

Exercise 1(e) are the linear inequalities

3x+ 2y ≤ 6 (12)

x− y ≥ 1

x ≥ −1 .

If we introduce three slack variables u ≥ 0, v ≥ 0 and w ≥ 0 we get the three equations

3x+ 2y + u = 6

x− y = 1 + v

x = −1 + w .

Exercise 2

The fertilizer problem has two constraints given by

0.55x+ 0.2y ≥ 300 (13)

0.4x+ 0.7y ≥ 400 .

If we introduce two slack variables u ≥ 0 and v ≥ 0 we get the two equations

0.55x+ 0.2y = 300 + u

0.4x+ 0.7y = 400 + v .
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The Elimination Method

Exercise 1

Two lines will not intersect (have no solution) if the are parallel i.e. have the same slope
but different intercepts. Two lines will have an infinite number of solutions if they “are the
same” i.e. have the same slope and intercept. Two lines will have one point of intersection
if they have different slopes (all other cases).

Exercise 2

For this we have the transformations




4 2 2 4
−8 4 16 7
12 −6 3 4



⇒





2 1 1 2
−8 4 16 7
12 −6 3 4



⇒





2 1 1 2
−16 0 12 −1
24 0 9 16



 .

Exercise 3

One sequence of transformations might be





1 4 11 7
2 8 16 8
1 6 17 9



⇒





1 4 11 7
0 0 −6 −6
0 2 6 2



⇒





1 4 11 7
0 0 −6 −6
0 1 3 1





⇒





1 0 −1 3
0 0 −6 −6
0 1 3 1



⇒





1 0 −1 3
0 0 1 1
0 1 3 1





⇒





1 0 −1 3
0 0 1 1
0 1 3 1



⇒





1 0 0 4
0 0 1 1
0 1 0 −2



 .

This means that the only solution is (x, y, z) = (4,−2, 1). We can “check” this solution with
some simple R code

x = 4

y = -2

z = 1

c(x + 4*y + 11*z, 2*x + 8*y + 16*z, x + 6*y + 17*z)
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Exercise 4

Part (a): Here the number of equations is m = 3 and the number of variables is n = 4.
Following the suggested pivots we have





1 1 1 1 4
1 2 2 3 7
3 3 5 4 15



⇒





1 1 1 1 4
0 1 1 2 3
0 0 2 1 3





⇒





1 0 0 −1 1
0 1 1 2 3
0 0 2 1 3





⇒





1 0 0 −1 1
0 1 1 2 3
0 0 1 1

2

3

2





⇒





1 0 0 −1 1
0 1 0 3

2

3

2

0 0 1 1

2

3

2



 .

If we let x4 = α then a general solution is given by

x1 = 1 + α

x2 =
3

2
− 3

2
α

x3 =
3

2
− 1

2
α .

A basic solution is when α = 0 or

(x1, x2, x3, x4) =

(

1,
3

2
,
3

2
, 0

)

.

We can “check” this solution with some simple R code

alpha = 0 ## other alphas give the same right-hand-side

x1 = 1 + alpha

x2 = 3/2 - (3/2)*alpha

x3 = 3/2 - (1/2)*alpha

x4 = alpha

c(x1 + x2 + x3 + x4, x1 + 2*x2 + 2*x3 + 3*x4, 3*x1 + 3*x2 + 5*x3 + 4*x4)

Part (b): Here the number of equations is m = 3 and the number of variables is n = 4.
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Following the suggested pivots we have





2 1 3 5 6
3 2 4 6 8
−1 3 2 7 −3



⇒





2 1 3 5 6
−1 0 −2 −4 −4
−7 0 −7 −8 −21





⇒





2 1 3 5 6
1 0 2 4 4
−7 0 −7 −8 −21





⇒





0 1 −1 −3 −2
1 0 2 4 4
0 0 7 20 7





⇒





0 1 −1 −3 −2
1 0 2 4 4
0 0 1 20

7
1





⇒





0 1 0 −1

7
−1

1 0 0 −12

7
2

0 0 1 20

7
1



 .

If we let x4 = α then a general solution is given by

x1 = 2 +
12

7
α

x2 = −1 +
1

7
α

x3 = 1− 20

7
α .

A basic solution is when α = 0 or

(x1, x2, x3, x4) = (2,−1, 1, 0) .

We can “check” this solution with some simple R code

alpha = 0.0 ## other alphas give the same right-hand-side

x1 = 2 + (12/7)*alpha

x2 = -1 + (1/7)*alpha

x3 = 1 - (20/7)*alpha

x4 = alpha

c(2*x1 + x2 + 3*x3 + 5*x4, 3*x1 + 2*x2 + 4*x3 + 6*x4, -x1 + 3*x2 + 2*x3 + 7*x4)

Part (c): Here the number of equations is m = 3 and the number of variables is n = 4.
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Applying the elimination method we get





4 0 6 −2 4
3 −7 1 2 3
0 1 −7 1 2



⇒





4 0 6 −2 4
3 0 −48 9 17
0 1 −7 1 2





⇒





1 0 3

2
−1

2
1

3 0 −48 9 17
0 1 −7 1 2





⇒





1 0 3

2
−1

2
1

0 0 −105

2

21

2
14

0 1 −7 1 2





⇒





1 0 3

2
−1

2
1

0 0 1 −1

5
− 4

15

0 1 −7 1 2





⇒





1 0 0 −1

5

7

5

0 0 1 −1

5
− 4

15

0 1 0 −2

5

2

15



 .

If we let w = α we get a general solution given by

x =
7

5
+

1

5
α

y =
2

15
+

2

5
α

z = − 4

15
+

1

5
α .

A basic solution is where α = 0 and gives

(x, y, z, w) =

(

7

5
,
2

15
,− 4

15
, 0

)

.

We can “check” this solution with some simple R code

alpha = 0.0 ## other alphas give the same right-hand-side

x = 7/5 + (1/5)*alpha

y = 2/15 + (2/5)*alpha

z = -4/15 + (1/5)*alpha

w = alpha

c(4*x + 6*z - 2*w, 3*x - 7*y + z + 2*w, y - 7*z + w)
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The Simplex Method for a Special Problem

Exercise 1

Part (a): This exercise was discussed above on Page 13. We start by introducing slack
variables u ≥ 0, v ≥ 0, and w ≥ 0 such that

b+ c+ u = 35 (14)

50b+ 30c+ v = 1300 (15)

2b+ 4c+ w = 80 . (16)

Let the maximum profit be M such that M = 100b + 100c. In normal form these can be
written













b c u v w M
1 1 1 0 0 0 35
50 30 0 1 0 0 1300
2 4 0 0 1 0 80
100 100 0 0 0 −1 0













.

The basic solution in this form is

(b1, c1, u1, v1, w1,M1) = (0, 0, 35, 1300, 80, 0) .

As M = 100b+ 100c lets try to adjust b such that c = c1 = 0 and the needed constraints on
u, v, and w hold. From the above we have

u = 35− b− c = 35− b ≥ 0

v = 1300− 50b− 30c = 1300− 50b ≥ 0

w = 80− 2b− 4c = 80− 2b ≥ 0 .

These give the requirements

b ≤ 35

b ≤ 26

b ≤ 40 .

To make all of these true we need to take the most restrictive condition or that b ≤ 26. Thus
b2 = 26 and we must pivot around the (2, 1) location. This gives the following normal form













b c u v w M
0 0.4 1 −0.02 0 0 9
1 0.6 0 0.02 0 0 26
0 2.8 0 −0.04 1 0 28
0 40 0 −2 0 −1 −2601













.

The basic solution in this form is

(b2, c2, u2, v2, w2,M2) = (26, 0, 9, 0, 28, 2601) .
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The above equation for M is
M = 2601 + 40c− 2v ,

thus we can increase M by increasing c. We thus ask if we can increase c while keeping
needed constraints on the “unit variables” of b ≥ 0, u ≥ 0, and w ≥ 0. Solving for these
three variables in the above we have (taking v = v2 = 0)

b = −0.6c− 0.02v + 26 = −0.6c+ 26 ≥ 0 so c ≤ 43.3333

u = −0.4c+ 0.02v + 9 = −0.4c+ 9 ≥ 0 so c ≤ 22.5

w = −2.8c+ 0.04v + 28 = −2.8c+ 28 ≥ 0 so c ≤ 10 .

The most restrictive of these is c ≤ 10 and so we take c3 = 10 and we must pivot around the
(3, 2) location. This gives the following normal form













b c u v w M
0 0 1 −0.01428571 −0.1428571 0 5
1 0 0 0.02857143 −0.2142857 0 20
0 1 0 −0.01428571 0.3571429 0 10
0 0 0 −1.42857143 −14.2857143 −1 −3000













.

The basic solution in this form is

(b3, c3, u3, v3, w3,M3) = (20, 10, 5, 0, 0, 3000) .

The above equation for M is

M = 3000− 1.42857143v − 14.2857143w ,

and we cannot change b or c to make this larger. Thus we can stop this procedure and we
have found the optimal solution (b, c) = (20, 10) with M = 3000. Note that this agrees
with the solution found on Page 13. Note that the given pivots above were computed in the
following R code

M = matrix(c(1, 1, 1, 0, 0, 0, 35, 50, 30, 0, 1, 0, 0, 1300,

2, 4, 0, 0, 1, 0, 80, 100, 100, 0, 0, 0, -1, 0), nrow=4, ncol=7, byrow=T)

## Pivot on (2, 1)

M[2, ] = M[2, ]/M[2, 1]

M[1, ] = M[1, ] + (-M[1, 1])*M[2, ]

M[3, ] = M[3, ] + (-M[3, 1])*M[2, ]

M[4, ] = M[4, ] + (-M[4, 1])*M[2, ]

## Pivot on (3, 2)

M[3, ] = M[3, ]/M[3, 2]

M[1, ] = M[1, ] + (-M[1, 2])*M[3, ]

M[2, ] = M[2, ] + (-M[2, 2])*M[3, ]

M[4, ] = M[4, ] + (-M[4, 2])*M[3, ]

Part (b): We are given the constraints in Equation 13 and seek to minimize the cost

C(x, y) = 10x+ 7y .
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Introducing slack variables u ≥ 0 and v ≥ 0 we have the system of equations

0.55x+ 0.2y = 300 + u

0.4x+ 0.7y = 400 + v

−10x− 7y + C = 0 .

In normal form these can be written








x y u v C
−0.55 −0.2 1 0 0 −300
−0.4 −0.7 0 1 0 −400
−10 −7 0 0 1 0









.

The basic solution in this form is

(x1, y1, u1, v1, C1) = (0, 0,−300,−400, 0) .

At this point we note that something seems a bit strange. In this basic solution neither of
the values for u1 and v1 are positive and thus (x1, y1) = (0, 0) will not satisfy the required
constraints of the problem. Rather than worry about this too much I’ll attempt to follow
something similar to the books arguments and see where they lead me. If anyone sees how
to make this problem more equivalent to a maximization problem (as was presented in the
book’s examples) please contact me.

We ask if we can change C to a larger value (I thought we wanted to minimize C?) by
moving x away from x1 = 0, keeping y fixed at y1 = 0 and while still keeping the constraints
u ≥ 0 and v ≥ 0 valid. From the above, u and v are given by

u = −300 + 0.55x+ 0.2y = −300 + 0.55x ≥ 0 (17)

v = −400 + 0.4x+ 0.7y = −400 + 0.4x ≥ 0 . (18)

These constraints require

x ≥ 545.4545

x ≥ 1000 .

As the second of these will satisfy the first we will take x2 = 1000. Now to ”impute” this
value into the basic solution, in the above normal form we will pivot on the (2, 1) location.
This gives









x y u v C
0 0.7625 1 −1.375 0 250
1 1.75 0 −2.5 0 1000
0 10.5 0 −25 1 10000









.

The basic solution in the above is now when y2 = 0 and v2 = 0 to get

(x2, y2, u2, v2, C2) = (1000, 0, 250, 0, 10000) .

In the above normal form the equation for C is

C = 10000− 10.5y + 25v ,
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and we can make C smaller by increasing y. We desire to move y away from y2 = 0 while
still keeping the constraints on the “unit variables” of x ≥ 0 and u ≥ 0 valid. From the
normal form above we have

x = −1.75y + 2.5v + 1000 = −1.75y + 1000 ≥ 0 so y ≤ 571.4286

u = −0.7625y + 1.375v + 250 = −0.7625y + 250 ≥ 0 so y ≤ 327.8689 .

Here I have taken v = v2 = 0. As the second of these will also satisfy the first we will take
y3 = 327.8689. Now to ”impute” this value into the basic solution, in the above normal form
we will pivot on the (1, 2) location. This gives









x y u v C
0 1 1.311475 −1.8032787 0 327.8689
1 0 −2.295082 0.6557377 0 426.2295
0 0 −13.770492 −6.0655738 1 6557.3770









.

The basic solution in the above is now when u3 = 0 and v3 = 0 to get

(x3, y3, u3, v3, C3) = (426.2295, 327.8689, 0, 0, 6557.3770) .

In the above normal form the equation for C is

C = 6557.3770 + 13.770492u+ 6.0655738v ,

and we cannot change C by changing x or y. Thus we can stop this procedure and we have
found the optimal solution (x, y) = (426.2295, 327.8689) with C = 6557.3770. Note that this
agrees with the solution given in the book for this problem.

Preliminary Exercise

Exercise 1

Part (a): Lets assume that x1 < x2 and y1 < y2. Draw the segment connecting A ≡ (x1, y1)
and B ≡ (x2, y2). Next drop a perpendicular from (x2, y2) and draw a horizontal from
(x1, y1). These two lines meet at C ≡ (x2, y1). Then the triangle △ACB is a right triangle
with θ = ∠BAC. We have the lengths AC = x2−x1 and BC = y2− y1. From the definition
of tan(θ) we have then

tan(θ) =
BC

AC
=

y2 − y1
x2 − x1

.

Part (b): These would be

4− 2

2− 1
= 2 ,

−1 − 5

−2 + 3
= −6 ,

2− 2

−4 − 13
= 0 ,

3 + 1

1− 1
= ∞ ,

0− 9

0− 3
= 3 ,

using the definition that m = ∞ if x2 = x1.

27



Part (c): This equation is the matching of slopes between the segments (x, y) → (x1, y1)
and (x1, y1) → (x2, y2). Taking m = y2−y1

x2−x2

gives the given equation.

Part (d): Here we are given (x1, y1) and m for each line. We get the equations

y − (−1) = 6(x− 2)

y − 0 = −1

2
(x− 4)

y − 1 = ∞ .

The last line can be written as x = 2.

Part (e): Note that we can write this as

y − d

x− 0
= m,

which is another way of stating the desired condition.

Part (f): We have three slopes m ∈ {6,−5, 0} and two y intercepts d ∈ {1,−3}. These
give the lines

y = 6x+ 1

y = 6x− 3

y = −5x+ 1

y = −5x− 3

y = 1

y = −3 .

Exercise 2

Part (a): This is a line with a y-intercept of −1 and a slope of m. If m > 0 the line slants
upwards to the right. If m < 0 the line slants downwards to the right. If m = +∞ the line
is the vertical line x = 0.

Part (b): This is y = −x+ k which is a line with a y-intercept of k and a slope of −1.

Exercise 4

Part (a): Using x = 2 in the second equation gives −4y = 0 so y = 0 thus the solution is
(2, 0).
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Chapter 3: Growth of Populations

Rate of Growth Dependent on Population

Exercise 1

Plots of Xn as a function of n are plotted when one runs the R code chap 3 sect 2 prob 1.R.
I also plot the “equilibrium points” X = 2 and x = 8 as black horizontal lines. There we
see that the first “case” has a population that converges to zero while the others seem to
converge to a value of 8.

From the plot of R = R(X) and the discussions in the book if we start with X0 ≤ 2 we
see that R(X0) < 1 and Xn starts decreasing and continues to do so. If we start with
2 ≤ X0 ≤ 8 we have R(X0) > 1 and Xn increases until it gets to a value Xn > 8 at which
point R(Xn) < 1 where Xn will decreases again. Thus X = 2 is an unstable equilibrium
point and X = 8 is a stable equilibrium point. These conclusions are demonstrated in the
plots.

Exercise 2

Part (a): This looks like steady population growth to an equilibrium point followed by a
stable population at X = 2.5.

Part (b): The slope of this curve seems to start at zero, increase to a positive number, and
then decrease back to zero. For the given expression for X(t) we have

X ′(t) =
5π

4T
sin

(

πt

T

)

.

This is zero at t = 0 and t = T and increases from zero to a maximum before decreasing
back to zero.

Exercise 3

This graph is plotted with the R code chap 3 sect 2 prob 3.R. The equilibrium points will
be when R(X) = 1 or when

X2 − 21X + 20 = −8X .

Solving this gives the solutions

[1] 1.783009 11.216991

for the equilibrium values for X .
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The Linearized Problem

Exercise 1

This exercise is worked in the R code chap 3 sect 4 prob 1.R. Running that code gives

[1] "Part (a):"

n x_n chi_n

1 0 0.0500 0.0500

2 1 -0.0350 -0.0250

3 2 0.0126 0.0125

4 3 -0.0069 -0.0063

5 4 0.0033 0.0031

[1] "Part (b):"

n x_n chi_n

1 0 0.0500 0.0500

2 1 0.0275 0.0375

3 2 0.0176 0.0281

4 3 0.0120 0.0211

5 4 0.0084 0.0158

Errors in the Approximate Solution

Exercise 1

Part (a): Since x2
i ≤ ǫ we have

|ξn − xn| ≤ mǫ

n−1
∑

k=0

|α|k ≤ mǫ

∞
∑

k=0

|α|k = mǫ

1− |α| .

Part (b): Using
ξn+1 − xn+1 = α(ξn − xn) +mx2

n , (19)

if m > 0 and ξn−xn > 0 then using the above we will have ξn+1−xn+1 > 0 and by induction
thus for all n.

Using Equation 19 and the assumption that ξn − xn < ǫ
XB

we have

ξn+1 − xn+1 < α

(

ǫ

XB

)

+mǫ = (1−mXB)
ǫ

XB
+mǫ =

ǫ

XB
,

thus the induction step is proved.
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Exercise 2

This exercise is worked in the R code chap 3 sect 5 prob 2.R. Running that code gives

[1] "alpha= 0.900000"

n x_n xi_n error_n

1 0 0.0200 0.0200 0.0000

2 1 0.0160 0.0180 0.0020

3 2 0.0131 0.0162 0.0031

4 3 0.0109 0.0146 0.0036

5 4 0.0093 0.0131 0.0039

6 5 0.0079 0.0118 0.0039

[1] "eps= 0.000400; err_bound= 0.020000"

Exercise 3

Part (a): Here we have XB = 1, m = 1.5, and X0 = 1.05 so that

x0 = X0 −XB = 0.05

ǫ = x2

0 = 0.0025

α = 1−mXB = 1− 1.5 = −0.5 .

Thus an upper bound on |ξn − xn| is given by

mǫ

1− |α| = 0.075 .

Part (b): Here m = 0.25 and an upper bound on |ξn − xn| is given by

mǫ

1− |α| = 0.0125 .

Interaction of Predator-Prey Species

Exercise 1

This is implemented in the R code chap 3 sect 6 prob 1.R. Running that gives

[1] "alpha= -0.100000"

n x_n xi_n error_n

1 0 0.000000e+00 0.0000 0.000000e+00
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2 1 -5.000000e-02 -0.0500 0.000000e+00

3 2 -7.000000e-02 -0.0450 2.500000e-02

4 3 -9.200000e-02 -0.0455 4.650000e-02

5 4 -1.254000e-01 -0.0454 8.000000e-02

6 5 -1.948000e-01 -0.0455 1.494000e-01

7 6 -4.100000e-01 -0.0455 3.646000e-01

8 7 -1.690200e+00 -0.0455 1.644700e+00

9 8 -2.844760e+01 -0.0455 2.840210e+01

10 9 -8.089867e+03 -0.0455 8.089821e+03

11 10 -6.544586e+08 -0.0455 6.544586e+08

[1] "eps= 0.015735; err_bound= 0.174835"

[1] "X_s= 0.995000; (X_B + last_xis)= 0.954545"

Notice that in this case the solution for xn is unbounded and the steady state population Xs

is close to XB + ξ10.

Exercise 2

Part (a): The book’s equation 16 is

Xn = (1−mXn−1 +mXB)Xn−1 −N . (20)

In steady state and with the numbers given here this is

Xs = Xs −X2

s + 1.05Xs − 0.05 ,

or
X2

s − 1.05Xs + 0.05 = 0 .

This has a solution Xs = 1.0.

Part (b): The estimate is given by

XB − N

mXB

= 1.05− 0.05

1.05
= 1.00238 .

Exercise 3

Taking the limit as n → ∞ we have

4p = 3p2 − 2p+ 3 .

This is a quadratic equation that can be written as (p− 1)2 = 0 so has a solution p = 1.

Taking pn = 1 + xn we have p2n = 1 + 2xn + x2
n and so our original equation becomes

4 + 4xn = 3 + 6xn−1 + 3x2

n−1 − 2 + 2xn−1 + 3 .
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We can solve this for xn in terms of xn−1 to get

xn = 2xn−1 +
3

2
x2

n−1 .

The linear relationship is obtained by dropping the term 3

2
x2
n−1 in the above to get

xn = 2xn−1 .

This has the solution xn = 2nx0.

Exercise 4

I would expect that the values for ξn would trend to zero which would mean that Xn → Xs.

Exercise 5

Recall the book’s equation 16 is given by Equation 20 or

Xn = (1−mXn−1 +mXB)Xn−1 −N ,

and have Xs satisfy
mX2

s −mXBXs +N = 0 . (21)

Next replace Xn = yn +Xs into Equation 20 to get

yn +Xs = (1−myn−1 −mXs +mXB)(yn−1 +Xs)−N .

Expanding this we have

yn +Xs = yn−1 +Xs −my2n−1 −mXsyn−1 −mXsyn−1 −mX2

s +mXByn−1 +mXBXs −N .

Using Equation 21 this becomes

yn = yn−1 −my2n−1 −mXsyn−1 −mXsyn−1 +mXByn−1

= (1−mXB − 2mXs)yn−1 −my2n−1 ,

which is the expression we were trying to show.

Mutually Dependent Predator-Prey Species

Notes on the Text: The derivation of XE and YE

Starting with

Yn =
k

XB
Xn−1Yn−1 (22)

Xn −Xn−1 = mXBXn−1 −mX2

n−1 − cXn−1Yn−1 , (23)

33



If we take Xn = XE and Yn = YE in Equation 22 we get XE = XB

k
. If we take Xn = XE and

Yn = YE in Equation 23 (and divide by XE) we get

0 = mXB −mXE − cYE so YE =
m

c
(XB −XE) =

m

c
XB

(

1− 1

k

)

,

which are the expressions given in the book.

Notes on the Text: The derivation of equations for xn and yn

To start we will put xn = Xn −XE and yn = Yn − YE into Equation 22 to get

yn + YE =
k

XB
(xn−1 +XE)(yn−1 + YE) ,

or expanding the right-hand-side we get

yn + YE =
k

XB
(xn−1yn−1 + YExn−1 +XEyn−1 +XEYE)

=
k

XB

(

xn−1yn−1 + YExn−1 +
XB

k
yn−1 +

XB

k
YE

)

=
k

XB
xn−1yn−1 +

kYE

XB
xn−1 + yn−1 + YE .

Replacing XB with its expression in terms of XE this becomes

yn =

(

1

XE

)

xn−1yn−1 + yn−1 +

(

YE

XE

)

xn−1 , (24)

which is the book’s Eq. 23.

Next we will put xn = Xn −XE and yn = Yn − YE into Equation 23 to get

xn − xn−1 = mXBxn−1 +mXBXE −m(x2

n−1 + 2XExn−1 +X2

E)

− c(xn−1yn−1 + YExn−1 +XEyn−1 +XEYE)

= mXBxn−1 +mXBXE −mx2

n−1 −
2mXB

k
xn−1 −mX2

E

− cxn−1yn−1 − cYExn−1 −
cXB

k
yn−1 − cXEYE

=

(

mXB − 2mXB

k
− cYE

)

xn−1 + (mXBXE −mX2

E − cXEYE)

− cXB

k
yn−1 −mx2

n−1 − cxn−1yn−1 .

Now writing YE in terms of XB the coefficient of the xn−1 is given by

mXB − 2m

k
XB −m

(

1− 1

k

)

XB = −m

k
XB = −mXE .
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In the same way the constant term on the right-hand-side of the above is given by

mXBXE −mX2

E − cXEYE = XE (mXB −mXE − cYE)

= XE

(

mXB − mXB

k
− m(k − 1)

k
XB

)

= 0 .

This means that the equation for xn can be written as

xn − xn−1 = mXExn−1 −
cXB

k
yn−1 −mx2

n−1 − cxn−1yn−1 ,

or
xn = (1−mXE)xn−1 − cXEyn−1 −mx2

n−1 − cxn−1yn−1 , (25)

which is the book’s Eq. 22.

Notes on the Text: The derivation of the equation for ηn

Starting with ξn−1 in terms of ηn as

ξn−1 =
XE

YE
(ηn − ηn−1) ,

Then putting this into the equation for ξn (the linearized version of Equation 25) to get

XE

YE
(ηn+1 − ηn) = (1−mXE)

XE

YE
(ηn − ηn−1)− cXEηn−1 ,

or

ηn+1 − ηn = (1−mXE)(ηn − ηn−1)− cYEηn−1

= ηn − ηn−1 −mXEηn +mXEηn−1 − cYEηn−1 .

Solving for ηn+1 this is

ηn+1 = (2−mXE)ηn − (1−mXE + cYE)ηn−1 , (26)

which is the book’s Eq. 26.

Exercise 1

This is done in these notes on Page 34.
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Exercise 2

In these equations we will take Xn → XE and Yn → YE. The first one gives

0 =
1

2
XE − 1

2
X2

E − 1

8
XEYE ,

or assuming XE 6= 0 and dividing by it

0 =
1

2
− 1

2
XE − 1

8
YE . (27)

This substitution in the second equation gives

YE = 2XEYE − Y 2

E ,

or assuming YE 6= 0 and dividing by it

1 = 2XE − YE . (28)

Solving the second equation for YE and putting that expression into Equation 27 gives a
single equation for XE . Solving this gives XE = 5

6
. We then find YE = 2XE −1 = 5

3
−1 = 2

3
.

Exercise 4

If I understand the problem correctly we start each year (from 1970) with Xn staff members
where n = 0 is January 1st 1970 and we are told that X0 =

4

5
N with N the desired number

of staff. Then in July each year our recruiting officer will add N −Xn staff in an attempt
to bring the staff up to N . Then in December each year 10% of the staff will resign. From
this logic at the end of 1970 (the beginning of 1971) we should have

X1 =
4

5
N +

1

5
N − 0.1N =

9

10
N .

Then at the end of 1971 (the beginning of 1972) we should have

X2 =
9

10
N +

1

10
N − 0.1N =

9

10
N ,

the same as X1. Thus the staff is the same at the end of each year and the goal of having a
complete staff will never be obtained.

If the recruiting officer instead orders α0N (during 1970) then at the end of 1970 he will
have

X1 =
4

5
N + α0N − 0.1

(

4

5
N + α0N

)

= 0.9

(

4

5
N + α0N

)

.

If we want this to be N then we can solve for α0 to find α0 =
14

45
= 0.311111.
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At this point we have X1 = N and if the recruiting officer orders α1N (during 1971) the
next year he will have

X2 = N + α1N − 0.1 (N + α1N) = 0.9 (N + α1N) = 0.9(1 + α1)N .

If we want this to be N then we must have

α1 =
1

0.9
− 1 =

1

9
= 0.111111 .

The recruiting officer should hire α1N in all subsequent years.

Volterra’s Principle

Exercise 1

The linearized equations assume that the values of xn = Xn − XE and yn = Yn − YE are
small. This means that Xn and Yn are close to XE and YE. In the example from this section
this is not true.

Exercise 2

Part (a): This is implemented in the R code chap 3 sect 8 prob 2.R. Running that gives

[1] "n= 0; xi_n= -0.5000; eta_n= -1.8750; X_n= 0.5000; Y_n= 1.8750"

[1] "n= 1; xi_n= 0.0625; eta_n= -3.7500; X_n= 1.0625; Y_n= 0.0000"

[1] "n= 2; xi_n= 0.3906; eta_n= -3.5156; X_n= 1.3906; Y_n= 0.2344"

[1] "n= 3; xi_n= 0.4492; eta_n= -2.0508; X_n= 1.4492; Y_n= 1.6992"

[1] "n= 4; xi_n= 0.3174; eta_n= -0.3662; X_n= 1.3174; Y_n= 3.3838"

Notice from this output that Y1 = 0.

Part (b): If yn−1 = 0 for some n (here n = 2) then this means that yn−1 = −YE and putting
that into Equation 24 we see that

yn =

(

YE

XE

)

xn−1 − YE − YE

XE
xn−1 = −YE ,

and yn is a constant for all time going forward.

Taking yn−1 = −YE in Equation 25 we get that

xn = (1−mXE)xn−1 + cXEYE −mx2

n−1 + cYExn−1

= (1−mXE + cYE)xn−1 −mx2

n−1 + cXEYE .
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Notice that this is same as the book’s Eq. 12 which is

xn = αxn−1 −mx2

n−1 −N , (29)

with α = 1−mXE + cYE and N = −cXEYE. From the discussion in the book we expect the
solution for xn to “converge” at a rate of α to a limiting value that is below the equilibrium
point XB by something proportional to N . Here since N < 0 our the equilibrium for the
prey when there are no predictors will be above what it was before.

Other Forms of Biological Association

Notes on the Text: The derivation of the equilibrium populations XE and YE

We start by taking Xn → XE and Yn → YE in

Xn = R(Xn−1, Yn−1)Xn−1 and Yn = S(Xn−1, Yn−1)Yn−1 , (30)

to get

XE = (1−m(XE −XB)− kYE)XE (31)

YE = (1− µ(YE − YB)− lXE)YE . (32)

Now if we divide the first by XE and the second by YE (both assumed to be nonzero) we get

1 = 1−m(XE −XB)− kYE

1 = 1− µ(YE − YB)− lXE ,

or

mXE + kYE = mXB

lXE + µYE = µXB .

We can solve this linear system for XE and YE . We find

D =

∣

∣

∣

∣

m k
l µ

∣

∣

∣

∣

= mµ− kl ,

and then

XE =

∣

∣

∣

∣

mXB k
µYB µ

∣

∣

∣

∣

D
=

mµXB − kµYB

mµ− kl
=

(

mXB − kYB

mµ− kl

)

µ

YE =

∣

∣

∣

∣

m mXB

l µYB

∣

∣

∣

∣

µ

D
=

mµYB − lmXB

mµ− kl
=

(

µYB − lXB

mµ− kl

)

m,

which are the expressions given in the book.
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Exercise 1

We start with Equation 30 with Rn−1 and Sn−1 expanded or

Xn = (1−m(Xn−1 −XB)− kYn−1)Xn−1

Yn = (1− µ(Yn−1 − YB)− lXn−1)Yn−1 ,

Let Xn = xn +XE and Yn = yn + YE in the above where we get

xn +XE = (1−m(xn−1 +XE −XB)− k(yn−1 + YE))(xn−1 +XE) (33)

yn + YE = (1− µ(yn−1 + YE − YB)− l(xn−1 +XE))(yn−1 + YE) . (34)

We will write the first of these by ”expanding” (xn−1 +XE) as

xn +XE = (1−m(xn−1 +XE −XB)− k(yn−1 + YE))xn−1

+ (1−m(xn−1 +XE −XB)− k(yn−1 + YE))XE ,

and then by ”extracting” xn−1 and yn−1 from the coefficient of XE to get

xn +XE = (1−m(xn−1 +XE −XB)− k(yn−1 + YE))xn−1

+ (−mxn−1 − kyn−1)XE + (1−m(XE −XB)− kYE)XE .

Using Equation 31 we can cancel XE on the left and end with

xn = (1−m(xn−1 +XE −XB)− k(yn−1 + YE))xn−1 + (−mxn−1 − kyn−1)XE .

This gives coefficients for xn−1 and yn−1 of

xn = (1−mxn−1 −mXE +mXB − kyn−1 − kYE −mXE)xn−1 − kXEyn−1 .

Extracting the two nonlinear terms this becomes

xn = −mx2

n−1 − kxn−1yn−1 + (1−mXE +mXB − kYE −mXE)xn−1 − kXEyn−1 .

In the above we now consider the coefficient of xn−1. To do that we note that using the
formulas for YE and XE developed above we have

kYE +mXE =
1

mµ− kl

[

(kµYB − klXB)m+ (m2XB −mkYB)µ
]

=
1

mµ− kl

[

(kµm−mkµ)YB + (−klm+m2µ)XB

]

=
m

mµ− kl
[(mµ − kl)XB] = mXB .

The negative of this will ”cancel” the term mXB in the coefficient of xn−1 above. This means
that the equation for xn is

xn = (1−mXE)xn−1 − kXEyn−1 −mx2

n−1 − kxn−1yn−1 , (35)

which is the same as the books equation for xn.
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Next we do the same thing for the equation for yn starting with Equation 34. We keep
”linearizing” these equations as follows

yn + YE = (1− µ(yn−1 + YE − YB)− l(xn−1 +XE))yn−1

+ (1− µ(yn−1 + YE − YB)− l(xn−1 +XE))YE

= (1− µ(yn−1 + YE − YB)− l(xn−1 +XE))yn−1

+ (1− µ(YE − YB)− lXE)YE

+ (−µyn−1 − lxn−1)YE .

Now using Equation 32 we can cancel YE on the left and end with

yn = (1− µyn−1 − µYE + µYB − lxn−1 − lXE − µYE)yn−1 − lYExn−1

= (1− µYE + µYB − lXE − µYE)yn−1 − µy2n−1 − lxn−1yn−1 − lYExn−1 .

In the above we now consider the coefficient of yn−1. To do that we note that using the
formulas for YE and XE developed above we have

lXE + µYE =
1

mµ− kl

[

(lmXB − lkYB)µ+ (µ2YB − µlXB)m
]

=
1

mµ− kl

[

(lmµ − µlm)XB + (µ2m− lkµ)YB

]

= µYB ,

when we simplify. The negative of this will ”cancel” the term µYB in the coefficient of yn−1

above. This means that the equation for yn is

yn = (1− µYE)yn−1 − µy2n−1 − lxn−1yn−1 − lYExn−1 , (36)

which is the same as the books equation for yn.

Exercise 2

Both would need to be negative as increasing ηn−1 should reduce ξn and increasing ξn−1

should decrease ηn if there is ”mutual” competition.

Exercise 3

In this case we would expect to have a12 > 0 and a21 > 0 as the presence of one species helps
the other.

Exercise 5

The equilibrium levels must satisfy

XE = 1.12XE − 0.1XEYE

YE = 0.95YE + 0.05XEYE .
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Solving this system we get XE = 1 and YE = 1.2. Taking

Xn = 1 + xn

Yn = 1.2 + yn ,

The equation for Xn+1 in the book then becomes

xn+1 + 1 = 1.12(xn + 1)− 0.1(xn + 1)(yn + 1.2)

= 1.12xn + 1.12− 0.1xnyn − 0.12xn − 0.1yn − 0.12 ,

or
xn+1 = xn − 0.1yn − 0.1xnyn .

The equation for Yn+1 in the book then becomes

yn+1 + 1.2 = 0.95(yn + 1.2) + 0.05(xn + 1)(yn + 1.2)

= 0.95yn + 1.14 + 0.05(xnyn + 1.2xn + yn + 1.2)

= 0.95yn + 1.14 + 0.05xnyn + 0.06xn + 0.05yn + 0.06 ,

or
yn+1 = 0.06xn + yn + 0.05xnyn .

The linearized versions of these equations are

ξn+1 = ξn − 0.1ηn

ηn+1 = 0.06ξn + ηn .

Three-Term Recurrence Relations

Exercise 1

Part (a): The substitution xn = λn into this difference equation gives

λn(λ2 − 3λ+ 2) = 0 ,

or
(λ− 1)(λ− 2) = 0 .

Thus λ = 1 or λ = 2. Thus our solution takes the form

xn = α1n + β2n = α + β2n .

Part (b): The substitution xn = λn into this difference equation gives

λn(2λ2 + λ− 1) = 0 ,

or
(2λ− 1)(λ+ 1) = 0 .
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Thus λ = 1

2
or λ = −1. Thus our solution takes the form

xn = α(−1)n + β

(

1

2

)n

.

Part (c): The substitution xn = λn into this difference equation gives

λn(λ2 − 4λ+ 4) = 0 ,

or
(λ− 2)2 = 0 .

Thus λ = 2. Thus our solution takes the form

xn = (αn+ β)2n .

Exercise 2

We start with zn = An sin(nθ) and then evaluate the left-hand-side of the difference equation.
We find

zn+2 + bzn+1 + czn = An
(

A2 sin((n+ 2)θ) + bA sin((n+ 1)θ) + c sin(nθ)
)

.

Calling the left-hand-side of this LHS we have

LHS

An
= A2 sin(2θ) cos(nθ)+A2 cos(2θ) sin(nθ)+bA sin(θ) cos(nθ)+bA cos(θ) sin(nθ)+c sin(nθ) .

Now using what we know about sin(θ) and cos(θ) in terms of b and c we have

LHS

An
= c

(

− b√
c

√

1− b2

4c

)

cos(nθ) + c

(

b2

2c
− 1

)

sin(nθ)

+ b
√
c

(

√

1− b2

4c

)

cos(nθ) + b
√
c

(

− b

2
√
c

)

sin(nθ) + c sin(nθ)

=

(

b2

2
− c− b2

2
+ c

)

sin(nθ)

+

(

−b
√
c

√

1− b2

4c
+ b

√
c

√

1− b2

4c
+

)

cos(nθ) = 0 .

proving we have found a solution.

Exercise 3

The first equation can be written

xn+1 = axn + byn .
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Replacing yn in this with the second equation gives

xn+1 = axn + b(cxn−1 + dyn−1) = axn + bcxn−1 + bdyn−1 . (37)

Using the first equation given in this exercise to solve for yn−1 we have

yn−1 =
xn − axn−1

b
.

If we put this into Equation 37 we get

xn+1 = axn + bcxn−1 + d(xn − axn−1)

= (a+ d)xn + (bc− da)xn−1 ,

which we wanted to prove.

For the suggested parameter values given this difference equation looks like

xn+1 − 5xn + (4− 0)xn−1 = 0 ,

or
xn+1 − 5xn + 4xn−1 = 0 .

The substitution xn = λn into this difference equation gives

λ2 − 5λ+ 4 = (λ− 4)(λ− 1) = 0 .

This has solutions λ = 1 or λ = 4 and so

xn = α + β4n .

Exercise 4

If we plot b along an x-axis and c along an y-axis of a Cartesian coordinate plane we see that
b2 = 4c is c = 1

4
b2 and is a parabola opening upwards. The region ”above” that parabola is

where c > 1

4
b2 or b2 < 4c and the region ”below” that parabola is where c < 1

4
b2 or b2 > 4c.

Exercise 5

The book’s equations (33) are given by

ξn = a11ξn−1 + a12ηn−1 (38)

ηn = a21ξn−1 + a22ηn−1 . (39)

Equation 39 implies
ηn+2 = a21ξn+1 + a22ηn+1 .
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If we use Equation 38 to replace ξn+1 this gives

ηn+2 = a21(a11ξn + a12ηn) + a22ηn+1

= a22ηn+1 + a21a11ξn + a21a12ηn . (40)

Using Equation 39 by solving for ξn−1 we get

ξn−1 =
1

a21
(ηn − a22ηn−1) so ξn =

1

a21
(ηn+1 − a22ηn) .

Putting that into Equation 40 gives

ηn+2 = a22ηn+1 + a11(ηn+1 − a22ηn) + a21a12ηn

= (a11 + a22)ηn+1 + (a12a21 − a11a22)ηn ,

which is what we wanted to prove.

If we seek to compare this to Eq. (34) we have

b = −(a11 + a22)

c = a11a22 − a12a21 ,

from which we have that

b2 = a211 + a222 + 2a11a22 and

4c = 4a11a22 − 4a12a21 ,

thus
b2 − 4c = a211 − 2a11a22 + a222 + 4a12a21 = (a11 − a22)

2 + 4a12a21 .

Now if a12 and a21 are of the same sign (both positive or both negative) we have a12a21 > 0
and the above expression is positive.

Exercise 6

The difference relationship for this process should be given by

Gn = Gn−1 −
1

3
Gn−1 + 5 =

2

3
Gn−1 + 5 .

From the discussion in the book this has a solution given by

Gn =

(

2

3

)n

G0 +

(

1 +
2

3
+

(

2

3

)2

+

(

2

3

)3

+ · · ·+
(

2

3

)n−1
)

(5) .

From this the limit of this expression as n → ∞ is

G∞ = 5
∞
∑

k=0

(

2

3

)k

=
5

1− 2

3

=
15

1
= 15 .
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Exercise 7

We are told to consider Xn = Rn−1Xn−1 with Rn in this case given by

Rn = 1−m1xn −m2xn−1 .

Then taking Xn = xn +XB and using the above we get

xn +XB = (1−m1xn−1 −m2xn−2)(xn−1 +XB)

= xn−1 +XB −m1(x
2

n−1 +XBxn−1)−m2(xn−1xn−2 +XBxn−2) ,

or rearranging some this is

xn = (1−m1XB)xn−1 −m1x
2

n−1 −m2xn−1xn−2 −m2XBxn−2 .

The linear relationship is given by dropping the terms with x2
n−1 and xn−1xn−2 in the above

to get
ξn = (1−m1XB)ξn−1 −m2XBξn−2 ,

which is equivalent to the desired expression.

For the numbers suggested we have 1 − m1XB = −1 and m2XB = 1

2
so the above can be

written as

ξn+2 + ξn+1 +
1

2
ξn = 0 .

Taking ξn = λn we get

λ2 + λ+
1

2
= 0 .

This has the solution

λ =
−1±

√

1− 4
(

1

2

)

2
=

−1 ±
√
−1

2
,

which is a complex number. From the discussion in the book this is a difference equation
where b = 1 and c = 1

2
(and so b2 < 4c and complex roots are expected). In this case we

have A =
√
c = 1√

2
and an angle θ such that

cos(θ) = − 1

2
(

1√
2

) = − 1√
2

sin(θ) = −
√

1− 1

2
=

1√
2
.

This is satisfied when θ = 3π
4
. Then from the book the solution is

ξn = α

(

1

2

)n/2

cos(nθ) + β

(

1

2

)n/2

sin(nθ) .

If we are told that ξ0 = 0 we get that α = 0 so that we have

ξn = β

(

1

2

)n/2

sin(nθ) .
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From the information given on ξ1 we have

1

10
= β

(

1√
2

)

sin(θ) =
β√
2

(

1√
2

)

.

Thus β = 1

5
and we have

ξn =
1

5

(

1

2

)n/2

sin(nθ) ,

as we were to show.

Appendix I

Exercise 1

When α = 0 the left-hand-side is

|1− (1 + 0)| = 0 ,

and right-hand-side is also zero.

When α = 1 the left-hand-side is

|(1 + t)− (1 + t)| = 0 ,

and right-hand-side is also zero.

When α = 2 the left-hand-side is

|(1 + t)2 − (1 + 2t)| = |1 + 2t + t2 − 1− 2t| = t2 ,

and right-hand-side is
(

2

2

)

t2

1
= t2 ,

and they are equal.

When t = 0 the left-hand-side is
|1− 1| = 0 ,

and right-hand-side is also zero.

Exercise 2

WWX: TI: Here
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Preliminary Exercise

Exercise 1
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Chapter 4: Searching for a Maximum

Introduction

Exercise 1
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