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Figure 1: Left: Plots of price as a function of area. Right: Plots of log(price) as a function
of area.

A brief introduction to R

Problem Solutions

Problem 1 (floor area)

See the R script chap 1 prob 1.R.

Problem 2 (orings)

See the R script chap 1 prob 2.R.

Problem 3 (possum data

Part (a): The command str gives the “structure” of an internal R expression. For example,
the command str on the possum data gives

> library(DAAG)

> str(possum)

’data.frame’: 104 obs. of 14 variables:

$ case : num 1 2 3 4 5 6 7 8 9 10 ...
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Figure 2: Left: Histogram of the price. Right: Histogram of the log(price). Notice that
the “outlier” in each plot is in a different location. On the left we see the large priced house
is the outlier, while on the right the smaller priced house is the outlier.
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Figure 3: Left: Plots of the down sampled oring data Right: Plots of the entire oring data.
Note that when we look at all of the data we get the impression that the chance of a failures
is much larger than when we look at the smaller subset of the data. In fact the chance of
failure seems to be nonzero over a much larger temperature range than might be concluded
from the smaller data set.

3



$ site : num 1 1 1 1 1 1 1 1 1 1 ...

$ Pop : Factor w/ 2 levels "Vic","other": 1 1 1 1 1 1 1 1 1 1 ...

$ sex : Factor w/ 2 levels "f","m": 2 1 1 1 1 1 2 1 1 1 ...

$ age : num 8 6 6 6 2 1 2 6 9 6 ...

$ hdlngth : num 94.1 92.5 94 93.2 91.5 93.1 95.3 94.8 93.4 91.8 ...

$ skullw : num 60.4 57.6 60 57.1 56.3 54.8 58.2 57.6 56.3 58 ...

$ totlngth: num 89 91.5 95.5 92 85.5 90.5 89.5 91 91.5 89.5 ...

$ taill : num 36 36.5 39 38 36 35.5 36 37 37 37.5 ...

$ footlgth: num 74.5 72.5 75.4 76.1 71 73.2 71.5 72.7 72.4 70.9 ...

$ earconch: num 54.5 51.2 51.9 52.2 53.2 53.6 52 53.9 52.9 53.4 ...

$ eye : num 15.2 16 15.5 15.2 15.1 14.2 14.2 14.5 15.5 14.4 ...

$ chest : num 28 28.5 30 28 28.5 30 30 29 28 27.5 ...

$ belly : num 36 33 34 34 33 32 34.5 34 33 32 ...

Part (b): We have the missing cases given by

> missing_cases = which( complete.cases(possum) != TRUE )

> missing_cases

[1] 41 44 46

Looking at these cases we have

> possum[ missing_cases, ]

case site Pop sex age hdlngth skullw totlngth taill footlgth earconch eye

BB36 41 2 Vic f 5 88.4 57.0 83 36.5 NA 40.3 15.9

BB41 44 2 Vic m NA 85.1 51.5 76 35.5 70.3 52.6 14.4

BB45 46 2 Vic m NA 91.4 54.4 84 35.0 72.8 51.2 14.4

chest belly

BB36 27.0 30.5

BB41 23.0 27.0

BB45 24.5 35.0

where we see, for example, that the first sample with NA is missing data in the column
corresponding to footlgth.

Problem 4 (the data frame ais)

Part (b): We can find this information using

> table( sex=ais$sex, sport=ais$sport )

sport
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Figure 4: Left: Plots of log2(area) as a function of elevation. Right: Plots of log2(area) as
a function of elevation (using the option log=y). These plots are identical, showing that in
R one can quickly transform the x and y axis using a logarithm.

sex B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo

f 13 7 4 23 22 9 11 4 7 0

m 12 12 0 0 15 13 18 11 4 17

We can then look for sports where there are significantly more men or women participants.

Problem 5 (the data frame rainforest)

See the R script chap 1 prob 5.R. When that script is run we find

Valid Data NA Data Total Samples

Acacia mabellae 10 6 16

C. fraseri 12 0 12

Acmena smithii 11 15 26

B. myrtifolia 10 1 11

Problem 6 (the data frame Manitoba.lakes)

See the R script chap 1 prob 6.R. When that script is run produce plots given in Figure 4.
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Figure 5: Using the dotchart function.

Problem 7 (using dotchart)

See the R script chap 1 prob 7.R. When that script is run produce plots given in Figure 5.

Problem 8 (using dotchart)

A lower bound is given by sum(Manitoba.lakes$area) = 41771.

Problem 9 (arguments to rep)

Part (a): The command gives

> rep( c(2,3,5), 4:2 )

[1] 2 2 2 2 3 3 3 5 5

Part (b): Use

> rep( c(4,3,2), c(4,4,4) )

[1] 4 4 4 4 3 3 3 3 2 2 2 2

Part (c): Use rep( c(3,1,1,5,7), length.out=50 )
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Part (d): Use rep( c(3,1,1,5,7), each=4 ). As another method is

c( rep( 3, length.out=4 ), rep( c(1,1), length.out=8 ), rep( 5, length.out=4 ), rep( 7, length.out=4 ) )

Problem 12

See the R script chap 1 prob 12.R.

Problem 13

See the R script chap 1 prob 13.R.

Problem 14

See the R script chap 1 prob 14.R.

Problem 15

See the R script chap 1 prob 15.R. Which makes the plot given in Figure 6. The number
of samples in the largest age groups are very small indicating that they will have a large
variance. It looks like the unclass(age) version seems to give a bit more information about
the very high scores in that we can see the points explicitly (and their relationship to other
points).

Problem 16

See the R script chap 1 prob 16.R.

Problem 17

See the R script chap 1 prob 17.R. We should use seq(along=x) when the input argument
x could be NULL.
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Figure 6: Plots for Problem 15.

Problem 18

See the R script chap 1 prob 18.R.

Problem 19

See the R script chap 1 prob 19.R. When we run that code we get

values window1 window2 window3

0 141 192 200

1 132 23 99

2 30 65 11

3 14 46 3

5 7 10 14

6 6 1 6

7 15 8 12

From these window1 looks like it has more higher value prices than the other windows do (it
has about 50 less 0 values).

Problem 22

See the R script chap 1 prob 21.R.
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Figure 7: Age of possums at each site as a function of sex (male or female).

Styles of data analysis

Problem Solutions

Problem 1

We can do this with the code

library(DAAG)

library(lattice)

bwplot( site ~ age | sex, layout=c(2,1), data=possum )

What that code is run we get the result in Figure 7.

Problem 2

We can do this with the code

library(DAAG)

with( possum, stem(totlngth[ sex=="f" ]) )
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with( possum, median( totlngth[ sex=="f" ] ) )

Problem 3

See the R script chap 2 prob 3.R.

Problem 4

We can do this with code like

library(DAAG)

library(lattice)

# I think plots like these look good for a first look at the data:

#

densityplot( ~rcc | sport, groups=sex, data=ais )

densityplot( ~hg | sport, groups=sex, data=ais )

# or we could try

#

bwplot( sport ~ rcc | sex, data=ais )

Problem 5

See the R script chap 2 prob 5.R. When we run that script we get the plot shown in Figure 8.
The very long line is for the wren host which has smaller eggs than most of the other hosts.

Problem 6

See the R script chap 2 prob 6.R.

Problem 8

See the R script chap 2 prob 8.R.
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Figure 8: Egg (length, breadth) plots for both cuckoo’s (in black) and their host birds (in
red). Lines connect the cuckoo’s egg with the host bird’s egg.

Problem 9 (a pooled estimate of cuckoo egg lengths)

See the R script chap 2 prob 9.R. We estimate the pooled standard deviation to be 0.9051987.

Problem 10

See the R script chap 2 prob 10.R. We estimate the three expressions for correlation as
−0.00534, 0.7794935, 0.7162994. Plots of this data given in the book show that expressing
body weight and brain weight directly gives very little explanation to most of the data.
Taking the logarithm gives data that has a much more linear looking and only a few points do
not fit the general linear trend well. The book suggests using the Spearman rank correlation
when the two variables are monotonic but not necessarily linear i.e. could have a nonlinear
trend. Based on this I would use the normal Pearson correlation but in log space.

Problem 13 (a plot of the density of the galaxies dataset

We can do this with the code

library(MASS)

plot( density( galaxies ) )
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Figure 9: The density plot of the galaxies dataset.

When that code is run it produces the plot shown in Figure 9. We see evidence of clustering
and a somewhat skewed (to the right) distribution

Problem 14

Part (a): See the R script chap 2 prob 14.R. Some of the variables have relatively different
ranges. For example, we have that

> sapply( cpus[,2:9], range )

syct mmin mmax cach chmin chmax perf estperf

[1,] 17 64 64 0 0 0 6 15

[2,] 1500 32000 64000 256 52 176 1150 1238

showing that the range of the mmax variable goes to 64000. As this is so much larger than
the other variables we might want to apply a transformation of this data to map all variables
on to the same scale.

Part (b): See Figure 10 where we display the scatter plot of log(perf) ∼ log(estperf). It
looks like the variability about the best fit line gets smaller as log(perf) decreases.
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Figure 10: A plot of log(perf) ∼ log(estperf).
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Statistical Models

Problem Solutions

Problem 3

See the R code chap 3 prob 3.R for an example of how to do this.

Problem 4

See the R code chap 3 prob 4.R.

Problem 5

See the R code chap 3 prob 5.R.

Problem 6

See the R code chap 3 prob 6.R.

Problem 8

If T is the time from now the next incident will occur in days and if we want the probability
that the next accident happens in the next three weeks (21 days) we need to compute
pexp(21,rate=0.05)=0.65.

Problem 9

This can be done with the R code plot( density( rexp( 100, rate=0.2 ) ) ). Running
this code several times gives various density plots that look more or less like an exponential
density (the difference is due to sampling error). Taking the mean of random samples like
this gives a result like

> c( mean( rexp( 100, rate=0.2 ) ), 1/0.2 )

[1] 5.875883 5.000000
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Figure 11: QQ plots of data drawn from a chi-squared distribution (first row of plots) and
the t-distribution (second row of plots). The first column has n = 10 points, the second
column has n = 100 points, the third columns has n = 500 points. For only a few number
of points n = 10 data from these two distribution looks like it could be from a normal
distribution. For larger samples sizes serious differences between the data generation process
and the normal distribution are apparent.

Problem 10

See the R code chap 3 prob 10.R and Figure 11.

Problem 11

See the R code chap 3 prob 11.R. Since the variance of the data is not very close in value
to the value of the data mean we could conclude that a Poisson model is not appropriate for
this data.

Problem 12

See the R code chap 3 prob 12.R. When we run that code we get

> source(’chap_3_prob_12.R’)

[1] 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5

[1] 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

[1] 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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[1] 2 3 2 3 2 3 4 5 5 5 5 5 5 5 5

[1] 2 1 2 3 2 1 0 0 0 0 0 0 0 0 0

[1] 2 3 4 3 4 5 5 5 5 5 5 5 5 5 5

[1] 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

[1] 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

[1] 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5

[1] 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

showing various outcomes.

Problem 13

See the R code chap 3 prob 13.R.
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A Review of Inference Concepts

Problem Solutions

Problem 1 (the nswdemo dataset

See the R code chap 4 prob 1.R. When that code is run we get the following output

> source(’chap_4_prob_1.R’)

[1] "Part (a): Control group confidence interval:"

[1] 2530.773 3522.593

[1] "Part (a): Treated group confidence interval:"

[1] 2509.407 3622.789

[1] "Part (b): Control group confidence interval:"

[1] 4544.861 5635.236

[1] "Part (b): Treated group confidence interval:"

[1] 5185.685 6767.019

[1] "Part (b): Confidence interval of the difference"

[1] -1844.77823 72.17077

From the above output we see that there does not seem to be much evidence for a difference
between the control and the treated groups in 1975 but there seems to be more of a difference
between the two groups. To test this idea in Figure 12 we product a box and whiskers plot
of the re78 data. Given the above box and whiskers plot there does not seem to be much
difference between the the two groups.

Problem 2 (the t critical values vs. the degrees of freedom)

See the R code chap 4 prob 2.R. When that code is run we get the output shown in Figure 13.
The log transformation seems to create a better looking plot.

Problem 3 (possible values for the p-value)

See the R code chap 4 prob 3.R.

Problem 4 (the distribution of p-values)

See the R code chap 4 prob 4.R. When that code is run we get the output shown in Figure 14.
The plot shown indicates that when drawing only n = 10 random variates the p-value from
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Figure 14: A qq plot of the distribution of p-values when computing the mean of 10 Gaussian
random variables with actual mean zero.

a t-test seems to be drawn from a uniform distribution on [0, 1]. This is an indication that
the p-value in this small sample size case is not very informative.

Problem 5 (more outliers of a normal or a t-distribution)

See the R code chap 4 prob 5.R. When that code is run we get the output shown in Figure 15.
The t-distribution is a heavier tailed distribution than then normal and thus we expect to
have more outliers flagged when we consider the various boxplots. We see this phenomena
when we look at Figure 15.

Problem 6 (a time series with autocorrelation)

See the R code chap 4 prob 6.R. When that code is run we get the output shown in Figure 16.

Problem 7 (more series with autocorrelation)

See the R code chap 4 prob 7.R.
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Figure 15: Looking for outliers using the R boxplot function.
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for y does (right). Note the significant spike at the lag k = 1 in the second plot.
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Problem 8 (the nswpsid3 dataset)

See the R code chap 4 prob 8.R for some of the calculations requested for this problem.

Problem 9 (acupuncture)

Part (a): From the table given it looks like whether a patient has the true acupuncture
or the sham acupuncture there is not much difference in the resulting treatment outcome
i.e. whether the treatment is actually able to actually reduce in headaches. For the patients
that did not receive any acupuncture treatment (the column “Waiting list”) it looks like a
significant number of them did not have any reduction in headache symptoms. Perhaps the
act of having any treatment makes people more likely to have reduced symptoms.

Problem 10 (using the command mosaicplot)

The rareplants data looks like

> rareplants

D W WD

CC 37 190 94

CR 23 59 23

RC 10 141 28

RR 15 58 16

and in chap 4 prob 10.R we use the mosaicplot command to get the output shown in
Figure 17.

Problem 13 (the overlapDensity function)

See the R code chap 4 prob 13.R for some of the calculations requested for this problem.

Problem 14 (the z-transform in computing bootstrap CI of the correlation)

See the R code chap 4 prob 14.R for some of the calculations requested for this problem.
When that code is run we get the following output

> source(’chap_4_prob_14.R’)

21
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Figure 17: The output of the mosaicplot on the rareplants dataset.

[1] "CI: with the z-transform"

[1] 0.4686113 0.7102245

[1] "CI: without the z-transform"

[1] 0.4714532 0.7123547

From this output we see that there is not much difference in the two calculations. Thus it
looks like the z-transformation is not needed here.

Problem 15 (paired observations)

See the R code chap 4 prob 15.R. When we run that command we get the output shown in
Figure 18. The pot index 2 and 4 appear to have different values for the median difference
between the cross and self variables.

Problem 16

See the R code chap 4 prob 16.R.

Problem 17

See the R code chap 4 prob 17.R. When that code is run we get an output like the following
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Figure 18: The median values and inter-quartile range of the difference between the cross

and self in the mignonette dataset.

[1] "rate= 1.00; standard error of median (bootstrapped) 0.112211"

[1] "rate= 1.00; standard error of median (normal approximation) 0.125331"

Thus the bootstrapped estimate and the normal approximation seem to be quite close. If
we increase the rate parameter in the exponential data generation (so that the data is more
skewed) the comparison between the two methods is much worse

[1] "rate= 10.00; standard error of median (bootstrapped) 0.011221"

[1] "rate= 10.00; standard error of median (normal approximation) 0.125331"

Problem 19

See the R code chap 4 prob 19.R.
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Figure 19: The black dots correspond to data from the elastic1 data frame and the red
dots correspond to data from the elastic2 data frame.

Statistical Models

Problem Solutions

Problem 1

See the R code chap 5 prob 1.R and Figure 19. From this plot it looks like both sets of data
lie on the same line.

Problem 2

See the R code chap 5 prob 2.R. The result of a lm call in R gives a field called fitted.values
that gives the fitted values for each model. The standard error of these fitted values can be
obtained by calling the R function predict with the se.fit=TRUE option. When called on
the lm1 object we get

> predict( lm1, se.fit=TRUE )

$fit

1 2 3 4 5 6 7

183.1429 235.7143 196.2857 209.4286 170.0000 156.8571 222.5714

$se.fit
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[1] 6.586938 10.621119 5.891537 6.586938 8.331891 10.621119 8.331891

$df

[1] 5

$residual.scale

[1] 15.58754

where we see the standard error for each fitted value. The two R2 values are 0.799 and 0.981
for the data elastic1 and elastic2. The better R2 value of elastic2 (qualitatively) is
due to the fact that this data looks to be linear over a longer range of the stretch. In other
words, it looks like the data in elastic1 is a subset of that in elastic2.

Next we run the robust regression command rlm from the MASS package. Perhaps what
is most interesting is how the robust regression changes the estimate of the linear models
coefficients. For the data set elastic1 the estimates of the linear intercept and the linear
slope for ordinary least squares and robust least squares is given by

lm Coefficients: | rlm Coefficients:

Estimate Std. Error t value Pr(>|t|) | Value Std. Error t value

(Intercept) -119.143 70.943 -1.679 0.15391 | (Intercept) -95.7472 60.6901 -1.5776

stretch 6.571 1.473 4.462 0.00663 | stretch 6.0397 1.2600 4.7934

The value of the slope is about the same while the intercept is somewhat different. For the
elastic2 data the same comparison gives

lm Coefficients: | rlm Coefficients:

Estimate Std. Error t value Pr(>|t|) | Value Std. Error t value

(Intercept) -100.9167 15.6102 -6.465 0.000345 | (Intercept) -103.0550 14.4955 -7.1094

stretch 5.9500 0.3148 18.899 2.89e-07 | stretch 5.9752 0.2924 20.4379

Here the coefficients are much more similar.

Problem 3

See the R code chap 5 prob 3.R and Figure 20. From this plot we see that the quadratic fit
is not much better than the linear fit. We can study if the quadratic fit is a better match to
the data by using the R anova command to compare the two models. We find

> anova(m1,m2)

Analysis of Variance Table

Model 1: dist ~ speed

Model 2: dist ~ speed + I(speed^2)
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Figure 20: The black curve correspond to the linear fit to the data in the cars data frame
and the blue curve correspond to a quadratic fit to the same data.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 11354

2 47 10825 1 528.81 2.296 0.1364

Thus there is a 13% chance that the quadratic models improvement is due to chance (i.e.
not a real improvement). Given how large this percentage is I would opt to take the simpler
(i.e. linear) model. We can look at the summary command on the quadratic model. Part of
what we find is

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.47014 14.81716 0.167 0.868

speed 0.91329 2.03422 0.449 0.656

I(speed^2) 0.09996 0.06597 1.515 0.136

We first see that the estimated quadratic coefficient is very small and that the t value is
relatively small. This indicates that again the addition of a quadratic term is perhaps not
needed. The solutions presented to this problem argue that adding a quadratic term is still
helpful (and valid to include) in that

• It does actually reduce the residual sum of squares.

• There is a clear pattern in the plot of the residuals as a function of the fitted values
for the linear model that is not seen in the quadratic model.
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Figure 21: Left: Plots of the linear regression of weight on volume. Right: Plots of the
linear regression for weight on area.

Problem 4 (the density of pages)

See the R code chap 5 prob 4.R and Figure 21. From these two plots we see that both
linear fits look reasonable. The output from the summary command give that for the linear
regression log(weight) ~ log(volume) has an R2 of 0.7557 while for the linear regression
log(weight) ~ log(area) has an R2 of 0.8746. This and other indicators (F -statistic)
indicate that the linear regression of weight on area is the better model fit.

Part (d): When we replace log(density) with log(weight) we again see that the regres-
sion on area seems to be the better fit.

Problem 12

See the R code chap 5 prob 12.R and Figure 22. In that figure we draw the linear regression
coefficients that depend on how much relative error there is in x compared to y. Thus we
can get quite different results (i.e. slopes) depending on how much noise there is in x relative
to y.

27



−2 −1 0 1 2 3 4

0
1

2
3

4

logpet

log
len

Figure 22: Data from the leafshape frame, specifically the logpet and loglen columns in
black. We then plot the best fit line when there is equal amount of error in x and y in red,
10 times more error in y in blue, and 10 times more error in x in green.
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Figure 23: Left: Plot of POP1996 vs. POP1992. Right: Plot of the logarithms of POP1996
vs. POP1992.

Multiple Linear Regression

Problem Solutions

Problem 1 (modeling the cities dataset)

See the R code in chap 6 prob 1.R. When we plot the two suggested plots we get the results
shown in Figure 23. From this plot it looks like taking the logarithm seems to spread the
data apart a bit more. The four “summary” plots from the two linear models indicate that
the second model has fewer outliers and seems to have data that is more easily modeled in
the linear framework.

Problem 2 (head production in cement)

See the R code in chap 6 prob 2.R. A scatter plot of the predictors and the response is shown
in Figure 24. From that plot it looks like several of the predictors are highly correlated. For
example x2 and x4. Thus we might expect that we should not include each of these variables
in the model if we wish to have reasonable ability to estimate the coefficients of the model.
In fact the “summary” of a linear model withe all datum as a predictor indicates that we
cannot extract valid estimates of the coefficients

> summary(m0)
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Figure 24: A pairs plot of the cement data frame.

Call: lm(formula = y ~ ., data = cement)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.4054 70.0710 0.891 0.3991

x1 1.5511 0.7448 2.083 0.0708 .

x2 0.5102 0.7238 0.705 0.5009

x3 0.1019 0.7547 0.135 0.8959

x4 -0.1441 0.7091 -0.203 0.8441

---

Residual standard error: 2.446 on 8 degrees of freedom

Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736

F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07

Notice that the model as a whole is significant but none of the coefficients are. If we use
the stepAIC command to sequentially remove predictors we find the the smallest AIC is
obtained when we drop the variable x3. This variable also has one of the higher correlation
with another variable (x1). Looking at the correlations between variables we get

> cor( cement )

x1 x2 x3 x4 y
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x1 1.0000000 0.2285795 -0.82413376 -0.24544511 0.7307175

x2 0.2285795 1.0000000 -0.13924238 -0.97295500 0.8162526

x3 -0.8241338 -0.1392424 1.00000000 0.02953700 -0.5346707

x4 -0.2454451 -0.9729550 0.02953700 1.00000000 -0.8213050

y 0.7307175 0.8162526 -0.53467068 -0.82130504 1.0000000

We see that x2 and x4 are almost perfectly correlated. Dropping the term x4 we get the
model

> summary(m2)

Call: lm(formula = y ~ x1 + x2 + x3, data = cement)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.19363 3.91330 12.315 6.17e-07 ***

x1 1.69589 0.20458 8.290 1.66e-05 ***

x2 0.65691 0.04423 14.851 1.23e-07 ***

x3 0.25002 0.18471 1.354 0.209

---

Residual standard error: 2.312 on 9 degrees of freedom

Multiple R-squared: 0.9823, Adjusted R-squared: 0.9764

F-statistic: 166.3 on 3 and 9 DF, p-value: 3.367e-08

Thus we are now accurately estimating the coefficients for x1 and x2. Since the coefficient
of x3 is estimated poorly we might consider dropping it. When we perform the suggested
log transformation and then look at the summary plots we see that this model has a few
more outliers than the original (untransformed) model. Since the number of data points this
model has is so small it is probably best to stick with the untransformed model.

Problem 3 (hill climbing data)

For this problem see the R code in chap 6 prob 3.R. Here we learn two models on hill
climbing data. The first is using the data frame nihills and the second is from the data
frame hills2000. We then compute the variance in the predictions of each model with the
true values of log(time). Since the linear model when fitting this target using the hills2000
data is explicitly minimizing an expression like this we expect the variance obtained when
we build a model using the exact data to be smaller. Indeed this is what we observe

[1] "var using nihills= 0.019447; using hills2k= 0.014041"
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Figure 25: Left: The first linear model diagnostic plot for male hill climbers in the hills2000
dataset. From the first plots in this series some potential outliers might be Chapelgill, 12
Trig Trog, and Caerketton. Right: The first linear model diagnostic plot for female hill
climbers in the hills2000 dataset. The races Caerketton and 12 Trig Trog still stand
out as potential outliers along with the race Lochaber Highland.

Problem 4 (the hills2000 dataset)

For this problem see the R code in chap 6 prob 4.R. Since the hills dataset does not have
the field timef we will fit models for male and female walkers using the hills2000 dataset.
When we run that script we get the two plots shown in Figure 25. From these plots we would
refit our model with the data for Caerketton and 12 Trig Trog omitted. If we refit our
two models over male and female racers we get two sets of coefficients for the given models
For the male racers we get

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.96700 0.16722 -23.72 < 2e-16 ***

log(dist) 0.73829 0.03175 23.26 < 2e-16 ***

log(climb) 0.31815 0.02696 11.80 3.39e-16 ***

While for the female racers we get

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.68805 0.21708 -16.990 < 2e-16 ***

log(dist) 0.70018 0.04074 17.188 < 2e-16 ***

log(climb) 0.31782 0.03494 9.096 3.53e-12 ***
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Figure 26: Residual vs. fitted value plots for various linear modeling techniques. Outliers
are easily seen as data with very large y values.

Notice that the coefficiets of log(dist) and log(climb) are equal (within the accuracy of
their standard errors) while the intercept term is not.

Problem 5 (robust linear models)

Since it was decided in the section of the book that an intercept term is not needed we will
perform regression fits using lm, rlm, and lqs without one. In the R code in chap 6 prob 5.R

we first produce residual vs. fitted value plots for each of the three models. These are
displayed in Figure 26. This is a nice diagnostic plot for looking for outliers in the data.
From each model we see that the data points 13 (large positive residual) and 11 (relatively
large negative residual) could be considered outliers. Because the robust fitting methods
places less emphasis on the point 13 it ends up having a larger residual value under the two
robust models. We might consider dropping these points and observing the effect that this
procedure has on our model coefficients when they were included (or not).

volume wo 11/13 area wo 11/13

coefficients(lm0) 0.7289086 0.7172330 0.4808668 0.5059043

coefficients(rlm) 0.7111266 0.7159097 0.5168193 0.4936729

coefficients(lqs) 0.7116612 0.7011605 0.4849406 0.5077369

We see that when we remove the two outliers the coefficient estimate are more closely clus-
tered.
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Figure 27: Residual vs. fitted value plots for various the model with the interaction term of
dist:climb. It looks like the two points Slieve Donard and Meelbeg Meelmore might be
outliers.

Problem 6 (modeling the nihills dataset with an interaction term)

See the R code in chap 6 prob 6.R for this problem. The anova command gives the following
comparison between the two models

> anova( nihills.lm, nihills2.lm )

Analysis of Variance Table

Model 1: time ~ dist + climb

Model 2: time ~ dist + climb + dist:climb

Res.Df RSS Df Sum of Sq F Pr(>F)

1 20 0.189361

2 19 0.039361 1 0.15 72.406 6.623e-08 ***

This would indicate that the reduction in RSS is “sufficient” when we include the interaction
term and it should be kept in the model. If we next produce a residual vs. fitted value plot
we get the result shown in Figure 27. Based on that plot we identify a few points that might
be outliers, remove them and refit the two models. When we do that the anova command
gives

> anova( nihills.lm, nihills2.lm )

Analysis of Variance Table

Model 1: time ~ dist + climb
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Model 2: time ~ dist + climb + dist:climb

Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 0.180804

2 17 0.024907 1 0.15590 106.40 9.805e-09 ***

Again we see that the interaction term results in a significant reduction in RSS and thus
should be kept. This gives stronger evidence that the interaction term might be a real effect.
This gives motivation for taking the logarithm of all variables (turn products into sums).

Problem 7 (variance inflation factors)

See the R code in chap 6 prob 7.R for this problem. When that script is run we get the
following variance inflation factors for the two variables

> vif( litters.lm )

bodywt lsize

11.33 11.33

There is almost a linear relationship between lsize and bodywt which cause such large
values for variance inflation factors.

Problem 8 (using lm.ridge)

See the R code in chap 6 prob 8.R for this problem. When that script is run we break the
dataset litters into three groups to use for cross validation. For each value of λ we estimate
the mean square error and the one sigma uncertainty in that value. Plots of estimate of the
mean square error as a function of λ are given in Figure 28.

Part (a): The coefficients of the ridge regression linear model and the normal linear model
are given by

(Intercept) bodywt lsize method

0.381983207 0.005518766 -0.001065681 ridge regression

0.178246962 0.024306344 0.006690331 standard linear regression

Note that the coefficients seem to be quite different. One would need to look at the standard
errors to be sure that the difference was significant.

Part (b): When we compute a Monte-Carlo estimate of the prediction accuracy for the
ridge regression linear model (with λ = 10) and the normal linear regression model give
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Figure 28: Plots of the estimate of the mean square error as a function of regularization
parameter λ. It looks like the larger the value of λ the smaller the mean square error. The
largest value of λ considered was λ = 10.

predition estimate 5% 95% method

0.4103799 0.4063087 0.4152301 ridge regresssion

0.4153171 0.4102774 0.4194162 standard linear regresssion

Using the standard output from the function lm.predict for this sample we get

fit lwr upr

1 0.4152947 0.4062582 0.4243312

These estimates look rather close.

Problem 9

See the R code in chap 6 prob 9.R for this problem. We get ranges (the difference between
the maximum and the minimum value of the variable) for the two variables in the datasets
given by

dist climb range_ratio data_frame

16.4 8025 489.32 nihills

44.5 7000 157.30 hills2000
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Since the ratio of these two ranges is largest for the nihills data set we would expect that
it would be the harder data set to fit with a linear model. When we perform the two fits
suggested we get (just the residual fit components of the summary command) for the log
model and quadratic model on the nihills data frame

Residual standard error: 0.0766 on 20 degrees of freedom

Multiple R-squared: 0.9831, Adjusted R-squared: 0.9814

F-statistic: 582.7 on 2 and 20 DF, p-value: < 2.2e-16

Residual standard error: 0.05753 on 20 degrees of freedom

Multiple R-squared: 0.9948, Adjusted R-squared: 0.9943

F-statistic: 1929 on 2 and 20 DF, p-value: < 2.2e-16

This looks like the quadratic model has a much larger F-statistics for the same degrees of
freedom. For the hills2000 data frame we get

Residual standard error: 0.1207 on 53 degrees of freedom

Multiple R-squared: 0.9706, Adjusted R-squared: 0.9695

F-statistic: 874 on 2 and 53 DF, p-value: < 2.2e-16

Residual standard error: 0.1992 on 53 degrees of freedom

Multiple R-squared: 0.9714, Adjusted R-squared: 0.9704

F-statistic: 901.3 on 2 and 53 DF, p-value: < 2.2e-16

This again indicates that the quadratic model looks better in-sample for this data frame.

Problem 10

See the R code in chap 6 prob 10.R for this problem. When we run that script we generate
the plots given in Figure 29. We would find the points 9, 15, 20 as possible outliers to the
linear model. When we plot the residuals vs. fitted values of the suggested linear model as
a function of x7 and separated by the value of x11 we see that the residuals for the cases
where x11=1 are more tightly clustered than the ones when x11=0. Thus our model for
x11=1 should be a better model then the one for x11=0.

Problem 11

See the R code in chap 6 prob 10.R for this problem. In the first part of this code we
duplicate the books observation that when the model is incorrectly specified the estimated
coefficients can be in gross error. When we make the change to make
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Figure 29: Left: A scatter plot of y as a function of x1. Right: The residual vs. fitted plot
for the model y ~ x1 + x11, where x11 is a factor. The curvature of the data smooth could
indicate that quadratic terms should be included in the model.

x2 <- rbinom(10, 1, x1)

we should not see a qualitative difference in output. The coefficients from the two models
extracted give

(Intercept) factor(x2)1

2.201276 2.609256

(Intercept) x1 factor(x2)1

0.001037955 4.956124428 1.031046806

We see that in the first case the intercept and the coefficient of x2 are wrong while in the
full specified model they are “correct” again. If we change x2 to be

x2 <- rbinom(10, 1, 0.5)

Now the value of x2 does not depend on x1 at all and its inclusion in the model is independent
of x1. The coefficients of the linear models become

(Intercept) factor(x2)1

3.2963770 0.7711775
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(Intercept) x1 factor(x2)1

0.03392788 4.93702354 1.02600691

Now we get reasonable estimate of the coefficient of x2. If we consider taking more data we
should be able to estimate this coefficient even better. With 10000 data points the incorrect
model (when not including the term x1 gives coefficients of

(Intercept) factor(x2)1

2.495551 1.010454

which is close to true coefficient of 1.

Problem 12 (a different nonlinear model)

It seems like this problem is just asking us to estimate a different nonlinear model. I don’t
think there is anyway to related the estimated coefficients between the two models. If one
model is correct and second model is incorrect then the estimated coefficients in the incorrect
model will have “noise” introduced due to the incorrect model. This will make their estimate
potentially very wrong.

Problem 14

See the R code in chap 6 prob 14.R for this problem. For the second model (the one with
the cube root) the absolute values of the residuals are much smaller (order 1 vs. order 100)
and the QQ-plot has fewer samples in the tails. These two facts indicate that the cube root
model seems to be the better model. The fact that the coefficients are so different is simply a
reflection on the fact that each is a coefficient in a different model and stands for a different
thing.
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Figure 30: The distribution of log weights for the sugar dataset.

Exploiting the Linear Model Framework

Problem Solutions

Problem 1 (reducing variance with log(·))

See the R code in chap 7 prob 1.R. We take the logarithm of weight and then apply the aov
function to estimate the means of the three treatments (relative to the mean of the control
weights). We plot the distribution of log weights in Figure 30. For the log weight the output
of the summary.lm we get

> summary.lm(sugar.aov)

Call:

aov(formula = logWeight ~ trt, data = sugar)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.41224 0.05738 76.900 9.11e-13 ***

trtA -0.29015 0.08114 -3.576 0.007232 **
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trtB -0.20109 0.08114 -2.478 0.038220 *

trtC -0.52291 0.08114 -6.444 0.000200 ***

Residual standard error: 0.09938 on 8 degrees of freedom

Multiple R-squared: 0.8426, Adjusted R-squared: 0.7835

F-statistic: 14.27 on 3 and 8 DF, p-value: 0.001414

The output from the above seems to be slightly better than the output obtained when we
don’t take the logarithm, in that the F -statistics above is slightly larger and the t values are
slightly larger. Again the differences in the mean from the control for each treatments are
significant at the 5% level.

Problem 2 (adding a quadratic term)

See the R code in chap 7 prob 2.R. The anova command gives the following

Model 1: depression ~ weight

Model 2: depression ~ weight + I(weight^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 8 362.93

2 7 298.58 1 64.359 1.5089 0.259

The large p-value indicates the quadratic term is not needed.

Problem 3 (elastic1 and elastic2)

See the R code in chap 7 prob 3.R. For this problem we follow the steps outlined in the books
section 7.3 “fitting multiple lines”. There we consider four models of increasing complexity
and then select one based on statistical tests. In this problem there are two types of elastic
each of which is considered a factor. See Figure 19 for a plot of the data corresponding to
the two types of elastic. The four models we consider are

• distance is estimated using a constant mean (independent of type).

• distance is estimated using a constant mean and slope (independent of type).

• distance is estimated using different constants and a common slope.

• distance is estimated using different constants and different slopes.

For each of these different models we can use the R command anova to select the final model.
When we run the above script we get the output
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> anova( elastic.lm1, elastic.lm2, elastic.lm3, elastic.lm4 )

Analysis of Variance Table

Model 1: distance ~ 1

Model 2: distance ~ stretch

Model 3: distance ~ stretch + type

Model 4: distance ~ stretch + type + stretch:type

Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 46122

2 14 2549 1 43573 264.3302 1.542e-09 ***

3 13 2017 1 532 3.2249 0.09773 .

4 12 1978 1 39 0.2381 0.63435

From the above table it looks like the change in adding different intercepts is not significant
and neither is migrating to models where each elastic type has a different slope. Thus we
would prefer a single (one intercept and one slope) model for both types of elastic.

Problem 4 (the toycars dataset)

See the R code in chap 7 prob 4.R. For the suggested model we find an R2 given by 0.9451.
When we plot the first residual we find that the 17th sample appears to be a large outlier.
This means that the data is in error, or the model is in error, or both. If we trust our model,
we should remove this sample and refit the model. If we fit the second suggested model
(different slopes for each car type) we get an R2 given by 0.9413 (smaller than before). The
17th sample appears to be less of an outlier. This means that if we assume our data is
correct this means that this new model is perhaps the preferred model.

Problem 5 (the cuckoos dataset)

See the R code in chap 7 prob 5.R. When we perform the suggested comparison and then
run the anova command we get the following output

> anova( cuckoos.lm_a, cuckoos.lm_b, cuckoos.lm_c )

Analysis of Variance Table

Model 1: length ~ breadth

Model 2: length ~ breadth + species

Model 3: length ~ breadth + species + breadth:species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 118 101.923

2 113 79.114 5 22.8096 6.5711 2.244e-05 ***

3 108 74.978 5 4.1356 1.1914 0.3182
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This indicates that adding specific intercepts (and keeping a constant slope) seems to result
in a valid model improvement.

Problem 6 (the cuckoos dataset with robust regression)

When we use the R function anova on the outputs of the robust regression plots we get

> anova( cuckoos.rlm_a, cuckoos.rlm_b, cuckoos.rlm_c )

Analysis of Variance Table

Model 1: length ~ breadth

Model 2: length ~ breadth + species

Model 3: length ~ breadth + species + breadth:species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 101.935

2 79.458 22.4768

3 76.189 3.2691

The numerical output of this command looks very similar to that from the non-robust lm
output. This indicates that the model “B” (different intercepts for each species with a
common slope) may still be the preferred model even when using robust regression.

If we compare the coefficients computed using the two procedures lm and the rlm we get

Coefficients: (lm results) (rlm results)

Estimate Std. Error t value Value Std. Error t value

(Intercept) 9.51559 3.01765 3.153 9.1745 2.7468 3.3401

breadth 0.81117 0.17951 4.519 0.8344 0.1634 5.1068

speciesmeadow.pipit -0.80125 0.25610 -3.129 -0.9052 0.2331 -3.8829

speciespied.wagtail -0.01324 0.31454 -0.042 -0.0338 0.2863 -0.1180

speciesrobin -0.30310 0.31137 -0.973 -0.3140 0.2834 -1.1079

speciestree.pipit 0.04490 0.31143 0.144 0.0940 0.2835 0.3317

specieswren -1.23912 0.35300 -3.510 -1.2691 0.3213 -3.9496

There is some small changes in the numerical value of the coefficients.

Problem 7 (polynomial regression on the geophones dataset)

See the R code in chap 7 prob 7.R. When that code is run we get the plot shown in Fig-
ure 32 (left). The fourth order model seems to curve up at the two extremes of the plot.
The data seems to also curve up somewhat, an understanding of the problem domain would
help to determine which model is more likely.
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Figure 31: Residuals vs. fitted values for the model in two regressions Left: from the linear
model lmRight: from the robust regression rlm. There does not seem to be much difference.

Problem 8 (spline regression on the geophones dataset)

See the R code in chap 7 prob 8.R. When that code is run we get the plot shown in Fig-
ure 32 (right). In general the spline models fit the data better than polynomial models.

Problem 9 (worldRecords)

See the R code in chap 7 prob 9.R. There does not seem to be much difference between the
models.

Problem 10 (applying lowess smoothing)

See the R code in chap 7 prob 10.R.
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Figure 32: Raw data for the geophones dataset. Left: Plots of the fitted values for various
polynomial models for Problem 7. Right: Plots of the fitted values for various spline models
for Problem 8.
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Figure 33: Plots of the spline basis function selected for Problem 12.

Problem 11 (influential outliers?)

See the R code in chap 7 prob 11.R. From the first plot (residual vs. fitted values) it looks
like the data samples 19, 39, and 42 might be outliers. As there are several samples in
the lower left of the plot with negative residuals of the same magnitude ≈ 5 we might not

actually consider these points as extream.

Problem 12 (the spline basis curves)

See the R code in chap 7 prob 12.R. When that code is run we get the plot shown in
Figure 33.

Problem 13 (using s in the mgcv library)

See the R code in chap 7 prob 13.R. When that code is run we get the plot shown in
Figure 34. We notice from that plot that when we set the option k = 20 the smoothed curve
is overfitting the data a bit. One could use cross-validation to select an optimal value for k.
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Figure 34: Plots of the spline smoothing from mgcv’s function s for Problem 13.

Problem 15 (the wages1833 data set)

See the R code in chap 7 prob 15.R. When that code is run we get the plot shown in
Figure 35. The curves seem very different.

Problem 16 (merkats)

See the R code in chap 7 prob 16.R. Due to the nonlinear nature of the data points we
choose to model the points using loess. As there are not very many data points its hard to
objectively pick a smoothing parameter f .
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Figure 35: A lowess smooth of the male/female wage data from the wages1833 data set of
Problem 15.
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Figure 36: The “cp” plot of the rpart fit on the head.injury dataset starting with an
initially very small value for cp so that the tree over fits (this is corrected by pruning with
the one-standard deviation rule).

Tree-based classification and regression

Problem Solutions

Problem 1 (using rpart)

See the R code in chap 11 prob 1.R. When we run that code we get the plot shown in
Figure 36. We see that the minimum cross-validated error is either for a tree of size 4. If we
consider the tree of size 4 then the one-standard deviation rule: “choose the smallest tree
who’s error is less than the minimum error plus one standard deviation” this would pick the
same tree size of 4.

Problem 2 (rpart on the monica dataset)

See the R code in chap 11 prob 2.R. When we run that code we first use plotcp to produce
a tree that has too many splits (the tree overfits the data). When we run that code we get the
plot shown in Figure 37 (left). From the produced plot we see that using the one-standard
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Figure 37: Left: The initial “cp” plot of the rpart fit on the monica dataset. The one-
standard deviation rule is then used to select the tree size. The selected tree size using this
rule has 3-5 nodes. Right: The resulting final tree.

50



cp

X
−

va
l R

el
at

iv
e 

E
rr

or

0.
4

0.
6

0.
8

1.
0

Inf 0.066 0.022 0.01 0.0046 0.0036 0.0032 0.0028 0.0026 0.0021

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

size of tree

|re75< 1.772e+04

re75< 8586 re75< 3.518e+04

re74< 5.339e+04

7139 1.587e+04

2.631e+04

4.12e+04 6.63e+04

Figure 38: Left: The initial “cp” plot of the rpart fit on the nswpsid1 dataset. The one-
standard deviation rule is then used to select the tree size. The selected tree size using this
rule has 6 nodes. Right: The resulting final tree.

deviation rule plotcp says to pick the tree of size 3-5. We use the command prune to extract
this tree. Plotting the resulting tree gives the plot shown in Figure 37 (right).

Problem 3 (using rpart on the nswpsid1 dataset)

See the R code in chap 11 prob 3.R. When we run that code we first use plotcp to produce
a tree that has too many splits (the tree overfits the data). Using the one-standard deviation
rule we would then want to select a tree of size 6 and cp ≈ 0.016. When this script is run
we get the two plots shown in Figure 38.

Problem 5 (running randomForests)

See the R code in chap 11 prob 5.R. When this script is run we get the plot shown in
Figure 39. See the caption for that figure for additional explanation.
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Figure 39: Plots of the test error rate vs. the out of bag (OOB) error rate when using a
random forest to predict the biops data set. The line y = x is also drawn. There does not
seem to be a consistent difference between the OOB accuracy and the test accuracy.
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Problem 6-8 (the expected number of duplicate elements)

See the R code in chap 11 prob 6 to 8.R.

Problem 9 (training on a smaller dataset)

See the R code in chap 11 prob 9.R. When this is run we get the following accuracy output
for the two methods

> randomForest(as.factor(type) ~ ., data=Pima.tr)

OOB estimate of error rate: 27%

Confusion matrix:

No Yes class.error

No 109 23 0.1742424

Yes 31 37 0.4558824

> randomForest(formula = as.factor(type) ~ ., data = Pima.tr[rowsamp, ])

OOB estimate of error rate: 8.5%

Confusion matrix:

No Yes class.error

No 126 8 0.05970149

Yes 9 57 0.13636364

The low classification accuracy is due to repeated elements in the rows sampled.
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