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Introduction

Here you’ll find various notes and derivations I made as I worked through this book. There
is also quite a complete set of solutions to the various end of chapter problems. This book
is quite nice in that it provides a variety of data sets one can use to explore the techniques
discussed in the book. One of the nice things about this approach is that often with real data
the most straight forward application of textbook procedures do not work. In this book, and
with these notes, you can see many places where at first it might appear that a technique
will work trivially but in fact they do not and can require some modifications or a different
approach altogether to be made to work. This learning by doing is a very powerful approach
and greatly facilitates the learning process.

I would appreciate constructive feedback (sent to the email below) on any errors that are
found in these notes. I hope you enjoy this book as much as I have an that these notes might
help the further development of your skills in exploratory data analysis.

*wax@alum.mit.edu



Chapter 1: Introduction to Exploratory Data Analysis

Additional Notes

Do to the frequent use of the various datasets this book provides we define “wrapper”
functions to help facilitate loading and preprocessing many of the supplied datasets. For
example we have the routine load iris.m which is used to load in the iris dataset and
possibly apply various preprocessing steps like standardization, sphering, etc depending on
the input options passed in. This hopefully will make running the various experiments
thought the book much easier in that only a single line of code is needed to input the data
in any form desired. In addition, experiments involving apply various preprocessing steps
can easily be performed by simply changing the values of the input arguments. Many of the
problems in the later chapters are written using these auxiliary routines.

Exercise Solutions
Exercise 1.1 (exploratory data analysis)

Exploratory data analysis is the process of attempting to understand the given data set by
performing transformations that hopefully make the data more transparent (in understand-
ing) to the data analyst. Confirmatory data analysis is the process of posing a hypothesis
that the data might satisfy and then confirming it with appropriate statistical tests. Because
the hypothesis can be generated by exploring the data with EDA the two procedures often
go hand in hand.

Exercise 1.2 (visualization of the leukemia dataset)

This problem is done in the MATLAB script prob_1_2.m. When that script is run it produces
a gene expression map for 50 genes and 34 patients having two different type of Leukemia.
We have normalized each gene so that across all patients, the average response is zero and
the total standard deviation of all responses is one. This is a nice way to compare the
gene expression profile produced by different patients. When the MATLAB script above is
run we obtain the image shown in Figure 1 (left). We see that if we believe the observed
gene expressions pattern found in the “training” patterns (the first 39 patients and plotted
in Example 1.1) we would conclude that the patients indexed 39 — 50 (the first 11 in this
image) and those indexed 68 — 72 (the last 5 patients in the above image) appear to have
the ALL version of leukemia. In these patients the first 25 genes are highly expressed while
the gene expression for last 25 genes are less so. In the “middle” set of patients, it appears
that the opposite holds i.e. that the genes indexed 26 — 50 highly expressed and the earlier
numbered ones less so.
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Figure 1: Left: The normalized (across patient) gene expression data for the leukemia
dataset. Notice that the image is broken up into regions above and below about the 25th
gene where the different types of Leukema have different gene responses. Right: The
normalized (across patient) gene expression data for the lungB dataset. Note the “stripe”
along the right hand side beginning at patient 140 or so of this image. These gene responses
belong to normal patients.

Exercise 1.3 (visualization of the lungB dataset)

This problem is done in the MATLAB script prob_1_3.m. When the MATLAB script above
is run we obtain the image shown in Figure 1 (right). In that image we notice that the last
17 patients or so have a gene response that is different than the first 139. These column
numbers are obtained by looking closely at the various magnitudes in each column. This
gives an indication that we maybe able to classify these two classes.

Exercise 1.5 (various standardizations)

The first standardization for one-dimensional data we consider is where we subtract the
mean from the data and then divided by the standard deviation. In equation form

This is often called a z-transformation and can be computed directly in MATLAB with the
function zscore. The two range transformations, given by
x x — min(x)

T max(r) — min(z) o max(z) — min(z)

are computed in the MATLAB function range trans.m. This function takes an optional
flag specifying which version of the above formula to use.

The transformation of sphering the data (also called whitening) which is applicable for mul-
tidimensional data is performed in the MATLAB function Whitening transform, borrowed
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Figure 2: Left: The pairwise distances of the original data and the transformed data cor-
responding to Exercise 1.8. Right: The pairwise distances of the original data and the
transformed data corresponding to Exercise 1.9.

from the classification toolbox provided in [3]. One caveat with this routine is that the input
matrix is passed as a matrix of dimensions [p, n], where p is the number of features and n is
the number of samples. This is a transposed convention to the other routines used in this
book. These versions are exercised, on random data, in the MATLAB script prob_1_5.m.

Exercise 1.7 (robust standardizations)

The suggested robust standardization is implemented in the MATLAB function robust_norm.
One would run this routine in a similar way to the routines presented in Exercise 1.5 above.

Exercise 1.8 (standardizations and the Euclidean distance-part 1)

This problem is performed in the MATLAB script prob_1.8.m. When this script is run it
produces a plot of the pairwise distances found in the original data and the pairwise distances
found in the two scaled versions. The plot produces is reproduced in Figure 2 (left). We
sort the pairwise distances so that the smallest distances are plotted first. We recall that
for a standard normal the mean is zero so the two requested transformation are effectively
the same (one subtracts the mean of our data while the other does not) . We see from the
resulting figure that the distances found under the two transformations are indeed the same.

Exercise 1.9 (standardizations and the Euclidean distance-part 2)

This problem is performed in the MATLAB script prob_1_.9.m. When this script is run we
produce a plot in exactly the same way as in Exercise 1.8. We see that the pairwise distances



Figure 3: Left: A frequency histogram of n = 100 uniform random variables (drawn from
[0,1]) Right: A histogram of the transformed uniform variables log(z).

for each transformation are the same as expected. This plot can be seen in Figure 2 (right).

Exercise 1.10 (the log transform of uniform variables)

This problem is performed in the MATLAB script prob_1_10.m. When this script is run it
produces a frequency histogram of the original data in Figure 3 (left). When the log transfor-
mation is applied to the data we obtain the frequency histogram shown in Figure 3 (right).
We note that these two distribution appear to be very different.

Exercise 1.11 (transforming the software data)

This problem is performed in the MATLAB script prob_1_11.m. When this script is run
it produces a plot of the “original” data (log(prepsloc) v.s. log(defsloc)), in Fig-
ure 4 (left). When the two suggested transformation are applied we obtain the plot shown in
Figure 4 (right). The amazing thing is how compactly these two transformation seem to be
able to describe the given data. The two transformations given, are to take for x the value
of the variable prepsloc and then produce two derived variables 77 and 75 defined in terms
of = by

Ti(z) =log(l + vx) and Ty(x)=log(v/z),

It would be quite remarkable to be able to somehow determine these transformation from
the data directly.
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Figure 4: Left: A scatter plot of two variable from the software data set log(prepsloc)
and log(defsloc). Right: A scatter plot of the transformed variables as defined in the
problem solution.



Chapter 2: Dimensionality Reduction - Linear Methods

Additional Notes and Comments

An SVD based idea for feature transformation

The SVD of a n x p matrix X is defined as the factorization of X such that
X =UDV".

Here V is of dimension p x p, U is of dimension n x n, and D is of dimension n x p. If we
desire to produce a matrix X that is of a smaller dimension than X i.e. say of dimension
n x d with d < p the book suggests a method of projecting each feature vector x to a smaller
dimension via UYz. Here Uy is the matrix created from U by considering only the first d
columns of U.

An alternative method for reducing the dimension of X which is based simply on the di-
mensions of the matrices in the SVD decomposition is to restrict the matrix V' by including
only its first d rows in the product above. We then recompute an approximate X (say X )
of reduced dimension n x d as
X =UDVT.

It is this matrix X that we attempt to perform classification and data visualization with
since it will now be of the smaller dimension n x d. In MATLAB notation this is performed
with the following code

[U,D,V] = svd(X);
hatV = V(1:4,:);
hatX = U * D x (hatV.’);

This method is implemented and tested in Exercise 2.16 (b), where it is found that it
performs quite well in that there are well observed clusters using code like the above with
no feature scaling or ordering on the lungB dataset. See the MATLAB code in the script
prob_2_16_lungB.m.

Exercise Solutions
Exercise 2.1 (PCA on high variance random variables)

In this problem we apply PCA to the suggested data matrix. In this matrix the first feature
x1 has a significantly larger variance than the second two features x2 and x3. The result
of this is that when we use the largest eigenvalue associated with the PCA algorithm for



dimensionality reduction (in the covariance based case) we are effectively projecting only onto
the first dimension i.e. the variance of the x1 component dominates the projection. The
correlation based PCA dimensionality reduction algorithm (because the correlation matrix
has much more evenly distributed eigenvalues) specifies its first projection as effectively the
average of all three components. This exercises shows that if one component has a much
larger variance in comparison to the others the PCA dimensionally reduction algorithm based
on the covariance matrix will be dominated by this component. In the example given here,
if we compare the projected first component using the PCA algorithm with the unmodified
component x1 for the first five sample points we obtain the following

11.9869 11.9868
6.5294 6.5309
-48.5296 -48.5303
59.5491 59.5526
14.9668 14.9662

From which we see that the two are effectively the same, empirically verifying the above
conclusion.

This problem is implemented in the MATLAB script prob_2_1.m.

Exercise 2.2 (a scree plot of the yeast data)

Before even loading in the yeast data we can envision that in general the variances of the
individual components in the yeast dataset will be much larger than that of the unit vari-
ances of the data generated using randn. As such, if we use a covariance based matrix for
our PCA dimensionality reduction algorithm we will find that the projections are dominated
in magnitude by the components with the largest variances. To compare the magnitude of
the two sets of eigenvalues we will instead use the correlation based PCA dimensionality
reduction algorithm on the yeast data. When we do this, and plot the resulting eigenvalues
for both the yeast data and random data we obtain the scree plot as shown in Figure 5. In
that plot we see the two curves cross at an index around 3, suggesting that this data could
be projected into three dimensions without loss of information regarding the second order
statistics of the data. This method of comparing the eigenvalues of the data correlation ma-
trix with the eigenvalues from a dataset consisting of independent standard random variates
seems to give equivalent results as the other methods discussed in the text for selecting the
number of principal components to keep i.e. cumulative percentage of variance explained,
the broken stick, and the size of variance method, all of which give approximately the same
number of significant components.

This problem is performed in the MATLAB script prob_2_2.m.
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Figure 5: Scree plots of the yeast data and a corresponding scree plot for independent
random data drawn from standard normals of the same dimension p as the yeast data. The
crossover point at about three indicates that about only three dimensions need to be kept
to explain fully the variance in this dataset.

Exercise 2.3 (experiments with PC scores)

This problem is worked in the MATLAB script prob_2_3.m.

Part (a): For a dataset consisting of p independent standard normal random variables we
expect the total variance to be p. While considering the entire dataset (with no projection)
the total sum of the PCA eigenvalues (under infinite data) should also equal this value.
When we run the above script we indeed observe this behavior (as we increase the number
of samples n the trace of the covariance matrix becomes closer and closer to p = 3). That
the eigenvectors are orthogonal follows from the fact that that the covariance matrix is
symmetric [11]. That the mean of the principal component scores is zero follows because
the projections onto the eigenvectors of the covariance matrix can be thought of as a matrix
multiplication. As such, the mean of the projected variables would be that projection matrix
multiplied onto the mean of the unprojected variables. This later mean is zero so the
projected mean would be zero also.

Part (b): Since the covariance matrix has and (7, j)th elements given by
B[(X; = X:)(X; — X)),

the component means can be thought of as being subtracted from the components and then
the expectation taken. The upshot of this is that imposing a mean to our data has no effect
on the resulting covariance. Thus the principal axes found in this part of the problem will be
the same as found in the earlier part of the problem. A difference between this part and the
results of Part (a) above does occur when we consider the mean of the projected variates.
Since we have introduced a uniform shift of the original data, the mean of the projected
PCA components will be shifted by the PCA eigenvector transformation multiplied by this
mean. In the MATLAB code for this problem we compute both of these expressions and as
n increases we see that the two values converge (as the should).



Figure 6: Left: A scree plot for the correlation matrix corresponding to the yeast data.
The crossover point at about three indicates that about only three dimensions need to be
kept to explain fully the variance in this dataset. Right: A scree plot of the eigenvalues
of the correlation matrix corresponding to the yeast data and a plot of the function g the
expected fractional length of the kth order statistics.

Part (c): When we demean and divide each column of our data by the sample standard
deviation of that column and the compute the covariance matrix on the resulting data we
are effectively doing the correlation calculation. Thus the difference between the correlation
matrix and this matrix should be numerically zero. This can be observed by running the
above code.

Part (d): For this part of the problem we project the original data onto the eigenvectors
of the covariance matrix (i.e. compute the PC scores). We then find the covariance matrix
of this new dataset. When the above MATLAB script is run we find that the resulting
covariance is diagonal with the eigenvalues of the original dataset on the diagonal. These
eigenvalues converge to the number 1 as the number of samples n increases. That the off
diagonal components are zero means that the projected PC scores are uncorrelated.

Exercise 2.4 (PCA on the yeast correlation matrix)

In the MATLAB code prob_2_4.m we predict the number of “statistically significant” princi-
pal components based on the correlation matrix for the yeast data. We begin by plotting a
scree plot which is shown in Figure 6 (left). From this plot it appears that four components
appear to be a reasonable cutoff. Next we consider the percentage of variance explained. We
do this by computing the cumulative sum of the sorted eigenvalues and then dividing these
numbers by the total variance (sum of all the eigenvalues) found in this data. When we do
this (and express the result as a percentage by multiplying by 100) we obtain the following
17 numbers:

73.9415 84.3993 90.6658 93.5881 95.2096 96.1828 97.0169
97.7369 98.3001 98.7833 99.0903 99.3583 99.5411 99.6848



99.8176  99.9182 100.0000

We pick the number of eigenvalues considered significant by selecting a threshold after which
these number don’t increase significantly. For this data such a threshold might be five or
so. Next, to use the broken stick test we compare the given distribution of p eigenvalues
with expected lengths one would find from randomly breaking a stick into p pieces. When
we break a line segment into p random pieces and then sort them based on their length, the
expected fractional length of the kth longest segment is given by the following expression

11
9k = — —-
1 1

For example ¢, = 5 2uim1 G is the expected fractional length of the longest segment, while

2
9p = <l) is the expected fractional length of the shortest segment. If we plot these two ex-
p

pressions on the same set of axis with the eigenvalues we obtain the result in Figure 6 (right).
The index where the red curve (corresponding the eigenvalues of yeast correlation matrix)
falls below the green curve (corresponding to the analytic “broken stick” values) would be
an estimate of the number of components that are significant. Using this analysis we would
predict one or two significant components. As a final method, we find the number of eigen-
values that are greater than the mean (or some fraction like 0.7 of the mean) of all the
eigenvalues. According to this analysis we would take the top three eigenvalues. Thus all
of these metrics provide a way of selecting the number of necessary components to retain
in a projection. These results are very similar to the results obtained when considering the
covariance matrix rather than the correlation matrix.

Exercise 2.5 (eigenvectors of X7 X v.s. those of X X7T)

In the MATLAB script prob_2_5.m we generate a random data matrix X, construct the two
matrices X7X and X X7, and compute the eigenvalues of both. We generate a matrix X of
size [10,5] which means that the matrix X7 X is of dimension [5,5] while the matrix X X7T
is of dimension [10, 10]. The non-zero eigenvalues of each, however, are the same. When the
above script is run it shows the two computed eigenvalues side-by-side for an empirical proof
of this. An example output is shown below where the left column represents the eigenvalues
of XTX while the right column represents the non-zero eigenvalues of X X7

13.7054  13.7054
1.8604 1.8604
0.8627 0.8627
0.4844 0.4844
0.1679 0.1679

When we compute the singular values of the matrix X using the SVD algorithm, from linear
algebra we know that these singular values will be the square root of the eigenvalues of both



XTX or XXT. We can use the MATLAB function svd to compute the SVD of the data
matrix X and empirically verify this. The resulting singular values (squared) in this case
are given by

13.7054 1.8604 0.8627 0.4844 0.1679

which we recognize as the same as the above.

When we compare the eigenvectors of X7X and X X7 against the left and right singular
vectors we recall that the left singular vectors of X are the columns of the matrix U and
the right singular vectors are the columns of the matrix V' in the SVD decomposition of the
matrix X:

X =UDVT.

When X is of dimension [10,5], U is of dimension [10, 10], D is of dimension [10, 5], and V
is of dimension [5,5]. When we run the above MATLAB code we extract the eigenvectors of
XTX and XX7. When we do this we see that, apart from sign, the eigenvectors of X7 X are
the same as the right singular vectors of X (i.e. the columns of the matrix V). In addition,
the first 5 eigenvectors of X X7 are the same as the first 5 singular vectors (again ignoring

sign).

Exercise 2.6 (the eigendecomposition of the covariance matrix)

Given an dataset matrix X, we begin by computing the sample covariance matrix S. Storing
the eigenvectors of S as columns of a matrix, A, and the eigenvalues on the diagonal of a
diagonal matrix L we obtain the spectral decomposition of the matrix S as

S = ALAT.

Given the eigenvectors of S as columns of a matrix A the eigenvalues can be determined
from S via matrix multiplication as

L=ATSA.

In the MATLAB script prob_2_6.m we empirically verify both of these equations.

Exercise 2.7 (the slopes of the scree plot)

When the MATLAB script prob_2_7.m is run it first plots a scree plot of the eigenvalues
of the correlation matrix corresponding to the yeast dataset. It then plots the difference
between consecutive eigenvalues. We see that the jump between the first eigenvalue and the
second eigenvalue is quite significant while the difference between the other eigenvalues are
less significant.
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Figure 7: Left: A scree plot of a subset of the eigenvalues of the covariance matrix for
the 1ungB dataset. Right: A plot of the lungB data projected onto the first two principal
components (PC). Note the cluster separation between the AD and NL classes across the line
PC; ~ 12.5, in that if PC; < 12.5 the sample comes from the class AD while if PC; > 12.5
the sample comes from the class NL. The line PC; = 12.5 is drawn as an dash-dotted overlay
line.

Exercise 2.8 (PCA applied to various datasets)

In this problem we perform PCA dimensionality reduction on various datasets. To help
determine the number of significant PCA components, each routine below calls MATLAB
functions designed to implement the various methods discussed in the text and aimed at
determining the number of significant eigenvectors. Specifically, we have implemented

e A scree plot in the MATLAB function screePlot.m

e The broken stick metric for selecting the eigenvalues that have variances larger than
chance in the MATLAB function brokenStick.m

e The cumulative variance metric which selects a number of principal components such
that the percentage of total variance is larger than the requested amount in the MAT-
LAB function cumVariance.m

e To select the number of principal components that are larger than the mean of all
eigenvalues (by some percentage) we have the MATLAB function sizeOfVariance.m

Since a-priori it is unknown if, the datasets from the book have variances of their individual
components x; on widely different scales, without any additional information as to the di-
mension of the individual components one might think that it would be prudent to use the
correlation based PCA algorithm for dimensionally reduction. Using the correlation based
PCA procedure would make sense in a situation where each component of a data sample
was assumed to carry just as much weight (say in a classification task) as the others and
it was desired to not have one coordinate dimension dominate the reduction procedure due
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Figure 8: Left: A scree plot of the eigenvalues of the covariance matrix for the leukemia
dataset. Right: A plot of the data projected onto the first two principal axis. Note the
clear class separation across the line PC; =~ 0 in that if PC; < 0 the data sample if of cancer
type ALL, while if PC; > 0 the data sample is of cancer type AML.

only to the magnitude of the variable. See Exercise 2.1 for an example where it is shown
that if one component has a significantly larger variance than the others it will dominate
the PCA dimensionally reduction procedure when used in a covariance matrix based PCA
procedure. These considerations hold true usually in a more ideal world where the data
analyst believes that there should be equal emphasis place on each feature variables and that
none should be more heavily weighted than the others. This assumption is in fact most often
incorrect in practice since often the data analysts uses whatever features are heuristically
determined as discriminating and may not know before studying them which ones are the
most important. In fact, if one is considering a classification problem often the individual
features with larger variances carry more information than the ones with smaller variances
since different classes hopefully give rise to wildly different features. In these cases it can be
especially important to use the covariance based PCA dimensionality reduction procedure if
one wishes to use it for class discrimination, visualization, or clustering. If the given features
are chosen intelligently and features without information excluded by default (as is often the
case with textbook datasets) this may not be such an important consideration. When this
algorithm is used for dimensionality reduction on larger datasets that need dimensionality
reduction before they can be processed by another algorithm, normalization of the variance
can cause significant degradation of the secondary techniques. An example of this effect can
be found in Exercise 2.16 where we attempt perform factor analysis on the lungB dataset.
This dataset has 675 features before any reduction and normalizing the variance across fea-
tures results in very poor clustering, while the unnormalized features can be clustered quite
well. Thus rather than follow a rote scripted procedure for each of these datasets we will
experiment with various options and select ones that seem to visually perform best (as far
as cluster separation goes).

Part (a): For this part of the problem we will consider the 1ungB dataset. For this dataset
we have n = 156 measurements of p = 675 gene responses. Because the number of features
in this dataset is so much greater than the number of samples we expect that without
significant feature selection we will never be able to design a robust classifier. Because the



gene response process is a “natural process”, in that it occurs in Nature, we might expect
that the gene response variable to be distributed as Gaussian random variables. Because of
this as a preprocessing step we compute the zscore of each of the gene responses after which
we compute the covariance matrix for the given set of samples.

In Figure 7 (left) we see the scree plot for the covariance matrix corresponding to this dataset.
It appears that somewhere around 60 features are required to represent the variance in this
dataset. When we compute the various metrics describe in the text we find

CumVar= 62; BrokenStick= 61; SizeVar= 124

When we compute the PCA projections from this covariance matrix we expect that if there
are multiple classes that they would be best observed in the clustering of the data points
along the most volatile projections, again since along these directions they would be the
ones with the most feature variation. Since the PCA decomposition orders the most variable
projection earlier than the later ones. In Figure 7 (right) we show the data projected into
the first and second eigen-directions along with a color and symbol coding of the type of
cancer each point corresponds to. We see that the two types of cancers are clearly delineated
as different clusters in this projection.

This code is implemented in the MATLAB script prob_2_8_a_lungB.m.

For a second part of the problem we will consider the leukemia dataset. For this dataset
we have n = 72 measurements of gene responses from individual patients each with different
types of cancer. Each sample has p = 50 features, corresponding to different gene responses.

Following the same preprocessing steps as in the lungB dataset, in Figure 8 (left) we present
a scree plot of the eigenvalues of the covariance matrix. It appears that somewhat around
10 features are required to adequately represent the variance in this dataset. We compute
each of the metrics described in the book and find

CumVar= 12; BrokenStick= 2; SizeVar= 12

When we compute the PCA projection of this covariance matrix we expect that if there
are multiple classes (or subclasses) that they should be best observed in a clustering of the
data points in the most volatile projection, again since that would be the one with the most
feature variation. In Figure 8 (right) we show the data projected into the first and second
eigen-directions along with a color and symbol coding of the type of cancer. We see that the
two types of cancers are clearly delineated across the line corresponding to PC; ~ 0. See
the caption corresponding to that figure for more detail.

This code is implemented in the MATLAB script prob_2_8_a leukemia.m.

Part (b): For this part of the problem we will consider the oronsay dataset. For this data
it is noted that we have n = 226 measurements of p = 12 features/observations of the weight
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Figure 9: Left: A scree plot of the eigenvalues for the covariance matrix of the oronsay
dataset. The projection of the oronsay data onto the first two principal components. Cen-
ter: With labels representing whether the points are beach sand or dune sand. Right: With
labels representing the location of the sand samples.

of sand of various sizes. Because this data comes from a physical process we preprocess this
data by transforming each feature so that it has zero mean and unit standard deviation. In
Figure 9 (left) we see the scree plot for the covariance matrix corresponding to this dataset.
From this plot it appears that somewhere around 5 features are required to completely
represent the variance in this dataset. When we compute the various metrics described in
the book and we find

CumVar= 4; BrokenStick= 3; SizeVar= 4

In Figure 9 (center) and (right) we present the oronsay dataset projected on the first two
principal directions. In Figure 9 (center) we classify the data according to the type of “place”
the sand came from (midden, beach, or dune), while in Figure 9 (right) we classify the data
according to the location where the sand was collected (midden, Cnoc Coig, or Caisteal non
Gillean). Clustering of these classes somewhat visible from these plots.

This code is implemented in the MATLAB script prob_2_8_b_ornosay.m.

Part (c): For this part of the problem we will consider the sparrow dataset. For this data it
is noted that we have n = 49 measurements of p = 5 features representing lengths of various
body parts of sparrows after a storm. Since these are features that occur in Nature we will
preprocess them in the same way as earlier (using a zscore).

In Figure 10 (left) we display a scree plot for the covariance matrix corresponding to this

dataset. It appears that somewhere around only 2 features are required to represent the
variance in this dataset. Computing the various other metrics describe above and we find

CumVar= 3; BrokenStick= 1; SizeVar= 1
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Figure 10: Left: A scree plot for the sparrow dataset. Right: The sparrow dataset
projected onto its first two principal components. No obvious separation of these points into
clusters exists.

In Figure 10 (right) we display a the sparrow data projected onto the first two principal
components. In addition, we have classified the first 21 samples differently than the others
since they correspond to the sparrows who survived the storm damage.

This code is implemented in the MATLAB script prob_2_8_c_sparrow.m.

Exercise 2.11 (the singular values of X v.s. the eigenvalues of X X7 and X7X)

In this problem we use rand (or randn) to compute a bivariate data matrix X. We then
directly compute X7 X, X X7, and the eigenvalues of both using the MATLAB function
eig. In addition, we compute the singular value decomposition of X using the MATLAB
command svd. If we compare the resulting singular values with the square root of the non-
zero eigenvalues of both X7 X or X X7 we see that they are equal. See also Exercise 2.5 for
a discussion of the eigenvectors of X7 X and X XT compared with the right and left singular
values of the matrix X.

This problem is worked in the MATLAB script prob_2_11.m.

Exercise 2.12-13 (experiments with factor analysis using factoran)

We begin by applying the MATLAB function factoran to the given stock return data. A
factor decomposition of the vector x means that the p component observed random variables
x1,T2, -+, T, can be written in terms of a smaller number say d < p unobserved latent
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Figure 11: A sampling of the possible factor loadings for the stockreturn data for several
types of rotations. Left: The return data projected into the space spanned by the first and
second factors. Center: Projected into the space spanned by the first and third factors.
Right: Projected into the space spanned by the second and third factors. Clustering of the
points corresponding to the type of company is clearly evident from these plots.

variables (or common factors), fi, fa, -, fq and p error terms €, €a, - - - , €, as

1 = Anfitdefot o+ Aafatea
Ty = Aafi+Aafo+ -+ Aogfa + e

Ip = )\plfl +/\p2f2 + ”'+Apdfd+€p-

The \;; are called factors loadings and along with the error terms ¢; are different for each sam-
ple, while the the common factors f; are constant for all the variables considered. Since the
computation of the factor loadings \;; is not uniquely defined from the above decomposition
there are several different specifications available via options to the factoran function.

In this dataset, the first four columns of returns (with indexes {1,2,3,4}) correspond to
technology companies, the next three columns (with indices {5,6,7}) correspond to finan-
cial companies, and the final three columns (with indices {8,9,10}) correspond to retail
companies. From this knowledge we might expect or hope for clustering of those points.

By default the factoran function generates its output according to a wvarimaz rotation
criterion. In this exercise we are asked to experiment with alternate rotations by specifying
different options to the factoran function. Specifically, we choose to consider all of the
available possible choices: no rotation, varimax, quartimax, equamax, parsimax, orthomax,
and promax rotations. For each type of rotation, a three term factor decomposition is
computed. We then plot projections of the factor loadings A. ; for various configurations of
J (chosen from its possible range j = 1,2, 3).

When we consider the scatter plots corresponding to the various type of projections we
notice that the options of no rotation and promax are significantly different than the others.
Because of this we plot these two factor decompositions on a different set of axis. To
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Figure 12: The possible factor loadings for the stockreturns data, under the no rotation
and promax rotation. Left: We project our data into the space spanned by the first and
second factor loadings. Center: The space spanned by the first and third factor loadings.
Right: The space spanned by the second and third factor loadings.

begin with however, in Figure 11, we plot the projections corresponding to the: varimax,
quartimaax, equamax, parsimax, and orthomax rotation options. We see that all of these
projections produce results that are very similar to each other. There is definitely clustering
of the data points. Depending on the projection space we see clustering of the points 5,6, 7
the points {1,2}, and the points {8,9,10}. The points {3,4} are more ambiguous in that
they could be assigned to the cluster containing {5,6, 7} in the Factor 1-Factor 3 projection
or to the cluster containing the points {8,9,10} in the Factor 1-Factor 3 projection.

In Figure 12, we plot the rotation options of no rotation and the promax rotation. We see
that these projections produce results that are very similar to the earlier ones in that there is
definitely clustering of the data points. In addition, the Factor 2-Factor 3 projections nicely
group the companies by their type.

These two exercises are implemented in the MATLAB script prob 2 12 N_13.m.

Exercise 2.14 (projecting the stock data into two and four factors)

In this problem we perform factor analysis on the stockreturns dataset assuming two and
four factors respectively. We first find the factors for the stockreturns data assuming two
factors and the default varimax rotation. The results of this analysis are shown in Figure 13.
We easily see clusters in the set of points {5,6,7}, {3,4,9,10}, and {1, 2, 8}.

In the Figure 14 we show the six possible two-dimensional projections when we compute a
factor model on the stockreturns dataset.

This problem is implemented in the MATLAB script prob_2_14.m.
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Figure 15: Computation of the factor scores produced by the factoran function under no
rotation (left) and promax rotation (right) for the stockreturns dataset.
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Figure 16: Left: Plots of the factor loadings produced by the factoran function under
the default rotation (varimax) for the leukemia dataset and assuming a two factor model.
Right: Plots of the common factors for the leukemia dataset. Note the strong clustering.

Exercise 2.15 (factor scores from the factoran function)

In Figure 15 we plot the factor scores produced by the factoran function on the stockreturn
dataset under the assumption of a two factor model.

Exercise 2.16 (factor analysis on gene expression datasets)

Part (a): In this problem we perform factor analysis in the patient domain on the leukemia
dataset by looking for two factors that could explain the given data. In general is to a good
idea to start an EDA procedure by looking for only two different classes before trying to
find more classes. If you cannot find at least two classes than there is little hope of finding
more. When we use the MATLAB function factoran on the leukemia dataset we produce
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Figure 17: Left: Plots of the factor loadings produced by the factoran function under the
default rotation (varimax) for the lungB dataset. Right: Plots of the common factors for
the 1lungB dataset. Note the nice clustering, of the NL type of cancer represented by the
square symbols in the lower left corner.

the figures seen in Figure 16. Notice the strong clustering in both the factor loading and the
common factor domains.

This problem is implemented in the MATLAB script prob_2_16_leuk.m.

Part (b): For this part of the problem we attempt to apply clustering in the patient
domain for the lungB dataset. Due to the large feature space 675 we begin this process by
sorting the columns of the data in decreasing order by their variances. Since each feature
corresponds to a gene response this variance ordering should help in the interpretation of
the eigenvectors of the resulting covariance matrix in that the coefficients should roughly
decay in magnitude with their index. Because the feature set is still quite large at 675 and
results in a singular covariance matrix the factoran function crashes when passed the entire
dataset we next perform a PCA dimensionality reduction procedure (down to a dimension
of 20) on the resulting full 675 feature covariance matrix. For this dataset we found though
experimentation that it was much better to not perform a z-score transformation on the
resulting gene responses (i.e. the columns) before computing the covariance matrix. The
results of the factor decomposition are displayed in Figure 17, where we can see nice clustering
of the two cancer types. The NC type tightly clustered in the lower left corner.

This problem is implemented in the MATLAB script prob_2_16_lungB.m.

Exercise 2.17 (idpettis on independent random data)

For this problem we attempt to run the idpettis on two dimensional independent random
data. We generate n random pairs with the randn function, call the idpettis function
on this data and repeat this procedure for a given number of Monte-Carlo iterations. We
generate sample sizes n of 10' pairs for [ € {1,2,3,4}. We expect to obtain an intrinsic
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Figure 18: Left: A box plot representing the distribution of the intrinsic dimension produced
by the idpettis MATLAB function when run on two feature data consisting of independent
random variables. Right: A box plot representing the distribution of the intrinsic dimension
estimates produced by the idpettis MATLAB when run on Fukunaga’s Gaussian pulse.

dimensionality of 2 on random data like this since each component is independent. The
results of this experiment are shown in Figure 18 (left), where we see that as the number
of samples used to estimate the intrinsic dimensionality increases our estimate converges to
the value 2.4.

This problem is implemented in the MATLAB code prob_2_17.m.

Exercise 2.18 (estimating the intrinsic dimensionality of a Gaussian pulse)

For this problem we generate random sample from the given waveform, use the MATLAB
function idpettis to estimate their intrinsic dimensionality and repeat this experiment for
several Monte-Carlo trials. When we do this we find the distribution of values from the
idpettis function given in Figure 18 (right). There we see that under infinite samples size
we would obtain a value approximately equal to 3.4, which is quite close to the expected
value of 3.

This problem is worked in the MATLAB code prob_2_18.m.

Exercise 2.19 (the intrinsic dimensionality of the yeast dataset)

The idpettis function finds an intrinsic dimensionality of 13.75 for the yeast dataset. The
PCA approach taken in Exercise 2.3 concluded that approximately three principal compo-
nents were needed.

This problem is worked in the MATLAB code prob_2_19.m.



Exercise 2.20 (the intrinsic dimensionality of various datasets)

In this exercise we will compute the intrinsic dimensionality of each of these datasets and
compare them to the dimension suggested by a PCA decomposition computed and discussed
in Exercise 2.8.

Part (b): We compute the intrinsic dimensionality of the ornosay dataset to be 4.85, while
PCA dimensionality reduction suggested a value of approximately 3 — 4.

Part (c): We compute the intrinsic dimensionality of the sparrow dataset to be 4.91, while
PCA dimensionality reduction suggested a value of approximately 1.

Part (d): We compute the intrinsic dimensionality of the 1ungB dataset to be 26.71, while
PCA dimensionality reduction suggested a value of approximately 60.

We compute the intrinsic dimensionality of the leukemia dataset to be 12.20, while PCA
dimensionality reduction suggested a value of approximately 12.

The estimates of the intrinsic dimensionality appears to be close in some cases and rather
different in others. This problem is worked in the various MATLAB codes prob_2_20_%.m
specific to each dataset.
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Figure 19: Left: A projection of the skulls dataset onto the first two axis produced the
classical multidimensional scaling algorithm. Right: The projection onto the first two
principal components of the skulls dataset. These two projections are the same expect for
a rotation of 180 degrees counterclockwise of the MDS result. Note that a “diagonal” line
(not shown) through the first figure would do a good job separating the data points into
male and female classes.

Chapter 3: Dimensionality Reduction -
Nonlinear Methods

Exercise Solutions
Exercise 3.1 (multidimensional scaling on the skulls dataset)

In this problem we perform classical multidimensional scaling on the skulls dataset with
the MATLAB statistical toolbox command cmdscale. We then compare these results with
the PCA dimensionality reduction procedure. In Figure 19 (left) we see the result of the
multidimensional scaling while in Figure 19 (right) we see the results of the PCA dimension-
ality reduction. For this problem we used the MATLAB function pdist (with the argument
“euclidean”) to generate the matrix of dissimilarities to be used by the cmdscale command.
Because of this, the multidimensional scaling and the PCA dimensionality reduction proce-
dure result in the same projections [4].

This problem is implemented in the MATLAB script prob_3_1.m.
Exercise 3.2 (more multidimensional scaling on the skulls dataset)

In this exercise we consider the non-metric multidimensional scaling algorithm (implemented
in the EDA toolbox function nmmds.m) and the SMACOF (scaling by majorizing a compli-
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Figure 20: Left: A projection of the skulls dataset onto the first two axis produced from
the non-metric multidimensional scaling algorithm nmmds. Right: The projection onto the
first two axis produced from the SMACOF algorithm on the skulls dataset.

cated function) algorithm presented in Example 3.2 of the book on the skulls dataset. The
results from these two algorithms along with male/female labels are shown in Figure 20 (left)
and (right) respectively. The SMACOF results appear more random at least with respect to
male/female labeling.

This problem is implemented in the MATLAB script prob_3_2.m.

Exercise 3.3 (multidimensional scaling into the third dimension)

For this problem we perform classical multidimensional scaling (MDS) on the matchbpm
dataset and then view the resulting projection in three dimensions. When one performs this
exercise the resulting three dimensional plot very clearly show clustering in the projection
space. Using the MATLAB interactive “rotate” function on the figure window allows one to
change the resulting view point and clearly observe the clusters in three dimensional space.

This problem is implemented in the MATLAB script prob_3_3.m, which when run allows
the visualization suggested above to be easily performed.

Exercise 3.4 (SMACOF on the oronsay dataset)

For this exercise we apply the SMACOF algorithm on the oronsay dataset. The results
from applying this algorithm is presented in Figure 21. These plots look qualitatively very
similar to the ones presented when we did a PCA decomposition in Exercise 2.8 (b), in that
clustering seems to be present in the labeling by location (i.e. midden labeling).

This problem is implemented in the MATLAB script prob_3_4.m.
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Figure 21: The projections for found by the SMACOF algorithm when applied to the
oronsay dataset. Left: With labels representing the “beachdune” labeling. Right: With
labels representing “midden” labeling. Notice that vertical lines (not shown) at approxi-
mately x1 ~ 0 and z; ~ 3 in the midden labeling would do a good job of separating the sand
samples according to where they were collected.

Exercise 3.7 (the command som_show)

The command som_show (sM) produces a U-matrix for all of the individual components on one
graph. The command som_show(sM, ’comp’,1i) produces a U-matrix for the i-th component.

These commands are exercised in the MATLAB script prob_3_7.m.

Exercise 3.8 (beachdune labeling of the oronsay dataset)

In this exercise we modify Example 3.6 from the text to use the beachdune labeling provided
with the oronsay dataset. See the MATLAB script prob_3.8.m for an implementation of
this.

Exercise 3.9 (plotting the GMT modes)

In this problem we plot the modes produced by the GTM algorithm when applied to the
oronsay dataset. To aid comparison of this result with that when the means were considered,
the modes are plotted on the same graph as the means. The result of this study is shown
in Figure 22 (left). We see that many of the points are almost identical and that the two
representation are quite similar.

This problem is implemented in the MATLAB script prob_3_9.m.
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Figure 22: Left: The means represented by black crosses and the modes represented by
red crosses found by the GTM projection when applied to the oronsay data. Right: The
ISOMAP projection of the scurve dataset. Note the “hole” in the lower half of the image.

Exercise 3.10 (using the MATLAB command mdscale)

A similar exercise is qualitatively performed in Exercise 3.1. Please see the results there.

Exercise 3.11 (ISOMAP on the scurve dataset)

In this problem we apply the ISOMAP procedure to the scurve dataset. The resulting
scatter plot from this procedure is shown in Figure 22 (right). Note the large hole in the
lower half of the image (centered approximately on the coordinate (0.5, —1.75) and the
scattered holes throughout.

This problem is implemented in the MATLAB script prob_3_11.m.

Exercise 3.12 (LLE on the swissroll dataset)

In this problem we apply the Local Linear Embedding (LLE) algorithm to the swissroll
dataset. The resulting scatter plot from this procedure is shown in Figure 23. It was noted
that when running the 11e command the choice of the desired output dimension d seemed
significantly affect the resulting two-dimensional projections. Through experimentation we
found that a value of d = 3 seemed to produce the most interesting result. Using this value
the resulting two dimensional projection had a clear hole in it.

This problem is implemented in the MATLAB script prob_3_12.m.
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Figure 23: The Local Linear Embedding (LLE) projection of the swissroll dataset.

Exercise 3.13 (the ID of the swissroll and scurve datasets)

When we run the idpettis program to compute the intrinsic dimensionality (ID) of the
scurve dataset we obtain a result of 2.0862. For the swissroll dataset we obtain an
intrinsic dimensionality of 2.0849. From the construction of these two datasets we know that
they are intrinsically two dimensional, which the idpettis algorithm is correctly recognizing.

This problem is implemented in the MATLAB script prob_3_13.m.

Exercise 3.14 (application of nonlinear dimensionality routines on various datasets)

Because classical multidimensional scaling using a Euclidean distance for a dissimilarity
measure is equivalent to a PCA projection [4], in this exercise we have two choices to generate
different projections from the ones already considered. The first is to use the EDA toolbox
function nmmds . m to compute a non-metric multidimensional scaling. The second is to use the
MATLAB function mdscale which can perform both metric and non-metric multidimensional
scaling with non-dimensional scaling as the default. For simplicity and computational speed
we will use the MATLAB function mdscale.

One thing about these runs must be noted. It was found that when running the Local Linear
Embedding algorithm, 1le.m, the maximum dimension of the desired embedding played a
major factor in the qualitative projection obtained when we projected our data into two
dimensions. For the results presented here, the final maximal dimension was selected that
produced the most interesting two dimensional projection. This dimension was determined
via trial-and-error.

Part (b): First, we apply the various non-linear dimensionality reduction techniques dis-
cussed in this chapter to the yeast dataset. The results from this set of experiments can be
found in Figure 24. This problem is implemented in the MATLAB script prob_3_14_b_yeast .m.
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Figure 24: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE, SOM,
and GTM projections of the yeast dataset. The MDS and [ISOMAP projections indicate
the presence of outliers.
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Figure 25: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections of the lungB dataset. The LLE and GTM projections indicate
possible clustering.
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Figure 26: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections of the leukemia dataset. All projections indicate the presence
of outliers and many projections (i.e. MDS and ISOMAP) indicated possible clustering.

Second, we apply the various non-linear dimensionality reduction techniques discussed in this
chapter to the 1lungB dataset. The results from this experiment can be found in Figure 25
and is implemented in the MATLAB script prob_3_.14_b_lungB.m.

Finally, we apply the various non-linear dimensionality reduction techniques discussed in
this chapter to the leukemia dataset. The results from this experiment can be found in
Figure 26 and is implemented in the MATLAB script prob_3_14_b_leuk.m.

Part (c): Here we apply the various non-linear dimensionality reduction techniques dis-
cussed in this chapter to the iris dataset. The results from this experiment can be found
in Figure 27. This problem is implemented in the MATLAB script prob_3_14 c_iris.m.

Part (d): Here we apply the various non-linear dimensionality reduction techniques dis-
cussed in this chapter to the pollen dataset. The results from this experiment can be found
in Figure 28 and is implemented in the MATLAB script prob_3_.14_d_pollen.m.

Part (e): For this part of the problem we apply the various non-linear dimensionality
reduction techniques discussed in this chapter to the various subdata sets from the entire
posse data collection. As there are several objects present in the total dataset we will present
the results from the various non-linear dimensionality reduction techniques one at a time.

We begin with the croix dataset. The results from this experiment can be found in Figure 29.
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Figure 27: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections of the iris dataset. The projections found by the MDS and
LLE algorithms are quite interesting. These results may indicate data clustering, depending
on the sector of the circle (in the MDS case) or the quadrant (in the LLE case) where each
of the flower type datum falls. Plotting class labels on these projections would be quite
interesting and would verify or dispute these hypothesis.
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SOM, and GTM projections of the pollen dataset.
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Figure 29: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,

SOM 28-Oct-2008

SOM, and GTM projections for the croix dataset from the posse data collection.
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Figure 30: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections for the struct2 dataset from the posse data collection.

Next we consider the struct?2 collection which represents an L-shaped structure. The results
from this experiment can be found in Figure 30.

Next we consider the boite collection which represents an donut shaped structure. The
results from this experiment can be found in Figure 31.

Next we consider the groupe collection which represents a set of four clusters. The results
from this experiment can be found in Figure 32.

Next we consider the curve collection and the results from these experiments can be found
in Figure 33.

Finally we consider the spiral collection which represents a set of four clusters. The results
from this experiment can be found in Figure 34.

All of these plots can be generated by running the MATLAB script prob_3_14 e _posse.m.

Part (f): For this part of the problem we apply the various non-linear dimensionality
reduction techniques discussed in this chapter to the oronsay dataset. The results from
this experiment can be found in Figure 35 and are implemented in the MATLAB script
prob_3_14_f oronsay.m.

Part (g): For this part of the problem we apply the various non-linear dimensionality
reduction techniques discussed in this chapter to the skulls dataset. The results from
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Figure 31: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections for the boite dataset from the posse data collection.
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Figure 32: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections for the groupe dataset from the posse data collection.
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Figure 33: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections for the curve dataset from the posse data collection.
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Figure 34: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections for the spiral dataset from the posse data collection.
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Figure 35: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections of the oronsay dataset.

mds projecton of the skuls daa isomap projecton ofthe skuls data Tl projectonof the skuls ata
25 4
15
E 3
1
15
2
1 05
05 B
o
o 0
-05
03|
-1
1 -1
-15 2
15
2 5
-2
25 . . . . L . . . . . . . . . . . |
s -+ 3 =2 1 0 1 2 3 4 - B! E) 0 2 4 2 15 1 05 o 05 B 15 2
il projecton of the skuls data 164 som projection of the skuls data gim pojectons f the skuls data
06 T T T T 112 U-matrix T T T T
0598

o ‘ o8
m “%
03 : ’ ‘
02 .

04

02
01 0
0 R ‘ -02|

04|

-01 - : ‘
@ e
s -08

L L L L L L L L o o
03 -02 01 o 01 02 03 04 SOM 28-Oct-2008 1

Figure 36: From left to right, top to bottom, we have the MDS, ISOMAP, LLE, HLLE,
SOM, and GTM projections of the skulls dataset.



this experiment can be found in Figure 36 and are implemented in the MATLAB script
prob_3_14_g skulls.m.

Exercise 3.15 (different random configurations in the SMACOF algorithm)

For this problem we study how different configurations of initial conditions affect the SMA-
COF algorithm. In this problem the algorithm for SMACOF we specify an initial configu-
ration of projected points with the MATLAB command

Z = unifrnd(-2,2,n,d);

In the MATLAB script prob_3_15.m we perform various initializations (by hand) of the
projected points. One thing that is interesting is that the various initial configurations
change the absolute final locations of the projected data but not the very prevalent clustering
that is observable in the output.



Chapter 4: Data Tours

Extensions of the EDA Toolbox Functions

In many of the problems for this chapter we are asked to run various MATLAB data touring
routines from the exploratory data analysis toolbox (EDT) on the data sets provided. With
the versions of the MATLAB routines delivered, there is no provision provided to plot data
points from different classes using different distinguishing markers. Because a great amount
of information is usually contained in the class labeling and during these data tours it is very
instructive to observe how the data from the different classes moves relative to each other on
the website I provide modified toolbox function that provide this capability. Specifically, if
one provides a sequence of class labels for data given to the data touring routines pseudotour
and intour the corresponding data points will be represented differently by unique colors and
symbols. See Exercises 4.4-6 where this capability is demonstrated when the corresponding
MATLAB scripts are run. The modified versions of these two routines can be found on the
accompanying website. These modifications are extremely helpful in visualizing clusters and
experimenting with the given algorithms since any projection that results in clean classwise
clustering is very easily observed in the resulting plots.

Exercise Solutions
Exercise 4.1 (a grand tour for the yeast data)

When we rerun the code from the suggested example, we see that the resulting projections
of the yeast data look very much like an “arrowhead”. Examples of two typical profiles
that are generated from this grand torus tour when we run the MATLAB code prob 4 1.m
are given in Figures 37 (left) and (right). The iterations of the grand torus tour produce an
“arrowhead” that moves around pointing in different directions. From this data it appears
that there is approximately one class clustered near the center, with additional data points
located “behind” this core and distributed in a cone like shape. Note that this data’s
projection is very similar to the results obtained when one projected this data onto the first
three eigenvectors, see Figure 2.3 in the book.

Exercise 4.2 (grand torus tours for various data sets)

In this problem we explore the projection results of applying the torus grand tour on several
data sets.

Part (a): In the MATLAB script prob_4 2 environmental the environmental data set is
subjected to a torus winding tour of Asimov. When that MATLAB code is run we see that
as in the yeast data, the torus tour produces an arrowhead or wedge like set of data points



iteration #308 iteration #1030

Figure 37: Left: One snapshot (iteration k& = 308) of the grand tour of Asimov on the yeast
data. Right: Another snapshot (iteration k& = 1030) of the grand tour of Asimov on the
yeast data. Note how both data sets have an arrowhead like appearance. Compare these
plots with the eigen-projections in Figure 2.3 from the book.

that points in different directions as the iterations progress. Two examples, at different
timesteps, are presented in Figure 38.

Part (b): In the MATLAB script prob_4_2 oronsay the oronsay data set is subjected to
a torus winding tour of Asimov. When the above MATLAB script is run it appears that
the this data lies in a planar like surface and rotating it produces various two dimensional
projections of this plane. For example in Figure 39 (left) we are looking directly into the
plane perpendicular surface of the data, while in Figure 39 (right) we are looking parallel to
this plane and see the data projected onto a very linear surface.

Part (c): In the MATLAB script prob_4_2_iris.m the iris data set is subjected to a torus
winding tour of Asimov. Since we know that the iris data set consists of three different
species of iris, we would expect/hope that some degree of clustering would be observed.
When we run the above script this hypothesis is found to be true in that for almost all
projections we observe strong clustering. The strongest clustering is observed between the
setosa species from the other two versicolor and virginica species. In some cases it
appears that there might be three clusters indicating some separability of the versicolor
and virginica classes. See Figure 40 (left) and (right) for two example projections from
this data.

Part (d): In the MATLAB script prob_4_2_posse.m some of the individual data sets from
the posse collection are subjected to a torus winding tour of Asimov. In most of these
subcollections of data only the very first projection had any interesting structure. Once the
grand tour began the initial structure observed in the first projection quickly degenerated
and the set of points from that point onward looked much more random under. For this
reason in this part of the exercise we only show the first projection for the of the data
sets from the posse collection. Running the associated MATLAB code easily generates the
remaining projections.
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Figure 38: Left: One snapshot (iteration k& = 852) of the grand tour of Asimov on the
environmental data. Right: Another snapshot (iteration & = 988) of the grand tour of
Asimov on the environmental data. Note the “wedge” like appearance of this data and
the possible division of this wedge into two pieces by a possible gap in the “middle” of the
wedge.

[teration: 2373 lteration: 2640

Figure 39: Left: Another snapshot (iteration k = 2373) of the grand tour of Asimov on the
ornosay data. From this projection we observe possible clustering. Right: One snapshot
(iteration k = 2640) of the grand tour of Asimov on the ornosay data.
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Figure 40: Left: One snapshot (iteration k = 221) of the grand tour of Asimov on the iris
data. Right: Another snapshot (iteration & = 312) of the grand tour of Asimov on the iris
data. These projections clearly show very strong separability of the data.
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Figure 41: The first observed projections of the grand tour of Asimov on two data sets from
the posse collection. Left: For the croix data set. Right: For the struct2 data set.

In Figure 41 (left) we display the first projection from the croix data set. Notice the
distinctive cross like appearance. In Figure 41 (right) we display the first projection of
the struct2 data which initially looks like an L-shape. In Figure 42 (left) we display the
first projection of the boite data which initially looks somewhat like a donut or torus. In
Figure 42 (right) we display the first projection of the groupe data which initially looks like
a set of four clusters. In Figure 43 (left) we display the first projection of the curve data
which initially looks like two distinct clusters of points separated by a region between them
containing no data. In Figure 43 (right) we display the first projection of the spiral data
which clearly shows a spiral-like pattern.

As stated before, when we run the MATLAB code torustour on the posse data sets,
after the initial projection the remaining projections look like a spherical cluster of points
with no observable structure. This emphasizes the conclusion that for some data sets there
maybe only a few projections where the data looks significantly different than a random
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Figure 42: The first observed projections of the grand tour of Asimov on two data sets from
the posse collection. Left: For the boite data set. Right: For the groupe data set.

Iteration: 1 °© Iteration: 1

Figure 43: The first observed projections of the grand tour of Asimov on two data sets from
the posse collection. Left: For the curve data set. Right: For the spiral data set.
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Figure 44: Two snapshots of the grand tour of Asimov. Left: The iteration £ = 218 for the
skulls data set. Right: The iteration k = 894 for the spam data set.

cloud of points. It would be interesting to see if the projection pursuit algorithm (PPEDA)
could find these initial non-random projections in these data sets since it explicitly looks for
projections that map the data into the most likely non-Gaussian configuration. See page 49
for a discussion of some computational experiments designed to answer this question.

Part (e): In the MATLAB script prob_4_2_skulls.m the data set skulls is subjected to
the grand tour of Asimov. In this case due to the small number of samples in this data set
(around 40) it is difficult to say very much. One thing that seems true is that the data seems
to be somewhat spherically clustered as the data points stay in a sphere like cloud as the
various rotations are performed. See Figure 44 (left) for a representative projection.

Part (f): In the MATLAB script prob_4 2 spam.m the data set spam is subjected to a
grand tour of Asimov. When this script is run we see that the data seems to line up
along “orthogonal axis” for most of the projections. An example projection is given in
Figure 44 (right).

Part (g): In the MATLAB script prob_4 2 pollen.m the data set pollen is subjected to
a torus grand tour of Asimov. When this script is run we see that the data quickly projects
onto a straight line after which this line seems to rotate. Initially, the data seems “fuzzy”
(Figure 45 (left)) or elliptical around a linear structure but this wider shape quickly collapses
into a much tighter pencil like object (Figure 45 (right)) for much of the later parts of the
tour.

Part (h): In the MATLAB script prob_4_2_leukemia.m the data set leukemia is subjected
to a torus winding tour of Asimov. Since we know this data contains two type of cancers
we might expect to find two clusters of points. In Figure 46 (left) and (right) we show two
projections of the leukemia data set that are found during the tour. In both plots we see
what appears to be two clusters of points that are “perpendicular” to each other. These two
clusters might represent two different types of cancers.
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Figure 45: Two snapshots of the grand tour of Asimov on the pollen data set. Left: The
iteration £k = 5, where we see a “fuzzy” elliptical cloud of data. Right: The iteration

k = 487, where we see the data collapse into a much tighter pencil like object.
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Figure 46: Two snapshots of the grand tour of Asimov on the leukemia data set. Left: The
iteration £ = 165. Right: The iteration £ = 1101. Note in both projections there we see

the presence of clustering.
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Figure 47: The iteration k = 2952 of the pseudo tour on the iris data set. We have plotted
the three different types of iris with different symbols and colors. The expected clustering is
clearly observable.

Exercise 4.3 (the pseudo grand tour)

In this problem we apply the pseudo grand tour to the oronsay data set. By running the
MATLAB script prob_4_3.m one can observe the graphical output produced by the pseudo
grand tour. For some of the tour an almost linear looking structure is present while for other
parts clustering appears. The MATLAB script above has the feature that when run it will
plot the classes associated with midden labeling which greatly facilities looking for clusters.

Exercise 4.4 (pseudo grand tours for various data sets)

In this problem we explore the results of the pseudo grand tour on several data sets.

Part (a): Here we apply the pseudo grand tour on the environmental data set. When
one runs the MATLAB script prob_4_4_environmental.m an arrowhead looking structure
appears and begins to rotate as the iterations proceed. This is very similar to the projections
obtained by the grand tour (see Figure 38).

Part (b): For this subproblem we apply the pseudo grand tour to the yeast data set. When
one runs the MATLAB script prob_4_4_yeast.m one sees what begins as a pointed cluster
of points that spreads out into a funnel of data behind the tip. This result is very similar to
the projections obtained by the grand tour (see Figure 37).

Part (c): Here we apply the pseudo grand tour to the iris data set. When one runs the
MATLAB script prob_4_4_iris.m with colorized clustering (provided on the accompanying
website as a modified EDA toolbox function pseudotour program) we easily observe the
expected strong clustering of the data. See Figure 47 for an example projection from the
pseudo grand tour. These projections are very similar to those obtained from the grand tour
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Figure 48: The first and second structures found when using the PPEDA algorithm on the
environmental data set. Here we are using the chi-squared index for detecting projections
that deviate from normality.

algorithm (see Figure 40).

Part (d): Here we apply the pseudo grand tour to the posse data set. See the MATLAB
script prob_4_4 _posse.m for an implementation of this procedure. For each of these data sets
the pseudo grand tour quickly results in a spherical cloud of points lacking any distinguishing
features.

Part (e): Here we apply the pseudo grand tour to the skulls data set. See the MATLAB
script prob_4_4_skulls.m for an implementation of this procedure.

Part (f): Here we apply the pseudo grand tour to the spam data set. See the MATLAB

script prob_4_4_spam.m for its implementation. When this script is run we observe an arrow
head like object pointing in different directions for each of the projections.

Exercise 4.5 (the interpolation tour)

Part (a): Here we apply the interpolation tour on the environmental data set. This is
implemented can be found in the MATLAB script prob_4_5_environmental.m

Part (b): Here we apply the interpolation tour on the yeast data set. This is implemented
can be found in the MATLAB script prob_4_5_yeast.m

Exercise 4.6 (different target planes for the oronsay data)

This exercise is implemented in the MATLAB function prob_4_6.m. When this script is run
we see the data pulling apart from a central location and some of it separates into distinct



Structure 1 Structure 2
T T

Figure 49: The first and second structures found when using the PPEDA algorithm on the
yeast data set. Here we are using the chi-squared index for detecting projections that are
not normal. Note that is looks like the first structure found is the result of outliers rather
than actual non-Gaussian structure.

clusters.

Exercise 4.7 (projection pursuit applied to various data sets)

In this problem we explore the results of applying the projection pursuit algorithm of Fried-
man and Tukey [6] for exploratory data analysis (PPEDA) routine on several of the provided
data sets.

Part (a): In the MATLAB script prob_4_7_environmental.m using the PPEDA code we
extract the structure that is most non-Gaussian from the environmental data set. When
this script is run, two of these projections are shown in Figure 48 (left) and (right). Running
the ppeda code with the “moment” option gives very similar results.

Part (b): In the MATLAB script prob_4_7_yeast.m we extract the structure that is most
non-Gaussian from the yeast data set. When this script is run, two of these projections are
shown in Figure 49 (left) and (right). Running the ppeda code with the “moment” option
gives very similar results.

Part (c): In the MATLAB script prob_ 4 7_iris.m we extract the structure that is most
non-Gaussian from the iris data set. When this script is run, two of these projections are
shown in Figure 50 (left) and (right). Since we know that this data is composed of multiple
classes we would hope that the PPEDA algorithm would be able to find a projection in which
the data points are strongly clustered. In the plot Figure 50 (left) we indeed see a projection
with significant separation of the data. The second projection seen in Figure 50 (right) does
not show this clustering. Subsequent structure removals produced by the PPEDA algorithm
(not shown) do exhibit clustering.
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Figure 50: The first and second structures found when using the PPEDA algorithm on the
iris data set. Here we use the chi-squared index for detecting projections that are not
normal.

Part (d): In the MATLAB script prob_4_7_posse.m we extract the structure that is most
non-Gaussian from the data sets provided from the posse data set. It is interesting that
many of the higher projections obtained using PPEDA appear to be significantly more
Gaussian looking that the initial projections of this data set might suggest. Especially
since the PPEDA algorithm is developed specifically for the extraction of non-Gaussian
structure. For example, in Figure 51 we show the first structure (the most non-Gaussian)
found using the projection pursuit algorithm. These plots are to be compared with the
two dimensional projections Figure 41 (left) and Figure 43 (right) both of which represent
points that are significantly non-Gaussian. This result highlights the benefit of using several
different techniques when beginning an initial study of a data set.

The PPEDA algorithm does find some interesting structure for some of the data sets in
the posse collection. For example in Figure 52 we see the extracted projections from the
struct2 data. This data is designed to represent an L-shaped object (see Figure 41 (Right)).
The groupe data set (Figure 53) also shows strong evidence of clustering.

Part (e): In the MATLAB script prob_4 7 _skulls.m we extract the structure that is most
non-Gaussian from the data sets in the skulls data set collection. See Figure 54 for examples
of the first two structure removals.

Part (f): In the MATLAB script prob_4 7_spam.m we extract the structure that is most
non-Gaussian from the spam data set. See Figure 55 for examples of the first two structure
removals found in this data set.

Note that when the spam data set is processed “as is” the PPEDA algorithm takes a very
long to compute the non-Gaussian projections. This is due (I believe) to the large dispar-
ity in magnitude between the feature vectors present. This might indicate that improved
performance is possible if the feature vectors need to be normalized in someway.

Part (g): In the MATLAB script prob_4_7_pollen.m we extract the structure that is most
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Figure 51: Left: The first structure removal when using the PPEDA algorithm on the croix
data set. All additional structures found using the PPEDA algorithm are even more spheri-
cal/Gaussian looking. Right: The first structure removal when using the PPEDA algorithm
on the spiral data set. All additional structures found using the PPEDA algorithm are
more spherical/Gaussian looking than this one.
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Figure 52: The first and second structure removal when using the PPEDA algorithm on the
struct2 data from the posse data set. Notice the nice cluster separation in both projections.
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Figure 53: The first and second structure removal when using the PPEDA algorithm on the
groupe data from the posse data set.
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Figure 54: The first and second structure removal when using the PPEDA algorithm on the
skulls data set.
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Figure 55: The first and second structure removal when using the PPEDA algorithm on the
spam data set.
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Figure 56: The first and second structure removal when using the PPEDA algorithm on the
pollen data set.

non-Gaussian from the data sets in the pollen data set collection.

Part (h): In the MATLAB script prob_4 7 leukemia.m we extract the structure that is
most non-Gaussian from the leukemia data set (not shown).

For a technique such as this one that attempts to extract the projections that are the most
non-Gaussian it maybe beneficial to preprocess the data in an attempt to make it more
Gaussian by sphering it or applying a MATLAB function like zscore to the feature vectors
before an application of the routine ppeda. The motivation for this is to start the PPEDA
algorithm “focused” on the more non-Gaussian parts of the data. It is unclear whether this
preprocessing step would result in better clusters or degrade the algorithms performance by
having it become overly concerned with any outliers.

Exercise 4.8 (looking for more structure in the oronsay data)

In the MATLAB script prob_4.8.m we look at removing more structure from the oronsay
data set. When this script is run it produces five scatter plots of the two-dimensional projec-
tions associated with the first five results that maximize the various indices of performance
(either the chi-squared or the moment index). When we run the code with the objective
of maximizing the chi-squared index we find that many of the resulting scatter plots look
similar. Two such projections are shown in Figure 57 (left) and (right). When we run the
code aimed at maximizing the momentum index we obtain results very similar to the ones
above.
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Figure 57: The fourth and fifth structure removal found when using the PPEDA algorithm
on the oronsay data set. Here we use the chi-squared index as a measure of non-normality.



Chapter 5: Finding Clusters

Additional Notes

Example 5.7 from this chapter of the book is an example of computing the uniform gap
statistic for various hypothetical numbers of clusters using the output of the hierarchical
clustering algorithm linkage. With these statistics an estimates of the number of clusters
present in the given data set can be obtained. For ease of use, we extracted this code into to
the MATLAB function gap_uniform.m. See also (as requested in Exercise 5.9) the MATLAB
function gap_pca.m where instead of uniform random draws over the range of the component
variables we draw our random bootstrap samples according to the principal eigen-directions
found using the data set. These two routines provide ways of estimating the optimal number
of clusters found in ones data. These two routines in this chapter are designed to work
with the agglomerative clustering routine linkage, while the actual gap statistic is more
general than that and can be used with any clustering algorithm. Companion routines (with
the same name) aimed at computing the gap statistics using model based agglomerative
clustering (i.e. the routine agmbclust) can be found in Chapter 6.

In addition, for this chapter we developed the routine mk_matching matrix_N.m, which when
given two partitions say G; and G, will extract a “matching matrix” N from them. The
elements n;; of N represent a count of the number of observations in the ¢th partition G; that
are also in the jth partition of (G5. This routine is used in computing the Fowlkes-Mallows
index in Problem 5.20.

Exercise Solutions
Exercise 5.1 (clustering of the iris data set)

In this exercise we attempt to apply hierarchical clustering to the iris data set. See Figure 58
for the results of running the MATLAB linkage command with the Euclidean distance as
a measure of dissimilarity and no data preprocessing.

In Figure 58 (left) we use the single linkage (nearest neighbor) criterion to determine the
distances between clusters and in the resulting dendrogram we see strong evidence of the
phenomena called chaining, where a given seedling cluster grows by incrementally adding
additional data points. The result of this chaining is that a given cluster can end up with
data points in the same clusters that when considered individually can be very different.
This chaining is manifest in the “staircase” like attachment of the individual leaves in the
dendrogram. In Figure 58 (center) we see the results of using the 1inkage command with the
centroid option for determining the distance between clusters. In this case, we clearly see the
phenomena called inversions where by the clusters created later in the clustering process
can have a smaller inter-cluster distance than clusters created earlier. This is observed in
the dendrogram by loops present in the dendrogram. Using the Mahalanobis distance rather
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Figure 58: Some dendrograms for the iris data for various arguments to the MATLAB
linkage command. Left: Using the option of single link clustering (the default). Note
the phenomena of chaining. Center: Using the option for centroid clustering based on
Euclidean distances. Note the inversions near the leaf clusters 7,15 and 19,28. Right: Using
the option for centroid clustering based on Mahalanobis distances. Note the inversion near
the leaf clusters 21 and 23. In all cases there are clearly two clusters, while in centroid based
clustering (center plot) we see evidence for three clusters.

than the Euclidean distance does not improve things as we can see from Figure 58 (right).

Exercises 5.{2,3,5,10} (agglomerative clustering applied to various data sets)

For the data sets considered in these exercises, single link clustering almost always produces
dendrograms that exhibit chaining. Because of this fact rather than present the single link
results we will instead report on the results of applying agglomerate clustering (using the
MATLAB command linkage) but with the average linkage option, which generally results
in better clusters. If desired, the single link results can be obtained by running the individual
MATLAB codes below.

Part (a): For this problem we apply agglomerative clustering to the geyser data set. See
the MATLAB script prob_5_2_geyser.m for this implementation. Some of the results from
running this script are presented in Figure 59. The gap-uniform procedure does a nice job at
predicting two clusters which are then visually verified in the raw data as a viable clustering.

Part (b): For this problem we apply agglomerative clustering on the singer data set. This
data set represents the height in inches of singers in the New York Choral Society. See the
MATLAB script prob_5_2 _singer.m for its implementation. Because height is a physical
measurement we might expect it to be distributed normally among two classes corresponding
to males and females. To study if this is true we apply the z-score transformation discussed
in Chapter 1 to this data set before attempting agglomerative clustering. The results from
running the above MATLAB script are shown in Figure 60. In Figure 60 (left) we see that
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Figure 59: Some agglomerative clustering results for the geyser data set, using the MATLAB
linkage command. Left: The dendrogram obtained using the option corresponding to
average link clustering. Center: The resulting gap-uniform statistic plot, which provides
evidence for two clusters. Right: The plot of the raw data color coded by its cluster
membership (under the assumption of two clusters). Note the visual appearance of two
“bands” of relatively well separated data.
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Figure 60: Agglomerative clustering applied to the singer data set. Left: A histogram of
the raw singer data Center: The plot of the resulting uniform gap statistic obtained when
using average link clustering. Right: The resulting clusters (color coded).



skullsdendrogram vith average irkage Gap H

25 L L L L L L 2 L L L L L L L L L )
1 15 2 25 3 35 4 45 5 25 -2 -15 -1 -05 0 05 1 15 2 25
192427 2112512182920 51323102821 4172630 11614 8 3 922 6 715 Number of Clusters k transformed feature 1

Figure 61: Agglomerative clustering on the skulls data set Left: The dendrogram produced
using the 1linkage command with the option corresponding to average link clustering. Note
two clusters maybe observed at the top most level of the tree. Center: The resulting uniform
gap statistic plot. The idea that we have two clusters seems to be supported by this plot in
that its peak is at k = 2. Right: The plot of the resulting agglomerative clusters under the
assumption of two clusters.

the histogram of the data clearly shows two clusters which is confirmed in the gap statistic
plot Figure 60 (middle). From this plot we see that the gap statistic obtains a maximum at
the value of & = 2. A plot of the dendrogram obtained clusters (under the assumption of
two clusters) is presented in Figure 60 (right).

Part (c): For this problem we apply agglomerative clustering on the skulls data set. See
the MATLAB script prob_5_2_skulls.m for this implementation. Some of the results from
running this script are shown in Figure 61. In performing this clustering we first transformed
the data by subtracting from each point the global mean and dividing each point by the global
standard deviation. There appears to be evidence for two clusters and in Figure 61 (right)

Part (d): For this problem we apply agglomerative clustering on the spam data set. See
the MATLAB script prob_5_2_spam.m for its implementation. The problem with applying
clustering directly to the spam data set is that the distribution of data under each class is
very non-Gaussian. This can be seen by revisiting any of the two dimensional (or higher)
projections we have considered on this data set earlier. The clustering of the data points
seems to be stretched along orthogonal axis. In addition, the data set itself suffers in that a
significant number of outliers exist. These outliers make it more difficult to perform cluster
merging because they vastly skew the centroid locations used in many clustering methods.
The effect from outliers can be controlled somewhat by using the “average” or “complete”
linkage methods since they impose a more global view of the data when suggesting clusters.

To solve this problem, we began by attempting to apply agglomerative clustering directly to
the spam data set. This is implemented exactly as the previous data sets we considered and
is done in the MATLAB file prob_5_2_spam_direct.m. Some of the results obtained when
this script is run are shown in Figure 62. We generally found several things of note when
working with the spam data. The first is that it is necessary to use the argument “average” or
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Figure 62: One of the more interesting examples from the book, agglomerative clustering
of the spam data set. Left: The dendrogram of the spam data produced using the MAT-
LAB linkage command with the option corresponding to average link clustering. Note the
possible presence of outliers that appear in the dendrogram as a “column” of points with
leaf number of 21, 22, 27, 30, and 26 on the right side of this plot. These outliers appear
reasonably separated from the larger clusters shown as the two branches that split around a
dissimilarity value of 0.9 and found the left region of the plot. Center: The labeled classes
under the assumption of siz classes. Right: A zoomed plot of the suggested clusters showing
visually the possibility of two reasonably sized clusters, that might correspond to spam and
non-spam email.

“complete” to the MATLAB linkage command for the reason suggested above. The second
is that preprocessing the spam data seems to help the clustering algorithm find valid clusters.
We found that first performing a z-score of the data and then either performing PCA based
dimensionality reduction or SVD dimensionality reduction with column ordering seemed to
provide nice looking dendrograms that did not display chaining. After this preprocessing
step was performed we then applied the MATLAB linkage command to the resulting data.

An example of the dendrogram produced when running this code is given in Figure 62 (left).
In that figure we see two larger clusters on the left side of the figure. In addition, we show the
clusters that result under the assumption of six clusters in Figure 62 (middle). In that figure,
we see the outliers clearly denoted as they become clusters containing only a few points. By
plotting six clusters we have been able to remove the presence of the outliers and focus on
clusters that probably more accurately represent an actual phenomena of interest. A plot
around the central region containing the two largest clusters is shown in Figure 62 (right).
It should be noted that when run on this data set the gap statistic continually predicted
only one cluster. This might lead to the conclusion that the gap statistic is not very robust
to outliers and should not be used to determine the number of clusters when the data has a
significant number of them.

An alternative procedure that could be used to deal with outliers but that was not pursued
further here, would be to iteratively perform clustering and removal of clusters that are
below a given size threshold. If this algorithm was implemented on the spam data set one
might find that in the first few iterations we remove the outliers and the later clusterings
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Figure 63: Agglomerative clustering of the sparrow data set. Left: The dendrogram pro-
duced using the 1inkage command with the option corresponding to average link clustering.
Center: The resulting gap statistic plot which indicates the possibility of two or three clus-
ters. Right: The plot of the resulting clusters under the assumption of three clusters. Note
the three points in the lower left corner might be outliers.

provide separation between spam and non-spam.

Part (e): For this problem we applied agglomerative clustering to the sparrow data set.
This is implemented in the MATLAB script prob_5_2_sparrow.m. In Figure 63 (left) we see
two large clusters and two possible “outlier” clusters labeled in the dendrogram by the leave
numbers 20 and 25. The gap statistic does a good job of predicting the number of clusters
and returns the value of two or three (see the gap plot in Figure 63 (middle)). If we plot
the resulting clusters under the assumption that there are three we obtain the plot seen in
Figure 63 (right). In this later plot we see three points located in the lower left corner of this
figure that maybe “outliers”. Whether these points belong in their own cluster or should
actually be included in the larger cluster of green crosses (which would happen if we had
assumed only two clusters) is for the data analysts to decide.

Part (f): For this problem we apply agglomerative clustering on the oronsay data set.
See the MATLAB script prob_5_2_oronsay.m, for the implementation of this. Some of the
results from running this routine are shown in Figure 64. For this problem the dendrogram
is shown in Figure 64 (left). Since MATLAB does not denote how many elements are in
each dendrograms leaf node, in that figure we see the possibility for a variety of clusters.
The uniform gap statistic plot for this data set is shown in Figure 64 (middle). This plot
clearly suggests the possibility of three clusters. Finally, in Figure 64 (right) we present the
clusters that are found when we assume five clusters. This is helpful in observing what the
agglomerative clustering algorithm clustered into clusters with only a few data points. From
this plot we see that since several clusters contain only a few points these points are potential
candidates for outliers.

Part (g): For this problem we apply agglomerative clustering on some of the gene expression
data sets. We begin with the lungB data set. See the MATLAB script prob_5_2_lungB.m for
its implementation. Some of the results from running this routine are shown in Figure 65.
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Figure 64: Agglomerative clustering on the oronsay data set. Left: The dendrogram
produced using the linkage command using average link clustering. Center: The resulting
gap statistic plot, which clearly suggests a hypothesis of three clusters. Right: The plot of
the clusters that result under the assumption of five clusters.
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Figure 65: Left: The dendrogram of the 1ungB data produced using the 1inkage command,
using the option corresponding to average link clustering. Center: The resulting clusters.
Right: The plot of the clusters compared with the known class labels.
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Figure 66: Left: The dendrogram of the leukemia data produced using the linkage com-
mand, using the option corresponding to average link clustering. Center: The resulting
clusters. Right: The plot of the clusters compared with the known class labels.

The gap statistic (not shown) on this data set predicted two clusters. To compare how well
the unsupervised clustering algorithm performed in comparison to the known labels provided
by the 1lungB data set we also plot the predicted clusters against the known class labels in
Figure 65 (right). Data points where the clustering and true classes agree are labeled all in
one color. Points where the two algorithms disagree are labeled in a different color. We see
that the agglomerative clustering algorithm seems to predict a good number of samples i.e.
the number of miss-classified samples is relatively small.

Next we considered the leukemia data set. See the MATLAB script prob_5_2_leukemia.m
for its implementation. Some of the results from running this routine are shown in Figure 66.
The gap statistic (not shown) predicted two clusters. As in the earlier part of this problem,
to compare how well the unsupervised clustering algorithm performed in comparison to the
known class labels provided by the data set we also plot the predicted clusters against the
known class labels in Figure 66 (right). We see that the clustering result seems to predict a
good number of samples i.e. the number of miss-classified samples is rather small.

Exercise 5.7 (the gap statistic on uniform random data)

For this problem we generate two dimensional uniform random data and then attempt to
apply hierarchical clustering to it. We then compute the uniform gap statistic on the resulting
data set to compute an estimate the number of clusters. Since the data we generate is
random we expect the resulting clustering to be based on the specific random sample drawn
and to have no actual generalization ability. When we run the MATLAB script prob_5_7.m
that implements this procedure we produce a plot of the uniform data, and then two plots
corresponding to the gap statistic. See Figure 67 for the output obtained when we run the
above script. In Figure 67 (middle) we are plotting the actual and expected values of log(Wy)
where W}, is a measure of tightness of each of the clusters. To define this expression we first
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Figure 67: Left: The original uniform two-dimensional random data. Center: The observed
v.s. expected value of log(W},) as a function of k (the hypothetical number of clusters) where
the expected value of W}, is taken under the assumption of uniform random data. Note how
closely these two curves are to each other. The observed values of log(W},) is certainly within
the standard error the bootstrap generated values of log(Wy). Right: The standard error
adjusted difference between the measured log(W},) and bootstrapped log(W;,) curves. The
fact that the magnitude of this difference is small (of magnitude 0.2) indicates that the
suggested number of clusters (here 2) is probably due to noise.

introduce the expression, D,, the pairwise distance of all points in the cluster r as

D= dj. (1)

1,j€Cy

Then for a clustering with £k clusters we average this value over all of the k clusters. If n, is
the number of points in the rth cluster define W as

=52 o)

Using these values in Figure 67 (right) we plot the deviation of the observed W} from
bootstrap estimated values Wy ,. The distance between these two expressions is how much
the data clustering deviates from what would be expected to be obtained randomly. That
is for B bootstrap samples of “uniform clustering” we plot (as a function of k the number
of clusters)

l\DI»—t

gap(k) = 5= 3" log(V7,) — log(IW). 3
b=1

Exercise 5.8 (the gap statistic on well separated clusters)

For this problem we generate some two dimensional data that are produced from well sepa-
rated clusters and then apply hierarchical clustering to it. After the clustering we then use
the uniform gap procedure to estimate the number of clusters by comparing the observed
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Figure 68: Left: The original data, generated as samples from spherical Gaussians with two
different centers. Center: The observed v.s. expected value of log(W) as a function of k
(the hypothetical number of clusters) where the expected number of clusters is taken under
the assumption of uniform random data. Note how differently these two curves are from
each other. Right: The standard error adjusted difference between the measured log(WW})
and bootstrapped log(W;,) curves. Note the largest difference occurs at the value k = 2
and corresponds to the actual number of clusters present in the data set.

clustering with the null hypothesis that the data is drawn from a uniform random distribu-
tion. We would hope that the gap procedure could extract the correct number of clusters.
When we run the MATLAB script prob_5_8.m we first produce a plot of the data considered,
and then the same two plots as in Exercise 5.7 (see above) on the gap statistic. See Figure 68
for the output obtained when we run the above script.

Exercise 5.9 (the gap-PCA procedure)

Following the discussion in the text we implement the gap-PCA procedure in the MATLAB
function gap_pca.m. Our implementation is based on Example 5.7 from the book, which
is packaged in the MATLAB function gap uniform.m. The only modification required for
gap_pca.m is to compute a singular value decomposition (SVD) on the column centered data
set and then generate random variables according to the size of the singular values obtained.
When one runs the MATLAB script prob_5_9.m we apply the gap-PCA algorithm to uniform
data (as in Exercise 5.7) and to two cluster data (as in Exercise 5.8). Results from these
computational experiments are shown in Figure 69. Note that these results match well with
what was found when we performed the same experiments using the gap-uniform statistic.

Exercise 5.11 (mojenaplots)

For this exercise we consider some of the data sets from Exercise 5.2 above and apply the
upper tail rule and present mojenaplot of the clusters that result. For this exercise we
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Figure 69: Top Left: The observed v.s. expected values of log(WW}) as a function of cluster
number where the actual data is two-dimensional uniform random and data for the null
hypothesis is drawn randomly from its principal components. See the discussion on the PCA-
gap procedure in the book. The fact that two curves are so close to each other indicates that
there is no strong statistical difference between the two data distributions. Top Right: The
standard error adjusted difference between the log(W;(k)) curves on the observed data set
and the average of the bootstrapped sample estimates log(ng ). The fact that the magnitude
of this difference is so small again indicates that any suggested number of clusters is probably
due to noise. Bottom Left: The same plot as presented above (Top Left) but with data
that explicitly was generated from two clusters. Note how different the two curves are in
this case. Bottom Right: The same plot as presented above (Top Right) but with the two
cluster data set. Note that the maximum of this curve is clearly at k = 2 the correct number
of clusters.
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Figure 70: The upper tail rule on the geyser data set. Left: The standardized fusion levels.
Right: The raw fusion levels. Both plots have “elbows” at the index k& = 3 indicating that
three clusters might be present.

closely follow example 5.5 from the book.

Part (a): See the MATLAB script prob_5_11_geyser.m for an implementation of this where
we apply the graphical Mojena rule to the geyser data set. When we run that script we
obtain the plots shown in Figure 70.

Part (b): See the MATLAB script prob_5_11_spam.m for an implementation of the applica-
tion of the graphical Mojena rule to the spam data set. When we run that script we obtain
the plots shown in Figure 71.

Exercise 5.12,13 (values of the Rand index)

The rand index would be zero if none of the proposed clusterings agree on their assessment
of the numbers of clusters. For example, if we have a five object data set with two proposed
clustering given by

c = and ¢y =

e
=0 N

5

then our Rand index should be zero. In this proposed clustering, the c; labeling suggests
that all data points should belong to the same cluster, while the ¢, suggests that all the data
points as belonging to different clusters. These two views of our data are conflicting and
as such result in a zero Rand index. As another example of the values produced by Rand
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Figure 71: The upper tail rule on the spam data set. Left: The standardized fusion levels.
Right: The raw fusion levels. Both plots seem to have “elbows” around the index k = 3
or k = 4 indicating that three or four clusters might be present in this data set. Given how
noisy this data set is this is quite a good result.

indexes consider another proposed clusterings of our five points

c = and ¢y =

N DN = =
=N NN

In this case the two clusterings agree in that the first three points should be in one cluster
while the last two points belong in their own cluster. In this case, the Rand index will
be one indicating perfect agreement of the clusterings. Finally, we can compute the Rand
index for two copies of the same clusterings. This will give the Rand index of one, again
indicating perfect agreement of the clusters. See the MATLAB script prob_5_12.m where we
numerically demonstrate these results by calling the randind and adjrand functions.

Exercise 5.14,15 (k-means v.s. agglomerative clustering of oronsay)

For this exercise we apply k-means and agglomerative clustering (which has already been
done in Exercise 5.2) to the oronsay data set using the correct number of known classes
of K = 3. We then plot the resulting clustering using a silhouette plot, and report the
Rand and adjusted Rand index between the reported clusters and the true ones. See the
MATLAB script prob_5_14.m for an implementation of this procedure. When this script is
run it produces the two silhouette plots shown in Figure 72. In addition, the mean silhouette
value for the agglomerative clustering is 0.82 while for k-means clustering it is 0.67. This
provides some indication that agglomerative clustering may provide a better clustering. The
Rand index for the agglomerative clustering takes the values of 0.44 or 0.03 depending on
whether one uses the function randind or adjrand to calculate it. For k-means clustering
the corresponding values are 0.68 and 0.39. Both the Rand index and the adjusted rand
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Figure 72: Silhouette plots of the oronsay data set assuming k = 3 clusters. Left: Using ag-
glomerative clustering. Right: Using k-means clustering. Note that under both clusterings
three clusters appears to be a good choice as the mean silhouette value is quite large.

index have values between zero and one, with the value of zero indicating clusterings that
are relatively dissimilar and the value of one representing clusters that are similar. Both of
these indicate that the k-means algorithm may have produced clusters more like the true
clustering.

Next we repeat the above clustering experiments but for a range of values for the number of
clusters to extract. See the MATLAB file prob_5_14 _various_k.m where these experiments
are performed. To asses the number of clusters present in this data set one method is
to follow Kaufman and Rousseeuw [7] where we select the number of clusters that gives
the largest average silhouette value. When we plot the average silhouette values for both
clustering methods as a function of the number of clusters we obtain the results shown in
Figure 73 (left).

Next we plot values of the Rand index [9] and adjusted Rand index of the resulting clusters
against the known true cluster labels. Here we considered truth to be obtained from the
“midden” class labeling. This plot is presented in Figure 73 (right). Ideally we would select
the number of clusters that produces the largest value of the Rand index computed in this
way. In most unsupervised learning tasks we would not actually know the true class label
and so could not directly use this metric.

Exercise 5.17 (Example 5.7 with the gap-PC method)

In this exercise we run the gap-PC method on the lungB data set. When we run the
prob_5_17.m code we produce the plots shown in Figure 74. From the plot in Figure 74 (right)
we see strong evidence for two clusters in agreement with the known truth for the given data
set. In Figure 74 (left) we conclude since the two curves are relatively separated that the
results are significant.



Figure 73: Cluster validity metrics for the oronsay data set for both agglomerative and k-
means clustering. Left: Mean silhouette values as a function of number of assumed clusters.
As larger values are better we would conclude the data contained three clusters (the starting
x-axis value starts at £ = 2). Right: The Rand index compared to the the known clustering
labels for “midden” labeling. Since the k-means result is larger than the agglomerative
clustering result for all k& values we can conclude that the k-means procedure may yield
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Figure 74: Results of applying the PCA-gap procedure to the lungB data set.
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Figure 75: Left: Results of applying the cluster selection criterion of Calinski-Harabasz to
the 1lungB data set. We find the largest value of chy at k = 2 suggesting two clusters in
agreement with example 5.7. Right: Results of applying the cluster selection criterion of
Hartigan to the lungB data set.

Exercise 5.18 (Calinski and Harabasz’s cluster index)

The Calinski and Harabasz’s cluster index, denoted chy, for a data partition with k£ clusters
as describe in the text is implemented in the MATLAB function cal _har k_index.m. To use
this function in the MATLAB script prob_5_18.m we load the lungB data set and compute
the value of ch; as a function of k for clusters found by agglomerative clustering and the
“average” linkage option. A plot of the results of this procedure is shown in Figure 75 (left).
This metric gives a suggestion of k£ = 2 clusters in agreement with what we had concluded
earlier.

Exercise 5.19 (Hartigan’s cluster index)

For this problem, Hartigan’s cluster index harty, is used to compare the relative merits of
clustering a given data set with k£ or k£ + 1 clusters. The implementation of this index is
described in the text accompanying this problem and is implemented in the MATLAB func-
tion hartigan k index.m. To exercise this function, in the MATLAB script, prob_5.19.m,
we load the lungB data set and from it compute the values of hart; as a function of k for
1 < k < 10. The estimated number of clusters is the smallest value of k£ that results. A
plot of the results when this procedure is run is shown in Figure 75 (right). We see that the
Hartigan index concludes that this data set contains two or three clusters.

Exercise 5.20 (the Fowlkes-Mallows index)

In computing the Fowlkes-Mallows index we require the “matching matrix” N defined in
the “additional notes” section for this chapter above. To facilitate this calculations we



implemented this procedure in the MATLAB function mk matching matrix N.m. Using this,
the MATLAB function fowlkes_mallows_index.m implements the Fowlkes-Mallows cluster
index as described in this problem. We exercise both of these routines in the MATLAB
script prob_5_20.m on the oronsay data set. When we run this command, we find a Fowlkes-
Mallows cluster index of 0.70 when comparing k-means clustering against the true class labels
under “midden” labeling. The corresponding index for agglomerative clustering is 0.62. In
both cases, we clustered our data assuming three classes and used for the truth clustering
labels the values specified from the “midden” labeling.
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Figure 76: Some agglomerative model based clustering results for the oronsay data set. Left:
The silhouette plot associated with agglomerative based clustering assuming two clusters.
One cluster appears to be quite stable while the second cluster less so. Center: The observed
v.s. expected value of log(W},) as a function of k (the hypothetical number of clusters) where
the expected value of W is taken under the assumption of uniform random data. Right:
The standard error adjusted difference between the measured log(W}) and bootstrapped
log(Wy,,) curves. See Equation 2 for the definition of Wj.

Chapter 6: Model-Based Clustering

Additional Notes

As discussed in Chapter 5 we can implement the gap statistic using any clustering scheme.
As this chapter deals with model-based clustering we have implemented a function that
computes the gap statistic using the agmbclust function to perform clustering on the null
hypothesis (the set of random points). The function that we implemented (gap_uniform.m)
has the same name as the corresponding one in Chapter 5 that used agglomerative clustering
but is located in a different directory (Chapters6) to avoid namespace collision. This function
is used in several of the exercises below.

Exercise Solutions
Exercise 6.1 (model-based agglomerative clustering on the oronsay data set)

See the MATLAB script prob_6_1.m for an implementation of this problem. From the gap-
statistic we have observe two specifications of what the number of clusters might be. If we
consider the gap-statistic results obtained from gap_uniform.m, we have two possible values
for the number of clusters found in this data set. The first (kK = 2) is the point where the
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Figure 77: Some model-based clustering results for the oronsay data set. Left: The resulting
Bayesian Information Criterion (BIC) plots that result when the mbclust.m function is run.
This procedure estimates that the maximum BIC is produced under model number nine (the
most general covariance structure) with five clusters. Right: The silhouette plot associated
with agglomerative based clustering and assuming five clusters.

observed values of Wy, first differs statistically (by one standard deviation) from the average
of the bootstrap values W} ,. The second (k = 4) is where the curve of W} is maximally
different from the curve of the average of the bootstrap samples IW,. In Figure 76 (right) the
gap statistic obtains its maximum at four clusters. Considering each of these two clustering
options the mean silhouette width in the two cluster case is given by 0.57, while that for four
clusters is given by 0.52. If we follow Kaufman and Rousseeuw [7] by selecting the number
of clusters that gives the largest average silhouette value, we would select two clusters for
this data set. A silhouette plot of two clusters is shown in Figure 76 (left).

Exercise 6.2,11 (full model-based clustering on the oronsay data set)

For this problem we apply full model-based clustering on the oronsay data set using the
MATLAB function mbclust. See the MATLAB script prob_6_2.m where we implement this
procedure. When we run the code in that script we obtain the plots shown in Figure 77.
The Bayesian Information Criterion (BIC) selects the ninth covariance model (the most
general covariance specification) and five clusters. In Figure 77 (left) we plot the BIC as
a function of cluster number for each of the nine models. One see that indeed the ninth
model (the topmost curve) has the largest BIC and that it peaks at the value of k = 5. In
Figure 77 (right) we present a silhouette plot of the clusters corresponding to kK = 5. The
average silhouette value in this case is given by 0.42. Note that this is smaller than the two
values computed in Exercise 6.1.
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Figure 78: Left: Some agglomerative model-based clustering results for the skulls data set.
Right: The silhouette plot associated with agglomerative based clustering and assuming
three clusters.

Exercise 6.5 (cluster size and cluster volume)

In the Banfield and Raftery [1] and Celeux and Govaert [2] decomposition of the k-th co-
variance matrix in a finite mixture model given by

Sk = MDpAp DY, (4)

the variable \; governs the volume of the k-th cluster and is a “global” scaling factor for the
k-th cluster. The orientation and size of this cluster is determined by the matrix Dy, which
specifies the principal directions and Ay which specifies (via the normalized eigenvalues) the
magnitude for a single standard deviation move in each direction. The volume of the cluster
is specified once these components are determined. Defining the size of the the cluster to be
the number of observations falling into this cluster we have that for a finite mixture model
given by

(5 Foks firs ) = > Ak (s i, Sn) (5)
o

this number for the k-th cluster must be proportional to 7, which is determined by the
Expectation Maximization (EM) learning procedure.

Exercise 6.7 (agglomerative model-based clustering on various data sets)

For this problem we use the Exploratory Data Analysis (EDA) toolbox function agmbclust.m
on the suggested data sets.

Part (a): See the MATLAB script prob_6_7_skulls.m for the application of agglomera-
tive model-based clustering on the skulls data set. When that code is run the gap-statistic
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Figure 79: Left: Some agglomerative model-based clustering results for the sparrow data
set. Right: The silhouette plot associated with agglomerative based clustering under the
assumption of three clusters.

predicts three clusters. The dendrogram produced under this assumption is displayed in Fig-
ure 78 (left). Plotting a silhouette plot with three clusters gives the result in Figure 78 (right).
Barring a few possible out-ling points three clusters appears to cluster the data quite well.

Part (b): See the MATLAB script prob_6_7_sparrow.m for the application of agglomerative
model-based clustering on the skulls data set. When that code is run the gap-statistic
predicts three clusters. The dendrogram produced is shown in Figure 79 (left) while the
silhouette plot under the assumption of three clusters is given in Figure 79 (right). The
average silhouette value for this clustering is 0.499.

Part (c): See Exercise 6.2 (above) where we apply agglomerative model-based clustering
on the oronsay data set.

Part (e): See the MATLAB script prob_6_7_lungB.m for the application of agglomerative
model-based clustering on the lungB data set. When that code is run the gap-statistic
predicts two clusters. The dendrogram produced is shown in Figure 80 (left) while the
silhouette plot under this assumption is given in Figure 80 (right). The average silhouette
value for this clustering is 0.074. From the dendrogram it looks like something like the
phenomena on “chaining” is occurring. The three points to the far left of the dendrogram
should certainly be studied as possible outliers. Were these points found to be outliers they
could be removed and clustering attempted again.

Exercise 6.9 (two or four clusters in the iris data set)

See the MATLAB code prob_6_9.m for an implementation of this problem. When this script
is run it produces the plot show in Figure 81. There we see that two clusters is a very good
clustering while four clusters is some what worse. The fact that two clusters provide a good
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Figure 80: Left: Some agglomerative model-based clustering results for the 1lungB data set.
Right: The silhouette plot associated with agglomerative based clustering and assuming
two clusters. Note that this does not appear to be a particularly good clustering.
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Figure 81: Some agglomerative model-based clustering results for the iris data set. Left:
The silhouette plot under the assumption of two clusters. Right: The silhouette plot under
the assumption of four clusters.
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Figure 82: Plots of the NEC clustering criterion for the nine covariance models from Exer-
cise 6.2. The minimum value of all these curves suggests this data is best modeled with three
clusters and using the fourth covariance specification.

clustering follows from the known fact that that two (of the three present) species of iris are
somewhat similar. The species Iris versicolor and Iris virginica are similar and more difficult
to distinguish between than the species Iris setosa.

Exercise 6.10 (implementing the NEC)

For this problem we began by modifying the EDA toolbox function mixclass.m to return an
estimate of the posteriori probability that x; belongs to cluster k£ and to return the mixture
density f evaluated at each of the data samples x;. That is we now return
T Ty, 1 ai .
,f_zk(xl): Ak¢(A IuAk Ak) for k:17.“7c; 221,“‘,77/,
f (@i ey i, i)

and the value of f (x;) given in Equation 5 calculated at each of the input samples z;. Here
¢(-) is the normal density function. A MATLAB function to implement the NEC criterion
is then implemented in NEC.m.

Exercise 6.11 (using the NEC)

See Exercise 6.11 for a discussion of the implementation of the NEC and see Exercise 6.2
above where we select the number of clusters that corresponds to its minimum value. The
gap statistic (see exercise 6.1 above) suggests either two or four clusters while the NEC
suggests three clusters when using the fourth covariance specification.
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Figure 83: Left: The BIC plots for the skulls data set. Right: The BIC plots for the
sparrow data set.

Exercise 6.15 (using the best model but not the best number of clusters)

For this exercise we apply model based agglomerative clustering as in example 6.7 to the iris
data set where we found that the best model was model 9 (the most general specification
with variable volume, shape, and orientation). Under this model the Bayesian Information
Criterion (BIC) selected two clusters in contrast to the known number (three) of species
of iris considered in Fishers [5] famous study. Example 6.8 from the book considered a
silhouette plot of the three cluster result. In this exercise we plot the two cluster result.
This problem is implemented in the MATLAB script prob_6_15.m. When this code is run it
produces a silhouette plot (not shown) that shows very nice clustering and is much like the
one in Figure 81 (left).

Exercise 6.17 (full model-based clustering on various data sets)

For this problem we use the Exploratory Data Analysis (EDA) toolbox function mbclust.m
on the suggested data sets. As discussed in the text sometimes the EM algorithm may fail
to converge in which cases the BIC array will have NaN’s as some of its values. In these
cases we will simply select the best model (the one with the largest BIC) from the ones
where this statistic could be computed. Often when the experiments presented below the
BIC statistic of the each model under the first cluster had values that were much larger than
the others. This looked inconsistent given the remaining estimates and these points were
deleted /removed before presenting the results below. More work is needed to make these
procedures more robust.

Part (a): See the MATLAB script prob_6_17_skulls.m for the application of model-based
agglomerative clustering for the skulls data set. The BIC plots for each model type and
for a maximum of six clusters is shown in Figure 83 (left). This procedure suggests that the
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Figure 84: The BIC plots for the 1lungB data set.

third covariance model with four clusters seems to be optimal.

Part (b): See the MATLAB script prob_6_17_sparrow.m where we apply model-based
agglomerative clustering on the sparrow data set. The result of running this code is presented
in Figure 83 (right). In that plot we see that the second model with 3.4, or 5 clusters appears
optimal. Each of these three possible clusters appear to have almost identical Bayesian
Information Criterion.

Part (c): See Exercise 6.2 (above) where we apply model-based agglomerative clustering
on the oronsay data set.

Part (e): See the MATLAB script prob_6_17_lungB.m where we apply model-based ag-
glomerative clustering on the 1ungB data set. When this is run it produces a plot like that
shown in Figure 84. This is an example where the various curves look quite different and
might lead one to question the validity of these results. Taken as is, they imply that the
fifth covariance model with two clusters is optimal for this data set. It is encouraging that
we correctly predict the hypothesized true number of classes.



residual dependence plot for a polynomial model of degree3
: T T . T T T

residual dependence plot for a polynomial model of degree3
: T T . T T T

- L L L L L L L L L — L L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 85: Examples of fitting three polynomial models and a loess smooth to noised samples
of the function y(x) given in Exercise 7.1. The unnoised function y(z) is drawn in both plots
in green. Left: Here we have taken M = 20 samples for z; = ﬁ Note that in this case the
loess plot produces a model that seems to be fit more to noise that to signal. Right: Here
we have taken M = 200. In both of these plots we can see the well known “edge effect”
where a given models predictive performance degrades as we get closer to the edges of the
independent variables domain. Also notice that in the large sample limit all models with
sufficient capability (the cubic and loess smooths) are able to predict models that match the
truth quite closely.

Chapter 7: Smoothing Scatterplots

Exercise Solutions
Exercise 7.1 (using the functions polyval and polyfit)

For this problem we choose to generate data for the independent variable, z, on the interval
[0,1] at M evenly spaced points x; = 57 for i = 0,1,---, M. At each of the points we
evaluate the compute the function y at these points where the function y(z) is given by

1
r—1.1"

y(r) = 42° + 62° — 1 +

This function was specifically chosen to not be in the space of the polynomials over which
we are considering as a possible model candidates (that is first, second, and third degree
polynomials). We also choose to consider two cases for the value of M. The first value of
M will correspond to the case where we only take a relatively few samples, say 20, from our
x domain [0, 1]. This represents the small sample performance of these fits. In the second
case for M we will take significantly more samples, say 200, and represents the large sample
limit of the performance of our polynomial fits. To each of the computed y(z;) values we
add a some Gaussian random noise of a constant variance. The results from fitting three
polynomial models (using the Matlab command polyfit) are shown in Figure 85.
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Figure 86: The results obtain when running the experiment presented in Exercise 7.2. Note
the outlier in the upper right corner. The true model is plotted as a green line while the
approximate model is plotted as a red line.

In addition to the three polynomial models we have also presented the model that results
when using the exploratory data analysis toolbox function, loess, to generate a loess smooth
for the given points. In the loess smooth model we have taken parameters o = 0.5 and
A = 2. In that figure we see that the linear and quadratic polynomial models produce
almost identical looking models that are both very nearly linear. The cubic and loess models
do perhaps the best job at fitting the data. We have implemented this exercise in the the
MATLAB script prob_7_1.m. Running it produces plots like those shown above.

Exercise 7.2 (the presence of outliers in polyfit)

For this problem we are told to perform the following computational experiment

e generate data from a linear model y(z) = fy + fix.

e apply some small amount of noise to the samples y; = y(x;) values.

replace one value of y; with an “extreme” value i.e. create an outlier in our data set.

fit a linear model to this new data set containing the outlier.

compare the exact model and the estimated model.

This exercise is implemented in the MATLAB script prob_7_2.m. When this script is run
we obtain the results in Figure 86. Performing additional numerical experiments with this
code one notices a few things. The presence of the outlier point obviously adversely affects
our ability to estimate the true coefficients in the linear model. How much the outlier affects
these estimate of 3; seems to depend on how large the outlier is relative to the default added
noise. If the added noise is of the same order of magnitude as the outlier then the outlier
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Figure 87: Loess smooths for A = 1, 2 of the abrasion data set. Left: Loess smooths where
the independent variable is tensile strength and the dependent variable is abrasion loss.
Right: Loess smooths where the independent variable is hardness and again the dependent
variable is again abrasion loss. Both values for A seem to do quite a good job fitting this
data.

does not have much affect. A second observation is that if there are a great number of data
samples already then the addition of only one outlier does not have much affect regardless
how large it is. In Figure 86 we selected a noise variance that is significantly smaller than the
magnitude of the outlier. Because of this choice we can clearly see its influence in skewing
the best fit line in that direction.

Exercise 7.3 (using the MATLAB basic fitting toolbox)

This exercise can be performed by running the MATLAB script prob_7_3.m and selecting
choices the found under the “Tools” and then “Basic Fitting” menus.

Exercise 7.4 (loess curves for the abrasion data set)

For this exercise we use the loess function provided in the exploratory data analysis toolbox
to fit loess smooths to the abrasion data set and is implemented in the MATLAB script
prob_7_4.m. When this script is run it produces the results shown in Figure 87. We plot
loess smooths for both A = 1 and A = 2. We notice that with this data set even thought the
abrasion loss variable has a relatively large variance (it is rather noisy) both values of \ are
able to capture the trend of the data quite well.
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Figure 88: The results obtain when running the experiment presented in Exercise 7.6. Left:
Loess smooths of the votfraud data set when A = 1. Right: Loess smooths of the votfraud
data set when \ = 2.

Exercise 7.6 (loess curves for the votfraud data set)

For this exercise we load the votfraud data set and produce loess plots for various values
of a and for A € {1,2}. This exercise is implemented in the MATLAB script prob_7_6.m.
When this is run it produces the results shown in Figure 88 (left) and (right). We see that
when a = 0.2 the loess fit is too local in that it places too much weight on points close to the
point we are evaluating the loess smooth at. This produces models that are very oscillatory
in appearance. This large degree of oscillation is the result of fitting our model to the noise
in the data and is not to be believed. The other values of oo produce curves that are much
more smooth and are more likely to be capturing a real effect in the data. Note that these
plots are done on data that has been transformed by standardizing (z-scored) since using
the raw votfraud data alone results in MATLAB issuing a significant number of warnings
about the conditioning of the matrices involved in the wfit function. Transforming the data
in this simple way removed these warnings and resulted in a more stable application of this
algorithm. Given these results the value of o = 0.8 looks to be a good choice.

Exercise 7.7 (looking at the residuals of a loess smooth)

As in exercise 7.6 we load the votfraud data set and apply the loess data smoothing pro-
cedure to the given data points. The resulting plots of the resulting residuals from this
procedure are shown in Figure 89 (left) and (right). We see that in the case of A = 1 we
would conclude that the values of a of 0.5 and 0.8 are much better than the others at fitting
the true trend to the data. This conclusion also holds when A = 2. The general consideration
to be made when looking at residual plots likes these is that one would like to see all of the
residual values located in a fixed banded region around the line y = 0. The width of this
band should be independent of the x variable and have relatively few outling points. In this
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Figure 89: The residuals that result when running the experiment presented in Exercise 7.6
(various loess model fits). Left: Residuals of the loess smooth of the votfraud data set when
A = 1 (first order polynomials). Right: Residuals of the Loess smooths of the votfraud
data set when A = 2 (second order polynomials).

case then the error in the fit has approximately a constant variance under different values of
the independent variable.

Exercise 7.8 (loess smoothing of the calibrat data set)

For this exercise we load in the calibrat data set and apply a loess smooth to it. We
then compute the residuals of this loess smooth model with the data itself. Due to the
range of the values of the counts and tsh variables a direct application of the toolbox
function loess results in a large number of matrix conditioning warnings. To attempt to
overcomes this, as in Exercise 7.7, we standardize each variable by subtracting the mean
and dividing that variables standard deviation. This is done via options in the MATLAB
function load_calibrat. Unfortunately this preprocessing does not remove all the warning
messages but does seem to result in reasonable smooths. The results from this procedure are
plotted in Figure 90. In all cases we see that the loess curves seem to model the data quite
well. In this data set we again see the phenomena where if the value of « is too small the
loess algorithm “pays too much attention to the data and not enough to the trend”. The
residual plots show that in general there is more error in the loess fit at the left end of the
domain (small values of z) than at the right end of the domain.

These plots can be generated by running the MATLAB script prob_7_8.m.

Exercise 7.10 (the convex hull of some BPM topics)

For this problem we will plot the convex hull of the data from Example 7.8 using the MAT-
LAB command convhull and compare these results with the polar smooth presented there.
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Figure 90: The loess smooths and the residuals plots that result when running the experiment
presented in Exercise 7.8. Top: Polynomial smooths for A = 1 (left) and A\ = 2 (right).
Right: Residuals of the loess smooths for corresponding value of .
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Figure 91: Left: The convex hull produced by the convhull command for topics 8 and 11.
Right: The class boundary produced by the polarloess command for topics 18 (Oklahoma
City bombing) and 11 (North Korea).

When we run the code in the MATLAB script prob_7_.10.m we produce the plot shown in
Figure 91 (left). From that plot we see that using the convex hull as a measure of a classes
location can be sensitive to outliers. This is especially true with regard to topic 8 where the
convex hull procedure predicts a grouping of points that clearly overstates the true domain
for this topic.

Exercise 7.11 (more examples of polar smoothing)

For this exercise we repeat Example 7.8 (polar smoothing) but with different news topics.
We choose the news topics with numerical indices of 11 and 18 which correspond to topics
on North Korea and the Oklahoma City bombing since both of the these topics seem to have
quite a few data points. When we run the MATLAB script prob_7_11.m we call the MATLAB
command polarloess.m from the EDA toolbox we obtain the plots in Figure 91 (right).
From this plot (by eye) we see that the polar loess command does a very good job at denoting
the central region of the specified data clusters and is more resilient to outliers than is the
convex hull (see Exercise 7.10).

Exercise 7.12 (smoothing some gene expression data sets)

For this exercise we selected the leukemia data set and from this selected a specific gene
index 34 and performed a loess smooth of the gene responses across patients/experiments.
In addition we used the EDA toolbox function loessenv to assess the variation in the gene
response. When the MATLAB script prob_7_12.m is run we obtain the Figure 92 where we
see that taking a too small will result in very profiles of gene response that are too oscillatory.
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Figure 92: The robust loess smooth and loess envelops for the thirty-fourth gene of the
leukemia data set. Left: For various values of o and A\ = 1 (first order polynomial smooths).
Right: For various values of a and A = 2 (second order polynomial smooths).
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Figure 93: A study of the residuals of the loess fit to the software data set. Left: A qg-plot
of these residuals. Right: A histogram of these residuals. Note that from these plots the
residuals look to be reasonably approximated as a normal distribution.

Exercise 7.13 (the residuals of the software data smooth)

For this exercise, by repeating the steps found in Example 7.4 we will obtain the loess smooth
and from this smooth the residuals for the software data set. We will display these residuals
in two ways. The first with the normplot MATLAB command and then as histogram of
using the MATLAB command hist. These procedures are performed in the MATLAB script
prob_7_13.m. When that script is run it produces the plots shown in Figure 93. From this
plot we see that we have indications that the distribution of the residuals is normal.



Exercise 7.14 (the residuals of the votfraud and calibrat data sets)

For this exercise we repeat the steps in Exercise 7.13 (residual plots) on the data sets sug-
gested in Exercise 7.6 (votfraud) and Exercise 7.8 (calibrat). We used Sturges’ rule

k= [1+logy(n)]. (6)

to specify the number of bin’s k£ to use for the histogram. Because of the small sample size
in these data sets (small n) Sturges’ rule correspondingly predicts only a few bins (small k).

Part (a): For the votfraud data set running the MATLAB code in prob_7_13_vot.m we
obtain the results displayed in Figure 94 (top). We see that the residual do indeed look quite
normally distributed.

Part (b): For the calibrat data set when we run the MATLAB code in prob_7_13_cal.m
we obtain the results in Figure 94 (bottom). Again we see that the residual (except for a
few outliers) look to be normally distributed.
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Figure 94: A study of the residuals of the loess fit to the votfraud and calibrat data sets.
Top: For the votfraud data set we present a qq-plot of the loess residuals (left) and a
histogram of the loess residuals (right). Note that with the results displayed here the residuals
look to be normally distributed.

Bottom: For the calibrat data set we present a qq-plot of the loess residuals (left) and a
histogram of the loess residuals. Note again that with the results displayed here the residuals
look to be normally distributed, with the presence of a few outliers.
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Figure 95: Some examples using the option colorthreshold with the dendrogram function.
Left: With a specification of 0.9 of the maximum linkage length. Right: With a specification
of 0.6 of the maximum linkage length.

Chapter 8: Visualizing Clusters

Exercise Solutions
Exercise 8.1 (the option colorthreshold to the function dendrogram

When the colorthreshohld option is enabled (with an additional scalar threshold) the
dendrogram drawn by MATLAB will color all nodes uniquely whos linkage is less than the
input arguments threshold. If no argument is provided MATLAB will select a threshold based
on 70% of the maximum linkage. An example at running the dendrogram command with
this option can be found in the MATLAB script prob_8_1.m where we apply agglomerative
clustering to the leukemia data set. Two representative examples obtained when running
the dendrogram function with two different arguments to the colorthreshold argument are
given in Figure 95. This option makes it very easy to visually see the clusters that result
when one cuts a dendrogram at a given linkage value.

Exercise 8.2 (differences between various tree visualization techniques)

A dendrogram very clearly provides a visual representation of agglomerative clustering.
The length of the edges represent the distances between the merged data clusters represented
by the data points beneath the given dividing line. A treemap begins with a rectangle and
proceeds to divide it into sub-regions the size of each is proportional to the number of points
in that cluster. This representation does a good job of displaying the relative cluster sizes that
results when thresholding a clustering algorithm at a fixed level. A rectangle visualization
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Figure 96: Some examples of reclus plots on the leukemia data set. Left: Plotted without
class labels. Right: Plotted with class labels. Note from this second plot we can see that
these clusters do a good jobs at delineating regions that contain only one type of leukemia.

plot is a way to draw one fixed rectangle which is then subdivided as the number of clusters
changes. The benefit of this procedure is that the glyphs don’t need to be redrawn as the
number of clusters change. The ReClus visualization method allows the display of the
results from non-hierarchical clustering methods like k-means and model-based clustering.

Exercise 8.3 (a ReClus plot for the leukemia data set)

See the MATLAB script prob_8_3.m where we use the EDA toolbox function reclus.m on
the leukemia data set. The results obtained when we run this code are shown in Figure 96.
Note that the default reclus.m function provided with the text had a bug when passed two
arguments, this error was fixed and the corrected version of reclus.m placed on the web site
associated with these notes.

Exercise 8.4 (specifying the number of clusters by distance)

When we plot the dendrogram of the leukemia data set “by eye” we see that a good dividing
line between the two major clusters would be the value 13.0. We can then call the EDA
toolbox function rectplot.m with the option dis and that parameter value. This procedure
is implemented in the MATLAB script prob_8 4.m. When this script is run we obtain the
results shown in Figure 97 shown here with the cancer type labeling.
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Figure 97: A rectangle plot of the leukemia data set and specifying two clusters. The two
cancer types are labeled as a 0 or a 1.
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Figure 98: Some examples of data clustering visualization on the geyser data set. Left:
A rectangle plot with each point labeled with a 0 for simplicity of presentation. Right: A
distance image.
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Figure 99: Some examples of data clustering visualization on the singer data set. Left:
A rectangle plot with each point labeled with a 0 for simplicity of presentation. Right: A
distance matrix.

Exercise 8.5 (clustering visualization applied to various data sets)

Part (a): For this part of the problem we apply various visualization tools on agglomerative
clustering results on the geyser data set. Two of the results when we run the MATLAB
script prob_8_5_geyser.m can be see in Figure 98.

Part (b): For this part we apply various visualization tools on agglomerative clustering
results on the singer data set. Two of the results when we run the MATLAB script
prob_8_5_singer.m can be see in Figure 99. In these figures the number of clusters is speci-
fied at 5. This number corresponds to a possible number of common groupings of singers in
a choir; namely the classes soprano, alto, tenor, bass, or baritone. From the distance matrix
in Figure 99 (right) this appears to be a reasonable number of clusters components.

Part (c): For this part we apply various visualization tools on agglomerative clustering
results on the skulls data set. Two of the results when we run the MATLAB script
prob_8.5_skulls.m can be see in Figure 100. This is an example data set where there
does not appear to be a strong clustering. At most there are possibly two clusters and that
is the number of clusters presented here.

Part (d): For this part we apply various visualization tools on agglomerative clustering
results on the sparrow data set. Two of the results when we run the MATLAB script
prob_8_5_sparrow.m can be see in Figure 101.

Part (e): For this part we apply various visualization tools on agglomerative clustering
results on the oronsay data set. Two of the results when we run the MATLAB script

prob_8_5_oronsay.m can be see in Figure 102. For these plots we have assumed 6 clusters.

Part (f): For this part we apply various visualization tools on agglomerative cluster-
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Figure 100: Some examples of data clustering visualization on the skulls data set. Left:
A rectangle plot with each point labeled with a 0 for simplicity of presentation. Right: A

distance matrix.
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Figure 101: Some examples of data clustering visualization on the sparrow data set. Left:
A rectangle plot with each point labeled with a 0 for simplicity of presentation. Right: A

distance matrix.
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Figure 102: Some examples of data clustering visualization on the oronsay data set. Left:
A rectangle plot with each point labeled with a 0 for simplicity of presentation. Right: A
distance matrix.

ing results on the lungB data set. Four of the results when we run the MATLAB script
prob_8_5_1ungB.m can be see in Figure 103. Note that these plots lend credibility to the
fact that this data possesses clusters. The image plot in Figure 103 (lower right) is quite
compelling in that regard.

Exercise 8.6 (clustering of some BPMs)

For this problem we apply the ISOMAP dimensionality reduction procedure on the L1bpm
data set. This is the same experiment done in Example 8.7 but rather than restricting to
only two topics here we explicitly don’t restrict the number of topics found in the L1bpm data
set. We then apply Ling’s method to produce a data image. Specifically in this problem
we produce two images; one with randomly ordered data and another with the data ordered
so that data points in the same cluster are adjacent in the resulting image. The randomly
ordered matrix is shown in Figure 104 (left) while when we order the data points according
to their cluster labeling we obtain the image shown in Figure 104 (right). This problem is
worked in the MATLAB script prob_8_6.m.

Exercise 8.7 (a image plot of the iris data set)

For this problem we apply Ling’s method to produce an image plot by ordering the data
points so that points who are in the same cluster are nearer to each other. This problem is
implemented in prob_8.7.m. When that script is run it produces the image plot shown in
Figure 105. Note clustering is very strongly present.
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Figure 103: Some examples of data clustering visualization on the lungB data set. Left
Top: A dendrogram of this data with clusters thresholded at the value of 1.210* and the
resulting clusters colored. Right Top: A tree map of the resulting five clusters. Left
Bottom: A rectangle plot with each point labeled with a 0 for simplicity of presentation.
Right Bottom: The resulting distance matrix. Note the very dark corner of data points
in the upper left hand corner.
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Figure 104: Two data images of the Libpm data set. Left: With random ordering of the
data points. Right: With ordering of the data such that points in neighboring clusters are
closer together.

Interpoint Distance Matrix - Cluster Order

Figure 105: The cluster sorted data images of the iris data set.



Exercise 8.12 (the data image of the iris data set)

Based on the books Figure 8.9 it appears that the third and fourth feature would be best
for classifying iris. These two features show a strong contrast in value when we move from
species to species as observed from the fact that they change value significantly as we consider
different iris species.



various histogram approximations: galaxy EastWest data various histogram approximations: galaxy EastWest data

Sturges’ =6.1151

Normal Reference ; h=5.0564
Scott’s ; h=6.1151
Freedman-Diaconis ; h=4.3498

Sturges’ =6.1151

Normal Reference ; h=5.0564
Scott’s ; h=6.1151
Freedman-Diaconis ; h=4.3498

0 0
spatial variable spatial variable

Figure 106: Some examples using the various optimal bin width rules presented in Ex-
ercise 9.3. Left: Density histograms of the galaxy data set (specifically the EastWest
component). Right: Density histograms of the forearm data set.

Chapter 9: Distribution Shapes

Exercise Solutions
Exercise 9.1 (the number of histogram bins)

See the MATLAB script prob_9_1.m where we plot a frequency histogram and a relative
frequency histogram of the galaxy data set. One has to select a value for the number of
bins that finds a balance in the bias-variance trade off that is present when fitting a model
with parameters (like the number of bins) using a specific set of data. When we run the
above code the frequency histogram indicates that this data appears somewhat normally
distributed but with heavier tails.

Exercise 9.2 (the number of histogram bins with the forearm data)

See the MATLAB script prob_9_2.m where we plot a frequency histogram and a relative
frequency histogram of the forearm data set. The same issues in selecting the number of
bins mentioned in Exercise 9.1 appear here also.

Exercise 9.3 (a comparison of various bin width rules)

For this exercise we implement four bin sizing methods given a one-dimensional data set with
n elements, a population standard deviation given by o, and a sample standard deviation
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Figure 107: Some examples using the MATLAB function histfit function to plot normal
densities on some “toy” data sets. Left: Data actually generated from a normal distribution.
Center: Data generated from a uniform distribution with some outlying data points. Right:
Data generated from a mixture of normal distributions. Note that each of these data sets
has an almost identical boxplot. See Figure 9.8 from the book.

given by s. The four rules we compare are Sturges’s rule given by Equation 6 above, followed
by the normal reference rule which specifies a uniform bin width given by h* of

e (24a3ﬁ)1/3

n

(7)
Scott’s rule which specifies the bin widths of
h* =3.5sn" 13, (8)
and finally the Freedman-Diaconis Rule which specifies bin widths h* given by
h* = 2IQRn /3. (9)

Here in the Freedman-Diaconis rule the expression IQR is the inter-quartile range a robust
method at computing a measure of distribution spread defined as the difference between
the 75% quantile and the 25% quantile. Note that we are assuming that the forearm and
galaxy data sets are not sufficiently skewed or heavy tailed in that we don’t need to apply
Scott’s correction factor to these widths i* for skewed data [10]. In the MATLAB script
prob_9_3.m we implement density histograms using each of the above four rules. When this
script is run it produces plots as shown in Figure 106. Empirically, we see that the various
bin width rules seem to produce almost identical looking density histograms.

Exercise 9.6 (the MATLAB function histfit)

In example 9.2 we construct three artificial data sets each of which has approximately the
same mean and standard deviation. For each data set we then call the MATLAB function
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Figure 108: Some examples using the EDA toolbox function boxp function to plot boxplots
and variable width boxplots. Left: Box plots of normal data with different numbers of
points 30, 50, and 100. Right: A variable width box plot of the same data.

histfit on the data which plots a histogram of the data and then overlays a plot of a
normal distribution with matched mean and standard deviation on top of the individual
histograms. This is implemented in the MATLAB script prob_9_.6.m. When this script is
run it produces the three plots shown in Figure 107. Notice how the normal curve best fits
the data generated from a normal distribution and appears to be a poor approximation to
the densities found in the other two case.

Exercise 9.7 (using the surf plot)

See the MATLAB script prob_9_7.m for an implementation of this problem. The requested
density is plotted as a surface plot at the end of that script.

Exercise 9.8 (quartiles of the geyser data set)

See the MATLAB code prob_9.8.m for an implementation of this exercise. Note that to
plot the density histogram we used the MATLAB function cshistden.m provided in the
computational statistics toolbox [8]. This function computes and plots a histogram based
density estimate corresponding to the data presented in the geyser data set. The observed
quantile do correspond to observed values on both the boxplot and the density histogram
that are produced when the script is run.
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Figure 109: Box plots of the features of the oronsay data set. Notice the large number of
potential outliers.

Exercise 9.9 (examples of variable width boxplots)

For this exercise we use the EDA toolbox function boxp with the argument vw (for “variable
width”) to generate a variable width box plot for some standard normal data. This exercise
is implemented in the MATLAB script prob_9_9.m. When that script is run it produces the
two plots shown in Figure 108.

Exercise 9.10 (using the histfit function)

For this problem, rather than generate random data we will use data from the galaxy
data set; specifically the EastWest subdata set which we know from previous studies is
approximated well with a normal distribution. In the MATLAB script prob_9_10.m we load
the galaxy data set and apply the histfit function. When that script is run the resulting
normal fit is quite good.

Exercise 9.12 (histograms of some similar data)

The box plot and box-percentile plot for this artificial data set is computed and displayed
in example 9.6 from the book. Histograms for the three specific data sets for this example
are constructed in Exercise 9.6 and shown in Figure 107 above.
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Figure 110: Left: Box plots with notches for normal data with the same means (both 1).
Right: Box plots with notches for normal data with different means (one is 9 and the other
is 10). Notice that the notches in the second example don’t overlap, indicating that there is
a significant difference between the means.

Exercise 9.13 (options to boxplot)

In the MATLAB script prob_9_13.m we use the MATLAB function boxplot to plot a boxplot
of the oronsay data set. The resulting plot with the option notches set to on is shown in
Figure 109. The notches are nice to plot because they provide a robust estimate of the
uncertainty in the value of the medians. Boxes that have their notches non-overlapping
have medians that differ at the 5% significance level. Notice that with this data set a great
number of the individual features have significant outliers.

Exercise 9.14 (the notches option to boxplot)

In the MATLAB script prob_9_14.m we generate two sets of random variables both from a
joint Gaussian distribution. In the first set the means of the two random variables are the
same (both are 1). While in the second set they are different (one is 9 and the other is 10).
We then compute boxplots (with notches) of the two sets of variables. The results from this
experiment are shown in Figure 110.

Exercise 9.15 (plotting notches with the oronsay data set)

See the Exercise 9.13 where this is done.
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Figure 111: A rootogram of the galaxy data set.
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Figure 112: Left: Box plots with notches for the skulls data set. Right: Box plots with
notches for the sparrow data set.

Exercise 9.19 (a rootogram)

See the MATLAB script prob_9.19.m where we compute a rootogram using the MATLAB
function hist. The result from this experiment is shown in Figure 111

Exercise 9.21 (boxplots on various data sets)

Part (a): See the MATLAB script prob_9.21_skulls.m for this exercise. When this is run
it produces the plot shown in Figure 112 (left).

Part (b): See the MATLAB script prob_9_21_sparrow.m for this exercise. When this is
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Figure 113: Left: Box-percentile plots of the skulls data set. Right: Box-percentile plots
the sparrow data set.

run it produces the plot shown in Figure 112 (right).

Exercise 9.22 (variations on boxplots for various data sets)

For this exercise we will use the box-percentile plot technique on a few data sets.

Part (a): See the MATLAB script prob_9_22_skulls.m for this exercise. When this is run
it produces the plot shown in Figure 113 (left).

Part (b): See the MATLAB script prob_9.22_sparrow.m for this exercise. When this is
run it produces the plot shown in Figure 113 (right).

Exercise 9.23 (qg-plots of exponential data)

See the MATLAB script prob_9.23.m for this exercise. When this is run it produces the
plot shown in Figure 114. Notice how the qg-plot of exponential data (left) has sufficient
curvature present in the tails (at the far ends of the plot) that the normal distribution (right)
does not. This is a good indication that a normal model is not appropriate for the given
data.
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Figure 114: Left: The qqg-plot of data that is normally distributed. Right: The qg-plot of
data that is exponentially distributed. Notice how the normal data lies almost exactly on
the underlying line, while the exponential data posses significant deviation at the ends of
the plot.



Chapter 10: Multivariate Visualization

Exercise Solutions
Exercise 10.2 (using the glyphplot function)

For this problem we use the MATLAB function glyphplot to duplicate Figures 10.1 and 10.2
from the book. See the MATLAB script prob_10_2.m for its implementation. When this
script is run we plot the Chernoff faces and a star diagram for the cereal data set.

Exercise 10.3 (using the gscatter function)

For this problem we plot the oronsay data set with the data points colored according to
their midden labeling using the gscatter function. See the MATLAB script prob_10_3.m
for an implementation of this problem. Note that the gscatter function is very similar to
the function plot_labeled.m created for this book.

Exercise 10.5 (a scatterplot matrix of the oronsay data set)

See the MATLAB script prob_10_5.m for an implementation of this problem. When that
script is run we obtain a scatterplot matrix of oronsay data set using the MATLAB command
plotmatrix. Because there are so many features in the oronsay data set (p = 12) viewing
this scatterplot matrix is somewhat difficult.

Exercise 10.6 (using the hexplot function)

For this problem we use the hexplot function. This function takes a second argument, N,
that represents the approximate number of bins in the variable that has the larger range.
The effect of changing this value is what this problem attempts to explore. This problem
is implemented in the MATLAB script prob_10_6.m. When that script is run by increasing
the N value one can observe the effect of decreasing the bin width. For this type of plot
increasing N causes the hexagons to become much more point like.

Exercise 10.8 (a scatter plot of the hamster data set)

From a visual inspection using the plotmatrix function and the cross hairs function available
in the MATLAB figure window see that the outlying data point discussed is located with
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Figure 115: Using the technique of linking to highlight a specific data point in the hamster
data set. The “special” data point is green while the other points are plotted in blue.

an liver variable value around 15.49 and a spleen variable value of 0.2959. Plotting a scatter
plot of the liver variable by itself we find this data point has index ¢ = 53. We can then label
this point differently from the others and emphasis this using the gplotmarix function. The
enables one to see this outlying data point in each of the other projections. This problem is
implemented in the MATLAB script prob_10_.8.m. When that script is run one of the the
results is presented in Figure 115. In that figure the outlying point is plotted in green, while
the other points are plotted in blue.

Exercise 10.9 (a dot chart of the brainweight data set)

This problem is implemented in the MATLAB script prob_10_9.m. When it is run it produces
the requested dotplot. We plot the animal name on the vertical axis and the brainweight
value on the horizontal axis.

Exercise 10.11 (correlation viewed in parallel plots)

For this problem we randomly generate two data sets. The first has a correlation coefficient
of +1 while the second data set has a correlation coefficient of —1. Specifically, for this
problem we generate vectors zl and z2 containing n random variables. In MATLAB the
command to do this is the following
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Figure 116: Left: A parallel plot of perfectly correlated data. Note how horizontal the lines
connecting the points are. Right: A parallel plot of perfectly anti-correlated data. Note
how “diagonal” the lines connecting the points are.

zl
z2

randn(1,n);
rho * z1 + sqrt( 1 - rho™2 ) * randn(l,n);

This procedure will generate draws of two random variables z1 and z2 that have a correlation
coefficient of rho. We then plot this data using parallel coordinates. When p = +1 (the
data is completely correlated) we get the plot shown in Figure 116 (left) and when p = —1
(the data is completely anti-correlated) we get the plot shown in Figure 116 (right). Notice
that when p = 41 the parallel plot shows many horizontal looking likes, while when p = —1
the parallel plot shows many “crossed” lines. Code to run this experiment can be found in
the MATLAB script prob_10_11.m.

Exercise 10.12 (parallel plots of clustered data)

For this problem we generate two-dimensional data to plot with the toolbox command
parallelcoords. The first coordinate of our data set is from a Gaussian with zero mean
and unit variance. The second coordinate is generated from two different Gaussians. The
first has a mean of —2 and the second has a mean of +2. Both have unit variance. When
we plot this data in a parallel plot we get the Figure 117 (left). Code to run this experiment
can be found in the MATLAB script prob_10_12.m. Notice the clusters easily seen in the
second dimension.

Exercise 10.13 (a dotchart of the playfair data set)

This problem is implemented in the MATLAB script prob_10_.13.m. When this is run it
produces the plot shown in Figure 117 (right).
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Figure 117: Left: A parallel coordinate plot for the data in Exercise 10.12. Right: A
dotchart of the Diameter sub data in the playfair data set with the CD (cumulative distri-

bution) option.

Exercise 10.15 (a coplot with the dependence on tensile strength)

Since the first variable presented to the coplot MATLAB routine is the variable we con-
ditioning on we need to put tensile strength first in the data matrix. When this is done
running the MATLAB script prob_10_15.m produces the desired coplot.
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