
Solutions For Selected Exercises In:

Parallel Programming with MPI

by Peter S. Pacheco

John L. Weatherwax∗

November 4, 2006

Additional Notes and Derivations

Physical Constraints on Serial Computers (Page 4)

The speed of light is c = 3 108 m/s and the code given must execute 3 (one for each component
of x, y, and z) trillion memory transfers each second. Thus the transfer flux out of memory
is n = 3 1012transfers/s. From elementary physics

distance = rate× time (1)

Thus if r is the average distance from a single memory location to the CPU in one second on
a serial machine we travel a total distance of r×n. Then Eq. 1 gives the following expression
for r

r =
tc

n
=

1× 3 108

3 1012
= 10−4m (2)

As suggested in the book, placing our CPU in the center of a square grid with side length s,
the average distance to each memory location is r = s/2. From the above this gives a linear
dimension of s = 2 10−4m. Since we are assuming that all three trillion memory modules are
inside this square, the number of memory modules along any given linear dimension would
be

nm =
√

3 1012 =
√

3 106 (3)

Based on the previous length estimate of a side of s = 2 10−4m we see that the physical
length of each memory module ml must satisfy

nmml = s or (4)
√

3 106ml = 2 10−4 (5)

Solving for ml we obtain ml = 2
√

3
10−10m ≈ 1 angstrom. Clearly an impossible situation.

∗
wax@alum.mit.edu

1

Problem Solutions

Chapter 1 (Introduction)

Chapter 1 had no problems.

Chapter 2 (An Overview of Parallel Computing)

Exercise 1

Part (a) In store and forward routing each node must store the entire message before it
gets passed on to the next node in the transmission. Thus assuming that one packet can
be transmitted per timestep it will require O(n) timesteps to transmit this message to each
node. For k intermediate nodes we have k +1 “edges” in our connection graph giving a total
transmission time of O((k + 1)n) = O(nk)

Part (b) Using cut-through routing each intermediate node can send any packet of a message
to the next host as it is received. Thus assuming host A is sending to host B, the first timestep
will have one packet from A to the first intermediate node between A and B. In two timesteps
packets will have propagated two the first two intermediate nodes. Thus in k + 1 timesteps
we will have packets arriving at B. If k < n we require O(n) timesteps to transmit our
message. If k > n we require O(k) timesteps to transmit our message.

Exercise 2

Shared memory programming has three basic primatives:

• Variables can be accessed by all processors

• There exists a means to prevent improper access of shared resources (via binary
semaphores or some other means)

• There exists a means for synchronizing the processes (via barriers).

To solve this problem consider the odd-even sorting algorithm which can sort in O(n) steps,
see [1] for more details. In this sorting algorithm, during odd-numbered steps the odd-
numbered processors compare their number with that of their next higher numbered even
processor and exchange if the two numbers are out of sequence. During even numbered
steps the even-numbered processor compare their number with that of their next higher

odd-numbered processor. A pseudo-code implementation (with care to avoid deadlock in
critical regions) is given by the following

Odd-Even Sort(a, n)

1 for i← 1 to n
2 do
3 if i mod 2 = 1
4 then
5 � i is an odd-timestep
6 if p mod 2 = 1
7 then
8 � processor p is an odd-processor
9 Lock array elements a[p] and a[p + 1]

10 Sort elements a[p] and a[p + 1]
11 Insert back into global array a in sorted order
12 Unlock array elements a[p] and a[p + 1]
13 else
14 � Do nothing
15
16 else
17 � i is an even-timestep
18 if p mod 2 = 0
19 then
20 � processor p is an even-processor
21 Lock array elements a[p] and a[p + 1]
22 Sort elements a[p] and a[p + 1]
23 Insert back into global array a in sorted order
24 Unlock array elements a[p] and a[p + 1]
25 else
26 � Do nothing

Exercise 3

If we ran the given pseudocode on a large number of processors, depending on the scheduling
of the processes some process may never execute the critical section/region. In other words
some subset of the processors may lock the binary semaphore s for all time not allowing
access to the complementary subset of processors. The effect is to exclude some of the
processors from the critical section.

Exercise 4

Part (a): WWX: Finish me!!!

Chapter 3 (Greetings!)

Exercise 1

See the code prob 3.6.1.c. When this code is run on only one processor no output is
produced.

Exercise 2

See the code prob 3.6.2.c. When using wildcards for in the receives I didn’t get any
noticeable difference in output, which is expected since the code is issuing it MPI Recv calls
in a particular order and thus blocks until it receives each message before printing.

Exercise 3

Please see the code prob 3.6.3.c. I experimented with the following modifications to the
calls to MPI Send and MPI Recv.

• Covert the destination to 1 in all sending process in order to test incorrectly matched
MPI Send and MPI Recv calls. This results in the program hanging forever since
MPI Recv blocks and is never able to complete.

• Execute MPI Send with an incorrect string length by removing the required +1 from the
MPI Send call. The results of this modification were that the program still worked but
the executed printf call will print characters until it encounters the first terminating
null located randomly in memory.

• Specifying an incorrect MPI data type in the MPI Send call only. For instance specifying
INT rather than CHAR causes the code to crash.

• Specifying an incorrect receive size of 10 rather than the correct value of 100 resulted
in the code crashing.

• Specifying an incorrect MPI data type in the MPI Recv call. For instance specifying
INT rather than CHAR resulted in a program that seemed to execute correctly.

• Specifying an incorrect tag field in the MPI Recv call results in the programming hang-
ing since it waits forever for messaging passing to complete.

Exercise 4

See the code prob 3.6.4.c. On my system the process p − 1 could print to the screen.
Printing on any processor other than 0 is not required by an MPI implementation however.

Programming Assignment 1

See the code prob 3.7.1.c. Calculating who to send a message to is simple and is given by

dest = (my_rank+1) % p;

as suggested in the text. Calculating who to receive a message from is done with code like
the following

recv = ((my_rank==0) ? (p-1) : (my_rank-1));

where we have been careful to correctly specify that the first process sends to the last process.
Each process must send its message first and then receive. In the other order each process
hangs waiting for messages that never arrive. In the source code coming from this problem
we see coded another message sending strategy where the even processors send first and then
receive while the odd processor receive first and then send. This message scheduling works
as well.

When run on one processor, processor 0 sends and receives a message from itself.

Chapter 4 (An Application: Numerical Integration)

Exercise 1

See the code prob 4.6.1.c. When run on one processor the code gives the correct result of
1/3, since in that case the local integration is equivalent to the global integration.

Exercise 2

See the code prob 4.6.2.c. The routine Get data should be called before the individual
processors integration domain. No modification besides including Get data are required to
implement this program.

Programming Assignment 1

See the code prob 4.7.1.c. The most complicated part of this problem is the specification of
the choice of functions in which a user could choose to integrate. This was done by specifing
an array of function pointers (a fn array) with the command

float (*fn_array[])(float) = {f1,f2,f3};

the user only then has to input an integer specifying the function to be integrated. Much
more complicated menuing systems could be considered.

Programming Assignment 2

Part (a): See the code prob 4.7.2.a.c, where a serial version of Simpson’s rule is imple-
mented.

Part (b): See the code prob 4.7.2.b.c, where a parallel version of Simpson’s rule is
implemented.

Chapter 5 (Collective Communication)

Exercise 1

WWX: Finish!!!

Exercise 2

When this section of code is executed each processor executes its corresponding block of
commands. As such, each processor begins by executing a MPI Bcast statement. Since
the root argument for all of these MPI Bcast calls is 0 all processors update their variable

argument based on that which is sent from processor 0. As coded, processor 0 is “sending”
the variable x, processor 1 is “receiving” the variable x, and processor 2 is “receiving” the
variable z. After the first MPI Bcast call we have

• Process 0 with no change to the variable x giving x = 0

• Process 1 with an updated variable x giving x = 0

• Process 2 with an updated variable z giving z = 0

After each process has finished its calls to MPI Bcast process 0 and 2 must execute an
MPI Send and an MPI Recv respectively, while processor 1 must execute a collective commu-
nication MPI Bcast. Since the MPI Bcast acts as a synchronization point in the subsequent
processing process 1 must wait until the other processes call MPI Bcast themselves. Thus
the MPI Send and MPI Recv on process 0 and 2 causes the variable x on process 2 to become
the value of the variable y on process 0, or the numerical value of 1.

After this exchange, each processor calls (or has called in the case of processor 1) a MPI Bcast

routine. We can analyze this exchange in the same way that as for the first example of
the global communication primitive MPI Bcast. Since the root argument for all of these
MPI Bcast calls is 1 all processors update their variable argument based on that which is
sent from processor 1. As coded, processor 1 is “sending” the variable y, processor 0 is
“receiving” the variable z, and processor 2 is “receiving” the variable y. Thus after the
completion of this MPI Bcast call we have caused the following updates

• Process 0 has z updated with the value of y in process 1 giving z = 4

• Process 1 has the variable y unchanged giving y = 4

• Process 2 has y updated with the value of y in process 1 giving y = 4

Keeping track of all the variable values after all communication calls we have the state of
the system of

Process 0 Process 1 Process 2
x = 0 x = 0 x = 1
y = 1 y = 4 y = 4
z = 4 z = 5 z = 0

Exercise 4

On process 0, the sequential MPI Send calls access the following data structures/elements in
this order:

x, second row of matrix B, x, fourth column of matrix B, first column of matrix B

Similarly on process 1, the sequential MPI Recv calls access the following data structures/elements
on process 1 in this order:

x, second row of matrix B, x, second column of matrix B, first column of matrix B.

Chapter 7 (Communicators and Topologies)

Exercise 1

Part (a): See the code prob 7.11.1.a.c. Rather than create a communicator associ-
ated with the processors in the first column of a virtual grid of processors the program
prob 7.11.1.a.c creates a communicator associated with an input row index (zero based)
of the virtual grid of processors. The modification to perform the requested column based
communicator (using MPI Comm group, MPI Group incl, etc.) is straightforward.

Part (b): See the code prob 7.11.1.b.c. There we use MPI Comm split to create n com-
municators, broadcast a value of 1 along each column, and then use MPI Reduce to compute
the global sum.

Part (c): I would think that the processors would be identical since in both MPI calls our
implicit assumption is that the global processors 0, n, 2n, 3n, . . . would be associated with
the first column.

Exercise 2

Part (a): In a call to MPI Comm create we would have to first construct a unique integer
representing the new communicators context. This would entail looking at each process in
the group to be created and determing an integer that is unique among all of the existing
contexts already held by the processors included in this new communicator. This would
entail global communication among processors.

Part (b): In a call to MPI Comm split we would use the input argument split key to con-
struct the associated communicator array. In addition, to the implementation of MPI Comm create

our implementation of MPI Comm split would then have to find a unique integer to represent
the communicator’s context. This could be performed as above.

Exercise 3

In the modified basic algorithm given in the book we distributed our matrices in a block
checkerboard fashion along the processors. In this problem we are to modify this basic algo-
rithm (where each processor stores only a single element from each matrix) to the situation
where each processor will store a block of rows from each matrix, specifically if we assume
that n (the size of our square matrix) is divisible by p (the number of processors) then each
processor will store n/p rows. A version of Fox’s algorithm with this data distribution might
be given by

BlockRowFox(n, p)

1 for q ← 0 to n/p− 1
2 do
3 � Gather columns q n

p
to (q + 1)n

p
− 1 onto each processor

4 � Locally multiply all of my rows by the newly obtained columns

This modified version Fox’s algorithm requires storage O(2n
p
n) for each processors share of

the global matrices rows. The 2 is for storage for both matrix A and B. In addition, after a
gather statement each processor will require an addition amount of storage given by O(n

p
n)

to store the newly obtained columns. Finally, after multiplication each processor will have
to store the C matrix requiring an additional O(n

p
n) storage. In total this modified version

of Fox’s algorithm requires O(4n2

p
) storage.

In a similar, way the block checkerboard basic algorithm requires O(4n2

p2) storage.

From these two results we see a trade off between memory usage and required message
passing. The block checkerboard algorithm requires less memory but at the cost of more
message passing (the broadcast of a specific matrix at each timestep), while the modified
Fox’s algorithm requires more storage but fewer actual sent messages (since messages are
only needed in performing the column gather).

Exercise 4

The program discussed in this exercise would use a call like the following to construct the
original Cartesian coordinate grid

dim_sizes[0] = l; dim_sizes[1] = m; dim_sizes[2] = n;

wrap_around[0] = 0; wrap_around[1] = 0; wrap_around[2] = 0;

MPI_Cart_create(MPI_COMM_WORLD,3,dim_sizes,wrap_around,0,grid_comm);

In the above we have not considered a periodic grid, and we have not allowed the underlying
MPI implementation to reorder the global processors when creating this communicator.

Part (a): To create the desired communicator one would execute something like

free_coords[0] = 1;

free_coords[1] = 0;

free_coords[2] = 1;

MPI_Cart_sub(grid_comm,free_coords,&part_a_comm);

Part (b): To create the desired communicator one would execute something like

free_coords[0] = 0;

free_coords[1] = 0;

free_coords[2] = 1;

MPI_Cart_sub(grid_comm,free_coords,&part_b_comm);

Part (c): To create the desired communicator one would execute something like

free_coords[0] = 0;

free_coords[1] = 0;

free_coords[2] = 0;

MPI_Cart_sub(grid_comm,free_coords,&part_c_comm);

I would not assume that the communicator defined on process 0 is the same as the commu-
nicator defined in part c (above).

Exercise 5

As suggested in the text we can implement a safe circular shift of data using only MPI Send

and MPI Recv (that will work if there is no buffering) if we take care to issue our send and
recives in a certain manner. In case one is working on a system which does not provide
buffering we can have the even processors issue MPI Send and the odd processors issue the
MPI Recv second. A piece of code that demonstrates this is given below (where we are
sending a string message from processor to processor)

if(my_rank % 2 == 0){

/* Use strlen+1 so that ’\0’ gets transmitted */

printf("Process %d sending: %s\n", my_rank, messageS);

MPI_Send(messageS, strlen(messageS)+1, MPI_CHAR,

dest, tag, MPI_COMM_WORLD);

MPI_Recv(messageR, 100, MPI_CHAR, recv, tag,

MPI_COMM_WORLD, &status);

printf("Process %d recieved: %s\n", my_rank, messageR);

}else{

MPI_Recv(messageR, 100, MPI_CHAR, recv, tag,

MPI_COMM_WORLD, &status);

printf("Process %d recieved: %s\n", my_rank, messageR);

/* Use strlen+1 so that ’\0’ gets transmitted */

printf("Process %d sending: %s\n", my_rank, messageS);

MPI_Send(messageS, strlen(messageS)+1, MPI_CHAR,

dest, tag, MPI_COMM_WORLD);

}

In general, I believe that many MPI systems do provide some amount of buffering so that
the circular shift discussed here can be coded and will work if the MPI Send’s are issued first.
In fact prob 3.7.1.c was first implemented in that manner and later coded to be made safe.

Programming Assignment 1

Programming Assignment 2

Chapter 10 (Design and Coding of Parallel Programs)

Exercise 2

I would have each processor seed the random number generator with its process rank. This
way the random numbers would be guaranteed to at least be different in each processor.
Code like the following should work

int p;

MPI_Comm_rank(MPI_COMM_WORLD, &p);

srand48((long int) p);

Where the cast is required by the input arguments of srand48.

Programming Assignment 3

Because the MPI standard prohibits argument aliasing, if a program calls MPI Alltoall

correctly it will need to have two matrix variables declared. One to represent the original
matrix and the other representing its transpose. In the implementation of this problem
provided here we loop over the rows of A calling MPI Alltoall and receiving its results in
a temporary variable. We then copy the data into the additional storage representing the
transposed matrix. We could not copy this transpose data back into the original matrix A

or we would overwrite needed elements on the rows yet to be seen.

In many matrix algorithms (with block distribution of the rows among the processors) when
p does not evenly divide n the following simple modification permit the use of non evenly
divisible matrices by placing all “spill over” elements in the processor “p-1” (the last pro-
cessor). This can be accomplished with the following code snippet

int n_bar, n_rem, n_local;

n_bar = n / p; /* using C’s integer (truncated division) */

n_rem = n % p; /* computes the remainder */

n_local = (my_rank != p-1 ? n_bar : n_bar+n_rem);

Then the computation in each processor proceeds by looping over the n local rows as
normal.

Chapter 11 (Performance)

Exercise 1

Some searching algorithms can have superlinear speedup. This is because in general the
more processors one has the more of a give data structure that can be searched. This in tern
can produce very quick query times which can (in some cases) result in superlinear speedup.

References

[1] J. R. Smith. The design and analysis of parallel algorithms. Oxford University Press,
Inc., New York, NY, USA, 1993.

