
Worked Examples and Solutions for the Book:

Adaptive Filtering Primer with MATLAB

by Alexander Poularikas and Zayed Ramadan

John L. Weatherwax∗

December 13, 2015

∗wax@alum.mit.edu

1

Text copyright c©2015 John L. Weatherwax
All Rights Reserved

Please Do Not Redistribute Without Permission from the Author

2

Introduction

This is a wonderful little book on adaptive filtering. I found the examples
enjoyable and the text very easy to understand. To better facilitate my
understanding of this material I wrote some notes on the main text and
worked a great number of the problems while I worked through the book.
For some of the problems I used MATLAB to perform any needed calculations.
The code snippets for various exercises can be found at the following location:

http://waxworksmath.com/Authors/N_Z/Poularikas/poularikas.html

I’ve worked hard to make these notes as good as I can, but I have no illusions
that they are perfect. If you feel that that there is a better way to accomplish
or explain an exercise or derivation presented in these notes; or that one or
more of the explanations is unclear, incomplete, or misleading, please tell
me. If you find an error of any kind – technical, grammatical, typographical,
whatever – please tell me that, too. I’ll gladly add to the acknowledgments
in later printings the name of the first person to bring each problem to my
attention.

3

Chapter 2 (Discrete-time signal processing)

Problem 2.2.1 (a comparison between the FT and the DTFT)

The Fourier transform of the given signal x(t) is given by

X(ω) =

∫ ∞

−∞

x(t)e−jωtdt

=

∫ 0

−∞

e−|t|e−jωtdt +

∫ ∞

0

e−|t|e−jωtdt

=

∫ 0

−∞

ete−jωtdt+

∫ ∞

0

e−te−jωtdt

=

∫ ∞

0

e−tejωtdt+

∫ ∞

0

e−te−jωtdt

=

∫ ∞

0

e−(1−jω)tdt+

∫ ∞

0

e−(1+jω)tdt

=
e−(1−jω)t

−(1− jω)

∣

∣

∣

∣

∞

0

+
e−(1+jω)t

−(1 + jω)

∣

∣

∣

∣

∞

0

=
1

1− jω
+

1

1 + jω

=
1 + jω

1 + ω2
+

1− jω

1 + ω2

=
2

1 + ω2
.

Evaluating this expression at ω = 1.6 rad/s gives 0.5618.
Next, we evaluate the discrete time Fourier transform (DTFT) of x(t) =

e−|t| with two different sampling intervals T = 1s and T = 0.1s. We begin
by computing the DTFT of x(t) as

X(ejωT) = T

∞
∑

n=−∞

x(nT)e−jωnT

= T

(

−1
∑

n=−∞

enT e−jωnT + 1 +
∞
∑

n=1

e−nT e−jωnT

)

= T

(

∞
∑

n=1

e−nTejωnT +
∞
∑

n=0

e−nT e−jωnT

)

4

= T

(

∞
∑

n=0

(e−T ejωT)n − 1 +

∞
∑

n=0

(e−T e−jωT)n

)

= T

(

1

1− e−T ejωT
− 1 +

1

1− e−T e−jωT

)

.

To convert this expression into its real and imaginary parts we will multiply
each fraction above by a conjugate of its denominator. Denoting this common
product as D (for denominator) we have

D = (1− e−T ejωT)(1− e−T e−jωT)

= 1− e−T e−jωT − e−T ejωT + e−2T

= 1− e−T (e−jωT + ejωT) + e−2T

= 1− 2e−T cos(ωT) + e−2T .

So that the expression for the DTFT X(ejωT) becomes

X(ejωT) = T

(

1− e−T e−jωT

D
+

1− e−T ejωT

D
− 1

)

=
T

D
(2− 2e−T cos(ωT)−D)

=
T

D
(1− e−2T)

=
T (1− e−2T)

1− 2e−T cos(ωT) + e−2T
.

When T = 1s and ω = 1.6 rad/s we find X(ej(1.6)) = 0.7475. When T = 0.1s
this expression becomes X(ej(0.16)) = 0.5635. The sampling interval with
T = 0.1s is obviously a better approximation to the full Fourier transform at
this point.

Problem 2.2.2 (an example with the DFT)

See the MATLAB file prob 2 2 2.m for the calculations required for this
problem. They basically follow the discussion in the book in the section
entitled “the discrete Fourier transform (DFT)”. My results don’t exactly
match the answer presented at the end of the chapter but I don’t see anything
incorrect with what I’ve done.

5

Problem 2.3.1 (examples with the z-transform)

For this problem using the definition of the z-transform we will directly
compute each of the requested expressions.
Part (a): In this case we have

X(z) = Z{x(n)} =
∞
∑

n=−∞

x(n)z−n

=
∞
∑

n=−∞

cos(nωT)u(n)z−n =
∞
∑

n=0

cos(nωT)z−n

=
1

2

∞
∑

n=0

(ejnωT + e−jnωT)z−n

=
1

2

(

∞
∑

n=0

(ejωT z−1)n +

∞
∑

n=0

(e−jωT z−1)n

)

=
1

2

(

1

1− ejωT z−1
+

1

1− e−jωTz−1

)

.

To further simplify this expression in each fraction above we will multiply by
a “form of one” determined by the conjugate of the fractions denominator.
In both cases this gives a denominator D given by

D = (1− ejωT z−1)(1− e−jωTz−1)

= 1− ejωT z−1 − e−jωT z−1 + z−2

= 1− 2z−1 cos(ωT) + z−2 .

With this expression we obtain

X(z) =
1

2D
(2− 2z−1 cos(ωT))

=
z2 − z cos(ωT)

z2 − z cos(ωT) + 1
.

Part (b): In this case we find

X(z) = Z{x(n)} =

∞
∑

n=−∞

nanu(n)z−n =

∞
∑

n=0

nanz−n =

∞
∑

n=0

n
(a

z

)n

.

6

From the identity
d

d
(

a
z

)

(a

z

)n

= n
(a

z

)n−1

,

we have
(a

z

)

(

d

d
(

a
z

)

(a

z

)n

)

= n
(a

z

)n

,

and the above becomes

X(z) =
(a

z

) d

d
(

a
z

)

∞
∑

n=0

(a

z

)n

=
(a

z

) d

d
(

a
z

)

(

1

1−
(

a
z

)

)

=
(a

z

) 1
(

1− a
z

)

=
az

(a− z)2
.

7

Chapter 3 (Random variables, sequences, and

stochastic processes)

Problem 3.2.1 (an example of the autocorrelation function)

The autocorrelation function for this random process x(n) is defined as

rx(n,m) = E[x(n)x(m)]

= E[(a cos(nω + θ))(a cos(mω + θ))]

= a2
∫ π

−π

cos(nω + θ) cos(mω + θ)

(

1

2π

)

dθ .

Using the fact that

cos(α) cos(β) =
1

2
(cos(α + β) + cos(α− β)) ,

the above becomes

rx(n,m) =
a2

4π

∫ π

−π

(cos((n−m)ω) + cos((n+m)ω + 2θ))dθ .

Now
∫ π

−π

cos((n+m)ω + 2θ)dθ =
sin((n +m)ω + 2θ)

2

∣

∣

∣

∣

π

−π

= 0 .

Using this the above then gives for the autocorrelation the following

rx(n,m) =
a2

4π
cos((n−m)ω)(2π) =

a2

2
cos((n−m)ω) .

8

0 50 100 150 200 250

−4

−3

−2

−1

0

1

2

3

4

n

m
ea

su
re

d
si

gn
al

the pure signal and the signal with noise

d(n)
d(n)+v

1
(n)

0 50 100 150 200 250

−4

−3

−2

−1

0

1

2

3

4

n

ap
pr

ox
im

at
e

si
gn

al

M=4

0 50 100 150 200 250

−4

−3

−2

−1

0

1

2

3

4

n

ap
pr

ox
im

at
e

si
gn

al

M=8

0 50 100 150 200 250

−4

−3

−2

−1

0

1

2

3

4

n

ap
pr

ox
im

at
e

si
gn

al

M=16

Figure 1: Upper Left: The pure signal d(n) in green and its noised coun-
terpart d(n) + v1(n) in red. Upper Right: The Wiener filtered results
using M = 4 filter coefficients in black plotted with the signal d(n) in green.
Lower Left: Using M = 8 filter coefficients. Lower Right: Using M = 16
filter coefficients.

Chapter 4 (Wiener filters)

Notes on the Text

To aid in my understanding of this chapter I choose to duplicate the results
from the book example that deals with the use of the Wiener filter to perform
noise cancellation (Example 4.4.4). To do this I added several comments and
fixed a few small bugs in the MATLAB function aawienernoisecancelor.m

supplied with the book . I then created a script noise canceling script.m

that performs the statements suggested in this section of the text. When this
is run it first plots the true signal d(n) along with the noised version d(n) +
v1(n). Then for three choices of filter lengths M = 4, 8, 16 the estimated

9

signal d̂(n) is derived from the noised signal x(n) by removing an estimate
of the noise v̂1(n). All of these results are shown in Figure 1.

Notice that when the number of filter coefficients becomes large enough
(M ≥ 16) we are able to reconstruct the desired signal d(n) quite well given
the amount of noise that is present.

Problem Solutions

Problem 4.3.1 (calculation of the minimum error)

We begin this problem by recalling that the optimum filter weights wo are
given by

wo = R−1
x pdx . (1)

Here Rx is the autocorrelation of the process x(n) and pdx is the cross-
correlation vector between d(n) and x(n). We also recall the quadratic cost
J(w) we sought to minimize is defined as

J(w) = E{(d(n)− d̂(n))2} = E{e2(n)} .

When represented in terms of the statistics of our desired signal d(n) and
our observed signal x(n) becomes

J(w) = σ2
d − 2wTpdx + wTRxw .

When this expression is evaluated at the optimum wo it becomes

J(wo) = σ2
d − 2pTdxR

−1
x pdx + pTdxR

−1
x RxR

−1
x pdx

= σ2
d − pTdxR

−1
x pdx (2)

= σ2
d − pTdxw

o . (3)

In the above we have used the fact that the autocorrelation matrix, Rx, is
symmetric.

Problem 4.3.2 (modeling an unknown system)

This problem can be worked numerically using code similar to that found
in Example 4.3.1 of the book. See the MATLAB script prob 4 3 2.m for
an example of how this is done. Alternatively, one can compute many of
the required correlations analytically due to the problem specification and

10

solve this problem directly. First, since we are told that our input data
{x(n)} is a stationary white process with zero mean and unit variance we
conclude that its autocorrelation matrix Rx is the identity matrix. Next, the
cross-correlation vector, pxd(m), can be computed from its definition as

pxd(m) = E{x(n)d(n−m)}
= E{x(n)(b0x(n−m) + b1x(n−m− 1) + v(n−m))}
= b0E{x(n)x(n−m)}+ b1E{x(n)x(n−m− 1)}
= b0rx(m) + b1rx(m+ 1) .

Assuming a filter with only two values for m i.e. M = 2 so that m = 0, 1
from the above see that pxd(0) = b0 and pxd(1) = b1, so that as a vector

pxd =

[

b0
b1

]

. Now σ2
d is given by

σ2
d = E{d2(n)} = E{(b0x(n) + b1x(n− 1) + v(n))2}

= b20E{x2(n)}+ b21E{x2(n− 1)}+ E{v2(n)}
+ 2b0E{x(n)v(n)}+ 2b1E{x(n− 1)x(n)}+ 2b0b1E{x(n)x(n− 1)}
= b20σ

2
x + b21σ

2
x + σ2

v .

With everything from above solving the discrete Wiener-Hopf equation gives

wo = R−1
x pxd =

[

b0
b1

]

.

So that we find a minimum cost Jmin given by Equation 3 which in this case
specifies to

Jmin = σ2
d − pTdxw

o = (b20 + b21 + σ2
v)− (b20 + b21) = σ2

v = 0.15 .

These results match quite nicely those found when this problem is worked
numerically in prob 4 3 2.m when we take the number of time samples, N ,
large enough (to be confident in our statistics). Runs where N > 200 seemed
to work well.

Problem 4.3.3 (Jmin with the orthogonality principle)

The definition of Jmin is given by

Jmin = E{eo(n)eo(n)} ,

11

where the optimal error eo(n) is given by the difference between the desired
signal, d(n), and the estimated signal d̂(n) =

∑M−1
m=0 wmx(n−m) as

eo(n) = d(n)−
M−1
∑

m=0

wmx(n−m) .

Here wm are the optimal weights and the superscript o above stands for
“optimal”. We can now compute the product of this expression directly with
eo(n) “unexpanded” as

eo(n)eo(n) = eo(n)d(n)−
M−1
∑

m=0

wme
o(n)x(n−m) .

Taking the expectation of both sides of the above and using the orthogonality
condition of E{eo(n)x(n − m)} = 0 for m = 0, 1, · · · ,M − 1 we find the
expectation of the second term vanish and we are left with

Jmin = E{eo(n)d(n)}

= E{
(

d(n)−
M−1
∑

m=0

wmx(n−m)

)

d(n)}

= E{d(n)2 −
M−1
∑

m=0

wmx(n−m)d(n)}

= σ2
d −

M−1
∑

m=0

wmE{x(n−m)d(n)} .

By definition, this last expectation E{x(n−m)d(n)} is the cross-correlation
between d(n) and x(n) or pdx(m) and the above becomes

Jmin = σ2
d −

M−1
∑

m=0

wmpdx(m) ,

the same result as Equation 3 but in terms of the components of the vectors
wo and pdx.

Problem 4.4.1 (a specific Wiener filter)

For this problem we are told the autocorrelation function for the signal and
the noise are given by the quoted expressions for rd(m) and rv(m) respec-
tively. Using these the cross-correlation function, pdx(m), can be computed

12

from its definition as

pdx(m) = E{d(n)x(n−m)}
= E{d(n)(d(n−m) + v(n−m))}
= E{d(n)d(n−m)}+ E{d(n)v(n−m)}
= rd(m) .

Where we have used the fact that the term E{d(n)v(n − m)} = 0 since
E{v(n)} = 0 and the processes d(n) and v(n) are uncorrelated. Recall
that the optimal Wiener filtering weights wo are given by wo = R−1

x pdx. To
compute this expression we next need to compute the autocorrelation matrix
Rx. This is a Toeplitz matrix that has its (i, j) elements when |i − j| = m

given by rx(m). Here rx(m) is computed as

rx(m) = E{x(n)x(n−m)}
= E{(d(n) + v(n))(d(n−m) + v(n−m))}
= E{d(n)d(n−m) + d(n)v(n−m) + v(n)d(n−m) + v(n)v(n−m)}
= rd(m) + rv(m) .

With the specified functional forms for rd(m) and rv(m) quoted in this prob-
lem the autocorrelation matrix Rx looks like (assuming the length of the
filter M , is 4)

Rx =









rx(0) rx(1) rx(2) rx(3)
rx(1) rx(0) rx(1) rx(2)
rx(2) rx(1) rx(0) rx(1)
rx(3) rx(2) rx(1) rx(0)









=









2 0.9 0.92 0.93

0.9 2 0.9 0.92

0.92 0.9 2 0.9
0.93 0.92 0.9 2









=









2.00 0.90 0.81 0.72
0.90 2.00 0.90 0.81
0.81 0.90 2.00 0.90
0.72 0.81 0.90 2.00









.

Since in practice we don’t know the optimal filter length M to use we let
M = 2, 3, · · ·, compute the optimal filter weights wo, using the Wiener-Hopf
Equation 1, and for each evaluate the resulting Jmin using Equation 3. One
then takes M to be the first value where where the Jmin first falls below
a fixed threshold, say 0.01. If we specify M = 2 the optimal weights wo

and minimum error Jmin are found in the MATLAB script prob 4 4 1.m.
Running this gives numerical results identical to those found in the book.

13

We now compute the SNR of the original signal d(n) against the noise
signal v(n). Using the definition that the power a signal d(n) is given by
E{d(n)2} see that

Power in the signal = E{d2(n)} = rd(0) = 1

Power in the noise = E{v2(n)} = rv(0) = 1 .

Since they have equal power, the SNR before filtering is then

SNR = 10 log10(
1

1
) = 0 .

Note: I don’t see any errors in my logic for computing the power in
the filtered signals below, but my results do not match the book exactly. If
anyone sees anything wrong with what I have here please let me know. Since
these topics are not discussed much in the book I’m going to pass on this for
now.

After filtering our observed signal x(n), to obtain d̂(n), we would like to
compute the power of the filtered signal d̂(n). This can be done by calculating
E{d̂2(n)}. We find

E{d̂2(n)} = E{(wTx)2} = E{(wTx)(wTx)T } = E{wTxxTwT}
= wTE{xxT}w = wTRxw .

An estimate of the noise v̂(n) is given by subtracting the estimated signal
d̂(n) from our measured signal x(n) i.e.

v̂(n) = x(n)− d̂(n) .

Thus the power in the estimated noise is given by E{v̂2(n)}. We can compute
this as follows

E{v̂2(n)} = E{(x(n)− d̂(n))2} = E{x2(n)− 2x(n)d̂(n) + d̂2(n)}
= rx(0)− 2E{x(n)d̂(n)}+ rd̂(0) .

Now d̂(n) = wTx =
∑M−1

m=0 wmx(n − m) so the middle expectation above
becomes

E{x(n)d̂(n)} =
M−1
∑

m=0

wmE{x(n)x(n−m)} =
M−1
∑

m=0

wmrx(m) = wTrx .

Thus we find
E{v̂2(n)} = rx(0)− 2wTrx + rd̂(0) .

Again, these results may be different than what the book has.

14

Problem 4.4.2 (signal leaking into our noise)

The optimal Wiener filter coefficients w in this case is given by solving

Ryw
o = pv1y ,

where we have defined our signal input, y(n), to be the additive noise v2(n)
plus some amount, α, of our desired signal d(n). That is

y(n) = v2(n) + αd(n) .

Once these Wiener coefficients wo are found, they will be used to construct
an estimate of v1(n) given the signal y(n). For this signal y(n) the auto-
correlation matrix Ry has elements given by values from its autocorrelation
function, ry(m). Since in operation we will be measuring the signal y(n) we
can compute its autocorrelation matrix using samples from our process. If,
however, we desire to see how this autocorrelation matrix Ry depends on its
component parts v2(n) and d(n) we can decompose ry(m) as follows.

ry(m) = E{y(n)y(n−m)}
= E{(v2(n) + αd(n))(v2(n−m) + αd(n−m))}
= E{v2(n)v2(n−m)}+ α2E{d(n)d(n−m)} ,

since E{v2(n)d(n−m)} = 0. This shows that the autocorrelation matrix for
y is related to that of v2 and d as

Ry = Rv2 + α2Rd .

It should be noted that in an implementation we don’t have access to d(n) and
thus cannot form Ry using this decomposition. Instead we have to estimate
Ry using the input samples of y(n). After Ry to complete the Wiener filter
we need to compute the components of the cross-correlation vector pv1y(m).
As any realizable implementation of this filter will need to estimate this
cross-correlation using the two signals y(n) and x(n). We can decompose the
cross-correlation vector pv1y as follows

pv1y(m) = E{v1(n)y(n−m)}
= E{(x(n)− d(n))y(n−m)}
= E{x(n)y(n−m)} −E{d(n)y(n−m)}
= E{x(n)y(n−m)} −E{d(n)(v2(n−m) + αd(n−m))}
= E{x(n)y(n−m)} − αE{d(n)d(n−m))} .

15

The term (not shown) that would have had the product d(n)v2(n − m)
vanished since v2(n) and d(n) are uncorrelated and the process v1(n) has
zero mean. Since we don’t know the function d(n)1 we cannot calculate
E{d(n)d(n − m)} using discrete samples. I see two ways to proceed with
this textbook exercise. The first is to assume we have access to the statistics
of d(n) i.e. to the expectation above. We could obtain this information by
“training” on a pre-specified set of d(n) signals before the actual filters im-
plementation. The second interpretation of this exercise would be to ignore
the term αE{d(n)d(n−m)} and show how much the performance of a noise
canceling algorithm will suffer from the fact that we are running it without
the correct system model. In that case we would expect that when α is small
the error will be less since then the dropped term αE{d(n)d(n − m)} may
be negligible. That is, we could approximate pv1y with

pv1y ≈ pxy ,

in our Wiener filter implementation above.
To finish this problem I’ll assume that we somehow have access to the

expectation E{d(n)d(n−m)} before running this filter live. If anyone sees a
way to compute the optimal filter coefficients wo directly from the the given
signals x(n) and y(n) please let me know.

From all of this discussion then our optimal filtering weights wo are given
by solving the Wiener-Hopf equation given by

Ryw
o = pxy − αpdd . (4)

In Example 4.4.4 we are told that d(n), v1(n), and v2(n) have analytic ex-
pressions given by

d(n) = 0.99n sin(0.1nπ + 0.2π)

v1(n) = 0.8v1(n− 1) + v(n)

v2(n) = −0.95v2(n− 1) + v(n) .

Here v(n) a driving white noise process (a zero mean and unit variance Gaus-
sian process). We then implement a modification of the book MATLAB func-
tion aawienernoisecancelor.m here denoted aaWNC with leaking signal.m

1If we knew d(n) we would have the perfect noise canceler already!

16

0 100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

m
ea

su
re

d
si

gn
al

the pure signal and the signal with noise

d(n)
d(n)+v

1
(n)

0 100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

n

ap
pr

ox
im

at
e

si
gn

al

alpha=0.05

0 100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

n

ap
pr

ox
im

at
e

si
gn

al

alpha=0.3

0 100 200 300 400 500 600 700 800 900 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

n

ap
pr

ox
im

at
e

si
gn

al

alpha=1

Figure 2: Upper Left: The original desired signal d(n) with the noised
version d(n) + v1(n). Upper Right: The reconstructed signal d̂(n) (after
noise remove of v̂1(n) from the signal y(n)) when α = 0.05. Lower Left:
The reconstructed signal d̂(n) when α = 0.3. Lower Right: When α = 1.0.

to estimate from given sample paths of x(n), y(n), and statistics ofE{d(n)d(n−
m)} the values of the following correlation

ry(m) , pxy(m) , and rd(m) ,

which are the needed discrete correlation functions. For example, we can
derive an estimate p̂xy(m) of pxy(m) using averaging as

p̂xy(m) =
1

N

N−1
∑

n=0

x(n)y(n−m) for m = 0, 1, · · · ,M − 1 .

Here we should assume that the maximum allowed delay M − 1 is much
smaller than the number of samples in our time series N i.e. M ≪ N .

17

This problem as formulated is worked in the MATLAB script prob 4 4 2.m.
The optimal coefficients wo as a function of the specified α are presented in
Figure 2. There in the first plot in the upper left we see the desired signal
d(n) plotted along with its noised counter part d(n) + v1(n). We then plot
three reconstructions for α = 0.05, 0.3, 1.0. The reconstructions for small α
seem to be much better.

Note: I’m not sure why the reconstructions for small α are better. In the
formulation above the explicit dependence of α is be statistically considered
and should not present a problem for the reconstruction. I would expect that
if I had not modeled the α dependence I would see results like we are seeing
here. I’ve checked this code several times and have not been able to find any
errors. If anyone sees anything wrong with what I have done here, please let
me know.

Problem 4.4.3 (two example MSE surfaces)

Part (a): The diagram shown for this problem looks like what might be a
system modeling problem. In that we are seeking a coefficient w0 such that
s(n) +w0s(n− 1) is an approximate d(n). Using this expression the value of
the error at time step n can be written as

e(n) = d(n)− (s(n) + w0s(n− 1)) .

We then desire to find a value for w0 so that our estimate of d(n) (using the
signal s(n)) is as small as possible. In this case the cost function J(w0) we
want to minimize can be defined as

J(w0) = min
w0

E{e2(n)} .

Where e2(n) is given by

e2(n) = d2(n)− 2d(n)(s(n) + w0s(n− 1))

+ s2(n) + 2w0s(n− 1)s(n) + w2
0s

2(n− 1) .

With this expression for e2(n) the expectation when we use the provided
values then becomes

E{e2(n)} = 3− 2(−0.5 + w0(0.9)) + 0.9 + 2w0(0.4) + w2
0(0.9)

= 4.0− w0 + 0.9w2
0 .

18

To minimize this, we take its derivative, set the result equal to zero, and
solve for w0. We find that w0 must satisfy

−1 + 1.8w0 = 0 or w0 = 0.5556 .

Part (b): This problem is no difference than in Part (a) but now e(n) is
defined as

e(n) = d(n) + (w0s(n) + s(n− 1)) ,

and we desire to minimize J(w0) = E{e2(n)}. The remaining parts of this
problem is worked as in Part (a) above.

19

Chapter 5 (Eigenvalues of Rx - properties of

the error surface)

Problem 5.1.1 (the correlation matrix R is positive definite)

From the definition of the autocorrelation matrix R, and with a is a constant
vector we have that the product aTRa is given by

aTRa = aTE{xxT}a = E{aTxxTa} = E{(xTa)T (xTa)} = E{||xTa||2} ≥ 0 ,

since the last expression is the expectation of a positive quantity. Since
aTRa ≥ 0 for all a the autocorrelation matrix R is positive definite.

Problem 5.1.2 (eigenvalues of Rk)

If λi is an eigenvalue of R then by definition there exists an eigenvector qi
such that Rqi = λiqi. Then if k ≥ 1 multiplying this equation by the matrix
Rk−1 on both sides we obtain

Rkqi = λiR
k−1qi

= λiR
k−2(Rqi) = λiR

k−2λiqi

= λ2
iR

k−2qi = · · · = λk
i qi ,

which shows that λk
i is an eigenvalue of Rk as claimed.

Problem 5.1.3 (distinct eigenvalues have independent eigenvectors)

To be linearly independent means that any finite (non-zero) sum of the given
vectors cannot be zero. Thus if ci for i = 1, 2, · · · ,M are non-zero constants
we require

∑M

i=1 ciqi 6= 0. Assume by way of contradiction that the ci are not
all zero but that

M
∑

i=1

ciqi = 0 . (5)

Then taking the dot-product of this equation with the vector qj gives

M
∑

i=1

ciq
T
j qi = 0 .

20

Now from Problem 5.1.5 qTj qi = 0 for i 6= j and the above equation reduces
to cj = 0 which is a contradiction. The book gives another solution where
we generate M non-singular equations for ci by multiplying the Equation 5
by Rx 0, 1, 2, · · · ,M times. The fact that the equations are non-singular and
have a zero right-hand-side implies again that ci = 0.

Problem 5.1.4 (the eigenvalues of R are real and non-negative)

We let q we be an eigenvector ofRx, then by definition Rxq = λq. Multiplying
this expression by qH (the Hermitian conjugate of q) on both sides gives

qHRxq = λqHq or λ =
qHRxq

qHq
.

Since Rx is positive definite qHRxq ≥ 0 (by Problem 5.1.1) and qHq > 0
everything in the ratio in the equation on the right hand side above is real and
non-negative. Thus we can conclude that λ must be real and non-negative.

Problem 5.1.5 (distinct eigenvalues have orthogonal eigenvectors)

Let qi and qj be two eigenvectors of Rx corresponding to distinct eigenvalues.
Then by definition

Rxqi = λiqi and Rxqj = λjqj ,

Take the Hermitian inner product of qj with the first equation we find

qHj Rxqi = λiq
H
j qi ,

Taking the conjugate transpose of this expression and remembering that λ

is a real number we have

qHi Rxqj = λ̄iq
H
i qj = λiq

H
i qj . (6)

Now the left hand side of this expression (since qj is an eigenvector of Rx) is
given by

qHi Rxqj = qHi λjqj = λjq
H
i qj , (7)

Thus subtracting Equation 6 from 7 we have shown the identity

λiq
H
i qj − λjq

H
i qj = 0 ,

21

or
(λi − λj)q

H
i qj = 0 .

Since we are assuming that λi 6= λj the only way the above can be true is if
qHi qj = 0 that is the vector qi and qj are orthogonal.

Problem 5.1.6 (the eigenvector decomposition of Rx)

We begin by forming the matrix Q as suggested. Then it is easy to see that
when we left multiply by Rx we obtain

RxQ =
[

Rxq1 Rxq2 · · · RxqM
]

=
[

λ1q1 λ2q2 · · · λMqM
]

= QΛ .

Multiplying this last equation by QH on the left then because of the orthog-
onality of qi and qj under the Hermitian inner product we find

QHRxQ = Λ ,

with Λ a diagonal matrix containing the eigenvalues of Rx. These manipula-
tions assumes that the vectors qi and qj are orthogonal to each other. This
in fact can be made true when these vectors are constructed.

Problem 5.1.7 (the trace of the matrix Rx)

Now from Problem 5.1.6 we know that

tr(QHRxQ) = tr(Λ) =

M
∑

i=1

λi .

In addition to this identity, one can show that the trace operator satisfies a
type of permutation identity in its arguments in that

tr(ABC) = tr(BCA) = tr(CAB) , (8)

provided that all of these products are defined. Using this identity we see
that

tr(QHRxQ) = tr(RxQQH) = tr(RxI) = tr(Rx) ,

the desired identity.

22

Problem 5.2.1 (the equation for the difference from optimal wo)

We begin by recalling the definition of our error function J(w) in terms of
second order statistics of our processes x(n) and d(n)

J(w) = σ2
d − 2wTp+ wTRxw , (9)

or
wTRxw − 2pTw − (J − σ2

d) = 0 .

We now “center” this equation about the optimal Wiener-Hopf solution wo

which is given by wo = R−1
x pxd. We do this by introducing a vector ξ defined

as ξ = w−wo. This means that w = ξ+wo and our quadratic form equation
above becomes

(ξ + wo)TRx(ξ + wo)− 2pT (ξ + wo)− (J − σ2
d) = 0 ,

or expanding everything

ξTRxξ + 2ξTRxw
o + woTRxw

o − 2pT ξ − 2pTwo − (J − σ2
d) = 0 .

Since Rxw
o = p some terms cancel and we get

ξTRxξ − pTwo − (J − σ2
d) = 0 . (10)

Recalling that

J(wo) = J(ξ = 0) = Jmin = σ2
d − pTwo ,

we see that Equation 10 is given by

ξTRxξ − pTw0 − (J − σ2
d) = ξTRxξ − J + Jmin = 0 .

Thus J − Jmin = ξTRxξ, which states by how much J is greater than than
Jmin when ξ 6= 0.

23

Chapter 6 (Newton and steepest-decent method)

Problem 6.1.1 (convergence of w in the gradient search algorithm)

Recall that the difference equation satisfied by the one-dimensional filter
coefficients w(n) when using the gradient search algorithm is given by

w(n+ 1) = (1− 2µrx(0))w(n) + 2µrx(0)w
o (11)

To solve this difference equation define v(n) as v(n) = w(n)− wo, so that w
in terms of v is given by w(n) = wo + v(n) and then Equation 11 becomes

wo + v(n+ 1) = (1− 2µrx(0))(w
o + v(n)) + 2µrx(0)w

o ,

or
v(n+ 1) = (1− 2µrx(0))v(n) . (12)

The solution of this last equation is

v(n) = (1− 2µrx(0))
nv(0) ,

which can be proven using mathematical induction or by simply substitut-
ing this expression into the difference equation 12 and verifying that it is a
solution. Replacing v(n) with w(n)− wo we have that w(n) is given by

w(n) = wo + (1− 2µrx(0))
n(w(0)− wo) ,

as we were to prove.

Problem 6.1.2 (visualizing convergence)

Equation 6.15. is the iterative solution to the one-dimensional gradient-
decent search algorithm

w(n) = wo + (1− 2µrx(0))
n(w(0)− wo) .

To generate these plots we took wo = 0.5, w(0) = −0.5, and rx(0) = 1 and
several values for µ. We then plot the iterates of w(n) as a function of n
in Figure 3 (left). These plots can be generated by running the MATLAB
script prob 6 1 2.m.
Part (a): When 0 ≤ µ ≤ 1

2rx(0)
from the given plots we see that the conver-

gence is monotonic to the solution of 0.5.

24

Part (b): When µ ≈ 1
2rx(0)

we see that the convergence is also monotonic
but converges faster than before to the true solution.
Part (c): When 1

2rx(0)
< µ < 1

rx(0)
the convergence is oscillatory around the

true solution and eventually converges to it.
Part (d): When µ > 1

rx(0)
the iterates oscillate and then diverge. That is

the iterates and don’t converge to the value of wo = 0.5. In the given plot
we only plot the first five samples so as to not clutter the graph.

Problem 6.1.3 (convergence of J in the gradient search algorithm)

Recall the solution to the iteration scheme for the weights w(n)

w(n) = wo + (1− 2µ)n(w(0)− wo) ,

When we put this into the books Equation 5.2.7 the shifted and rotated form
for J we obtain

J(w(n)) = Jmin + (w(n)− wo)TRx(w(n)− wo) (13)

= Jmin + (1− 2µ)2n(w(0)− wo)TRx(w(n)− wo) (14)

Evaluating Equation 13 when n = 0 results in

J(0) = J(w(0)) = Jmin + (w(0)− wo)TRx(w(0)− wo) .

or solving for the quadratic form the expression

(w(0)− wo)TRx(w(0)− wo) = J(0)− Jmin .

Using this result back in Equation 14 gives the desired form for the iterates
of J(n)

J(n) = J(w(n)) = Jmin + (1− 2µ)n(J(0)− Jmin) . (15)

Problem 6.2.1 (convergence of the vector SD algorithm)

The vector steepest-decent (SD) algorithm results in the iterative scheme for
the vector ξ′(n) defined as

ξ′(n) = QT (w(n)− wo) .

Here Rx = QΛQT . That is, Q is the orthogonal matrix that diagonalizes
the autocovariance matrix Rx. The iterative scheme that results for ξ′(n) is
given by

ξ′(n+ 1) = (I − µ′Λ)ξ′(n) ,

25

Then taking the kth component of the above matrix expression results in the
following scalar iterative scheme

ξ′k(n+ 1) = (1− µ′λk)ξ
′
k(n) .

Problem 6.2.2 (the scalar equations in the vector GD algorithm)

The ith scalar equation in the vector gradient-decent algorithm is given by
equation 6.2.25

w′
i(n+ 1) = (1− µ′λi)w

′
i(n) + µ′p′idx for 0 ≤ i ≤ M − 1 . (16)

Here µ′ = 2µ is the learning rate. Letting n = 0 in this equation we obtain

w′
i(1) = (1− µ′λi)w

′
i(0) + µ′p′idx .

Letting n = 1 we obtain

w′
i(2) = (1− µ′λi)w

′
i(1) + µ′p′idx

= (1− µ′λi)
2w′

i(0) + µ′(1− µ′λi)p
′
idx + µ′p′idx ,

when we use the previously computed value of w′
i(1). Continuing with w′

i(3)
we let n = 2 in Equation 16 to obtain

w′
i(3) = (1− µ′λi)w

′
i(2) + µ′p′idx

= (1− µ′λi)
3w′

i(0) + µ′(1− µ′λi)
2p′idx + µ′(1− µ′λi)p

′
idx + µ′p′idx .

By induction then we recognize that in the general case

w′
i(n) = (1− µ′λi)

nw′
i(0) + µ′p′idx

n−1
∑

j=0

(1− µ′λj)
j , (17)

as we were to show.

Problem 6.2.3 (analytic solutions for the iterates w(n))

The exact iterates for the transformed weight components w′
i(n) satisfy (as-

suming we begin our iterations with w initialized to zero) the following

w′
i(n) =

p′idx
λi

(1− (1− µ′λi)
n) . (18)

26

Using this expression and the given autocorrelation matrix R̂x and cross-
correlation vector p̂dx we can analytically evaluate the transformed filter
weights w′

i(n) as a function of n. From these we can translate w′
i(n) into

analytic expressions for the filter weights wi(n) themselves. To do this we
require we see from Equation 18 requires the eigenvalues of the given R̂x.
Computing them we find their values given by

λ1 = 0.3 and λ2 = 1.7 .

While the eigenvectors for Rx are given by the columns of a matrix say Q or

Q =

[

−0.7071 0.7071
0.7071 0.7071

]

.

We also require

p′xd = QTpxd =

[

−0.1414
0.8485

]

.

Using these (and recalling that µ′ = 2µ) we find

w′
1(n) = −0.1414

0.3
(1− (1− 2µ0.3)n) = −0.1414

0.3
(1− (1− 0.6µ)n)

w′
2(n) = +

0.8485

1.7
(1− (1− 2µ1.7)n) = +

0.8485

1.7
(1− (1− 3.4µ)n) ,

as the functional form for w′
i(n). Given these expressions we can compute

the filter weights themselves wi(n) by multiplying them by the Q matrix2.
In components then this is given by

w1(n) = −0.7071w′
1(n) + 0.7071w′

2(n)

= +
0.7071(0.1414)

0.3
(1− (1− 0.6µ)n) +

0.7071(0.8485)

1.7
(1− (1− 3.4µ)n)

w2(n) = +0.7071w′
1(n) + 0.7071w′

2(n)

= −0.7071(0.1414)

0.3
(1− (1− 0.6µ)n) +

0.7071(0.8485)

1.7
(1− (1− 3.4µ)n) .

For convergence of this iterative scheme recall that the learning rate µ′ ≤
2

λmax
. Since µ′ = 2µ this means that

µ ≤ 1

λmax

= 0.5882 .

2Recall that the transformed weights w′(n) were obtained from the untransformed
weights by w′(n) = QTw(n).

27

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n (index)

w
(n

)

Part (a)
Part (b)
Part (c)
Part (d)

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n index

fil
te

r w
ei

gh
ts

 w
(n

)

Figure 3: Left: Plots of iterates of the 1d gradient-search algorithm. Right:
Plots of the two filter coefficients w1(n) and w2(n) as a function of n for two
different values of the learning parameter µ. See the text on Problem 6.2.3
for more details.

These expressions for the weights wi are plotted in Figure 3 (right) for µ = 0.5
and µ = 0.7 as a function of n. The two numerical values of µ were chosen to
straddle the stability threshold of µ ≈ 0.5882. The value of the iterates for
µ = 0.5 is plotted in green while that for µ = 0.7 is plotted in red. We only
plot the first ten elements of the µ = 0.7 curves since the large oscillations
that result from the divergence would cloud the entire picture otherwise. We
also clip the y-axis of the plot at reasonable limits since the diverging weights
quickly reach very large numbers. This plot can be generated and studied
by running the MATLAB script prob 6 2 3.m.

Problem 6.2.4 (J(w(n)) in terms of pdx(n) and Rx)

Given the expression for J(w(n))

J(w(n)) = Jmin + ξ′(n)TΛξ′(n) ,

expressed in terms of the rotated and translated vectors ξ′(n) = QT ξ(n) =
QT (w(n)− wo) in terms of Q and w(n) this becomes

J(n) = Jmin + (w(n)− wo)TQΛQT (w(n)− wo)

= Jmin + (w(n)− wo)TRx(w(n)− wo) .

28

1 2 3 4 5 6 7 8 9 10
−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

n index

lo
g(

J(
n)

)

Figure 4: Plots of ln(J(n)) as a function of n for Problem 6.2.5.

Recalling that the optimal Wiener filter weights wo satisfy wo = R−1
x pdx and

that Jmin = σ2
d − pTdxw

o the above becomes

J(n) = σ2
d − pTdx(Rx

−1pdx) + (w(n)− wo)TRx(w(n)− wo)

= σ2
d − pTdxRx

−1pdx

+ w(n)TRxw(n)− w(n)TRxRx
−1pdx − pTdxRx

−1Rxw(n) + pTdxRx
−1RxRx

−1pdx

= σ2
d − 2pTdxw(n) + w(n)TRxw(n) ,

or the desired expression.

Problem 6.2.5 (plots of the learning curve)

One form of the learning curve, J(n), in terms of the eigenvalues of the
autocorrelation matrix Rx, is

J(n) = J(w(n)) = Jmin + ξ′(n)TΛξ′(n)

= Jmin +
M−1
∑

k=0

λk(1− µ′λk)
2nξ′k(0)

2 .

For the correlation matrix with the given eigenvalues we have that the learn-
ing curve has the following specific expression

J(n)− Jmin = 1.85(1− 1.85µ′)2nξ′1(0)
2 + 0.15(1− 0.15µ′)2nξ′2(0)

2 .

The two values for the constants ξ′1(0)
2 and ξ′1(0)

2 are determined by what
we take for our initial guess at the filter coefficients (rotated by the eigenvec-
tors of the system correlation matrix Rx). The value of µ′ must be selected

29

such that we have convergence of the gradient decent method which in this
case means that

µ′ <
2

λmax

=
2

1.85
= 1.0811 .

We plot the log of the expression J(n) for this problem in Figure 4 for
µ′ = 0.4, ξ′1(0)

2 = 0.5, and ξ′1(0)
2 = 0.75. The time constants, τk, for

the error decay are given by

τk = − 1

ln(1− µ′λk)
,

which in this case gives

τ1 = 0.7423 and τ2 = 16.1615 .

This plot can be generated by running the MATLAB command prob 6 2 5.

Problem 6.2.6 (the optimal value for µ′)

The optimal value for µ′ lies between 1
λmin

and 1
λmax

so that

|1− λminµ
′| = λmin

∣

∣

∣

∣

1

λmin
− µ′

∣

∣

∣

∣

= λmin

(

1

λmin
− µ′

)

= 1− λminµ
′ ,

since µ′ < 1
λmin

. In the same way we have

|1− λmaxµ
′| = λmax

∣

∣

∣

∣

1

λmax

− µ′

∣

∣

∣

∣

= λmax

(

µ′ − 1

λmax

)

= λmaxµ
′ − 1 ,

since µ′ > 1
λmax

. So solving |1−λminµ
′| = |1−λmaxµ

′| is equivalent to solving

1− λminµ
′ = λmaxµ

′ − 1 ,

30

or

µ′ =
2

λmin + λmax
.

With this optimal value of µ′ the convergence is determined by

α = 1− µ′
optλmin = 1− 2λmin

λmax + λmin
=

λmin

λmax
− 1

λmin

λmax
+ 1

,

as claimed in the book.

31

Chapter 7 (The least mean-square (LMS) al-

gorithm)

Notes From the Text

Using the LMS algorithm for linear prediction

In this subsection we will duplicate the linear prediction example from the
book. We assume we have a zero-mean white noise driving process v(n) and
that the observed process x(n) is given by an AR(2) model of the form

x(n) = 0.601x(n− 1)− 0.7225x(n− 2) + v(n) ,

We desire to predict the next value of x at the timestep n using the previous
two values at n−1 and n−2. That is we desire to compute an estimate x̂(n)
of x(n) from

x̂(n) =
1
∑

i=0

wi(n)x(n− 1− i) .

To do this we will use the LMS algorithm. The computations are performed
in the MATLAB file linear prediction w lms.m. We perform lms learning
with two different learning rates µ = 0.02 and µ = 0.005. We expect that on
“easy” problems all things begin equal lms algorithm with a larger learning
rate µ will produce faster convergence and a give optimal results sooner. The
results from this experiment are shown in Figure 5. There we plot the original
signal x(n) and its prediction x̂(n) at the n-th step. We can see that after a
certain amount of time we are predicting x(n) quite well. Next we plot the
error between the true observed value of x(n) and our estimate x̂. This error
is centered on zero and has the same variance as the unknown innovation term
v(n) in our AR(2) model. Finally, we plot the estimates of the weights found
during the lms learning procedure. We see nice convergence to the truth
values (shown as horizontal green lines). Note that we are assuming that
we are estimating M = 2 coefficients from the signal x(n). An attempt to
estimate more coefficients M > 2 will work but the coefficients require more
iterations to estimate their values sufficiently. For example when M = 3 we
begin to estimate the third weight w3 as zero after sufficient time.

32

550 600 650 700 750 800 850 900 950 1000
−6

−4

−2

0

2

4

n

p
re

d
ic

ti
o

n
s

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

4

5

n

p
re

d
ic

ti
o

n
 e

rr
o

r

100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

1.5

n

w
e

ig
h

t
c
o

n
v
e

rg
e

n
c
e

convergence of the weights

Figure 5: Using the LMS algorithm for linear prediction. Left: The signal
x(n) from which we use the previous two time-steps x(n − 1) and x(n −
2) in predicting the next value x(n). Center: The error x(n) − x̂(n) at
each timestep. Right: The convergence of the AR(2) weights [w1, w2]

T as a
function of timestep n.

Using the LMS algorithm for modeling unknown systems

In this subsection we will use the LMS algorithm to estimate the unknown
coefficients of a MA(3) model given the measured signal input signal d(n).
That is we assume (this fact is unknown to the lms algorithm) that our ob-
served signal d(n) is given by a MA(3) model based on x(n) with coefficients

d(n) = x(n)− 2x(n− 1) + 4x(n− 2) .

Here we will take x(n) to be the AR(2) signal model used in the previous
example. We then assume a model of our observed signal d(n) given by a
MA(M) or

d̂(n) =
M
∑

i=0

wix(n− i) .

We will estimate the parameters wi using the lms algorithm and the book
MATLAB function aalms1.m. We do this in the MATLAB script called
modeling w lms.m. The results from these experiments are shown in Fig-
ure 6. If we specify to a MA(3) model of x(n) we see that our LMS algorithm
is able to learn quite nicely the three weights wi.

33

0 100 200 300 400 500 600 700 800 900 1000

−15

−10

−5

0

5

10

15

n

p
re

d
ic

ti
o

n
s

0 100 200 300 400 500 600 700 800 900 1000

−6

−4

−2

0

2

4

6

n

p
re

d
ic

ti
o

n
 e

rr
o

r

error under first learning rate
error under second learning rate

0 100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

n

w
e

ig
h

t
c
o

n
v
e

rg
e

n
c
e

convergence of the weights

Figure 6: Using the LMS algorithm for modeling. Left: The output signal
d(n) and our estimated signal d̂(n), which we assume is modeled as a MA(M)
processed based on the input signal x(n). Center: The error x(n) − x̂(n)
in our prediction at each timestep. Notice that as the number of time-steps
increases the approximation gets better. Right: The convergence of the
MA(3) weights [w0, w1, w2]

T as a function of timestep n.

Using the LMS algorithm for noise cancellation

In this example we will use the LMS algorithm for noise cancellation. This
means that we assume that we are given a signal s(n) that has been modified
by additive noise s(n)+v(n). We then desire to use the previous sample s(n−
1)+v(n−1) to predict the current sample s(n)+v(n). Here our filter input is
x(n) = s(n−1)+v(n−1), while our desired signal is d(n) = s(n)+v(n). This
example is worked in the MATLAB script noise cancellation w lms.m.

Using the LMS algorithm for inverse system identification

For this subsection we will try to apply the LMS algorithm for numerically
computing the inverse of an unknown system. To do this we will assume that
we have a sinusoidal input signal s(n) given by

s(n) = sin(0.2πn) .

To this signal we add some random Gaussian noise v(n), that we are not
able to predict. This modified signal m(n) ≡ s(n) + v(n) is then passed
into an unknown filter. For this example we will assume that this filter is
MA(4) system the coefficients of which are unknown to our inverse system

34

0 500 1000 1500 2000 2500 3000 3500 4000
−5

−4

−3

−2

−1

0

1

2

3

4

5

n index

o
b

s
e

rv
e

d
 v

a
lu

e
s

s(n)+v(n) with y(n)

signal plus noise
LMS prediction #1
LMS prediction #2

0 500 1000 1500 2000 2500 3000 3500

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

n

p
re

d
ic

ti
o

n
 e

rr
o

r

error under M=2
error under M=6

0 500 1000 1500 2000 2500 3000 3500 4000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

w
e

ig
h

t
c
o

n
v
e

rg
e

n
c
e

convergence of the weights

Figure 7: Using the LMS algorithm for inverse system identification. Left:
A plot of the input signal x(n) and two reconstructions with different number
of coefficients M . The first has M = 2 while the second has M = 6. Center:
The instantaneous error (m(n)−y(n))2 for each model. Note that the second
model withM = 6 ends with a smaller error overall. Right: The convergence
of the filter coefficients wi for each of the models.

algorithm. For this example we assume that we measure the output x(n) of
a MA(4) system given by

x(n) = 1.0m(n) + 0.2m(n− 1)− 0.5m(n− 2) + 0.75m(n− 3) .

Given this modified signal x(n), and the input signal, m(n) to the unknown
filter we want to construct a FIR filter that will estimate the inverse of the
input filter. That is we are looking for a set of filter coefficients wi such that
we have an estimate m̂(n) of m(n)

y(n) = m̂(n) =

M
∑

i=0

wix(n− i) .

Now in a physical realization of this filter because it will take four time-
steps before the first output of our system x(n) appears and an additional
number M of steps before the output from our inverse system appears we
would need to compare the output of this combined filter system with a
value of m(n) that has already passed. The practical implementation of this
is that we would need to delay the signal m(n) by some amount before we can
calculate an error term. Strictly in a software digital environment this is not
needed since we desire to compare m(n) with the output the combined filter.

35

This example is implemented in the MATLAB script inv system w lms.m.
The results obtained when running this code can be seen in Figure 7. We
plot the signal that is observed after obtained noise m(n) along with the
LMS learned reconstructed signal for two filter designs y1(n) and y2(n). The
two filter designs are different in that they have a different number of filter
coefficients wi and in the learning rate used for each implementation. The
first experiment has M = 2 and µ = 0.01, while the second has more filter
coefficients at M = 6 and a smaller learning rate µ = 0.001 The consequence
of this is that the filter with M = 6 weights should do a better job at
approximating the inverse of our system. This can be seen when we consider
a plot of the error in the prediction y2(n) compared with that in y1(n). The
error in y2(n) is uniformly smaller with a standard deviation of 0.637990
compared to the same thing under the M = 2 filter coefficient where we
obtain an error standard deviation of 0.831897. In addition, the smaller
learning rate in the second filter means that (all things begin equal) it will
take more time for the filter to obtain optimal performance. This can be seen
in the signal plot where the first filter produces better approximations earlier
and in the error plots where the second filter has a larger error initially. We
finally plot the convergence of the filter coefficients where we see that the
M = 6 filter’s initial two weights w0 and w1 converge to the same thing as
the M = 2’s filter’s weight.

The performance analysis of the LMS algorithm

In this subsection we expand and discuss the algebra and presentation on the
LMS algorithm presented in the text. This section of the text was developed
to further expand my understanding of these manipulations. We begin with
equation 7.4.5 given by

ξ(n+ 1) = ξ(n) + 2µx(n)(eo(n)− x(n)T ξ(n)) . (19)

Where ξ(n) = w(n)−wo are the weight error vectors. We multiply this equa-
tion on the left by Q, the matrix which orthogonalizes the autocorrelation
matrix for x(n), that is Rx = QΛQT . If we multiply Equation 19 on the left
by QT and recalling the definitions ξ′ = QT ξ and x′ = QTx and that Q is an
orthogonal matrix we find

ξ′(n+ 1) = ξ′(n) + 2µx′(n)(eo(n)− (QTx)T (QT ξ))

= ξ′(n) + 2µx′(n)(eo(n)− x′(n)
T
ξ′

T
)

36

= 2µx′(n)eo(n) + ξ′(n)− 2µx′(n)(x′T ξ′)

= (I − 2µx′(n)x′(n)T)ξ′(n) + 2µeo(n)x′(n) , (20)

which is equation 7.4.24 in the book. The transpose of Equation 20 is given
by

ξ′(n+ 1)T = ξ′(n)T (I − 2µx′(n)x′(n)T) + 2µeo(n)x′(n)T .

Now for notational simplicity in the remaining parts of this derivation of an
expression for K ′(n) we will drop the prime on the vectors x and ξ. This
prime notation was used to denote the fact that x and ξ are viewed in the
space rotated by the eigenvalues of Rx i.e. x′ = QTx with Rx = QΛQT .
We will also drop the n notation which indicates that we have processed
up to and including the nth sample, both notations would be present on
all symbols and just seem to clutter the equations. Multiplying 20 by its
transpose (computed above) gives

ξ(n+ 1)ξ(n+ 1)T = (I − 2µxxT)ξξT (I − 2µxxT)

+ 2µeo(I − 2µxxT)ξxT

+ 2µeoxξT (I − 2µxxT)

+ 4µ2(eo)2xxT

= ξξT (21)

− 2µξξTxxT (22)

− 2µxxT ξξT (23)

+ 4µ2xxT ξξTxxT (24)

+ 2µeoξxT − 4µ2eoxxT ξxT (25)

+ 2µeoxξT − 4µ2eoxξTxxT (26)

+ 4µ2(eo)2xxT . (27)

We won’t use this fact but the above could be simplified by recalling that
that inner products are symmetric that is xξT = ξxT . If we take the expec-
tation E{·} of this expression we obtain the desired expression the the books
equation 7.4.25. To explicitly evaluate the above expectation we will use the
independence assumption, which basically states that the data, x(n), going
into our filter is independent of the filter coefficient estimates, w(n), at least
with respect to taking expectations. Since the filter coefficients and data are
represented in the transformed space as ξ′(n) and x′(n), this means that the

37

expectation of the term 24 (equation 7.4.28 in the book) can be computed
as

E{xxT ξξTxxT } = E{xxTE{ξξT}xxT } ,
where we have used the independence assumption in passing an expecta-
tion inside the outer expectation. Since E{ξ′(n)ξ′T (n)} = K ′(n) the above
becomes

E{x′(n)x′(n)TK ′(n)x′(n)x′(n)T} .
To further simplify this consider the quadratic part in the middle of this
expression. That is write x′(n)TK ′(n)x′(n) in terms of the components of
x′(n) and K ′(n). In standard matrix component notation we have

x′(n)TK ′(n)x′(n) =

M−1
∑

i=0

M−1
∑

j=0

x′
i(n)x

′
j(n)K

′
ij(n) .

Multiplying this inner product scalar by the vector x′(n) on the left, by
x′(n)T on the right, and taking the lm-th component of the resulting matrix
we obtain

(x′(n)x′(n)TK ′(n)x′(n)x′(n)T)lm = x′
l(n)x

′
m(n)

M−1
∑

i=0

M−1
∑

j=0

x′
i(n)x

′
j(n)K

′
ij(n) .

The expectation of the lm-th element is then given by

E{(·)lm} =

M−1
∑

i=0

M−1
∑

j=0

E{x′
l(n)x

′
m(n)x

′
i(n)x

′
j(n)K

′
ij(n)}

=

M−1
∑

i=0

M−1
∑

j=0

K ′
ij(n)E{x′

l(n)x
′
m(n)x

′
i(n)x

′
j(n)} .

This last expression involves evaluating the expectation of the product of
four Gaussian random variables. Following the solution in the text we recall
an identity that expands such products in terms of pairwise products. We
note that this is an advantage of using Gaussian random variables in that
the higher order moments can be determined explicitly from the second (and
possibly lower) moments. The needed identity is that the expectation of the
fourth product of the xi’s is given by

E{x1x2x3x4} = E{x1x2}E{x3x4}+ E{x1x3}E{x2x4}+ E{x1x4}E{x2x3} .
(28)

38

In the specific case considered here these pairwise products are given by

E{x′
ix

′
j} = (E{x′x′T})ij = (E{QTxxTQ})ij = (QTRxQ)ij = (Λ)ij = λiδ(i−j) .

Thus using Equation 28 the expectation of this lm-th component is given by

E{(·)lm} =
M−1
∑

i=0

M−1
∑

j=0

K ′
ij(n)λlλiδ(l −m)δ(i− j)

+
M−1
∑

i=0

M−1
∑

j=0

K ′
ij(n)λlλmδ(l − i)δ(m− j)

+

M−1
∑

i=0

M−1
∑

j=0

K ′
ij(n)λlλmδ(l − j)δ(m− i)

= λlδ(l −m)

M−1
∑

i=0

λiK
′
ii(n) + λlλmK

′
lm(n) + λlλmK

′
ml(n) .

As K ′(n) is symmetric K ′
lm(n) = K ′

ml(n) and the last two terms are equal
and we obtain

E{(·)lm} = λlδ(l −m)
M−1
∑

i=0

λiK
′
ii(n) + 2λlλmK

′
lm(n) .

Now the diagonal sum over the elements of K ′(n) is the trace as

M−1
∑

i=0

λiK
′
ii(n) = tr(ΛK ′(n)) = tr(K ′(n)Λ) .

Here ΛK ′(n) multiplies the ith row ofK ′(n) by λi where asK
′(n)Λ multiplies

the i-th column of K ′(n) by λi, so that the diagonal terms of each product
are identical. In matrix form then E{(·)lm} is given by

tr(ΛK ′(n))Λ + 2ΛK ′(n)Λ ,

or the expression 7.4.28.
From the direct expectation of the component equations: 22, 23, 24, 25, 26, 27,

and what we calculated above for E{(·)lm}, the recursive equation for the

39

matrix K ′(n + 1) then becomes

K ′(n + 1) = K ′(n)− 2µ(ΛK ′(n) +K ′(n)Λ)

+ 4µ2(2ΛK ′(n)Λ + tr{ΛK ′(n)}Λ)
+ 4µ2JminΛ ,

which is equation 7.4.34.
To study convergence of the LMS algorithm as K ′(n) is a correlation

matrix we have, k′
ij
2 ≤ k′

iik
′
jj, so the off-diagonal terms are bounded by the

diagonal terms and it is sufficient to consider the iith element of K ′(n).
From the above recursive expression for the entire matrix K ′(n) the ii-th
component of 7.4.34 is given by

k′
ii(n + 1) = k′

ii(n)− 4µλik
′
ii(n) + 8µ2λ2

ik
′
ii(n)

+ 4µ2λi

M−1
∑

j=0

λjk
′
jj(n) + 4µ2Jminλi

= (1− 4µλi + 8µ2λ2
i)k

′
ii(n)

+ 4µ2λi

M−1
∑

j=0

λjk
′
jj(n) + 4µ2Jminλi , (29)

which is equation 7.4.35. To derive a matrix recursive relationship for these
components k′

ii we place their values for i = 0, 1, · · · ,M − 1 in a vector

(denoted as k′(n) with no subscripts) and from the recursive scalar expression
just considered we obtain a vector update equation as











k′
00(n+ 1)

k′
11(n+ 1)

...
k′
M−1,M−1(n + 1)











= F











k′
00(n)

k′
11(n)
...

k′
M−1,M−1(n)











+ 4µ2Jmin











λ0

λ1
...

λM−1











+ 4µ2











λ0

λ1
...

λM−1











[

λ0 λ1 · · · λM−1

]











k′
00(n)

k′
11(n)
...

k′
M−1,M−1(n)











.

40

Where we have defined the matrix F as

F =











1− 4µλ0 + 8µ2λ2
0 0 · · · 0

0 1− 4µλ1 + 8µ2λ2
1 0

...
. . .

. . . 0
0 0 1− 4µλM−1 + 8µ2λ2

M−1











,

or a diagonal matrix with diagonal elements given by 1 − 4µλi + 8µ2λ2
i .

Defining these elements as fi we find out matrix update equations becomes

k′(n+ 1) =
(

diag(f0, f1, · · · , fM−1) + 4µλλT
)

k′(n) + 4µ2Jminλ , (30)

which is equation 7.4.36 in the book. This completes our analysis of the
convergence of the weights in the LMS algorithm. We now consider how the
error functional J behaves as n → ∞.

We begin by defining Jex as the difference between the current iterate of
our error functional J(n) and the best possible value for this. Thus we have

Jex(∞) ≡ J(∞)− Jmin = tr(K(∞)Rx) ,

where we have used equation 7.4.17 to derive an expression for the excess
mean square error Jex(∞) in terms of K(n) and the autocovariance matrix
Rx. As an aside it may help to discuss the motivation for these algorithmic
steps. We recognize that the LMS algorithm is an approximation to the
optimal Wiener filter and as an approximation will not be able to produce a
filter with a minimum mean square error Jmin. The filter the LMS algorithm
will produce should have an error that larger than the smallest possible. We
desire to study how this “excess error” behaves as we use the LMS algorithm.
From the eigenvalue-eigenvector decomposition of Rx = QΛQT and the fact
that tr(AB) = tr(BA) we can show that

tr(K(∞)Rx) = tr(K ′(∞)Λ) .

Since we have derived a recursive expression for the vector k′(n) in terms of
this vector the above excess mean square error is given by

J(∞)− Jmin =

M−1
∑

i=0

λkk
′
ii(∞) = λTk′(∞) .

41

To derive what the expression λTk′(∞) is. Assuming convergence of the
vector k′(n) to some limiting vector (say k′(∞) as n → ∞) then Equation 30
for this steady-state vector requires

k′(∞) = Fk′(∞) + 4µ2Jminλ ,

or solving for k′(∞)

k′(∞) = 4µ2Jmin(I − F)−1λ , (31)

which is the books equation 7.4.44. Thus taking the λT of this expression we
have we have an expression for the excess MSE given by

Jex(∞) = 4µ2Jminλ
T (I − F)−1λ . (32)

Since Jmin depends on the problem considered (in regard to such things as
the signal-to-noise of the problem) we define a missadjustment factor M that
depends on the other properties of LMS algorithm

M ≡ Jex(∞)

Jmin
= 4µ2λT (I − F)−1λ . (33)

Matrix expressions like (I−F)−1 can often be simplified using the Woodbury
matrix identity

(A+ CBCT)−1 = A−1 − A−1C(B−1 + CTA−1C)−1CTA−1 . (34)

In this case our matrix F is given by

F = diag(f0, f1, · · · , fM−1) + 4µ2λλT .

so that I − F becomes

I − F = I − diag(f0, f1, · · · , fM−1)− 4µ2λλT = F1 + aλλT .

Where in this last expression we have defined the matrix F1 and the constant
a = −4µ2. If we define a vector v as v =

√
aλ we see that the Woodbury

identity applied to the misadjustment factor M and in terms of F1 and v

becomes

M = −aλT (F1 + vvT)−1λ

= −aλT
[

F1
−1 − F1

−1v(I + vTF1
−1v)−1vTF1

−1
]

λ .

42

Now the inverse term inside the bracketed expression above is actually a
scalar expression

(I + vTF1
−1v)−1 =

1

1 + vTF1
−1v

=
1

1 + aλF1
−1λT

.

Thus the misadjustment factor becomes since vvT = aλλT that

M = −aλT

(

F1
−1 − F1

−1vvTF1
−1

1 + aλTF1
−1λ

)

λ = −aλT

(

F1
−1 − aF1

−1λλTF1
−1

1 + aλTF1
−1λ

)

λ .

Combining the two terms in the parenthesis into one we find

F1
−1 − aF1

−1λλTF1
−1

1 + aλTF1
−1λ

=
F1

−1 + a(λTF1
−1λ)F1

−1 − aF1
−1λλTF1

−1

1 + aλTF1
−1λ

.

If we take the product of this with λT on the left and λ on the right we see
that the numerator simplifies to

λTF1
−1λ+ a(λTF1

−1λ)(λTF1
−1λ)− aλTF1

−1λ λTF1
−1λ = λTF1

−1λ .

This term in the numerator, λTF1
−1λ, since F1 is a diagonal matrix can be

computed as

M−1
∑

i=0

λ2
i

1− fi
=

M−1
∑

i=0

λ2
i

4µλi − 8µ2λ2
i

=
1

4µ

M−1
∑

i=0

λi

1− 2µλi

.

While the denominator is given by

1 + aλTF1
−1λ = 1− µ

M−1
∑

i=0

λi

1− 2µλi

Thus the entire fraction for M is given by

M =
−aλF1

−1λ

1 + aλTF1
−1λ

=
µ
∑M−1

i=0
λi

1−2µλi

1− µ
∑M−1

i=0
λi

1−2µλi

, (35)

as claimed in the book.

43

Problem Solutions

Problem 7.2.1 (the LMS algorithm for complex valued signals)

If we allow our process, x(n), to be complex our inner product becomes
the Hermitian inner product and we would compute for the autocorrelation
matrix

Rx = E{x(n)xH(n)} ,
while for the cross-correlation pdx in the complex case we would use

pdx = d∗(n)x(n) ,

and finally for the filter output y(n) we would take

y(n) =

M−1
∑

k=0

w∗
k(n)x(n− k) ,

Thus setting up the expression for the error functional J(w(n)) we find

J(w(n)) = E{|e(n)|2} = E{e∗(n)e(n)}
= E{(d(n)− w∗(n)x(n))∗(d(n)− w∗(n)x(n))}

= E{
(

d(n)−
M−1
∑

k=0

w∗
k(n)x(n− k)

)∗(

d(n)−
M−1
∑

k=0

w∗
k(n)x

∗(n− k)

)

}

= E{
(

d∗(n)−
M−1
∑

k=0

wk(n)x
∗(n− k)

)(

d(n)−
M−1
∑

k=0

w∗
k(n)x

∗(n− k)

)

}

= E{d∗(n)d(n)}

−
M−1
∑

k=0

E{wk(n)x
∗(n− k)d(n)} −

M−1
∑

k=0

E{d∗(n)w∗
k(n)x(n− k)}

+

M−1
∑

k=0

M−1
∑

k′=0

E{wk(n)wk′
∗(n)x(n− k′)x∗(n− k)} .

With this we see that taking the derivative of this expression with respect to
the filter coefficient wk gives

∂J(w(n))

∂wk

= −E{x∗(n− k)d(n)} − E{d∗(n)x(n− k)}∗

44

+
M−1
∑

k′=0

E{w∗
k′(n)x(n− k′)x∗(n− k)}+

M−1
∑

k=0

E{wk(n)x(n− k′)x∗(n− k)}∗

= −2E{x∗(n− k)d(n)}

+
M−1
∑

k′=0

E{w∗
k′(n)x(n− k′)x∗(n− k)}+

M−1
∑

k=0

E{w∗
k(n)x(n− k)x∗(n− k′)}

= −2E{x∗(n− k)d(n)}+ 2E

{

x∗(n− k)
M−1
∑

k′=0

w∗
k′(n)x(n− k′)

}

= −2E

{

x∗(n− k)

(

d(n)−
M−1
∑

k′=0

w∗
k′(n)x(n− k′)

)}

= −2E{x∗(n− k)e(n)} .

From this derivative the filter update equations, using the gradient decent
algorithm are given by

wk(n+ 1) = wk(n)− µ
∂J

∂wk

= wk(n) + 2µE{x∗(n− k)e(n)} .

If we use a point estimate to approximate the expectation in the above scheme
we then take E{x∗(n−k)e(n)} ≈ x∗(n−k)e(n) and we arrive at the following
filter update equations

wk(n+ 1) = wk(n) + 2µx∗(n− k)e(n) .

In vector form for the entire set of weights w this becomes

w(n+ 1) = w(n) + 2µe(n)x∗(n) .

Here the notation x∗(n) means that we take (conjugated) the lastM elements
of the signal x starting at position n i.e. the vector

(x∗(n), x∗(n− 1), x∗(n− 2), · · · , x∗(n−M + 1))T .

Problem 7.2.2 (the discrete-time representation of an AR system)

We are told that our AR system has poles at 0.85e±j π

4 and is driven by an
input v(n) given by discrete white noise. Then the z-transform of the output

45

of this system is given by the product of the system transfer function H(z)
and the z-transform of the input to the system. Since our AR system has
poles at the given two points it has a system transfer function, H(z) given
by

H(z) =
1

(

1− 0.85ej
π

4 z−1
) (

1− 0.85e−j π

4 z−1
)

=
1

1− 0.85
√
2z−1 + 0.852z−2

=
1

1− 1.2021z−1 + 0.7225z−2
.

So that the z-transform of our system output X(z), assuming a z-transform
of the system input given by σ2

vV (z) is given by X(z) = H(z)σ2
vV (z) or the

input in terms of the output as

σ2
vV (z) = H(z)−1X(x) = X(z)− 1.2021z−1X(z) + 0.7225z−2X(z) .

Taking the inverse z-transform of this expression and solving for x(n) gives

x(n) = 1.2021x(n− 1)− 0.7225x(n− 2) + σ2
vv(n) ,

for the AR(2) process the discrete output signal x(n) satisfies.

Problem 7.4.1-7.4.5 (performance analysis of the LMS algorithm)

See the derivations in the section on the performance analysis of the LMS
algorithm which are presented in the notes above.

Problem 7.4.6 (the expressions for L and M)

Equation 7.4.54 in the book is given by

L =

M−1
∑

i=0

µλi

1− 2µλi

.

Taking the derivative of L with respect to µ we obtain

∂L

∂µ
=

M−1
∑

i=0

(

λi

1− 2µλi

− µλi

(1− 2µλi)2
(−2λi)

)

=

M−1
∑

i=0

λi

(1− 2µλi)2
> 0 .

46

so L is an increasing function of µ. Now equation 7.4.55 is M = L
1−L

so

∂M
∂L

=
1

1− L
− L(−1)

(1− L)2
=

1

(1− L)2
> 0 ,

so M is an increasing function of L.

Problem 7.4.8 (the effect of the initial guess at the weights)

To study the transient behavior means to study how J(n) trends to Jmin as
n → ∞. Recalling the decomposition of J in terms of the eigenvalues of Rx

we have

J(n) = Jmin +
M−1
∑

k=0

λk(1− µ′λk)
2nξ′

2
k(0) ,

with ξ′(n) = QT ξ(n) = QT (w(n) − wo). With these expression we see that
the initial scaled coordinate ξ is given by ξ′(0) = QT (w(0)−wo) so if we take
an initial guess at our filter coefficients of zero i.e. w(0) = 0 then we have

ξ′(0) = −QTwo ,

and the equation for J(n) then becomes

J(n) = Jmin +

M−1
∑

k=0

λk(1− µ′λk)
2n(QTwo)k

2

= Jmin +
M−1
∑

k=0

λk(1− µ′λk)
2nw′o

k
2

with w′o defined as w′o = QTwo. Now how fast J(n) will converge to Jmin

will depend on how large the products λk(w
′o)2k are. We know that for con-

vergence we must have
|1− µ′λk| < 1 ,

so if we “tilt” the components of w′o to be close to zero for small eigenvalues
the convergence will then depend primarily on the large eigenvalues and
should be fast since the corresponding time constants are small. If on the
other hand the values of w′o happen to be such that they are near zero for the
large eigenvalues, the convergence will be dominated by the small eigenvalues
and result in slow convergence.

47

Problem 7.4.9 (the LMS algorithm using E{e2(n)} ≈ e2(n))

For this problem we consider the cost functional J(n) defined as

J(n) = e2(n) = (d(n)− wT (n)x(n))2 .

Then the gradient decent method applied to J(n) results in updating w(n)
with

w(n+ 1) = w(n)− µ
∂J(w)

∂w
,

We find for the first derivative of J(n) the following

∂J

∂w
= 2(d(n)− wT (n)x(n))(−x(n))

= −2e(n)x(n) ,

so the gradient decent algorithm for w(n) then becomes

w(n+ 1) = w(n) + 2µe(n)x(n) .

Problem 7.4.10 (a linear system driven by a Bernoulli sequence)

Part (a): For the given specification of the filter coefficient weights h(k) we
have a discrete time representation of the system output given by

x(n) =

3
∑

k=1

h(k)s(n− k) + v(n) .

Using this explicit representation of x(n) in terms of h(n) and s(n) we can
compute the autocorrelation for x(n) using its definition. We find

rx(m) = E{x(n)x(n−m)}

= E{
(

3
∑

k=1

h(k)s(n− k) + v(n)

)(

3
∑

k′=1

h(k′)s(n−m− k′) + v(n−m)

)

}

=
3
∑

k=1

3
∑

k′=1

h(k)h(k′)E{s(n− k)s(n−m− k′)}+ E{v(n)v(n−m)} .

Where we have used the fact that s(n) and v(n) are uncorrelated and have
zero mean. The expectation of s(n) and v(n) against themselves can be

48

computed as

E{s(n− k)s(n−m− k′)} = σ2
sδ(−k + k′ +m)

E{v(n)v(n−m)} = σ2
vδ(m) .

Using these two results the above expression for rx(m) becomes

rx(m) = σ2
s

3
∑

k=1

3
∑

k′=1

h(k)h(k′)δ(−k + k′ +m) + σ2
vδ(m)

= σ2
s

3
∑

k=1

h(k)h(k −m) + σ2
vδ(m)

= σ2
srh(m) + σ2

vδ(m) .

Now computing each term rx(m) assuming a length five (M = 5 filter) re-
quires us to evaluate rx(m) for m = 1, 2, 3, 4, 5. We find

rx(0) = 1rh(0) + σ2
v = 1

3
∑

k=1

h(k)2 + 0.01

= 0.222 + 12 + 0.222 + 0.01 = 1.1068

rx(1) = 1
3
∑

k=1

h(k)h(k − 1) = h(1)h(0) + h(2)h(1) + h(3)h(2)

= 0 + 1(0.22) + (0.22)1 = 0.44

rx(2) =
3
∑

k=1

h(k)h(k − 2) = h(3)h(1) = 0.222 = 0.0484 ,

and rx(m) = 0 for m ≥ 3. Thus we get a matrix Rx given by

Rx =













1.1068 0.4400 0.0484 0 0
0.4400 1.1068 0.4400 0.0484 0
0.0484 0.4400 1.1068 0.4400 0.0484

0 0.0484 0.4400 1.1068 0.4400
0 0 0.0484 0.4400 1.1068













From which we find that λmax

λmin

= 4.8056 so that from stability considerations
we require

µ <
1

3tr(Rx)
= 0.0602 .

49

Chapter 8 (Variations of LMS algorithms)

Problem 8.1.1 (the step-size in the error sign algorithm)

The error sign algorithm is given by

w(n+ 1) = w(n) + 2µsign(e(n))x(n)

= w(n) +
2µ

|e(n)|sign(e(n))|e(n)|x(n)

= w(n) +
2µ

|e(n)|e(n)x(n) ,

which equals the normal LMS algorithm with a variable (dependent on n)
step size parameter µ′(n) = µ

|e(n)|
. Since |e(n)| → 0 as n → +∞ if we have

convergence we see that µ′(n) → +∞, so µ must be very small in the error
sign algorithm for convergence.

Problem 8.2.1 (a derivation of the normalized LMS algorithm)

We want to pick µ(n) in the generalized LMS recursion algorithm

w(n+ 1) = w(n) + 2µ(n)e(n)x(n) .

to minimize the a posteriori error

eps(n) = d(n)− w(n+ 1)Tx(n) .

when we put w(n+ 1) into the above we get

eps(n) = d(n)− w(n)Tx(n)− 2µ(n)e(n)xT (n)x(n)

= (1− 2µ(n)xT (n)x(n))e(n) .

Then

∂eps(n)

∂µ(n)
= 2eps(n)

∂eps(n)

∂µ(n)

= 2eps(n)(−2xT (n)x(n)) ,

or when we set this equal to zero we have the equation

(1− 2µ(n)xT (n)x(n)) = 0 or µ(n) =
1

2xT (n)x(n)
.

50

so the LMS algorithm becomes

w(n+ 1) = w(n) +
e(n)x(n)

xT (n)x(n)
,

which is equation 8.2.3 in the book.

Problem 8.4.1 (a derivation of the leaky LMS algorithm)

If we take an error functional J(n) given by

J(n) = e2(n) + γwT (n)w(n)

= (d(n)− wT (n)x(n))2 + γwT (n)w(n) ,

then recalling that the LMS algorithm is given by the gradient decent algo-
rithm applied to J(n) as

w(n+ 1) = w(n)− µ
∂J(w(n))

∂w
. (36)

Computing the w derivative we find

∂J(w(n))

∂w
= −2e(n)x(n) + γw(n) + γw(n)

= 2(−e(n)x(n) + γw(n)) .

When we put this into Equation 36 above we obtain

w(n+ 1) = w(n) + 2µ(e(n)x(n)− γw(n))

= (1− 2µγ)w(n) + 2µe(n)x(n) ,

which is equation 8.4.9 or the leaky LMS algorithm.

Problem 8.5.1 (J for the linearly constrained LMS)

We desire to derive equation 8.5.5 a representation of the error functional
Jc(n) in terms of centered coordinates ξ(n). Now in the linearly constrained
LMS algorithm we have a constraint functional Jc defined as

Jc = E{e2(n)}+ λ(cTw − a) ,

51

with the error e(n) given by e(n) = d(n)− wT (n)x(n). From the discussion
earlier and problem 5.2.1 on page 21 we know that

E{e2(n)} = Jmin + ξTRxξ .

with ξ = w(n)−wo and wo = Rx
−1pdx the optimal Wiener filtering weights.

Then to transform the additional Lagrange multiplier term in our cost func-
tional, λ(cTw − a), into the same form we write it as

λ(cT (w − wo + wo)− a) = λ(cT ξ + cTwo − a)

= λ(cT ξ + a′) ,

where we have defined a′ as a′ = cTwo − a and we then obtain the following
centered representation of the error criterion

Jc = Jmin + ξTRxξ + λ(cT ξ − a′) ,

the same expression as requested.

Problem 8.7.1 (the DFT of the filter coefficients w(n))

We have the discrete Fourier transform of the filter output given by Yi(k) =
Wi,kXi(k) for k = 0, 1, 2, · · · ,M − 1 and we measure how well our filtered
result matches the desired signal as the difference between the Fourier trans-
form of the desired signal Di(k) and the filtered output Yi(k). That is

Ei(k) = Di(k)− Yi(k)

= Di(k)−Wi,kXi(k) .

Then with the LMS iteration scheme for the filter coefficients given by equa-
tion 8.7.7 we find the following recursion equation for Wi+1,k

Wi+1,k = Wi,k + 2µXi(k)
∗Ei(k)

= Wi,k + 2µXi(k)
∗(Di(k)−Wi,kXi(k))

= Wi,k + 2µXi(k)
∗Di(k)− 2µWi,k|Xi(k)|2

= (1− 2µ|Xi(k)|2)Wi,k + 2µDi(k)Xi(k)
∗ ,

which is equation 8.7.10.

52

Problem 8.7.2 (the steady-state value for Wi,k)

We desire to verify the recursive update equation 8.7.12 for the expected
Fourier transform filter coefficients. The equation that these filter coefficients
Wi,k satisfy is given by (repeated here for convenience)

E{Wi+1,k} = (1− 2µE{|Xi(k)|2})E{Wi,k}+ 2µE{Di(k)X
∗
i (k)} . (37)

We will take the z-transform of the above equation with respect to the index
i, under the assumption that that the two expectations E{|Xi(k)|2} and
E{Di(k)X

∗
i (k)} are independent of i. Recalling the z-transform identities

Z{1} =
z

z − 1
Z{x(n+ 1)} = z (Z{x(n)} − x(0)) ,

we can take the z-transform of Equation 37 to get

z(Wk(z)−W0,k) = (1− 2µE{|Xi(k)|2})Wk(z) +
2µzE{Di(k)X

∗
i (k)}

z − 1
.

Solving this for Wk(z) we find

Wk(z) =
2µzE{Di(k)X

∗
i (k)}

(z − 1)(z − 1 + 2µE{|Xi(k)|2})
.

Using this expression we can call on the final value theorem requires to find
E{W∞

k } where we see that

E{W∞
k } = lim

z→+1
((z − 1)Wk(z)) = lim

z→+1

2µzE{Di(k)X
∗
i (k)}

(z − 1 + 2µE{|Xi(k)|2})

=
E{Di(k)X

∗
i (k)}

E{|Xi(k)|2}
,

the desired expression.

Problem 8.7.3 (the solution for Ei(k))

Recalling the steady state Fourier error given by Ei(k) = E{Wi,k}−E{W∞
k }.

When we subtract E{W∞
k }, which is equivalent to

E{Di(k)X∗

i
(k)}

E{|Xi(k)|2}
, from equa-

tion 8.7.11 the recursive expression for the error term we find

Ei+1(k) = (1− 2µE{|Xi(k)|2})E{Wi,k}

53

+ 2µE{Di(k)X
∗
i (k)} −

E{Di(k)X
∗
i (k)}

E{|Xi(k)|2}
= (1− 2µE{|Xi(k)|2})E{Wi,k}

− (1− 2µE{|Xi(k)|2})
E{Di(k)X

∗
i (k)}

E{|Xi(k)|2}
= (1− 2µE{|Xi(k)|2})(E{Wi,k} −E{W∞

k })
= (1− 2µE{|Xi(k)|2})Ei(k) ,

which is equation 8.7.15.

54

Chapter 9 (Least squares and recursive

least-squares signal processing)

Additional Notes

For the weighted cost function JG given by

JG = eTGe = (y −Xw)TG(y −X) ,

we have on expanding this quadratic that

JG = yTGy − yTGXw − wTXTGy + wTXTGXw .

Then the derivative of this with respect to w is given by

∂JW

∂w
= −(yTGX)T −XTGy + (XTGX + (XTGX)T)w

= −2XTGy + 2XTGXw .

Setting this expression equal to zero and solving for w we find

w = (XTGX)−1XTGy . (38)

which is equation 9.2.33.

Exercise Solutions

Problem 9.2.1 (a derivation of the least-squares solution)

From equation 9.2.15 in the book we have

J(w) = (d−Xw)T (d−Xw)

= dTd− 2pTw +wTRw .

Now we have the following identities of matrix derivatives so some common
scalar forms

∂(pTw)

∂w
= p

∂(wTRw)

∂w
= (R+RT)w .

55

Thus
∇J(w∗) = −2p+ 2Rw∗ = 0 or w∗ = R−1p, ,

With this expression the minimum sum of square errors is given by

Jmin = J(w∗) = dTd− 2pTR−1p+ pTR−1RR−1p

= dTd− pTR−1p .

56

