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Chapter 1 (Constructing Curves and Surfaces Through

Specified Points)

Problem Solutions

Problem 1.1 (lines in the plane)

Part (a): Since our line in the plane can be written as

c1x+ c2y + c3 = 0 , (1)

for the given two points we have
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= 0 .

Cofactor expanding this determinant about the first row gives
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∣

∣
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Continuing the evaluation of the determinants above we finally find

−3x+ y + 4 = 0 .

Part (b): For the given points we need to evaluate
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∣

∣

x y 1
0 1 1
1 −1 1
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∣

∣

= 0 .

Expanding this expression as in the first case gives

2x+ y − 1 = 0 .

Problem 1.2 (the equation for circles in the plane)

The equation for a circle is given by

c1(x
2 + y2) + c2x+ c3y + c4 = 0 .

Part (a): For the given three points we need to evaluate
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x2 + y2 x y 1
4 + 36 2 6 1

4 2 0 1
25 + 9 5 3 1
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∣
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= 0 .



Part (b): For the given three points we need to evaluate
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x2 + y2 x y 1
8 2 −2 1
34 3 5 1
56 −4 6 1
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∣

∣

∣

∣

= 0 .

Problem 1.3 (the equation for conic sections)

A conic section is given by the equation

c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6 = 0 .

For any of the non-zero values of ci we can divide by this value to derive an equation involving
only five unknown coefficients. Given five points in the plane we can thus determine the
arbitrary conic section that goes through them. For the given points in this problem this
conic section is given by expanding
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x2 xy y2 x y 1
0 0 0 0 0 1
0 0 1 0 −1 1
4 0 0 2 0 1
4 −10 25 2 −5 1
16 −4 1 4 −1 1
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∣
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∣
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Problem 1.4 (planes in three space)

The equation for a plane in three-space is given by

c1x+ c2y + c3z + c4 = 0 .

Part (a): For the three points given the equation of the plane must satisfy
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x y z 1
1 1 −3 1
1 −1 1 1
0 −1 2 1
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∣
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∣

∣
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∣

∣

= 0 .

Part (b): For the given three points the equation of the plane must satisfy
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x y z 1
2 3 1 1
2 −1 −1 1
1 2 1 1
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∣

∣
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Problem 1.6 (deriving the determinant expression for a conic section)

To show the given determinant expression holds for the points on a conic section recall that
the general equation for a conic section in the plane is given by

c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6 = 0 . (2)

Since we can divide this expression by any non-zero coefficient ci to produce an equation
with only five unknowns, to completely specify these five unknowns requires us to specify
five points that are in the plane and on the conic say (xi, yi) for i = 1, 2, . . . , 5 . Evaluating
Equation 2 at these five points gives the five equations

c1x
2
i + c2xiyi + c3y

2
i + c4xi + c5yi + c6 = 0 ,

for i = 1, 2, . . . , 5. Listing these five equations together with Equation 2 as one system gives
an overdetermined linear system for the six coefficients ci. Thus we have a homogeneous
system of six unknowns with six equations. Since all of the ci are not equal to zero this
system will only have the trivial solution unless it is nonsingular. Thus the determinant of
the system must be zero. This is the books equation 1.10.

Problem 1.7 (deriving the determinant expression for a plane)

Since the expression for a plane in three space can be written as Equation 1 where not all
ci = 0. This expression, coupled with the arguments of problem 1.6 above and three points
on the plane gives equation 1.11.

Problem 1.8 (deriving the determinant expression for a sphere in three space)

An expression for a sphere in three-space can be written as

c1(x
2 + y2 + z2) + c2x+ c3y + c4z + c5 = 0 ,

with not all ci = 0. This expression, coupled with four points on the sphere and the
arguments from problem 1.6 give the books equation 1.12.

Problem 1.9 (deriving the determinant expression for a sphere in three space)

Following problem 1.6 the determinant expression required would be
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∣

y x2 x 1
y1 x2

1 x1 1
y2 x2

2 x2 1
y3 x2

3 x3 1
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∣

∣

∣

∣

∣

∣

∣

= 0 ,

assuming that (xi, yi) are three points on the parabola.



Chapter 2 (Graph Theory)

Problem Solutions

Problem 2.1 (constructing vertex matrices)

Using the definition of a vertex matrix for the given graphs we find

Part (a):

M =









0 0 0 1
1 0 1 1
1 1 0 1
0 0 0 0









.

Part (b):

M =













0 1 1 0 0
0 0 0 0 1
1 0 0 1 0
0 0 1 0 0
0 0 1 0 0













.

Part (c):

M =

















0 1 0 1 0 0
1 0 0 0 0 0
0 1 0 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 1 0 1 0

















.

Problem 2.3 (the number of r-step connections)

Part (b): Theorem 2.1 (the number of r-step connections) states that when M is the vertex

matrix of a directed graph and M
(r)
ij is the (i, j)-th element of M r then M

(r)
ij is the number of

r-step connections from vertex Pi to vertex Pj . From the given vertex matrix M we compute

M2 =









0 1 1 1
1 0 0 0
0 1 0 1
0 1 1 0

















0 1 1 1
1 0 0 0
0 1 0 1
0 1 1 0









=









1 2 1 1
0 1 1 1
1 1 1 0
1 1 0 1









,



and

M3 =









2 3 2 2
1 2 1 1
1 2 1 2
1 2 2 1









.

Thus we see that in this vertex matrix we have the following connections

• one, one-step connection from P1 to P2 given by P1 → P2.

• two, two-step connection from P1 to P2 given by

– P1 → P4 → P2.

– P1 → P3 → P2.

• three, three-step connection from P1 to P2 given by

– P1 → P2 → P1 → P2.

– P1 → P4 → P3 → P2.

– P1 → P3 → P4 → P2.

Part (c): Looking at the various matrices M , M2, and M3 above we see that we have the
following connections

• one, one-step connection from P1 to P4 given by P1 → P4.

• one, two-step connection from P1 to P4 given by

– P1 → P3 → P4.

• two, three-step connection from P1 to P4 given by

– P1 → P4 → P3 → P4.

– P1 → P2 → P1 → P4.

Problem 2.4 (finding cliques in the given directed graphs)

The cliques in these graphs are given by the sets

Part (a): {P1, P2, P3}.

Part (b): {P4, P5, P3}.

Part (c): {P2, P4, P6, P8} and {P6, P4, P}.



Problem 2.5 (finding cliques in the given vertex matrices)

For this problem we need to recall Theorem 2.2. Theorem 2.2 (membership in a clique)
states that after forming the matrix S composed of elements

sij =

{

1 Pi ↔ Pj

0 otherwise
,

then the vertex Pi belongs to the some cliques if and only if s
(3)
ij 6= 0 where s

(3)
ij is the (i, j)-th

element of S3.

Part (a): For this matrix we form S as the “symmetric part” of M as

S =













0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0













.

So that S2 and S3 are given by

S2 =













2 0 1 0 1
0 2 0 1 1
1 0 2 1 1
0 1 1 2 1
1 1 1 1 3













and S3 =













0 3 1 3 2
3 0 3 1 2
1 3 1 2 4
3 1 2 1 4
2 2 4 4 5













.

See the Matlab/Octave script chap 2 prob 5.m where we calculate these matrices.

Problem 2.6 (the power of a dominance directed graph)

We find the vertex matrix for the given graph to be

M =









0 0 1 1
1 0 0 0
0 1 0 1
0 1 0 0









.

The power of a vertex in a dominance directed graph is the total number of one-step and
two-step connections from the given vertex to the other vertexes. Equivalently, the power
of the i-th vertex is the sum of the elements in the i-th row of the matrix M +M2. For M
above we find

M +M2 =









0 0 1 1
1 0 0 0
0 1 0 1
0 1 0 0









+









0 2 0 1
0 0 1 1
1 1 0 0
1 0 0 0









=









0 2 1 2
1 0 1 1
1 2 0 1
1 1 0 0









.

The row sums of this matrix are given by

P1 : 5 , P2 : 3 , P3 : 4 , P4 : 2 .



Problem 2.7 (dominance in baseball)

The verbal description of the ordering of the baseball teams translates into the following
vertex matrix

M =













0 1 1 1 0
0 0 1 0 1
0 0 0 1 1
0 1 0 0 0
1 0 0 1 0













.

From which we see that M2 is given by

M2 =













0 1 1 1 2
1 0 0 2 1
1 1 0 1 0
0 0 1 0 1
0 2 1 1 0













.

Thus the matrix M +M2 is given by

M +M2 =













0 2 2 2 2
1 0 1 2 2
1 1 0 2 1
0 1 1 0 1
1 2 1 1 0













.

Using this expression, the power of each vertex is seen to be

P1 = A : 8 , P2 = B : 6 , P3 = C : 5 , P4 = D : 3 , P5 = E : 6 .

These can then be sorted in rank order.

See the Matlab/Octave script chap 2 prob 7.m where we calculate these matrices.



Chapter 3 (Theory of Games)

Problem Solutions

Problem 3.1 (a given games expected payoff)

Part (a): For the game given we find

E(p, q) = pAq =
1

4
p





−1
9
−4



 = −
5

8
.

The fact that E(p, q) is negative means that R pays C the amount 5
8
.

Part (b): Assuming that C keeps the strategy qf = 1
4









1
1
1
1









(here f is for fixed) the expected

payoff is

E(p, qf) = pAqf =
1

4
p





−1
9
−4



 =
1

4
(−p1 + 9p2 − 5p3) .

For R to maximize this expression R should choose the strategy p =
[

0 1 0
]

.

Part (c): Now player R keeps his strategy fixed at pf =
[

1
2

0 1
2

]

(again “f” is for fixed)
so the expected payoff is given by

E(pf , q) =
1

2

[

1 0 1
]

Aq =
1

2

[

−12 6 2 −1
]









q1
q2
q3
q4









.

Thus we see that C should pick the strategy where q1 = 1 and all other q values are zero.

Problem 3.2 (nonuniqueness of a saddle point)

Consider the trivial payoff matrix

[

10 10
10 10

]

.

Problem 3.3 (examples of strictly determined games)

We are looking for an element ars of our payoff matrix such that ars is the smallest entry in
its row and ars is the largest entry in its column.



Part (a): Take r = 2 and s = 2 thus the optimal strategy is p∗ =
[

0 1
]

and q∗ =

[

0
1

]

.

This game then has the value of 3.

Part (b): Take r = 2 and s = 1 thus the optimal strategies are p∗ =
[

0 1 0
]

and

q∗ =

[

1
0

]

. This game has the value 2.

Part (c): Take r = 3 and s = 2 thus the optimal strategies are p∗ =
[

0 0 1
]

and

q∗ =





0
1
0



. This game has the value 2.

Part (d): Take r = 2 and s = 1 thus the optimal strategies are p∗ =
[

0 1 0 0
]

and

q∗ =





1
0
0



. This game has the value −2.

Problem 3.4 (optimal strategies for 2× 2 games)

When given the payoff matrix for a 2 × 2 game we first look to see if the game is strictly
determined (i.e. has a saddle point). This means that we look to see if there is an element
ars that is the smallest element in its row and the largest element in its column. If the game
is not strictly determined then we apply Theorem 3.2 from the book to compute the optimal
strategies p∗, q∗, and the games value. Rather than do these calculations by hand each time
these calculations are done in the python code optimal mixed strategy 2by2 game.py.
The pieces of this problem are done in the python code chapter 3 problems.py.

Problem 3.5 (a simple card game payoff)

For this problem we would have the payoff matrix given by

[

+3 −4
−6 +7

]

where the first

row corresponds to R playing his black ace and the second row corresponds R playing his
red four. The first column corresponds to C playing his black two and the second column
corresponds to C playing his red three. We see from the given payoff matrix that there
is no pure strategy. The optimal randomized strategy is given by p∗ =

[

0.65 0.35
]

and

q∗ =

[

0.55
0.45

]

and the game has a value of v = −0.15.



Problem 3.6 (properties of pure strategies)

Let p∗ be a row vector of all zeros but with a single 1 in the rth spot and q∗ be a column
vector of all zeros but with a one in the sth spot. Then note that the product p∗A selects
the rth row from A. That is

p∗A =
[

ar1 ar2 ar3 · · · ar,n−1 ar,n
]

In the same way Aq∗ selects the sth column from A. That is

Aq∗ =



















a1s
a2s
a3s
...

am−1,s

am,s



















.

From either of these expressions (multiplying as p∗(Aq∗) or (p∗A)q∗) we see that p∗Aq∗ = ars.
Now note that

E(p∗, q) =
[

ar1 ar2 ar3 · · · ar,n−1 ar,n
]



















q1
q2
q3
...

qn−1

qn



















= ar1q1 + ar2q2 + ar3q3 + · · ·+ ar,n−1qn−1 + ar,nqn .

Since arj ≥ ars we can write the above as

E(p∗, q) ≥ ars

(

n
∑

j=1

qj

)

= ars ,

since the sum of the qj’s is one. In the same way we have

E(p, q∗) = p(Aq∗) = p



















a1s
a2s
a3s
...

am−1,s

am,s



















=
m
∑

i=1

piais .

Since ars is the largest value in this column ais ≤ ars for all 1 ≤ i ≤ m. Thus

E(p, q∗) ≤

(

m
∑

i=1

pi

)

ars = ars . (3)



Problem 3.7 (the optimal strategies are probabilities)

We will work with the elements of p∗. The elements of q∗ are similar. To begin note that
the elements of p∗ sum to 1. Thus we only need to show that 0 < p∗1 < 1 and we have shown
that both elements in p∗ are in the desired range. Recall that p∗1 is given by

p∗1 =
a22 − a21

a11 + a22 − a12 − a21
=

a22 − a21
a11 − a12 + (a22 − a21)

=
1

1 +
(

a11−a12
a22−a21

) .

In the same way for q∗1 we have

q∗1 =
a22 − a12

a11 + a22 − a21 − a12
=

1

1 +
(

a11−a21
a22−a12

) .

For p∗1 if we can show that a11−a12
a22−a21

> 0 then we would have 0 < p∗1 < 1. The given fraction
will be positive in two cases. For each case we argue that the fact that our matrix A is
not strictly determined means that the given inequalities hold. The fraction will be positive
when

• Both a11−a12 > 0 and a22−a21 > 0. If a22 > a21 then a21 is the smallest element in its
row. Since A is not strictly determined means that a21 cannot be the largest element
in its column. This means that a21 < a11 or a11 − a12 > 0. Thus a11−a12

a22−a21
> 0.

• Both a11−a12 < 0 and a22−a21 < 0. If a22 < a21 then a22 is the smallest element in its
row. Since A is not strictly determined means that a22 cannot be the largest element
in its column or a22 < a12 or a22 − a21 < 0. Thus a11−a12

a22−a21
> 0.



Chapter 4 (Markov Chains)

Problem Solutions

Most of the computation for this chapter is done in the python script chapter 4 problems.py.

Problem 4.1

Part (a): We iterate x(n) = Px(n−1) from x(0) =

[

1
0

]

.

Part (b): P is regular since it is a transition matrix (has nonnegative entries and the columns
sum to 1). It is regular since it has a power (here the first) that has all positive entries. The
steady state is given by the probability vector that is the solution to (P − I)q = 0, or

[

−0.6 0.5
0.6 −0.5

] [

q1
q2

]

= 0 .

Thus we have q1 = 5
6
q2 or q = q2

6

[

5
6

]

. To make this a probability vector we take q =
[

5/11
6/11

]

. Note x(n) converges to this vector in Part (a).

Problem 4.2

Part (a): We iterate x(n) = Px(n−1) from x(0) =





0
0
1



.

Part (b): P is regular since it is a transition matrix (has nonnegative entries and the columns
sum to 1). It is regular since it has a power (here the first) that has all positive entries. The
steady state is given by the probability vector that is the solution to (P − I)q = 0, or we
can compute P n to a large value of n and read off a column in the P n matrix (they are all
the same vector).

Problem 4.3 (computing steady state probability vectors)

We can find the steady state vector q by either computing P n for a large power of n or
finding a probability vector that satisfies (P − I)q = 0.



Part (c): Note that this matrix P is regular since the second power of P has all positive

elements. Computing P to a high power we get a steady state vector q =





0.15789474
0.21052632
0.63157894



.

Problem 4.4 (a non-regular P )

Part (a): The matrix P is a transition matrix since it has nonnegative elements and its
columns sum to 1. Computing powers of P we see that this matrix limits to the matrix
[

0 0
1 1

]

and the element at position (1, 2) is always zero thus this matrix cannot be regular.

Part (b): From the limiting matrix P n computed above for any probability vector x(0) we

see that P nx(0) would equal the vector

[

0
1

]

.

Part (c): Not all of the elements of the limiting vector

[

0
1

]

are positive.

Problem 4.5 (the uniform matrix)

A steady-state vector q is one for which Pq = q. Since we are told P and q we can just
verify that the previous expression is true. We find











1
k

1
k

1
k

· · · 1
k

1
k

1
k

1
k

· · · 1
k

...
...

1
k

1
k

1
k

· · · 1
k





















1
k
1
k
...
1
k











=











∑k
i=1

1
k2

∑k
i=1

1
k2

...
∑k

i=1
1
k2











=











k
k2
k
k2
...
k
k2











=











1
k
1
k
...
1
k











= q .

Problem 4.6 (almost the uniform matrix)

Note that P is a transition matrix (all nonnegative entries with columns that sum to 1).
Also note that P 2 has all positive entries and thus this transition matrix is regular. When
we look at powers of P n we see that we eventually limit to the matrix





1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



 .

Extracting any column (they are all the same) we get that the limiting steady-state vector

q =





1/3
1/3
1/3



.



Problem 4.7 (a happy of a sad John)

Let the first component of our probability vector x be the probability that John is happy.
Then the second component must be the probability that he is sad. From the given statement
of the problem the transition matrix for John’s happiness is given by

P =

[

4/5 2/3
1/5 1/3

]

.

We are looking for the steady-state solution to this Markov chain which we do by solving

the the probability vector q such that (P − I)q = 0. The matrix P − I is

[

−1/5 2/3
1/5 −2/3

]

.

Thus the components of q must satisfy 1
5
q1 =

2
3
q2. Thus

q ∝

[

10
3

]

and normalizing gives q =
1

13

[

10
3

]

.

Thus 10/13 = 0.7692308 of the time John is happy while 3/13 = 0.2307692 of the time John
is sad.

Problem 4.8 (demographic regions)

If we let the first, second, and third components of our state vector x represent the proportion
of the people that live in regions I, II, and III respectively. Then from the problem description
the transition matrix P is given by

P =





0.9 0.15 0.1
0.05 0.75 0.05
0.05 0.1 0.85



 .

Finding the steady-state vector q by computing P n for large values of n (and extracting any

column) we find q =





0.54166488
0.16666668
0.29166844



. We can decide if n is large enough and we have a

good enough approximation to the steady-state vector q if the columns of P n are sufficiently
similar in numerical value.



Chapter 5 (Leontief Economic Models)

Problem Solutions

The computations for this chapter are done in the python code chapter 5 problems.py.

Problem 5.1

The equilibrium condition 5.3 is to find a nonnegative price vector p such that (I−E)p = 0.

Part (a): We have I − E =

[

1/2 −1/3
−1/2 1/3

]

The vector p =

[

p1
p2

]

must then satisfy

1
2
p1 =

1
3
p2 and we get

p =

[

p1
p2

]

=

[

2
3
p2
p2

]

=
p2
3

[

2
3

]

.

If we take any p2 > 0 we have a nonnegative multiple of the vector

[

2
3

]

.

Part (b): We have

I − E =





1/2 0 −1/2
−1/3 1 −1/2
−1/6 −1 1



 .

Thus we seek a nonnegative price vector





p1
p2
p3



 that satisfies





1/2 0 −1/2
−1/3 1 −1/2
−1/6 −1 1









p1
p2
p3



 = 0 .

Performing the steps of Gaussian elimination on the leading coefficient matrix we can trans-
form the coefficient matrix into the matrix





1 0 −1
0 1 −5/6
0 1 −5/6



 .

Which indicate that p1 = p3 and p2 =
5
6
p3. Thus our vector p is given by

p =





p3
5
6
p3
p3



 =
p3
6





6
5
6



 .

For any value of p3 > 0 we will have a nonnegative price vector p proportional to





6
5
6



.



Problem 5.2 (are these consumption matrices productive?)

Theorem 5.3 is the statement that a consumption matrix C is productive if there exists a
production vector x ≥ 0 such that Cx < x. Some corollaries of this theorem are that the
consumption matrix C will be productive if all of its rows (or columns) sum to less than one.

Part (a): Since each of the rows of C sum to less than one, this consumption matrix is
productive.

Part (b): Since each of the columns of C sum to less than one, this consumption matrix is
productive.

Part (c): This consumption matrix does not have all of its rows sum to less than one or all
of its columns sum to less than one. Thus we cannot use these two methods to determine
if C is productive instead we will look for a vector x such that Cx < x. We do this by
noting that if a given consumption matrix C has an eigenvalue that is less than one and the
eigenvector associated with this eigenvalue has all positive elements then this eigenvector is
an example of a vector x that satisfies Cx < x and C is productive. For this problem, the

eigenvector with an eigenvalue less than one is
[

0.8406 0.379332 0.38660
]T
.

Problem 5.3 (a solution to (I −E)p = 0)

Theorem 5.2 states that there is exactly one solution to Ep = p if all the entries of the matrix
Em are positive for some value of m. For the exchange matrix given we find that E2 > 0
and thus there is exactly one solution to Ep = p.

Problem 5.4 (neighbors growing vegetables)

The exchange matrix (where rows represent neighbors A, B, and C and columns represent
tomatoes, corn, and lettuce) for this problem looks like

E =





1/2 1/3 1/4
1/3 1/3 1/4
1/6 1/3 1/2



 .

Note that the columns of this matrix sum to one as they should. We seek a pricing vector
p such that Ep = p and thus perform Gaussian elimination on the matrix

I − E =





1/2 −1/3 −1/4
−1/3 2/3 −1/4
−1/6 −1/3 1/2



 .

This reduces to the matrix




1 0 −9/8
0 1 −15/16
0 0 0



 .



Thus we see that the components of p satisfy p1 =
9
8
p3 and p2 =

15
16
p3. Thus p looks like

p =





9
8
p3

15
16
p3
p3



 =
p3
16





18
15
16



 .

Any positive value for p3 will make the above vector positive. To make sure that the lowest
priced crop has a price of 100 we will set 15

16
p3 = 100 or p3 = 106.666666667. Thus the vector

p =





120
100

106.67



 .

Problem 5.5 (three engineers)

Let the ordering of the variable be CE, EE, and ME. Then the consumption matrix for this
problem is

C =





0 0.2 0.3
0.1 0 0.4
0.3 0.4 0





Following the example in the book of the town with three industries we have that we need

to solve (I − C)x = d for a demand vector of d =





500
700
600



. When I solve the given system

for x I find

x =





1256.48
1448.13
1556.20



 .

Warning: Note these numbers are different from what the back of the book has. If anyone
sees anything wrong with this (or agrees with it) please contact me.

Problem 5.6 (column sums of an exchange matrix)

Since the column sums of an exchange matrix E are one, when form the matrix I − E the
sums of each column now must be 1 minus the column sum of E which is one. Thus the
column sums of I − E must be zero. This means that the rows of the matrix I − E are
linearly dependent (a nontrivial linear combination of them combines to zero). Thus the
matrix I −E must be singular and must have a zero determinant. Thus (I −E)p = 0 must
have a nontrivial solution vector p.

Problem 5.7 (C is productive if its columns sum to less than one)

Assume C is a consumption matrix where all of its columns sum to less than one and that
C is not productive. That is that (I − C)−1 does not exist or that (I − C)−1 < 0. We will



show that this leads to a contradiction. Since the columns of C sum to less than one we
know that all the rows of CT sum to less than one. Then from Corollary 5.1 we have that
CT is productive so that (I − CT )−1 exists and that (I − CT )−1 ≥ 0. This however means
that

(I − CT )−1 = ((I − C)T )−1 = ((I − C)−1)T ,

exists and that ((I − C)−1)T ≥ 0. The transpose on these expressions don’t change the
existence and the positive nature thus we have that (I −C)−1 exists and that (I −C)−1 ≥ 0
so that C is in fact productive.

Problem 5.8 (C is productive if x > Cx)

Part I: Since we are to assume that C is productive we know that (I − C)−1 exists and
(I − C)−1 ≥ 0. Consider the multiplication of the matrix (I − C)−1 and a positive vector
x > 0. Let the result of this multiplication be called v. That is

(I − C)−1x = v .

Since (I − C)−1 ≥ 0 and x > 0 we know that v ≥ 0. Solving for x we have

x = (I − C)v > 0 ,

since x was taken to be x > 0. This last expression means that a v ≥ 0 exists such that
v − Cv > 0 or Cv < v as we were to show.

Part II: For this part of the problem we want to show that if there exists a vector x ≥ 0
such that x > Cx then C is productive.

We start with a vector x∗ ≥ 0 such that Cx∗ < x∗. Then since C has only nonnegative
entries we know that Cx∗ ≥ 0 so x∗ ≥ 0.

Since we start with Cx∗ < x∗, by continuity there must be a value of λ < 1 for which
Cx∗ < λx∗. In other words, if we computed the product Cx∗ we know we get some vector
that is less than x∗. Whatever this product vector equals to we could “shrink” x∗ by a bit
(by multiplying by λ) and still keep it greater than Cx∗.

From Cx∗ < λx∗ by repeatedly multiplying by C and using the same inequality we get
Cnx∗ < λnx∗.

Now since λnx∗ → 0 as n → ∞ and since Cnx∗ is less than this we have that Cnx∗ → 0.
This could happen if Cn limits to a matrix and x∗ is in its null space or Cn → 0. The first
condition cannot happen since C has all nonnegative entries so Cn has nonnegative entries
and x∗ > 0. Thus it must be that Cn → 0 as n → ∞.

Direct multiplication will show the given algebraic identity.

Letting n → ∞ we get

(I − C)(I + C + C2 + C3 + · · · ) = I ,



Thus defining
S ≡ I + C + C2 + C3 + · · · ,

we see that this is the inverse of I − C and since C > 0 the sum of all the terms in S are
positive so S ≥ 0. Since this is the definition of a productive consumption matrix we have
proven the desired statement.



Chapter 6 (Forest Management)

Problem Solutions

Problem 6.1

For this problem we have p2 = 30, p3 = 60, g1 =
1
2
, and g2 =

2
3
. We then look at the optimal

yeilds where we get

Yld2 =
p2s
1
g1

=
30s

2
= 15s

Yld3 =
p3s

1
g1

+ 1
g2

=
60s

2 + 1.5
= 17.14s .

Since Yld3 > Yld2 we would harvest the third type of trees. When s = 1000 this optimal
yield is given by Yld3 = 17140.0. This is a different result than in the book. If anyone sees
anything wrong with this (or agrees with it) please contact me.

Problem 6.2

For this problem we have

Yld5 =
p5s

0.28−1 + 0.31−1 + 0.25−1 + 0.23−1
=

p5s

15.15
> 14.7s .

This means that p5 > 222.705 = 223.0

Problem 6.3

When the prices as are yet unspecified we would have

Yld2 =
p2s

0.28−1
=

p2s

3.57

Yld3 =
p3s

0.28−1 + 0.31−1
=

p2s

6.79

Yld4 =
p4s

10.79

Yld5 =
p5s

15.14

Yld6 =
p6s

17.84
.

To have all of the yields be the same the prices must cancil the denominator (to give just
the s) thus we have

3.57 : 6.79 : 10.79 : 15.14 : 17.84 .



Dividing by 3.57 to normalize the first price to 1 we get

1 : 1.90 : 3.02 : 4.24 : 4.99 .

Problem 6.4

Once we decide on a level k to harvest we have x1 give by Eq. 6.17 or

x1 =
s

g1

(

1
g1

+ 1
g2

+ · · ·+ 1
gk−2

+ 1
gk−1

) . (4)

Then x2, x3, · · ·xk−2, xk−1 are given by Eq. 6.16 or

x2 =
g1
g2
x1 =

s

g2

(

1
g1

+ 1
g2

+ · · ·+ 1
gk−2

+ 1
gk−1

)

x3 =
g1
g3
x1 =

s

g3

(

1
g1

+ 1
g2

+ · · ·+ 1
gk−2

+ 1
gk−1

)

...

xk−1 =
g1
gk−1

x1 =
s

gk−1

(

1
g1

+ 1
g2

+ · · ·+ 1
gk−2

+ 1
gk−1

) .

These with xk = xk+1 = · · · = xn = 0 by the books Eq. 6.13. When we put all of these
components into a vector we get the requested result.

Problem 6.5

In optimal sustainable harvesting we remove only yk trees all other yj are zero. Then we
have our yk given by

yk = g1x1 =
g1s

1 + g1
g2

+ g1
g3

+ · · ·+ g1
gk−2

+ g1
gk−1

. =
s

1
g1

+ 1
g2

+ 1
g3

+ · · ·+ 1
gk−2

+ 1
gk−1

.



Problem 6.6 (all equal growth)

We would need to evaluate the yields at each value of k. Note that

Yld2 =
p2s
1
g

Yld3 =
p3s
2
g

Yld4 =
p4s
3
g

...

Yldk =
pks
k−1
g

.

In order that any sustainable harvesting policy be an option requires Yldk = Yldj or

pks
k−1
g

=
pjs
j−1
g

or
pk

k − 1
=

pj
j − 1

.

Thus iterating a few of these we would have p3
2

= p2
1

or p3 = 2p2. Another one that we
have is that p4

3
= p3

2
or p4 = 4p2. In general, the result is pk = kp2. Thus the ratios are

1 : 2 : 3 : · · · : k.



Chapter 7 (Temperature Distributions)

Problem Solutions

Problem 7.1

Part (a): The discrete mean value property requires the equations

t1 =
1

4
(0 + 0 + t3 + t2)

t2 =
1

4
(1 + t1 + t4 + 1)

t3 =
1

4
(t1 + 0 + 0 + t4)

t4 =
1

4
(t2 + t3 + 1 + 1) .

Thus if we let the vector t =









t1
t2
t3
t4









then the vector t satisfies the matrix equation t = Mt+b

which is








t1
t2
t3
t4









=









0 1/4 1/4 0
1/4 0 0 1/4
1/4 0 0 1/4
0 1/4 1/4 0

















t1
t2
t3
t4









+









0
1/2
0
1/2









Part (b): We could solve (I −M)t = b to compute t.

Part (c): We would iterate t(n) = Mt(n−1) + b starting from t(0) = 0.

Problem 7.2

The value of t in the center is the average temperature value on the circle or

1

2π
(1π + 0π) =

1

2
.



Chapter 8 (Genetic Applications)

Problem Solutions

The computations for this chapter are done in the python code chapter 8 problems.py.

Problem 8.2 (repeated fertilization with Aa)

In this case for the fraction of the population that has genotypes AA, Aa, and aa in the next
generation, given the fractions, in the current generation is given by

an =
1

2
an−1 +

1

4
bn−1

bn =
1

2
an−1 +

1

2
bn−1 +

1

2
cn−1

cn =
1

4
bn−1 +

1

2
cn−1 .

This can be written as the matrix system





an
bn
cn



 =





1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2









an−1

bn−1

cn−1



 .

Defining x(n) ≡





an
bn
cn



 we can write this as x(n) = MAax
(n−1), where we have defined the

matrix MAa as

MAa ≡





1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2



 . (5)

We find the eigenvalues of MAa to be given by solving

|M − λI| =

∣

∣

∣

∣

∣

∣

1
2
− λ 1

4
0

1
2

1
2
− λ 1

2

0 1
4

1
2
− λ

∣

∣

∣

∣

∣

∣

=

(

1

2
− λ

)

[

(

1

2
− λ

)2

−
1

8

]

−
1

2

[

1

4

(

1

2
− λ

)]

=

(

1

2
− λ

)

λ(λ− 1) = 0 .

From which we see that our eigenvalues are {1, 1
2
, 0}. The corresponding eigenvector for

λ1 = 1 is given by finding a vector in the null space of the matrix

MAa − I =





−1
2

1
4

0
1
2

−1
2

1
2

0 1
4

−1
2



 .



Performing Gaussian elimination on this coefficient matrix we get that it transforms into





1 0 −1
0 1 −2
0 0 0



 .

From which we see that the components of this eigenvector are v1 = v3, v2 = 2v3, and v3 is

arbitrary. Thus the eigenvector for λ1 = 1 is given by v1 =





1
2
1



. In the same way as with

λ = 1 we find that the eigenvector for λ2 =
1
2
is given by v2 =





−1
0
1



 and the eigenvector

for λ3 = 0 is given by





1
−2
1



. Using these we have the decomposition of MAa of

MAa = PDP−1 =





1 −1 1
2 0 −2
1 1 1









1 0 0
0 1

2
0

0 0 0









1
4

1
4

1
4

−1
2

0 1
2

1
4

−1
4

1
4





We have then that

Mn
Aa = PDnP−1 =





1 −1 1
2 0 −2
1 1 1









1 0 0
0
(

1
2

)n
0

0 0 0









1
4

1
4

1
4

−1
2

0 1
2

1
4

−1
4

1
4





When we multiply these matrices we get

Mn
Aa =





1
4
+
(

1
2

)n+1 1
4

1
4
−
(

1
2

)n+1

1
2

1
2

1
2

1
4
−
(

1
2

)n+1 1
4

1
4
+
(

1
2

)n+1



 .

Using this expression we can get the value of x(n) from Mn
Aax

(0). We find

x(n) = Mn
Aax

(0) =





1
4
+
(

1
2

)n+1
(a0 − c0)

1
2

1
4
−
(

1
2

)n+1
(a0 − c0)



 .

As n → ∞ from the above we see that the limiting form of the matrix MAa is given by

Mn
Aa →





1
4

1
4

1
4

1
2

1
2

1
2

1
4

1
4

1
4



 ,

with a limiting form for x(n) of





1
4
1
2
1
4



.



Problem 8.3 (alternative fertilizations as AA, Aa, AA, Aa etc.)

As shown in the book every fertilization with genotype AA involves a transition of the

fraction vector x(n) =





an
bn
cn



 of the form x(n) = MAAx
(n−1) where the matrix MAA is given

by

MAA =





1 1
2

0
0 1

2
1

0 0 0



 ,

Every fertilization with genotype Aa involves a transformation of the form x(n) = MAax
(n−1)

with MAa given by Equation 5. These alternative fertilization’s give rise to the transitions

x(1) = MAAx
(0)

x(2) = MAax
(1) = MAaMAAx

(0)

x(3) = MAAx
(2) = MAAMAaMAAx

(0)

x(4) = MAax
(3) = MAaMAAMAaMAAx

(0)

...

x(2n) = (MAaMAA)
nx(0)

x(2n+1) = MAA(MAaMAA)
nx(0) .

We find the product MAaMAA when we multiply given by




0.5 0.375 0.25
0.5 0.5 0.5
0 0.125 0.25



 .

To compute powers of this matrix we would need to perform an eigenvalue-eigenvector de-
composition in the same way as was done for Problem 2 on Page 25.

Problem 8.4 (autosomal recessive diseases)

For the M given in the section on autosomal recessive diseases the eigenvalues of our matrix
M are given by solving

|M − λI| = (1− λ)

(

1

2
− λ

)

= 0 ,

Thus λ = 1 and λ = 1
2
. For λ = 1 the eigenvector is given by the null space of the matrix

M − I =

[

0 1
2

0 −1
2

]

⇒ v1 =

[

1
0

]

,

and for λ = 1
2
the eigenvector is given by the null space of the matrix

M −
1

2
I =

[

1
2

1
2

0 0

]

⇒ v2 =

[

1
−1

]

.



Using these eigenvectors and eigenvalues we can write M as

M =

[

1 1
0 −1

] [

1 0
0 1

2

] [

1 1
0 −1

]

.

With this we easily have powers of M or

Mn =

[

1 1
0 −1

] [

1 0
0
(

1
2

)n

] [

1 1
0 −1

]

.

So that x(n) is given by

x(n) = M (n)x(0) =

[

1 1
0 −1

] [

1 1
0 −

(

1
2

)n

] [

a0
b0

]

=

[

1 1−
(

1
2

)n

0
(

1
2

)n

] [

a0
b0

]

=

[

a0 +
(

1−
(

1
2

)n)
b0

(

1
2

)n
b0

]

=

[

1−
(

1
2

)n
b0

(

1
2

)n
b0

]

,

for n ≥ 1. In the previous manipulations we have used the fact that the initial proportion
of genotypes was normalized i.e. a0 + b0 = 1.

Problem 8.5 (the time until the percentage of carriers drops)

For the proportions of various genotypes under random mating Eq 8.9 is

bn =
bn−1

1 + 1
2
bn−1

for n = 1, 2, 3, . . . (6)

In the controlled mating policy than the proportion of carries is given by Eq. 8.8 which is

bn =
1

2
bn−1 for n = 1, 2, 3, . . .

If we start with an genotype distribution where the initial percentage of carriers is b0 = 0.25
then iterating the above two expressions (for n ≥ 1) we get the values for n and bn under
both models

n random mating controlled mating

0 0.250000 0.250000

1 0.222222 0.125000

2 0.200000 0.062500

3 0.181818 0.031250

4 0.166667 0.015625

5 0.153846 0.007812

6 0.142857 0.003906

7 0.133333 0.001953

8 0.125000 0.000977

9 0.117647 0.000488

10 0.111111 0.000244

11 0.105263 0.000122

12 0.100000 0.000061

13 0.095238 0.000031



Thus we see that under random mating we need n ≥ 13 before bn < 0.1 or the number of
carriers is less than 10%. With controlled mating we only need n ≥ 2 for bn < 0.1. Thus

Problem 8.6 (the limiting probability distributions of X linked trains)

The fact that the initial parents are equally likely to be any of the six possible genotype

parents means that x(0) = 1
6

















1
1
1
1
1
1

















we would calculate x(n) using the books Eq. 8.12 using

matrix vector multiplication starting with this value of x(0).

Problem 8.7 (X-linked inheritance with inbreeding)

The books Eq. 8.13 shows the limiting n → ∞ distribution of genotypes under X-linked
inheritance with inbreeding. From the expression we see that the probability that the limiting
sibling-pairs will be of the genotype (A,AA) is given by

a0 +
2

3
b0 +

1

3
c0 +

2

3
d0 +

1

3
e0 .

The proportion of A genes in the initial population where the x vector is ordered as

(A,AA) , (A,Aa) , (A, aa) , (a, AA) , (a, Aa) , (a, aa) ,

is given by 1a0,
2
3
b0,

1
3
c0,

2
3
d0, and 1

3
e0 respectively. Adding these up we get the same

expression as the limiting probability above.

Problem 8.8 (X-linked inheritance with no surviving females)

We can find the given transition matrix using the transition matrix M where all genotypes
survive by simply removing all rows and columns corresponding to the genotypes (A,Aa)
and (a, Aa). This gives the matrix









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1











Problem 8.9 (inbreeding in X-linked inheritance)

For this problem to derive the given matrix M recall with X-linked inheritance males posses
only one gene say A or a, while females posses two genes say AA, Aa, or aa. Any male
offspring receive one gene from the mother while any females offspring receive one gene from
the father (his only gene) and one random gene from their mother.

Given this inheritance pattern to derive our matrix M , recall that multiplying M by a
column vector of all zeros but with a single one located at the jth row selects the jth column
from M . A column vector only a single one in the jth row corresponds to a sibling-pair

populated with only one type of genotype. For example, the vector

















1
0
0
0
0
0

















corresponds to

the sibling-pair with genotype (A,AA).

Column 1: Consider the (n− 1)st generation where the sibling-pair is of type (A,AA). All
male offspring will receive an A gene and all female offspring will receive an A gene from
their father and an A gene from their mother. Thus all sibling-pair offspring must be of
genotype (A,AA).

Column 3: Consider the (n− 1)st generation where the sibling-pair is of type (A, aa). All
male offspring will receive an a gene from their mother and all the female offspring receive
an A from their father and an a from their mother to get the genotype (a, Aa).

Column 4: The (n− 1)st generation has the sibling-pair of (a, AA). Male offspring gets an
A gene while female offspring ends with the genotype Aa so all sibling-pair offspring have
genotype (A,Aa).

Column 5: The (n − 1)st generation has a sibling-pair of (a, Aa). All male offspring
can get either an A or an a from their mother. All female offspring gets A or an a with
equal probability from their mother and an a gene from their father. Thus we could end
with sibling-pairs of the form (A,Aa), (A, aa), (a, Aa), or (a, aa) each with equal or 1/4
probability.

Column 6: The (n− 1)st generation has a sibling-pair of (a, aa). The male gets the a gene
from his mother and the female gets a from father and a from mother. Thus we can only
get sibling-pair genotypes like (a, aa).



Chapter 9 (Age-Specific Population Growth)

Notes on the Text

Some python code written for this chapter include

• Leslie matrix.py computes a Leslie matrix given data for ai and bi.

Notes on verifying the equality Lx1 = λ1x1

If x1 is given by

x1 =
[

1 b1
λ1

b1b2
λ2

1

· · · b1b2···bn−3

λn−3

1

b1b2···bn−2

λn−2

1

b1b2···bn−1

λn−1

1

]T

, (7)

where the jth component of the vector x1 is
b1b2···bj−2bj−1

λj−1

1

. Then Lx1 formally is the product

























a1 a2 a3 · · · an−2 an−1 an
b1 0 0 · · · 0 0 0

0 b2 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 0 0

0 0 0 · · · bn−2 0 0
0 0 0 · · · 0 bn−1 0



















































1
b1
λ1

b1b2
λ2

1

...
b1b2···bn−3

λn−3

1

b1b2···bn−2

λn−2

1

b1b2···bn−1

λn−1

1



























,

which equals



























a1 +
a2b1
λ1

+ a3b1b2
λ2

1

+ · · ·+ an−2b1b2···bn−4bn−3

λn−3

1

+ an−1b1b2···bn−3bn−2

λn−2

1

+ anb1b2···bn−2bn−1

λn−1

1

b1
b1b2
λ1

...
b1b2···bn−4bn−3

λn−4

1

b1b2···bn−3bn−2

λn−3

1

b1b2···bn−2bn−1

λn−2

1



























.



The first row is λ1q(λ1). Since λ1 is an eigenvalue of L is must satisfy q(λ1) = 1, and thus
λ1q(λ1) = λ1. This gives us that the product Lx1 becomes

λ1



























1
b1
λ1

b1b2
λ2

1

...
b1b2···bn−4bn−3

λn−3

1

b1b2···bn−3bn−2

λn−2

1

b1b2···bn−2bn−1

λn−1

1



























= λ1x1 ,

as we were to show.

Problem Solutions

Problem 9.1 (a Leslie matrix)

Part (a): Using |L− λI| = 0 we compute λ ∈ {−1
2
,+3

2
}. for the positive eigenvalue λ = 3

2

we find the eigenvector given by x1 =

[

3
1

]

.

Part (b): In the python code chapter 9 problems.py we iterate x(n) = Lnx(0), using the
known L. We find when we print the iteration index, the vector x(n), and the sum of the
elements (total female population size) that we get

0 [[100 0]] [[100]]

1 [[ 100. 50.]] [[ 150.]]

2 [[ 175. 50.]] [[ 225.]]

3 [[ 250. 88.]] [[ 338.]]

4 [[ 381. 125.]] [[ 506.]]

5 [[ 569. 191.]] [[ 760.]]

Part (c): We find x(6) = Lx(5) =
[

855 284
]T

and x(6) ≈ λ1x
(5) = 3

2
x(5) =

[

853 286
]T
.



Problem 9.2 (the characteristic polynomial for a Leslie matrix)

To compute the characteristic polynomial of a Leslie matrix we need to evaluate

p(λ) = |λI − L| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ− a1 −a2 −a3 · · · −an−2 −an−1 −an
−b1 λ 0 · · · 0 0 0

0 −b2 λ
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . λ 0 0

0 0 0 · · · −bn−2 λ 0
0 0 0 · · · 0 −bn−1 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If we expand this determinant about the first row we get

p(λ) = (λ− a1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ 0 0 · · · 0 0 0
−b2 λ 0 · · · 0 0 0

0 −b3 λ
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . λ 0 0

0 0 0 · · · −bn−2 λ 0
0 0 0 · · · 0 −bn−1 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ b1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−a2 −a3 −a4 · · · −an−2 −an−1 −an
−b2 λ 0 · · · 0 0 0
0 −b3 λ · · · 0 0 0
...

...
...

...
...

0 0 0 · · · λ 0 0
0 0 0 · · · −bn−2 λ 0
0 0 0 · · · 0 −bn−1 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This last determinant of size (n− 1)× (n− 1) has its first row of n− 1 elements given by

−a2 ,−a3 ,−a4 , · · · ,−an−1 ,−an ,

its n− 1 diagonal elements given by

−a2 , λ , λ , · · · , λ , λ

and n− 2 subdiagonal diagonal elements given by

−b2 ,−b3 ,−b4 , · · · ,−bn−2 ,−bn−1 ,

Lets denote the value of this determinant by D2,n to denote that the indices on −an and −bn
start with n = 2 and go down to n. A smaller matrix of this same form will appear in in
next computation. If we take the previous expression for p(λ) and in the second determinant
expand about the first column we will get for p(λ)

p(λ) = (λ− a1)λ
n−1 + b1























−a2λ
n−2 + b2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−a3 −a4 −a5 · · · −an−2 −an−1 −an
−b3 λ 0 · · · 0 0 0
0 −b4 λ · · · 0 0 0
...

...
...

...
...

0 0 0 · · · λ 0 0
0 0 0 · · · −bn−2 λ 0
0 0 0 · · · 0 −bn−1 λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























.

This last determinant is of the same form as we have seen before and denoted D3,n. Thus it
looks like these determinants Dk,n satisfy

Dk,n = −akλ
n−k + bkDk+1,n .



When k = n− 1 one of our last determinants we get

Dn−1,n =

∣

∣

∣

∣

−an−1 −an
−bn−1 λ

∣

∣

∣

∣

= −an−1λ+ bn−1an .

Expanding what we have shown thus far we get

p(λ) = (λ− a1)λ
n−1 + b1D2,n

= λn − a1λ
n−1 − b1a2λ

n−2 + b1b2D3,n

= λn − a1λ
n−1 − b1a2λ

n−2 − b1b2a3λ
n−3 + b1b2b3D4,n

...

= λn − a1λ
n−1 − b1a2λ

n−2 − b1b2a3λ
n−3 − · · · − b1b2 · · · bn−3bn−2an−1λ+ b1b2 · · · bn−2bn−1an ,

which is the result we desired to show.

Problem 9.3 (the positive eigenvalue of a Leslie matrix is always positive)

Following the hint if q′(λ1) 6= 0 we have that λ1 is simple. Given the expression for q(λ) of

q(λ) =
a1
λ

+
a2b1
λ2

+
a3b1b2
λ3

+ · · ·+
anb1b2 · · · bn−1

λn
, (8)

so that

q′(λ) = −
a1
λ2

−
2a2b1
λ3

−
3a3b1b2

λ4
− · · · −

nanb1b2 · · · bn−1

λn+1
,

which is the sum of all negative terms and thus q′(λ) < 0 and cannot be equal to zero.

Problem 9.4 (evaluating limk→∞ x(k))

Let the product of P−1x(0) be the vector



















c
v2
v3
...

vn−1

vn



















. Then multiplying this vector by the

matrix of all zeros except for a single 1 at the (1, 1) location gives the vector



















c
0
0
...
0
0
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


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









= c



















1
0
0
...
0
0



















.



If this vector is the multiplied by P we get

cP



















1
0
0
...
0
0



















= c(first column of P ) = cx1 .

Problem 9.5 (the net reproduction rate)

The definition of the net reproduction rate is

R = a1 + a2b1 + a3b2b1 + · · ·+ anb1b2 · · · bn−2bn−1 , (9)

where we recall ai and bi are defined as

• ai is the average number of daughter born to a single female during the time she is in
the ith age class for 1 ≤ i ≤ n.

• bi is the fraction of females in the ith class that can be expected to survive and pass
into the (i+ 1)th age class for 1 ≤ i ≤ n− 1.

Now consider a single female, and let D be the random variable representing the number of
daughters born to this female during her lifetime. Let Ai be the event that this female lives
to age i for 1 ≤ i ≤ n. Then by conditional expectation we have

E[D] =
n
∑

i=1

E[D|Ai]P (Ai) .

Now

P (A1) = 1

P (A2) = P (A2|A1)P (A1) = b1

P (A3) = P (A3|A2)P (A2) = b2b1
...

P (Ai) = bi−1bi−2 · · · b2b1 ,

and E[D|Ai] = ai by its definition. Combining these expressions gives the net reproduction
rate Equation 9 as we were to show.



Problem 9.6 (an eventually decreasing population)

The total number of females in the population p(n) at time n is the vector product

p(n) =
[

1 1 · · · 1
]

x(n) ≈
[

1 1 · · · 1
]

cλn
1x1 .

Thus our population will eventually be decreasing if λ1 < 1 or eventually increasing if λ1 > 1.
Here λ1 is the largest eigenvalue of the Leslie matrix L. The eigenvalues of L must satisfy
q(λ) = 1 where q(λ) is given by Equation 8. To start, lets assume that 1 < λ1. Then since
q(λ) is an decreasing function of its argument λ we have that

q(1) > q(λ1) = 1 .

From Equation 8 we see that q(1) = R where R is given by Equation 9. Thus we have
shown that R > 1. If we assume the opposite or that that λ1 < 1 then again since q(λ) is a
decreasing function of λ we get that

1 = q(λ1) > q(1) = R ,

and thus R < 1.

Problem 9.7 (the next reproductive rate)

From the given example in the book we have a1 = 0, a2 = 4, a3 = 3, b1 = 1/2, and b2 = 1/4
so that Equation 9 gives

R = 0 + 4(1/2) + 3(1/2)(1/4) = 2.375 > 1 ,

thus the population eventually increases.



Chapter 10 (Harvesting of Animal Populations)

Notes on the Text

Some python code written for this chapter include

• Leslie matrix.py computes a Leslie matrix given data for ai and bi.

Problem Solutions

Some the calculations for this problem are done in the python code chap 10 problems.py.

Problem 10.1 (harvesting policies)

Part (a): For a uniform harvest we have h1 = h2 = h3 = h where h = 1 − 1
λ1

with λ1 is
the largest eigenvalue of L. For the matrix given here λ1 = 1.5 and with this we compute
h = 0.3333 as the fraction harvested from each age group (and it is also the yield). Then x1

the age distribution after each harvest is given by

x1 =





1
b1
λ1

b1b2
λ2

1



 =





1.0
0.3333
0.0555



 .

Part (b): If the youngest class is harvested then h1 = h and h2 = h3 = 0 where

h = 1−
1

R
= 1−

1

2.375
= 0.5789 .

The age distribution after each harvest is given by

x1 =





1
b1
b1b2



 =





1
1/2

(1/2)(1/4)



 .

The age distribution before each harvest is given by

Lx1 =





2.375
0.5
0.125



 .

Thus the yield from this harvesting policy is h(2.375)
2.375+0.5+0.125

= 0.4583.



Problem 10.2 (the optimal sustainable yield for the sheep population)

We are told that for the sheep population the optimal harvesting policy has allocations
h1 = 0.522 and h9 = 1.0 with all other hi = 0. Then from equation 10.5 in the book that
the age distribution after each harvest (or x1) is given by

x1 =
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
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0
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

.

This is computed in the python code chap 10 problems.py. Next in that code we compute
the Leslie matrix L and the product Lx1 which is the distribution of the population after
the growth period. In this case we get for Lx1 the following vector

Lx1 =
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2.08984108
0.845
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0.41820357

0.
0.
0.









































.

Now since the vector Lx1 is the distribution of the population after the growth period and x1

is the distribution of the population after the harvest is x1 then the ratio of the sum of the
elements of x1 divided by the sum of the elements of Lx1 the proportion of the population
still around after the harvest. Thus one minus this number is the fraction of the population
harvested. When we compute this number we get 0.19882804 as we were to show.



Problem 10.3 (only the first age class is harvested)

Eq. 10.10 is the age distribution after each harvest in this case

x1 =




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


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







1
b1
b1b2
...

b1b2 · · · bn−4bn−3

b1b2 · · · bn−3bn−2

b1b2 · · · bn−2bn−1























. (10)

With this vector we find the product Lx1 given by

























a1 a2 a3 · · · an−2 an−1 an
b1 0 0 · · · 0 0 0

0 b2 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 0 0

0 0 0 · · · bn−2 0 0
0 0 0 · · · 0 bn−1 0















































1
b1
b1b2
...

b1b2 · · · bn−4bn−3

b1b2 · · · bn−3bn−2

b1b2 · · · bn−2bn−1























,

or when we multiply the vector























a1 + a2b1 + a3b1b2 + · · ·+ an−1b1b2 · · · bn−3 + an−1b1b2 · · · bn−2 + anb1b2 · · · bn−1

b1
b1b2
...

b1b2 · · · bn−4bn−3

b1b2 · · · bn−3bn−2

b1b2 · · · bn−2bn−1























, or recalling the definition of R given by Equation 9 we get























R
b1
b1b2
...

b1b2 · · · bn−4bn−3

b1b2 · · · bn−3bn−2

b1b2 · · · bn−2bn−1























.

Using this we see that Lx1 − x1 is the vector specified.



Problem 10.4 (harvesting the Ith class)

For this problem we have h1 = h2 = · · · = hI−1 = hI+1 = · · · = hn = 0 and hI is unknown.
Then Eq 10.4 in the book is

(1− h1)[a1 + a2b1(1− h2) + a3b1b2(1− h2)(1− h3) + a4b1b2b3(1− h2)(1− h3)(1− h4) + · · ·

+ anb1b2 · · · bn−2bn−1(1− h2)(1− h3) · · · (1− hn)] = 1 . (11)

or in a more compact notation which introduces cumulative products

(1− h1)
n
∑

i=1

ai

(

i−1
∏

j=1

bj

)(

i
∏

k=1

(1− hk)

)

= 1 .

When we restrict this expression to the case considered in this problem we get

a1 + a2b1 + a3b1b2 + a4b1b2b3 + · · ·+ aIb1b2 · · · bI−2bI−1(1− hI) + aI+1b1b2 · · · bI−1bI(1− hI)

+ · · ·+ anb1b2 · · · bn−1(1− hI) = 1 .

In the above we recognize the expression for R given by Equation 9 and we get

R− (aIb1b2 · · · bI−2bI−1 + aI+1b1b2 · · · bI−1bI + · · ·+ anb1b2 · · · bn−1) hI = 1 .

When we solve for hI we get

hI =
R− 1

aIb1b2 · · · bI−2bI−1 + aI+1b1b2 · · · bI−1bI + · · ·+ anb1b2 · · · bn−1
.

Problem 10.5 (harvesting all of the Jth class and some of the Ith class)

Note we must have 1 ≤ I < J < n with hJ = 1, hI is unknown, and hi = 0 otherwise. Then
Equation 11 becomes in this situation

a1 + a2b1 + a3b1b2 + · · ·+ aIb1b2 · · · bI−2bI−1(1− hI) + aI+1b1b2 · · · bI−1bI(1− hI) + · · ·

+ aJ−1b1b2 · · · bJ−3bJ−2(1− hI) = 1 .

This becomes when we expand some of the products

a1 + a2b1 + a3b1b2 + · · ·+ aIb1b2 · · · bI−2bI−1 + aI+1b1b2 · · · bI−1bI + · · ·+ aJ−1b1b2 · · · bJ−3bJ−2

− hI(aIb1b2 · · · bI−2bI−1 + aI+1b1b2 · · · bI−1bI + · · ·+ aJ−1b1b2 · · · bJ−3bJ−2) = 1 .

The above can be solved for hI where we get

hI =
a1 + a2b1 + a3b1b2 + · · ·+ aIb1b2 · · · bI−2bI−1 + aI+1b1b2 · · · bI−1bI + · · ·+ aJ−1b1b2 · · · bJ−3bJ−2 − 1

aIb1b2 · · · bI−2bI−1 + aI+1b1b2 · · · bI−1bI + · · ·+ aJ−1b1b2 · · · bJ−3bJ−2

.



Chapter 11 (Least Squares)

Problem Solutions

Problem 11.5 (independent columns of M means MTM is invertible)

For this problem we assume that m > n (which is the case encountered in practice). Since
M has n linearly independent columns and our assumption is that m > n the matrix M
has a rank of n. Now to show that MTM is invertible we will show that the rank of this
product matrix is equal to that of its dimension which is n. To show this we recall two
“rank preserving product identities” and use the one that is applicable in this case. These
identities are stated in the general case as follows.

• If A is a m× n matrix and B is a n× k matrix of rank n then

rank(AB) = rank(A) . (12)

• If A is a m× n matrix and C is a l ×m matrix of rank m then

rank(CA) = rank(A) . (13)

In the case considered here we want to multiply the matrix M on the left by MT . Since MT

has a rank of n (as M does) using Equation 13 we see that

rank(MTM) = rank(M) = n .

But the dimension of the matrix MTM is n. As MTM is a square matrix with a rank equal
to its dimension it is invertible.

Problem 11.6

Recall that the matrix in 11.2 is M =











1 x1

1 x2
...

...
1 xn











.

If no two xi and xj are are different then they must all be the same number and the second
column of M is a multiple of the first. Thus the columns of M are not independent and M
is of rank 1. Since by the rank contraction property of matrix multiplication

rank(MTM) ≤ min(rank(MT ), rank(M)) = rank(M) = 1 ,

the matrix MTM is not invertible. The statement that no two xi and xj are are different
means that they are all the same and all the data points lie on a vertical line.



Problem 11.7 (for a Vandermonde matrix we need at least m+1 distinct numbers)

Recall that the matrix 11.5 from the book is

M =











1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...
1 xn x2

n · · · xm
n











.

We will show the contraposative of this statement that is if we have less than m+1 distinct
numbers than the columns are not linearly independent. We will argue this statement in an
induction form. If we assume that there is only one distinct number then the second column
of the above is a scalar multiple of the first column and the columns of M are not lineally
independent. If we two distinct numbers we now argue that the first three columns of M
will not be lineally independent. By changing the order of the samples and since we assume
that we only have two unique numbers, with out loss of generality we can write the first
three columns of the matrix M as







1 a a2

1 b b2

...
...

...











x
y
z



 = 0 or equivalently

[

1 a a2

1 b b2

]





x
y
z



 = 0 .

From this we can perform row reduction to get

[

1 0 −ab
0 1 a+ b

]





x
y
z



 = 0 .

Thus if we take x = ab and y = −a− b and z = 1 then we have a nonzero vector in the null
space of the first three columns. Thus the first three columns are not linearly independent.
We can continue this procedure, showing that with only three, four, five, etc. unique numbers
the submatrix from M with the first four, five, six, etc. columns are linearly independent.
When we have only m unique numbers the submatrix with m+1 rows from M (or the entire
matrix M) will be linearly independent. If we have more than m unique numbers (or at
least m + 1 unique numbers) the matrix M will have m + 1 linearly independent columns
and by problem 10.5 the matrix MTM will be invertible.

Problem 11.8

If the conditions for this problem are true then the conditions for problem 11.7 hold true
and from that problem the columns of M must be linearly independent. If the columns of
M are linearly dependent then by problem 11.5 MTM is invertible.
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Figure 1: A plot of f(t) and its trigonometric approximation g(t) for Problem 1.

Chapter 12 (A LS Model for Human Hearing)

Problem Solutions

Problem 12.1 (a trigonometric polynomial for f(t) = (t− π)2)

We want an approximation to f(t) of the form

g(t) =
1

2
a0 + a1 cos(t) + a2 cos(2t) + a3 cos(3t) + b1 sin(t) + b2 sin(2t) + b3 sin(3t) .

The coefficients in the above expression are given from the formulas given in the book. For
example,

a0 =
1

π

∫ 2π

0

f(t)dt =
1

π

∫ 2π

0

(t− π)2dt =
2π2

3

ak =
1

π

∫ 2π

0

(t− π)2 cos(kt)dt =
4

k2

bk =
1

π

∫ 2π

0

(t− π)2 sin(kt)dt = 0 .

Thus we get

g(t) =
π2

3
+ 4 cos(t) + 2 cos(2t) +

4

3
cos(3t) .

When we plot this approximation with the function f(t) we get the plot shown in Figure 1.



Problem 12.2 (a trigonometric polynomial for f(t) = t2)

First we need to compute ak. For k = 0 this is

a0 =
2

T

∫ T

0

f(t)dt =
2

T

∫ T

0

t2dt =
2

T
·
T 3

3
=

2T 2

3
.

For k ≥ 1 using integration by parts twice we find

ak =
2

T

∫ T

0

f(t) cos

(

2πk

T
t

)

dt =
2

T

∫ T

0

t2 cos

(

2πk

T
t

)

dt

=
2

T





t2 sin
(

2πk
T
t
)

(

2πk
T

)

∣

∣

∣

∣

∣

T

0

−
2T

2πk

∫ T

0

t sin

(

2πk

T
t

)

dt



 = −
2

πk

∫ T

0

t sin

(

2πk

T
t

)

dt

= −
2

πk



−
t cos

(

2πk
T
t
)

(

2πk
T

)

∣

∣

∣

∣

∣

T

0

+
T

2πk

∫ T

0

cos

(

2πk

T
t

)

dt





=
2

πk

(

T

2πk

)

(T cos(2πk))−
2

πk

(

T

2πk

)

sin
(

2πk
T
t
)

(

2πk
T

)

∣

∣

∣

∣

∣

T

0

=
T 2

π2k2
.

For bk we have more integration by parts

bk =
2

T

∫ T

0

f(t) sin

(

2πk

T
t

)

dt =
2

T

∫ T

0

t2 sin

(

2πk

T
t

)

dt

=
2

T



−
t2 cos

(

2πk
T
t
)

(

2πk
T

)

∣

∣

∣

∣

∣

T

0

+
2T

2πk

∫ T

0

t cos

(

2πk

T
t

)

dt





= −
T 2

πk
+

2

πk

∫ T

0

t cos

(

2πk

T
t

)

dt

= −
T 2

πk
+

2

πk





t sin
(

2πk
T
t
)

(

2πk
T

)

∣

∣

∣

∣

∣

T

0

−
T

2πk

∫ T

0

sin

(

2πk

T
t

)

dt





= −
T 2

πk
+

2

πk

T 2

(2πk)2

[

cos

(

2πk

T
t

)
∣

∣

∣

∣

T

0

]

= −
T 2

πk
.



Thus for this problem we get

g(t) ≈
1

2
a0

+ a1 cos

(

2π

T
t

)

+ a2 cos

(

4π

T
t

)

+ a3 cos

(

6π

T
t

)

+ a4 cos

(

8π

T
t

)

+ b1 sin

(

2π

T
t

)

+ b2 sin

(

4π

T
t

)

+ b3 sin

(

6π

T
t

)

+ b4 sin

(

8π

T
t

)

=
T 2

3

+
T 2

π2

(

cos

(

2π

T
t

)

+
1

4
cos

(

4π

T
t

)

+
1

9
cos

(

6π

T
t

)

+
1

16
cos

(

8π

T
t

))

−
T 2

π2

(

sin

(

2π

T
t

)

+
1

2
sin

(

4π

T
t

)

+
1

3
sin

(

6π

T
t

)

+
1

4
sin

(

8π

T
t

))

.

Note that I got a negative sign in the above expression for the sin terms which the solution
in the book does not have. If anyone sees anything wrong with what I have done for this
problem (or agrees with me) please contact me.

Problem 12.3 (a trigonometric polynomial for half the sin function)

For the given f we need to compute

ak =
1

π

∫ 2π

0

f(t) cos(kt)dt for k ≥ 0

bk =
1

π

∫ 2π

0

f(t) sin(kt)dt for k ≥ 1 .

For k = 0 we have

a0 =
1

π

∫ π

0

sin(t)dt = −
cos(t)

π

∣

∣

∣

∣

π

0

= −
1

π
(−1− 1) =

2

π
.

For k ≥ 1 we need to evaluate the integral

ak =
1

π

∫ π

0

sin(t) cos(kt)dt .

To evaluate this we will add two identities

sin(α+ β) = sin(α) cos(β) + sin(β) cos(α)

sin(α− β) = sin(α) cos(β)− sin(β) cos(α) ,

to get the sin-cos product sum identity

sin(α) cos(β) =
1

2
(sin(α + β) + sin(α− β)) . (14)



Using this expression we have that ak can be evaluated (when k 6= 1) as

ak =
1

2π

∫ π

0

(sin((k + 1)t) + sin((1− k)t))dt

=
1

2π

[

−
cos((k + 1)t)

k + 1

∣

∣

∣

∣

π

0

−
cos((1− k)t)

1− k

∣

∣

∣

∣

π

0

]

=
1

2π

[

−
(−1)k+1 − 1

k + 1
+

(−1)k−1 − 1

k − 1

]

.

If k is even we have (−1)k+1 = −1 and (−1)k−1 = −1 so the above becomes

ak =
1

2π

[

−
1

k + 1
(−2) +

1

k − 1
(−2)

]

= −
2

π(k2 − 1)
.

If k is odd we have (−1)k+1 = 1 and (−1)k−1 = 1 and we get

ak =
1

2π

[

−
1

k + 1
(0) +

1

k − 1
(0)

]

= 0 .

In the case k = 1 we can use Equation 14 to find

a1 =
1

π

∫ π

0

sin(t) cos(t)dt =
1

2π

∫ π

0

sin(2π)dt =
1

2π

(

−
cos(2t)

2

∣

∣

∣

∣

π

0

= −
1

4π
(0− 0) = 0 .

Now to compute bk we need to compute

bk =
1

π

∫ π

0

sin(t) sin(kt)dt .

To evaluate this we will use the sin-sin product sum identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α + β)) , (15)

to write the integral expression for bk as

bk =
1

2π

∫ π

0

(cos((1− k)t)− cos((1 + k)t)dt .

We can evaluate this (when k 6= 1) as

bk =
1

2π

[

sin((k − 1)t)

k − 1

∣

∣

∣

∣

π

0

−
sin((k + 1)t)

k + 1

∣

∣

∣

∣

π

0

]

=
1

2π
(0− 0) = 0 .

If k = 1 using Equation 15 we have

b1 =
1

π

∫ π

0

sin2(t)dt =
1

2π

∫ π

0

(1− cos(2t))dt =
1

2π

[

π −
1

2
sin(2t)

∣

∣

∣

∣

π

0

]

=
1

2
.

Using these expressions we get for g(x) the following

g(x) =
1

π
+ a2 cos(2t) + a4 cos(4t) + b1 sin(t) =

1

π
−

2

3π
cos(2t)−

2

15π
cos(4t) +

1

2
sin(t) .



Problem 12.4 (the trigonometric polynomial for sin(1
2
t))

We have

ak =
1

π

∫ 2π

0

f(t) cos(kt)dt =
1

π

∫ 2π

0

sin

(

1

2
t

)

cos(kt)dt .

For k = 0 we find

a0 =
1

π

∫ 2π

0

sin

(

1

2
t

)

dt = −
1

π

cos
(

1
2
t
)

1
2

∣

∣

∣

∣

∣

2π

0

= −
2

π
(cos(π)− 1) =

4

π
.

Now using sin(α) cos(β) = 1
2
(sin(α+ β) + sin(α− β)) we find ak can be written as

ak =
1

2π

∫ 2π

0

(

sin

((

k +
1

2

)

t

)

+ sin

((

1

2
− k

)

t

))

=
1

2π

[

−
cos((k + 1

2
)t)

k + 1
2

−
cos((1

2
− k)t)

1
2
− k

∣

∣

∣

∣

2π

0

= −
1

2π

[

cos(2π(k + 1
2
))− 1

k + 1
2

+
cos(2π(k − 1

2
))− 1

1
2
− k

]

.

Now

cos(2π(k +
1

2
)) = cos(2πk + π) = cos(2πk) cos(π) = −1 ,

and

cos(2π(k −
1

2
)) = cos(2πk − π) = −1 ,

so ak becomes

ak = −
1

2π

[

−
2

k + 1
2

−
2

1
2
− k

]

=
1

π

[

1

k + 1
2

+
1

1
2
− k

]

=
4

π(1− 4k2)
.

For bk the integral we need to evaluate is

bk =
1

π

∫ 2π

0

sin

(

1

2
t

)

sin(kt)dt .

Using the sin-sin product sum identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α + β)) ,

we have

bk =
1

2π

∫ 2π

0

(cos

(

(
1

2
− k)t

)

− cos((
1

2
+ k)t))dt

=
1

2π

[

sin((1
2
− k)t)

1
2
− k

−
sin((1

2
+ k)t)

1
2
+ k

∣

∣

∣

∣

2π

0

=
1

2π

[

sin((1
2
− k)2π)

1
2
− k

−
sin((1

2
+ k)2π)

1
2
+ k

]

.



Now

sin((
1

2
− k)2π) = sin(π − 2πk) = sin(π) cos(2πk)− cos(π) sin(2πk) = 0 ,

and

sin((
1

2
+ k)2π) = 0 .

Because of this bk = 0. Thus the fourth order trigonometric polynomial is given by

g(x) ≈
2

π
−

4

π

[

1

3
cos(t) +

1

15
cos(2t) +

1

35
cos(3t) +

1

63
cos(4t)

]

.

Problem 12.5 (a trigonometric approximation)

We will use

ak =
2

T

∫ T

0

f(t) cos

(

2πk

T
t

)

dt for k ≥ 0

bk =
2

T

∫ T

0

f(t) sin

(

2πk

T
t

)

dt for k ≥ 1 .

For k = 0 we find a0 given by

a0 =
2

T

∫ T/2

0

tdt +
2

T

∫ T

T/2

(T − t)dt =
2

T

(

t2

2

∣

∣

∣

∣

T/2

0

−
2

T

(

(T − t)2

2

∣

∣

∣

∣

T

T/2

=
1

T

(

T 2

4

)

−
1

T

(

0−
T 2

4

)

=
T

4
+

T

4
=

T

2
.

For ak when k ≥ 1 we have

ak =
2

T

∫ T/2

0

t cos

(

2πk

T
t

)

dt+
2

T

∫ T

T/2

(T − t) cos

(

2πk

T
t

)

dt

=
2

T





t sin
(

2πk
T
t
)

2πk
T

∣

∣

∣

∣

∣

T/2

0

−
T

2πk

∫ T/2

0

sin

(

2πk

T
t

)

dt





+
2

T





(T − t) sin
(

2πk
T
t
)

2πk
T

∣

∣

∣

∣

∣

T

T/2

+
T

2πk

∫ T

T/2

sin

(

2πk

T
t

)

dt





=
2

T

[

T

2πk
·
T

2
sin

(

2πk

T

T

2

)

+
T

2πk
·

T

2πk
cos

(

2πk

T

T

2

)
∣

∣

∣

∣

T/2

0

]

+
2

T

[

−
T

2πk
·
T

2
sin (πk) +

T 2

(2πk)2

(

− cos

(

2πk

T
t

)
∣

∣

∣

∣

T

T/2

]

=
2

T

[

T 2

(2πk)2
(cos(πk)− 1)

]

+
2

T

[

T 2

(2πk)2
(− cos(2πk) + cos(πk))

]

=
T

2π2k2
((−1)k − 1) +

T

2π2k2
(−1 + (−1)k) .



If k is even then (−1)k = +1 so ak = 0. If k is odd then (−1)k = −1 so

ak = −
2T

π2k2
.

For bk we have

bk =
2

T

∫ T/2

0

t sin

(

2πk

T
t

)

dt+
2

T

∫ T

T/2

(T − t) sin

(

2πk

T
t

)

dt

=
2

T



−
t cos

(

2πk
T
t
)

2πk
T

∣

∣

∣

∣

∣

T/2

0

+
T

2πk

∫ T/2

0

cos

(

2πk

T
t

)

dt





+
2

T



−
(T − t) cos

(

2πk
T
t
)

2πk
T

∣

∣

∣

∣

∣

T

T/2

−
T

2πk

∫ T

T/2

cos

(

2πk

T
t

)

dt





=
2

T

[

−
T

2πk

(

T

2
cos

(

2πk

T

T

2

)

− 0

)

+
T

2πk

T

2πk
sin

(

2πk

T
t

)
∣

∣

∣

∣

T/2

0

]

+
2

T

[

−
T

2πk

(

0−
T

2
cos (πk)

)

−
T

2πk

T

2πk
sin

(

2πk

T
t

)
∣

∣

∣

∣

T

T/2

]

=
2

T

[

−
T

2πk

T

2
(−1)k

]

+
2

T

[

T

2

T

2πk
(−1)k

]

= 0 .

Thus we get

g(x) =
T

4
−

2T

π2

∞
∑

k=1,3,5,···

1

k2
cos

(

2πk

T
t

)

=
T

4
−

2T

π2

∞
∑

k=0

1

(2k + 1)2
cos

(

2π(2k + 1)

T
t

)

=
T

4
−

2T

π2

[

cos

(

2πt

T

)

+
1

9
cos

(

6πt

T

)

+
1

25
cos

(

10πt

T

)

+ · · ·

]

.
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Figure 2: The feasible region for Problem 1.

Chapter 13 (Linear Programming I)

Notes on Example 13.3

Since x1 is in units of 1
2
-cup units we have that 1

2
x1 is the amount of milk in 1-cup units.

That is if x1 = 1 then we have 1
2
x1 = 1

2
cups of milk. If we want to restrict ourselves to

mixtures that contain between 1-3 oz of corn flakes per cup of milk we must have

x2

1
2
x1

≥ 1 or x2 ≥
1

2
x1 or x1 − 2x2 ≤ 0 ,

and
x2

1
2
x1

≤ 3 or x2 ≤
3

2
x1 or 3x1 − 2x2 ≥ 0 .

These are the two inequality expressions quoted in the book.

Problem Solutions

Problem 13.1 (a linear programming problem)

In Figure 2 we plot the feasible region for this problem in gray. The possible maximum must
happen at an extreme point. From the above diagram this region has extreme points given
by

(0, 0) , (2, 0) , (2, 2/3) , (3/2, 1) , (1/2, 1) .
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Figure 3: The feasible region for Problem 2.

Evaluating the objective function z at each of these points gives the values

0 , 6 , 7.333 , 6.5 , 3.5 .

The largest value of the the objective function happens at the value of (x1, x2) = (2, 2/3)
which is our optimal solution.

Problem 13.2 (another linear programming problem)

In Figure 3 we plot the feasible region for this problem in gray. From the above diagram we
see that the feasible region is unbounded. Thus this maximization problem has no solution.

Problem 13.3 (another linear programming problem)

In Figure 4 we plot the feasible region for this problem in gray. We see that in the feasible
region x1 can increase without bounds. Thus the objective function z = −3x1 + 2x2 can be
made infinitely small. Thus there is no solution.

Problem 13.4 (example 13.2)

In Figure 5 we plot the feasible region for this problem in gray. From this plot we see that
the extreme points (with the value of the objective function at them) are given by

(2000, 2000, 340) , (6000, 2000, 740) , (6000, 4000, 880) , (5000, 5000, 850) .
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Figure 4: The feasible region for Problem 3.
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Figure 5: The feasible region for Problem 4.
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Figure 6: The feasible region for Problem 6.

Thus the maximum is given at the point (x1, x2) = (6000, 4000) with a value of 880.

Problem 13.6 (maximizing the shipping costs)

Let xA and xB be the number of containers of A and B shipped in the truck. For this
problem, we want to maximize the shipping charge, z, which is given in terms of the values
of xA and xB by

z = 2.2xA + 3.0xB .

The constraints on xA and xB (related to the allowed weight and volume in the truck) are
given by

40xA + 50xB ≤ 37000

2xA + 3xB ≤ 2000 .

The the above constraints we also have the nonnegativity constraints xA ≥ 0 and xB ≥ 0.
This feasible region is drawn in Figure 6. The extreme points for this problem are given by

(0, 0) , (3700/4, 0) , (550, 300) , (0, 2000/3) .

These have values of the objective function give by

0 , 2035 , 2110 , 2000 .

Thus the largest of these happens at the point (xA, xB) = (550, 300).
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Figure 7: The feasible region for Problem 8.

Problem 13.7 (a new objective function for shipping costs)

In this case the objective function becomes z = 2.5xA + 3.0xB. The extreme points don’t
change when only the objective function changes. Thus we need to only evaluate this new
objective function at the same extreme points found before. We find

0.0 , 2312.5 , 2275.0 , 2000.0 .

Thus the optimum under this new objective function is (xA, xB) = (3700/4, 0).

Problem 13.8 (the diet problem)

Let xA and xB be the amounts (in pounds) of ingredient A and B used to make the feed
mixture. We have to satisfy the following constraints on the nutritional content N1, N2, and
N3 given by

2xA + 5xB ≥ 10

2xA + 3xB ≥ 8

6xA + 4xB ≥ 12 ,

while at the same time minimizing the objective function z = 0.08xA+0.09xB. This feasible
region is drawn in Figure 7. The extreme points for this region and the objective function
at these points are found to be

x_A x_B objective

D 5.0 0.0 0.400



A 0.0 3.0 0.270

B 0.4 2.4 0.248

C 2.5 1.0 0.290

Here the rows are denoted with the same label A-D that is found in Figure 7. The objective
function is minimized at the point (xA, xB) = (0.4, 2.4).

Problem 13.9 (an infinite number of solutions)

Assume that our objective function is of the form z = c1x1 + c2x2 and that at the two
points (x′

1, x
′

2) and (x′′

1, x
′′

2) have the same value of the the objective function z∗. Then on
the streight line between them we have the objective function given by

c1x1 + c2x2 = c1(tx
′

1 + (1− t)x′′

1) + c2(tx
′

2 + (1− t)x′′

2)

= t(c1x
′

1 + c2x
′

2) + (1− t)(c1x
′′

1 + c2x
′′

2)

= tz∗ + (1− t)z∗ = z∗ ,

the same value of the objective function at either of the two points (x′

1, x
′

2) and (x′′

1, x
′′

2).

Problem 13.10 (example 13.8)

To maximize the objective function z = −5x1+x2 we want to move from any given point in
the direction of the gradient of z. That is in the direction of the vector (−5,+1). Looking
at the feasible region drawn in Figure 13.5 we see that moving in this direction will place us
at the point (1, 6).



Chapter 14 (Linear Programming II)

Problem Solutions

Problem 14.1 (converting to the standard form for linear programming)

The standard form for linear programming is defined by

• Converting a minimization problem into a maximization problem by taking the nega-
tive of the objective function if needed

• Converting all “greater than” inequalities into “less than” inequalities

• Add positive slack variables to turn all “less than” inequalities into true equalities

The first two steps for the problem given here are to maximize

z = −2x1 − 5x2 ,

subject to

3x1 − 6x2 ≤ 2

x1 + x2 ≤ 3

−x1 ≤ −6

x2 ≤ 5

x1, x2 ≥ 0 .

For the third step we introduce the slack variables x3, x4, x5, x6 ≥ 0 to turn the less than
inequalities into equalities we get

3x1 − 6x2 + x3 = 2

x1 + x2 + x4 = 3

−x1 + x5 = −6

x2 + x6 = 5 .

Thus in total, our standard form for the given linear program is for us to maximize

z = −2x1 − 5x2 ,

subject to

3x1 − 6x2 + x3 = 2

x1 + x2 + x4 = 3

−x1 + x5 = −6

x2 + x6 = 5

x1, x2, x3, x4, x5, x6 ≥ 0 .



Problem 14.2 (more standard form)

Following the steps outlined in the book and in the previous problem we would maximize

z = −3x1 + x2 + x3 ,

subject to

3x1 − 5x2 + x3 = 3

−2x1 − x2 + x4 = 2

−x1 + x5 = −5

−x2 + x6 = −2

x1, x2, x3, x4, x5, x6 ≥ 0 .

Problem 14.3

Part (a): Note that from x1 + x2 + 2x3 = 2 and the fact that xi ≥ 0 (so that each term in
the previous sum is nonnegative) we then must have that

x1 ≤ 2

x2 ≤ 2

2x3 ≤ 2 .

Thus x1, x2 and x3 are at least bounded above by 2. From the constraint 2x1 +4x3+ x4 = 1
using the same logic as above we can conclude that each term in the linear constraint must
be less than 1 and in particular that x4 ≤ 1. Thus each xi is bounded above and as ||x||2 is
the sum of squared terms each of which is bounded the norm must also be bounded.

Part (b): Here A =

[

1 1 2 0
2 0 4 1

]

so m = 2 and n = 4. Recall that basic solutions are

ones where we set n−m = 2 values of x1, x2, x3 or x4 to zero and solve for the other m = 2
variables. We need to pick two variables to set equal to zero and then solve. If x1 = x2 = 0
we have the system

[

2 0
4 1

] [

x3

x4

]

=

[

2
1

]

⇒

[

x3

x4

]

=

[

1
−3

]

.

If x1 = x3 = 0 we have the system

[

1 0
0 1

] [

x2

x4

]

=

[

2
1

]

⇒

[

x2

x4

]

=

[

2
1

]

.

If x1 = x4 = 0 we have the system

[

1 2
0 4

] [

x2

x3

]

=

[

2
1

]

⇒

[

x2

x3

]

=

[

1.5
0.25

]

.



If x2 = x3 = 0 we have the system

[

1 0
2 1

] [

x1

x4

]

=

[

2
1

]

⇒

[

x1

x4

]

=

[

2
−3

]

.

If x2 = x4 = 0 we have the system

[

1 2
2 4

] [

x1

x3

]

=

[

2
1

]

⇒ is a singular system .

If x3 = x4 = 0 we have the system

[

1 1
2 0

] [

x1

x2

]

=

[

2
1

]

⇒

[

x1

x2

]

=

[

0.5
1.5

]

.

If we use these results with the zero values assigned we get for the basic solutions to this
problem









0
0
1
−3









,









0
2
0
1









,









0
1.5
0.25
1









,









2
0
0
−3









,









0.5
1.5
0
0









.

Part (c): To be a basic feasible solution one must be a basic solution that satisfies the
nonnegativity constraints. From the basic solutions above the only ones that satisfy these
nonnegativity requirement are









0
2
0
1









,









0
1.5
0.25
1









,









0.5
1.5
0
0









.

Part (d): We can evaluate the optimization objective for this problem at each of the basis
feasible solutions and then the optimum is the basic feasible solution that has the largest
objective function. For the basic feasible solutions found for this problem the value of

the objective function are 1.0, −1.25, and −0.5. Thus
[

0 2 0 1
]T

gives the optimal
solution to this problem. Some of the computations for this problem can be found in the
Octave function chap 14 prob 3.m.

Problem 14.4 (an example with no basis feasible solutions)

Part (a): For this problem we have A =

[

1 5 3
−1 2 4

]

so m = 2 and n = 3 thus we need

to set n−m = 1 variables equal to zero and then solve for the m = 2 nonzero variables. If
x1 = 0 we have

[

5 3
2 4

] [

x2

x3

]

=

[

2
3

]

⇒

[

x2

x3

]

=

[

−0.07
0.78

]

.



If x2 = 0 we have
[

1 3
−1 4

] [

x1

x3

]

=

[

2
3

]

⇒

[

x1

x3

]

=

[

−0.14
0.71

]

.

If x3 = 0 we have
[

1 5
−1 2

] [

x1

x2

]

=

[

2
3

]

⇒

[

x1

x2

]

=

[

−1.57
0.71

]

.

Part (b): As none of the basis solutions have all positive entries there are no feasible solu-
tions to this problem and the feasible set for this problem is empty. Some of the computations
for this problem can be found in the Octave function chap 14 prob 4.m.

Problem 14.5

Part (a): For this problem we need to introduce two slack variables x4 ≥ 0 and x5 ≥ 0 such
that the inequalities become equalities. This means the linear constraints we have to satisfy
are given by

2x1 + 3x2 + x3 + x4 = 4

x1 + 2x2 + 3x3 + x5 = 5 ,

with x1, x2, x3, x4, x5 ≥ 0.

Part (b): For this problem A =

[

2 3 1 1 0
1 2 3 0 1

]

. Here m = 2 and n = 5 so we must set

n−m = 3 variables equal to zero, in other words select two variables which will be nonzero.
We find












−7
6
0
0
0













,













1.4
0
1.2
0
0













,













5
0
0
−6
0













,













2
0
0
0
−3













,













0
1
1
0
0













,













0
2.5
0

−3.5
0













,













0
1.333
0
0

2.333













,

and












0
0

1.666
2.333
0













,













0
0
4
0
−7













,













0
0
0
4
5













.

Part (c): To be feasible means that all elements of our basic solution must be nonzero.
Only the second, fourth, fifth, seventh, eighth, and tenth basic solutions above have this
property. Evaluating the objective function at each basic feasible solution gives the values

3 , 6 , 1 , 2.666 , −1.666 , 0.0 .



The largest value is for the basic feasible solution of
[

2 0 0 0 3
]T

Part (f): The original solution is x1 = 2, x2 = 0, x3 = 0 with an objective function value
of z = 6.

Some of the computations for this problem can be found in the Octave function chap 14 prob 5.m.

Problem 14.6 (solving a linear program)

Part (a): For this problem we first need to convert the minimization problem into a maxi-
mization problem i.e. our objective function is now to maximize

z = −2x1 + 3x2 − 3x3 .

Note that the solution in the back of the book has to maximize the objective function
z = −2x1 − 3x2 − 3x3. I think this is a typo since this is not the negative of the initial
expression for z. In addition to converting the problem from a minimization problem to
a maximization problem we need to introduce one slack variables x4 ≥ 0 such that the
inequality becomes an equality. This means the linear constraints we have to satisfy is given
by

x1 − 2x2 + 3x3 + x4 = 5 .

with x1, x2, x3, x4 ≥ 0.

Part (b): For this problem we have A =

[

1 −2 3 1
2 1 −2 0

]

, thus m = 2 and n = 4. To

find the basic solutions we need to set m − n = 2 variables to zero and solve for the other
m = 2 variables. If x1 = x2 = 0 we have the system

[

3 1
−2 0

] [

x3

x4

]

=

[

5
2

]

⇒

[

x3

x4

]

=

[

−1
8

]

.

If x1 = x3 = 0 we have the system
[

−2 1
1 0

] [

x2

x4

]

=

[

5
2

]

⇒

[

x2

x4

]

=

[

2
9

]

.

If x1 = x4 = 0 we have the system
[

−2 3
1 −2

] [

x2

x3

]

=

[

5
2

]

⇒

[

x2

x3

]

=

[

−16
−9

]

.

If x2 = x3 = 0 we have the system
[

1 1
2 0

] [

x1

x4

]

=

[

5
2

]

⇒

[

x1

x4

]

=

[

1
4

]

.

If x2 = x4 = 0 we have the system
[

1 3
2 −2

] [

x1

x3

]

=

[

5
2

]

⇒

[

x1

x3

]

=

[

2
1

]

.



If x3 = x4 = 0 we have the system
[

1 −2
2 1

] [

x1

x2

]

=

[

5
2

]

⇒

[

x1

x2

]

=

[

1.8
−1.6

]

.

Part (c): To be feasible means that our solutions must satisfy the nonnegativity constraints.
From the above the only solutions that do this are the second, fourth, and fifth.

Part (d): We can evaluate our objective function z = −2x1 + 3x2 − x3 + 0x4 on each basic
feasible solution to determine the basic feasible solution that is maximal. Evaluating our
objective function on each of the above basic feasible solution gives the values of 6, −2, −5.
The largest is the value of 6 which happens with x1 = 2, x2 = 9, x3 = 0, and x4 = 0.

Part (f): In terms of the original problem our solution is given by x1 = 2, x2 = 9, and
x3 = 0 with an objective function value of 6.

Problem 14.7 (the feasible set is a convex set)

Part (a): Note that

Ax = tAx1 + (1− t)Ax2 = tb+ (1− t)b = b .

Part (b): If x1 ≥ 0 and x2 ≥ 0 then tx1 ≥ 0 and (1− t)x2 ≥ 0 so their sum is nonnegative
(when 0 ≤ t ≤ 1).

Problem 14.8 (the feasible set of example 14.2)

We want to find the line that is the intersection of the two planes 3x1 + x2 + x3 = 10 and
2x1 − x2 + 2x3 = 10. We will do this by writing these two equations in a matrix form
and performing elementary row operations to derive the row reduced echelon form for this
system. With the resulting relationship we will be able to more easily express the variables
x1 and x2 in terms of x3, which with the nonnegativity constraints on x1, x2, and x3 will
enable us to evaluate the limiting points on this line that still give feasible solutions. To
derive the row reduced echelon form we compute

[

3 1 1
2 −1 2

]





x1

x2

x3



 =

[

10
10

]

⇒

[

1 1/3 1/3
2 −1 2

]





x1

x2

x3



 =

[

10/3
10

]

⇒

[

1 1/3 1/3
0 −5/3 4/3

]





x1

x2

x3



 =

[

10/3
10/3

]

⇒

[

1 1/3 1/3
0 1 −4/5

]





x1

x2

x3



 =

[

10/3
−2

]

⇒

[

1 0 3/5
0 1 −4/5

]





x1

x2

x3



 =

[

4
−2

]

.



From this last expression we see that we can write x1 and x2 in terms of x3 as

x1 = −
3

5
x3 + 4

x2 =
4

5
x3 − 2 .

If we let x3 = 5t we get x1 = −3t + 4 and x2 = 4t − 2. As we vary t we trace out the line
that is the intersection of the two planes. We can now apply the nonnegativity constraints
on x1, x2, and x3 to determine feasible values of t. To have x3 ≥ 0 we must have t ≥ 0. To
have x1 ≥ 0 we must have

−3t+ 4 ≥ 0 so t ≤
4

3
.

To have x2 ≥ 0 we must have

4t− 2 ≥ 0 so t ≥
1

2
.

The intersection (over t) of all of the valid regions means that we must have 1
2
≤ t ≤ 4

3
. The

two end points of this line are then given by the points (x1, x2, x3) when we take t equal to
the values 1

2
and 4

3
. We find

t =
1

2
⇒ (x1, x2, x3) =

(

5

2
, 0,

5

2

)

t =
4

3
⇒ (x1, x2, x3) =

(

0,
10

3
,
20

3

)

.

Problem 14.9 (show the feasible set is bounded)

Ex 14.5 is the problem of maximizing z = 2x1 + 3x2 − x3 + 4x5 + x6 subject to

2x1 + x3 + 4x4 + 2x5 = 20

x1 + x2 − x3 + x4 + x5 = 10

x1, x2, x3, x4, x5 ≥ 0 .

Part (a): Given that 2x1 + x3 + 4x4 + 2x5 = 20 and that all xi ≥ 0 that

2x1 ≤ 20

x3 ≤ 20

4x4 ≤ 20

2x5 ≤ 20 .

All of these imply that xi ≤ 20 for i = 1, 3, 4, 5.

Part (b): The other constraint of x1+x2−x3+x4+x5 = 10 when added to the first constraint
to remove the x3 term gives a linear equation with all positive terms i.e. everything is added
together. We get

3x1 + x2 + 5x4 + 3x5 = 30 .



Using the same logic as before we have

3x1 ≤ 30

x2 ≤ 30

5x4 ≤ 30

3x5 ≤ 30 ,

which implies that x2 ≤ 30.

Part (c): As ||x||2 is the sum of the square of terms that are bounded the total expression
is bounded.



Chapter 14 (Linear Programming III: The Simplex Method)

Problem Solutions

Problem 14.1

In standard form this problem is to maximize

z = 3x1 + 4x2 + 0x3 + 0x4 .

subject to the constraints

2x1 + 3x2 + x3 = 7

5x1 + 2x2 + x4 = 3 ,

and x1, x2, x3, x4 ≥ 0. As a tableau this problem is









x1 x2 x3 x4 z
2 3 1 0 0 7
5 2 0 1 0 3
−3 −4 0 0 1 0









= x3

= x4

= z

Picking the most negative element in the objective row gives the second column as the pivot
column and the variable x2 is the entering variable. To determine the pivot row consider the
ratios:

1st row:
7

3
= 2.3 , 2nd row:

3

2
= 1.5 .

The smaller of these corresponds to row two and row two is our pivot row. We now seek to
transform the pivot entry from the value of two to the value of one by

• Divide the second row by the value of 2

• Add −3 times the second row to the fist row

• Add 4 times the second row to the third row

When we do this we get the new tableau of









x1 x2 x3 x4 z
−11

2
0 1 −3

2
0 5

2
5
2

1 0 1
2

0 3
2

7 0 0 2 1 6









= x3

= x2

= z

As there are no negative elements in the objective row the simplex method has found the
the solution of x1 = 0, x2 =

3
2
and z = 6. The numerics for this problem are worked in the

Octave file chap 15 prob 1.m.



Problem 14.2

In standard form this problem is to maximize

z = 2x1 + x2 + 0x3 + 0x4 + 0x5 .

subject to the constraints

3x1 + 2x2 + x3 = 4

3x1 + 2x2 + x4 = 3

2x1 + x5 = 3 ,

and x1, x2, x3, x4, x5 ≥ 0. As a tableau this problem is












x1 x2 x3 x4 x5 z
3 2 1 0 0 0 4
3 1 0 1 0 0 3
2 0 0 0 1 0 3
−2 −1 0 0 0 1 0













= x3

= x4

= x5

= z

The most negative element in the objective row is −2, in the column for x1. Thus x1 is the
entering variable and x1 is the pivot column. To determine the pivot row we consider the
ratios

1st row:
4

3
, 2nd row:

3

3
, 3rd row:

3

2
.

WE pick the smallest ratio which corresponds to row 2 with a value of 1. Thus row two is our

pivot row. We now transform our pivot column of
[

3 3 2 −2
]T

into
[

0 1 0 0
]T
.

We do this by

• Dividing the second row by 3

• Adding −3 times the second row to the first row

• Adding −2 times the second row to the third row

• Adding 2 times the second row to the fourth row

This gives the tableau












x1 x2 x3 x4 x5 z
0 1 1 −1 0 0 1
1 1

3
0 1

3
0 0 1

0 −2
3

0 −2
3

1 0 1
0 −1

3
0 2

3
0 1 2













= x3

= x1

= x5

= z

The most negative entry in the objective row is −1/3 so our pivot column is x2. Our pivot
row is the smallest of

1st row: 1 , 2nd row:
1
1
3

= 3 .



Note that we do not divide by the number in row three since we would have to divide by −2
3

but that term is negative. The smallest between the two choices above is for row 1 and we

want to transform our pivot column vector
[

1 1/3 −2/3 −1/3
]T

into
[

1 0 0 0
]T
.

We can do this by

• Adding −1/3 times the first row to the second row

• Adding 2/3 times the first row to the third row

• Adding 1/3 times the first row to the fourth row

This given the tableau












x1 x2 x3 x4 x5 z
0 1 1 −1 0 0 1
1 0 −1

3
2
3

0 0 2
3

0 0 2
3

−4
3

1 0 5
3

0 0 1
3

1
3

0 1 7
3













= x2

= x1

= x5

= z

As all elements of the objective row are positive the optimal solution has been found and it
is

x1 =
2

3
, x2 = 1 , z =

7

3
.

The numerics for this problem are worked in the Octave file chap 15 prob 2.m.

Problem 14.3

This problem is to maximize

z = 3x1 − 2x2 + 6x4 + 0x4 + 0x5 ,

subject to the constraints that

2x1 − 5x2 + x3 + x4 = 2

x1 + x2 + x3 + x5 = 5 ,

with x1, x2, x3, x4, x5 ≥ 0. The initial tableau for this problem is








x1 x2 x3 x4 x5 z
2 −5 1 1 0 0 2
1 1 1 0 1 0 5
−3 2 −6 0 0 1 0









= x4

= x5

= z

The pivot column corresponds to the variable x3 and the pivot row is 1. We thus want to

change
[

1 1/3 −2/3 −1/3
]T

into
[

1 0 0 0
]T
. We can do this by

• Dividing the second row by 6



• Add five times the second row to the first row

• Add 28 times the second row the third row

This given the tableau









x1 x2 x3 x4 x5 z
7
6

0 1 1
6

5
6

0 9
2

−1
6

1 0 −1
6

1
6

0 1
2

13
3

0 0 4
3

14
3

1 26









= x3

= x2

= z

The objective row has all positive elements so we have found the optimal solution. In this
case it is given by

x1 = 0 , x2 =
1

2
, x3 =

9

2
, with z = 26 .

The numerics for this problem are worked in the Octave file chap 15 prob 3.m.

Problem 14.4

This problem is to maximize

z = 2x1 + x2 − x3 + 0x4 + 0x5 + 0x6 ,

subject to the constraints that

2x1 − 3x2 + x3 + x4 = 2

x1 + 5x2 − 2x3 + x5 = 4

2x1 − 4x2 − x3 + x6 = 3 ,

with x1, x2, x3, x4, x5, x6 ≥ 0. The initial tableau for this problem is













x1 x2 x3 x4 x5 x6 z
2 −3 1 1 0 0 0 2
1 5 −2 0 1 0 0 4
2 −4 −1 0 0 1 0 3
−2 −1 +1 0 0 0 1 0













= x4

= x5

= x6

= z

From the above, the first column is the pivot column and the pivot row is the smallest value
of

1st row:
2

2
, 2nd row:

4

1
= 4 , 3rd row:

3

2
.

showing that the first row is the pivot row. Continuing in the same way as the previous
problems we finish this problem in the Octave file chap 15 prob 4.m where we find the
solution

x1 =
22

13
, x2 =

6

13
, x3 = 0 , with z =

50

13
.



Problem 14.5

This problem is to maximize

z = 3x1 − 2x2 − x3 + x4 + 0x5 + 0x6 ,

subject to the constraints that

2x1 − 3x2 + x3 − x4 + x5 = 6

x1 + 2x2 − x3 + 2x4 + x6 = 4 ,

with x1, x2, x3, x4, x5, x6 ≥ 0. The initial tableau for this problem is









x1 x2 x3 x4 x5 x6 z
2 −3 1 −1 1 0 0 6
1 2 −1 2 0 1 0 4
−3 2 1 −1 0 0 1 0









= x5

= x6

= z

For this problem, in the Octave file chap 15 prob 5.m we find the optimal solution using
the simplex method to be

x1 = 3.2 , x2 = 0 , x3 = 0 , x4 = 0.4 , with z = 10 .

Problem 14.6-10

Rather than repeat these same calculations for the rest of the problem we will code the
simplex method in an Octave function in the file simplex.m and then solve each problem
using this code. This code will be given the initial tableau and will print the tableau at each
stage of the calculation (as done above) and then finally end when the optimal solution has
been obtained. Here I’ll just print the final tableau. See the Octave file chap 15 prob 6 10.m

for the set up for each of the given problems.

Problem 14.11

This statement is just the fact that all of the constraint rows do not include the objective
function in their expression. That is, recall that a constraint row (with slack variables) looks
like

n+m
∑

j=1

aijxj = di .

Notice that z does not appear in this expression.


