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To the future problem solvers.
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Introduction

I’ve been trying to work through all of these exams. As I do that I’ve been writing up many
of my solutions. If anyone finds errors (typo’s) please let me know and I’ll try to correct
them. I’ve also collected a set of “useful facts” at the beginning of these solutions that make
solving some of the problems much easier. A serious student of these type of tests should
memorize these formulas.
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A Catalog of Useful Facts

Facts from Geometry

Regular Polygons

The area A of a polygon with n sides, side length s, a circumradius r, an in-radius a
(apothem), and a perimeter p = ns can be computed with any of the following formulas

A =
s2n

4 tan
(
π
n

) (1)

=
1

2
r2n sin

(
2π

n

)

(2)

= a2n tan
(π

n

)

(3)

=
1

2
pa . (4)

The interior angles of a polygon is then angle formed between each adjacent sides. A regular

polygon has all equal sides and all equal interior angles. The sum of the interior angles of
any polygon adds to a constant that depends on the number of sides of the polygon. Namely
if we let this polygon have n sides and the constant sum by S (in degrees) then we have

S = 180(n− 2) . (5)

To help in remembering this formula we note that it duplicates the more familiar results for
a triangle and a quadrilateral. Taking n = 3 (a triangle) we have S = 180 and taking n = 4
we have S = 360, both of which are the expected results.

If a polygon is regular (it has equal length sides and equal interior angles) then each interior
angles α is equal to this sum S divided by n or

α =
180(n− 2)

n
. (6)

Note that considered as a function of the number of sides n the interior angle α increases as
the number of sides increases. The limiting value of α is 180.

Parallelograms

Parallelograms have a number of properties. Ones that can be helpful for working contest
problems include

• Each diagonal divides the quadrilateral into two congruent triangles.
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• The sum of the x coordinates of the two points diagonally opposite each other equals
the sum of the x coordinates of the complementary diagonal pair. The same property
holds for the sum of the y coordinates.

Rhomboids

A rhombus is a special parallelogram with four equal sides (i.e. it’s a regular parallelogram).
A rhombus has diagonals that intersect at right angles to each other. The area A of a
rhombus with a base b, and height a (altitude), diagonals of length d1 and d2, side length s,
and interior angle a can be given by any of the following expressions

A = ab (7)

=
1

2
d1d2 (8)

= s2 sin(a) . (9)

Chords of a Circle

A chord of a circle is a geometric line segment whose endpoints both lie on the circumference
of the circle. Some properties of a chord of a circle include

• A chord’s perpendicular bisector passes through the center of the circle.

Triangles

Heron’s Formula gives the area of a triangle in terms of its three sides a, b, and c as

Area =
√

s(s− a)(s− b)(s− c) , (10)

with s the “semiperimeter” or half the triangles perimeter given by

s =
1

2
(a+ b+ c) . (11)

Given the Cartesian coordinates of the three points A, B, and C of a triangle we can compute
the area of it by evaluating the absolute value of the following determinant

Area =
1

2

∣
∣
∣
∣
∣
∣

Ax Ay 1
Bx By 1
Cx Cy 1

∣
∣
∣
∣
∣
∣

. (12)

The Angle Bisector Theorem is concerned with the relative lengths of the two segments
that a triangles side is divided by a line that bisects the opposite angle. It equates their
relative lengths to the relative lengths of the other two sides of the triangle.
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Consider △ABC and let the angle bisector of A intersect side BC at a point D, then the
angle bisector theorem is the statement that

BD

CD
=
AB

AC
.

The medians of a triangle intersect at a point called the centroid1. This point divides each
median into two parts in the ratio of 1:2.

Acute, Obtuse, or Right: If the lengths of the sides of a triangle are denoted as a, b, and
c such that a ≤ b ≤ c i.e. c is the largest side then if

• c2 > a2 + b2 the triangle is an obtuse triangle and ∠C > 90◦

• c2 = a2 + b2 the triangle is a right triangle and ∠C = 90◦

• c2 < a2 + b2 the triangle is an acute triangle and ∠C < 90◦

Recall that the angle opposite the side with length c is denoted as ∠C.

The Circumcircle: The circle that passes though all three vertices of a triangle is known
as the circumcircle. The center of this circle is known as the circumcenter and can be a
point inside or outside of the triangle. The location of the circumcenter is where all three
of the perpendicular bisectors of all three sides meet. For equilateral triangles with a side
length s the radius of the circumcircle is given by

s√
3
. (13)

If the triangle is a general triangle with side lengths a, b, and c then the radius of the
circumcircle is given by

abc

4K
, (14)

with K the area of the triangle given by Heron’s formula Equation 10. In the case of a right
triangle, the hypotenuse is a diameter of the circumcircle, and its center is exactly at the
midpoint of the hypotenuse. If you know an angle (say A) and the length of the opposite
side (say a) then the radius of the circumcircle is given by

a

2 sin(A)
. (15)

The incircle or inscribed circle of a triangle is the largest circle contained in the triangle;
it touches (is tangent to) the three sides. The center of the incircle is called the triangle’s
incenter. The radius of the incircle can be written as

r =
K

s
, (16)

1http://en.wikipedia.org/wiki/Median (geometry)
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where K is the triangles area and s is the semiperimeter given by Equation 11.

If we extend segments from A, B, and C to the opposite sides of their triangle all throught
the same point such that BC = a+ b, AC = c+ d, and AB = e+ f then Ceva’s Theorem is

a

b
· c
d
· e
f
= 1 .

The Altitude to the Hypotenuse of a Right Triangle:

Consider a right triangle △ACB with its right angle ∠C located at the origin of an x-y
Cartesian coordinate system, leg AC is along the y-axis, and leg CB is along the x-axis.
Then if we draw a perpendicular from point C to the hypotenuse AB intersecting at the
point D we have several similar triangles. Note that

∠CAB = ∠DCB and ∠CBD = ∠ACD ,

and thus we have
△ACB ∼ △ADC ∼ △CDB .

This means that given two sides of one triangle we can compute a ratio that is related to
the ratio of two sides of a similar triangle.

Arithmetic Identities

An arithmetic sequence (or arithmetic progression) is defined to have its terms an
given by the formula

an = a1 + (n− 1)d for n ≥ 1 . (17)

The sum of the first N of these terms is given by

SN ≡
N∑

n=1

an =
1

2
N(a1 + aN) =

N

2
(2a1 + (N − 1)d) . (18)

A geometric sequence is defined to have terms an given by

an = a1d
n−1 for n ≥ 1 . (19)

The sum of the first N of these terms is given by

SN ≡
N∑

n=1

an = a1
1− dN

1− d
. (20)

If we sum starting from a different index, say m, then we get

N∑

n=m

an = a1

N∑

n=m

dn−1 = a1

(
dm−1 − dN

1− d

)

.

Another important sum that we often need is given by

N∑

n=1

ndn−1 =
1− dN+1

(1− d)2
− (N + 1)dN

1− d
. (21)
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Expressions for Finite Sums

The following sums can be helpful at times

n∑

k=1

k =
n(n + 1)

2
(22)

n∑

k=1

k2 =
n(n + 1)(2n+ 1)

6
(23)

n∑

k=1

k3 =

(
n(n+ 1)

2

)2

. (24)

Divisibility Facts

For Nine (9): The number nine will divide a number if and only if it divides the sum of
that numbers digits. The remainder of this division is the same at the remainder when we
divide the digit sum by nine. For example, the sum of the digits in the number 123 is 6.
This is also the remainder of 123 when divided by nine. As another example, the sum of the
digits in the number 783 is 18. As 18 is divisible by nine so is the original number 783.

For Eleven (11): To determine divisibility of a number by the number 11 we sum the
digits but with alternating signs. We start positive, then negative, then positive until we
have exhausted the digits in our number. If the remainder when we divide the summed
digits by 11 is zero then we can divide the original number by 11 (see [3]). As an example
consider the number 123. We sum

1− 2 + 3 = 2 ,

and this number is not divisible by 11. As another example consider the larger number 968.
When we perform the required digit sum we get

9− 6 + 8 = 11 ,

which is divisible by 11. Thus the original number is divisible by 11.
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The 1950 Examination

Problem 1

The sum of these three numbers is 12. Based on that, the parts of 64 are then

2

12
64 ,

4

12
64 ,

6

12
64 .

The smallest of these is
2

12
(64) =

1

6
(64) =

32

3
= 10

2

3
.

Problem 2

From the relationship and what we are told we have

16 = 8g − 4 so g =
5

2
.

Thus

R =
5

2
S − 4 .

If S = 10 we compute that R = 5(5)− 4 = 21.

Problem 3

Write this as

(x− r1)(x− r2) = x2 − 2x+
5

2
= 0 .

Then −(r1 + r2) = −2.

Problem 4

Call this expression E. Then we have

E =
(a2 − b2)(ab− a2)− ab(ab− b2)

ab(ab− a2)

=
a3b− a4 − ab3 + a2b2 − a2b2 + ab3

ab(ab− a2)

=
a3(b− a)

a2b(b− a)
=
a

b
.
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Problem 5

The terms of a geometric sequence are given by an = a0r
n for n ≥ 0. For there to be five

geometric means between the two given numbers means that

a0 = 8

a1 = a0r

a2 = a0r
2

a3 = a0r
3

a4 = a0r
4

a5 = a0r
5

a6 = a0r
6 = 8r6 = 5862 .

Solving this last equation for r we find r = 3. This means that the fifth term is a4 = 648.

Problem 6

From the second equation we have

x = −1

2
(y + 3) .

If we put this into the first equation we would have

2

(
1

4

)

(y + 3)2 − 3(y + 3) + 5y + 1 = 0 .

If we simplify this we get
y2 + 10y − 7 = 0 .

Problem 7

This would be the number
(tu1) = 100t+ 10u+ 1 .

Problem 8

The new radius is r′ = 2r. The new area is then

A′ = πr′
2
= π(4r2) = 4πr2 = 4A ,

which is a change
A′ −A

A
=

3A

A
= 3 ,

or 300%.
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Problem 9

This would be the triangle with the largest altitude so it must have its vertex at the “top”
of the circle. This means that its base is 2r and its height is r for an area of

1

2
(2r)r = r2 .

Problem 10

Call this expression E. Then we have

E =
(
√
3−

√
2)(

√
3 +

√
2)√

3(
√
3 +

√
2)

=
1√

3(
√
3 +

√
2)

=
1

3 +
√
6
.

Problem 11

We write C as

C =
e

r

(
rn

R + nr

)

=
e

r

(
R + rn− R

R + nr

)

=
e

r

(

1− R

R + nr

)

.

From this if n increases then 1
R+nr

decreases so C increases. This is assuming that R > 0
and r > 0.

Problem 12

Consider a regular polygon. Then the sum of the interior angles is given by

180(n− 2) ,

so the angle measure of one interior angle is then

180(n− 2)

n
.

The measure of an exterior angle is then

180− 180(n− 2)

n
=

360

n
.

As we have n of these when we sum all n of them we get 360 a constant.
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Problem 13

If we factor the quadratic we see that we have

(x− 1)(x− 2)x(x− 4) = 0 .

Thus the roots are x ∈ {0, 1, 2, 4}.

Problem 14

If we multiply the first equation by two we get

4x− 6y = 16 .

If we add this to the second equation we get

0 = 16 + 9 = 25 .

This is a contradiction and there can be no solutions to this system of equations.

Problem 15

The factors of this are
(x+ 2i)(x− 2i) = 0 ,

none of which are real.

Problem 16

Write this expression as
((a2 − 9b2)2)2 = (a2 − 9b2)4 .

The binomial expansion then tells us that this has 4 + 1 = 5 terms.

Problem 17

If we evaluate these expressions for some of the given x we see that (A) is not correct for
x = 2, (B) is not correct for x = 1, (C) is correct for all x, and (D) is not correct for x = 0.

Problem 18

Only (1) is true in general.
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Problem 19

One man working for one day does 1
md

amount of work (so that md man-days gets the job
done). If we have m+ r men and they work for D days they will do

(m+ r)D
1

md
,

amount of work. As we want the amount of work equal to one job we have

(m+ r)D
1

md
= 1 so D =

md

m+ r
.

Problem 20

If we recall that x− 1 is a factor of x13 − 1 as

(x− 1)(x12 + x11 + x10 + x9 + · · ·+ x+ 1) = x13 − 1 ,

so that
x13 − 1

x− 1
= x12 + x11 + x10 + x9 + · · ·+ x+ 1 .

Then we have that

x13 − 1 + 2− 2

x− 1
= x12 + x11 + x10 + x9 + · · ·+ x+ 1 ,

or
x13 + 1

x− 1
− 2

x− 1
= x12 + x11 + x10 + x9 + · · ·+ x+ 1 .

From this expression by moving the second term on the left to the right-hand-side we see
that two is the remainder of the given division.

Problem 21

If we let this rectangular box have base dimensions w × d (width by depth) and a height of
h. Then the three areas given are

S = hd = 12

F = hw = 8

B = wd = 6 .

Taking the product of these three areas we get

w2d2h2 = 576 .

Thus the volume is wdh = 24.
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Problem 22

If the value of the item starts at V0 then the first discount gives its value of 0.8V0. The
second discount gives its value at 0.9× 0.8V0 = 0.72V0 for a net

1− 0.72 = 0.28 ,

i.e. a 28% discount.

Problem 23

Let M be the monthly rent. Then in one year his income from rent set equal to 5.5% of his
initial investment is

12M − 12(0.125)M − 325 = 0.055(10000) .

Solving this for M gives M = 83.33333.

Problem 24

Write this expression as
(x− 2) +

√
x− 2 = 2 .

Then if we let v =
√
x− 2 this is

v2 + v − 2 = 0 ,

or
(v + 2)(v − 1) = 0 .

Thus v = −2 or v = 1. As v ≥ 0 the first solution is spurious. The second solution is

√
x− 2 = 1 or x− 2 = 1 ,

or x = 3. There is one real solution.

Problem 25

Call this expression E. Then we have

E = log5(125) + log5(625)− log5(25) = 3 + 4− 2 = 5 .
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Problem 26

Write this as
log10(mn) = b ,

or

mn = 10b so m =
10b

n
.

Problem 27

The cars average speed is the total distance traveled divided by the total time. Here that is

D

T
=

120 + 120
120
30

+ 120
40

=
240

7
= 34.28571 .

Problem 28

At the time (T hours from the start) they meet B has traveled 60 + 12 = 72 miles and A
has traveled 60− 12 = 48 miles thus we have

T =
72

vB
=

48

vA
.

In addition we know that vA = vB − 4. Solving for vB and putting that in the above we get
a single equation for vA. Solving that we get vA = 8.

Problem 29

The “rate” of the first machine in envelopes per minute is given by

r1 =
500

8
.

We don’t know the rate of the second machine r2 but we know that in two minutes we want
to have 500 envelopes so

2(r1 + r2) = 500 . (25)

If x is the time for the second machine to address 500 envelopes alone then

xr2 = 500 .

Solving that for r2 in terms of x and putting it into Equation 25 we get

2

(
500

8
+

500

x

)

= 500 .

If we divide by 1000 we get the answer (B).
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Problem 30

Let the number of boys and girls initially be given by B and G respectively. Then after
fifteen girls leave we are left with B boys and G− 15 girls. We are told at this stage that

G− 15 =
B

2
.

Next after 45 boys leave we are left with B − 45 boys and G− 15 girls. We are told at this
stage that

B − 45 =
G− 15

5
.

If we solve these two equations for G we get G = 40.

Problem 31

Originally we order 4 black pairs and b blue pairs. If k is the price for a black pair of socks
then this original order should cost

4k + b(2k) = 4k + 2bk .

When the order has the two pair colors exchanged it would then cost

bk + 4(2k) = bk + 8k .

As we are told that this is 50% more than the original order we know that

bk + 8k = 1.5(4k + 2bk) .

If we divide by k we can solve for b to find b = 1. Thus the ratio of blue to black is
b : 4 = 1 : 4.

Problem 32

If we draw this figure the latter becomes the hypotenuse of a right triangle with a base leg
of seven and a height leg of h so that using the Pythagorean theorem we have

h2 + 72 = 252 so h = 24 .

If the top of the ladder now goes to h − 4 = 20 feet above the ground then new base leg
length (denoted l′) is

l′
2
= 252 − 202 = 225 so l′ = 15 .

Thus the change is 15− 7 = 8.
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Problem 33

The six inch diameter pipe will “carry” an amount of water proportional to

π32 = 9π .

Each one inch diameter pipe will “carry” an amount of water proportional to

π

(
1

2

)2

=
π

4
.

We want to know n such that
πn

4
= 9π .

Solving we get n = 36.

Problem 34

The circumference of a circle is given by C = 2πr. The changes of the circumference of a
circle are related to the changes of the circle radius by

∆C = C1 − C0 = 25− 20 = 5 = 2π(r1 − r0) = 2π∆r .

Thus we find

∆r =
5

2π
.

Problem 35

As we are given the three side lengths we can use Heron’s formula to compute the triangles
area. We find

s =
1

2
(24 + 10 + 26) = 30

A =
√

s(s−AB)(s−BC)(s− AC) = 120 ,

when we simplify.

Let the triangle have vertices A, B, and C with AB on the x-axis and C above the x-axis.
Let the tangent points across the triangle from a vertex be denoted with a “tick”. Thus A′

is the tangent point of the circle on the side BC across from the vertex A. Let the point O
be the center of the incircle.

Now if we connect each vertex of the triangle to the center of the inscribed circle we introduce
six triangles that are equal in pairs and all have the same height r the radius of the incircle.
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These triangles are

△AC ′O ∼= △AB′O

△BC ′O ∼= △BA′O

△CB′O ∼= △CA′O .

We can thus write the area of the full triangle △ABC as the sum of these smaller triangles
as

A = 2

(
1

2
AC ′r

)

+ 2

(
1

2
BA′r

)

+ 2

(
1

2
CB′r

)

.

This is equal to
A = r(AC ′ +BA′ + CB′) .

Next by the two-tangent theorem we have that

AC ′ = AB′

BC ′ = BA′

CB′ = CA′ .

Using this we can show that

60 = AB +BC + CA = AC ′ + C ′B +BA′ + A′C + CB′ +B′A = 2AC ′ + 2BA′ + 2CB′ .

Thus we have
AC ′ +BA′ + CB′ = 30 .

Thus
A = 30r .

Setting this to the area from Heron’s formula we find r = 4.

Problem 36

Let L be the list price. The the merchant buys the goods for B or

B = (1− 0.25)L = 0.75L . (26)

Let M be the marked price and S the sale price. Then we want to find S and M such that

S = (1− 0.2)M = 0.8M , (27)

i.e. the sale price is 20% of the marked price and so that

S −B = 0.25S ,

i.e. the sale price represents a 25% profit from the “buy” price. The above is equivalent to

0.75S = B . (28)
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To solve this problem we want to write the mark price M in terms of the list price L.

Starting with Equation 26 and replacing B using Equation 28 and then using Equation 27
to replace S with M we get

0.75(0.8M) = 0.75L .

This means that

M =
1

0.8
L =

10

8
L =

5

4
L = 1.25L .

Thus the mark price is 125% of the list price.

Problem 37

As all statements are true thus (E) is the only incorrect statement.

Problem 38

From the problem we have that

∣
∣
∣
∣

2x 1
x x

∣
∣
∣
∣
= 2x2 − x = 3 ,

or
2x2 − x− 3 = 0 .

We can solve this with the quadratic equation and find

x =
1±

√

1− 4(2)(−3)

2(2)
=

1± 5

4
.

Taking the negative and the positive sign we find the two roots of

{

−1 ,
3

2

}

.

Problem 39

Forming the given sum we have

2 + 1 +
1

2
+

1

4
+ · · · = 2 +

∞∑

k=0

(
1

2

)k

= 2 +
1

1− 1
2

= 4 .

Thus (1) and (2) are not true. For (3) the sum above has the term 2 which is not “close” to
zero. Both (4) and (5) are true.
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Problem 40

Write the given expression as

(x+ 1)(x− 1)

x− 1
= x+ 1 .

Thus as x→ 1 this expression goes towards two.

Problem 41

Write this quadratic as

ax2 + bx + c = a

(

x2 +
b

a
x

)

+ c

= a

(

x2 +
b

a
x+

(
b

2a

)2
)

− a

(
b

2a

)2

+ c

= a

(

x+
b

2a

)2

+ c− b2

4a
.

The smallest value of this expression is when the quadratic is zero and takes the value

c− b2

4a
=

4ac− b2

4a
.

Problem 42

Let v be the value of the left-hand-side of the given expression. Then as this expression
continues forever our expression is

v = xv = 2 .

Taking the logarithm of this is
v log(x) = log(2) .

But we know that v = 2 and thus we have

2 log(x) = log(2) ,

or

log(x) =
1

2
log(2) = log

(
21/2

)
.

This means that x =
√
2.
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Problem 43

We can write this sum S as

S =
∞∑

k=0

(
1

7

)2k+1

+ 2
∞∑

k=1

(
1

7

)2k

=
1

7

(

1

1−
(
1
7

)2

)

+ 2

[(

1

1−
(
1
7

)2

)

− 1

]

=
3

16
,

when we simplify.

Problem 44

If we remember the curve y = log(x) you will note that it cuts the x-axis at the point x = 1
where y = 0.

Problem 45

We can select two of the 100 vertices in
(
100

2

)

=
100!

2!98!
= 4950 ,

ways. A diagonal must not include any of the 100 sides and thus the number of diagonals is

4950− 100 = 4850 .

Problem 46

If we double the specific sides of the triangle as suggested we would get a triangle with sides
of length

24 , 14 , 10 .

Now if this is to be a valid triangle it must satisfy the triangle inequality. This means that

2AC +BC = 24 ,

must be larger than 2AB = 24 which it is not. As the new triangle does not satisfy the
triangle inequality its area must be zero.
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Problem 47

Once you have drawn the rectangle sharing a base with the triangle one can recognize that
the “top” triangle is similar to the full triangle. As the height of the “top” triangle is h− x
and its base is 2x using this symmetry we have

h− x

h
=

2x

b
.

Solving for x we get

x =
bh

2h+ b
.

Problem 48

Draw this triangle and connect the internal point to the three corners of the triangle. This
produces three internal triangles. Draw the three perpendiculars from the internal point to
the three sides of the triangle. Call these perpendiculars h1, h2, and h3 as they are heights
of the three internal triangles formed. Let the side of the equilateral triangle be s.

The area of the original triangle in terms of the three internal triangles (and their heights is
given by)

A =
1

2
sh1 +

1

2
sh2 +

1

2
sh3 =

s

2
(h1 + h2 + h3) .

Using trigonometry the area of the equilateral triangle is given by

A =
1

2
× s× (s sin(60◦)) =

s2
√
3

4
.

Setting these two equal to each other we get

h1 + h2 + h3 =
s
√
3

2
.

Note that the right-hand-side is the altitude of our equilateral triangle.

Problem 49

Let the points A = (0, 0), B = (2, 0) and C = (x, y). Then we can compute that that the
median from A to BC is located at

M =

(
x+ 2

2
,
y

2

)

.

Expressing the fact that M is a distance of 1.5 from A we have
(
x+ 2

2
− 0

)2

+
(y

2
− 0
)2

=
9

4
.
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Simplifying this we get
(x+ 2)2 + y2 = 9 ,

which is a circle centered at (−2, 0) of radius three.

Problem 50

The speed of the privateer (with the wind) is 11 mph while the speed of the merchantman
is 8 mph. That means that in one hour the privateer is 11 − 8 = 3 miles closer to the
merchantman. In two hours the privateer is 6 miles closer to the merchantman and is thus
10− 6 = 4 miles away from him. At this point it is 1:45 PM.

If the two ships meet t hours later then the merchantman has traveled

8t = D .

The problem statement “17 miles while the merchantman makes 15” I think means that the
privateer’s velocity is now 17

15
of the velocity of the merchantman’s. Thus the privateer will

have traveled
17

15
× 8t .

As the privateer has reached the merchantman the above must equal D + 4 since the mer-
chantman is four miles from the privateer. Thus we have

17

15
× 8t = D + 4 = 8t+ 4 .

Solving for t we get t = 15
4
= 3.75 hours. Adding this to 1:30 PM we find that the time of

overtaking is then 5:30 PM.
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The 1951 Examination

Problem 1

This would be
100(M −N)

N
.

Problem 2

Let the length of the field be l then the width is l
2
. We are told that the perimeter of the

field is x or
2l + 2w = 2l + l = 3l = x so l =

x

3
.

Then w = x
6
. The area is then

x

3
· x
6
=
x2

18
.

Problem 3

If a square has a diagonal of length a+ b then using the Pythagorean theorem its side length
s must satisfy

s2 + s2 = (a+ b)2 .

This means that s = a+b√
2
. The area of this square is then

s2 =
(a + b)2

2
.

Problem 4

If you draw the barn with the given measurements you can compute the area of the faces
that need painting. I find this area to be

2× 2× (10× 5) + 2× 2× (13× 5) + 10× 13 = 590 .

Problem 5

When A sells to B at a 10% profit it means that he sells for $11000. Next B sells back to
A at a 10% loss so he sells something worth $11000 for 0.9× 11000 = 9900. At this point A
had $11000 cash and then pays $9900 for his house and a total profit of

11000− 9900 = 1100 .
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Problem 6

Let this rectangular box have base dimensions w × d (width by depth) and a height of h.
Then the three areas given are

B = wd

S = hd

F = hw .

The product of these three is
w2d2h2 ,

which is the volume squared.

Problem 7

These two relative errors are

re1 =
0.02

10
= 0.002

re2 =
0.2

100
= 0.002 ,

which are the same.

Problem 8

Let P be the original price. Then we are told that the cut price C is given by

C = (1− 0.1)P = 0.9P .

To get this back to the original price it needs to increase by a fraction x such that

(1 + x)C = P .

Solving for x this means that

x =
1

0.9
− 1 = 0.111111 ,

which is an 111
9
% increase.
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Problem 9

As the midpoints of each side divide the side of length a into two segments of length a
2
this

must also be the side of the first smaller equilateral triangle. The next equilateral triangle
will have a side of length a

4
. Thus the sum of the infinite number of perimeters is given by

3a+
3a

2
+

3a

4
+ · · · = 3a

∞∑

k=0

(
1

2

)k

=
3a

1− 1
2

= 6a .

Problem 10

The area of a circle is πr2 which is not linear in r.

Problem 11

If we square every term and then sum we would get

a2

1− r2
.

Problem 12

Note that the “sector angle” between any two adjacent numbers on the clock has a degree
measure of

360

12
= 30◦ .

At 2:00 the minute hand is pointing at 12 and the hour hand is pointing at 2. Thus the
initial location of the minute hand is

m0 = 0◦ ,

measured from vertical and the initial location of the hour hand is

h0 = 2× 30◦ = 60◦ .

In 15 minutes the minute hand will “move”

360× 1

4
= 90◦ ,

since in 15 minutes the minute hand moves one quarter of the way around the clock. This
places it at

m15 = 0 + 90 = 90 .
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In the same 15 minutes the hour hand will move one quarter of a “sector angle” or

1

4
× 30 =

15

2
= 7.5◦ .

This places it at
h15 = 60 + 7.5 = 67.5 .

The angle between these two is then

m15 − h15 = 90− 67.5 = 22.5◦ .

Problem 13

The rate of As work is

rA =
1

9
,

jobs-per-day. The rate of B work is

rB = 1.5rA =
1

6
,

jobs-per-day. Thus B can do one job in 1
rB

= 6 days.

Problem 15

Write this give number as n(n2 − 1) = n(n− 1)(n+ 1). For n integer this is the product of
three consecutive integers. For any three consecutive integers there will be at least one even
number and at least one number of the form 3k for some k. Thus this product is divisible
by 2× 3 = 6.

Problem 16

The roots of this quadratic are given by

−b ±
√
b2 − 4ac

2a
=

−b±
√
b2 − b2

2a
= − b

2a
,

which is a single number and thus f(x) = 0 has only one solution. This means that the
function f(x) will be tangent to the x-axis.

Problem 17

All of the expressions are of the form y = kx or xy = k except (D).
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Problem 18

Let the factors of the given quadratic be given by Ax+B and Cx+D. This means that

21x2 + ax+ 21 = (Ax+B)(Cx+D)

= ACx2 + (AD +BC)x+BD .

Equating coefficients this means that AC = 21, a = AD + BC, and BD = 21. Since the
only factors of 21 are 1, 3, 7, and 21 we see that both A and C (and then B and D) must
also be odd. From the form of a as the product of two odd numbers is odd and the sum of
two odd numbers is even we see that a must be a certain even number.

Problem 19

For the example with 256 we can write this number N = 256256 as

N = 25600 + 256 = 256 · 103 + 256 = 256(103 + 1) = 256× 1001 .

Thus if x is any three digit number then our six digit number N is equal to

N = 1001x .

This will always be divisible by 1001.

Problem 20

Call this expression E. Then we can write E as

E = (x+ y)−1(x−1 + y−1) =
1

x+ y

(
1

x
+

1

y

)

=
x+ y

(x+ y)xy
=

1

xy
= x−1y−1 .

Problem 21

If x > 0, y > 0, and x > y but z < 0 then xz < yz thus (C) is not correct in that case.

Problem 22

From what we are given we have
a2 − 15a = 102 ,
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or
a2 − 15a− 100 = 0 ,

or
(a− 20)(a+ 5) = 0 ,

thus a = 20 or a = −5.

Problem 23

The volume of a cylinder is given by V = πr2h. If we change the radius r to r + ∆r the
change in volume is given by

∆V = π(r +∆r)2h− πr2h

= π(r2 + 2r∆r +∆r2)− πr2h

= 2πrh∆r + πh∆r2 .

If we change the height h to h+∆hthe change in volume is given by

∆V = πr2(h+∆h)− πr2h = πr2∆h .

For these two things to be equal means that

πr2∆h = 2πrh∆r + πh∆r2 .

If ∆h = ∆r = x then this
πr2x = 2πrhx+ πhx2 .

If we divide by πx we get

r2 = 2rh+ hx or x =
r(r − 2h)

h
.

Using the numbers given in the problem we have

x =
8(8− 2(3))

3
=

16

3
= 5

1

3
.

Problem 24

Call this expression E. Then we can write E as

E =
2n+4 − 2n+1

2n+4
=

23 − 1

23
= 1− 1

8
=

7

8
.
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Problem 25

To solve this problem we need to recall that the apothem is a line segment from the center
of a figure to the midpoint of one side. Let as and at be the length of the apothem of the
square and the triangle respectively.

For the square with side s if A = s2 = P = 4s then s = 4. In this case the center of the
square is a distance s

2
= 2 from the midpoint of a side and thus for the length of the apothem

of the square we find as = 2.

For the equilateral triangle with side s if A =
√
3
4
s2 = P = 3s then s = 4

√
3. The apothem

of the triangle will start at the intersection of the three medians to each of the sides (by
the fact that this is an equilateral triangle these are also the three altitudes and three angle
bisectors). All of this means that the apothem of the triangle is one leg of a right triangle
with opposite angle 30◦ and the other leg of length s

2
= 2

√
3. From the definition of tangent

we have

tan(30◦) =
1√
3
=

at

2
√
3
.

Thus at = 2. Thus these two lengths are equal.

Problem 26

If we multiply this expression by m− 1 we get

x(x− 1)− (m+ 1)

x− 1
=

x

m
(m− 1) ,

or

x− m+ 1

x− 1
= x− x

m
,

or
m+ 1

x− 1
=

x

m
,

or
m(m+ 1) = x(x− 1) ,

or
x2 − x−m(m+ 1) = 0 .

We can factor this as
(x− (m+ 1))(x+m) = 0 .

Thus the two roots are x = m+ 1 or x = −m. These will be equal when

−m = m+ 1 or m = −1

2
.
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Problem 27

None of these relationships are true thus (E) is the correct answer. One way to think about
this is that if one of these were true it would have certainly have been discussed in your
geometry class.

Problem 28

We are told that the pressure P can be related to the area A and the velocity V via

P = kAV 2 ,

for some constant k. We know that P = 1 pound when A = 1 square foot and V = 16 mph.
Putting these in the above gives

1 = k · 1 · 162 so k =
1

256
,

Thus the formula is

P =
AV 2

256
.

We want to know V when P = 36 pounds and A = 32 = 9 square feet. This means that

36 =
9V 2

256
so V = 32 ,

miles-per-hour.

Problem 30

Draw these poles in the Cartesian coordinate plane with the short one on the left (on x = 0)
and the tall one on the right (on x = 100). Then a line from the top of the short one to the
base of the long one must connect the two points (0, 20) and (100, 0). This line takes the
form

y − 20 =

(
0− 20

100− 0

)

(x− 0) so y = 20− 1

5
x .

Next a line from the base of the short one to the top of the long one must connect the two
points (0, 0) and (100, 80). This line takes the form

y =
80

100
x =

4

5
x .

The point of intersection of these two lines has x = 20 where y = 4
5
(20) = 16.
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Problem 31

The number of handshakes between n people is given by
(
n
2

)
= n(n−1)

2
. Setting this equal to

28 and solving for n gives n = 8.

Problem 32

In drawing this figure we place A and B on the x axis of a Cartesian coordinate system with
the center of the circle O at (r, 0) so that A is at (0, 0) and B is at (2r, 0). Then C is on
the upper semicircle. For the sake of something specific let C be “to the left of” the circle
center. Then drawing a segment from C to the circle center O (of length r) introduce the
angle ∠COA = θ so that ∠BOC = π − θ.

Then using the law of cosigns in the two triangles △COA and △COB we have

AC2 = r2 + r2 − 2r2 cos(θ) = 2r2(1− cos(θ))

BC2 = r2 + r2 − 2r2 cos(π − θ) = 2r2(1 + cos(θ)) ,

where in the second expression we have used the fact that

cos(π − θ) = cos(π) cos(θ)− sin(π) sin(θ) = − cos(θ) .

From this we see that

AC +BC =
√

2r2(1− cos(θ)) +
√

2r2(1 + cos(θ))

=
√
2r
√

1− cos(θ) +
√
2r
√

1 + cos(θ)

=
√
2r(
√

1− cos(θ) +
√

1 + cos(θ)) .

To evaluate this recall that

(1 + x)1/2 = 1 +
x

2
+

(
1/2

2

)

x2 +

(
1/2

3

)

x3 + · · ·

= 1 +
x

2
− x2

8
+ · · · .

Where we have evaluated
(
1/2

2

)

=
(1/2)(1/2− 1)

2!
=

(1/2)(−1/2)

2
= −1

8
.

Using this we find that

AC +BC ≈
√
2r

(

1− 1

2
cos(θ)− 1

8
cos(θ)2 + 1 +

1

2
cos(θ)− 1

8
cos(θ)2

)

=
√
2r

(

2− 1

4
cos(θ)2

)

≤ 2
√
2r =

√
2AB .
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Problem 33

Looking at (C) we see that these lines don’t intersect and cannot be a solution to the given
equation.

Problem 34

The meaning of log10(7) is the power we “put on” 10 to get seven. Thus 10log10(7) = 7.

Problem 35

If we take the logarithms of these two equations we get

x ln(a) = q ln(c)

y ln(c) = z ln(a) .

If we then take the ratio of these two we find

x ln(a)

z ln(a)
=
q ln(c)

y ln(c)
so

x

z
=
q

y
.

This is equivalent to xy = qz.

Problem 37

For each of the number choices given we will compute the desired divisions and determine if
their remainders satisfy the requirements of the problem. Let N be our unknown number.
As

N mod 10 = 9 ,

we know that N must end in a nine. All of the given numbers satisfy this.

Note that
59 mod 9 = 5 ,

which is not what it should be. Thus N 6= 59. Next note that

419 = 46 · 9 + 5 so 419 mod 9 = 5 ,

which is not what it should be. Thus N 6= 419. Next note that

1259 = 157 · 8 + 3 so 1259 mod 8 = 3 ,

which is not what it should be. Thus N 6= 1259. We can check the remainders if we divide
N = 2519 by the numbers 9, 8, . . . , 3, 2 and find that all of the needed conditions are satisfied.
Thus N = 2519.
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Problem 38

Let h = 600 feet be the “height” of the mountain and w0 the length of the horizontal “run”
needed to get over it at a gradient of 3%. This means that

h

w0

= 0.03 or
600

w0

= 0.03 ,

so w0 = 20000 feet. To reduce this gradient to 2% means that wen need a “run” w1 that
satisfies

600

w1
= 0.02 ,

so w1 = 30000 feet. The additional length is w1 − w0 = 10000 feet.

Problem 39

Let the well be at a depth of d. The rock falls for a time td “downwards” until it hits the
surface of the water releasing a sound wave travels for a time tu “upwards” until it is heard.
We are told the total time

td + tu = 7.7 .

From the speed of sound we know that

tu =
d

1120
.

From the amount of distance a stone falls in t time we have

d = 16t2d .

These give three equations and three unknowns td, tu, and d. Solving the previous two
equations for tu and td in terms of d and putting them into the first equation gives

√

d

16
+

d

1120
= 7.7 .

We can write this as
d+ 280

√
d− 8624 .

This is a quadratic equation for
√
d. Solving for

√
d the only positive solution is

√
d = 28,

so d = 784 feet.

Problem 40

Note that
(x+ 1)2

(x3 + 1)2
=

(x+ 1)2

(x+ 1)2(x2 − x+ 1)2
=

1

(x2 − x+ 1)2
,

and thus the first factor simplifies to one. By similar logic the second factor simplifies to one
and the total product is one.
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Problem 41

Choice (A) does not work for the point (4, 6). Choice (E) does not work for the point (3, 2).
Choice (D) does not work for the point (2, 0). Choice (C) does not work for the point (3, 2).
Choice (B) works for all points.

Problem 42

If we square the given expression and recall what x is defined as we get

x2 = 1 + x ,

or
x2 − x− 1 = 0 .

Solving this we find

x =
1±

√

1− 4(−1)

2
=

1±
√
5

2
.

From the original expression we see that the solution x > 1 and thus we take the positive
root above. Thus we have that

x =
1 +

√
5

2
.

We can write this as
2x− 1 =

√
5 ,

and then if we bound
√
5 as

2 =
√
4 <

√
5 <

√
9 = 3 ,

we have
2 < 2x− 1 < 3 .

Solving for x we get
3

2
< x < 2 .

Problem 43

Choice (A) is true.

Choice (B) is the statement that
√
ab <

1

2
(a+ b) ,

which is the arithmetic-geometric inequality and is true.

For choice (C) let our two numbers be a and b and the target sum t. Thus we have that

a+ b = t ,
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and we want to maximize ab = a(t− a). Considered as a function of a the first derivative of
this is

f ′(a) = t− 2a .

Setting this equal to zero and solving gives a = t
2
(so that b = t − a = t

2
). As the second

derivative of f(a) is given by
f ′′(a) = −2 < 0 ,

we have found a maximum of our product ab. Thus (C) is true.

If (D) were true it would be equivalent to the statement

1

2
(a2 + b2) >

1

4
(a+ b)2 ,

or
2(a2 + b2) > a2 + 2ab+ b2 ,

or
a2 − 2ab+ b2 > 0 ,

or
(a− b)2 > 0 ,

which is true.

For choice (D) let our two numbers be a and b and the target product be t. Thus we have
that

ab = t ,

and we want to maximize a+ b = a+ t
a
. Considered as a function of a the first derivative of

this is

f ′(a) = 1− t

a2
.

Setting this equal to zero and solving gives a =
√
t (so that b =

√
t). As the second derivative

of f(a) is given by

f ′′(a) =
t

a3
> 0 ,

we have found a minimum of our sum a+ b. Thus (D) is not true.

Problem 44

If we “flip” each of these equations we get

1

x
+

1

y
=

1

a
(29)

1

x
+

1

z
=

1

b
(30)

1

y
+

1

z
=

1

c
. (31)
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These are three linear equations in the three “variables” 1
x
, 1
y
, and 1

z
. If we add Equations 29

and 30 we get
2

x
+

1

y
+

1

z
=

1

a
+

1

b
.

If we then replace 1
y
+ 1

z
using Equations 31 we get

2

x
+

1

c
=

1

a
+

1

b
.

If we solve this for x we get

x =
2abc

ac+ bc− ab
.

Problem 45

From the given expressions we have

3 log(2) = 0.9031

2 log(3) = 0.9542 ,

so we can compute log(2) and log(3) using the numbers given. The given expressions (except
the first) can all be written in terms of log(2), log(3), and log(5) as

log(5/4) = log(5)− 2 log(2)

log(15) = log(3) + log(5)

log(600) = log
(
23 · 3 · 52

)
= 3 log(2) + log(3) + 2 log(5)

log(0.4) = log

(
2

5

)

= log(2)− log(5) .

If we can compute log(5) we can evaluate all of these. As we also know log(10) = 1 we can
write

log(2) + log(5) = 1 so log(5) = 1− log(2) .

The only expression we cannot evaluate is thus log(17).

Problem 47

Denote this expression by E. Then we have

E =
s2 + r2

s2r2
=
s2 + r2

(sr)2
. (32)

As r and s are roots they must satisfy

as2 + bs + c = 0

ar2 + br + c = 0 .
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If we add these together we get

s2 + r2 =
−2c− b(s+ r)

a
. (33)

If we write the quadratic we are given as

x2 +
b

a
x+

c

a
= (x− r)(x− s) = 0 ,

and then expand and equate coefficients of x we see that

s+ r = − b

a

sr =
c

a
.

Using the first expression in Equations 33 gives

s2 + r2 =
−2c− b

(
− b

a

)

a
=
b2 − 2ac

a2
.

Using the above in 32 gives

E =
b2 − 2ac

a2
· 1
(
c
a

)2 =
b2 − 2ac

c2
.

Problem 48

In the square inscribed in the circle the length of the segments from the center to each corner
is r the radius of the circle. This means that the diagonal of the square has a length 2r. By
the Pythagorean theorem the side of the square a then satisfies

2a2 = (2r)2 so a =
√
2r .

Thus this squares area is a2 = 2r2.

In the square inscribed in the semicircle the length of the segments from the center to the
corners on the circle is r the radius of the circle. This length/segment forms the hypotenuse
of a right triangle with legs b and b

2
. If this square has a side of length b then by the

Pythagorean theorem we have

r2 = b2 +

(
b

2

)2

.

Solving this for b we get

b =
2r√
5
,

so this square has an area of b2 = 4r2

5
.

The ratio of these two areas is
4r2

5

2r2
=

2

5
.
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Problem 49

Lets draw the right triangle with right angle B at the origin of a Cartesian coordinate plane.
Let the leg BC be along the x-axis and the leg BA be along the y-axis. Draw the median
from A to the side BC and intersecting BC at a point A′. Draw the median from C and
intersecting AB at a point C ′. We are told that AA′ = 5 and CC ′ =

√
40.

Let BA′ = A′C = x and BC ′ = C ′A = y. Then from the right triangle △ABA′ the
Pythagorean theorem gives

AB2 +BA′2 = AA′2 or (2y)2 + x2 = 25 ,

or
4y2 + x2 = 25 . (34)

From the right triangle △C ′BC the Pythagorean theorem gives

C ′B
2
+BC2 = CC ′2 or y2 + (2x)2 = 40 ,

or
y2 + 4x2 = 40 . (35)

From Equation 35 we have y2 = 40 − 4x2 which if we put into Equation 34 we get a single
equation for x that solving gives x = 3. Putting this into Equation 35 we get y = 2. This
means that

AB = 2y = 4

BC = 2x = 6 .

Another use of the Pythagorean theorem in the triangle △ABC gives

AC2 = AB2 +BC2 = 16 + 36 = 52 .

Thus AC =
√
52 = 2

√
13.

Problem 50

If you know the velocity then “time” and “distance” are “equivalent” so we will consider
the times when things happen and take note of the positions where each person is at these
times.

Thus if we draw a time number line along the top of our paper the times where events happen
are

• T = 0 Journey starts

• T = T1 Harry gets off
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• T = T2 Tom picks up Dick

• T = T3 Harry (and others) get to the finish line

Then depending on how each person is traveling the distances of each of the people at each
of these three times are given by

For Tom:

• At T = T1 he is at 25T1

• At T = T2 he is at 25T1 − 25(T2 − T1)

• At T = T3 he is at 25T1 − 25(T2 − T1) + 25(T3 − T2)

For Dick:

• At T = T1 he is at 5T1

• At T = T2 he is at 5T1 + 5(T2 − T1)

• At T = T3 he is at 5T1 + 5(T2 − T1) + 25(T3 − T2)

For Harry:

• At T = T1 he is at 25T1

• At T = T2 he is at 25T1 + 5(T2 − T1)

• At T = T3 he is at 25T1 + 5(T2 − T1) + 5(T3 − T2)

If we simplify these we get

For Tom:

• At T = T1 he is at 25T1

• At T = T2 he is at 50T1 − 25T2

• At T = T3 he is at 50T1 − 50T2 + 25T3

For Dick:
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• At T = T1 he is at 5T1

• At T = T2 he is at 5T2

• At T = T3 he is at −20T2 + 25T3

For Harry:

• At T = T1 he is at 25T1

• At T = T2 he is at 20T1 + 5T2

• At T = T3 he is at 20T1 + 5T3

The problem asks us to find T3. When Tom picks up Dick their location must be same so
we have

50T1 − 25T2 = 5T2 so T1 =
3

5
T2 . (36)

At the time T3 Dick and Harry are at the finish line so we have

−20T2 + 25T3 = 100 (37)

20T1 + 5T3 = 100 . (38)

If we replace T1 in the Equation 38 with the expression from Equation 36 we get

12T2 + 5T3 = 100 . (39)

Solving Equations 37 and 39 give T2 = 5 and T3 = 8 so the trip takes eight hours.

42



The 1952 Examination

Problem 1

If r is rational then πr2 is irrational (since π is).

Problem 2

This would be
20(0.8) + 30(0.7)

20 + 30
=

37

50
= 0.74 .

Problem 3

Call this expression E. Then we have

E = a3 − a−3 = (a− a−1)(a2 + aa−1 + a−2)

= (a− a−1)(a2 + 1 + a−2)

=

(

a− 1

a

)(

a2 + 1 +
1

a2

)

.

Problem 4

This would be
C = 10 + 3(P − 1) = 7 + 3P .

Problem 5

This line is given by

y − (−6) =

(−6 − 12

0− 6

)

(x− 0) ,

or
y = −6 + 3x .

If x = 3 then in the above we get y = 3 which is (A).
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Problem 6

The two roots are given by

x =
7±

√

49− 4(−9)

2
=

7±
√
83

2
.

Thus their difference would be

x+ − x− =
7 +

√
83

2
− 7−

√
83

2
=

√
85 ,

or its negative. Only (E) is correct.

Problem 7

For this we have

(x−1 + y−1)−1 =

(
1

x
+

1

y

)−1

=

(
x+ y

xy

)−1

=
xy

x+ y
.

Problem 8

If the circles are “far apart” then they will have four common tangents i.e. two external and
two internal tangents. If the circles move closer at the point they touch they will have three
common tangents i.e. two external and a single internal tangent as the two internal tangents
from before collapse into one internal tangent. If the circles move together still further they
loose the internal tangent and we only have two external tangents. Thus it is impossible to
have a single common tangent.

Problem 9

Write the given expression as

m =
cab

a− b
=

ca
a
b
− 1

.

Then solving for 1
b
(by first solving for a

b
) in this we get

1

b
=
m+ ca

ma
so b =

ma

m+ ca
.
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Problem 10

The average speed v̄ is the total distance traveled divided by the total time taken. If D is
the length of the “hill” (in miles) then the time going up and the time going down are given
by

tup =
D

10

tdown =
D

20
.

From this we find that

v̄ =
D +D
D
10

+ D
20

=
40

3
= 13

1

3
,

in miles an hour.

Problem 11

For this function f(x) we have that f(1) is undefined and thus C is incorrect.

Problem 12

In this problem we are told that

∞∑

k=0

a0r
k = 6

a0 + a0r = 4
1

2
=

9

2
.

As this first expression can be written as

a0
1− r

= 6 ,

and the second expression as

a0 =
9

2(1 + r)
. (40)

Combining these we get
9

2(1 + r)(1− r)
= 6 .

Solving this for r gives r ∈
{
−1

2
, 1
2

}
. This means that

1 + r ∈
{
1

2
,
3

2

}

.

If we put these into Equation 40 we get

a0 ∈ {9 , 3} .
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Problem 13

If we call this function f(x) then we find

f ′(x) = 2x+ p = 0 when x = −p
2
,

and that
f ′′(x) = 2 > 0 ,

so −p
2
is a minimum of the function f(x).

Another way to see this is to “complete the square” by writing f(x) as

x2 + px+ q = x2 + px+
(p

2

)2

− p2

4
+ q

=
(

x+
p

2

)2

+ q − p2

4
.

The smallest the right-hand-side will be is again when x = −p
2
.

Problem 14

Let CH and CS be the costs (paid) for the house and the store respectively. Then we are
told that

CH(0.8) = 12000 ,

i.e. the house was sold at a 20% loss and that

CS(1.2) = 12000 ,

i.e. the store was sold at a 20% profit. These mean that

CH = 15000

CS = 10000 ,

The total then paid initially was

CH + CS = 25000 ,

and the total amount sold was 12000 + 12000 = 24000 resulting in a loss of $1000.

Problem 15

As
62 + 82 = 36 + 64 = 100 > 92 = 81 ,

the angle between the two sides that are in the ratio 6 : 8 must be less than 90◦ and thus
the triangle is acute.
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Problem 16

The original area can be written as A = bh. If the base increases by 10% then the new base
b′ is related to the old base b via b′ = 1.1b. If the area is unchanged then the new height h′

must satisfy
A = bh = b′h′ = 1.1bh′ .

This means that

h′ =
1

1.1
h .

We can write this as

h′ =
10

11
h =

(

1− 1

11

)

h .

Now
1

11
= 0.09090909 ,

Thus
h′ = (1− 0.09090909)h ,

which is a drop of 9.090909% or 9 1
11
%.

Problem 17

To start, we let B be the bought price and L the list price. Then we are told that B = 0.8L.
The merchant sells at a price S and we want S to be

S = B + 0.2S ,

to make a profit of 20% on the sales price S. Note that if you thought the expression was

S = 1.2B ,

this is wrong as this is a 20% profit on the bought price (and not the sales price as it should
be). Finally the marked price to the sales price should be

0.8M = S ,

so that the sales price is a 20% discount to the marked price M . Then for this problem we
want to know M in terms of L. We have

M =
1

0.8
S =

1

0.8

(
B

0.8

)

=
1

0.82
(0.8L) =

1

0.8
L =

5

4
L = 1.25L .

This means that we should mark the item up 125% from the list price.
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Problem 18

Write the expression we are given as

log(pq) = log(p+ q) ,

or
pq = p+ q ,

or
p(q − 1) = q ,

or
p =

q

q − 1
.

Problem 19

Draw the triangle △ABC with the segment AC on the x-axis and the point B above the
segment AC. Then with the angle at B trisected, draw the segments BD, and BE so that
the points on the segment AC are in order A, D, E and then C. Let each of these three
pieces of the angle at B have an angle measure of φ. Thus

∠ABD = ∠DBE = ∠EBC = φ .

Let the angle ∠BAD = ψ. Then in triangle △ABD we know two of the angles and thus
can compute

∠ADB = π − ψ − φ .

Then we can use supplemental angles, the fact that the three angles in a triangle sum to
180◦, or the exterior angle theorem to express all of the angles in this figure in terms of φ
and ψ. For the angles we have not yet specified we have

∠BDE = ψ + φ

∠BED = π − ψ − 2φ

∠BEC = ψ + 2φ

∠BCE = π − ψ − 3φ .

Now using the law-of-sines in the triangles △ABD gives

sin(φ)

AD
=

sin(π − ψ − φ)

AB
=

sin(ψ)

BD
, (41)

in the triangle △DBE gives

sin(φ)

DE
=

sin(π − ψ − 2φ)

BD
=

sin(ψ + φ)

BE
, (42)

and in the triangle △EBC gives

sin(φ)

EC
=

sin(π − ψ − 3φ)

BE
=

sin(ψ + 2φ)

BC
. (43)
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If we divided the first and the second equations found in Equations 43 by those found in
Equations 41 we get

AD

EC
=
AB

BE
× sin(π − ψ − 3φ)

sin(π − ψ − φ)
. (44)

Recall that sin(π − x) = sin(x) this becomes

AD

EC
=
AB

BE
× sin(ψ + 3φ)

sin(ψ + φ)
. (45)

From Equation 43 we have that

sin(ψ + 3φ) =
BE

BC
sin(ψ + 2φ) ,

and from Equation 42 we have that

sin(ψ + φ) =
BE

BD
sin(ψ + 2φ) .

This means that
sin(ψ + 3φ)

sin(ψ + φ)
=
BE

BC
× BD

BE
=
BD

BC
,

so that Equation 45 becomes
AD

EC
=
AB

BE
· BD
BC

,

which is choice (D).

Problem 20

From what we are given we know that

x =
3

4
y ,

If we “put this in” for x in each of the choices for (A) we get

3
4
y + y

y
=

7

4
,

which is true. For (B) we get
y

y − 3
y
y
=
y
y
4

= 4 ,

which is true. For (C) we get
3
4
y + 2y
3
4
y

= 1 +
8

3
=

11

3
,

which is true. For (D) we get
3
4
y

2y
=

3

8
,

which is true. For (E) we get
3
4
y − y

y
= −1

4
,

which is not true.
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Problem 21

To start we draw a regular polygon with n > 4 (say a regular hexagon) and extend the sides
to form a star. Next, recall that the interior angles I of a regular polygon are given by

Iregular polygon =
180(n− 2)

n
. (46)

Then from the drawing the exterior angles have a measure

180− 180(n− 2)

n
=

360

n
.

From the drawing we note that this is the base angle of the isosceles triangle that form the
triangles that are attached to each face of the regular polygon i.e. these are the “points” of
the star. From this fact the angle measure of each point of the star is then

180− 2

(
360

n

)

= 180

(

1− 4

n

)

= 180

(
n− 4

n

)

.

Problem 22

Draw the triangle △ABC with A on the y-axis C at the origin and B on the x-axis. Then
draw D so that AD is a leg of the right triangle △ADB with right angle at D. Then using
the Pythagorean theorem in the right triangle △ABC gives

AB2 = b2 + 12 = 1 + b2 ,

and in △ADB the Pythagorean theorem gives

AD2 +BD2 = AB2 .

Using the first expression for AB we can write this as

4 +BD2 = 1 + b2 ,

or
BD =

√
b2 − 3 .

Problem 23

Lets define r as

r ≡ m− 1

m+ 1
,

then our expression is
x2 − bx = arx− cr ,
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or
x2 − (b+ ar)x+ cr = 0 .

Now if we factor the left-hand-side into (x − x−)(x − x+) where x− and x+ are the two
roots such that x+ = −x− and x− < 0. When we expand this and equate coefficients to the
expression above we would get

−(x+ + x−) = −(b+ ar) (47)

x+x− = cr . (48)

Now using the fact that x− = −x+ in Equation 47 we see that

b+ ar = 0 so r = − b

a
.

If we recall what r is defined as we have

m− 1

m+ 1
= − b

a
.

We can solve this for m to find that

m =
a− b

a+ b
.

Problem 24

Method 1: As AB = 20 and AD = DB we have that AD = DB = 20
2
= 10. Using the

Pythagorean theorem in △ACB gives

122 +BC2 = 202 so BC = 16 .

From the two similar triangles △BDE ∼ △BCA we have that

BD

BE
=
BC

AB
=

16

20
=

4

5
.

As we know that BD = 10 we get

10

BE
=

4

5
so BE =

50

4
= 12.5 .

Next using the Pythagorean theorem in △EDB we have

EB2 = ED2 +BD2 ,

or using what we know

12.52 = ED2 + 102 so ED = 7.5 .
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Thus the area of the quadrilateral ADEC is the area of the triangle △ACB minus the area
of the triangle △EDB. This means that the area we want (called Q) is

Q =
1

2
AC · CB − 1

2
ED ·DB

=
1

2
(12)(16)− 1

2
(7.5)(10) = 58.5 .

Method 2: If we draw the segment AE we can decompose the quadrilateral ADEC into
two right triangles △ACE and △ADE. From the calculations above we know what we need
to compute their two areas. Thus we find

Q =
1

2
AC · CE +

1

2
AD · ED

=
1

2
(12)(16− 12.5) +

1

2
(10)(7.5) = 58.5 ,

the same as we had before.

Problem 25

The powderman runs for 30 seconds while the fuse burns. During this time he runs a distance
of 8 · 30 = 240 yards. After this he needs an additional amount of time for the noise of the
blast to reach him. This will be

3 · 240
1080

,

seconds and so
3 · 240
1080

(8) ,

additional yards. Thus when he hears the blast he has run

D = 8 · 30 + 3 · 8 · 30 · 8
1080

= 240

(

1 +
24

1080

)

= 240(1 + 0.02222) = 245.33 .

Problem 26

From the given expression we get
(

r +
1

r

)3

= 33/2 .

If we expand the left-hand-side of this we get

r3 + 3r2
(
1

r

)

+ 3r

(
1

r

)2

+

(
1

r

)3

= 33/2 ,
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or

r3 + 3r +
3

r
+

1

r3
= 33/2 ,

or

r3 + 3

(

r +
1

r

)

+
1

r3
= 33/2 ,

or

r3 + 3(
√
3) +

1

r3
= 33/2 ,

or finally that

r3 +
1

r3
= 33/2 − 3(

√
3) = 0 .

Problem 27

Let r be the radius of the circle that is the altitude of the first equilateral triangle and that
the second equilateral triangle is inscribed into. For the first triangle (the one where r is the
altitude) we have

tan(60◦) =
r

s1/2
,

where s1 is the first triangles side length. As tan(60◦) =
√
3 this gives

s1 =
2√
3
r ,

so the perimeter of this triangle is 3s1 = 2
√
3r.

For the second triangle (the one inscribed in this circle) when you look at that triangle and
draw the radius to a corner of the inscribed triangle we have

s2/2

r
= cos(30◦) =

√
3

2
.

This means that
s2 =

√
3r ,

so the perimeter is 3
√
3r.

These together mean that the requested ratio is

2
√
3r : 3

√
3r = 2 : 3 .

Problem 28

For notational ease we will call the right-hand-side of y for part (A) as fA(x), the right-
hand-side for (B) as fB(x) etc.
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For (A) the point (3, 13) is not a solution.

For (B) we have

fB(1) = 1− 1 + 1 + 2 = 3

fB(2) = 8− 4 + 2 + 2 = 8 ,

the last of which does not match the number in the table.

For (C) we have

fC(1) = 1 + 1 + 1 = 3

fC(2) = 4 + 2 + 1 = 7

fC(3) = 9 + 3 + 1 = 13

fC(4) = 16 + 4 + 1 = 21

fC(5) = 25 + 5 + 1 = 31 .

As this function matches every entry in the table it must be the answer.

Problem 29

Draw a circle in the x-y plane with its center at O = (0, 0) and AB along the x-axis and
CD along the y-axis. In this configuration the points A, B, C, and D have the following
Cartesian representation

A = (−5, 0)

B = (5, 0)

C = (0,−5)

D = (0, 5) .

If we place the point H = (hx, hy) in the first quadrant and on the arch between the points
D and B. We want to find the (x, y) location where CH = 8. Note that

CH =
√

(0− hx)2 + (−5− hy)2 =
√

h2x + 25 + 10hy + h2y .

As h2x + h2y = 52 since H is on the circle we get that

CH =
√

50 + 10hy .

We want to find hy such that CH = 8. Solving for hy we get

hy =
7

5
= 1.4 .

This means that

h2x = 52 − h2y = 25− 7

25
=

576

25
so hx =

24

5
= 4.8 .
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What we want to solve this problem is AK : KB. From the similar triangles △CKO and
△CHH ′ (where H ′ = (0, hy)) we have that

5

5 + hy
=
OK

hx
⇒ OK =

5hx
5 + hy

=
15

4
.

This means that

AK = 5 +OK =
35

4
= 8.75 ,

and

KB = 5− OK = 5− 15

4
= 1.25 .

Problem 30

Let the terms of the sequence be ak = a0 + dk for k ≥ 0. Then we are told that

9∑

k=0

ak = 4

4∑

k=0

ak ,

or

10a0 + d

9∑

k=0

k = 4 · 5a0 + 4d

4∑

k=0

k ,

or evaluating the sum we get

10a0 + d
9(9 + 1)

2
= 20a0 + 4d

4 · 5
2

.

This simplifies to

2a0 = d so
a0
d

=
1

2
,

or a0 : d = 1 : 2.

Problem 31

We have
(
12
2

)
pairs of points. Evaluating this I find

(
12

2

)

=
12!

10! · 2! =
12 · 11

2
= 66 .

Problem 32

As x is K’s speed the time it takes K to go 30 miles is

30

x
.
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Problem 33

Let r be the radius of the circle and s the side of the square. Then we know that the
perimeters are given by

Pcircle = 2πr

Psquare = 4s .

We are told that these are equal so we know that

r =
2s

π
,

The area of the circle is

Acircle = πr2 = π

(
4s2

π2

)

=
4

π
s2 ,

and the area of the square is
Asquare = s2 .

As
4

π
> 1 ,

we see that Acircle > Asquare.

Problem 34

Let P0 be the initial price. Then we are told that

P0

(

1 +
p

100

)(

1− p

100

)

= 1 .

Solving for P0 we get

P0 =
1

(
1 + p

100

) (
1− p

100

) =
1002

(100 + p)(100− p)
=

104

104 − p2
.

Problem 35

Call this expression E. Then we have

E =

√
2√

2 +
√
3−

√
5
×
(√

2 +
√
3 +

√
5√

2 +
√
3 +

√
5

)

=

√
2(
√
2 +

√
3 +

√
5)

(
√
2 +

√
3)2 − 5

=

√
2(
√
2 +

√
3 +

√
5)

2 + 2
√
6 + 3− 5

=

√
2(
√
2 +

√
3 +

√
5)

2
√
6

.

56



If we multiply this by the fraction
√
6√
6
we get

E =

√
12(

√
2 +

√
3 +

√
5)

2 · 6 =
2(
√
6 +

√
9 +

√
15)

12
=

√
6 + 3

√
15

6
.

Problem 36

Call this expression E. Then we can write

E =
(x+ 1)(x2 + x+ 1)

(x− 1)(x+ 1)
=
x2 + x+ 1

x− 1
.

At x = −1 this takes the value 1+1+1
−2

= −3
2
.

Problem 37

Draw this circle in the x-y plane with its center at the origin. Then draw the two parallel
chords at y = +4 and y = −4. We then ask where do these two chords intersect the circle.
If we put y = +4 into the equation for the circle

x2 + y2 = 82 ,

and solve for x we get x = ±4
√
3. Let the “cap” of the circle be the region above the line

y = +4. This “cap” sits over a triangle that is two triangles when split into two by the y
axis. These two smaller triangles are right triangles with legs of length 4 and 4

√
3 and thus

an acute angle of

θ = tan−1

(

4
√
3

4

)

= tan−1(
√
3) = 60◦ =

π

3
.

Thus the central arc of the cap covers and angular range of twice this or

2π

3
.

This sector of the circle will have an area of
( 2π

3

2π

)

Acircle =
1

3
Acircle =

1

3
πr2 =

64π

3
.

As this is the area of the “cap” and the triangle it sits on top of a triangle with an area of

1

2
(8
√
3)4 = 16

√
3 .

This means that the area of the cap is

64π

3
− 16

√
3 .

Using this the area of the section we want to measure is given by

πr2 − 2

(
64π

3
− 16

√
3

)

= 32
√
3 +

64π

3
,

when we simplify.
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Problem 38

The area of a trapezoid is given by

A =
1

2
h(b1 + b2) ,

where b1 and b2 are the lengths of the two bases. From what we are told this means that

1400 =
1

2
(50)(b1 + b2) ,

which we can write as
b1 + b2 = 56 .

If both bases are multiples of eight we can write b1 = 8n1 and b2 = 8n2 so that the above is
equivalent to

n1 + n2 = 7 .

The integer solutions that satisfy this (and give unique bases) are

(n1, n2) ∈ {(1, 6), (2, 5), (3, 4)} .

Thus there are three solutions.

Problem 39

If l is the length and w is the width of the rectangle then we are told that

2l + 2w = p (49)

l2 + w2 = d2 . (50)

For this problem we want l − w in terms of p and d. From Equation 49 we have

l =
p

2
− w ,

which we can put into Equation 50 to get

(p

2
− w

)2

+ w2 = d2 .

We can expand the above to get a quadratic in w which is

w2 − p

2
w − d2

2
+
p2

8
= 0 .

Solving this I find

w =
1

4
(p±

√

8d2 − p2) . (51)
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This means that l = p
2
− w is given by

l =
p

4
∓ 1

4

√

8d2 − p2 .

We seek to evaluate the argument of the square root above i.e. 8d2−p2. Now as d2 = l2+w2

we have 8d2 = 8l2 + 8w2 so that

8d2 − p2 = 8l2 + 8w2 − (2l + ww)2

= 4(l − w)2 ,

when we simplify. Without loss of generality we can take l > w so that
√

8d2 − p2 = 2(l − w) .

Note that if we take the plus sign the right-hand-side of Equation 51 gives

1

4
(2l + 2w + 2(l − w)) = l ,

which is a contradiction while if we take the minus sign we get

1

4
(2l + 2w − 2(l − w)) = w ,

which is consistent with the right-hand-side. Thus we now know the consistent expressions
are

w =
1

4
(p−

√

8d2 − p2)

l =
1

4
(p +

√

8d2 − p2) .

This means that

l − w =
1

2

√

8d2 − p2 .

Problem 40

If f(x) “sampled” at adjacent points xi and xi+1 then the difference in these two samples is

f(xi+1)− f(xi) = (ax2i+1 + bxi+1 + c)− (ax2i + bxi + c)

= a(x2i+1 − x2i ) + b(xi+1 − xi)

= a(xi+1 + xi)(xi+1 − xi) + b(xi+1 − xi) .

As the two points are the same distance apart for each i we have

xi+1 − xi = h ,

and the above becomes

f(xi+1)− f(xi) = ah(xi+1 + xi) + bh .
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Again with xi+1 = xi + h this is

f(xi+1)− f(xi) = 2ahxi + ah2 + bh .

This is linear function of xi. This means that this difference must increase by the same

amount as we increase i. Taking the differences of the numbers given we get

[1] 125 127 131 129 133 135 137

From the first two and the last four numbers it looks like these differences should increase
by two as we “move to the right”. Notice that if the third and fourth differences were

129 131

all of the differences would increase by two at each step. Thus the differences

f(x4)− f(x3) = 131

f(x5)− f(x4) = 129 ,

must be wrong. This means that f(x4) is “too large” by two and we should have had

4227 → 4225 .

Problem 41

Let r be the initial radius and h the initial altitude (height) so that the original cylinder has
a volume of

V = πr2h .

From the problem statement we are told that

π(r + 6)2h = πr2h+ y (52)

πr2(h + 6) = πr2h+ y . (53)

If we expand and simplify Equation 52 we get

12πrh+ 36πh = y , (54)

while simplifying Equation 53 gives
6πr2 = y . (55)

If we subtract Equation 54 from Equation 55 we get

6πr2 − 24r − 36πh = 0 .

As we know that h = 2 this becomes

r2 − 4r − 12 = 0 .

The only positive solution is r = 6.
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Problem 42

(A) is correct and
10rD = P.QQQ · · · ,

so (B) is correct. In the same way we see that (C) and (E) are correct. For (D) note that
the left-hand-side is

(10r+s − 10r)D = PQ.QQQ · · · − P.QQQ · · · = PQ− P = P (Q− 1) ,

since the fractional parts cancel in the above subtraction. Note that this is not the expression
given in the problem statement.

Problem 43

Let the original diameter be d. The diameter of each semi-circle is d
n
(and so the radius is

r = d
2n
). One of the small semi-circles has an arc length of

π

(
d

2n

)

.

The sum of these n semi-circles is then
πd

2
.

Note that this is equal to the semi-circumference of the original circle.

Problem 44

Let N = ab where the digits a and b are such that 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9. Then we are
told that

N = 10a+ b = k(a + b) . (56)

We want to write N ′ = ba in terms of a+ b where

N ′ = ba = 10b+ a . (57)

From Equation 56 we have

9a+ (a+ b) = k(a+ b) so a =
(k − 1)(a+ b)

9
. (58)

Also from Equation 56 we have

(10− k)a = (k − 1)b or b =
(10− k)a

9
.

Using Equation 58 for a in this we get

b =
(10− k)(a+ b)

9
.
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We now have both a and b in terms of a + b. Then from Equation 57 we have

N ′ = 10b+ a = 10

(
(10− k)(a+ b)

9

)

+
(a+ b)(k − 1)

9

= (11− k)(a+ b) ,

when we simplify.

Problem 45

From the arithmetic-geometric mean inequality one should already know that

√
ab ≤ a+ b

2
.

This eliminates (A) and (B). To decide where 2ab
a+b

falls let a = 1 and b = 4 so that

a+ b

2
=

5

2
= 2.5

√
ab = 2

2ab

a+ b
=

8

5
= 1.8 .

Thus the order should be
2ab

a + b
<

√
ab <

a + b

2
.

Problem 46

Let the original rectangle have length l and width w with l > w. Then the length and width
of the “new” rectangle are given by

l′ =
√
l2 + w2 + l

w′ =
√
l2 + w2 − l .

The new area is then

A′ = l′w′ = (
√
l2 + w2 + l)(

√
l2 + w2 − l) = (l2 + w2)− l2 = w2 ,

which is (C).

Problem 47

First we take the 1/x power of the expression zx = y2x to get z = y2. Next write the second
equation as

2z = 22x+1 ,
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or taking the log2(·) of both sides we get

z = 2x+ 1 ,

or

x =
z − 1

2
=
y2 − 1

2
.

If we put these two into x+ y + z = 16 we can get a single equation for y as

y2 − 1

2
+ y + y2 = 16 .

We can simplify that to
3y2 + 2y − 33 = 0 ,

or
(3y + 11)(y − 3) = 0 .

Thus the only integer solution is y = 3. This means that

x =
y2 − 1

2
=

9− 1

2
= 4 ,

and z = y2 = 9. Thus (x, y, z) = (4, 3, 9).

Problem 48

Without loss of generality let v1 > v2 > 0 so the first cyclist is the faster one. If we start
with the first cyclist at x = 0 and the second cyclist at x = k then when both move in the
same direction their positions are given by

x1(s) = v1s+ 0

x2(s) = v2s+ k .

We are told that if s = r then x1 = x2 or

v1r = v2r + k . (59)

If they move in opposite directions then we can take the position of x2 as

x2(s) = −v2s+ k .

Then x1 = x2 when s = t means that

v1t = −v2t+ k . (60)

From Equation 59 we get that

v1 = v2 +
k

r
. (61)
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If we put that into Equation 60 we get that

v2t+
kt

r
= −v2t+ k .

Solving for v2 we find

v2 =
k(r − t)

2tr
.

Then for v1 using Equation 61 we get

v1 =
k(r + t)

2tr
,

when we simplify. These mean that

v1
v2

=
r + t

r − t
.

Problem 50

Call this expression L. Then we can write

L = 1 +
√
2

∞∑

k=1

(
1

4

)k

+
∞∑

k=1

(
1

4

)k

.

Lets now evaluate

S =
∞∑

k=1

(
1

4

)k

=
∞∑

k=0

(
1

4

)k+1

=
1

4

∞∑

k=0

(
1

4

)k

=
1

4

(
1

1− 1
4

)

=
1

4− 1
=

1

3
.

This means that

L = 1 +

√
2

3
+

1

3
=

1

3
(4 +

√
2) .
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The 1953 Examination

Problem 1

From the problem the boy pays

b =
10

3
,

cents per orange. He then sells them for

s =
20

5
= 4 ,

cents per orange. The profit per orange is then

4− 10

3
=

2

3
.

To have a total profit of 1.0 means that he needs to buy and sell N oranges where

2

3
N = 100 or N = 150 .

Problem 2

From what we are told the sales price of the refrigerator is given by

P = 250(1− 0.2)(1− 0.15) = 250(1− 0.15− 0.2 + 0.03)

= 250(1− 0.32) = 250(0.68) .

This is 68% of the original price.

Problem 3

This would be (x+ iy)(x− iy).

Problem 4

Two roots are x = 0 and x = 4. The other roots must solve x2 + 8x+ 16 = 0. We can write
this as

(x+ 4)2 = 0 ,

so x = −4 with algebraic multiplicity of two.
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Problem 5

Taking f(x) = 6x to both sides we can write this as x = 62.5 = 36
√
6.

Problem 6

Each quarter is 2.5 = 5
2
dimes. This means that the difference is

5

2
(5q + 1)− 5

2
(q + 5) = 10(q − 1) .

Problem 7

If we multiply this expression by
√
a2+x2√
a2+x2 we get

a2 + x2 − (x2 − a2)

(a2 + x2)
√
a2 + x2

=
2a2

(a2 + x2)3/2
.

Problem 8

The intersection of these two curves happens when

8

x2 + 4
= 2− x ,

or
8 = (2− x)(x2 + 4) ,

or
x(x2 − 2x+ 4) = 0 .

This has solutions x = 0 or

x =
2± 2

√
−3

2
= 1±

√
3i .

Problem 9

Nine ounces of lotion at 50% alcohol has

9

(
1

2

)

=
9

2
,
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ounces of alcohol and 9
2
ounces of water. If we add x ounces of water we will get a lotion

with a
9/2

9/2 + 9/2 + x
=

9/2

9 + x
,

fraction of alcohol. To have this equal 30% = 0.3 will happen when x = 6.

Problem 10

Each revolution covers
2πr = πd = 6π ,

feet. To revolve 5280 feet we need
5280

6π
=

880

π
,

revolutions.

Problem 11

Let r0 the the inner radius and r1 the outer radius. Then to have its width be 10 feet wide
we need to have r1 = r0 + 10. The difference in circumferences is then

C1 − C0 = 2πr1 − 2πr0 = 2π(r1 − r0) = 2π(10) = 20π

≈ 20(3.14) = 62.8 .

Problem 12

This ratio would be
π
(
8
2

)2

π
(
12
2

)2 =
42

62
=

4

9
.

Problem 13

Let h be the common altitude. Then the area of the triangle is

1

2
bh =

1

2
(18)h = 9h .

The area of the trapezoid is
h

2
(b1 + b2) ,
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where b1 and b2 are the two bases. Setting these two expressions equal (and dividing by h)
we get

1

2
(b1 + b2) = 9 .

The expression on the left is the median of the trapezoid.

Problem 14

I imagine P and Q on the x-axis of a Cartesian coordinate plane. Then (A) can be true if
we take p = 2 and q = 1 with P at the origin (0, 0) and Q at (1, 0).

Now (B) can be true if P and Q are externally tangent i.e. P has p = 2 located at (0, 0) and
Q has q = 1 located at (3, 0).

Now (C) can be true if P and Q are “separated” i.e. P has p = 2 located at (0, 0) and Q
has q = 1 located at (5, 0).

Now (D) can be true if Q is “inside” Q i.e. P has p = 2 located at (0, 0) and Q has q = 1
located at (2, 0).

Problem 15

Let the original square have a side of length s. Then the radius of the inscribed circle is s
2

and so the amount of “waste” when we cut out the first circle is

s2 − π
(s

2

)2

.

Now we have a circle of radius s
2
. From this we cut out a square. The diagonal of the square

that we cut out will have a length equal to the diameter of the circle or 2
(
s
2

)
= s. Let the

sides of this square be l. Then by the Pythagorean theorem we must have

l2 + l2 = s2 so l =
s√
2
.

Thus the square we cut out has an area of

s2

2
.

This gives an amount of “waste” of

π
(s

2

)2

− s2

2
.

The total “waste” removed from these two procedures is then
(

s2 − π
(s

2

)2
)

+

(

π
(s

2

)2

− s2

2

)

= s2 − s2

2
=
s2

2
.

This is half of the area of the original square.
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Problem 16

Let S be the sales price and B be the price that Adams buys the article for. Then the
expenses E are E = 0.15S and the profit should be 0.1S. Adam’s profit is the difference
between the sales price S and what he pays for the article (plus his expenses). This means
that

S − (B + E) = Profit .

From the above this means that

S − (B + 0.15S) = 0.1S .

This is equivalent to B = 0.75S. Then the mark-up to the sales price is

S −B

B
=
S − 0.75S

0.75S
=

1

3
.

This is the percent 331
3
%.

Problem 17

Let x be the fraction of $4500 that is invested at 4% so that 1 − x is the fraction of $4500
that is invested at 6%. As we are told that both investments yield the same amount we have

4500x(0.04) = 4500(1− x)(0.06) .

If we solve this for x we find x = 0.6 or 60%. This means that each investment made
4500(0.6)(0.04) = 108 for a total of 2× 108 = 216. This is a total return of

216

4500
= 0.048 ,

or 4.8%.

Problem 18

We can write this as

x4 + 4 = (x4 + 4x2 + 4)− 4x2

= (x2 + 2)2 − 4x2 = (x2 + 2− 2x)(x2 + 2 + 2x)

= (x2 − 2x+ 2)(x2 + 2x+ 2) .
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Problem 19

Lets define E = xy2. Then if we assume that

x→ 0.75x =
3

4
x

y → 0.75y =
3

4
y ,

so that E becomes
3

4
x

(
9

16
y2
)

=
27

64
xy2 .

This means that E has been decreased by

xy2 − 27

64
xy2 =

37

64
xy2 .

Problem 20

From the expression for y we have

y2 = x2 + 2 +
1

x2
.

Thus
x2y2 = x4 + 2x2 + 1 . (62)

Also from the definition of y we have

xy = x3 + x . (63)

Adding Equations 62 and 63 we get

x2(y2 + y) = x4 + 2x2 + 1 + x3 + x = x4 + x3 + 2x2 + x+ 1 .

This is almost the polynomial we are told equals zero. If we subtract −6x2 from both sides
we do get that polynomial or

x2(y2 + y)− 6x2 = x4 + x3 − 4x2 + x+ 1 = 0 .

This means that
x2(y2 + y − 6) = 0 .

Problem 21

Lets take 10x of both sides to get

x2 − 3x+ 6 = 10 ,
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or
x2 − 3x− 4 = 0 ,

or
(x− 4)(x+ 1) = 0 .

This has solutions x = 4 or x = −1.

Problem 22

Call this expression E. Then we can write E as

E = 27 · 4
√
9 · 3

√
9 = 33 · 32/4 · 32/3 .

Now as

3 +
1

2
+

2

3
=

25

6
,

we have

log3(E) =
25

6
= 4

1

6
.

Problem 23

Let v =
√
x+ 10 then this expression is

v − 6

v
= 5 .

If we multiply by v and bring everything to one side we get

v2 − 5v − 6 = 0 .

We can factor this to write
(v − 6)(v + 1) = 0 .

This means that v = 6 or v = −1. As v > 0 only v = 6 is a solution. In this case then

√
x+ 10 = 6 so x = 26 .

If you “thought” that v = −1 was a possible solution then x would need to satisfy

√
x+ 10 = −1 .

If we square this we get
x+ 10 = 1 so x = −9 .

This is an extraneous root.
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Problem 24

We are told that
(10a+ b)(10a + c) = 100a(a+ 1) + bc .

If we expand both sides we get

100a2 + 10ac+ 10ab+ bc = 100a2 + 100a+ bc ,

or
10(ac+ ab) = 100a ,

or
c+ b = 10 .

Problem 25

The terms of this sequence take the form a0r
k−1 for k ≥ 1. We are told that

a0r
k−1 = a0r

k + a0r
k+1 .

We can divide by a0r
k−1 6= 0 to get

1 = r + r2 or r2 + r − 1 = 0 .

This has solutions

r =
−1 ±

√
5

2
.

As r > 0 we must take the positive sign above.

Problem 27

We are told that the radii of each circle is given by

rn =

(
1

2

)n−1

,

for n ≥ 1. The area for the nth circle is then

An = πr2n = π

(
1

2

)2(n−1)

= π

(
1

4

)n−1

.

The sum we are asked about is

∞∑

n=1

An =
∞∑

n=1

π

(
1

4

)n−1

= π
∞∑

n=0

(
1

4

)n

= π
1

1− 1
4

=
4π

3
.
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Problem 28

I draw the triangle △ABC with the segment BC on an x-axis and A above this axis in the
first quadrant of a Cartesian coordinate plane and use the suggested labeling to label the
sides.

As AD is a bisector of ∠A then from the angle bisector theorem we have

c

y
=
b

x
or

x

y
=
b

c
. (64)

From this we see that (E) is wrong.

Lets use the above to solve for x in terms of a, b, and c. Using Equation 64 and the fact
that x+ y = a we have that

x =
b

c
y =

b

c
(a− x) .

Solving this for x gives

x =
ab

c+ b
.

Thus (A) and (B) are wrong.

Next lets use the above to solve for y in terms of a, b, and c. Using Equation 64 and the
fact that x+ y = a we have that

y =
c

b
x =

c

b
(a− y) .

Solving this for y gives

y =
ac

c+ b
.

This is (D).

Problem 29

Let s be the length of the side of the square. Then we would like to know for what value of
s is s2 = 1.1025. Thus

s = (1 + 0.1025)1/2 .

To evaluate this we recall the Taylor series for (1 + x)1/2 we have

(1 + x)1/2 = 1 +
x

2
+

(
1/2

2

)

x2 +

(
1/2

3

)

x3 + · · ·

= 1 +
x

2
+

1/2(1/2− 1)

2
x2 +

(1/2)(1/2− 1)(1/2− 2)

6
x3 + · · ·

= 1 +
x

2
+

1

4

(

−1

2

)

x2 +
1

4 · 6

(
3

2

)

x3 + · · ·

= 1 +
x

2
− x2

8
+

1

16
x3 + · · · .
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Taking x = 0.1025 we get

(1 + 0.1025)1/2 = 1 + 0.05125− 0.001313281 +O(10−5) .

If we take the first two terms in the above series we have s = 1.05125 so that s2 = 1.105127
which is larger than the goal of 1.1025. Thus we need to make s smaller. If we take the first
three terms in the above series we have s = 1.049937 so that s2 = 1.102367 which is larger
than the target of 1.1025. Thus we need to make s larger. Taking the first four terms we
get s = 1.050004 which gives s2 = 1.102508 and is slightly too large.

Based on this we might try s = 1.05 for which we find s2 = 1.1025 as we desire.

Problem 30

The price the house is sold to Mr. B is

9000(0.9) = 8100 .

This is a 10% loss for Mr. A. Mr. B then sells this property back to Mr. A at a price of

8100(1.1) = 8910 .

This means that Mr. B makes a profit of

8910− 8100 = 810 ,

on that trade. Mr. A made a profit of

8100− 8910 = −810 ,

which is negative so Mr. A made a loss of $810 dollars.

Problem 31

Each rail is

30

(
1

5280

)

=
3

528
,

miles long. The time (in hours) it takes to hear n clicks (where we transverse n− 1 rails) is

Th =
3(n− 1)

528v
,

where v is the velocity of the train in miles-per-hour. This means that

v =
3(n− 1)

528Th
.
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If Th is in hours then
Tm = 60Th ,

is the time in minutes. This means that

v =
3(n− 1)

528
(
Tm

60

) ,

where now Tm is in minutes. The above is equivalent to

v =
180(n− 1)

528Tm
.

If we want v ≈ n then from the above we need

180

528Tm
≈ 1 .

This means that

Tm =
180

528
= 0.34 ,

minutes or 0.34(60) ≈ 20 seconds.

Problem 33

Let our isosceles right triangle have legs of length s. Then the hypotenuse has a length of√
2s. The perimeter is then of length 2s+

√
2s so

2p = 2s+
√
2s so s =

(
2

2 +
√
2

)

p .

Next we will lie the triangle with its hypotenuse along an x-axis (so that the right angle
is “above” the hypotenuse) and drop an altitude from the right angle onto the hypotenuse.
Then as the acute angles of the isosceles right triangle are 45◦ this altitude will have a length
given by

s sin
(π

4

)

=
s√
2
.

Using this the area of this triangle is given by

A =
1

2
bh =

1

2
(
√
2s)

(
s√
2

)

=
s2

2

=
2p2

(2 +
√
2)2

=
2p2(2−

√
2)2

(2 +
√
2)2(2−

√
2)2

=
(2−

√
2)2p2

2
= (3− 2

√
2)p2 ,

when we expand and simply.
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Problem 34

Let the triangle be △ABC with the length of AC be twelve. Draw the circumscribed circle
and note that it passes though A, B, and C. Connect the points C and A to the origin of
the circumscribed circle denoted O each of these segments has a length r the radius of the
circle.

Now as ∠ABC = 30◦ we know that the arc length of AC is 60. From this arc length
we have that ∠AOC = 60. Then from the fact that triangle AOC has AO = OC = r
we have that ∠OAC = ∠ACO = ∠AOC = 60◦ and thus △AOC is equilateral so that
AO = OC = r = AC = 12. This means that the diameter is 2r = 24.

Problem 35

We have

f(x+ 2) =
(x+ 2)(x+ 1)

2
=

(x+ 2)(x+ 1)x

2x
=

(x+ 2)f(x+ 1)

x
.

Problem 36

Method 1: Synthetic division of our polynomial with respect to x = 3 gives

3 4 −6 m
12 18

4 6 m+ 18

To be divisible by x− 3 means that m+ 18 = 0 so m = −18.

Method 2: Evaluating this polynomial at x = 3 we must get zero. This means that

4(9)− 18 +m = 0 so m = −18 .

Of the choices given only 36 has −18 as an exact divisor.

Problem 37

Draw the triangle with the six inch “base” on the horizontal x-axis and the twelve inch
“sides” above it. Drop an altitude from the vertex to the base through the center of the
circumscribing circle. This forms a right triangle with a hypotenuse of twelve, a leg of length
6
2
= 3 and another leg the altitude of the triangle h. Using the Pythagorean theorem we can

write this as
h =

√
122 − 32 =

√
135 .
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As this altitude passes though the center of the circumscribing circle it is of length r + x
where r is the radius of the circle and x is the remaining distance we have

√
135 = r + x .

Drawing another radius from the center of the circle to the base of the triangle we form
another right triangle with a hypotenuse of length r and legs of length 3 and x. Thus again
using the Pythagorean theorem we get

r2 = 32 + x2 .

This gives two equations and two unknowns which we can solve. If we square the first
expression and put it into the second we find

x =
7
√
15

5
.

Putting this into the above we get

r =
√
135− x =

8
√
15

5
.

Problem 38

We have f(4) = 4− 2 = 2 so that

F [3, f(4)] = F [3, 2] = 22 + 3 = 7 .

Problem 39

We can write this in terms of a common logarithm as

log(b)

log(a)
× log(a)

log(b)
= 1 .

Problem 40

The negation of this statement is “some men are dishonest”.

Problem 41

Let O be the origin of a Cartesian coordinate system. Let the x-axis be the straight road
so that the girls’ camp G is located on the y axis at the point (0, 300). The boys’ camp B
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is located along this road at a point (b, 0) such that GB = 500 (rods). We want to put the
canteen at C = (c, 0) such that GC = CB.

Now as △GOB is a right triangle we know that

OB =
√

GB2 − OG2 =
√
5002 − 3002 = 400 .

Let OC = x then CB = 400− x and using the right triangle △GOC we have

GC =
√
3002 + x2 .

To have GC = CB means that
√
3002 + x2 = 400− x .

If we square this we get

3002 + x2 = 4002 − 800x+ x2 so x = 87.5 .

This means that CB = 400− x = 312.5.

Problem 42

Draw the two circles on the x-axis. Let the first circle with a radius of four have its center at
the point A = (0, 0) and the circle with a radius of five have it center at B = (41, 0). I drew
the common internal tangent in the North-East direction and let the points of tangency for
circle A and circle B be denoted as TA and TB respectively. Note that there would be another
common internal tangent going in the South-East direction. Next draw the two lines ATA
and BTB. Because the segment TATB is tangent to both circle A and circle B this segment
TATB is perpendicular to the lines ATA and BTB. Finally, if we extend the segment ATA
five units further (the radius of the B circle) we get a point C.

With this diagram note that in △ACB we have ∠ACB = 90◦ and so using the Pythagorean
theorem we have that

AC2 + CB2 = AB2 ,

or as AC = 4 + 5 = 9 and AB = 41 we have

92 + CB2 = 412 so CB = 40 .

As CB = TATB = 40 the length of the common internal tangent is forty.

Problem 43

Assume p and d are numbers given as fractions i.e. 30% is p = 0.3. Then of A is the original
price of the article the new sales price (after the increase) is

S = A(1 + p) .
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If the number of sales N decreases by d then the number of sales is now

N(1 − d) .

The income now is A(1 + p)N(1 − d) and we want this to be equal to the original income
AN . Thus

AN(1 + p)(1− d) = AN .

Solving this for d we get

d =
p

1 + p
.

The right-hand-side of the above is the value that d cannot exceed.

Problem 44

The first wrong equation must be

(x− 8)(x− 2) = 0 ,

or
x2 − 10x+ 16 = 0 ,

where here the 16 is wrong. The second wrong equation must be

(x+ 9)(x+ 1) = 0 ,

or
x2 + 10x+ 9 = 0 ,

where here the 10 is wrong. Thus the correct equation must be

x2 − 10x+ 9 = 0 .

Problem 45

This is the Arithmetic-Geometric mean inequality which is

√
ab ≤ 1

2
(a + b) . (65)

If you ever forget the direction of the inequality you can “check” it by taking specific numbers.
For example if we take a = 1 and b = 4 the above is

2 ≤ 1

2
(5) = 2.5 .
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Problem 46

Let the length of the long side be l, the length of the short side be w, and the length of the
diagonal be d. Then we are told that

l + w − d =
1

2
l .

From the Pythagorean theorem we have d =
√
l2 + w2 so that the above is

l

2
+ w =

√
l2 + w2 . (66)

We want to know the value of w
l
. If we divide the above equation by l we get

1

2
+
w

l
=

√

1 +
(w

l

)2

.

Squaring this we get

1 +
(w

l

)2

=
1

4
+
w

l
+
(w

l

)2

,

from which we can solve to find w
l
= 3

4
.

Problem 47

By plotting both log(1 + x) and x we see that x > log(1 + x). The Taylor series of log(1 + x)
is

log(1 + x) =
∑

k≥1

(−1)k+1xk

k
= x− x2

2
+
x3

3
− x4

4
+ · · ·

Taylor series with a remainder would say that

log(1 + x) = x− ξ2

2
,

for ξ ∈ [0, x]. Thus we see that log(1 + x) < x.

Problem 48

Let the short side be “on top” with a length of s and the long side be “on bottom” with a
length t. Next drop two verticals from the corners of the short side onto the long side. These
two verticals cut off two congruent right triangles with one leg the altitude of the trapezoid.
Because this is an isosceles trapezoid the length of the other leg of the two right triangles is

t− s

2
.
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From the fact that the longer base length equals the diagonal by using the Pythagorean
theorem we have

diagonal2 = t2 = s2 +

(

s+
t− s

2

)2

.

If we expand this and simplify we get

3

4
t2 =

5

4
s2 +

st

2
.

As we want to know s
t
we divide the above by t2 to get an equation for this ratio. That

equation is

5
(s

t

)2

+ 2
(s

t

)

− 3 = 0 .

Using the quadratic formula we find

s

t
∈
{

−1 ,
3

5

}

.

As this ratio must be positive we have s
t
= 3

5
.

Problem 49

Let f(k) be the total distance AC +BC which we can write as

f(k) =
√

(5− 0)2 + (5− k)2 +
√

(2− 0)2 + (1− k)2 =
√

25 + (5− k)2 +
√

4 + (1− k)2 .

We can compute the extreme values of f(k) by taking the derivative, setting it equal to zero,
and solving for k. I find

f ′(k) =
2(5− k)(−1)

2
√

25 + (5− k)2
+

2(1− k)(−1)

2
√

4 + (1− k)2
.

Setting this equal to zero we can write

5− k
√

25 + (5− k)2
=

−(1 − k)
√

4 + (1− k)2
.

If we square this and cross multiply we get

(5− k)2(4 + (1− k)2) = (1− k)2(25 + (5− k)2) .

If we expand everything and simplify we get the quadratic equation

21k2 − 10k − 75 = 0 .

This has solutions k = −35
21

or k = 15
7
. As k > 0 the second one is the solution we seek.
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Problem 50

Draw AC along an x-axis and B “above” the segment AC. Draw the inscribed circle and
three radii (of length four) to the three sides of the triangle. Note that each of these radii
will be perpendicular to the side of the triangle that it intersects. Let the segment AB be
divided up into two lengths of eight and six. Then from the fact that two tangents to a circle
from the same exterior point have that the same length we conclude that

• The segment AC is broken up into two segments of length eight and then some unknown
length x.

• The segment BC is broken up into two segments of length six and then some unknown
length x.

We will use Heron’s formula to evaluate the area of this triangle and then equate it to the
sum of the six right triangles that make it up.

To use Heron’s formula we need the semi-perimeter

s =
1

2
(14 + (6 + x) + (8 + x)) = 14 + x .

Then we have

A2 = s(s− 14)(s− (6 + x))(s− (8 + x)) = (14 + x)x(8)(6) = 48x(14 + x) .

Each of the six right triangles have an area given by one of

1

2
8(4) = 16

1

2
(4)x = 2x

1

2
6(4) = 12 .

Thus the area of the triangle as the sum of the six right triangles can be written as

2(16) + 2(2x) + 2(12) = 56 + 4x .

If we equate these two expressions we have
√

48x(x+ 14) = 56 + 4x .

If we square this and simplify we get

x2 + 7x− 98 = 0 ,

which has roots x = 7 or x = −14. As x > 0 we have that x = 7. This means that the three
sides of the triangle are of lengths 14, 15, and 13. Thus the smallest side is of length 13.
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The 1954 Examination

Problem 1

Squaring this we find

(5 =
√

y2 − 25)2 = 25− 2 · 5
√

y2 − 25 + (y2 − 25)

= y2 − 10
√

y2 − 25 .

Problem 2

Note that x = 1 is not a point where we can evaluate the given expression at because of the
denominator x− 1 in many of the fractions. Thus the roots of the first equation can only be
x = 4.

Problem 3

We are told that

x ∝ y3

y ∝ z1/5 ,

so that we have
x ∝ z3/5 .

Problem 4

I find that
132 = 22 · 3 · 11 ,

and that
6432 = 25 · 3 · 67 .

This means that the highest common divisor of these two numbers is

22 · 3 = 12 .

Reducing this by eight gives four.
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Problem 5

A regular hexagon has six faces and connecting the center of the circumscribed circle to each
of the “corners” of the regular hexagon we get six equilateral triangles each with a side of
length s = 10. The area of a single equilateral triangle with this side length is

1

2
(10)(5

√
3) = 25

√
3 .

Thus six of these have an area of 150
√
3.

Problem 6

Call this expression E. Then we have

E =
1

16
+ 1− 1√

64
− 1

324/5
.

Now 321/5 = 2 so 324/5 = 16 and we have

E =
1

16
+ 1− 1

8
− 1

16
=

7

8
.

Problem 7

The original price of the dress is 25 + 2.5 = 27.5. Thus the percent savings is

2.5

27.5
=

25

275
=

1

11
= 0.0909091 ,

about 9%.

Problem 8

The area of the square is s2 with s the length of the side. The area of the triangle is

1

2
bh =

1

2
(2s)h .

Setting these two equal we get s = h.

Problem 9

I drew the circle with its center O at the origin and the segment OP (of length thirteen)
along the x-axis. Then from P I draw the chord RP which intersects the circle at R and
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also Q. We are told that PQ = 9 and QR = 7. First using the law of cosigns in the triangle
△POQ we have

r2 = 132 + 92 − 2(9)(13) cos(∠OPR) .

Next using the law of cosigns in the triangle △POR we have

r2 = 132 + 162 − 2(13)(16) cos(∠OPR) .

These are two equations for the two unknowns r and cos(∠OPR). Solving each for cos(∠OPR)
we have

cos(∠OPR) =
r2 − 250

234
=
r2 − 425

416
.

Solving this for r we get r = 5.

Problem 10

Recall that

(a+ b)6 =
6∑

k=0

(
6

k

)

akb6−k ,

so if we take a = b = 1 we get

26 =

6∑

k=0

(
6

k

)

.

Thus the sum is 26 = 64.

Problem 11

Let the sales price be S, the marked price beM , and the cost be C. From the sign he posted
the sales price will be

S =M − 1

3
M =

2

3
M .

We are told that

C =
3

4
S =

3

4

(
2

3
M

)

=
1

2
M .

Thus C
M

= 1
2
.

Problem 12

This has no solution as the left-hand-side of the second equation implies

2(2x− 3y) = 2(7) = 14 6= 20 .
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Problem 13

To solve this problem I first drew a quadrilateral with vertices A, B, C, and D inscribed in
(i.e. on) a circle. I then drew the “angles” in each of the four arcs cut off by the sides of
the quadrilateral. That is I drew a point N on the circle and on the arc between the two
vertices A and B. In the same way we have

• O on the circle and on the arc between the two vertices B and C

• P on the circle and on the arc between the two vertices C and D

• M on the circle and on the arc between the two vertices D and A

Then we are asked to evaluate the angle sum

∠M + ∠N + ∠O + ∠P .

If we relate each of these angles to the arcs that they “cut off” we have

∠M + ∠N + ∠O + ∠P =
1

2
˚�ABCD +

1

2
˚�ADCB +

1

2
˚�BADC +

1

2
˚�DABC

=
1

2
(360 − ÃD) +

1

2
(360 − ÃB) +

1

2
(360 − B̃C) +

1

2
(360 − D̃C)

=
4

2
(360) − 1

2
(ÃD + D̃C + B̃C + ÃB)

= 2(360) − 1

2
(360) = 540 .

Problem 14

Call this expression E. Then we have

E =

√

4x4 + (x4 − 1)2

(2x2)2
=

√
4x4 + x8 − 2x4 + 1

2x2
=

√
8x4 + 2x4 + 1

2x2

=

√

(x4 + 1)2

2x2
=
x4 + 1

2x2
=
x2

2
+

1

2x2
.

Problem 15

For this we have

log(125) = log
(
53
)
= 3 log(5) = 3 log

(
10

2

)

= 3(log(10)− log(2))

= 3(1− log(2)) = 3− 3 log(2) ,

assuming log(x) is the base ten logarithm.
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Problem 16

For this we find

f(x+ h)− f(x) = 5(x+ h)2 − 2(x+ h)− 1− 5x2 + 2x+ 1

= 5(x2 + 2xh+ h2)− 2x− 2h− 5x2 + 2x = 10xh+ 5h2 − 2h

= h(10x+ 5h− 2) .

Problem 17

This is a shift downwards (by seven) of the function 2x3 which goes from −∞ on the left to
+∞ on the right.

Problem 18

We have
2x− 3 > 7− x ,

or
3x > 10 ,

or x > 10
3
.

Problem 19

Draw the triangle △ABC with AB along the x-axis of a Cartesian coordinate plane with
the point C “above” the segment AB. Let the points of contact of the inscribed circle with
the three sides be named A′, B′, and C ′ where A′ is on the triangles side opposite the point
A, B′ is on the triangles side opposite the point B, and C ′ is on the triangles side opposite
the point C. Note that these three points A′, B′, and C ′ cut the inscribed circle into three
arcs which we will denote a, b, and c. The arc a is opposite the point A′, the arc b is opposite
the point B′, and finally the arc c is opposite the point C ′.

Then from the fact that A′ is on a circle forming an angle that cuts an arc of length a we
have

∠A′ =
a

2
.

From the fact that A is an angle with its vertex outside of a circle we have

∠A =
1

2
(c+ b− a) .

As all arc lengths in a circle must sum to 360 we have c+ b = 360− a so the above becomes

∠A =
1

2
(360− 2a) = 180− a ,

87



or
a = 180− ∠A .

We have ∠A′ and ∠A related via a and thus

∠A′ =
a

2
=

1

2
(180− ∠A) = 90− 1

2
∠A .

From this we see that ∠A′ < 90. Similar reasoning holds for ∠B′ and ∠C ′. Thus the triangle
△A′B′C ′ is acute.

Problem 20

Now that if x > 0 then the left-hand-side of this expression is positive and cannot equal
zero. In general, the rational roots of this polynomial are of the form p

q
where p is a factor of

the constant term i.e. six and q is a factor of the coefficient of x3 i.e. one. This means that

x ∈ {±1,±2,±3,±6} .

As we know that x < 0 lets try x = −1. The polynomial evaluated there gives

−1 + 6− 11 + 6 = 0 .

Thus x+ 1 is a factor of this cubic. If we factor this using synthetic division we find

1 6 11 6

− 1 − 1 − 5 − 6

1 5 6 0

This means that
x3 + 6x2 + 11x+ 6 = (x+ 1)(x2 + 5x+ 6) .

This later quadratic can be factored to get

(x+ 1)(x+ 2)(x+ 3) ,

showing that the roots are x ∈ {−1,−2,−3}.

Problem 21

If we square this expression we get

22x+
22

x
+ 8 = 25 .

If we multiply this by x we get
4x2 + 4 + 8x = 25x ,

or
4x2 − 17x+ 4 = 0 .
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Problem 22

Call this expression E. Then we have

E =
2x2 − x− 4− x

(x+ 1)(x− 2)
=

2x2 − 2x− 4

(x+ 1)(x− 2)

=
2(x2 − x− 2)

(x+ 1)(x− 2)
=

2(x− 2)(x+ 1)

(x+ 1)(x− 2)
= 2 .

Problem 23

The sales price is the cost plus the margin or

S = C +M = C +
1

n
C =

n+ 1

n
C .

We are told that M = 1
n
C or C = nM so that the above is

S =
n+ 1

n
(nM) = (n + 1)M .

This means that

M =
1

n+ 1
S .

Problem 24

This equation is
2x2 + (1− k)x+ 8 = 0 ,

the discriminate is then given by

(1− k)2 − 4(2)(8) = (1− k)2 − 64 .

To have real and equal roots means that this is zero or

1− k = ±8 ,

or
k − 1 = ±8 ,

or k ∈ {−7, 9}.
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Problem 25

Lets perform synthetic division by one. We find

1 a(b− c) b(c− a) c(a− b)
a(b− c) c(b− a)

a(b− c) bc− ac 0

This means we can write our expression as

(x− 1)(a(b− c)x+ c(b− a)) = 0 .

From this we see that the other root is

x = −c(b− a)

a(b− c)
=
c(a− b)

a(b− c)
.

Problem 26

Let the segment AB be drawn on an x-axis in a Cartesian coordinate plane with C a point
on AB with proportions as given. Let the “left-most” circle have a center of P (midway
between A and C) and a radius denoted rL. Let the “right-most” circle have a center of Q
(midway between C and B) and a radius denoted rR. Let the common tangent be tangent
to the “left-most” circle at a point P ′ and to the right most circle at a point Q′. Recall that
tangents to circle are at a right angle to their radii. Finally, let x be the distance from B to
D.

Lets let CB = b so that AC = 3b. Then from the above we will have rR = b
2
and rL = 3b

2
.

Next as △DQQ′ ∼ △DPP ′ we have

DQ

QQ′ =
DP

PP ′ ,

or
x+ b/2

rR
=
x+ b+ 3b/2

rL
,

or
x+ b/2

b
2

=
x+ b+ 3b/2

3b
2

.

Solving this for x we get x = BD = b
2
the radius of the smaller circle.
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Problem 27

Let r be the radius of the circle that is the base of the cone and also the radius of the sphere.
Let h be the height of the right circular cone. Then we have

Vcone =
1

3
πr2h

Vsphere =
4

3
πr3 .

As we are told that

Vcone =
1

2
Vsphere ,

we have
πr2h

3
=

1

2

(
4πr3

3

)

.

This simplifies to h
r
= 2.

Problem 28

Call this expression E. Then we can write

E =
3mr − nt

4nt− 7mr
=

3− nt
mr

4
(

nt
mr

)
− 7

.

What is the value of nt
mr

. From the ratios given we have

nt

mr
=

3 · 14
4 · 9 =

7

6
.

This means that E is given by

E =
3− 7

6

4
(
7
6

)
− 7

= −11

14
,

when we simplify.

Problem 29

Draw this triangle with the AB leg along an x-axis and the BC leg sticking straight up
into the “air” so that the hypotenuse is angled in the North-East direction. Without loss of
generality let AB = 1 so that BC = 2. Then the length of the hypotenuse AC is given by

AC =
√
1 + 4 =

√
5 .
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Next draw a segment from B perpendicular the hypotenuse. Let the intersection of this
segment with the segment AC be denoted as B′. Let the length AB′ = x so that B′C =√
5− x. From the right triangle △AB′B we get

BB′2 = AB2 −AB′2 = 1− x2 .

From the right triangle △CB′B we have

BB′2 = BC2 −B′C
2
= 4− (

√
5− x)2 .

Setting these equal to each other and solving for x we find x = 1√
5
. This means that

√
5− x =

4√
5
,

so that
AB′

B′C
=

x√
5− x

=
1

4
,

when we simplify.

Problem 30

Let rA, rB, and rC be the rate at which A, B, and C can do a job (measured in jobs per
day). Then we are told that

2(rA + rB) = 1

4(rB + rC) = 1

12

5
(rA + rC) = 1 .

These are three equations and three unknowns and we would like to know the value of rA.
If we use the bottom two equations to eliminate rC and then put the expression we get for
rB in the first equation we can solve for rA and find that rA = 1

3
. This means that 3rA = 1

or it takes A three days to do the job by him/herself.

Problem 31

Let the segment BC be along the x-axis of a Cartesian coordinate plane with A “above”
BC. Let point O be drawn inside △ABC. Connect this point to B and C with the segments
BO and CO.

Because AB = AC we have

∠B = ∠C =
180− 40

2
= 70 .
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Let θ be equal to ∠OBC = ∠OCA and let γ be defined as ∠ABO. Then as ∠ABC = 70
we have

γ + θ = 70 .

At the same time as ∠ACB = 70 we have

θ + ∠BCO = 70 .

Taken together these mean that

∠ABO = ∠BCO = γ .

In triangle △BOC we have
θ + γ + ∠BOC = 180 ,

or
∠BOC = 180− (θ + γ) = 180− 70 = 110 ,

using what we know about the value of γ + θ.

Problem 32

We have

x4 + 64 = x4 + 82

= (x2 + 8)2 − 16x2 = (x2 + 8− 4x)(x2 + 8 + 4x)

= (x2 − 4x+ 8)(x2 + 4x+ 8) .

Problem 34

Recall that 1
3
= 0.3̄ where the bar over the three means that we repeat that argument (here

the digit three) forever. This means that (A) is not correct. Let e = 0.33333333 with eight
threes. This means that

1

3
− e = 0.000000003̄ .

There are eight zeros after the decimal place in the above. This means that

108
(
1

3
− e

)

= 0.3̄ =
1

3
,

or
1

3
− e =

1

3 · 108 .

This means that 1
3
is larger than e by 1

3·108 .
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Problem 35

We are told that
BM +MA = BC + CA .

Using the Pythagorean theorem and the notation given in this problem this means that

x+
√

(x+ h)2 + d2 = h+ d ,

or √

(x+ h)2 + d2 = h+ d− x .

If we square this and expand we can get a linear equation in x. When we solve that we get

x =
hd

2h+ d
.

Problem 36

Let v0 = 15 be the boats speed in still water. Let D be the distance traveled. Now average
speed is total distance divided by total time which in this case is

D +D
D

v0+5
+ D

v0−5

=
v20 − 25

v0
,

when we simplify. The ratio we want is this over v0 or

v20 − 25

v20
=

8

9
,

when we simplify.

Problem 37

As ∠n = 90◦ and RS bisects angle R in the upper left triangle with angles m, n, and vertex
R we have

m+ 90◦ +
R

2
= 180◦ or

R

2
= 90◦ −m.

Next in triangle △RPQ we have

R + p+ q = 180◦ ,

or

2

(
R

2

)

+ p+ q = 180◦ .

Using what we have above for R
2
the above is given by

2 (90◦ −m) + p + q = 180◦ ,

which we can write as

m =
1

2
(p+ q) .
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Problem 38

Start with what we are given and write it as

33 · 3x = 135 = 5 · 33 ,
thus 3x = 5. From this we take the base 10 logarithm to get

x log(3) = log

(
10

5

)

= log(10)− log(2) = 1− log(2) .

Solving for x we get

x =
1− log(2)

log(3)
≈ 1− 0.3010

0.4771
= 1.4651 .

Problem 39

Let the circle have a center at (0, 0) with a radius r and so in the Cartesian coordinate plane
is denoted as x2 + y2 = r2. Let P = (x∗, y∗) be the external point. The midpoint of a point
on the circle and P is located at

(mx, my) =

(
1

2
(x+ x∗),

1

2
(y + y∗)

)

.

From this we see that
(

mx −
1

2
x∗
)2

+

(

my −
1

2
y∗
)2

=

(
1

2
x

)2

+

(
1

2
y

)2

=
1

4
(x2 + y2) =

1

4
r2 .

In terms of the variables (mx, my) this is the equation of a circle with a center at the point
(
1
2
x∗, 1

2
y∗
)
and a radius of r

2
.

Problem 40

Taking the square root of this we get

a +
1

a
=

√
3 .

If we then take the cube of both sides we get
(

a +
1

a

)3

= a3 + 3a2
(
1

a

)

+ 3a

(
1

a

)2

+

(
1

a

)3

= a3 +
1

a3
+ 3a+ 3

(
1

a

)

= a3 +
1

a3
+ 3

(

a+
1

a

)

= a3 +
1

a3
+ 3

√
3 .

We know this equal 33/2. This means that what we want can be written as

a3 +
1

a3
=

(

a+
1

a

)3

− 3
√
3 = 33/2 − 33/2 = 0 .
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Problem 41

The rational roots of this polynomial of the form p
q
will have p a factor of the constant term

i.e. −9 and q a factor of the highest power term i.e. 4. This means that

p ∈ {±1 ,±3 ,±9} ,

and
q ∈ {±1 ,±2 ,±4} .

This means that

p

q
∈
{

±1 ,±1

2
,±1

4
,±3 ,±3

2
,±3

4
,±9 ,±9

2
,±9

4

}

.

Lets try some of these to see if we can “guess” a root easily. We find x = 1, x = −1, and
x = +3 do not work but x = −3 makes the left-hand-side zero and is a root. This means
that x+ 3 is a factor of this polynomial. To find the other roots lets use synthetic division
to factor x+ 3 out. We have

4 − 8 − 63 − 9

− 3 − 12 60 9

4 − 20 − 3 0

This means that we can write our polynomial as

(x+ 3)(4x2 − 20x− 3) = 4(x+ 3)

(

x2 − 5x− 3

4

)

.

We can next use Vieta’s formula2

https://en.wikipedia.org/wiki/Vieta’s_formulas

to note that the sum of the roots of the quadratic is equal to −(−5) = 5. This means that
the sum of all the roots of the cubic polynomial are given by −3 + 5 = 2.

Problem 42

We will “complete the square” to write these two functions as

y1(x) = x2 − 1

2
x+

1

16
− 1

16
+ 2

=

(

x− 1

4

)2

+
31

16
,

2we actually could have used it directly from the beginning
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and

y2(x) = x2 +
1

2
x+

1

16
− 1

16
+ 2

=

(

x+
1

4

)2

+
31

16
.

In this form it is easier to see that y1(x) is “to the right” of y2(x).

Problem 43

Draw our right triangle with AB on the x-axis and AC on the y-axis of a of a Cartesian
coordinate plane. Draw the the inscribed circle and denote the three points of tangency by
A′, B′, and C ′ where A′ is the point of tangency opposite the point A and similarly for the
others. Draw segments from the center of the inscribed circle to the three points of tangency.
These segments are perpendicular to the side they intersect. As the radius of the inscribed
circle is one we have AC ′ = AB′ = 1.

By the fact that common external tangents are of equal lengths we have CB′ = CA′ and
BA′ = BC ′. Let CB′ = CA′ = y and BA′ = BC ′ = x. Then

CA′ + A′B = y + x = CB = 10 . (67)

In addition

AB = AC ′ + C ′B = 1 + x

AC = AB′ +B′C = 1 + y .

As we have a right triangle the Pythagorean theorem gives

AB2 + AC2 = BC2 ,

or using the above we have
(1 + x)2 + (1 + y)2 = 10 . (68)

From Equation 67 we have y = 10− x which when we put in the above gives

(1 + x)2 + (11− x)2 = 100 .

Expanding and simplifying gives x2 − 10x + 11 = 0. Using the quadratic formula this has
solutions x = 5 ±

√
14. Now as

√
14 <

√
16 = 4 both signs give positive solutions and we

can’t eliminate any. We have

y = 10− x = 10− (5±
√
14) = 5∓

√
14 .

As this problem is symmetrical we need to take one sign for x and the other sign for y.
Because of that, lets take x = 5 +

√
15 so that we have y = 5 −

√
14. This means that the

perimeter of the triangle is given by

(1 + y) + 10 + (1 + x) = 12 + x+ y = 12 + 10 = 22 .
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Problem 44

The statement “born in the first half of the century” means that the man was born in the
years

{1800 , 1801 , 1802 , . . . , 1849} .
Say the man was born in year y. Then he would be

• One year old in year y + 1

• Two years old in year y + 2

• etc.

Thus he would be x years old in year y + x. In the problem we are told that y + x = x2 so
y = x(x− 1). This means that as x is an integer y is the product of two consecutive integers
and thus y is even. Therefore choices (A) and (B) are not true. Now by prime factorizing
the choices given we see that

1812 = 22 · 3 · 151 ,
which is not the product of two consecutive integers. In the same way

1836 = 22 · 33 · 17 ,
which is also not the product of two consecutive integers. Finally

1806 = 2 · 3 · 7 · 43 = 42 · 43 ,
which is the product of two consecutive integers.

Problem 45

Recall that a rhombus has four equal sides, equal opposite acute angles, and equal opposite
obtuse angles. We draw our rhombus with AB along the x-axis, DC parallel to AB above
it and shifted to the “right”. Next we draw the segment running parallel to BD. Let the d
be the distance to this segment from the point A. Let the length of this segment be l. The
by imagining this segment starting at A and increasing its distance from A, its length will
initially increase until a maximum of l = BD, and then decrease back down to zero when it
goes thought the point C. This is the choice (D).

Problem 46

Let O be the center of the circle. Note that we have DA = DB (because they are both
external tangents from the same point) and the radius of the circle is 3

16
. From the diagram

we have

DC = DO +OC = DO +
3

16
.
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We now ask what is the length ofDO. As ∠ADB = 60◦ and ∠OBD = 90◦ then by symmetry
we have

sin(30◦) =
3/16

DO
so DO =

3

8
.

Then using this we have

DC =
3

8
+

3

16
=

9

16
.

Now as

x = DC − 1

2
,

we have

x =
9

16
− 1

2
=

1

16
.

Problem 47

From the problem we are told that AM = p
2
and

MT =

√
(p

2

)2

− q2 .

These mean that

AT =
p

2
+MT

TB = p−AT =
p

2
−MT .

Recall that if we have a quadratic polynomial with roots r1 = AT and r2 = TB we can write
it as

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2 = 0 .

Thus the coefficients are the sum of the roots and the product of the roots (this is Vieta’s
theorem). In this case the sum of the roots is AT + TB = p and the product of the roots is

AT · TB =

(

p

2
+

√
(p

2

)2

− q2

)(

p

2
−
√
(p

2

)2

− q2

)

=
(p

2

)2

−
((p

2

)2

− q2
)

= q2 .

This means that the equation we seek is

x2 − px+ q2 = 0 .
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Problem 48

Let D1 be the distance form the start where the accident occurred and v1 be the trains
normal velocity. Let D2 be the distance from the accident to the trains final destination.
Then in the first case the total time taken by the trip would be

T1 ≡ 1 +
1

2
+
D2

3
4
v1
.

The 1
2
is the half-hour delay. In the second case (where the accident had happened 90 miles

further downstream) the total time taken would be

T2 ≡ 1 +
90

v1
+

1

2
+
D2 − 90

3
4
v1

.

We are told that T1 − T2 =
1
2
hours. This means that

T1 − T2 =

(

1 +
1

2
+
D2

3
4
v1

)

−
(

1 +
90

v1
+

1

2
+
D2 − 90

3
4
v1

)

= −90

v1
+

90
3
4
v1

=
30

v1
.

Solving for v1 we get v1 = 60. As D1 is located one hour into the trains trip we have
D1 = 60(1) = 60 miles. Now the total time taken under the first case is 3.5 hours too long
so

T1 −
(

1 +
D2

60

)

= 3.5 ,

or (

1 +
1

2
+

D2

3
4
(60)

)

−
(

1 +
D2

60

)

= 3.5 .

Solving this for D2 gives D2 = 540 miles so the total distance traveled is

D1 +D2 = 60 + 540 = 600 ,

miles.

Problem 49

Lets write this difference D as

D = (2a+ 1)2 − (2b+ 1)2

= 4a2 + 4a+ 1− 4b2 − 4b− 1

= 4(a2 − b2) + 4(a− b) = 4(a− b)(a + b+ 1) .

Now if a and b are odd then a − b is even and D is divisible by eight. If a and b are odd
then a − b is even and D is divisible by eight. If a is odd and b is even then a − b is odd
while a+ b+1 is even and D is divisible by eight. If a is even and b is odd then a− b is odd
while a+ b+1 is even and D is divisible by eight. In all cases for a and b we have that D is
divisible by eight.
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Problem 50

Let the top of the clock i.e. the vertical 12 o’clock position be the “zero” angle and an
increasing angle corresponding to clockwise movement (i.e. normal) of the hands of the
clock. Then if t is the number of minutes after 7 o’clock the angle the minute hand makes
with this vertical is given by

θminute = 0 + 360

(
t

60

)

= 6t ,

and the angle the hour hand makes with this vertical is given by

θhour = 180 +

(
360

12

)

+ 360

(
t

12 · 60

)

= 210 +
t

2
.

We want to know for what values of t we have

|θminute − θhour| =
∣
∣
∣
∣

11t

2
− 210

∣
∣
∣
∣
= 84 .

These are the two equations

11t

2
− 210 = 84 where t = 53.45

11t

2
− 210 = −84 where t = 22.90 ,

both in minutes. These are closest to the times 7:53 and 7:23.
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The 1955 Examination

Problem 1

Call this number E. Then E has six zeros followed by 375. Thus

E = 0.375 · 10−6

= 375 · 10−9 which is (C)

= 3.75 · 10−7 which is (A)

= 3
3

4
· 10−7 which is (B) .

Now
3

8
=

3

2

(
1

4

)

=
3

2
(0.25) =

1

2
(0.75) = 0.375 ,

so we can also write E as

E =
3

8
· 10−6 ,

which is (E). None of these are (D).

Problem 2

Let the top of the clock i.e. the vertical 12 o’clock position be the “zero” angle and an
increasing angle corresponding to clockwise movement (i.e. normal) of the hands of the
clock. Then if t is the number of minutes after 12 o’clock the angle the minute hand makes
with this vertical is given by

θminute(t) = 360

(
t

60

)

= 6t ,

and the angle the hour hand makes with this vertical is given by

θhour(t) = 360

(
t

12 · 60

)

=
t

2
.

Using these we compute

θminute(25) = 150◦

θhour(25) = 12.5◦ .

This means that
θminute(25)− θhour(25) = 137.5 .

This is 137 and 0.5 degrees. As one minute is

1′ =

(
1

60

)◦
,
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we see that multiplying by 30 we get that

30′ =

(
1

2

)◦
,

Thus this angle is 137.30′.

Problem 3

The average is increased by 20.

Problem 4

“Cross multiply” to write this as

x− 2 = 2(x− 1) ,

or
x− 2 = 2x− 2 so x = 0 .

Problem 5

We are told that
y =

c

x2
,

and that when x = 1 we have
16 =

c

1
,

so that c = 16. This means that y = 16
x2 . If x = 8 we have

y =
16

82
=

42

22 · 42 =
1

4
.

Problem 6

The first price paid for N oranges is P1 =
10
3
while the second price payed for N oranges is

P2 =
20
5
both in units of cents-per-orange. To “break-even” he must sell 2N of them at the

sales price S such that
NP1 +NP2 = (2N)S .

Solving for S we have

S =
1

2

(
10

3
+

20

5

)

=
5

3
+

10

5
=

25

15
+

30

15
=

55

15
=

11

3
.
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Problem 7

After the cut the workers new wages w′ from his original wages w are

w′ = 0.8w .

We want to know r such that after a r “percent increase” that

w′′ = (1 + r)w′ = w .

This means that (1 + r)0.8w = w or

1 + r =
1

0.8
=

1
8
10

=
10

8
=

5

4
= 1.25 .

Thus r = 0.25 or a 25% increase.

Problem 8

We can write the equation for the graph as

(x− 2y)(x+ 2y) = 0 .

This has solutions x = 2y or x = −2y. These are two straight lines.

Problem 9

Draw our triangle △ABC with one base AB along the x axis and the point C “above” the
x-axis. Draw the inscribed circle with a center in the triangle and tangent to the three sides.
Drawing segments from each vertex to the center of that circle decomposes the triangle into
six right triangles where the radius of the inscribed circle is the one of the legs. We will seek
to determine the lengths of other legs of these right triangles. Let the lengths from A to the
two tangent points be x, the lengths from C to the two tangent points be y, and the lengths
from B to the two tangents points be z. Then given the total lengths of the three sides of
the triangle we can write

x+ y = 8

y + z = 15

x+ z = 17 .

As a matrix system this is





1 1 0
0 1 1
1 0 1









x
y
z



 =





8
15
17



 .
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If we solve this system we get

x = 5

y = 3

z = 12 .

This gives us the lengths of the “parts” of each side. These “parts” are legs of the six right
triangles that the center of the inscribed circle divides it up into.

One way to evaluate this area of the original triangle is to sum the area of these six right
triangles. Towards that direction let r be the radius of this circle. Then using the lengths
x, y, and z we have

A = 2

(
1

2
xr

)

+ 2

(
1

2
zr

)

+ 2

(
1

2
yr

)

= 5r + 12r + 3r = 20r .

We can also evaluate this area using Heron’s formula. We have the semiperimeter s given
by

s =
1

2
(8 + 15 + 17) = 20 .

So that Heron’s formula for the area A gives

A =
√

s(s− a)(s− b)(s− c) =
√

20(12)(5)(3) =
√
3600 = 60 .

If we set this equal to the expression above we find r = 60
20

= 3.

Problem 10

The time the train is “traveling” is a
40

hours. The time the train is waiting is n ·m minutes
or nm

60
hours. The total time in hours is then

a

40
+
mn

60
=

3a+ 2mn

120
.

Problem 11

If “no slow learners attend this school” is not true then some slow learners must attend this
school.
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Problem 12

We start with √
5x− 1 +

√
x− 1 = 2 . (69)

If we square both sides and simplify we get

√

(5x− 1)(x− 1) = 3(1− x) .

Squaring again to get
(5x− 1)(x− 1) = 9(x− 1)2 .

One solution to the above is x = 1. If x 6= 1 then we have

5x− 1 = 9(x− 1) ,

which has a solution of x = 2. Now in Equation 69 if we take x = 1 we get

√
4 + 0 = 2 ,

which is true. In Equation 69 if we take x = 2 we get

√
9 +

√
1 = 4 6= 2 .

So the only solution to the original equation is x = 1.

Problem 13

Call this expression E. Then we have

E =
a−4 − b−4

a−2 − b−2
=

(a−2 − b−2)(a−2 + b−2)

a−2 − b−2
= a−2 + a−2 .

Problem 14

Let s be the length of the side of the square. We are told that l = 1.1s and w = 0.9s. This
means that

R : S = lw : s2 = 1.1(0.9)s2 : s2 = 0.99 : 1 = 99 : 100 .

Problem 15

Let A and R be the area and radius of the larger circle and a and r be the area and radius
of the smaller circle. Then we are told that

a : A = πr2 : πR2 = 1 : 3 .
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In other wards
r2

R2
=

1

3
so R =

√
3r .

This means that
R− r = (

√
3− 1)r = 0.732051r .

Problem 16

This would be (E) meaningless/undefined.

Problem 17

We are given
log(x)− 5 log(3) = −2 ,

or
log(x)− log

(
35
)
= −2 ,

or
log
( x

35

)

= −2 .

Take the 10x of both sides of this we get

x

35
= 10−2 ,

so

x =
35

100
=

243

100
= 2.43 .

Problem 18

If the discriminant is D then the roots of quadratic equation ax2 + bx+ c = 0 are

−b ±
√
D

2a
.

As we are told that D = 0 and we have a = 1 with b = 2
√
3 the above becomes

−2
√
3

2
= −

√
3 .

Thus we have equal, real, and irrational roots.
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Problem 19

Let a and b be the roots. Then we are told that

a+ b = 6 ,

and
|a− b| = 8 .

This last expression means that a − b = ±8. If you take the positive sign and add the two
equations you get 2a = 14 so a = 7 and then b = −1. These roots are the solution to the
quadratic

(x− 7)(x+ 1) = x2 − 6x− 7 = 0 .

If you take the negative sign and add the two equations you get 2a = −2 so a = −1 and
then b = 7. These roots are the solution to the quadratic

(x+ 1)(x− 7) = x2 − 6x− 7 = 0 .

As a slightly “different” method of solving this we can use Vieta’s formula which states that
the coefficient of the x term in the quadratic is −(a + b) = −6 (in both cases above) and
that the constant term must be ab = −7 (in both cases above). This is the polynomial

x2 − 6x− 7 = 0 ,

the same as the above conclusion.

Problem 20

We want to know when √
25− t2 + 5 = 0 .

As
√
25− t2 ≥ 0 and 5 > 0 we have

√
25− t2 + 5 > 0 .

Therefore no real values of t will be a solution.

Problem 21

I drew my right triangle △CAB in a Cartesian x-y coordinate plane with the point A at the
origin, the segment AB along the x-axis and AC along the y-axis. Now we take h = AC,
b = AB, c = BC and the area of this triangle is

A =
1

2
bh .
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Let the altitude to the hypotenuse be the segment AA′ where A′ is on BC such that AA′

is perpendicular to BC and a is the length of AA′. For this problem we are asked for a in
terms of the area A and c. Note that

△ABC ∼ △A′BC ,

which means that
AA′

AC
=
AB

BC
or

a

h
=
b

c
.

This means that

a =
hb

c
=

2A

c
.

Problem 22

This problem is asking which is smaller. The first discount is

d1 = (1− 0.2)2(1− 0.1) = 0.82(0.9) = 0.576 ,

While the second discount is

d2 = (1− 0.4)(1− 0.05)2 = 0.6(0.95)2 = 0.5415 .

In the first case he would pay 10000d1 = 5760 while in the second case he would pay
10000d2 = 5415. This is a difference of 5760− 5415 = 345.

Problem 23

The value V of the petty cash “initially” is given by

V = 25q + 10d+ 5n+ 1c ,

in cents. This was found to be in error in that

• he should have added 5x but instead added 25x

• he should have added 10x but instead added x.

This means that to the total was added 25x+x = 26x when it should have been 5x+10x =
15x. To get the correct value from V we subtract 26x and then add 15x. This means that
the correct total is

V − 26x+ 15x = V − 11x .

This means subtract 11x cents.
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Problem 24

Lets write this function as

4x2 − 12x− 1 = 4(x2 − 3x)− 1

= 4

(

x2 − 3x+
9

4
− 9

4

)

− 1

= 4

(

x− 3

2

)2

− 9− 1 = 4

(

x− 3

2

)2

− 10 .

This function then has a minimum value of −10 when x = 3
2
.

Problem 25

Method 1: Now x2 + 3 = 0 if and only if x = ±
√
3i. We now check if the value x = ±

√
3i

is a zero of the original quartic equation. We find in that case that

x4 + 2x2 + 9 = 92 + 2(3)(−1) + 9 6= 0 ,

and thus the answer is no and thus (A) is not correct. For (B) to be correct x = −1 would
need to be a root of the original quartic but

x4 + 2x2 + 9 = 12 + 2(1) + 9 6= 0 ,

thus (B) cannot be correct. Now x2 − 3 = 0 if and only if x = ±
√
3. We can then show that

putting this number into the original quartic does not give zero and (C) cannot be correct.
Note that for (D) the roots of this quadratic equation are given by

x2 − 2x− 3 = (x− 3)(x+ 1) = 0 .

But the original quartic polynomial does not have x = 3 as a root and thus (D) cannot be
correct.

Method 2: We can factor the given expression by “completing the square with respect to
the constant term” as follows

x4 + 2x2 + 9 = x4 + 6x2 + 9− 4x2

= (x2 + 3)2 − 4x2 = (x2 + 3− 2x)(x2 + 3 + 2x)

= (x2 − 2x+ 3)(x2 + 2x+ 3) .

From the above we can “read off” a factor directly.

Problem 26

Mr. A sells his house at
1.1(10000) = 11000 ,
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to Mr. B. Mr. B then sells the house back to Mr. A for 0.9(11000) = 9900.

During these transactions Mr. A received 11000 and then “lost” 9900 for a net profit of

11000− 9900 = 1100 .

Mr. B “lost” 11000 and then received 9900 for a net profit of

−11000 + 9900 = −1100 .

Thus (E) is the correct solution.

Problem 27

Note that by Vieta’s formula we must have r + s = p and rs = q. Then we can evaluate

r2 + s2 = (r + s)2 − 2rs = p2 − 2q .

Problem 28

For the original polynomial y1(x) = ax2 + bx+ c we can write

y1(x) = ax2 + bx+ c = a

(

x2 +
b

a
x

)

+ c = a

(

x2 +
b

a
x+

b

4a2
− b

4a2

)

+ c

= a

(

x+
b

2a

)2

+ c− b

4a
.

This is a parabola with its minimum at x = − b
2a
.

For the second polynomial y2(x) = ax2 − bx+ c in the same way we can write

y2 = ax2 − bx+ c = a

(

−x+ b

2a

)2

+ c− b

4a
= a

(

x− b

2a

)2

+ c− b

4a
.

This is a parabola with its minimum at x = b
2a

and the same minimum value as the parabola
y1(x) above.

These two curves will intersect when y1(x)− y2(x) = 0 which we find is equivalent to

y1(x)− y2(x) = bx+ c− (−bx+ c) = 2bx = 0 .

This has the solution x = 0 so the intersection point is a point on the y-axis.
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Problem 29

Using the “secant-tangent angle” theorem we have that

∠RPB =
1

2
(b+ d+ d− (b− x))

=
1

2
(2d+ x) ,

and

∠APN =
1

2
(a+ c− x+ c− a)

=
1

2
(2c− x) .

Now the angle we want can be written as the sum of the above two so

∠APB = ∠APN + ∠RPB = c+ d .

Now in circle O we have c+ a = 180 or

c = 180− a . (70)

In circle O′ we have x+ b− x+ d = 180 or b+ d = 180 or

d = 180− b . (71)

Using these we have

∠APB = 180− a+ 180− b = 360− (a+ b) .

The solution in the book seems to be for the external angle at ∠APB which would be
360− ∠APB (as expressed above).

Problem 30

For the first equation we have 3x2 = 27 or x2 = 9 or x = ±3.

For the second equation we have

(2x− 1)2 − (x− 1)2 = 0 ,

or
(2x− 1− x+ 1)(2x− 1 + x− 1) = 0 ,

or
x(3x− 2) = 0 .

This has solutions x = 0 or x = 3
2
.
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For the third equation we have √
x2 − 7 =

√
x− 1 ,

which if we square gives
x2 − 7 = x−1 ,

or
x2 − x− 6 = 0 ,

or
(x+ 2)(x− 3) = 0 .

This has the solutions x = −2 or x = 3. If we put x = −2 in the original equation we get√
4− 7 =

√
−3 which means that x = −2 is not a solution in the real numbers. If we put

x = 3 in the original equation we get
√
2 =

√
2 which means x = 3 is a solution in the real

numbers.

From these solutions we see that (B) is the correct choice.

Problem 31

Let the “base” BC be along the x-axis and the point A “above” the segment BC. Let the
side of this equilateral triangle be s. Then we have

[ABC] =

√
3

4
s2 .

Let segment DE be draw parallel to BC. As DE is parallel to BC we know the angles
∠ADC = ∠AED = 60◦. Then as ∠BAC = 60 we know that △ADE is also an equilateral
triangle. Let the length of the sides of that triangle be s′ so that

[ADE] =

√
3

4
s′

2
.

As we are told

[DBCE] =
1

2
[ABC] ,

we have

[ADE] =
1

2
[ABC] =

√
3

8
s2 =

√
3

4
s′

2
.

Solving for s′ we have s′ = s√
2
. This means that DE = s√

2
. The median of the trapezoid is

then
1

2
(BC +DE) =

1

2

(

s +
s√
2

)

.

If s = 2 this is

1 +
1√
2
=

2 +
√
2√

2
.
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Problem 32

For this quadratic the discriminant is

D = (2b)2 − 4ac = 4b2 − 4ac .

If this equals zero then we have b2 = ac or b =
√
ac. This means that b is the geometric

mean of a and c. We can see that a, b, and c form three terms in a geometric progress by
letting a = a0, b = a0r, and c = a0r

2. Then the above relationship b2 = ac becomes

(a0r)
2 = (a0)(a0r

2) ,

which is true.

Problem 33

Let θmin be the angle of the minute hand in degrees from the vertical (the 12 o’clock position)
measured t time from 8 AM. Then

θmin = 0 + 360t = 360t ,

where here t in hours since 8 AM or

θmin = 360

(
t

60

)

= 6t ,

where here t in minutes since 8 AM.

Let θhour be the angle of the hour hand in degrees from the vertical (the 12 o’clock position)
measured t time from 8 AM. Then

θhour =

(
360

12

)

8 +
360

12
t ,

where here t in hours since 8 AM or

θhour = 240 + 30

(
t

60

)

= 240 +
t

2
,

where here t in minutes since 8 AM.

At the start of Henry’s trip These will be equal when

6t = 240 +
t

2
.

Solving for t we get t = 480
11

minutes since 8 AM.

Using the same logic for the end of Henry’s trip, if t is now the time from 2 PM we have

θmin = 6t ,
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where here t is minutes from 2 PM and

θhour =

(
360

12

)

2 +
t

2
,

where here t is in minutes from 2 PM.

At the end of Henry’s trip We are told that

θmin − θhour = 180 .

Using the above expressions we get an equation for t, the time in minutes from 2 PM. Solving
this give t = 480

11
.

Thus this trip starts at 8 AM plus 480
11

minutes and runs to 2 PM plus 480
11
. This trip then

covers the hour ranges

8− 9 , 9− 10 , 10− 11 , 11− 12 , 12− 1 , 1− 2 ,

or six hours total.

Problem 34

Place the two circles in a Cartesian x-y plane with the smaller circle centered at the origin
(denoted O) and the larger circle to the right of the smaller circle on the x-axis and centered
at the point denoted O′. From the given diameters the radius of the smaller and larger circle
are r = 3 and R = 9 respectively. Then the point O′ is located with x = 3 + 9 = 12.

Let the upper external tangent to these two circle be denoted AB where A is tangent to the
smaller circle and B is tangent to the larger circle. For part of this problem, we would like
to determine the length AB. Note that the segments OA and O′B both form right angles
to the segment AB. From the point B walk r = 3 units along BO′ (to a point denoted C)
and draw a segment CO parallel to AB. Note that OC = AB.

Then we notice that △OCO′ is a right triangle with a hypotenuse of length OO′ = 12 and
a leg length O′B − BC = 9− 3 = 6. Thus

OC2 = OO′2 − O′C
2
= 122 − 62 = 108 = 22 · 33 .

Thus
OC = 2 · 3 ·

√
3 = 6

√
3 .

Next we need to determine what fraction of each circles is encircled by the wire (the other
parts of the circle are “hidden” by the wire that is tangent to the circles). From the diagram
we have

cos(∠CO′O) =
6

12
=

1

2
,

115



and thus ∠CO′O = 60◦. This means that ∠COO′ = 90◦−∠CO′O = 30◦. By the symmetry
in this problem there is a symmetric triangle “below” this one. This means that we can
compute the angle measure in each circle where the wire is “tight” to the circle. For the
smaller circle on the left it is

360◦ − 2(30◦ + 90◦) = 120◦ ,

where we have removed the angles ∠AOC = 90◦ and the angle ∠COO′ = 30◦. The fraction
of the circumference of the smaller circle that is encircled by wire is thus

120

360
=

1

3
.

For the larger circle a similar calculation gives

360◦ − 2(60◦) = 240◦ .

Thus the fraction of the circumference of the larger circle that is encircled by wire is thus

240

360
=

2

3
.

Thus the total distance covered by the wire is

1

3
(2π(3)) + AB +

2

3
(2π(9)) + AB .

Using the value of AB = OC found above this can be simplified to

14π + 12
√
3 .

Problem 35

Let n be the total number of marbles in the bag in the beginning. Let bi be the number of
marbles boy i has. Then we are told that

b1 =
n

2
+ 1

b2 =
1

3

(

n−
(n

2
+ 1
))

=
n− 2

6

b3 = n− b1 − b2 =
n− 2

3
.

Note that b3 = 2b2 as expected. Now we know that bi are all positive integers. This means
that n must be even (for b1 to be an integer) and that n− 2 must be divisible by six (for b2)
and that n− 2 must be divisible by three (for b3). These are all true if n− 2 = 6k for some
k ≥ 1. This means that n = 6k + 2 and thus that

b1 = 3k + 1

b2 = k

b3 = 2k .

Note that
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• If k = 1 then n = 8 with b1 = 5, b2 = 1, and b3 = 2

• If k = 6 then n = 38 with b1 = 19, b2 = 6, and b3 = 12,

but other values for k are possible also.

Problem 36

The surface of the oil will form a rectangle the length of which will be the length of the
cylinder or l = 10. This means that to have an area of 40 means that the width of the oil
surface must then be w = 40

10
= 4. If we imagine viewing the cylinder from one end, this

width will be represented as a horizontal line above or below the diameter of the cylinder.
For illustration we will draw this level below the diameter. Then from the center of the circle
we will draw a segment the length of the radius r = 3 to where the surface of the oil meets
the circle on the left and another segment of length r = 3 vertically bisecting the width of
the oil surface. Let d be the depth of the oil measured at the center of the width (at its
deepest point). Then these segments form a right triangle with

r2 =
(w

2

)2

+ (r − d)2 .

If we put in the known values in the above we get

32 = 22 + (3− d)2 .

We can solve this for d and find d = 3 ±
√
5. One of these numbers is a surface area that

lies below the mid-level of the cylinder and the other lies above it.

Problem 37

Our two numbers can be written as

x = htu

y = uth ,

or

x = 100h+ 10t+ u

y = 100u+ 10t+ h .

If we subtract these two numbers we get

x− y = 100(h− u) + (u− h) = (h− u)(100− 1) = 99(h− u) .

As we are told that h > u we can evaluate a number of different values for h − u and see
what the units digit is. We find
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• If h− u = 1 the units digit of x− y is 9

• If h− u = 2 the units digit of x− y is 8

• If h− u = 3 the units digit of x− y is 7

• If h− u = 4 the units digit of x− y is 6

• If h− u = 5 the units digit of x− y is 5

• If h− u = 6 the units digit of x− y is 4

• If h− u = 7 the units digit of x− y is 3

• If h− u = 8 the units digit of x− y is 2

• If h− u = 9 the units digit of x− y is 1

Thus we know that h − u = 6. This means that x − y = 99 × 6 = 594. Thus the next two
digits from right to left are nine and then five.

Problem 38

Let a, b, c, and d be the numbers. Then we are told that

1

3
(a + b+ c) + d = 29

1

3
(a + b+ d) + c = 23

1

3
(a + c+ d) + b = 21

1

3
(b+ c+ d) + a = 17 .

We can write these as

a + b+ c + 3d = 87

a + b+ 3c+ d = 69

a + 3b+ c+ d = 63

3a + b+ c+ d = 51 .

Solving this we find a = 3, b = 9, c = 12, and d = 21.
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Problem 39

If we “complete the square” we find

y = x2 + px+ q = x2 + px+
p2

4
+ q − p2

4

=
(

x+
p

2

)2

+ q − p2

4
.

As we are told that the smallest value for y is zero then from the above that happens when
x = −p

2
and we must then have

q − p2

4
= 0 so q =

p2

4
.

Problem 40

These two fractions will be equal if

ax+ b

cx+ d
=
b

d
,

or
(ax+ b)d = b(cx+ d) ,

or
adx+ bd = cbx+ bd ,

or
(ad− cb)x = bd− bd = 0 .

Thus these two fractions are equal if x = 0 or ad− cb = 0. These show that (D) and (E) are
not solutions to this problem.

If we assume (B) is true then by substitution we see that the two fractions are equal and
this is not a solution to this problem.

If we assume (C) is true then by substitution we see that the two fractions are equal and
this is not a solution to this problem.

This means that (A) must be the solution. If we assume (A) is true then the left-hand-side
fraction is

ax+ b

cx+ d
=
x+ b

x+ d
,

which will not equal b
d
unless x = 0.
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Problem 41

Let L be the distance between Aytown and Beetown, v0 the usual train rate, and T the time
needed to run the route normally so that

T =
L

v0
. (72)

The time to run the route with the delay is

1 +
1

2
+
V − 1v0

4
5
v0

= T + 2 . (73)

If the train had covered 80 more miles the time to run with the delay would be
(
1v0 + 80

v0

)

+
1

2
+
L− 1v0 − 80

4
5
v0

= T + 1 . (74)

We would like to determine v0. These are three equations for the three unknowns L, v0, and
T . If we subtract Equation 73 from 74 we get

80

v0
− 80

4
5
v0

= −1 .

We can solve this for v0 and find v0 = 20 mph.

Problem 42

For these two expressions to be equal means that

√

a +
b

c
= a

√

b

c
. (75)

If we divide both sides by
√

b
c
we get

√
(

a +
b

c

)(c

b

)

= a ,

or √
ac

b
+ 1 = a .

If we square this we have
ac

b
+ 1 = a2 .

Solving the above for c gives

c =
b

a
(a2 − 1) .

This is choice (C).
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Now choice (A) in Equation 75 reduces to
√
2 = 1 which is false.

Now choice (B) would imply that a = b = c = 1 also and so is false.

Now choice (D) in Equation 75 reduces to
√
a+ a

c
= a
√

a
c
. Taking c = 1 in that expression

shows it to be false.

Now choice (E) in Equation 75 reduces to

√

a+
a

a− 1
= a

√
a

a− 1
.

Taking a = 2 in that expression we get
√
2 + 2 = 2

√
2 which is false.

Problem 43

If we put y = (x+ 1)2 into (x+ 1)y = 1 we get

(x+ 1)3 = 1 .

Write the one above as e2πik for k ∈ {0, 1, 2, . . . }. This means that

x = e
2πi
3

k − 1 .

From the above we know x+ 1 so that using y = (x+ 1)2 we have

y = e
4πi
3

k .

We will get three distinct roots by taking k ∈ {0, 1, 2}.

If we take k = 0 we get x = 0 and y = 1.

If we take k = 1 we get

x = −1

2
+

1

2
i− 1 = −3

2
+
i

2

y = e
4π
3
i = −1

2
− i

2
.

If we take k = 2 we get

x = e
4π
3
i − 1 = −1

2
− 1

2
i− 1 = −3

2
− i

2

y = e
8π
3
i = e3πi−

π
3
i = −1

2
+
i

2
.

Thus we see that there are one real pair and two imaginary pairs of solutions.
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Problem 44

Let the circles radius be denoted R. Then draw the segment OB (of length R) and note
that the triangle △OBC is isosceles so

∠BOC = ∠BCO = y .

Now
x+ ∠AOB + y = 180 so ∠AOB = 180− x− y .

Now ÃD = x (as ∠AOD = x) and B̃D = y (as ∠BOC = y). Thus

y =
1

2
(ÃD − B̃D) =

1

2
(x− y) .

We can write this last expression as 3y = x.

Problem 45

Let the first series have terms
a0 , a0r , a0r

2 , . . . ,

and the second series have terms
0 , d , 2d , . . . .

By adding we get the sequence

a0 , a0r + d , a0r
2 + 2d , . . . .

We are told what a few terms in this series are. From the first term we have a0 = 1. From
the second we have

a0r + d = 1 so r + d = 1 .

From the third term we have

a0r
2 + 2d = 2 so r2 + 2d = 2 .

From the first we have d = 1− r which if we put this into the second equation we get

r2 + 2(1− r) = 2 .

We can solve this to get r = 0 or r = 2. We are told that r 6= 0 so r = 2. This means that
d = −1. Now the nth terms of the third series is

a0r
n−1 + (n− 1)d = 2n−1 − (n− 1) .

Thus the sum S we want to evaluate is

S =
10∑

n=1

(2n−1 − (n− 1)) =
9∑

n=0

2n −
n∑

n=0

n

=
210 − 1

2− 1
− 10(9)

2
= 1024− 1− 45 = 978 .
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Problem 46

If we look at where the line 2x + 3y = 6 and 4x − 3y = 6 intersect we find they intersect
when x = 2 and y = 2

3
. The vertical line x = 2 and the horizontal line y = 2

3
also intersects

this point. Thus there is only one intersection point for these four lines.

Problem 47

Let E be the difference between these two expressions. Then

E = (a+ b)(a + c)− (a+ bc) = a2 + ac+ ab+ bc− a− bc

= a2 + a(b+ c− 1) = a(a+ b+ c− 1) .

If this is to equal zero then we must have a = 0 or a+ b+ c = 1.

Problem 48

The choice (A) is true by how the segment FH and EH are constructed.

By the “parallel projection theorem” the segment FE is parallel the segment AB and FE =
1
2
AB. If we imagine drawing a line through H and parallel to AB. Then as AF = EH we

have HG = GB. This means that the segment FG is a median of the triangle △HFB so
choice (E) is true.

The extension of HE back to AB (because HE is parallel to AC) will meet AB at a point
D′ where the length AD′ will equal the length FE. As AD = FE we know that D′ = D
and thus get that HD = AC. As AC ‖ DH we have that ∠CAD = ∠HDB thus

△CAD ∼= △HDB ,

by “side-angle-side” and thus we can conclude that CD = HB so the choice (C) is correct.

Now as CD is a median of△ACB on the side AB we have that it will bisect any line segment
in the triangle △ABC parallel to AB, specifically it will bisect the segment FE. Let E ′ be
the point (the point of bisection) on the intersection of CD and FE. This means that

FE ′ = E ′E =
1

2
FE =

1

2

(
1

2
AB

)

=
1

4
AB .

Because △CAD ∼= △HDB we have

E ′E = EG .

This means that

FG = FE + EG =
1

2
AB +

1

4
AB =

3

4
AB ,
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thus choice (D) is correct.

All of these leave choice (B) as the statement that is not necessarily correct.

Problem 49

Note that we can write the first graph as

y1(x) =
(x− 2)(x+ 2)

x− 2
= x+ 2 ,

when x 6= 2 with the addition that y1(x) is not defined at x = 2. Thus to plot y1(x) we
could plot x+ 2 but exclude the point (2, 4) from that graph.

If we then look for the intersection of y1(x) and y2(x) = 2x we find that these two lines
would intersect only at the point (2, 4). Because this point is now allowed in the definition
of y1(x) there are no points of intersection of the two graphs.

Problem 50

We assume that A increases his speed by v (in mph) so that his new speed is 50 + v. Now
if T is the time to pass then A must be going enough faster than B so that in T time A has
passed by 30 feet or

(50 + v − 40)T = 30 . (76)

In addition as now A and C are headed towards each other to make sure that they don’t
collide

(50 + v + 50)T < 210 . (77)

From the first equation we have

T =
30

10 + v
.

If we put this into Equation 77 we get

30

(
100 + v

10 + v

)

< 210 .

Solving this we find v > 5 mph for the smallest amount by which A can increase his speed
and still pass B.
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The 1956 Examination

Problem 1

When we take x = 2 we find

2 + 2(22) = 2 + 2 ∗ 4 = 10 .

Problem 2

Let C1 and C2 be the costs of the two pipes. Then we are told that

1.2C1 = 1.20

0.8C2 = 1.20 ,

so we have C1 = 1.0 and C2 = 1.5. Then the profit on this sale is

2(1.2)− (C1 + C2) = 2.4− 2.5 = −0.1 ,

or a loss of ten cents.

Problem 3

The distance (in miles) light travels is d = 587×1010 per year. In 100 years light would then
travel 587× 1012 miles.

Problem 4

We must make a rate r such that

4000(0.05) + 3500(0.04) + (10000− 7500)r = 500 .

Solving this for r I find r = 0.064.

Problem 5

If you draw/imagine a circle (with a radius r) surrounded by other circles and connect the
center of the central circle with the center of each surrounding circle. Those segments have
a length 2r. The distance between the center any two adjacent “surrounding” circles is also
2r. This means that the triangle connecting the center of the central circle and two adjacent
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surrounding circles is an equilateral triangle with a side length of 2r. This triangle has a
vertex angle of 60◦. We can place

360

60
= 6 ,

such triangles around the center of the central circle. Counting the number of surrounding
vertexes means that we have six surrounding circles.

Problem 6

Let x be the number of cows and y be the number of chickens. Then if l is the number of
legs and h the number of heads we have

l = 4x+ 2y

h = x+ y .

We are told that
l = 2h+ 14 ,

or
4x+ 2y = 2(x+ y) + 14 .

Solving this for x gives x = 7.

Problem 7

Write this as

x2 +
b

a
x+

c

a
= 0 ,

or factoring based on the two roots r1 and r2 would give

(x− r1)(x− r2) = 0 .

If we expand this and equate coefficients in the above expansion we get

r1r2 =
c

a
.

If we are told that r1r2 = 1 we see that c = a.

Problem 8

Write this as
23 × 2x = 50 = 1 = 20 ,

so 3 + x = 0 or x = −3.
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Problem 9

We have
((a9/6)1/3)4(a9/3)4/6 = ((a3/2)4/3)(a12/6) = (a2)(a2) = a4 .

Problem 10

If C is the center of the circle of radius 10 then when we extend from C to D the length
of that segment is also 10. This means that in triangle △BCD we have two equal sides
CB = CD = 10 and thus is isosceles with a vertex angle of ∠BCD. As each angle in the
equilateral triangle △ABC is 60 degrees we have

∠BCD = 180− ∠ACB = 180− 60 = 120 .

Then since △BCD is isosceles we have

∠CDB =
1

2
(180− ∠BCD) = 30 .

Problem 11

Call this expression E. Then we have

E = 1− (1−
√
3)

1− 3
+

(1 +
√
3)

1− 3

= 1 +
1−

√
3

2
− 1 +

√
3

2

= 1 +
1

2
−

√
3

2
− 1

2
−

√
3

2
= 1−

√
3

Problem 12

We can write
x−1 − 1

x− 1
=

1− x

x(x− 1)
= −1

x
.

Problem 13

This would be
(x− y)(−100)

y
=

100(y − x)

y
.
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Problem 14

Draw the circle in a Cartesian coordinate plane with its center O at (0, 0). Have the point A
at the value (0, R) where R is the radius of the circle. The tangent line at A is then parallel
to the x-axis of our coordinate plane. Let the point B be on the circle and in the fourth
quadrant. Let the point C be on the circle and in the third quadrant. Then the secant line
goes North-East and intersects the tangent line at P . Let the midpoint of the segment CB
be denoted O′. Next draw segments from O to C (of length R) and form O to O′ and from
O to the point P .

The Pythagorean theorem in △OO′C we have

OO′2 +O′C
2
= R2 or OO′2 + 102 = R2 . (78)

The Pythagorean theorem in △OAP we have

AP 2 + AO2 = OP 2 or 300 +R2 = OP 2 . (79)

The Pythagorean theorem in △OO′P we have

O′P
2
+OO′2 = OP 2 or (10 +BP )2 +OO′2 = OP 2 . (80)

Setting Equation 79 and 80 equal gives

300 +R2 = (10 +BP )2 +OO′2 .

Replacing OO′2 using Equation 78 gives

300 +R2 = (10 +BP )2 + (R2 − 100) .

We can solve this for BP to find BP = 10.

Problem 15

Multiply this by x2 − 4 to get

15− 2(x+ 2) = x2 − 4 ,

which we can write as
x2 + 2x− 15 = 0 ,

or
(x+ 5)(x− 3) = 0 .

This has solutions x = −5 and x = 3.
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Problem 16

We are told that
x+ y + z = 98 , (81)

and that

x

y
=

2

3
or x =

2

3
y

y

z
=

5

8
or y =

5

8
z .

The second of these into the first means that

x =
2

3

(
5

8
z

)

=
5

12
z .

If we use these to write everything in terms of the variable z Equation 81 gives

5

12
z +

5

8
z + z = 98 .

Solving this gives z = 48. This means that x = 20 and y = 30.

Problem 17

If we add these two fractions we would get

(2x− 3)A+B(x+ 2)

(2x− 3)(x+ 2)
=

(2A+B)x+ (2B − 3A)

(2x− 2)(x+ 2)
.

If we set this equal to the given fraction we must have

2A+B = 5

2B − 3A = −11

Solving these for A and B gives A = 3 and B = −1.

Problem 18

By “flipping” this we can write this expression as

10−2y = 25−1 .

Taking the square root of this gives

10−y = 5−1 =
1

5
.
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Problem 19

The “rate” of the first and second candle’s are given by

r1 =
L

4

r2 =
L

3
.

Here we assume that the initial candle lengths are L. Note that r1 < r2 meaning that candle
one burns “slower” than candle two. The lengths of each candle at the time t is given by

L1(t) = L− r1t for 0 ≤ t ≤ 4

L2(t) = L− r2t for 0 ≤ t ≤ 3 .

We are asked about the time t when

L1(t) = 2L2(t) .

Using the above expressions this is

L− r1t = 2(L− r2t) .

If we solve this for t we find t = 12
5
= 2 2

5
hours.

Problem 20

Write this as (
2

10

)x

= 2 .

Taking the logarithm base 10 of this gives

x(log(2)− log(10)) = log(2) ,

or

x =
log(2)

log(2)− 1
=

0.3010

0.3010− 1
= −0.43 ,

when we evaluate.

Problem 21

If one “draws” this situation and counts the number of intersections with the hyperbola I
can count that we can have two, three, or four intersections.

130



Problem 22

Let v0 be Jones’ initial velocity. Then we are told that on his first trip we have

v0T0 = 50 ,

miles. This means that T0 = 50
v0
. On his next trip Jones’ traveled with a velocity of 3v0 so

that

3v0T1 = 300 so T1 =
100

v0
= 2

(
50

v0

)

= 2T0

Problem 23

The roots of this quadratic take the form

2
√
2±

√
8− 4ac

2a
=

√
2±

√
2− ac

a
.

We are told that 2− ac = 0. This means that the above becomes
√
2

a
.

These roots are equal and real.

Problem 24

Defining some angles and using the properties of isosceles triangles we have

θ ≡ ∠ABC = ∠ACB

α ≡ ∠ADE = ∠AED .

Now in triangle △ADE we have

∠DAE = 180− 2α .

Now in triangle △ABC we have

2θ + (30 + ∠DAE) = 180 ,

using the above we get
2θ + (180− 2α) + 30 = 180 ,

which we can simplify to
θ − α = −15 .

We can evaluate ∠ADB in two ways

∠ADB = 180− (θ + 30) ,
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or
∠ADB = 180− ∠ADC = 180− (α + x) .

Setting these equal we get
α + x = θ + 30 ,

or
θ − α = x− 30 .

From the above we know that θ − α = −15 so the above is −15 = x− 30 and x = 15.

Problem 25

This sum can be evaluated as

S =

n∑

k=1

(2k + 1) = 2

n∑

k=1

k +

n∑

k=1

1 = 2

(
n(n + 1)

2

)

+ n

= n(n + 2) ,

when we simplify.

Problem 26

Given the base angle and the vertex angle in an isosceles triangle we have determined all
three angles. As there are many triangles that are similar to this configuration we have not
uniquely determined the triangle.

Problem 27

Place the triangle so that the constant angle “opens” to the right and has one of its edges
on the x axis of a Cartesian coordinate system. Let the length of that side of the original
triangle be b and the length of the other side of that angle (again in the original triangle)
have length l. Then the area of the original triangle is

A =
1

2
b× (l sin(θ)) .

Here θ is the radian measure of the angle and l sin(θ) is the height of the triangle onto the
base b. If l and b are doubled while θ does not change the above shows that the area will be
multiplied by four.
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Problem 28

Let W , D, S, and C stand for the amount (in dollars) received by the wife, daughter, son,
and cook respectively. Let E be the value of the entire estate (again in dollars). Then in the
problem statement we are told that

W +D + S + C = E (82)

D + S =
E

2
(83)

D

S
=

4

3
(84)

W = 2S (85)

C = 500 .

Equation 84 indicates that D = 4
3
S. If we put that into Equation 83 we get

4

3
S + S =

E

2
.

This gives S = 3
14
E so that D = 4

3
S = 2

7
E and

W = 2S =
3

7
E .

Using these expressions for W , D, and S in terms of E in Equation 82 we get

3

7
E +

2

7
E +

3

14
E + 500 = E .

Solving this for E gives E = 7000.

Problem 29

From the first equation we have y = 12
x
. If we put that into the second equation we get

x2 +

(
12

x

)2

= 25 ,

which we can write as
x4 − 25x2 + 144 = 0 .

We can factor this to get
(x2 − 9)(x2 − 16) = 0 .

This means that x = ±3 (so y = ±4) or x = ±4 (so y = ±3). This means the intersection
points are given by

(4, 3) , (3, 4) , (−3,−4) , (−4,−3) .

One can check that the slope of the lines connecting the two points (−3,−4) ↔ (4, 3)
and the two points (−4,−3) ↔ (3, 4) is +1 while the slope connecting the two points
(−4,−3) ↔ (−3,−4) and the two points (3, 4) ↔ (4, 3) is −1. As consecutive edges have
slopes that have a product of −1 the edges are at right angles. Thus the connected points
are a rectangle.
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Problem 30

Dropping the altitude to the base of the triangle if the side is of length s then we must have

s sin(60◦) =
√
6 .

This gives s = 2
√
2. Then using the formula for the area of an equilateral triangle given its

side length given in Equation 286 we get
√
3

4
(2
√
2)2 = 2

√
3 .

Problem 31

The twentieth number would need to equal the number 20 in base ten. The largest two digit
base four number would be 33 which is

3× 4 + 3 = 15 .

The next base four number is 100 which equals 16. We need four more so the base four
representation of twenty is 110.

Problem 32

As the two swimmers meet at exactly the same distance from where they started (during
the same time) they are traveling the same speed and will travel one-half of the length of
the pool in T0 = 1.5 minutes. This means that they will both reach the opposite side of the
pool in 2T0 and will meet again (at the center) at 3T0 = 4.5 minutes.

Problem 33

The
√
2 is an irrational number and thus has a infinite non-repeating decimal representation.

Problem 34

Call this expression E. Then let n = 2 and we find E = 12. Then from this specific case the
only choice that is not eliminated is (A). To show that (A) is true in general we write this
expression as

E = n2(n− 1)(n+ 1) = n[(n− 1)n(n+ 1)] .

Now the term in brackets (i.e. [·]) is the product of three consecutive integers and is thus
divisible by three.
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Now if n is even then the term n2 will be divisible by four. If n is odd then n− 1 and n+ 1
are even and the product (n− 1)(n+ 1) is divisible by four.

Thus for all values of n the expression E is divisible by 3× 4 = 12.

Problem 36

This sum is equivalent to
K(K + 1)

2
.

If this is equal to a perfect square N2 we can consider the K values given as solutions an see
if when we put these into the above the value we obtain is a perfect square. For example if
K = 1 the above is one which is a perfect square. If K = 8 the above is 36 which is also
perfect square. If K = 49 the above is 1225 which is 352.

Problem 37

If d1 and d2 are the lengths of the diagonals of a rhombus then the area is given by A = d1d2
2
.

We are told the length of one diagonal. The other diagonal will cut the 60◦ angle in 1/2
forming a right triangle (diagonals of rhomboids are perpendicular) with an angle 30◦ and
a leg length of 1

2
× 3

16
= 3

32
. This means that one-half the other diagonal (call this x) must

satisfy

tan(30◦) =
3/32

x
so x =

3
√
3

32
,

to give a second diagonal length of 2x = 3
√
3

16
. The area is then

Ai =
1

2

(
3

16

)(

3
√
3

16

)

=
9
√
3

2 · 162 ,

inches squared. Now we are told that

(
3

2

)2

=
9

4
= 4002 ,

is the conversion between inches squared and miles squared. This means that our area in
miles squared is

Am =
4002

√
3

2 · 43 = 1250
√
3 ,

when I simplify.
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Problem 38

I drew my right triangle △ACB with one leg of length a along the x-axis of a Cartesian
coordinate plane and another leg of length b along the y-axis. Lets specify the points A, B,
and C at the locations A = (0, b), B = (a, 0) and C = (0, 0). Then the altitude from C to
the hypotenuse will intersect the hypotenuse at a point C ′. Let the distances AC ′ ≡ m and
C ′B ≡ n so that

AC ′ + C ′B = m+ n = AB = c .

Now the altitude to the hypotenuse breaks the original triangle up into two parts a “upper”
triangle and a “lower” triangle. The area of the full triangle is the sum of these two triangles
which can be written (upper plus lower) as

1

2
xm+

1

2
xn =

x

2
(m+ n) =

cx

2
.

This is because in each of these subtriangles x is a height.

We can also evaluate the area of this triangle as 1
2
ab. Setting both of these equal to each

other gives
xc = ab .

The expression we want in in terms of x, and a, and b so if we square this we get

x2c2 = a2b2 ,

using c2 = a2 + b2 this is
(a2 + b2)x2 = a2b2 .

If we divide both sides by x2a2b2 we get

1

a2
+

1

b2
=

1

x2
.

Problem 39

Let a = n and c = n+ 1 where n is an integer. Then the other leg is given by

b2 = c2 − a2 = (n+ 1)2 − n2 = 2n+ 1 = n+ n + 1 = a+ c .

Problem 40

From what we are given we have gt = V − V0. Using this in the second expression as

S = t

(
1

2
gt+ V0

)

= t

(
V − V0

2
+ V0

)

= t

(
V + V0

2

)

.

Solving this for t gives

t =
2S

V + V0
.
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Problem 41

We start with
3y2 + y + 4 = 2(6x2 + y + 2) ,

or moving the y on the right-hand-side to the left-hand-side we have

3y2 − y = 12x2 .

If we then take y = 2x this then is

3(4x2)− 2x = 12x2 .

Simplifying this we get x = 0. Thus there is only one solution.

Problem 42

Write this equation as √
x+ 4 + 1 =

√
x− 3 .

If we square this we get
x+ 4 + 2

√
x+ 4 + 1 = x− 3 ,

or simplifying
2
√
x+ 4 = −8 .

As the left-hand-side is positive and the right-hand-side is negative we can have no solution.

Problem 43

A scalene triangle has sides of all different lengths. Without loss of generality let the three
sides be a < b < c. Then we must have

a + b+ c ≤ 12 .

From the triangle inequality we have c < a+ b so that

a+ b+ c > 2c ,

thus
2c < 12 so c < 6 .

As c is an integer this means that c ≤ 5.

Lets consider the possible choices that we might be able to have. We have

• c = 5, b = 4, a = 3 which works.
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• c = 5, b = 4, a = 2 which works.

• c = 5, b = 4, a = 1 which does not work because it does not satisfy the triangle
inequality a + b > c.

• c = 5, b = 3, a = 2 which does not work because it does not satisfy the triangle
inequality a + b > c.

• c = 5, b = 3, a = 1 which does not work because it does not satisfy the triangle
inequality a + b > c.

• c = 5, b = 2, a = 1 which does not work because it does not satisfy the triangle
inequality a + b > c.

• c = 4, b = 3, a = 2 which works.

• c = 4, b = 3, a = 1 which does not work because it does not satisfy the triangle
inequality a + b > c.

• c = 4, b = 2, a = 1 which does not work because it does not satisfy the triangle
inequality a + b > c.

Thus there are three such triangles.

Problem 44

If we multiply x < a by x (which is negative) we get

x2 > ax .

If we multiply x < a by a (which is also negative) we get

ax > a2 .

Combining both of these expressions we have

x2 > ax > a2 .

Problem 45

The number of revolutions in a mile with the initial radius is given by

N0 =
M

2πr0
,

where M is the length of a mile measured in inches (and r0 measured in inches). Then if the
radius changes to r1 the change in the number of revolutions will be

N1 −N0 =
M

2πr1
− M

2πr0
=
M

2π

(
r0 − r1
r0r1

)

,
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or
N1 −N0

N0

=
r0 − r1
r1

.

Now as r0 − r1 =
1
4
inches and r0 =

25
2
inches (so that r1 = r0 − 1

4
) we have

N1 −N0

N0
=

1
4

25
2
− 1

4

=
1

49
≈ 1

50
= 0.02 .

This is an increase of 2%.

Problem 46

Let f = N+1
N

= 1 + 1
N

then the given equation is

1 + x = f(1− x) .

solving this for x gives

x =
f − 1

f + 1
=

1
N

2 + 1
N

=
1

1 + 2N
.

As we are told that N > 0 we have 1
2N+1

< 1 so that x < 1.

Problem 47

Let v be the rate of work for one machine measured in “jobs” per days. Let n be the number
of machines the engineer has currently. Then we are told that

3nv = 1 , (86)

meaning that in three days with the current number of machines we can get one job finished.
We are also told that

2(n+ 3)v = 1 .

From Equation 86 we have nv = 1
3
. Putting that into the above gives

2

(
1

3
+ 3v

)

= 1 .

Solving for v gives v = 1
18
. We are asking for d where dv = 1. From the v before we see that

this is d = 18 or eighteen days to do the job with one machine.

Problem 48

We want
3p+ 25

2p− 5
= n , (87)
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for n a positive integer. If we solve the above for p we get

p =
5n+ 25

2n− 3
=

6n− 9− n+ 34

2n− 3
= 3 +

34− n

2n− 3
.

Now when n = 1 we get
p = −10 ,

which is not a positive integer. If n = 2 we get

p = 35 ,

which is one. If n = 3 we get

p =
40

3
= 13.3̄ ,

which is not a positive integer. If n = 4 we get

p =
20 + 25

5
= 9 ,

which is a positive integer. Notice that these numbers are decreasing as n increases. Con-
tinuing this pattern if we take n→ ∞ we see that

p→ 5

2
< 3 .

If we take p = 3 in Equation 87 we get

n =
9 + 25

1
= 34 ,

an integer. Thus from this pattern we will get integer values of n when 3 ≤ p ≤ 35.

Problem 50

I drew this triangle with AB along the x-axis and C “above” the segment AB. Then the
segment DE is parallel to CB and forms the square CDEB. Now as AC = CB we have
∠CAB = ∠CBA and

∠ACB = 180− 2∠CAB . (88)

As AC = CD (and using the above) we have

∠CAD =
1

2
(180− ∠ACD) =

1

2
(180− (∠ACB + 90))

=
1

2
(90− ∠ACB) =

1

2
(90− 180 + 2∠CAB)

= −45 + ∠CAB .

Now

x = ∠CAB − ∠CAD

= ∠CAB − (−45 + ∠CAB) = 45 .
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The 1957 Examination

Problem 1

If we draw the isosceles triangle △ABC in the x-y plane with the point B = (0, 0) the point
C = (c, 0) (where c > 0), and the point A = (xA, yA) in the first quadrant with yA > 0.
Then the altitude, median, and angle bisector from A to BC are all the same line segment.
These three segments from B to AC and from C to AB may not all be the same segment.
Thus we have

1 + 3 + 3 = 7 ,

distinct lines.

Problem 2

If we write the given quadratic as

x2 − h

2
x+ k = 0 , (89)

and if we denote the two roots as x1 and x2 we can write this as

(x− x1)(x− x2) = 0 .

If we expand this out we see that it is equal to

x2 − (x1 + x2)x+ x1x2 = 0 .

Equating coefficients of x in this expression with Equation 89 and using what we are told
about the roots we see that

x1 + x2 = 4 =
h

2
x1x2 = −3 = k .

Thus we see that h = 8 and k = −3.

Problem 3

Let the given expression be denoted E. Then we can simplify E as

E = 1− 1

1 + a
1−a

= 1− 1
1−a+a
1−a

= 1− 1
1

1−a

= 1− (1− a) = a .

Of course we can’t perform these manipulations unless a 6= 1.
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Problem 4

This would be C as that is a = 3x+ 2 times the two terms in the other factor x− 5.

Problem 5

Write this expression as

log
(a

b

)

+ log

(
b

c

)

+ log
( c

d

)

− log
(ay

dx

)

= log

(
a

b
· b
c
· c
d
· dx
ay

)

= log

(
x

y

)

.

Problem 6

Performing the given folding, the volume V would be

x(10− 2x)(14− 2x) = x(140− 20x− 28x+ 4x2) = x(4x2 − 48x+ 140) .

Problem 7

From the area information the inscribed circle will have a radius r given by

πr2 = 48π ,

which means that r = 4
√
3.

This radius is “on” the perpendicular bisectors of each of the sides. This means that from the
center of the circle the dropped perpendicular form a right triangle with one leg of length r,
another leg of length s/2 (where s is the length of the side of the triangle) and a hypotenuse
with an acute angle with the base of 1

2
60◦ = 30◦. This means that

tan(30◦) =
r

s/2
.

From what we know about the tangent we have

1
2√
3
2

=
r

s/2
,

so that
s = 2

√
3r .

Thus the side length is s = 8 · 3 = 24 so the perimeter is

3 · 24 = 72 .
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Problem 8

We are told that
x : y : z = 2 : 3 : 5 .

This means that

x

z
=

2

5
so x =

2

5
z

y

z
=

3

5
so y =

3

5
z .

We are also told that
x+ y + z = 100 .

Replacing x and y with the relationships above in terms of z gives

x+ y + z =
2

5
z +

3

5
z + z = 100 .

Solving for z we get z = 50. This then means that

x = 20

y = 30 .

Replacing x and y in y = ax− 10 with the above gives

30 = a(20)− 10 .

Solving for a then gives
a = 2 .

Problem 9

This would be
2− (−2)2+2 = 2− 24 = 2− 16 = −14 .

Problem 10

Write this as

y = 2(x2 + 2x) + 3 = 2(x2 + 2x+ 1− 1) + 3

= 2(x+ 1)2 − 2 + 3 = 2(x+ 1)2 + 1 .

Thus the lowest point is when x = −1 where y = 1.
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Problem 11

Starting at 2:00 as the “zero time” the angular position of the hands of the clock with zero
degrees the location where the hands point straight up are given by

θmh(t) = 0 +
360

60
t = 6t

θhh(t) = 2

(
360

12

)

+
360

60(12)
t = 60 +

1

2
t .

Here θmh is the angular location of the minute hand, θhh is the angular location of the hour
hand and t is the time after 2:00 in minutes. Thus using the above when t = 15 we have

θmh(15) = 90

θhh(15) = 60 +
15

2
.

This means that

θmh(15)− θhh(15) =
45

2
= 22.5◦ .

Problem 12

Let a = 10−49 and b = 2 · 10−50 then 5b = a which is the “opposite” of the statement (D).
Next we have

a− b = 10−49

(

1− 2

10

)

= 10−49

(
4

5

)

= 0.8 · 10−49 = 8 · 10−50 ,

which is (C).

Problem 13

The first two choices are not rational numbers. If r is a rational number between the two
given numbers we must have √

2 < r <
√
3 .

Squaring this gives
2 < r2 < 3 . (90)

For r = 1.5 we find r2 = 2.25. For r = 1.8 we find r2 = 3.24. For r = 1.4 we find r2 = 1.96.
The only value for r2 that satisfies Equation 90 is when r = 1.5.

Problem 14

We can write y as

y =
√

(x− 1)2 +
√

(x+ 1)2 = |x− 1|+ |x+ 1| .
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Problem 15

We expect a function for s(t) of the form s(t) = s0 + vt + a
2
t2 for constants s0, v, and a.

Using the fact that s(0) = 0 we get s0 = 0. Thus we now have

s(t) = vt+
a

2
t2 .

From the table we should have s(1) = 10 and s(2) = 40 so

v +
a

2
= 10

2v +
a

2
(4) = 40 .

Solving these give v = 0 and a = 20 so

s(t) = 10t2 .

From this we compute s(2.5) = 10
(
5
2

)2
= 62.5.

Problem 16

As one can’t buy a fraction of a goldfish the cost of n goldfish is 0.15n and a plot of cost as
a function of n would be a set of distinct points i.e. (1, 0.15), (2, 0.3), (3, 0.45), etc. up to
(12, 1.8).

Problem 17

Lets draw our cube in the x-y-z Cartesian coordinate system with the vertices as

A = (3, 0, 0)

B = (3, 0, 3)

C = (3, 3, 3)

D = (3, 3, 0)

E = (0, 3, 0)

F = (0, 3, 3)

G = (0, 0, 3)

H = (0, 0, 0) .

Then the path A → H in order of the letters alphabetically and then back to A will have
eight legs for a total length of 8× 3 = 24.
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Problem 18

Draw the segment MB. Then as AB is a diameter we have that ∠AMB = 90◦. With this
triangle we have that

△AOP ∼ △AMB .

This means that we can write

AP

AB
=

AO

AM
or AP · AM = AO · AB .

Problem 19

This would be

10011 = 1 + 1 · 21 + 0 · 22 + 0 · 23 + 1 · 24 = 1 + 2 + 16 = 19 .

Problem 20

The average velocity is the total distance divided by the total time. If the length of the
distance driven (in miles) is L then the total distance driven is 2L and the total time driven
is

T =
L

50
+
L

45
.

This means that the average velocity is

v̄ =
2L

L
50

+ L
45

=
2

1
50

+ 1
45

.

As the least common multiple of 45 and 50 is 450 if we multiply v̄ by 450
450

we get

v̄ =
900

19
= 47

7

19
.

Problem 22

Write this as √
x− 1 + 1 =

√
x+ 1 ,

then square both sides to get

(x− 1) + 2
√
x− 1 + 1 = x+ 1 ,

which simplifies to
2
√
x− 1 = 1 .
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If we square both sides again we get

4(x− 1) = 1 or x =
5

4
.

If we put this value back into the original expression we get
√

1

4
−
√

5

4
+ 1 =

1

2
−

√
5

2
+ 1 =

3−
√
5

2
6= 0 .

Thus there are no solutions to this equation.

Problem 23

If we subtract these two equations we get

x2 − x = 0 ,

which has the solutions x = 0 or x = 1. If x = 0 then y = 10. If x = 1 then y = 9. The
distance between these two points is

√

(0− 1)2 + (10− 9)2 =
√
2 .

Problem 24

Let x and y be digits so that our two numbers are xy and yx. If we subtract their squares
we have

(xy)2 − (yx)2 = (10x+ y)2 − (10y + x)2

= 102x2 + 20xy + y2 − (102y2 + 20xy + x2)

= 100(x2 − y2) + (y2 − x2) = (100− 1)(x2 − y2)

= 99(x2 − y2) = 9 · 11 · (x− y)(x+ y) .

This will be divisible by nine, eleven, the sum of the digits, and the difference of the digits.
This will not be divisible by the product of the digits. To see this consider x = 2 and y = 1
then we have

(21)2 − (12)2 = 441− 144 = 297 = 9 · 11 · 3 ,
which is not divisible by xy = 2.

Problem 25

In the x-y Cartesian coordinate plane the area of a triangle denoted by the three points R,
P , and Q is given by

1

2

∣
∣
∣

∣
∣
∣
−→
PQ×−→

PR
∣
∣
∣

∣
∣
∣ ,
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which is the norm of the vector cross product of the two vectors in the plane. In this problem
the location of the points are given. Thus the vectors needed are

−→
PQ = (b− 0, 0− a) = (b,−a)
−→
PR = (c− 0, d− a) = (c, d− a) .

Here I have “constructed” the cross product so that its value will be positive (pointing out
of the page). We next compute

−→
PQ×−→

PR =

∣
∣
∣
∣
∣
∣

î ĵ k̂
b −a 0
c d− a 0

∣
∣
∣
∣
∣
∣

= k̂(bd− ab+ ac) .

Thus the area is given
bd− ab+ ac

2
.

Problem 26

The intersection of the medians of a triangle is a point called the “centroid” upon which
we are able to balance the entire triangle if we were to place it on the point of a pin. This
“means” that the areas of the three triangles must be equal for if one was different we would
expect our triangle to not balance.

Problem 27

Using Vieta’s formula

https://en.wikipedia.org/wiki/Vieta’s_formulas

if r1 and r2 are roots of the given polynomial then

r1 + r2 = −p
r1r2 = q .

We want to evaluate
1

r1
+

1

r2
=
r1 + r2
r1r2

= −p
q
.

Problem 28

This is the identity blogb(a) = a.
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Problem 29

If x = 0 then this inequality is satisfied. If x 6= 0 then it is equivalent to

x2 − 1 ≥ 0 ,

or
(x+ 1)(x− 1) ≥ 0 .

If x = ±1 then this inequality is satisfied. If x < −1 then x− 1 < 0 and x + 1 < 0 so their
product is positive. If −1 < x < 1 then x−1 < 0 and x+1 > 0 so their product is negative.
If x > 1 then x − 1 > 0 and x + 1 > 0 so their product is positive. The the total region
where this inequality is true is x = 0 or x ≤ −1 or x ≥ +1.

Problem 30

If we take n = 1 this formula would be

1∑

k=1

k2 = 1 =
(1 + c)(2 + k)

6
. (91)

If we take n = 2 this formula would be

2∑

k=1

k2 = 1 + 22 = 5 =
2(2 + c)(4 + k)

6
. (92)

From Equation 91 we have

k =
6

1 + c
− 2 . (93)

If we put that into Equation 92 we have

15 = (2 + c)

(
6

1 + c
+ 2

)

.

Solving this for c gives c ∈
{
1, 1

2

}
. If c = 1

2
then Equation 93 gives k = 2 and the formula

becomes
n (n+ 1/2) (2n+ 2)

6
.

If c = 1 then Equation 93 gives k = 1 and the formula becomes

n(n+ 1)(2n+ 1)

6
.

As these two formulas are the same we have a consistent solution. One of which is (c, k) =
(1, 1).
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Problem 31

Let the leg length of the isosceles right triangles be l. Then the length of the hypotenuse
of these triangles is then

√
l2 + l2 =

√
2l. Now a given side of the original square, will have

two lengths of l “cut off” when we remove these triangles. The length of what remains is
1 − 2l and is one side of the octagon. Another side of the octagon is the hypotenuse of the
removed triangles. If these two lengths are equal we must have

1− 2l =
√
2l .

Solving for l I find

l =
1

2 +
√
2
=

1

2 +
√
2
×
(

2−
√
2

2−
√
2

)

=
2−

√
2

2
.

Problem 32

Notice that we can write

n5 − n = n(n4 − 1) = n(n2 − 1)(n2 + 1) = (n− 1)n(n+ 1)(n2 + 1) .

Now n− 1, n, n+ 1 is a sequence of three consecutive integers and thus the product will be
divisible by both two and three and thus by 2 × 3 = 6. I claim that n5 − n is also divisible
by five. To show that let n = 5k + r where 0 ≤ r ≤ 4 and then using the binomial theorem
we have

n5 = (5k + r)5 =

5∑

l=0

(
5
l

)

(5k)lr5−l .

This means that

n5 − n =

5∑

l=0

(
5
l

)

(5k)lr5−l − 5k − r

=

5∑

l=2

(
5
l

)

(5k)lr5−l +

(
5
1

)

(5k)r4 +

(
5
0

)

r5 − 5k − r

=

5∑

l=2

(
5
l

)

(5k)lr5−l + 5k(5r4 − 1) + r5 − r .

Now the sum and the term after it are divisible by five and it remains to be shown that
r5 − r is divisible by five. We find

• If r = 0 then r5 − r = 0 which is divisible by five.

• If r = 1 then r5 − r = 0 which is divisible by five.

• If r = 2 then r5 − r = 30 which is divisible by five.
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• If r = 3 then r5 − r = 240 which is divisible by five.

• If r = 4 then r5 − r = 1020 which is divisible by five.

Thus in all cases n5 − n is divisible by five. Thus the entire expression is divisible by
6× 5 = 30.

Problem 33

Write this equation as
92 · 9x − 9x = 240 ,

or

(81− 1)9x = 240 or 9x =
240

80
= 3 .

This means that x = 1
2
.

Problem 34

The points (x, y) that satisfy the inequality x2 + y2 < 25 are the ones in a circle in the x-y
Cartesian plane centered at zero with a radius of five and not including the circles boundary.
The points that satisfy the equality x + y = 1 are the points on a line. The intersection of
these two sets will then be a straight line segment but not including its two end-points.

Problem 35

Break the segment AC into eight equal parts at the points C1 , C2 , C3 , . . . , C7 , C8 where
C8 = C in the original diagram. Then

AC1 = C1C2 = C2C3 = · · · = C6C7 = C7C =
AC

8
.

Vertically above each Ci place the point Bi on the segment AB. Then each of the triangles
△ACiBi is similar to the original triangle △ACB. This means that

CiBi

ACi
=
CB

AC
,

for i = 1, 2, . . . , 6, 7. Solving for CiBi we get

CiBi =
CB

AC
ACi .

The length ACi is given by

ACi =

(
AC

8

)

i .
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Using this in the above we get that

CiBi =
CB

AC
×
(
AC

8

)

i =
CB

8
i .

As CB = 10 we get CiBi =
5
4
i. Thus the sum we want to evaluate is given by

7∑

i=1

CiBi =
5

4

7∑

i=1

i =
5

4

(
8(7)

2

)

= 35 .

Problem 36

We want to maximize xy subject to x+y = 1. The later is y = 1−x so we want to maximize

x(1− x) = −x2 + x .

This is a quadratic. We can optimize it by completing the square or by using calculus. The
later would require setting the first derivative equal to zero. This is

−2x+ 1 = 0 .

This has the solution x = 1
2
. The second derivative is −2 < 0 indicating that we have found

a maximum. This maximum has a value of −1
4
+ 1

2
= 1

4
.

Completing this square we can write the above as

−x2 + x = −(x2 − x) = −
(

x2 − x+
1

4
− 1

4

)

= −
(

x− 1

2

)2

+
1

4
.

This functional form has the same conclusions about its maximum as before.

Problem 37

We have MC = AC − AM = 12 − x = NP . From how y is defined as y = MN + NP we
have

MN = y −NP = y − (12− x) = x+ y − 12 .

From the similar triangles △ACB ∼ △AMN we have

BC

MN
=

AC

AM
,

or
5

x+ y − 12
=

12

x
.

If we solve the above for y we get

y =
144− 7x

12
.
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a b
3 0
4 1
5 2
6 3
7 4
8 5
9 6

Table 1: Choices of a and b where a− b = 3.

Problem 38

Let the original two digit number be ab where 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9 then the subtraction
requested is

ab− ba = a · 10 + b− (b · 10 + a)

= 10(a− b) + (b− a) = (10− 1)(a− b) = 9(a− b) .

We are told that
9(a− b) = n3 ,

or
32(a− b) = n3 ,

for some positive integer n. Now for the ranges of a and b denoted above we have that
−8 ≤ a − b ≤ 9. If a − b < 0 then 32(a − b) < 0 and n3 would not be positive (as
we are told it should be). This means that we need to have 1 ≤ a − b ≤ 9. Now if
a− b ∈ {1, 2, 4, 5, 6, 7, 8, 9} then 32(a− b) will not be a perfect cube. If a− b = 3 it will be.
A table of the possible values for a and b where a − b = 3 is given in Table 1. There are
seven of these choices.

Problem 39

The total distance covered by the first man after t hours is 4t miles. The second man will
cover a total distance of







4
2
t when 0 < t < 1

4
2
+ 5

2
(t− 1) when 1 < t < 2

9
2
+ 6

2
(t− 2) when 2 < t < 3

15
2
+ 7

2
(t− 3) when 3 < t < 4

This pattern will continue. If we let the first interval (the one where 0 < t < 1) be denoted
n = 0 then the general pattern for n seems to have an “offset” of

n∑

k=1

k + 3

2
=

3

2
n+

1

2

n∑

k=1

k =
3n

2
+
n(n + 1)

4
,
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and a “slope” of
4 + n

2
.

Thus the total distance the second man will have traveled is given by

3n

2
+
n(n + 1)

4
+

(
4 + n

2

)

(t− n) when n < t < n+ 1 .

We would like to find t and n such that the total distance traveled by both men is 72 miles
or

3n

2
+
n(n+ 1)

4
+

(
4 + n

2

)

(t− n) + 4t = 72 .

Lets assume that this happens for t = n for some n. Then we need to solve for n in

3n

2
+
n(n + 1)

4
+ 4n = 72 .

This is a quadratic in n and has solutions n = 9 or n = −32. Thus t = n = 9 is a solution! In
nine hours the first man has traveled 4(9) = 36 miles and the second man has then traveled
72− 36 = 36 miles. Thus they meet midway between the points M and N .

Problem 40

Write y as

y = −(x2 − bx)− 8

= −
(

x2 − bx+

(
b

2

)2

−
(
b

2

)2
)

− 8

= −
(

x− b

2

)2

+
b2

4
− 8 .

To have our vertex on the x-axis means that when x = b
2
we have y = 0 so

b2

4
− 8 = 0 ,

so b = ±4
√
2 which is a positive or a negative irrational number.

Problem 41

This is a linear system for x and y and thus will not have a unique solution if
∣
∣
∣
∣

a a− 1
a+ 1 −a

∣
∣
∣
∣
= −a2 − (a− 1)(a+ 1) = −a2 − (a2 − 1) = −2a2 + 1 = 0 .

Solving this for a I find a = ±
√
2
2
.
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Problem 42

As i4 = 1 we have i4n = 1. Thus lets write

i−n =
1

in

(
i3n

i3n

)

=
i3n

1
= i3n .

This means that we can write S (called Sn here) as

Sn = in + i3n = in + (i3)n = in + (−i)n .
From this we see that

• If n = 0 we have S0 = 2

• If n = 1 we have S1 = i− i = 0.

• If n = 2 we have S2 = −1 + i2 = −2

• If n = 3 we have S3 = −i− i3 = −i+ i = 0

• If n = 4 we have S4 = i4 + (−i)4 = 1 + 1 = 2

• If n = 5 we have S5 = i5 + (−i)5 = −i− (−i) = 0

and the pattern of values seems to repeat. We see that

S4k = i4k + (−i)4k = 1 + 1 = 2

S4k+1 = i4k+1 + (−i)4k+1 = i+ (−i) = 0

S4k+2 = i4k+2 + (−i)4k+2 = i2 + (−i)2 = −1− 1 = −2

S4k+3 = i4k+3 + (−i)4k+3 = i3 + (−i)3 = −i− (−i) = 0 .

Thus there are three distinct values for Sn.

Problem 43

If we “draw” this region in the x-y plane with the idea of “counting” the number of lattice
points in this region.

• Notice that if x = 0 then we can have y = 0 and we have one lattice point in this
region with x = 0.

• If x = 1 then 0 ≤ y ≤ 1 and we have two lattice points in this region with x = 1.

• If x = 2 then 0 ≤ y ≤ 4 and we have five lattice points in this region with x = 2.

• If x = 3 then 0 ≤ y ≤ 9 and we have ten lattice points in this region with x = 3.

• If x = 4 then 0 ≤ y ≤ 17 and we have 17 lattice points in this region with x = 4.

This is a total of 1 + 2 + 5 + 10 + 17 = 35 total lattice points.
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Problem 44

Let ∠CAD = θ and ∠DAB = φ. Then as AC = CD we have ∠CDA = ∠CAD = θ. In
triangle △ACD this means that

∠ACD = π − 2θ .

Along the line CDB by supplementary angles we have

∠ADB = π − ∠ADC = π − θ .

From the triangle △ABC we have that

∠ABC = π − ∠BAC − ∠ACB = π − (∠CAD + ∠DAB)− (π − 2θ)

= 2θ − (θ − φ) = θ − φ .

If we compute the given angle difference we find

∠CAB − ∠ABC = (∠CAD + ∠DAB)− (θ − φ) = (θ + φ)− (θ − φ) = 2φ = 30 .

This means that φ = 15 and is also the measure of the angle we seek.

Problem 45

From the given expression if we take y = 1 we have

x = x− 1 ,

which is a contradiction so y 6= 1. Given that if we solve

x

y
= x− y , (94)

for x in terms of y we get

x =
y2

y − 1
. (95)

In the above if y = 2 then x = 4 and we have two integer solutions. If y = π then x will be
irrational.

To solve for y in terms of x we write the given expression as

y2 − xy + x = 0 ,

which has solutions

y =
x±

√
x2 − 4x

2
.

As we are told that y is real this means that

x2 − 4x = x(x− 4) ≥ 0 .

This means that x ≤ 0 or x ≥ 4.

From all of these facts we have shown that B, C, D, and E are false and A must be true.
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Problem 46

If you can recall that the center of the circle will be at the intersection of the perpendicular
bisectors of the two chords you can draw these bisectors and find their intersection. This
intersection will be at a distance of 2+6

2
= 4 from the (2, 6) chord and at a distance of 3+4

2
= 7

2

from the end of the (3, 4) chord. If we draw this point then the center of the circle has a
radius that is given by the hypotenuse of a right triangle with a side of length 1

2
and four.

Thus

R2 =
1

4
+ 16 =

65

4
,

so R =
√
65
2

and a diameter of the circle of 2R =
√
65.

Problem 47

The segment XY is on the perpendicular bisector of AB. This means that BM = AM . Next
as MQ = QB (and MQ = QA) we have that ∠ABM = ∠BAM = 45◦. This means that

ÃD = 2∠ABM = 90◦. Now draw the segments AO = DO = r. Then ∠AOD = ÃD = 90◦

and triangle △AOD is a right triangle. This means that

AD2 = AO2 +DO2 = r2 + r2 = 2r2 so AD =
√
2r .

Problem 48

Note that if M = C then AM = AC = 0+CB = CM +MB and we have equality between
the two expressions. The same holds if M = B and we again have equality of the length
AM and the sum BM + CM . To show that this is true in general, along the segment AM
move from M towards A a distance of CM and call that point P . We will now show that
the two triangles △APC and △BMC are congruent.

As CM = MP we see that the triangle △CMP is isosceles. As the triangle △ABC is
equilateral each internal angle is 60◦. This means that

ÃC = C̃B = ÃB = 2(60) = 120 .

Now ∠CMP = ∠CMA = 1
2
ÃC = 60◦. This means that △CMP is actually an equilateral

triangle and thus
CP = CM . (96)

Also
AC = CB , (97)

as both sides are sides in the equilateral triangle △ABC. Note that

∠CAM =
1

2
C̄M = ∠CBM . (98)
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Note that ∠AMB = 1
2
ÃB = 1

2
(120) = 60◦ and as △CMP is an equilateral triangle we have

∠CMB = ∠CMP + ∠AMB = 60◦ + 60◦ = 120◦ .

Using supplementary angles we have

∠CPA = 180◦ − ∠CPM = 120◦ .

Thus we have just shown that

∠CPA = 120◦ = ∠CMB . (99)

Now Equations 98 and 99 have shown equivalence of two of the corresponding angles be-
tween the triangles △APC and △BMC thus the third angle must be equal also. Using
Equations 96 and 97 with the above angle equivalence we can apply the theorem “Side-
Angle-Side” to show the congruence

△APC ∼= △BMC .

This means that AP =MB. Using this with we have that

AM =MP + PA =MC +MB ,

showing that equality is always true.

Problem 49

Let the “bottom” trapezoid have the length of its left-most slanted side be a so that the
length of the “top” trapezoid’s left-most slanted side is 6 − a. Let the “bottom” trapezoid
have the length of its right-most slanted side be b so that the length of the “top” trapezoid’s
right-most slanted side is 4− b. Let the length of the “top” of the “bottom” trapezoid be h
(this is also the “bottom” of the “top” trapezoid). The fact that the “top” and the “bottom”
trapezoid have the same perimeter means that

3 + (6− a) + h+ (4− b) = h+ a + 9 + b ,

or simplifying this is
a+ b = 2 . (100)

We are asked about the values of the fractions

6− a

a
and

4− b

b
,

and told that they are equal. Setting these two expressions equal we get b = 2
3
a. Putting

this into Equation 100 we can solve for a to find a = 6
5
. This then means that b = 4

5
. We

can check that

6− a

a
= 4

4− b

b
= 4 .

Thus the ratio we seek is 4:1.
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Problem 50

Draw our circle in the x-y Cartesian coordinate plane with its center at the origin (0, 0)
and a radius R. Let the diameter AB be the segment on the x-axis from A = (−R, 0) to
B = (+R, 0). Then if x is a location on the x-axis such that −R ≤ x ≤ +R from the
construction of the points A′ and B′ we have that A′ = (−R, x − R) and B′ = (R,R − x).
The midpoint of the segment A′B′ is located at the point

(
1

2
(−R +R),

1

2
(x−R +R − x)

)

= (0, 0) ,

which is a fixed point independent of x.
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The 1958 Examination

Inverses of square roots

Squaring and “square rooting” are not exactly inverses of each other. Recall that

(
√
x)2 = x , (101)

but that √
x2 = |x| , (102)

note the absolute value. See if you can find where these identities are used in this test.

Problem 1

We have

[2− 3(2− 3)−1]−1 = [2− 3(−1)−1]−1 = (2 + 3)−1 =
1

5
.

Problem 2

We are given
1

x
− 1

y
=

1

z
,

from which we have
1

z
=
y − x

xy
⇒ z =

xy

y − x
.

Problem 3

We can write the given expression as

a−1b−1

a−3 − b−3

(
a3b3

a3b3

)

=
a2b2

b3 − a3
.

Problem 4

Replacing each x in the original expression we get

(x+1
x−1

) + 1

(x+1
x−1

)− 1
,

160



which we could simplify if needed. Another way to solve this problem is to recognize that
when x = 1

2
then

x+ 1

x− 1
=

3
2

−1
2

= −3 .

If we put this in for x into the expression we get

x+ 1

x− 1
=

−2

−4
=

1

2
.

Problem 5

Call this expression E. Then we have

E = 2 +
√
2 +

1

2 +
√
2
+

1√
2− 2

= 2 +
√
2 +

1

2 +
√
2
− 1

2−
√
2

= 2 +
√
2 +

(2−
√
2)− (2 +

√
2)

(2 +
√
2)(2−

√
2)

= 2 +
√
2 +

−2
√
2

4− 2
= 2 +

√
2−

√
2 = 2 .

Problem 6

Computing the arithmetic mean of these two numbers we find

1

2

(
x+ a

x
+
x− a

x

)

=
1

2

(
2x

x

)

= 1 .

Problem 7

The line that joins these two points takes the form

y − 1 =

(
1− 9

−1− 3

)

(x+ 1) =
−8

−4
(x+ 1) = 2(x+ 1) ,

or
y = 1 + 2(x+ 1) .

The x-intercept of this line is the x value when y = 0. Taking y = 0 in the above we get

−1

2
= x+ 1 ⇒ x = −3

2
.
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Problem 8

Many of these expressions are known to be irrational. Normally taking cube roots gives
irrational numbers but for perfect cubes that statement is not true. Looking at the numbers
given we can simplify them some to decide if they are rational or irrational. For the second
number we have

3

√

8

10
=

2
3
√
10
,

which is irrational. For the third number we have

4

√

16

105
=

2

105/4
,

which is irrational. For the fourth number we have

3
√
−1
√

(0.09)−1 = − 1√
0.09

= − 1
√

9
100

= −
√

100

9
= −10

3
,

which is rational.

Problem 9

We want to solve
x2 + b2 = (a− x)2 = a2 − 2ax+ x2 ,

or
b2 − a2 = −2ax .

This has the solution

x =
a2 − b2

2a
.

Problem 10

We want to know when
x2 + kx+ k2 = 0 ,

has real roots. Using the quadratic equation we find the solutions to the above given by

x =
−k ±

√
k2 − 4k2

2
= −k ±

√
−3k2

2
=

−k ± i
√
3|k|

2
.

For no real value for k (but zero) will this expression be real.
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Problem 11

We want to find the roots of √
5− x = x

√
5− x .

Now if
√
5− x 6= 0 we can divide by it to get x = 1. If

√
5− x = 0 then we have the solution

that x = 5. Thus there are two real roots to this equation.

Problem 12

We want to solve
P =

s

(1 + k)n
,

for n. From the above we have
(1 + k)n =

s

P
,

or taking logarithms this gives

n log(1 + k) = log
( s

P

)

.

Solving for n we get

n =
log
(

s
P

)

log(1 + k)
.

Problem 13

We want to evaluate
1

x
+

1

y
=
y + x

xy
=

10

20
=

1

2
.

Problem 14

If we work “backwards” note that the last boy will dance with all g girls. The next-to-last
boy will dance with g− 1 girls. The next-to-next-to-last boy will dance with g− 2 girls and
so on. Until we get to the first boy who will dance with five girls. This means that there are
more girls than boys and that

b = g − 4 .

We can “check” this expression satisfies the problem statement by imagining the smallest
numbers which satisfy the above namely g = 5 and b = 1. Then the last (and first) boy
dances with all (and five) girls. As another “check” if g = 6 and b = 2 then the last boy
dances with all the girls (six of them) and the next to last boy dances with five girls.
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Problem 16

The radius of the inscribed circle must satisfy

πr2 = 100π ,

so r = 10. As a hexagon has six sides any triangle with a vertex at the circle center and two
edges to the corners of the hexagon will have a angle

360

6
= 60 ,

degrees. This means that the height of this triangle will have h = r = 10 and will be the leg
of a right triangle with one acute angle given by

60

2
= 30 ,

degrees. This means that the other leg of this triangle will have a length given by

r tan(30◦) =
r√
3
=

10√
3
.

This triangle then has an area of

1

2
×
(

10√
3

)

10 =
50√
3
.

There are a total of 6× 2 = 12 such triangles in this hexagon giving a total area of

12×
(

50√
3

)

=
600√
3
= 200

√
3 .

Problem 17

From the given expression

log(x) ≥ log 2 +
1

2
log(x) ,

we can solve for log(x) to get
log(x) ≥ log 22 .

This means that x ≥ 4.

Problem 18

The area of a circle is A = πr2 and we are told that

2A = π(r + n)2 .
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This means that
2πr2 = π(r + n)2 .

Dividing by π and expanding the right-hand-side gives

2r2 = r2 + 2rn+ n2 ,

or
0 = r2 − 2nr − n2 .

Solving for r we get

r =
2n±

√

4n2 − 4(−n2)

2
.

This simplifies to
r = n(1±

√
2) .

Now r must be positive so r = n(1 +
√
2).

Problem 19

To start, we draw this triangle with the leg of length a on a vertical (i.e. y axis) and the
leg of length b on a horizontal (i.e. x axis). We then draw a segment from the origin to the
hypotenuse as described. Let this segments length be h then it splits the original triangle
into two other right triangles.

• the bottom one has legs s, h, and a hypotenuse b

• the top one has legs h, r, and a hypotenuse a

From the original larger triangle as we are told that a : b = 1 : 3 we have that

a : b : c = 1 : 3 :
√
10 .

Next we note that the bottom smaller right triangle is similar to the original right triangle
with the correspondence

h : s : b = a : b : c = 1 : 3 :
√
10 . (103)

The top smaller right triangle is similar to the original right triangle with the correspondence

r : h : a = a : b : c = 1 : 3 :
√
10 . (104)

From Equation 104 we have
r

h
=

1

3
.

From Equation 103 we have
h

s
=

1

3
.

If we multiply these two we get
r

s
=

1

9
,

and thus we have r : s = 1 : 9.

165



Problem 20

Write this as
4x − 4x−1 = 24 ,

or
4x(1− 4−1) = 24 ,

or

4x
(
3

4

)

= 24 ,

or
4x−1 = 8 ,

or
22(x−1) = 23 .

This means that 2(x− 1) = 3 or that x = 5
2
. From that we find 2x = 5 so that

(2x)x = 55/2 = 52+
1
2 = 25

√
5 .

Problem 21

The distance from O to A, B, C, D, and E is the radius of the circle r. If COD is “straight”
and EO is perpendicular to COD then the area of △CED is

1

2
bh =

1

2
(2r)r = r2 .

Now from the arc AB we have that

∠AOB =
360

4
= 90◦ .

Thus △AOB is a right triangle. This means that the area of triangle AOB is

1

2
r2 .

This means that the ratio of the area of △CED to that of △AOB is

r2

1
2
r2

= 2 .

Problem 22

The particle starts at the point P which has an x location where y = 6. The x value for this
value of y is then given by

x2 − x− 6 = 6 ,
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which can be written as
(x+ 3)(x− 4) = 0 .

Thus the two values of x where y = 6 are

x = −3 and x = 4 .

This means that P = (−3, 6) or P = (4, 6). Now the point Q has y = −6 which means that
x can be

x2 − x− 6 = −6 ,

which can be written as
x2 − x = x(x− 1) = 0 .

Thus there are two solutions where y = −6 are x = 0 and x = 1. This means that the point
Q can be Q = (0,−6) or Q = (1,−6).

For P = (−3, 6) the nearest of these two points is Q = (0, 6) at a distance of three. For
P = (4, 6) the nearest of these two points is Q = (1,−6) also at a distance of three.

Problem 23

In the given expression we will replace

x→ x± a ,

to get
(x± a)2 − 3 = x2 ± 2ax+ a2 − 3 .

The change between this and the original expression is then

(x± a)2 − 3− (x2 − 3) = x2 ± 2ax+ a2 − x2 = ±2ax+ a2 .

Problem 24

Let f be the fraction that converts from feet to miles when you multiply by it. Thus

f =
1

5260

miles

feet
.

Now the man travels a distance mf miles North and then back South.

His velocity North (in miles-per-hour) is given by

vNorth =
1miles

2minutes
×
(
60minutes

1 hour

)

= 30
miles

hour
.
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On his return, his velocity South is

vSouth = 2
miles

minute
×
(
60minutes

1 hour

)

= 120
miles

hour
.

The time he travels North (in hours) is then given by

mf

30
.

The time he travels South (in hours) is then given by

mf

120
.

Now the average velocity v̄ is the total distance traveled divided by the total time. For this
problem that is given by

v̄ =
2mf

mf
30

+ mf
120

=
2

1
30

+ 1
120

=
2(120)

4 + 1
=

2(120)

5
= 2(4 + 20) = 2(24) = 48 .

Problem 25

We are told that
logk x · log5 k = 3 ,

or
log x

log k
· log k
log 5

= 3 ,

or
log x = 3 log 5 = log 53 .

This means that x = 53 = 125.

Problem 26

The sum is given by

s =

n∑

i=1

xi .

If we change the values of xi into x
′
i given by

x′i = 5(xi + 20)− 20 = 5xi + 80 .

Thus the sum of these new numbers is then given by

s′ =

n∑

i=1

x′i = 5

n∑

i=1

xi + 80n = 5s+ 80n .
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Problem 27

Equating the slope between the first two points and the second two points gives

3− (−3)

4− 2
=

k
2
− 3

5− 4
,

or
6

2
=
k

2
− 3 .

Solving for k we get k = 12.

Problem 28

Let fi be fraction of water after each of the ith removal of liquid and replacement with pure
antifreeze. Then f0 = 1 as we start with pure antifreeze. Next for f1 we have

f1 =
0 + 3(4)

16
=

12

16
=

3

4
.

Now for f2 this will be

f2 =
# of quarts of water

16 quarts

=
3
4
(16)− 3

4
(4)

16
=

(
3

4

)2

.

Now f1 · 16 is the amount of water in the radiator and f1 · 4 is the amount of water removed.
The difference is the amount of water remaining. Computing f2 using the method we see
that

f2 =
f1 · 16− f1 · 4

16
= f1 −

4

16
· f1 =

(

1− 1

4

)

f1 =
3

4
f1 . (105)

This means that

f2 =
3

4
· 3
4
=

9

16
.

Following Equation 105 for another step we see that

f3 =
33

43
,

Following Equation 105 for another step we see that

f4 =
34

44
=

81

256
.
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Problem 29

A hint for this problem is that we expect that the correct solution will be symmetric in the
variables in the drawing. To me, only the solution E has that property and thus we will try
to prove that E is correct. From △AEB we have

x+ y = 180− z .

But z = 180−m so that we have
x+ y = m.

This of course means that
x+ y −m = 0 .

If we do the same thing for the “other side” of the triangle we would get

a+ b− n = 0 .

If we set these two expressions equal to each other we get

x+ y −m = a + b− n ,

which is equivalent to
x+ y + n = a + b+m.

This is E.

Problem 30

We are told that xy = b and
1

x2
+

1

y2
= a .

From the second expression we get

x2 + y2

x2y2
= a .

Using xy = b this is x2 + y2 = ab2. Next using

(x+ y)2 = x2 + 2xy + y2 = x2 + 2b+ y2 .

Taken together this means that

(x+ y)2 = ab2 + 2b = b(ab+ 2) .
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Problem 31

Draw this isosceles triangle with a base of b along the x-axis and two equal sides of length s
and a height of length h. Then in terms of these variables the perimeter can be written as

2s+ b = 32 ⇒ b = 32− 2s . (106)

From the right triangle obtained when we drop the height onto the base by using the
Pythagorean theorem we have

s2 = h2 +

(
b

2

)2

.

In this if we replace b using Equation 106 and h = 8 we get

s2 = 82 + (16− s)2 .

If we expand and simplify this we get s = 10 and using Equation 106 we get b = 12. This
means that the area of the original triangle is

1

2
bh =

1

2
(12)(8) = 48 .

Problem 32

Let s be the number of steers bought and c the number of cows bought. Then based on the
cost of each we are told that

1000 = 25s+ 26c . (107)

As we are looking for integer solutions for s and c we will solve for s (which has a coefficient
that is a divisor of the left-hand-side of 1000) and we get

s =
1000

25
− 26

25
c = 40− 26

25
c .

For s to be an integer means that c = 25n for n an integer with n ≥ 1. In that case

s = 40− 26n .

We now ask how large can n be in the above equation and still have a positive solution for
s? If we take n = 1 we find s = 14. If we take n = 2 however we find s < 0. Thus we have
only one solution to this problem and it is given by taking n = 1 where we find that c = 25
and s = 14.

Problem 33

Let the given root be denoted r and then by dividing by the leading coefficient a we can
write the given quadratic as

x2 +
b

a
x+

c

a
= (x− r)(x− 2r) .
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If we expand the right-hand-side of the above we get

x2 − (r + 2r)x+ 2r2 = x2 − 3rx+ 2r2 .

Equating coefficient of x with the original quadratic then gives

−3r =
b

a

2r2 =
c

a
.

From the first equation we have

r = − b

3a
.

If we put this into the second equation we gets

2

(

− b

3a

)2

=
c

a
.

We can simplify this to
2b2 = 9ca .

Problem 34

For the numerator to be larger than the denominator when

6x+ 1 > 7− 4x ,

or

x >
3

5
= 0.6 .

Intersecting this range with the original domain of −2 ≤ x ≤ 2 we get

3

5
< x ≤ 2 .

Problem 35

Draw the given triangle with its vertex C at the origin of an x-y coordinate plane and the
A vertex “on-the-left” and the B vertex “on-the-right”. Let the vertex A have coordinates
(a, c) where c > 0. Let the vertex B have coordinates (b, d) where d > 0. Now we can break
down the area of △OAB into the area of a parallelogram minus two triangles as

Area(△OAB) = Area(DCBA)− Area(△OCB)− Area(△OAD) .
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Each of these areas can be then be computed as

Area(DCBA) =
1

2
(b− a)(c + d)

Area(△OCB) =
1

2
ca

Area(△OAD) =
1

2
db .

As each of a, b, c, and d are integers all of the above are rational. Because all of these
expressions are rational so must be Area(△OAB).

Problem 36

If we draw this triangle and let the altitude be of length h and the side of length 80 be
broken up into a length x1 (below the side 30) and a length x2 (below the side 70). If we
use the Pythagorean theorem for the left and right triangles that result we get

x21 + h2 = 302 (108)

x22 + h2 = 702 (109)

x1 + x2 = 80 . (110)

If we subtract the first two of these equations we get

x21 − x22 = 302 − 702 = 900− 4900 = −4000 ,

or
x22 − x21 = 4000 ,

or
(x2 − x1)(x2 + x1) = 4000 .

Now using Equation 110 in the above we get

x2 − x1 = 50 . (111)

Adding this to Equation 110 to get

2x2 = 130 ⇒ x2 = 65 .

So from Equation 111
x1 = 80− 65 = 15 .

The larger of the two size is x2 = 65.
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Problem 37

Let this sum be denoted as S. Then for S we have

S =

2k∑

l=0

(k2 + 1 + l) = (k2 + 1)(2k + 1) +

2k∑

l=0

l = (k2 + 1)(2k + 1) +

2k∑

l=1

l

= (k2 + 1)(2k + 1) +
2k(2k + 1)

2
= (2k + 1)(k2 + k + 1)

= k2 + k + 1 + 2k3 + 2k2 + 2k = 2k3 + 3k2 + 3k + 1

= k3 + k3 + 3k2 + 3k + 1 = k3 + (k + 1)3 .

Problem 38

We are told that
s =

y

r
and c =

x

r
.

These look like the definition of the trigonometric functions sin(x) and cos(x). Thus we have
that

s2 + c2 = 1 ,

so that
s2 − c2 = s2 − (1− s2) = 2s2 − 1 .

Now following the analogy with the trigonometric function we know that

0 ≤ s2 ≤ 1 ,

which means that
0 ≤ 2s2 ≤ 2 ,

and so
−1 ≤ 2s2 − 1 ≤ 1 .

Problem 39

Let v = |x| then
v2 + v − 6 = 0 or (v + 3)(v − 2) = 0 .

This means that v = −3 or v = 2. We know that v ≥ 0 so the only solution is v = |x| = 2.
Thus x = ±2 and the sum is zero.
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Problem 40

We want to know the value of a3. We know that a0 = 1 and a4 = 3 and that

a2n − an−1an+1 = (−1)n .

This means that

an+1 =
a2n − (−1)n

an−1
.

So if we take n = 1 we get

a2 =
a21 − (−1)1

a0
=

9 + 1

1
= 10 ,

and if we take n = 2 we get

a3 =
a22 − (−1)2

a1
=

100− 1

3
= 33 .

Problem 41

As we are told the roots of
x2 + px+ q = 0 ,

are s2 and r2 we can use that information to write the above as

(x− s2)(x− r2) = 0 .

Expanding the left-hand-side of this and equating powers of x this means that

q = s2r2

p = −(s2 + r2) . (112)

Next for Ax2 +Bx+ C = 0 to have roots of r and s means that

r =
−B −

√
B2 − 4AC

2A

s =
−B +

√
B2 − 4AC

2A
.

From these expressions this means that

s2 + r2 =
1

4A2

[

(−B −
√
B2 − 4AC)2 + (−B +

√
B2 − 4AC)2

]

=
1

4A2

[

B2 + 2B
√
B2 − 4AC + (B2 − 4AC) +B2 − 2B

√
B2 − 4AC + (B2 − 4AC)

]

=
1

4A2

(
2B2 + 2(B2 − 4AC)

)
=

1

A2
(B2 − 2AC) .

Thus

p = −(s2 + r2) =
2AC −B2

A2
.

Note that in the above we have used the fact that (
√
x)2 = x.

175



Problem 43

We start by drawing the given triangle △ABC and the two medians AD and BE (these
segments go from a vertex to the midpoint of the opposite side).

In the right triangle ECB the Pythagorean theorem gives

EC2 +BC2 = EB2 ,

or
EC2 + (2CD)2 = 16 ,

or
EC2 + 4CD2 = 16 . (113)

Next in the right triangle ACD the Pythagorean theorem gives

(2EC)2 + CD2 = AD2 ,

or
4EC2 + CD2 = 49 . (114)

These are two equations in two unknowns. Put EC2 from Equation 113 into Equation 114
to get

4(16− 4CD2) + CD2 = 49 .

We can solve this for CD and find CD = 1. Putting this into Equation 113 gives

EC2 = 16− 4 = 12 ,

so
EC = 2

√
3 .

Thus using what we know we have

AC = 2EC = 4
√
3

BC = 2CD = 2 .

The Pythagorean theorem in the triangle ACB gives

AB2 = AC2 +BC2 = 16 · 3 + 4 = 48 + 4 = 52 = 22 · 13 ,

which means that
AB = 2

√
13 .

Problem 44

I find that none of these expressions is provably true given the hypothesis.
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Problem 45

In terms of x and y the correct amount of the check is given by

c = x+
y

100
,

while the incorrect amount of the check is given by

i = y +
x

100
.

We are told that i− c = 17.82 or

y − x+
x

100
− y

100
= 17.82 .

We can simplify and write this as

y − x =
1782

99
= 18 . (115)

Now we know that x and y are two digit numbers so

10 ≤ x ≤ 99 and 10 ≤ y ≤ 99 .

To test B (which seems the easiest one to check) if we let y = 2x in Equation 115 we get
x = 18 and then y = 2x = 36 which is a valid solution.

Note that if y is two digits y ≤ 99 which means that

x+ 18 ≤ 99 or x ≤ 81 ,

which allows x to be larger than 70 and thus test A is false.

Problem 46

We are told that
−4 < x < 1 .

Write the given expression E(x) as

E(x) ≡ x2 − 2x+ 2

2(x− 1)
=

(x− 1)2 + 1

2(x− 1)
=

1

2
(x− 1) +

1

2(x− 1)
. (116)

From the range above we have
−5 < x− 1 < 0 .

One thing this means is that

−5

2
<
x− 1

2
< 0 .
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Another is that

−∞ <
1

x− 1
< −1

5
,

so

−∞ <
1

2(x− 1)
< − 1

10
.

If we add these two we see that

−∞ <
x− 1

2
+

1

2(x− 1)
< − 1

10
.

Thus this expression has no minimum value but has a maximum value.

To find the x where E is largest we computer dE
dx

using Equation 116 and find

dE

dx
=

1

2

(

1− 1

(x− 1)2

)

.

Setting this equal to zero and solving for x we get

x2 − 2x = 0 .

Thus the maximum occurs when x = 0 or x = 2. Only x = 0 is in the domain −4 < x < 1
and we find

E(0) =
2

2
= 1 .

Problem 48

Let the center of the circle be located at the center of a Cartesian coordinate system at
(0, 0). Then in this coordinate system we can take A = (−5, 0), B = (0, 5), C = (−1, 0) and
D = (1, 0). Let a point (x, y) be on the circle. Based on the location of these points the
distance CP + PD can be written as

CP + PD =
√

(x+ 1)2 + y2 +
√

(x− 1)2 + y2 .

But as (x, y) is on the circle we have x2 + y2 = 52 which means that we can write the above
as

CP + PD =
√
2x+ 1 + 52 +

√
−2x+ 1 + 52 =

√
26 + 2x+

√
26− 2x . (117)

Now if we are at the location (x, y) = (−5, 0) then

CP + PD = 4 + 6 = 10 ,

and if we are at the location (x, y) = (5, 0) then we have

CP + PD = 10 ,

also. If x = 0 and y = 5 this is

CP + PD = 2
√
26 = 2

√
25 + 1 > 10 .
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This indicates that as a hypothesis we should consider

CP + PD ≥ 10 ,

for all x.

The extremes of the sum CP + PD as a function of x will happen when the derivative of
CP + PD with respect to x is equal to zero. Based on Equation 117 this expression is

d

dx
(CP + PD) =

(2)

2
√
26 + 2x

+
(2)

2
√
26− 2x

=
1√

26 + 2x
+

1√
26− 2x

= 0 .

We can write the above as
1√

26 + 2x
= − 1√

26− 2x
.

If we square each side of this and “flip” we get

26− 2x = 26 + 2x .

This has the solution x = 0. To see if x = 0 is a minimum or a maximum we consider the
second derivative of CP + PD with respect to x. We find

d2

dx2
(CP + PD) = −1

2
(26 + 2x)−

3
2 (2) +

1

2
(26− 2x)−

3
2 (−2) .

If we evaluate this at x = 0 we find

d2

dx2
(CP + PD)

∣
∣
∣
∣
x=0

= −(26)−
3
2 − (26)−

3
2 < 0 .

This means that x = 0 is a maximum. This means that CP + PD is longest when P =
(x, y) = (0, 5). Note that this point P is equidistant between C and D.

Problem 49

We can compute this expansion and then count how many terms there are. We first have

(a+ b+ c)10 =

10∑

i=0

(
10

i

)

(a+ b)ic10−i

=

10∑

i=0

(
10

i

)( i∑

j=0

(
i

j

)

ajbi−j

)

c10−i

=

10∑

i=0

i∑

j=0

(
10

i

)(
i

j

)

ajbi−jc10−i .

In this expression, the inner sum has i+1 terms. This means that the total number of terms
T is given by

T =
10∑

i=0

(i+ 1) =
10∑

i=1

i+ 11 =
10(10 + 1)

2
+ 11 = 55 + 11 = 66 ,

terms.
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Problem 50

From the diagram given, for this problem we note that to have A → A′ we need to have
x = 3 mapped to y = 5. to have B → B′ we need to have x = 4 mapped to y = 1. The line
that passes though the points (3, 5) and (4, 1) has a slope given by

m =
5− 1

3− 4
=

4

−1
= −4 ,

and thus looks like
y − 5 = −4(x− 3) .

We can write this as
y = 17− 4x .

Thus if x = a then y = 17− 4a so

x+ y = 17− 3a .
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The 1959 Examination

Problem 1

If s is the side length of the side of the cube then we are told that s → 1.5s = 3
2
s. This

means that the surface area of a cube is given by

SA = 6s2 ,

so the new surface area is

SA′ = 6(1.5s)2 = 6

(
3

2
s

)2

=
9

4
· 6s2 .

This means that the percent increase in surface area is given by

SA′ − SA

SA
=

SA′

SA
− 1 =

9

4
− 1 =

5

4
= 1.25 .

Which is 125 percent.

Problem 2

Drawing this triangle with a base AB on the x-axis and the vertex C above the base AB.
We then draw a line segment A′B′ parallel to AB and though the point P .

Let the altitude from vertex C onto the segment AB intersect AB at the point D and
intersect the segment A′B′ at the point D′. Then we are told that CD = 1 and we want to
know the distance PD = D′D.

The area of the “top” triangle CA′B′ is given by

1

2
(A′B′)(CD′) .

The area of the full triangle ABC is given by

1

2
(AB)(CD) .

As the parallel segment A′B′ creates a “top” triangle (△CA′B′) that is similar to the full
triangle (△ABC) we know that

A′B′ = αAB

CD′ = αCD ,

for some 0 ≤ α ≤ 1. This means that the area of the top triangle is α2 the area of the full
triangle. As we are told that

Area△CA′B′ =
1

2
Area△CAB .
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This means that

α2 =
1

2
so α =

1√
2
.

As we are told that CD = 1 we then know that CD′ = αCD = α. Thus

D′D = CD − CD′ = 1− α = 1− 1√
2
=

√
2− 1√
2

=
2−

√
2

2
.

Problem 4

We are told that
x+

x

3
+
x

6
= 78 .

As

1 +
1

3
+

1

6
=

6

6
+

2

6
+

1

6
=

9

6
=

3

2
,

this means that

x =
2

3
(78) = 52 .

Thus the middle part is
x

3
=

52

3
= 17

1

3
.

Problem 5

If we use 256 = 28 we can write this value as

(256)0.16(256)0.09 = (28)
16
100 (28)

9
100 = (28)

25
100 = (28)

1
4 = 2

8
4 = 22 = 4 .

Problem 6

The converse of this statement is “if Q is a rectangle then Q is a square”. This is false. The
inverse of this statement is “if Q is not a square then Q is not a rectangle” which is also
false.

Problem 7

The hypothesis must be the larger length. Using the Pythagorean theorem we get

a2 + (a+ d)2 = (a+ 2d)2 ,

or expanding we get
a2 + a2 + 2ad+ d2 = a2 + 4ad+ 4d2 ,
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which we can simplify to
a2 − 2ad− 3d2 = 0 .

If we divide this by d2 we get
(a

d

)2

− 2
(a

d

)

− 3 = 0 .

Using the quadratic equation we find that a
d
is equal to

a

d
=

−(−2)±
√

4− 4(−3)

2
=

2±
√

4(1 + 3)

2
=

2± 4

2
.

As the ratio must be positive so that we must take the positive sign so that we get

a

d
=

2 + 4

2
= 3 .

This means that a : d = 3 : 1.

Problem 8

We write this expression as

x2 − 6x+ 13 = (x2 − 6x+ 9) + 4 = (x− 3)2 + 4 .

Thus we see that this expression is never less than four.

Problem 9

The fraction of the herd fourth son gets would be

1−
(
1

2
+

1

4
+

1

5

)

= 1−
(
10

20
+

5

20
+

4

20

)

= 1−
(
19

20

)

=
1

20
.

We are told that
n

20
= 7 ⇒ n = 140 .

Problem 10

Here I draw the triangle ABC with the BC along the x-axis and the segment BA in a
North-Easterly direction. Stepping from A “backwards” 1.2 we get point D on AB. Finally
point E is drawn on the extension AC.

As the area of △AED is equal to the area of △ABC and that the “base” of △AED (i.e.
the segment DA) is

1.2

3.6
=

1

3
,
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of the base of ABC (i.e. the segment BA). For these two triangles to have equal areas
means that the height of AED must be three times the height of ABC. The height of
each of these triangles is related to the segments AC and AE via a trigonometric function

1
sin(∠BAC)

involving the angle ∠BAC. This means that

AE =
1

sin(∠BAC)
h△AED =

1

sin(∠BAC)
(3h△ABC)

= 3

(
1

sin(∠BAC)
h△ABC

)

= 3AC = 3(3.6) = 10.8 .

Problem 11

We want to evaluate
x = log2(0.0625) .

Note that

1

4
= 0.25

1

8
= 0.125

1

16
= 0.0625 ,

Thus

x = log2

(
1

16

)

= − log2(16) = − log2(2
4) = −4 .

Problem 12

Adding c to each we would get the numbers

20 + c , 50 + c , 100 + c .

As this is a geometric progression this means that

50 + c

20 + c
= r ,

and
100 + c

50 + c
= r .

If we set these two expression equal to each other we get

50 + c

20 + c
=

100 + c

50 + c
.

To solve for c we first have

(50 + c)2 = (100 + c)(20 + c) ,
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or
2500 + 100c+ c2 = 2000 + 120c+ c2 ,

or
500 = 20c or c = 25 .

This means that

r =
50 + 25

20 + 25
=

75

45
=

15

9
=

5

3
.

Problem 13

We are told that
1

n

n∑

i=1

xi =
1

50

50∑

i=1

xi = 38 .

This means that
50∑

i=1

xi = 50(38) = 1900 .

If we drop the two numbers we have

48∑

i=1

xi = 1900− 45− 55 = 1800 .

The new mean is then
1

48

48∑

i=1

xi =
1

48
(1800) = 37.5 .

Problem 14

This set S is
S = {0,±2,±4,±6, · · · } .

This set is closed under addition, subtraction, and multiplication and not division and aver-
aging.

Problem 15

If we let a and b be the two legs of the triangle and c the hypotenuse then we are told that

c2 = 2ab .

We also have the Pythagorean theorem that states that

c2 = a2 + b2 .
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Using the first equation we have
a2 + b2 = 2ab ,

or
a2 − 2ab+ b2 = (a− b)2 = 0 .

This means that a = b and this triangle is an isosceles and each acute angle is π
4
.

Problem 16

By factoring all polynomials we can write this division as

(x− 1)(x− 2)

(x− 2)(x− 3)
· (x− 3)(x− 4)

(x− 1)(x− 4)
= 1 ,

when we cancel common terms.

Problem 17

When y = 1 we are told that x = −1. If we put these values in the given expression we have

1 = a+
b

−1
⇒ 1 = a− b . (118)

When y = 5 we are told that x = −5. If we put these values in the given expression we have

5 = a− b

5
. (119)

From Equation 118 we have a = 1 + b. If we put that Equation 119 we have

5 = 1 + b− b

5
.

Solving for b we find b = 5. If we put this into Equation 118 we get

a = 1 + b = 6 .

This means that
a + b = 11 .

Problem 18

What we want to compute is

1

n

n∑

k=1

k =
1

n

(
n(n + 1)

2

)

=
n+ 1

2
.
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Problem 19

If we have weights x, y, and z where x < y < z (and other conditions like x + y 6= z so
that no two weighs sum to a third) then we can imagine putting some of these three weights
on one of the two scales. This would create an imbalance and the scale should “tip” to the
heavier side. We could then perfectly weigh an object that offset this “tip”. For example if
we put all of the weights on one scale we could weigh an object with weight x+ y + z.

Thus to count the number of possible weights we can distinguish we need to count up the
number of ways we can place the weights on the two scales. This can be done in several ways

• We can place one of the three weights on one scale in

(
3
1

)

= 3 ways. This produces

the weights x, y, and z.

• We can place two of the three weights on one scale in

(
3
2

)

= 3 ways. This produces

the weights x+ y, x+ z, and y + z.

• We can place three of the three weights on one scale in

(
3
3

)

= 1 ways. This produces

the weight x+ y + z.

• We can place two of the three weights on two scales in

(
3
2

)

= 3 ways. This produces

the weights y − x, z − x, and z − y.

• Finally, we can place three of the three weights on two scales in

(
3
2

)

= 3 ways since

we just have to decide which scale (from two) each weight will go on. This produces
the weights that are the differences z − x− y etc.

This gives a total of 3 + 3 + 1 + 3 + 1 + 3 = 13.

Problem 20

We are told that

x =
Cy

z2
.

We know that (x, y, z) = (10, 4, 14) this means that

10 =
4C

142
so C = 490 .

If (y, z) = (16, 7) then we have

x =
490(16)

72
= 160 .
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Figure 1: Our trapezoid and its median.

Problem 21

Let the length of the side of the equilateral triangle be s. Then we have s = p
3
.

Next draw the equilateral triangle inside the circle. Then draw segments from the center of
the circle to each of the triangle’s vertices. This gives three isosceles triangles with legs of
length r (the radius of the circle). The vertex angle of each isosceles triangle is given by

360

3
= 120◦ .

This means that the “leg angles” are

180− 120

2
= 30◦ .

The altitude of one of the isosceles splits the base of length s into two right triangles each
with a hypotenuse of r. As one of the angles in that right triangle is 30◦ we have

s

2
= r cos(30◦) =

r
√
3

2
.

Solving for r we get

r =
s√
3
=

p

3
√
3
.

The area of the circle is then

πr2 =
πp2

27
.

188



Problem 22

See Figure 1 for a picture of our trapezoid and a line connecting the midpoints of AC and
BD. From the problem we are told that AB = 97 and that MN = 3. Recall that in a
trapezoid, the line that connects the midpoints of the diagonals is on the median of the
triangle and thus from properties of the median of a trapezoid we have

1

2
(DC + AB) =

1

2
(DC + 97) = EF . (120)

We also know that the median bisects the segments AD and BC. Next note that

EF = EM +MN +NF = EM + 3 +NF . (121)

As △DCA ∼ △EMA so that we have

EM

DC
=
EA

DA
=

1

2
so EM =

1

2
DC .

In the same way as △DCB ∼ △NFB so that we have

NF

DC
=
FB

CB
=

1

2
so NF =

1

2
DC .

If we put these two expressions into Equation 121 we get

EF = DC + 3 .

If we put this into Equation 120 we get

1

2
(DC + 97) = DC + 3 .

We can solve this for DC to get DC = 91.

Problem 23

We want to solve
log10(a

2 − 15a) = 2 .

This is equivalent to
a2 − 15a = 100 ,

or
a2 − 15a− 100 = 0 .

Using the quadratic equation we find that a is given by

a =
15±

√
255 + 400

2
=

15±
√
625

2
=

15± 25

2
.

These two roots are a ∈ {−5, 20}. These are two integers.
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Problem 24

Now his m ounces of salt water at m% solution has m
(

m
100

)
ounces of salt in m ounces of

liquid. If we then add x ounces of pure salt will have a solution with

m2

100
+ x

m+ x
,

fraction of salt. If this is to equal 2m
100

then we must have

m2

100
+ x

m+ x
=

2m2

100
,

or
m2

100
+ x =

2m2

100
+

2m

100
x ,

or (

1− 2m

100

)

x =
m2

100
,

so that we need to add

x =
m2

100− 2m
,

ounces of pure salt.

Problem 25

This is equivalent to
−4 < 3− x < 4 ,

or
−4 < x− 3 < 4 ,

or
−1 < x < 7 .

Problem 26

I drew this triangle with the side AC alone the x-axis of a Cartesian coordinate plane and
the point B “above” this segment. Let the median from A intersect the side BC at A′.
Let the median from C intersect the side AB at C ′. Let the median from B intersect the
side AC at B′. Finally, let the centroid of the triangle be denoted M . We are told that
∠AMC = 90◦ and so △AMC is a right triangle. This means that

AM 2 +MC2 = AC2 = (
√
2)2 = 2 .

By symmetry we expect AM =MC. Thus using the above we find AM =MC = 1.
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Now the medians of a triangle intersect in such a way that AM :MA′ = 2 : 1 and thus

AM

MA′ = 2 =
1

MA′ so MA′ =
1

2
.

Now △CMA′ is a right triangle so it has an area of

1

2
MA′ ×MC =

1

2
× 1

2
× 1 =

1

4
.

As the medians of a triangle divide the triangle into six smaller triangles all with equal area
the area of the full triangle is then

6[CMA′] = 6× 1

4
=

3

2
.

Problem 27

If we divide everything by i and note that 1
i
= −i we can write this expression as

x2 + ix+ 2 = 0 .

Then using Vieta’s formula (see the test in 1954) if r1 and r2 are the roots of the above
quadratic we have that

−(r1 + r2) = i and r1r2 = 2 .

Thus the sum of the roots is −i.

Problem 28

Draw this triangle with the point A = (0, 0) the point B “to the right” of A on a Cartesian
x-axis and the point C “above” the segment AB. From the problem statement the angle
bisector at A intersects BC at L and the angle bisector at C intersects the segment AB at
M .

Using the “angle bisector theorem” at A we have that

AC

CL
=
AB

LB
.

Using the “angle bisector theorem” at C we have that

AC

AM
=

CB

BM
.

Using the fact that BC = a, AC = b, and AB = c we can write these as

b

CL
=

c

LB
(122)

b

AM
=

a

BM
. (123)
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From Equation 122 we get
CL

LB
=
b

c
.

From Equation 123 we get
AM

BM
=
b

a
.

Together these mean that
AM
MB
CL
LB

=
b

a
· c
b
=
c

a
.

As this is k the answer is (E).

Problem 29

The number of correct answered questions C is

C = 15 +
1

3
(n− 20) .

We are told that
C

n
= 0.5 .

This gives a linear equation for n with the solution n = 50 or only one solution.

Problem 30

Let C be the circumference of the track, vA the velocity of A, and vB the velocity of B.
Then we are told that

vA =
C

40
. (124)

The other piece of information we are given is that at a velocity of vA + vB we can run the
track in 15 seconds or

vA + vB =
C

15
. (125)

We want to know the value of C
vB
. If we divide Equation 125 by vB we get

vA
vB

+ 1 =
1

15

(
C

vB

)

,

or using Equation 124 in this we get

1

40

(
C

vB

)

+ 1 =
1

15

(
C

vB

)

.

This is a linear equation in C
vB
. Solving this we find C

vB
= 24 seconds.
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Problem 31

A square with an area of 40 will have a side length s =
√
40 = 2

√
10.

When a square with side s is inscribed in a semicircle the radius of the circle is the hypotenuse
of a right triangle with legs of length s and s

2
. Thus

r2 = s2 +
(s

2

)2

= 40 + 10 = 50 ,

when we use the value of s found above. This means that r = 5
√
2.

If a square is placed in a full circle of radius r then r would be the hypotenuse of a right
triangle with side lengths s′

2
and s′

2
for some new side length s′. This means that

50 = r2 =

(
s′

2

)2

+

(
s′

2

)2

.

Solving this we get s′ = 10 so the area of this square is 102 = 100.

Problem 32

Draw our circle with a center of O and the tangent from A to the circle with the point of
tangency T . The the distance OT is r the radius of the circle. We are told that TA = 4

3
r.

As the angle ∠OTA = 90◦ by using the Pythagorean theorem we have

OA2 = r2 +

(
4

3
r

)2

=
25

9
r2 .

This means that OA = 5
3
r. The distance from the circle to A is OA − r = 2

3
r. As we are

told that l = 4
3
r we have r = 3

4
l which means that the distance from the circle to A is

OA− r =
2

3
r =

2

3
· 3
4
l =

l

2
.

Problem 33

The harmonic progression 3 , 4 , 6 has the corresponding arithmetic progression given by
1
3
, 1
4
, 1
6
. This arithmetic progression has the common difference d of

d =
1

4
− 1

3
=

1

6
− 1

4
= − 1

12
.

The next few terms of the arithmetic progression are given by

1

6
− 1

12
=

1

12
, 0 ,− 1

12
, . . .

Thus the fourth number in the harmonic progression is 1
1
12

= 12 and the sum S4 = 3 + 4 +

6 + 12 = 25.
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Problem 34

Writing this expression as
(x− r)(x− s) = 0 ,

we see that

r + s = 3 (126)

rs = 1 . (127)

If we square r + s (and then expand) we would get

r2 + 2rs+ s2 = 9 ,

or using what we know about rs above we have

r2 + s2 = 9− 2 = 7 ,

a positive integer.

Problem 35

By expanding we see that the left-hand-side of the given expression is given by

x2 − 2mx+m2 − (x2 − 2nx+ n2) = −2mx +m2 + 2nx− n2 = −2(m− n)x+ (m2 − n2) .

Factoring and setting this equal to the right-hand-side gives

−2(m− n)x+ (m− n)(m+ n) = (m− n)2 .

As we know that m 6= n we can divide by m− n to get

−2x+m+ n = m− n or x = n ,

which is one solution.

Problem 36

Draw our triangle △ABC with its base BA along the x axis and the point C “above” BA.
We can take B = (0, 0) and A = (80, 0). Let the angle ∠ABC = 60◦. Let BC = a and
AC = b. Then we are told that a + b = 90. From C we can drop a perpendicular vertical
to the segment BA of length h and that intersects BA at the point D. Let x = BD and
y = DA. Then we have

x = a cos(60◦) =
a

2

h = a sin(60◦) =
a
√
3

2

y = 80− x = 80− a

2
.

194



In the right triangle △CDA we have

b2 = h2 + y2 =
3a2

4
+
(

80− a

2

)2

= a2 − 80a+ 6400 ,

when we expand and simplify. We also know that b = 90 − a which when we put into the
above gives

(90− a)2 = a2 − 80a+ 6400 .

Expanding and simplifying this we find a = 17. Thus b = 90− a = 73 and the three sides of
the triangle are

17 , 73 , 80 .

The shortest side is thus 17.

Problem 37

This is the product

n∏

k=3

(

1− 1

k

)

=
n∏

k=3

(
k − 1

k

)

=
2

3
· 3
4
· 4
5
· 5
6
· · · n− 1

n
=

2

n
.

Problem 38

If we take v =
√
2x then v2 = 2x so that the expression we are given can be written as

2v2 + v − 1 = 0 .

We can write the above as
(2v − 1)(v + 1) = 0 .

This means that v = −1 or v = 1
2
. As we must have v ≥ 0 the only valid solution is v = 1

2
.

Thus √
2x =

1

2
or x =

1

8
,

so x is a fraction.

Problem 39

We have

S =

9∑

k=1

xk +

9∑

k=1

ka =
1− x10

1− x
− 1 + a

(
10(9)

2

)

=
1− x10 − 1 + x

1− x
+ 45a

=
x− x10

1− x
+ 45a .
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Problem 40

I draw the triangle with AB along the x-axis of a Cartesian coordinate system with C
“above” AB. I then drew the segments BD and CF as specified in the problem (where
AD = DC and DE = EB). From the point E in the direction of C place the point G such
that EG = EF . Then by the “side-angle-side” theorem we have △FEB ∼= △GED. Thus
DG = FB = 5.

Now D is the midpoint of AC and DG is parallel to AB thus

DG =
1

2
AF or AF = 2DG = 2(5) = 10 .

Thus AB = AF + FB = 10 + 5 = 15.

Problem 41

To draw the given figure I needed to place two “large” circles tangent to each other and
externally tangent to a horizontal line. A smaller circle was then placed “in the gap” between
the two larger circles. This smaller circle is tangent to the horizontal line and to each of the
larger circles.

If we imagine placing the y-axis of an x-y Cartesian coordinate system through the center
of the smaller circle we can place its center (denoted by o) at (0, r) where r is the smaller
circles radius. The two larger circles will then have their centers at (±R,R) for R the radius
of the larger circles. Let the center of the “right-most” larger circle be denoted by O. Let
the point (+R, r) be denoted at the point A. Then the triangle △oAO is a right triangle
and we have the lengths

oA = R

AO = R− r

oO = R + r .

Then the Pythagorean theorem in this triangle gives

oO2 = oA2 + AO2 or (R + r)2 = R2 + (R− r)2 .

Expanding and simplifying the above becomes

R(R− 4r) = 0 .

Thus R = 0 or R = 4r = 16.
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Problem 42

Consider the prime factorization of a, b, and c

a = 2a23a35a5 · · ·
b = 2b23b35b5 · · ·
c = 2c23c35c5 · · · .

Then using these we have

D = 2min(a2,b2,c2)3min(a3,b3,c3)5min(a5,b5,c5) · · ·
M = 2max(a2,b2,c2)3max(a3,b3,c3)5max(a5,b5,c5) · · · ,

while
abc = 2a2+b2+c23a3+b3+c35a5+b5+c5 · · · .

The only times abc will equal DM is when

ap + bp + cp = min(ap, bp, cp) + max(ap, bp, cp) , (128)

for all primes p.

Note that if we have a situation where all three of ap, bp, and cp are positive then

min(ap, bp, cp) + max(ap, bp, cp) < ap + bp + cp ,

and DM < abc. Thus it is impossible for DM > abc and choice (2) is true.

If a, b, and c are relatively prime then one of ap, bp, or cp is zero for each p. This means that

min(ap, bp, cp) + max(ap, bp, cp) = ap + bp + cp ,

and DM = abc in this case and choice (4) is true.

Problem 43

To solve this problem we will use the following theorem3. If a, b, and c are the three sides of
a triangle and A is its area, then the measure of the circumradius of the triangle is given by

R =
abc

4A
. (129)

We can easily compute its area using Heron’s formula given by Equation 10. Using that I
find s = 52 and A = 468. This then gives

R =
25 · 39 · 40
4(468)

=
125

6
.

This means the diameter is given by 125
3
.

3https://artofproblemsolving.com/wiki/index.php/Circumradius
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Problem 44

If the two roots are r1 and r2 then we have

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2 = x2 + bx+ c = 0 ,

thus b = −(r1 + r2) and c = r1r2. If we consider the given expression for s we have

s = b+ c+ 1 = −(r1 + r2) + r1r2 + 1

= −r1 − r2 + r1r2 + 1 = (r1 − 1)(r2 − 1) .

As we are told that ri − 1 > 0 for i ∈ {1, 2} we see that s > 0.

Problem 45

We want to solve for y in

(log3 x)(logx(2x))(log2x y) = logx(x
2) .

We can write the above as
(
ln x

ln 3

)(
ln(2x)

ln x

)(
ln y

ln(2x)

)

= 2 ,

simplifying this gives
ln y = 2 ln(3) = ln 32 .

This means that y = 9.

Problem 46

Create a “grid” like that shown in Table 2 where the rows correspond to whether or not
it rained in the morning and the columns correspond to whether or not it rained in the
afternoon. From the facts given in this problem and the variables in this grid condition (1)
means that

2a+ b+ c = 7 .

Condition (2) means that a = 0. Condition (3) means that b + e = 5 and Condition (4)
means that c+ e = 6. Using a = 0 these become the three equations and three unknowns

b+ c = 7

b+ e = 5

c + e = 6 .

Solving these we find b = 3, c = 4, and e = 2. Then what we want d is the sum of the
column sums (or the sum of the row sums) in Table 2 or

d = (a+ c) + (b+ e) = (0 + 4) + (3 + 2) = 9 or

d = (a+ b) + (c+ e) = (0 + 3) + (4 + 2) = 9 .
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Yes No
Yes a b
No c e

Table 2: Rain in the morning (rows) or afternoon (columns).

Problem 47

As all students are human and some students think. The thinking students are thinking
humans and we have that some humans think which is (2).

Problem 48

We must have n ≥ 0 and a0 > 0 an integer.

• If we take n = 3 then to have h = 3 we must have a0 = 0 which is not a valid
polynomial. Thus we must have n ≤ 2.

• If n = 2 then we can have a0 = 1 and the polynomial is x2.

• If n = 1 then we can have a0 = 1 and a1 = ±1 or a0 = 2 with a1 = 0 and the
polynomials are x± 1 or 2x.

• If n = 0 then we can have a0 = 3 polynomial is 3.

Counting these up we see that we have 1 + 2 + 1 + 1 = 5 polynomials of this form.

Problem 49

The seventh number in this problem is wrong and it should be 1
64

and not 1
84
. Consider the

sum of the first three terms

1− 1

2
− 1

4
=

1

4
.

Consider the sum of the next three terms

1

8
− 1

16
− 1

32
=

1

32
.

Finally, the sum of the next three terms (which should be)

1

64
− 1

128
− 1

256
=

1

256
.

Thus our sum S is

S =
1

4
+

1

32
+

1

256
=

1

4

(

1 +
1

8
+

1

82
+ · · ·

)

=
1

4

(
1

1− 1
8

)

=
2

7
.
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The 1960 Examination

Problem 1

If x = 2 is a root we must have

8 + 2h+ 10 = 0 or h = −9 .

Problem 2

From the problem we are told that it takes five seconds to do a total of six chimes. Thus
there is one second between chimes.

When the clock turns to 12:00 there will be one chime immediately. Then there will need
to be eleven more chimes to perform a total of 12 chimes. As each of the additional chimes
takes one second in total this will take eleven seconds.

Problem 3

A discount of 40% means we pay

0.6(10000) = 6000 .

Discounts of 36% followed by 4% require us to pay

(1− 0.04)(1− 0.36)(10000) = (1− 0.04)6400 = 6144 .

The difference is 144.

Problem 4

The third angle in the triangle must be 180− 2(60) = 60 meaning that all angles are equal
and we have an equilateral triangle with all sides of equal length. The area of such a triangle
(given its side length s) is given by

√
3

4
s2 =

√
3

4
(42) = 4

√
3 .

Problem 5

If y2 = 9 we have that y = ±3. Putting y2 = 9 into the second equation gives x2 + 9 = 9 so
that x2 = 0 or x = 0. Thus there are two distinct points (0,±3).
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Problem 6

If the circumference is 100 inches than the radius r must be

2πr = 100 so r =
50

π
.

The inscribed square will have a diagonal that is 2r and so a side length s of length that will
satisfy

s2 + s2 = (2r)2 = 4

(
50

π

)2

.

Solving this for s gives

s =
50
√
2

π
.

Problem 7

From the area of circle one we have

A1 = 4 = πr21 so r1 =
2√
π
.

From the description of circle one relative to circle two we see that the radius of circle two
is given by r2 = 2r1 so the area of circle two is given by

A2 = πr22 = 4πr21 = 4(4) = 16 .

Problem 8

Let x be the number given then we have x = 2.52. If we multiply x by 100 we get

100x = 252.52 ,

so
100x− x = 252.52− 2.52 = 250 .

Solving for x we get x = 250
99

so the sum of the numerator and denominator is 250+99 = 349.

Problem 9

Write this expression as

E =
a2 + b2 − c2 + 2ab

a2 + c2 − b2 + 2ac
=

(a + b)2 − c2

(a + c)2 − b2

=
(a + b− c)(a+ b+ c)

(a + c− b)(a + c+ b)
=
a+ b− c

a− b+ c
.
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Problem 10

The negative of statement (6) is “there is a man that is not a good driver” or “at least one
man is a bad driver”.

Problem 11

Write the given equation
x2 − 3kx+ 2k2 − 1 = 0 ,

in root factored form as
(x− r1)(x− r2) = 0 .

If we expand this we get
x2 − (r1 + r2)x+ r1r2 = 0 .

From the quadratic given and what we are told this means that

r1r2 = 2k2 − 1 = 7 ,

so k = ±2.

Taking the plus sign our quadratic is given by

x2 − 6x+ 7 = 0 ,

This has roots given by

x =
6±

√

36− 4(7)

2
= 3±

√
2 .

Taking the minus sign our quadratic is given by

x2 + 6x+ 7 = 0 .

This has roots given by

x =
−6±

√

36− 4(7)

2
= −3 ±

√
2 .

From this we see that the roots are irrational.

Problem 12

Let the fixed point that all circles pass though be denoted by (p, q). Consider a circle with
a center (x0, y0) with a radius a which will have the equation

(x− x0)
2 + (y − y0)

2 = a2 .
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Then if the point (p, q) is on this circle we must have

(p− x0)
2 + (q − y0)

2 = a2 .

Thus all centers (x0, y0) are on a circle centered at (p, q) with a radius of a.

Problem 13

Drawing the line y = −3x + 2 we see that it goes through the points (0, 2) and
(
2
3
, 0
)
.

Drawing the line y = 3x+ 2 we see that it goes through the points (0, 2) and
(
−2

3
, 0
)
. The

line y = −2 is a horizontal line and provides a “base” for a triangle that is the intersection
of the previous two lines. The line y = −3x+ 2 intersects this horizontal line y = −2 at the
point B =

(
4
3
,−2

)
. By symmetry The line y = 3x+ 2 intersects this horizontal line y = −2

at the point A =
(
−4

3
,−2

)
. Let C be the point C = (0, 2). Again by symmetry this will

be an isosceles triangle as AC = BC. It will be an equilateral triangle if AB = AC. We
compute

AB = 4 ,

and

BC2 =

(
4

3

)2

+ 42 > 16 .

Thus AB 6= BC and this triangle is isosceles.

Problem 14

Write this as
(3− b)x = 6− a .

Then if b 6= 3 we have

x =
6− a

3− b
.

Problem 15

For equilateral triangle I with side A, perimeter P , area K, and circumradius R by dropping
a vertical from the top most vertex and using symmetry we can show that

P = 3A

K =
1

2
A(A sin(60◦)) =

A2

2
·
(√

3

2

)

=

√
3

4
A2

R =
A√
3
.
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This means that in comparing triangle I with triangle II we have

P : p = A : a

R : r = A : a

K : k = A2 : a2

Thus we see that P : p = R : r always.

Problem 16

From the number 69 we can “remove” at most two 25s to get

69− 2(52) = 19 .

From 19 we can “remove” at most three fives to get

19− 3(5) = 4 .

This means that we can write

69 = 2× 52 + 3× 5 + 4 ,

which is the statement that 69 = (234)5.

Problem 17

We want to know the x value when

800 = 8 · 108x−3/2 .

Solving this I find x = 10000.

Problem 18

Recalling that 81 = 34 these two equations are

3x+y = 34

34(x−y) = 31 ,

so that

x+ y = 4

4(x− y) = 1 .

Solving these we find x = 17
8
= 21

8
and y = 9

8
= 11

8
.
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Problem 19

If we consider (A) we might let x = n, y = n+ 1, and z = n + 2 then I is

x+ y + z = 3n+ 3 = 46 or 3n = 43 ,

which has no solution for n in the integers.

If we consider (B) we might let x = n, y = n+ 2, and z = n + 4 then I is

x+ y + z = 3n+ 6 = 46 or 3n = 40 ,

which has no solution for n in the integers.

If we consider (C) we might let x = n, y = n + 1, z = n+ 2, and w = n + 3 then II is

x+ y + z + w = 4n+ 6 = 46 or n = 10 ,

an integer!

If we consider (D)/(E) we might let x = n, y = n+2, z = n+4, and w = n+6. To have (D)
be true we would need n and even integer. To have (E) be true we would need n an odd
integer. Now in this case II is given by

x+ y + z + w = 4n+ 12 = 46 or 4n = 43 ,

which has no solution for n in the integers (even or odd).

Thus the only choice that is true is (C).

Problem 20

For this we have
(
x2

2
− 2

x

)8

=

8∑

k=0

(
8
k

)(
x2

2

)k (

−2

x

)8−k

=

8∑

k=0

(
8
k

)
x2k · x−(8−k)

2k
(−2)8−k

=

8∑

k=0

(
8
k

)

(−1)8−k28−k−kx3k−8

=

8∑

k=0

(
8
k

)

(−1)k28−2kx3k−8

We want the coefficient when 3k − 8 = 7 or k = 5. This is the value
(

8
5

)

(−1)528−10 =
8!

3!5!
(−1)2−2 =

8 · 7 · 6
3 · 2 · −1

4
= −14 .
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Problem 21

Let the side of the square be s. Then we have that

s2 + s2 = (a+ b)2 so s =
a+ b√

2
.

If the new square has twice the area the new squares side length must be
√
2s or

a+ b .

The perimeter of this square is 4(a+ b).

Problem 22

Expand the left-hand-side to get

x2 + 2mx+m2 − (x2 + 2nx+ n2) = 2(m− n)x+m2 − n2 = (m− n)2 .

Notice from this that if m = n both sides are equal for all x. If m 6= n then we can write
the above as

2x+m+ n = m− n or x = −n .
This will be of the requested form if a = 0 and b = −1 which is (A).

Problem 23

We want
π(R + x)2H = πR2(H + x) .

when R = 8 and H = 3. In that case the above is equivalent to

3(8 + x)2 = 64(3 + x) ,

or expanding and simplifying we get

3x2 + 16x = 0 .

Thus x = 0 or x = 16
3
. This is a rational value for x.

Problem 24

Apply the function f(y) = (2x)y to both sides of this expression to get

216 = (2x)x .

Now since 216 = 23 · 33 we get
(2 · 3)3 = (2x)x .

Inspecting this we see that x = 3 is a solution.

206



m′ n′ m′ − n′ m′ + n′ + 1
even even even odd
even odd odd even
odd even odd even
odd odd even odd

Table 3: Choices for the evenness or oddness of m′ and n′.

Problem 25

If m and n are odd numbers we can write them as m = 2m′ + 1 and n = 2n′ + 1 for some
m′ and n′. To have n < m means that we must have n′ < m′. Consider then the difference

m2 − n2 = (m− n)(m+ n) = (2m′ − 2n′)(2m′ + 2n′ + 2)

= 4(m′ − n′)(m′ + n′ + 1) .

This is obviously divisible by four. Now depending on if m′ is even or odd (and if n′ is even
or odd) we can determine the even or oddness of the factors m′ − n′ and m′ + n′ + 1. See
Table 3. Notice in that in all cases the product (m′−n′)(m′ +n′+1) is even and is divisible
by two. Thus the given difference is divisible by 4× 2 = 8.

Problem 26

For this we have

−2 <
5− x

3
< 2 ,

or
−6 < 5− x < 6 ,

or
−11 < −x < 1 ,

or
−1 < x < 11 .

Problem 27

Let θi and θe be the interior and exterior angle at a vertex of our polygon. Then we are told
that θi = 7.5θe. In addition we must have

θi + θe = 180◦ .

These together give θe =
360
17

and θi =
2700
17

. In addition, we must have that the sum of the
n exterior angles of our polygon sum to 360◦ or

n∑

i=1

θe = 360◦ ,
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As each of θe is a constant we have that nθe = 360◦ or using the known value of θe we get
n = 17. Then using S = 180(n− 2) we find that S = 2700. The polygon may or may not be
regular.

Problem 28

Multiply by x− 3 to get
x(x− 3)− 7 = 3(x− 3)− 7 .

Simplify this to get
x2 − 6x+ 9 = 0 or (x− 3)2 = 0 .

This would say that x = 3 but attempting to place that value into the initial equation we
started with gives terms that are undefined and is not allowed. Thus there are no solutions
to this equation.

Problem 29

We are told that

5a+ b > 51 (130)

3a− b = 21 . (131)

From Equation 131 we have that b = 3a− 21 which if we put into Equation 130 gives

5a+ (3a− 21) > 51 ,

which can be simplified to
a > 9 .

From Equation 131 we also get that a = 21+b
3

which if we put into a > 9 gives

21 + b

3
> 9 .

This can be simplified to
b > 6 .

Problem 30

The set of points that are equidistant from the coordinate axis are the ones on the lines
y = x or y = −x. The point on y = x and the given line will satisfy

3x+ 5x = 15 or x =
15

8
,
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so y = 15
8
also. This point is in the first quadrant.

The point on y = −x and the given line will satisfy

3x− 5x = 15 or x = −15

2
,

so y = 15
2
also. This point is in the second quadrant.

Problem 31

If we perform “long-division” we find

x2 −2x p− 1
x2 + 2x+ 5 x4 +0x3 +px2 +0x +9

x4 +2x3 +5x2

−2x3 (p− 5)x2 +0x +9
−2x3 −4x2 −10x

(p− 1)x2 10x +9
(p− 1)x2 2(p− 1)x 5(p− 1)

2(6− p)x +q − 5p+ 5

This means that

x4 + px2 + 9

x2 + 2x+ 5
= x2 − 2x+ p− 1 +

2(6− p)x+ q − 5p+ 5

x2 + 2x+ 5
.

For this polynomial to be a factor means that the remainder (fraction above) must be zero
or that

2(6− p) = 0 or p = 6 ,

and that
q − 5p+ 5 = 0 or q = 25 .

Problem 32

Let r be the radius of the circle. Then we are told that AB = 2r. Now as △ABO is a right
triangle we have

AB2 +BO2 = AO2 ,

or
4r2 + r2 = AO2 so AO =

√
5r .

We can compute other distances using some of the above. We find

AD = AO −OD =
√
5r − r = AP

PB = AB −AP = 2r −AP = 2r − (
√
5r − r) = 3r −

√
5r .
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Figure 2: The paths of swimmer A and B for the times 0 ≤ t ≤ 180.

Notice that we have all distances in terms of r. Using these expressions we compute

AP 2 = (
√
5− 1)2r2 = (5− 2

√
5 + 1)r2 = (6− 2

√
5)r2 = 2(3−

√
5)r2 ,

and
PB · AB = (3−

√
5)r(2r) .

Note that these two expression are equal.

Problem 33

To start we will get a list of primes less than or equal to 61. Such a list can be constructed
using a technique like the “Sieve of Eratosthenes”. Doing that we find this list given by

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 .

The number P is the product of the above integers. Now a number of the form P + n can
only be prime if n has no factors in common with P , but every number suggested for n is
either a prime less than 61 or a composite number that will have primes (in its factorization)
in common with P . Thus there can be no primes in this list.

Problem 34

Imagine the pool running from left-to-right with A be the “faster” swimmer and starting
“on the left going rightwards” at x = 0 and B starting “on the right going leftwards” at
x = 90. Notice that A will be back at their “start” in

180

3
= 60 ,
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seconds while B will be back at their “start” in

180

2
= 90 ,

seconds. This means that in a time equal to the least common multiple of 60 and 90 seconds
(or 180 seconds) both swimmers will return to their starting positions. In the twelve minutes
that they are swimming they will “reset”

12× 60

180
= 4 ,

times. We now need to determine how many times they will pass in one period of 180
seconds. This is perhaps easiest if we graph the location of each swimmer with respect to
the point of x = 0 over time and look for intersections. Swimmer A is at the position xA(t)
given by

xA(t) =







3t 0 < t < 90
3
= 30

90− 3(t− 30) 30 < t < 60
3(t− 60) 60 < t < 90

90− 3(t− 90) 90 < t < 120
3(t− 120) 120 < t < 150

90− 3(t− 150) 150 < t < 180

.

The functional form of this simplifies to

xA(t) =







3t 0 < t < 30
180− 3t 30 < t < 60
3t− 180 60 < t < 90
360− 3t 90 < t < 120
3t− 360 120 < t < 150
540− 3t 150 < t < 180

.

In the same way, swimmer B is at the position xB(t) given by

xB(t) =







90− 2t 0 < t < 90
2
= 45

2(t− 45) 45 < t < 90
90− 2(t− 90) 90 < t < 135
2(t− 135) 135 < t < 180

.

This simplifies to

xB(t) =







90− 2t 0 < t < 45
2t− 90 45 < t < 90
270− 2t 90 < t < 135
2t− 270 135 < t < 180

.

In the R code 1960 prob 34.R we plot xA(t) and xB(t) as a function of time t (see Figure 2)
we see that the two curves cross five times in one period T = 180. This means that in
thirteen minutes we will have 5× 4 = 20 total intersections.
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Problem 35

With out loss of generality let m < n then for t to be the mean proportional between m and
n means that m < t < n and we have

m

t
=
t

n
or t2 = mn .

We are told that m+ n = 10 thus we have

t2 = m(10−m) .

Form to be an integer we see that the possible choices form arem ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
We need to have m < n or m < 10−m which simplifies to

m < 5 .

Thus the possible choices for m reduce to m ∈ {1, 2, 3, 4}. We also need t to be an integer.
For each of these m we find

• If m = 1 then t2 = 9 so t = 3 an integer.

• If m = 2 then t2 = 16 so t = 4 an integer.

• If m = 3 then t2 = 21 and t will not be an integer.

• If m = 4 then t2 = 24 and t will not be an integer.

Thus there are two sets of numbers that t can have.

Problem 36

We can evaluate s1 as

s1 =
n−1∑

i=0

(a+ di) = an + d
n−1∑

i=0

i = an + d

(
n(n− 1)

2

)

= an+
d

2
n(n− 1) .

Replacing n with 2n and 3n we find

s2 = a(2n) +
d

2
(2n)(2n− 1)

s3 = a(3n) +
d

2
(3n)(3n− 1) .

If we use these we see that

R = s3 − s2 − s1

=
d

2
(3n(3n− 1)− 2n(2n− 1)− n(n− 1)) = 2dn2 ,

when we simplify. This depends on only d and n.
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Problem 38

As the triangle △DEF is equilateral we know that all angles in the triangle △DEF are 60◦.
Summing all of the angles in △ADE we have

∠BAC + b+ ∠DEA = 180◦ . (132)

Now ∠DEA is along the line AC so

∠DEA = 180− 60− c = 120− c . (133)

As the triangle △ABC is isosceles we know that ∠ABC = ∠ACB so that

∠BAC + 2∠ABC = 180◦ .

Using the sum of the angles in the triangle △BDF to evaluate ∠ABC we have

∠ABC = 180− (∠BDF + a) = 180− (180− 60− b)− a = 60− b− a .

This means that

∠BAC = 180− 2∠ABC = 180− 2(60 + b− a) = 60− 2b+ 2a .

Using this with Equation 133 into Equation 132 gives

(60− 2b+ 2a) + b+ (120− c) = 180 ,

which simplifies to

a =
1

2
(b+ c) .

Problem 39

We can write the given expression as

1 +
b

a
=

1
a
b
+ 1

.

If we let x = a
b
then this is

1 +
1

x
=

1

x+ 1
.

This can be simplified to
x2 + x+ 1 = 0 .

If we use the quadratic equation to solve this we find

x =
a

b
=

−1 ± i
√
3

2
.

Now if a and b are both real the ratio a
b
will not be complex (as required by the above). Thus

choices (A) and (B) are not correct. If one of a or b is real because of the above relationship
the other one will not be. In addition, a and b can both be complex and have a ratio given
by a complex number. These together mean that (E) is the correct choice.
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Problem 40

I will draw our right triangle in an x-y Cartesian coordinate plane with A = (0, 4), B = (3, 0),
and C = (0, 0). Now the angle ∠ACB = 90◦ so the two angle trisector cuts this angle into
segments of measure 30◦. Let the two angle trisectors from C intersect the segment AB at
the points D and E such that

∠DCB = 30◦ + 30◦ = 60◦

∠ECB = 30◦ .

The slope of the segment AB is given by

mAB =
0− 4

3− 0
= −4

3
.

This means that the line AB is given by

y − 0 = −4

3
(x− 3) . (134)

The lines CE and CD are given by

y = tan(30◦)x =
1√
3
x (135)

y = tan(60◦)x =
√
3x . (136)

The location of the point E is then given by the joint solutions to Equations 134 and 135.
Solving these two equations we find

(x, y) =

(

12

4 +
√
3
,

4
√
3

4 +
√
3

)

.

This means that the length CE can be computed from

CE2 =
122

(4 +
√
3)2

+
42 · 3

(4 +
√
3)2

=
12 · 16

(4 +
√
3)2

=
12 · 16

25 + 8
√
3
. (137)

The location of the point D is then given by the joint solution to Equations 134 and 136.
Solving these two equations we find

(x, y) =

(

12

4 + 3
√
3
,

12
√
3

4 + 3
√
3

)

.

This means that the length CD can be computed from

CD2 =
122

(4 + 3
√
3)2

+
122 · 3

(4 + 3
√
3)2

=
122 · 4

43 + 24
√
3
. (138)
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The question asks for the smaller of CE or CD. We can determine which one is smaller by
considering the ratio CE2

CD2 where we find

CE2

CD2 =
12 · 16

25 + 8
√
3
× 43 + 24

√
3

122 · 4 =
43 + 24

√
3

75 + 24
√
3
< 1 .

This means that the length CE is smaller. We find

CE =
4 · 2

√
3

4 +
√
3
× 4−

√
3

4−
√
3
=

32
√
3− 24

13
,

when we simplify.
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The 1961 Examination

Problem 1

We have
(

− 1

125

)−2/3

= (−125)2/3 = (125)2/3 = 52 = 25 .

Problem 2

We travel a
6
feet in r seconds at a speed of v = a

6r
feet per second. If we do this for three

minuets or 3(60) = 180 seconds the we travel

a

6r
(180) =

30a

r
,

feet. To convert this to yards we divide by 3 to get at total length of

10a

r
,

yards.

Problem 3

One way to solve this problem is the following. Let m1 be the slope of 2y + x + 3 = 0 or
m1 = −1

2
. Let m2 be the slope of 3y + ax + 2 = 0 or m2 = −a

3
. For the two lines to be

orthogonal requires that m1m2 = −1 or

a

6
= −1 or a = −6 .

Another way to solve this problem is the following. A normal vector to the line 2y+x+3 = 0
is given by the vector (−2, 1). A normal vector to the line 3y + ax + 2 = 0 is given by the
vector (−3, a). The for these two lines to be orthogonal means that the two normal vectors
are orthogonal or their dot product equals zero. This means

(−2, 1) · (−3, a) = 6 + a = 0 or a = −6 ,

the same as before.

Problem 4

Each element of the set is of the form x2. Thus the product of two elements of this set are
of the form x2y2 = (xy)2 and our set is closed under multiplication.
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Problem 5

Notice that

4 =

(
4
1

)

6 =

(
4
2

)

4 =

(
4
3

)

,

thus we can write S as

4∑

k=0

(
4
k

)

(x− 1)4−k1k = (x− 1 + 1)4 = x4 .

Problem 6

We have
log(8)

log(1/8)
= −1 .

Problem 7

We have
(
a√
z
−

√
z

a2

)6

=
6∑

k=0

(
6
k

)(
a√
z

)k (

−
√
z

a2

)6−k

The when you write out these terms the third one will be either the k = 2 or the k = 4 term
depending on the direction you count from. The k = 2 is given by

(
6
2

)(
a√
z

)2(

−
√
z

a2

)4

=
15z

a6
.

The k = 4 term is given by
(

6
4

)(
a√
z

)4(

−
√
z

a2

)2

=
15

z
.

Problem 8

When we draw the triangle in question we see that B + C2 = 90 and C1 + A = 90 thus
setting these two expressions equal to each other (since they both equal 90) we have

B + C2 = C1 + A ,
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or
C1 − C2 = B − A .

Problem 9

We have r equal to

r = (2a)2b = (2a)b(2a)b = 2bab2bab = (22bab)(ab) = (22a)bab ,

Thus x = 22a = 4a.

Problem 10

For this problem we draw an equilateral triangle and drop a perpendicular from A to the
midpoint of the side BC. This line segment has height AD. Forming the right triangle from
ABD with hypotenuse AB we see that the length of AD is given by

AD2 + 62 = 122 so AD =
√
108 .

The the length of ED where E is the midpoint of the line AD is one-half of this length. Form-
ing the right triangle EBD with hypotenuse EB we have that EB must satisfy Pythagoras
theorem or

EB2 =

(
1

2

√
108

)2

+ 62 = 63 .

Thus EB =
√
63.

Problem 11

When we draw the given figure we see that the perimeter we are looking to compute is given
by AP + PR + RA. Breaking PR up into two parts as PR = PQ + QR we see that this
perimeter is given by

AP + PQ+QR +RA .

From the figure we have that PQ = BP and QR = CR thus this sum is

AP +BP + CR +RA = AB + AC = 2(20) = 40 .

Problem 12

In a geometric progression each term is a multiple r of the previous term. Computing r from
the first and second terms give

r =
21/3

21/2
= 2−1/6 .
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Computing r from the second and third terms give

r =
21/6

21/3
= 2−1/6 ,

agreeing with the first calculation. Thus the fourth term is then given by

21/62−1/6 = 1 .

Problem 13

We have √
t4 + t2 = |t|

√
t2 + 1 .

Problem 14

A rhombus has four equal sides and its diagonals bisect each other at right angles. The area
can be written as 1

2
the product of the diagonals. From the problem we have that

A = k =
1

2
d(2d) ,

or d =
√
k. Now extract out one of the triangles from the rhombus, say the one with a base

given by the longer diagonal of length 2d and with a height of d
2
. The using the Pythagorean

theorem we have that the side of the rhombus (denoted s) of length

s2 = d2 +
d2

4
=

5

4
d2 =

5

4
k .

so

s =

√
5k

2
.

Problem 15

To make things easier to understand we will assume that we have m men working for h hours
a day for each of d days produce a articles. Then we have mhd hours used to produce a
articles or

a

mhd
,

articles per hour per man. If we have y men working y hours a day for y days we have
yyy = y3 man hours of work. Thus we should get

a

mhd
y3 ,

articles in that time. Since we are told that m = h = d = a = x this becomes

y3

x2
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Problem 16

If we increase the height by m and change the base to b′ we will have a new area A′ given by

A′ =
1

2
b′(h+m) .

To have this new area equal 1
2
of the original area we must have

A′ =
1

2
b′(h+m) =

1

2
(
1

2
bh) ,

so b′ = 1
2

bh
h+m

. The question then is how much do we have to take (say d) from b get this
new length. We then solve for d in

b− d = b′ =
1

2

bh

h +m
.

This gives

d = b− 1

2

bh

h+m
=
b

2

(
h+ 2m

h+m

)

,

when we simplify.

Problem 17

Lets write the number 1000, 440 and 340 in terms of an unknown base r. Then we have

1000 = 1r3 + 0r2 + 0r1 + 0r0

440 = 4r2 + 4r1 + 0r0

340 = 3r2 + 4r1 + 0r0 .

Then we are told that subtracting 440 m.u. from 1000 m.u. gives 340 m.u. or when we
represent the subtraction in terms of base r

r3 − 4r2 − 4r = 3r2 + 4r .

Or
r3 − 7r2 − 8r = 0 .

Since r 6= 0 we have r2 − 7r− 8 = 0 or (r+ 1)(r− 8) = 0. Since r must be positive we must
take r = 8.

Problem 18

The changes in percent +25%, −25%, +25%, −25% will result in the number x being
transformed to

(1.25)(0.75)(1.25)(0.75)x =
225

256
x = 0.8789x .

As a percentage change this is 1− 225
256

= − 31
256

= −0.12.
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Problem 19

If we consider a possible intersection of the two curves we would have

2 log(x) = log(2x) ,

or
x2 = 2x ,

or since x 6= 0 this would be x = 2. Thus these two curves intersect at one point.

Problem 20

If we plot the two regions specified we see that the intersection of the two regions is in the
first and second quadrants.

Problem 21

We have that

Area(△MNE) =
1

2
Area(△MAE)

=
1

2
· 1
3
Area(△CAE)

=
1

2
· 1
3
· 1
2
Area(△ABC)

=
1

12
Area(△ABC) .

Problem 22

If we know that we can divide the polynomial 3x3 − 9x2 + kx− 12 by x− 3 we have that we
can write

3x3 − 9x2 + kx− 12 = (x− 3)(3x2 + bx+ c) ,

for some values of b and c. By expanding the right-hand-side of the above we see that

(x− 3)(3x2 + bx+ c) = 3x3 + bx2 + cx− 9x2 − 3bx− 3c

= 3x2 + (b− 9)x2 + (c− 3b)x− 3c .

When we equate this to the left-hand-side above we see that from the x2 coefficient that
b−9 = −9 or b = 0. From the constant term that −3c = −12 or c = 4. Thus equating the x
coefficients gives k = c− 3b = 4. Thus the polynomial that also divides 3x3 − 9x2 + kx− 12
is

3x2 + bx+ c = 3x2 + 4 .
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Problem 23

From the problem statement, we are told that

AP

AB
=

2

2 + 3
=

2

5
and

AQ

AB
=

3

3 + 4
=

3

7
.

The point Q is at a distance of 3
7
AB from the point A. The point P is at a distance of 2

5
AB

from the point A. Thus the distance between the points QP is then

3

7
AB − 2

5
AB =

1

35
AB .

We are told that this length is 2 thus AB = 70.

Problem 24

Let x be the price of the first book, then each book after has a price of

x , x+ 2 , x+ 4 , x+ 6 , · · · ,

Let k be the index of the book, then the price of the first book is x, the price of the second
book is x+2, the price of the third book is x+2(2) = x+4. Thus the kth book has a price
of

x+ 2(k − 1) for 1 ≤ k ≤ 31 .

The price of the book at the far right is x+60 and the middle book is at index k = 31+1
2

= 16
so has a price of x + 30. The book to the left of the middle book has price x + 28 and the
book to the right of the middle book as a price x + 32. Thus in the problem statement we
can assume that the price of the last book equals the price of the middle book plus the left
middle book or the right middle book. Thus we have two possible equalities

x+ 60 = x+ 30 + x+ 28 so x = 2 or

x+ 60 = x+ 30 + x+ 32 so x = −2 .

Since x > 0 we have x = 2 and the adjacent book is the one to the left of the middle book.

Problem 25

Lets start with the problem statement and define the angle at the corner where the vertex
B is located to be α. We will then use the given information to determine all other angles in
the given figure in terms of α. Then since the sides BQ and QP are of the same length the
angle BPQ is also α. Then since angles in a triangle sum to 180 degrees we have that the
angle BQP is 180− 2α. As supplementary angles must add to 180 we have that angle AQP
is 2α. As the length QP is equal to AP the angle PAQ is also 2α. As angle of a triangle
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sum to 180 degrees the angle QPA must sum to 180− 4α. Supplementary angles along the
line segment BPC then give

α + 180− 4α + ∠APC = 180 so ∠APC = 3α .

The lengths of the sides AP and AC begin equal give that ∠APC = ∠PCA = 3α. That
the angles in a triangle must sum to 180 give us that ∠PAC = 180 − 6α. Finally, since we
are told that the sides AB and BC are equal we have that

∠BAC = ∠BCA .

In terms of α and what we have computed above this is

3α = 2α+ (180− 6α) = 180− 4α .

Solving for α gives that α = 180
7

= 25 5
7

Problem 26

An arithmetic series has terms given by a1+(k−1)d from what we are given in the problem
statement we have that

50∑

k=1

(a1 + (k − 1)d) = 200

100∑

k=1

(a1 + (k − 1)d) = 2700 + 200 = 2900

Using Equation 18 these sums on the left-hand-side are given by

25(2a1 + 49d) = 200

50(2a1 + 99d) = 2900 .

Subtract the first from the second to get (99− 49)d = 50 so d = 1. Then the first equation
gives

a1 =
1

2
(8− 49) = −20.5 .

Problem 27

If x is the internal angle of the polygon, then there are N1 =
360
x

sides to the polygon P1. If
P2 has an internal angle of size kx then the number of sides if N2 =

360
kx

= N1

k
. Now N2 must

be a positive integer so k = N1 is one possibility, but all others give non integer numbers for
N2. Thus there is only one possibility.
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Problem 28

Consider powers of the given number. The number 21370 ends in a 1. The number 21371

ends in a 7. The number 21372 ends in a 9. The number 21373 ends in a 3 and finally the
number 21374 ends in a 1. The pattern of the ending digit repeats from this point onward.
Thus we can evaluate the last digit of 2137753 by writing 753 in multiples of 4 as

753 = 700 + 40 + 12 + 1 = 752 + 1 .

From which we see that
2137753 = 2137752 2137 ,

the product of a number that ends in a 1 and a number that ends in a 7. Thus this number
ends in a 7.

Problem 29

Consider the quadratic ax2 + bx + c = 0 as (since a 6= 0)

x2 +
b

a
x+

c

a
= 0 . (139)

Then since r and s are roots of this the above can be factored into

(x− r)(x− s) = 0 .

Expanding this out and comparing to Equation 139 we see that

rs =
c

a

−(r + s) =
b

a
.

The equation that has roots ar + b and as+ b looks like

(x− (ar + b))(x− (as+ b)) = 0 .

or expanding this we get

x2 − (ar + b+ as+ b)x+ (ar + b)(as + b) = 0 .

or grouping terms

x2 − (a(r + s) + 2b)x+ (a2rs+ abr + abs + b2) = 0 .

If we use what we know about r + s and rs we can write the above as

x2 −
(

a

(

− b

a

)

+ 2b

)

x+

(

a2
( c

a

)

+ ab

(

− b

a

)

+ b2
)

= 0 ,

or
x2 − bx+ ac = 0 ,

when we simplify.
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Problem 30

For this problem we are told that log10(2) = a and log10(3) = b. Then to begin write the
desired expression as

log5(12) =
log10(12)

log10(5)
.

We need to compute log10(5). To do this recall that 2 · 5 = 10. Taking the logarithm to the
base 10 of both sides of that identity gives

log10(2) + log10(5) = 1 ,

so that since log10(2) = a we get log10(5) = 1− a. Now to evaluate log10(12) we write

log10(12) = log10(3 · 22) = log10(3) + 2 log10(2) = b+ 2a .

Thus we finally find

log5(12) =
b+ 2a

1− a
.

Problem 32

The area of a polygon with n sides is given by Equation 2 so that we can write

A =
r2n sin

(
2π
n

)

2
= 3r2 ,

or

n sin

(
2π

n

)

= 6 .

or

sin

(
2π

n

)

=
6

n
.

We now try some of the given values for n. If n = 8 is the following proposed equality

sin

(
2π

8

)

=
6

8
,

which is not true. If n = 10 the answer is still no. If n = 12 however we get

sin
(π

6

)

=
1

2
,

which is true.
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Problem 33

Write the equation 22x − 32y = 55 in a factored form as

(2x − 3y)(2x + 3y) = 55 .

Lets look at the factors of 55. Note that only 55 = 1 · 55 and 55 = 5 · 11. Thus for there to
be a solution (x, y) to this equation since

2x + 3y < 2x − 3y .

requires that 2x − 3y equals the smaller of the two factors or 2x − 3y = 1 or 2x − 3y = 5. We
next ask, can we solve the system

2x − 3y = 1

2x + 3y = 55 ,

for integers x and y? Adding the two equations gives 2x+1 = 56 so x + 1 = log2(56). Since
56 is not a power of 2 x will not be an integer. Lets try the other possibility

2x − 3y = 5

2x + 3y = 11 ,

When we again add we get 2x+1 = 16 or x + 1 = log2(16) = 4, so x = 3. Then the first
equation is 23 − 3y = 5 or 3y = 3 so y = +1 and one solution.

Problem 34

We write the given fraction as

2x+ 3

x+ 2
=

2(x+ 2− 2) + 3

x+ 2
=

2(x+ 2)− 1

x+ 2
= 2− 1

x+ 2
.

Thus the upper bound for this set is when x → +∞, which we cannot get directly from
elements in the set. The lower bound of this set is when x = and is the value of 1. Thus m
is in S and M is not in S.

Problem 35

We need to write
695 = a1 + a22! + a33! + · · ·+ ann! ,

where a1, a2, · · ·an are integers and 0 ≤ ak ≤ k. Recall that 3! = 6, 4! = 24, 5! = 120, and
6! = 720. Thus we need to find ai such that

695 = a5(120) + a4(24) + a3(6) + a2(2) + a1(1) .
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We should take a5 = 5 and then we have to find ai such that

695 = 5(120) + a4(24) + a3(6) + a2(2) + a1(1) ,

or
95 = a4(24) + a3(6) + a2(2) + a1(1) .

We need to take a4 = 3 then 24a4 = 72 and we then need to satisfy

23 = a36 + 2a2 + a1 .

Lets take a3 = 3 and then we need to satisfy

5 = 2a2 + a1 ,

Lets take a2 = 2 and a1 = 1. Thus we have

695 = 5(5!) + 3(4!) + 3(3!) + 2(2!) + 1(1!) .

Problem 36

When we draw the triangle ABC we have segments AD and BE meeting at right angles at
the point O. Then we will denote the length BO as 2b, the length EO as b, the length of AO
as 2a, and the length of DO as a. Since the length of BD is 3.5 = 7

2
we can use Pythagorean

theorem in the right triangle BOD to get

4b2 + a2 =
49

4
.

The Pythagorean theorem applied to triangle AOE gives

4a2 + b2 = 9 .

Multiplying the first equation by 4 to get 4a2 + 16b2 = 49, from which we can subtract the
second equation above to get

15b2 = 40 so b2 =
8

3
.

Then we have

4a2 = 9− 8

3
=

19

3
so a2 =

19

12
.

The length of AB is then given from

AB2 = 4a2 + 4b2 = 4

(
19

12

)

+ 4

(
8

3

)

= 17 .

Thus AB =
√
17.
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Problem 37

Let vA, vB, and vC be the speeds of A, B, and C respectively. Then the problem statement
states:

• If A and B ran a race then A will cross the finish line at a time T1 =
d
vA

and B at that
same time T1 will be located at vBT1 = d− 20.

• If B and C race then B will cross the finish line at a time T2 given by T2 =
d
vB

and C
will be located at d− 10 = vcT2 at that time.

• If A and C race then A will cross the finish line at a time T3 = d
vA

and C will be
located at d− 28 = vCT3.

These three equations give us that

vB

(
d

vA

)

= d− 20

vC

(
d

vB

)

= d− 10

vC

(
d

vA

)

= d− 28 .

From the first and second equation we get vB
vA

= d−20
d

and vC
vB

= d−10
d

. Then write the third

equation as vC
vA

= d−28
d

. If we multiply all of these fractions of vi together we get

vB
vA

· vC
vB

· vA
vC

=

(
d− 20

d

)(
d− 10

d

)(
d

d− 28

)

= 1 .

This means that
(d− 20)(d− 10) = d(d− 28) ,

or
d2 − 30d+ 200 = d2 − 28d ,

or −2d+ 200 = 0 so d = 100.

Problem 40

Method 1: Since we are told that 5x + 12y = 60 we have that y = 5 − 5
12
x and we are

trying to optimize

√

x2 + y2 =

√

x2 +

(

5− 5

12
x

)2

=

√

x2 + 25− 25

6
x+

25

144
x2

=

√

169

144
x2 − 25

6
x+ 25 =

√
(
13

12
x

)2

− 25

6
x+ 25 .
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Insert a −v inside the parenthesis with the 13
12
x term and then to cancel that effect we have

to add the terms 13
6
xv − v2 to get

√
(
13

12
x− v

)2

+
13

6
xv − v2 − 25

6
x+ 25 .

To make the terms linear in x vanish we have to take

13v

6
=

25

6
or v =

25

13
.

Then in that case we have a constant term given by

−252

132
+ 25 = 25

(

− 25

132
+ 1

)

=
122(25)

132
.

Thus we have √
(
13

12
x− 25

13

)2

+
52122

132
.

Thus we pick x such that 13
12
x− 25

13
= 0 and we get a smallest value for our objective function

of
5 · 12
13

=
60

13
.

Method 2: The smallest point of the function
√

x2 + y2 on the line L ≡ 5x+12y = 60 is a
point on L that is also on a perpendicular to the origin. Let the point A be (0, 5), the point
B be (12, 0), and the origin be O. Let the minimum point be P . Then △AOB is similar to
△APO. Thus

OP

OB
=
AO

AB
.

Or given what we know
OP

12
=

5√
52 + 122

,

thus OP is

OP =
60√
169

=
60

13
,

the same as before.
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The 1962 Examination

Problem 1

We have
14y−1

5−1 + 3−1
=

1

5−1 + 3−1
=

1
3+5
15

=
15

8
.

Problem 2

We have
√

4

3
−
√

3

4
=

2√
3
−

√
3

2
=

4

2
√
3
− 3

2
√
3
=

1

2
√
3
=

√
3

6
.

Problem 3

An arithmetic sequence is given by Equation 17, so letting n = 1, 2, 3 gives

x− 1 = a1

x+ 1 = a1 + d

2x+ 3 = a1 + 2d .

The first and second equations mean that x + 1 = x − 1 + d or d = 2. Then the first and
third equation give

2x+ 3 = x− 1 + 2(2) ,

so x = −4 + 4 = 0.

Problem 4

From 8x = 32 we have 23x = 25 so x = 5
3
.

Problem 5

Let r be the old radius, then the new circumference is 2π(r + 1) and the new diameter is
2(r + 1). Thus the ratio is 2π

2
= π.
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Problem 6

The area of an equilateral triangle with a side of length l is given by

A =
1

2
l

(√
3

2
l

)

=

√
3

4
l2 .

We are told that this area is 9
√
3 so

√
3

4
l2 = 9

√
3 so l2 = 4 · 9 so l = 6 .

The perimeter of this triangle is 3l = 18 and we are told that this equals the perimeter of a
square with side a so 4a = 18 or a = 9

2
. Then the diagonal d of this square has a length

d2 =
92

42
+

92

42
=

92

2
,

so d = 9√
2
= 9

√
2

2
.

Problem 7

When we recall the definition of the bisectors of the exterior angles of a triangle, and connect
the exterior bisectors of B and C at D we see that from the original triangle A+B+C = 180
and then from the supplementary angles along the line segments AB we have

B + 2Be = 180 and C + 2Ce = 180 .

Where A, B, and C stand for the internal angular measurements of the angles A, B, and
C in degrees, and Be and Ce stand for the exterior bisector angle in degrees. Thus we can
compute the angle ∠BDC as

∠BDC = 180− Be − Ce = 180−
(

90− 1

2
B

)

−
(

90− 1

2
C

)

=
1

2
(180− A) .

Problem 8

We have n numbers ak, where one (say ak∗) is 1− 1
n
and the others are 1. Then the arithmetic

mean is 1
n

∑n
k=1 ak or

1

n

[
∑

k=1;k 6=k∗

ak +

(

1− 1

n

)]

=
1

n

[

n− 1 + 1− 1

n

]

=
1

n

(

n− 1

n

)

= 1− 1

n2
.
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Problem 9

We have

x9−x = x(x8−1) = x(x4−1)(x4+1) = x(x2−1)(x2+1)(x4+1) = x(x−1)(x−1)(x2+1)(x4+1) ,

giving 5 factors.

Problem 10

The average rate r for the entire trip (in miles per hour) is

r =
150 + 150

31
3
+ 41

6

= 40 ,

when we simplify. The average rate going is 150
3 1
3

= 45. Thus the average rate going exceed

the average rate of the entire trip by 5 miles per hour.

Problem 11

For the equation

x2 − px+
1

4
(p2 − 1) = 0 ,

we have roots given by

x =

−(−p)±
√

p2 − 4
(

p2−1
4

)

2
=
p±

√

p2 − (p2 − 1)

2
=
p±

√
1

2
=
p± 1

2
.

So the difference between the larger root and the smaller root is

p+ 1

2
− p− 1

2
= 1 .

Problem 12

For the given expression, the binomial expansion gives

(

1− 1

a

)6

=

6∑

k=0

(
6
k

)

1k
(

−1

a

)6−k

= 1− 6

a
+

15

a2
− 20

a3
+

15

a4
− 6

a5
+

1

a6
.

Adding the coefficients of the last three terms gives

15− 6 + 1 = 10 .
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Problem 13

From the description we have that R = aS
T
where a is a constant. From the given information

about R when T = 9
14

and S = 3
7
we have that

4

3
= a

(3/7)

(9/14)
so a = 2 .

Thus R = 2S
T
. If R =

√
48 and T =

√
75 we have

√
48 = 2

S√
75

so S = 30 .

Problem 14

For the given sum we have

4− 8

3
+

16

9
− · · · = 4

30
− 222

31
+

2222

32
− · · · = 4

(

1− 2

3
+

22

32
− 23

33
+ · · ·

)

= 4

∞∑

k=0

(

−2

3

)k

= 4

(
1

1 + 2
3

)

=
12

5
.

Problem 16

Let the first rectangle R1 have sides x and 2, and an area A1 = 12 = 2x, so x = 6 inches.
The diagonal of this rectangle is of length

√
22 + 62 =

√
40 = 2

√
10. The similarity between

the rectangles R1 and R2 mean that

2
√
10

15
=

2

h
, so h =

15√
10
,

and
2
√
10

15
=

6

b
, so b =

3(15)√
10

.

Then the area of the second rectangle is given by

bh =
135

2
,

when we do the multiplications.
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Problem 17

This question is when we define a = log8(225) and b = log2(15) what is a in terms of b.
Recall that 225 = 152 so from the definition of a we have

a = 2 log8(15) = 2
log2(15)

log2(8)
=

2

3
b .

Problem 18

Given we know r and n = 12 for this polygon we can use Equation 2 to write its area as

A =
1

2
r2(12) sin

(
2π

12

)

= 3r2 .

Problem 19

When our function is given by y = ax2 + bx+ c we can determine a, b, and c by putting the
points into this expression and solving for them. We have

12 = a− b+ c

5 = c

−3 = 4a+ 2b+ c .

Next put c = 5 into the first and third equation to get the system

7 = a− b

−8 = 4a+ 2b .

Multiply the first equation by 2 and add it to the second to get a = 1. Put what we know
about a into 7 = a− b to get that b = −6. Thus we see that a+ b+ c = 1− 6 + 5 = 0.

Problem 21

We are told at 3 + 2i is a root for 2x2 + rx + s = 0. When we put that number into this
polynomial we have

2(4 + 2i)2 + r(3 + 2i) + s = 0 ,

or expanding and simplifying we get

10 + 3r + s+ (24 + 2r)i = 0 .

Thus r = −12 and 10− 36 + s = 0 or s = 26.
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Problem 22

We have
121b = b2 + 2b+ 1 = (b+ 1)2 .

Problem 23

The area of the triangle can be computed in two ways

A =
1

2
AB · CD =

1

2
BC ·AE .

Thus solving for BC we have that

BC =
AB · CD
AE

.

Showing that we know the value of BC since everything on the right-hand-side of the above
expression is known. Since △CDB is a right triangle with hypotenuse BC we can use the
Pythagorean theorem to conclude that

BC2 = BD2 + CD2 .

Thus we have

BD2 = BC2 − CD2

=
AB2CD2

AE2
− CD2 =

(AB2 − AE2)CD2

AE2
.

Thus BD =
√
AB2 − AE2

(
CD
AE

)
.

Problem 24

Let p, q, and r be the rates for P , Q, and R respectively. Then

1

p + q + r
= x , (140)

and from the problem statement we have

1

p
= x+ b ,

1

q
= x+ 1 ,

1

r
= 2x .

Thus

r =
1

2x
, q =

1

1 + x
, p =

1

x+ 6
,
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so from Equation 140 we have

1 = x(p+ q + r) =
1

2
+

x

1 + x
+

x

x+ 6
,

or
1

2
(x+ 1)(x+ 6) = x(x+ 6) + x(x+ 1) .

Expanding and grouping we get
3x2 + 7x− 6 = 0 ,

or if we factor (3x− 2)(x+ 3) = 0 so x = −3 or x = 2
3
.

Problem 26

To find the maximum of 8x− 3x2 write it like the following

8x− 3x2 = −3

(

x2 − 8

3
x

)

= −3

(

x2 − 8

3
x+

16

9

)

+
16

4

= −3

(

x− 4

3

)2

+
16

3
.

Thus the maximum value is when x = 4
3
and our objective function has a maximum value

of 16
3
.

Problem 27

We can easily see that #1 and #2 are true. The question now becomes if

min(a,max(b, c)) = max(min(a, b),min(a, c)) , (141)

or #3 is true. One can try several values for a, b, and c to try and find a case where the
two expressions are not equivalent in hopes of ruling that expression false. When working
this problem, I was not able to find any combination of a, b, and c that made this expression
false. To determine if this expression is true for all possible values of a, b, and c we can
consider all of the possible orderings of three numbers a, b, and c. We could have any of

a < b < c,

a < c < b

b < c < a

b < a < c

c < a < b

c < b < a .

We can then explicitly expand the left-hand-side and the right-hand-side of Equation 141
for each of these options and verify that both sides are equal. We do that in Table 4. From
this we see that this equation is indeed true.
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left-hand-side right-hand-side
a max(a, a) = a

min(a, b) = a max(a, a) = a
min(a, c) = c max(b, c) = c
min(a, c) = a max(b, a) = a
min(a, b) = a max(a, c) = a
min(a, b) = b max(b, c) = b

Table 4: A comparison between the left-hand-side and right-hand-side of Equation 141 for
all possible orderings of a, b, and c.

Problem 28

To solve for x in

xlog10(x) =
x3

100
,

we can take log10 of both sides to get

(log10(x))
2 = log10(x

3)− log10(10
2) = 3 log10(x)− 2 .

Let v = log10(x) then the above is given by

v2 − 3v + 2 = 0 ,

or when we factor
(v − 2)(v − 1) = 0 .

Thus v = 2 or v = 1. In the first case log10(x) = 2 so x = 100 and in the second case
log10(x) = 1 so x = 10.

Problem 29

For the given inequality we have 2x2 + x− 6 < 0 or (2x− 3)(x+ 2) < 0. The points x that
make the left-hand-side equal to zero are given by x = 3

2
and x = −2. In between these

points we find that 2x2 + x − 6 = −6 < 0. Thus the quadratic is below zero in the range
−2 < x < 3

2
.

Problem 30 (some logic)

Using De Morgan’s law to the statement ∼ (p∧ q) is equal to (∼ p)∨ (∼ q). This later event
means that ∼ (p ∧ q) is true when:

• p is false and q is true
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• p is true and q is false

• p is false and q is false

The first statement p∨ q is true when p and q are both true. This does not match any of the
three conditions above. For the second statement p∧ ∼ q, to be true means that p is true
and q is false. By the second of above statements this implies that ∼ (p∧ q) is true. For the
third statement ∼ p ∧ q, to be true means that p must be false and q must be true. By the
third of the above statements this implies that ∼ (p ∧ q) is true. Thus three statements are
true.

Problem 31 (the ratio of angles in polygons)

From Equation 6 the interior angle for a n sided regular polygon is

n− 2

n
180 .

Thus if we denote the number of sides of the first regular polygon by n and the number of
sides in the second regular polygon as N then from the problem statement we have

n− 2

n
180 =

N − 2

N
180

(
3

2

)

.

Written this way we have that the interior angle of the polygon with N sides is smaller than
the polygon with n sides and thus N > n. Solving for N as a function of n we find

N =
4n

6− n
.

Since N must be a positive integer we need only let n = 3, 4, 5 and see for which values of n
if this is true. We find

N(3) =
4(3)

3
= 4

N(4) =
4(4)

2
= 8

N(5) =
4(5)

1
= 20 .

Thus there are three regular polygons for which the given statement is true.
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Problem 32 (a recursion relationship)

For the recursion xk+1 = xk +
1
2
, when k = 1, 2, 3, · · ·n− 1 we find

x1 = 1

x2 = 1 +
1

2

x3 = 1 +
1

2
+

1

2
= 1 +

2

2

x4 = 1 +
2

2
+

1

2
= 1 +

3

2

x5 = 1 +
3

2
+

1

2
= 1 +

4

2
...

xk = 1 +
k − 1

2
.

Then to evaluate x1 + x2 + x3 + · · ·+ xn we have

n∑

i=1

xi =
n∑

i=1

(

1 +
i− 1

2

)

= n+
1

2

n∑

i=1

i− 1

= n+
1

2

n−1∑

i=0

i = n +
1

2

(
n(n− 1)

2

)

=
n

4
(n+ 3) .

Problem 33

For the inequality 2 ≤ |x− 1| ≤ 5 we have, if x− 1 > 0 then this is given by

2 ≤ x− 1 ≤ 5 ⇒ 3 ≤ x ≤ 6 ,

while if x− 1 < 0 then this is

2 ≤ −(x− 1) ≤ 5 ⇒ 1 ≤ −x ≤ 4 ⇒ −4 ≤ x ≤ −1 ,

Thus the possible values for x are

−4 ≤ x ≤ −1 or 3 ≤ x ≤ 6 .

Problem 34

For the equation x = k2(x− 1)(x− 2) write this expression as

x

(x− 1)(x− 2)
= k2 .
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Figure 3: A plot of the function x
(x−1)(x−2)

vs. x.

Then since k2 is positive in order for there to be a real root x we must have the left-hand-side
of this expression also positive. If we plot the function x

(x−1)(x−2)
we get Figure 3, where the

asymptotes at x = 1 and x = 2 are only indicated notionally. From this plot we see that if
we plot k2 as a horizontal line above the x axis it will intersect the graph of x

(x−1)(x−2)
at two

places once for −∞ < x < 1 and another time for 2 < x < +∞. Thus since for any value of
k the expression k2 is positive and there will be two real roots for x.

Problem 35 (a man on his way to dinner)

To begin we should draw (approximate) pictures of the two hands on the clock at the two
hypothetical positions. Then assume that the initial angle of the minute hand is at α degrees
from twelve o’clock. In this case the hour hand is at α + 110 degrees from twelve o’clock.
Lets assume that an amount of time, say T in hours has passed. Then the minute hand will
be located at

hminute(T ) = α + 360T ,

degrees from twelve o’clock, while the hour hand will be located at

hhour(T ) = α+ 110 +
360

12
T ,

degrees from twelve o’clock. We are told that when we look again at our watch the hands
are separated by 110 degrees. Thus at this new time

hminute(T )− hhour(T ) = α + 360T −
(

α + 110 +
360

12
T

)

= 110 .

When we solve for T we get T = 2
3
of an hour or 40 minutes.
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Problem 36 (solutions to (x− 8)(x− 10) = 2y)

Consider the equation (x − 8)(x − 10) = 2y. Then for all possible values of y the value of
2y is positive. Thus in order for (x − 8)(x − 10) to be positive we must have both factors
positive or both factors negative. To have both factors positive means that x > 10 and to
have both factors negative means that x < 8. To begin lets assume that both factors are
positive and x > 10. Then taking the logarithm to the base 2 of both expressions gives

log2(x− 8) + log2(x− 10) = y .

Since we want y to be an integer then both log2(x − 8) and log2(x − 10) must be integers.
This will only happen if both x − 8 and x − 10 are powers of two. As x − 10 < x − 8 and
their difference is x−8− (x−10) = 2 the smaller power of two must be assigned to the term
x− 10 and they must be sequential powers of two. Thus one way to look for solutions is to
simply assign sequential powers of two to x− 8 and x− 10 looking for a consistent system.
Since to have both factors positive means that x > 10 or x−10 > 0. Thus the smallest value
for x− 10 would be 1. We are looking for a consistent solution to the following equations

x− 10 = 2p and x− 8 = 2p+1 for p ≥ 0 .

Solving for x in both equations and setting them equal gives

x = 10 + 2p = 8 + 2p+1 .

This equation is equivalent to 1 + 2p−1 = 2p, which only holds for p = 1. Then x = 12 and
y = log2(4) + log2(2) = 3.

Now we consider the case where the two factors are negative or x < 8. Then we introduce a
negative sign and take the base 2 logarithm of both expressions gives

log2(−(x− 8)) + log2(−(x− 10)) = y .

Then in the same way as the first part of this problem both terms −(x− 10) and −(x− 8)
must be powers of two, they are related by −(x − 10) > −(x − 8), and their difference is
−(x − 10) + (x− 8) = 2 so they must be sequential powers of two. In addition since x < 8
we have that −(x− 8) = 2p for p ≥ 0. Thus we have the two equations

−(x− 8) = 2p and − (x− 10) = 2p+1 ,

or
x = 8− 2p and x = 10− 2p+1 .

Setting these two equal to each other gives the relationship 2p+1 = 2 + 2p, which has the
solution when p ≥ 0 given by p = 1. Then we have x = 8− 2 = 6 and y = log2(−(6− 8)) +
log2(−(6 − 10)) = 3.

Problem 37 (maximum area)

Place the points A, B, C, and D at the Cartesian coordinates (0, 0), (1, 0), (1, 1) and (0, 1)
respectively. We want to pick the points E and F such that CDFE has a maximal area.
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Let E be at the point (x, 0) and F the point (0, x). Then the are of CDFE is the area of the
full square minus the area of the two triangles FAE and CBE. These two triangles have
areas 1

2
x2 and 1

2
1(1− x) respectively. Thus the area of the quadrilateral (denoted as A) is

A = 1− 1

2
x2 − 1

2
(1− x) =

1

2
+
x

2
− 1

2
x2

= −1

2
(x2 − x) +

1

2
= −1

2
(x2 − x+

1

4
) +

1

8
+

1

2
= −1

2

(

x− 1

2

)2

+
5

8
.

The largest we can make this is when we take x = 1
2
where we get the value of 5

8
.

Problem 38 (the population of Nosuch Junction)

From the problem statement if we let p be the initial population then we are told that

p = x2

p+ 100 = y2 + 1

p+ 200 = z2 ,

where we don’t know the values of p, x, y, or z. Substitute the first equation into the second
equation to get

100 = y2 − x2 + 1 or y2 − x2 = 99 .

We can factor this to get
(y − x)(y + x) = 99 .

Now 99 has the factors 1 · 99, 3 · 33, 9 · 11, so since x + y > y − x we have some potential
systems to consider. One is where we consider the factors 1 · 99 where we would then have

y − x = 1

y + x = 99 .

This has a solution of (x, y) = (49, 50), thus p = 492 = 2401. Using these values we can look
at the third equation where we find p + 200 = 2601. To be consistent this must equal the
square z2 we see that z = 51. Thus these numbers are consistent with what is given in the
problem. Using the factor 3 · 33 of 99 we would find the system

y − x = 3

y + x = 33 .

This has a solution of (x, y) = (15, 18), thus p = 152 = 255. Then p + 200 = 425, which is
not a perfect square. Finally the factor 9 · 11 of 99 we would find the system

y − x = 9

y + x = 11 .

This has a solution of (x, y) = (1, 10), thus p = 12 = 1. Then p + 200 = 201 which is not
a perfect square. Thus only the initial situation is consistent and we have p = x2 = 2401.
Since 2401 = 7 · 343 we have that the original population is a multiple of 7.
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Problem 40 (a limiting sum)

We are asked to evaluate

1

10
+

2

102
+

3

103
+ · · · =

∑

n≥1

n

10n
.

Define S to be the sum

S =
∞∑

n=0

rn =
1

1− r
.

Then the r derivative of the above is given by

dS

dr
=

∞∑

n=0

nrn−1 =
1

(1− r)2
.

Thus to evaluate the sum needed in this problem we manipulate the above relationship

∞∑

n=1

nrn−1 =
1

r

∞∑

n=1

nrn =
1

(1− r)2
.

Thus we find ∞∑

n=1

nrn =
r

(1− r)2
. (142)

Thus we find ∞∑

n=1

n

(
1

10

)n

=
1/10

(9/10)2
=

102

10(81)
=

10

81
.
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The 1963 Examination

Problem 1 (not on the graph)

The answer is D.

Problem 2 (find n)

For n given by
n = x− yx−y .

Let x = 2 and y = −2 then we get n = 2− (−2)2+2 = −14.

Problem 3 (given the reciprocal what is x)

We are told that
1

x+ 1
= x− 1 .

or 1 = x2 − 1 or x = ±
√
2.

Problem 4 (For what values of k do we have the same solutions)

When y = x2 and y = 3x+ k have identical solutions means that

x2 − 3x− k = 0 ,

so that

x =
3±

√
9 + 4k

2
.

One solution for x can be obtained if we take k = −9
4
.

Problem 5 (where is x)

Take 10x of both sides of the inequality log10(x) < 0 to get x < 1. But as x cannot be
negative this means that 0 < x < 1 and the answer is E.
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Problem 6 (finding an angle)

Let the angle we want to know ∠DAB be denoted by θ. As BC is the medium to the
hypotenuse AD is is equal in length to one-half the hypotenuse AD. Thus AC = BC = BA
and the triangle △ABC is an equilateral triangle. Thus ∠BAC = 180

3
= 60.

Problem 7 (perpendicular lines)

Writing each equation in the form y = mx + b where we recognize that m is the slope we
have

y =
2

3
x+ 4 , y = −2

3
x− 10

3

y = −2

3
x+ 4 , y = −3

2
x+ 5 .

To be perpendicular the two lines must have slopes m1 and m2 that satisfy m1 = − 1
m2

. Thus
only 1 and 4 have this property and are therefore perpendicular.

Problem 8 (small positive integers)

We are told 1260x = N3 where N is an integer. We factor 1260 = 2(630) = 22 · 5 · 63 =
22 · 32 · 5 · 7. Thus we are looking for

22 · 32 · 5 · 7x = N3 .

To make this true we can take x = 2 · 3 · 52 · 72 = 7350. Then N = 2 · 3 · 5 · 7 = 210.

Problem 9 (an expansion)

Using the binomial theorem we have
(

a− 1√
a

)7

=
7∑

k=0

(
7
k

)

ak
(

− 1√
a

)7−k

=
7∑

k=0

(
7
k

)

(−1)(−1)kak−(
7−k
2 ) = −

7∑

k=0

(
7
k

)

(−1)ka
3k−7

2 .

The coefficient with the power of a of −1
2
is when k satisfies

3k − 7

2
= −1

2
.

Solving we find k = 2. Thus we have a coefficient of a−1/2 then given by

−
(

7
2

)

(−1)2 = −
(
7 · 6
2

)

= −21 .
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Problem 10 (the interior of a square)

We begin by drawing a rectangle with corners at the points (0, 0), (a, 0), (a, a) and (0, a).
Then introduce an interior point in the center (x, y) given by. From the problem statement
the three distances that must be equal can be expressed as

d2 = x2 + y2 (143)

d2 = (x− a)2 + y2 (144)

d2 = (a− y)2 . (145)

The first two equations expresses the fact that the point (x, y) is equidistant to the vertices’s
at (0, 0) and (a, 0). The third equation states that (x, y) is equidistant to the line y = a.
Using the third equation gives d = a− y (since we know that y < a) or y = a− d. Putting
this into Equation 143 and 144 gives

d2 = x2 + (a− d)2 and d2 = (x− a)2 + (a− d)2 .

When we expand all quadratics and cancel the common d2 on both sides we get

0 = x2 + a2 − 2ad and 0 = x2 − 2ax+ a2 + a2 − 2ad = x2 − 2a(x+ d) + 2a2 .

Solve for the first equation for x2 to get

x2 = 2ad− a2 . (146)

Put this into the second equation to get

0 = 2ad− a2 − 2a(x+ d) + 2a2 ,

or
0 = a2 − 2ax so x =

a

2
.

Then using this value of x in Equation 146 we have

a2

4
= 2ad− a2 .

So 2ad = 5a2

4
so d = 5

8
a.

Problem 11 (the arithmetic mean)

We are told that
1

50

(
50∑

i=1

xi

)

= 38 .

Thus the sum of the xi’s is
50∑

i=1

xi = 38(50) = 1900 .

If we remove the numbers 45 and 55 we get for the new average

1

48

(
50∑

i=1

xi − 45− 55

)

=
1

48
(1900− 45− 55) = 37.5 .
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Figure 4: The points specified in Problem 12. The line parallel to QR and through the point
P is also drawn.

Problem 12 (the sum of the coordinates of S)

We first draw the points P = (−3,−2), Q = (1,−5), and R = (9, 1) in the xy plane as is
done in Figure 4. Then we want to put the point S = (sx, sy) such that properties of the
parallelogram hold. We first compute

d2QR = 82 + (1 + 5)2 = 100 so dQR = 10 .

We need a line from P parallel to QR of length 10. The slope of the segment QR is

mQR =
1 + 5

9− 1
=

3

4
.

The line from the point P with slope the same slope as above (i.e. 3
4
) has the form

y − (−2) =
3

4
(x− (−3)) ,

or y = −2 + 3
4
x+ 9

4
= 1

4
+ 3

4
x. The point S must be on this line and we must pick the point

S such that the line segments PS is the same as QR (which we know is 10). This means
that S = (sx, sy) must satisfy

102 = (sx + 3)2 + (sy + 2)2 .

Since S must be on the line above then sy =
1
4
+ 3

4
sx and when we put this into the above

102 = (sx + 3)2 +

(
9

4
+

3

4
sx

)2

= s2x + 6sx + 9 +
1

16

(
81 + 54sx + 9s2x

)

=

(

1 +
9

16

)

s2x +

(

6 +
54

16

)

sx + 9 +
81

16
=

(
25

16

)

s2x +
75

8
sx +

225

16
.
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We can solve this using the quadratic equation to get two solutions sx ∈ {5,−11}. Using
these values for sx we have that sy is given by

sy =
1

4
+

3

4
{5,−11} = {4,−8} .

The value of (sx, sy) we want to use will be the one that makes the slope of the two line
segments PQ equal to that of SR. The slope PQ is given by

mPQ =
−5 + 2

1 + 3
= −3

4
,

while the two points above give slopes with R of

−3

4
and

9

20
,

showing that the first solution is the correct one. You can see this solution as the unlabeled
point in Figure 4. The sum of the coordinates of S is then computed to be 5 + 4 = 9. See
also the R code 1963 prob 12.R.

Problem 13 (number of equations)

While not a complete solution to this problem we know that we cannot have only one of
a, b, c, and d negative (excluding the answer D) since in that case one side of the equation
would be a fractional expression while the other side would be a whole number.

Problem 14 (the value of k)

Each equation has roots given by

x2 + kx+ 6 = 0 ⇒ x =
−k ±

√
k2 − 24

2
,

and

x2 − kx+ 6 = 0 ⇒ x =
+k ±

√
k2 − 24

2
.

If each root of the second equation is 5 more than the corresponding root of the first equation
then (

+k ±
√
k2 − 24

2

)

−
(−k ±

√
k2 − 24

2

)

= 5 .

Thus k = 5.
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Problem 15 (inscribing a circle in a triangle)

Once we have drawn the given figure we see that the the square has corners that touch the
circle. Assume that the circle is of radius r. Then the square that has a diagonal length
given by 2r will have a side length s where s satisfies

(2r)2 = s2 + s2 so s =
√
2r .

Thus the area of the square is s2 = 2r2. Now we need to calculate the area of the original
equilateral triangle. Dividing this triangle up into three equal pieces based on the medians
of the triangle we can evaluate the area of the entire triangle in terms of three times the area
of a single median triangle. The bottom median triangle is an isosceles triangle that has a
height of r and a non base length of 2r. Thus by the Pythagorean theorem it has a base
length b that must satisfy

(
1

2
b

)2

+ r2 = 4r2 so b = 2
√
3r2 = 2

√
3r .

The area of this median triangle is then

1

2
br =

1

2
(2
√
3r)r =

√
3r2 .

The area of the original triangle is 3 times this or 3
√
3r2. The ratio of the area of the triangle

to that of the square is then 3
√
3 : 2.

Problem 16 (sequences)

An arithmetic sequence means that the terms an are given by Equation 17 for some values
of a1 and d. From what we are told in the problem we have that

a = a1

b = a1 + d

c = a1 + 2d .

Thus b = a+ d or d = b− a. Thus one relationship between a, b, and c is given by

c = a + 2(b− a) = 2b− a .

Now a geometric sequence means the terms an are given by Equation 19 for some (possibly
different) values a1 and d. We are told that by incrementing a by one we have a geometric
sequence or

a+ 1 = â1

b = â1d̂

c = â1d̂
2 .
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Thus b = (a + 1)d̂ or d̂ = b
a+1

. Using this another relationship between a, b, and c is given
by

c = (a+ 1)

[
b2

(a+ 1)2

]

=
b2

a+ 1
.

Finally our third statement is that when we increment c by 2 get another geometric sequence.
This means

a = ã1

b = ã1d̃

c+ 2 = ã1d̃
2 .

This case a relationship between a, b, and c is given by c + 2 = b2

a
. The three relationships

for a, b, and c we have thus derived are

c = 2b− a , c =
b2

a + 1
, c+ 2 =

b2

a
.

From the last two equations b2 can be shown equal to

b2 = c(a+ 1) = a(c+ 2) ,

These imply c = 2a. Then from c = 2b− a we have that a and b are related as

2a = 2b− a so b =
3

2
a .

When we put this (with c = 2a) into c+ 2 = b2

a
we get

2a+ 2 =
9

4

(
a2

a

)

so a = 8 .

Then b = 3
2
a = 12 and c = 2a = 16.

Problem 17 (an expression)

Set the equation equal to −1 and multiply by the denominator, where we get

a

a+ y
+

y

a− y
= − y

a + y
+

a

a− y
,

or
a+ y

a+ y
+
y − a

a− y
= 0 .

Which is always true unless one the denominators is zero which happens when y = ±a.
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Problem 19 (red and black balls)

Let say we had to count 7 out of every 8 balls red k times. Then after counting all of these
we have

49 + 7k ,

red balls. The fraction of red balls is 49+7k
n

which we know must be larger than 0.9 or

49 + 7k

n
> 0.9 .

Now k and n are related in that

k =
n− 50

8
.

Putting this expression into the above gives

49 + 7
8
(n− 50)

n
> 0.9 .

Solving the above for n we find n < 210.

Problem 20 (meeting in the middle)

The position traveled (in miles) of the person starting at R as a function of t (measured in
hours) is given by R(t) = 4.5t = 9

2
t. The position traveled of the person starting at S as a

function of t is given by

S(t) =

t∑

i=1

(
13

4
+

1

2
(i− 1)

)

=
t

2

(

2 · 13
4

+ (t− 1)
1

2

)

.

Here we have used the fact that we are told that the time t (in hours) when the two men
meet is an integer (i.e. not fractional) and the expression 18 to evaluate the sum. The two
people meet at a time t when their total distance traveled is 76 miles or

9

2
t +

13

4
t+ t(t− 1)

1

4
= 76 .

In the form we can use in the quadratic formula on this is

t2 + 30t− 304 = 0 ,

which has solutions t ∈ {−38, 8}. As t must be positive we have t = 8 and the distance from
S where they meet is then given by 9

2
t = 9

2
(8) = 36 miles.

Problem 21 (can we factor?)

Consider the expression −y2 + 2yz in the given expression. We write this as

−(y2 − 2yz) = −((y − z)2 − z2) .
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When we put that in the expression given we have

x2 − y2 − z2 + 2yz + x+ y − z = x2 − z2 − ((y − z)2 − z2) + x+ y − z

= x2 − (y − z)2 + x+ y − z

= (x− y + z)(x+ y − z) + x+ y − z

= (x+ y − z)(x− y + z + 1) .

Thus the factor is x− y + z + 1

Problem 23 (giving coins)

If we assume that A, B, and C start with a, b, and c cents initially. Now we will keep track
of the number of cents each has after each transaction. After the first transaction we get
that

A now has a− b− c

B now has 2b

C now has 2c .

After the second transaction

A now has 2(a− b− c)

B now has 2b− (a− b− c)− 2c = −a + 3b− c

C now has 4c .

After the third transaction

A now has 4(a− b− c)

B now has 2(−a + 3b− c)

C now has 4c− 2(a− b− c)− (−a + 3b− c) = −a− b+ 7c .

As each of these expressions is to equal the value of 16 we have the linear system

4a+ 4b− 4c = 16

−2a+ 6b− 2c = 16

−a− b+ 7c = 16 .

Solving this for a, b, and c we find a = 26, b = 14, and c = 8.
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Problem 24 (real roots)

The roots are given by x = −b±
√
b2−4c
2

. To be real requires that b2−4c ≥ 0 or b2 ≥ 4c. When
we pick b and c from the set {1, 2, 3, 4, 5, 6} then

b = 1 no c exist

b = 2 c = 1 is the only solution

b = 3 means 9 ≥ 4c so c = 1, 2 are the only solutions

b = 4 means 16 ≥ 4c so c = 1, 2, 3, 4 are the only solutions

b = 5 means 25 ≥ 4c so c = 1, 2, 3, 4, 5, 6 are the only solutions

b = 6 all c are valid .

Thus we have
1 + 2 + 4 + 6 + 6 = 19 ,

solutions.

Problem 25 (the length of BE)

As a first observation because the area of the square ABCD is 256 we know that the length
of any side is

√
256 = 16. By construction the angle ∠DCF is equal to the angle ∠BCE and

since CD = CB (they are two sides of the square ABCD) we can conclude that FC = CE.
As we are told the area of the right triangle CEF with two equal sides FC and CE we can
compute

200 =
1

2
base× height =

1

2
FC × CE =

1

2
CE2 so CE = 20 .

Now in the right triangle BCE we know two of the three sides namely BC = 16 and
CE = 20. Using the Pythagorean theorem we then have

BE =
√
202 − 162 =

√
144 = 12 .

Problem 26 (implying the truth)

To solve this problem we must recall the truth table for the “implication” (or →) operator.
This is presented in Table 5 We then consider each statement in tern:

• Here p and r are true and q is false. In this case p→ q is false so (p→ q) → r is then
true.

• Here p and q are false and r is true. In this case p→ q is true so (p→ q) → r is then
true.

• Here p is are true and q and r is false. In this case p → q is the statement T → F
which is false so (p→ q) → r is the statement F → F which is true.
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P Q P → Q
F F T
F T T
T F F
T T T

Table 5: The truth table for the implication → operator. Note that the “answer” is always
true, except in the cases when the input P is true and the output Q is false.

• Here p is false while q and r are true. In this case p→ q is the statement F → T which
is true so (p→ q) → r is the statement F → T which is true.

Thus each of the given statements implies the truth of (p→ q) → r.

Problem 28 (the maximum product of the roots)

First write the given equation as

x2 − 4

3
x+

k

3
= 0 .

If the roots of this are denoted as r and s then we should be able to write the above as
(x− r)(x− s) = 0. Expanding this we see that

−(r + s) = −4

3

rs =
k

3
.

From the above we see that the product of the two roots is given by the expression k
3
. To

maximize this product as a function of k we take k as large as we can subject to the constraint
that the roots of the quadratic are real. These roots will be real if the discriminant is positive
or

16

9
− 4

(
k

3

)

≥ 0 so k ≤ 4

3
.

Looking at the choices given we would take the value of k = 4
3
.

Problem 29 (the largest value)

Write s(t) as

s(t) = 160t− 16t2 = −16(t2 − 10t) = −16(t2 − 10t+ 25) + 16(25)

= −16(t− 5)2 + 400 .

The maximum value of this is 400.
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Problem 30 (transformation of F )

With F given by

F (x) = log

(
1 + x

1− x

)

.

then to evaluate G given by

G = F

(
3x+ x3

1 + 3x2

)

.

we need to evaluate two subexpression

1 +
3x+ x3

1 + 3x2
=

1 + 3x2 + 3x+ x3

1 + 3x2
=

(x+ 1)3

1 + 3x2

1− 3x+ x3

1 + 3x2
=

1 + 3x2 − 3x− x3

1 + 3x2
= −(x− 1)3

1 + 3x2
.

Thus
1 + 3x+x3

1+3x2

1− 3x+x3

1+3x2

=
(x+ 1)3

(1− x)3
.

From this we see that

G = log

((
x+ 1

1− x

)3
)

= 3 log

(
x+ 1

1− x

)

= 3F .

Problem 31 (the number of solutions)

We start by finding one solution for x and y by writing 763 as

2x+ 3y = 763 = 700 + 7 · 9
= 7 · 102 + 7 · 32

= 7 · 22 · 52 + 7 · 32
= 2(2 · 52 · 7) + 3(3 · 7) .

Thus one solution is x = 2 ·52 ·7 = 350 and y = 3 ·7 = 21. We now ask can we find additional
solutions by “shifting” from this base solution x = 350 and y = 21. That is, can we write
763 as

763 = 2(350 + n) + 3(21 +m) ,

for some integers n and m. To have the resulting values of x = 350 + n and y = 21 +m be
positive (and a solution to our equation) we must have

350 + n > 0 so n > −350 (147)

21 +m > 0 so m > −21 (148)

2n+ 3m = 0 so n = −3

2
m. (149)
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Using Equation 149 in 147 we get

−3

2
m > −350 so m <

700

3
= 233.33 .

This taken with Equation 148 means that m must be an integer such that satisfies

−21 < m < 233.33 .

In order that n also be an integer Equation 149 means that m must be even. Lets count
how many solutions do we have that satisfy the constraint that −21 < m < 233.33. When
m is even and negative or

m ∈ {−20,−18,−16, · · · − 4,−2} ,

we have 10 solutions. When m is even and positive we have

m ∈ {0, 2, 4, · · · , 230, 232} ,

we have 232
2

+ 1 = 117 solutions. In total then we would have 10 + 117 = 127 solutions.

Problem 32 (the number of smaller rectangles)

The conditions given require that

2x+ 2y =
1

3
(2a+ 2b) (150)

xy =
1

3
ab , (151)

with x < a and y < a. Dividing Equation 150 by Equation 151 (and canceling the common
2) gives

1

y
+

1

x
=

1

b
+

1

a
.

Since we must have x < a and y < a the left-hand-side of this expression is larger than 2
a
,

while the right-hand-side is less than 2
a
(since b > a). Thus these two equations cannot be

simultaneously satisfied.

Problem 33 (parallel lines)

To be parallel to the given line our new line must have the same slope as the one given or 3
4
.

This also means that then angle between each line and the x axis is given by θ = tan−1(3
4
).

What is to be determined in this problem is the y intercept of the new line. Draw the
given line and the new line parallel to the first and above the original. We are told that the
distance between the two lines is 4. Drop a perpendicular from the upper line to the original
line. Then the angle this perpendicular makes with the y axis is the same as the angle θ.
Thus we have a triangle with an acute angle θ such that tan(θ) = 3

4
and the adjacent side
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of length 4. This means that the side opposite θ must have a length 3 and the hypotenuse
(which is the distance along the y axis) has a length of 5. Thus the new line is five units
above or below the old line. This gives the two lines

y =
3

4
x+ 1 or y =

3

4
x+ 11 .

Problem 34 (some geometry)

As this triangle has two equal sides (by definition it is an isosceles triangle) and the two
angles adjacent to the common side and equal sides are equal denote this angle by α and let
the third unknown angle be denoted as θ. Dropping a perpendicular from θ to the common
side of length c and using the definition of the cosign we have that c = 2

√
3 cos(α). As the

angles in the triangle must add to π we have

2α + θ = π .

Thus

c = 2
√
3 cos

(
π

2
− θ

2

)

= 2
√
3 sin

(
θ

2

)

.

As we are told that c >
√
3 this means that

sin

(
θ

2

)

>

√
3

2
.

Thus
θ

2
>
π

3
so θ >

2π

3
.

In degrees this is θ > 120 degrees.

Problem 35 (the area of a triangle)

Let a be the length of the shortest side of the triangle, let b = 21, and since the perimeter
of the triangle is 48 we have

a+ b+ c = 48 so a+ c = 27 .

The area of a triangle in terms of its three sides is given by Heron’s formula given by
Equation 10. Since we know that A is an integer we can consider each of the choices for a,
compute c = 27− a, compute the area A and see what we get. When we do this we get

as 8.00000 10 12.00000 14.00000 16.00000

cs 19.00000 17 15.00000 13.00000 11.00000

A 75.89466 84 88.18163 88.99438 86.53323

In this table we see that the value of a = 10 and c = 17 give A = 84 and is the solution.
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Problem 36 (making bets)

Given we start with x cents and we win the bet we will end up with x+ x
2
= 3

2
x cents. If we

loose the bet we will end up with x − 1
2
x = 1

2
x cents. Then the amount of money we have

after the three wins and three losses is then

(
3

2

)3(
1

2

)3

x =
27

65
x .

If x = 64 the final amount we have is 27 cents. This represents a loss of 64− 27 = 37 cents.

Problem 37 (an L1 optimization)

Given a set of n numbers {Pi}ni=1 the median x̃ is the solution that minimizes the sum of
the absolute difference to all of the points i.e.

min
x̃

n∑

i=1

|Pi − x̃| .

As this is what the problem asks we need to find the median. With seven numbers the
median is the number “in the middle” which in this case is P4.

Problem 38 (more geometry)

Let the point G divide the segment into the two segments DG (of length y) and GC (of
length b−y). Let the length of the unknown segment BE be denoted as x. From the problem
statement the length of FG is 24 and the length of GE is 8. As △BEA ∼ △GEC we have
that

x

b
=

8

b− y
.

Solving for y we get

y =

(

1− 8

x

)

b . (152)

Now to relate the length b to the total length of FB we note that △FDG ∼ △FAB and
thus we have

y

b
=

24

24 + 8 + x
or y =

24b

32 + x
.

If put what we know from Equation 152 into the above we get

24

32 + x
= 1− 8

x
.

Solving for x we get x =
√
256 = 16.

258



In general the similarity relationship △BEA ∼ △GEC gives us that

BE

b
=
BG− BE

b− y
,

or solving for y we get

y = b− b
BG

BE
+ b = 2b− b

BG

BE
.

Also using △FDG ∼ △FAB we get

y

b
=
BF − BG

BF
,

or solving for y we get

y =
BF −BG

BF
b .

Equating these two expressions for y we get

BF −BG

BF
= 2− BG

BE
.

The above we can write in the form

1

BG
+

1

BF
=

1

BE
.

Problem 40 (some cube roots)

We start by taking the cube of both sides of the given expression by using the identity

(a− b)3 = a3 − 3a2b+ 3ab2 − b3 , (153)

we get

(x+ 9)− 3(x+ 9)2/3(x− 9)1/3 + 3(x+ 9)1/3(x− 9)2/3 − (x− 9) = 27 .

Simplifying some this gives

−3(x+ 9)2/3(x− 9)1/3 + 3(x+ 9)1/3(x− 9)2/3 = 27− 18 = 9 ,

or
−(x+ 9)1/3(x2 − 81)1/3 + (x− 9)1/3(x2 − 81)1/3 = 3 ,

or
3 = (x2 − 81)1/3

[
(x− 9)1/3 − (x+ 9)1/3

]
.

Now from the problem statement the expression in brackets above is exactly equal to −3 and
we get

3 = (x2 − 81)1/3(−3) .

Solving this gives x2 = 80. As we know the value of x2 we can determine where it falls.
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The 1964 Examination

Problem 1

(log10(5 log10(100)))
2 = (log10(5 · 2))2 = 1 .

Problem 2

x2 − 4y2 = (x− 2y)(x+ 2y) = 0 .

Which is a pair of straight lines.

Problem 3

The given statement is equivalent to x = uy + v. In addition we have

x+ 2uy

y
=
x

y
+ 2u .

Note that since u is an integer so is 2u and it contributes to the quotient in the division of
x
y
. Thus the remainder of the requested fraction is the same as the remainder of x

y
or v.

Problem 4

If P = x+ y and Q = x− y then

P +Q = 2x

P −Q = 2y .

From this we have
P +Q

P −Q
− P −Q

P +Q
=
x

y
− y

x
=
x2 − y2

xy
.

Problem 5

We have y = kx. When x = 4 this means that 4k = 8 so k = 2. Thus y(−8) = k(−8) = −16.
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Problem 6

A geometric progression has terms that satisfy Equation 19 for some values for a1 and d.
Since a2

a1
= d = a3

a2
, we can set up an equation for x in that

2x+ 2

x
=

3x+ 3

2x+ 2
.

This equation has two solutions x = −1 or x = −4. If we assume that x = −1 our geometric
sequence would be given by a1 = −1, a2 = 2(−1) + 2 = 0, and a3 = 3(−1) + 3 = 0. As this
is a degenerate sequence we must have x = −4. In that case

a1 = −4

a2 = 2(−4) + 2 = −6

a3 = 3(−4) + 3 = −9 .

Thus we see that d = 3
2
and a1 = −4. The fourth term is given by a4 = −9(3/2) = −27

2
.

Problem 7

For the two roots of a quadratic to be equal means that the discriminant must vanish or for
this problem

(−p)2 − 4p = 0 so p(p− 4) = 0 .

Thus p = 0 or p = 4 and n = 2.

Problem 8 (smaller roots)

Write the given expression as

(

x− 3

4

)(

x− 3

4
+ x− 1

2

)

= 0 ,

or (

x− 3

4

)(

2x− 5

4

)

= 0 .

The two roots are then 3
4
and 5

8
. This second number is the smaller of the two.

Problem 9 (a jobber)

Our jobber will pay (1− 0.125)24 for the item. For him to make a 33% profit means that he
must sell if for (1+ 0.33333)(1− 0.125)24 = 28. He must then mark the price higher so that
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when sold at 20% of that price the price is 28. Thus to have the sale price be 28 dollars let
x be the mark price then we must have

(1− 0.2)x = 28 so x = 1.25(28) = 35 .

None of the given answers are correct.

Problem 10

The area of the triangle is given by

A =
1

2
base× height =

1

2
(
√
2s)h = s2 .

Thus solving for h we get h =
√
2s.

Problem 11

The equation 2x = 8y+1 can be written as 2x = 23y+3 and so x = 3y+3. The second equation
9y = 3x−9 can be written as 32y = 3x−9 and so 2y = x− 9. Thus we have to solve the system

x− 3y = 3

−x+ 2y = −9 .

Solving these for x and y we get x = 21 and y = 6, so that x+ y = 27.

Problem 12

Negating the given expression is the statement, there exists an x such that x2 ≤ 0.

Problem 14

Let x be the price originally paid per sheep. The total amount paided is then 749x. The
farmer then sold the initial 700 sheep for 749x (which is 749x

700
per sheep), and then sold the

remaining 49 at a price of (
749x

700

)

49 .

The total amount all the sheep were sold for is then the sum of these two numbers or

749x+

(
749x

700

)

49 .
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The percent made on this transaction is then given by
price sold−price bought

price bought
or

(
749x+

(
749x
700

)
49
)
− 749x

749x
=

49

700
=

7

100
= 0.07 ,

or 7%.

Problem 15

Let our line intersect the y-axis at the point (0, b) then we get that the area of the triangle
T can be written as

T =
1

2
ab so b =

2T

a
.

For the line the slope m = b
a
= 2T

a2
and the y-intercept is given by b = 2T

a
thus the line is

y = mx+ b =
2T

a2
x+

2T

a
.

This is the same as
a2y = 2Tx+ 2Ta ,

which is solution B.

Problem 16

If the function f(x) is divisible by 6 means that

x2 + 3x+ 2 = 6k ,

for some integer k. This means that

x2 + 3x+ 2− 6k = 0 .

The roots x of the above equation are given by

x =
−3±

√

9− 4(2− 6k)

2
=

−3 ±
√
1 + 24k

2
.

For values of k ≥ 1 the negative sign will always give a negative value for x and thus will
be a point not in the original set S. We can now let k = 1, 2, 3, · · · , compute the value of x
using the above formula, and see which values of x are in the set S. To determine how large
we need to look for values of k we must pick k such that

−3 ±
√
1 + 24k

2
≥ 25 .

Solving the above for k we find

k ≥ 532 − 1

24
= 117 .

Thus we sample k = 1, 2, 3, · · · , 117. In the R code prob 16 1964.R we do this and find the
following values of k give elements x that are in the set S
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valid ks integer xs

[1,] 1 1

[2,] 2 2

[3,] 5 4

[4,] 7 5

[5,] 12 7

[6,] 15 8

[7,] 22 10

[8,] 26 11

[9,] 35 13

[10,] 40 14

[11,] 51 16

[12,] 57 17

[13,] 70 19

[14,] 77 20

[15,] 92 22

[16,] 100 23

[17,] 117 25

Thus we have 17 elements with this property.

Problem 18

If the two equations

3x+ by + c = 0

cx− 2y + 12 = 0 ,

are to have the same graph means that when we try to use one equation to eliminate variables
from the other equation we get an identity (i.e. a trivially true expression like 0 = 0). If we
take − c

3
times the first equation and add it to the second equation we get

(−c + c)x+

(

−bc
3
− 2

)

y +

(

−c
2

3
+ 12

)

= 0 .

In order for this to be the trivial expression 0 = 0 for all x and y we must have

−c
2

3
+ 12 = 0 so c = ±6 .

For each value of c the value of b must satisfy

−bc
3
− 2 = 0 .

Thus we have two values of b, and c that give the same graph.
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Problem 19

Consider solving the two given expression for x and y in terms of the unknown value for z
we need to solve

2x− 3y = z

x+ 3y = 14z .

If we add these two equations we get 3x = 15z so x = 5z. Putting this into the second
equation gives

5z + 3y = 14z so y = 3z .

Then the expression we are to evaluate becomes

25z2 + 3(5z)(3z)

9z2 + z2
=

25 + 45

10
= 7 .

Problem 20

Using the binomial expansion we have that

(x− 2y)18 =
18∑

k=0

(
18

k

)

xk(−2)18−ky18−k .

Thus the sum of the coefficients in the above expansion is

18∑

k=0

(
18

k

)

(−2)18−k .

We can obtain this expression if we let x = y = 1 in the binomial expansion (or equivalently
the original expression). Thus the value of the sum of the coefficients is then (1− 2)18 = 1.

Problem 21

Write the given equation as
ln(x)

ln(b2)
+

ln(b)

ln(x2)
= 1 ,

or
ln(x)

2 ln(b)
+

ln(b)

2 ln(x)
= 1 ,

or
ln(x)2 − 2 ln(b) ln(x) + ln(b)2 = 0 .

If we let v = ln(x) then the above is a quadratic equation in v. Using the quadratic formula
we get that

v =
2 ln(b)±

√

4 ln(b)2 − 4 ln(b)2

2
= ln(b) .

This is the same as ln(x) = ln(b) so x = b.
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Problem 23

Assume that the two numbers are x and y with y > x, then the given statements imply that

x+ y

y − x
= 7 and

xy

x+ y
=

24

7
.

The first of these is the same as y = 4
3
x. Putting this into the second equation we get

x

(
4

3
x

)

=
24

7

(

x+
4

3
x

)

.

The two solutions to this last equation are x = 0 and x = 6. This gives y = 0 and y = 8. As
x = 0 is not the solution we are looking for we would have xy = 6(8) = 48.

Problem 24

We can do this problem by completing the square or with calculus. Using the later we find

y′ = 2(x− a) + 2(x− b) = 0 so x =
1

2
(a+ b) ,

for the minimum.

Problem 25

Assume the two factors are of the form x+Ay +B and x+ Cy +D. Then their product is
given by

x2 + (C + A)xy + (D +B)x+ ACy2 + (AD +BC)y +BD .

In order for this to equal x2 + 3xy + x+my −m we must have

C + A = 3

D +B = 1

AC = 0

AD +BC = m

BD = −m.

This is a set of five equations and four unknowns. From the equation AC = 0we must have
A = 0 or C = 0. If we assume that A = 0 then C = 3 and the equations above simplify to

D +B = 1

3B = m

BD = −m.
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The last two equations give 3B = −BD so B = 0 or D = −3. If B = 0 then D = 1 and
m = 0. If B = −3 then B = 4 and m = 12. This gives two possible solutions. If we go back
to our first assumption on A and instead make the assumption that C = 0 then A = 3 and
we get the equations

D +B = 1

3D = m

BD = −m.

This is the same system as before and thus we will get two solutions also m = 0 or m = 12.

Problem 26

Let v1, v2, and v3 be the velocities of the three runners with v1 > v2 > v3. Let the first place
runner cross the finish line at time t1. When this happens we are told that

v1t1 − v2t1 = 2 (154)

v1t1 − v3t1 = 4 . (155)

Since the race is 10 miles long we know that t1 =
10
v1
. We want to evaluate

v2t2 − v3t2 ,

where t2 is the time when the second place runner crosses the finish line. This is given by
t2 =

10
v2
. Using this the expression we want to evaluate is given by

v2

(
10

v2

)

− v3

(
10

v2

)

= 10

(

1− v3
v2

)

.

We now try to compute the fraction v3
v2
. If we consider Equation 154 and 155 written in the

form

v3t1 = v1t1 − 4

v2t1 = v1t1 − 2 ,

then when we take the ratio we get

v3
v2

=
v1t1 − 4

v1t− 2
=

10− 4

10− 2
=

3

4
.

Using this value we now find

v2t2 − v3t2 = 10

(

1− 3

4

)

=
15

2
.
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Problem 27

We can first plot each of the two expressions |x − 3| and |x− 4| on the x axis. The sum of
these two plots is the expression we are attempting to bound by a. The plot of |x− 3| and
|x − 4| are shifted “v” functions. Notice that for any x value such that 3 < x < 4 the sum
of the above two functions is a constant as

|x− 3|+ |x− 4| = x− 3− (x− 4) = 1 .

When x = 3 and x = 4 the value of |x− 3|+ |x− 4| one also. For x < 3 or x > 4 the plot of
|x−3|+ |x−4| is linearly increasing to infinity. Thus the smallest value that |x−3|+ |x−4|
ever takes is the value of 1. Thus in order for the given inequality to have values of x for
which it is true we must have a > 1.

Problem 28

We are told that d = 2 and thus using Equation 18 the problem statement implys

n∑

i=1

ai = na1 + n(n− 1) = 153 .

Lets solve for a1 since it must be an integer and see what conditions that imposes on n. We
find

a1 =
153

n
− (n− 1) .

As we know that n > 1 to find the possible values for n such that a1 is an integer means
that n must be a product of the factors of 153. Since

153 = 3317 ,

we have that n can take the values

3 , 32 = 9 , 17 , 3(17) = 51 , 153 ,

or five values.

Problem 29 (the length of the opposite side)

Using the law of cosigns we have

RF2 = RD2 +DF2 − 2RD · DFcos(θ) .

Using the numbers given this becomes

25 = 16 + 36− 2(4)(6) cos(θ) ,
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or

cos(θ) =
27

2(4)(6)
=

9

16
.

Again using the law of cosigns on the second triangle we get

RS2 = RF2 + FS2 − 2RF · FS cos(θ) .

Using the numbers given in the problem this becomes

RS2 =

(
15

2

)2

+ 25− 2(5)

(
15

2

)(
9

16

)

.

This simplifies to

RS2 =
625

16
,

so RS = 25
4
= 6.25.

Problem 30

Write the given quadratic as

x2 +

(

2 +
√
3

7 + 4
√
3

)

x− 2

7 + 4
√
3
= 0 .

Note that the number 7 + 4
√
3 is special in that is has a very nice inverse

1

7 + 4
√
3
=

1

7 + 4
√
3

(

7− 4
√
3

7− 4
√
3

)

=
7− 4

√
3

49− 16(3)
= 7− 4

√
3 .

Thus the above quadratic is given by

x2 + (2 +
√
3(7− 4

√
3)x− 2(7− 4

√
3) = 0 .

Since the roots of the quadratic equation are given by x = −b±
√
b2−4ac
2a

the largest root minus
the smallest root is given by the expression

√
b2 − 4ac .

As a = 1 the above is given by

√

(2 +
√
3)2(7− 4

√
3)2 + 8(7− 4

√
3) =

√

(7− 4
√
3)[(4 + 4

√
3 + 3)(7− 4

√
3) + 8]

=

√

(7− 4
√
3)(1 + 8) = 3

√

7− 4
√
3 .

We now need to evaluate the above expression. Let x be a number of the form a+ b
√
3 such

that when I square this number I get 7− 4
√
3. Actually squaring a+ b

√
3 we get

a2 + 3b2 + 2ab
√
3 = 7− 4

√
3 .
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Thus 2ab = −4 and a2 + 3b2 = 7. We can satisfy these by letting a = 2 and b = −1 thus

√

7− 4
√
3 = 2−

√
3 .

From this the difference we seek is given by

3(2−
√
3) = 6− 3

√
3 .

Alternatively, if one didn’t like the above derivation one could simply square each of the
proposed solutions given and see which one equals 9(7− 4

√
3).

Problem 31

Let r1 =
1−

√
5

2
and r2 =

1+
√
5

2
and then our function f(n) is given by

f(n) =
5 + 3

√
5

10
rn2 +

5− 3
√
5

10
rn1 .

Thus the difference we want to compute is given by

f(n+ 1)− f(n− 1) =
5 + 3

√
5

10
r2r

n
2 +

5− 3
√
5

10
r1r

n
1

− 5 + 3
√
5

10
r−1
2 rn2 − 5− 3

√
5

10
r−1
1 rn1

=

(

5 + 3
√
5

10
r2 −

5 + 3
√
5

10
r−1
2

)

rn2

+

(

5− 3
√
5

10
r1 −

5− 3
√
5

10
r−1
1

)

rn1 .

Lets now try to evaluate each coefficient. For the coefficient of rn2 we have

(

5 + 3
√
5

10

(

1 +
√
5

2

)

− 5 + 3
√
5

10

(
2

1 +
√
5

))

=
5 + 3

√
5

10

(

(1 +
√
5)(1 +

√
5)− 4

2(1 +
√
5)

)

=
5 + 3

√
5

10
,

when we simplify. In the same way for the coefficient of rn1 we have

(

5− 3
√
5

10

)[

1−
√
5

2
− 2

1−
√
5

]

=
5− 3

√
5

10

(

1− 2
√
5 + 5− 4

2(1−
√
5)

)

=
5− 3

√
5

10
,

when we simplify. Thus we see that

f(n+ 1)− f(n− 1) = f(n) .
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Problem 32

From the expression a+b
b+c

= c+d
d+a

we get

(a+ b)(d+ b) = (b+ c)(c+ d) ,

or
a2 + (b+ d)a+ bd = c2 + (b+ d)c+ bd ,

or
a2 + (b+ d)a = c2 + (b+ d)c .

Bringing everything to one side we get

a2 + (b+ d)a− (b+ d)c− c2 = 0 ,

or
a2 + (b+ d)(a− c)− c2 = 0 ,

or
(a− c)(a + c) + (b+ d)(a− c) = 0 ,

or
(a− c)(a+ b+ c+ d) = 0 .

Problem 33

Let the point P be denotes with the coordinates (Px, Py), and let W and H be the width
and height H of the rectangle. Then given that we know the lengths of the line segments
AP , DP , and CP we can write down this information in terms of the unknowns Px, Py, W ,
and H as

9 = P 2
x + P 2

y (156)

16 = P 2
x + (H − Py)

2 (157)

25 = (W − PX)
2 + (H − Py)

2 . (158)

Expanding first term on the right-hand-side of this last equation gives

25 = W 2 − 2PxW + P 2
x + (H − Py)

2 .

From Equation 157 we see that this is

25 = W 2 − 2PxW + 16 or 9 =W 2 − 2PxW . (159)

The distance (squared) we want to compute is given by

(W − Px)
2 + P 2

y =W 2 − 2WPx + P 2
x + P 2

y .

Using Equation 159 for the first two terms and Equation 156 for the second two terms we
see that the above distance squared is equal to 9 + 9 = 18. Thus the distance is 3

√
2.
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Problem 34

The sum we want to evaluate is

S ≡
n∑

k=0

(k + 1)ik .

We write this sum in “groups of four” as

S =
∑

k∈{0,4,8,12,··· ,n−8,n−4,n}
(k + 1)ik +

∑

k∈{1,5,9,13,··· ,n−9,n−5,n−1}
(k + 1)ik

+
∑

k∈{2,6,10,14,··· ,n−10,n−6,n−2}
(k + 1)ik +

∑

k∈{3,7,11,15,··· ,n−11,n−7,n−3}
(k + 1)ik

=

n
4∑

j=0

(4j + 1)i4j +

n
4
−1
∑

j=0

(4j + 2)i4j+1 +

n
4
−1
∑

j=0

(4j + 3)i4j+2 +

n
4
−1
∑

j=0

(4j + 4)i4j+3

One can check that all of the subscripts are correct in the above summations by considering
an example say n = 16 and evaluating the sums above. From what we know about the
powers of i we can write the above as

S =

n
4∑

j=0

(4j + 1) + i

n
4
−1
∑

j=0

(4j + 2)−
n
4
−1
∑

j=0

(4j + 3)− i

n
4
−1
∑

j=0

(4j + 4)

= 4
(n

4

)

+ 1 +

n
4
−1
∑

j=0

(−2) + i

n
4
−1
∑

j=0

(−2)

= n+ 1 +
n

4
(−2) + i

n

4
(−2) =

1

2
(n + 2− ni) ,

when we simplify.

Problem 37

From the arithmetic-geometric inequality we have that

1

2
(a+ b) ≥

√
ab .

Subtracting a on both sides gives

1

2
(a+ b)− a ≥

√
ab− a ,

or
1

2
(b− a) ≥

√
a(
√
b−

√
a) .

Squaring both sides gives
1

4
(b− a)2 ≥ a(b+ a− 2

√
ab) ,
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or
1

4
(b− a)2 ≥ 2a

(
a+ b

2
−
√
ab

)

,

Thus we see that the A.M. minus the G.M. is smaller than

a+ b

2
−
√
ab ≤ (b− a)2

8a
.

Problem 38 (the length of QR)

We will solve this geometric problem by placing the points into a Cartesian coordinate system
and then using algebra to determine any unknown expressions. To do this, let the point Q
be located at the origin (0, 0), let the point R be located at the point (2x, 0), and let the
point M be located at (x, 0). Here x is an unknown distance. The point P must be at the
intersection of three circles

• One from Q of radius 4.

• One from M of radius 3.5.

• One from R of radius 7.

Let the point P be given by (Px, Py) then these three equations are given by

P 2
x + P 2

y = 42

(Px − x)2 + P 2
y = 3.52

(Px − 2x)2 + P 2
y = 72 .

This is three equations and three unknowns Px, Py, and x. Expanding the second two
equations we get

P 2
x − 2xPx + x2 + P 2

y =

(
7

2

)2

=
49

4

P 2
x − 4xPx + 4x2 + P 2

y = 49 .

As we know that P 2
x + P 2

y = 16 these two equations become

−2xPx + x2 =
49

4
− 16 = −15

4
(160)

−4xPx + 4x2 = 49− 16 = 33 .

If we divide these two equations we get

2Px − x

4Px − 4x
= − 5

44
,

or

2Px − x = − 5

11
(Px − x) .

The above can be simplified to Px = 16
27
x. If we put this equation into Equation 160 and

simplify we get x2 = 81
4

thus the positive solution is x = 9
2
and the length of QR is twice

this or 9.
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Problem 39

Note that by considering the triangle given by BB′C we see that BB′ < a. By considering
the triangle BC ′C we see that CC ′ < a. Finally by considering the triangle AA′C we have
that AA′ < b. Thus

s = AA′ +BB′ + CC ′ < b+ a+ a = b+ 2a .
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The 1965 Examination

Problem 1

The given expression is equal to
2x2 − 7x+ 5 = 0 .

This has solutions given by

x =
7±

√

49− 4(2)(5)

2(2)
=

7±
√
49− 40

4
.

as there are two real solutions to this equation there must be two real solutions to the original
equation.

Problem 2

In a regular hexagon the angle cut by one side is

2π

6
=
π

3
.

Thus the arc length is 1
6
(2πr) = π

3
r. Since one side of the hexagon forms an equilateral

triangle with the two circumradii that meet at the given sides two end points we can conclude
that the hexagons side is also equal to r the circle’s radius. Thus the ratio of the side length
to the arch length is

r :
π

3
r or 3 : π .

Problem 3

We have

(81)−(2−2) =
1

(81)2−2 =
1

811/4
=

1

3
.

Problem 4

The set of points of equal distance to the two two lines l1 and l3 must be a line itself running
between them. Then every point on this parallel line is a fixed distance (say d) from both
l1 and l3. As l2 intersects l1 the points that we seek are equidistant between all three are
on this parallel line and are the same distance d from l2. There are two points (one on each
side of l2) that satisfy this property.
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Problem 5

Let x = 0.363636 . . . , then 100x = 36.363636 . . . . Then

100x− x = 36 .

Thus x = 36
99

= 4
11

so the sum requested is 15.

Problem 6

The given equation
10log10(9) = 8x+ 5 ,

is equivalent to

8x+ 5 = 9 so x =
1

2
.

Problem 7

Start by writing the given quadratic as

x2 +
b

a
x+

c

a
= 0 .

Then if r and s are the roots of the above quadratic then by factoring above can be written
as (x− r)(x− s) = 0. Expanding this expression and equating it to the first we have that

−(r + s) =
b

a

rs =
c

a
.

If we negate the first equation and then divide it by the second we get

1

s
+

1

r
= − b

a

(a

c

)

= −b
c
.

Problem 8

For this problem we drop a perpendicular to the side of the triangle of length 18. Let this
perpendicular intersect the line drawn parallel to the base of length 18 at a length of h1, let
the length of this parallel line be given by b1 and let the “height” of the trapezoid be given
by h2. Then with these definitions given that the area of then trapezoid is one third that of
the full triangle means that

1

2
h2(18 + b1) =

1

3

(
1

2
(18)(h1 + h2)

)

.
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We want to know the value of b1. If we divide the above by h2 we get

18 + b1 = 6

(
h1
h2

+ 1

)

. (161)

To evaluate b1 we need to determine the value of h1

h2
. From similar triangles we get

h1
h1 + h2

=
b1
b2

=
b1
18
.

If we solve this for h1

h2
in terms of b1 we get

h1
h2

=
b1
18

1
(
1− b1

18

) =
1

18
b1

− 1
.

If we put this into Equation 161 we get

18 + b1 = 6

(

1
18
b1

+ 1
+ 1

)

.

If we solve this for b1 we find that b21 = 216 = 2333 so b1 = 6
√
6.

Problem 9

Write y like

y = x2 − 8x+ c = x2 − 8x+ 16− 16 + c = (x− 4)2 + c− 16 .

Then we want when x = 4 to have y = 0 so that c = 16.

Problem 10

We have
x2 − x− 6 = (x− 3)(x+ 2) .

By plotting the points where the above factored expression is negative we see that the
inequality x2 − x− 6 < 0 is equivalent to −2 < x < 3.

Problem 11

Expression I should be evaluated as

√
−4

√
−16 = 2i(4i) = 8i2 = −8 .

The others are correct.
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Problem 12 (an inscribed rhombus)

If we let l be the distance between A and the point E, then the distance between A and the
point D is also l since ADEF is a rhombus. Thus we have BE = 6 − l and CD = 12 − l.
Let x be the distance between B and F so that CF = 8 − x. Note that AB is parallel to
DF we have ∠CAB = ∠CDF and thus triangles CDF and CAB are similar. With the
notation introduced this means that we can write

12− l

12
=

8− x

8
.

As AC is parallel to EF we have ∠CAB = ∠FEB and the triangles ABC and EBF are
similar. This means that

6− l

6
=
x

8
.

This is a set of two equations and two unknowns. The second equation gives x = 4
3
(6 − l),

which when we put this into the first equation gives

12− l

12
= 1− x

8
= 1− 1

6
(6− l) .

This gives l = 4.

Problem 13

The line can either not intersect, intersect only once (if it is tangent) or intersect with an
infinite number of points. For this problem if we plot the disk x2 + y2 ≤ 16 and the given
line we see that the two intersect over an infinite number of points.

Problem 14

We can get the desired sum by letting x = y = 1. This gives that (1− 2 + 1)7 = 0.

Problem 15

The statement given means that

2(2b+ 5) = 5b+ 2 or b = 8 .

Problem 16

From the given description of the problem the area of the triangle we want to compute can
be written as

A△DEF =
1

2
bh =

1

2
(15)h ,
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thus we need to determine the height of △DEF . We will solve this problem by specifying
it in Cartesian coordinate, which will turn it from a geometric problem into an algebraic
problem. To do that let point C be located at (0, 0), let point D be located at (15, 0), let
point E be located at (30, 0), let point B be located at (0, 15), and let point A be located
at (0, 30). Then the line AD is

y − 0 =

(
30− 0

0− 15

)

(x− 15) or y = −2(x− 15) .

The line BE is

y − 0 =

(
15− 0

0− 30

)

(x− 30) or y = −1

2
(x− 30) .

These two lines intersect when

−2(x− 15) = −1

2
(x− 30) .

When we solve this we get x = 10 and y = −2(−5) = +10. Thus the height of △DEF is 10
so the area is 1

2
(15)(10) = 75.

Problem 17

A true statement from a statement like this can be obtained from its contrapositive. The
contrapositive of the statement given is: if the weather is fair the picnic will be held.

Problem 18

We need to evaluate
1

1+y
− (1− y)

1
1+y

= 1− (1− y)(1 + y) = 1− (1− y2) = y2 .

Problem 19

We would perform long division of the two given polynomials. When we do that we find
that the division results in

x4 + 4x3 + 6px2 + 4qx+ r

x3 + 3x2 + 9x+ 3
= x+ 1 +

(6p− 12)x2 + (4q − 12)x+ (r − 3)

x3 + 3x2 + 9x+ 3
.

Thus to make the two polynomials divisible we must have

6p− 12 = 0 so p = 2

4q − 12 = 0 so q = 3

r − 3 = 0 so r = 3 .

Then with these we have that (p+ q)r = 15.
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Problem 20

Given the general expression for the sum of an arithmetic sequence from Equation 18 we
have the general term given by

Sn − Sn−1 =

n∑

k=1

ak −
n−1∑

k=1

ak = an .

From the given expression for the arithmetic sum we get

Sn − Sn−1 = 2n+ 3n2 − (2(n− 1) + 3(n− 1)2)

= 2n+ 3n2 − (2n− 2 + 3(n2 − 2n+ 1))

= 6n− 1 ,

which is the general term.

Problem 21

Denote the given expression by f(x) so

f(x) ≡ log10(x
2 + 3)− 2 log10(x) .

Then we see that

f(x) = log10(x
2 + 3)− log10(x

2) = log10

(
x2 + 3

x2

)

= log10

(

1 +
3

x2

)

.

As 1 + 3
x3 > 1 we have that log10

(
1 + 3

x2

)
> 0 for all x. As x → +∞ we have that

log10
(
1 + 3

x2

)
→ log10(1) = 0 approaching 0 from above. As x → 0 we have that 1 + 3

x2 →
+∞ and thus log10

(
1 + 3

x2

)
→ +∞. Since we only want to consider x > 2

3
we don’t let x

got all the way to 0. If we sketch the graph of f(x) for 2
3
< x < +∞ we see that it looks like

what is shown in Figure 5 Thus we see by picking x large enough we can make the values of
f(x) as close to zero as needed.

Problem 23

Note that |x2 − 4| = |x − 2||x + 2| < 0.01|x + 2|. Now since |x − 2| < 0.01 we have
1.99 < x < 2.01 and thus

3.99 < x+ 2 < 4.01 .

Thus the above expression is bounded above by

|x2 − 4| < 0.01(4.01) = 0.0401 .

Take N = 0.0401.
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)

Figure 5: A plot of the function f(x) vs. x for Problem 21 for x > 2
3
.

Problem 24

Since each factor is of the form 10i/11 the product of n such factors is then

n∏

i=1

(101/11)i ,

and we want this product to be larger than 105. This can be written as

10
1
11

∑n
i=1 i > 105 ,

or we need to find a n such that

1

11

n∑

i=1

i > 5 or
n∑

i=1

> 55 .

Using Equation 22 we get that this means that we need to pick n such that

1

2
n(n + 1) > 55 or n(n + 1) > 110 .

If n = 10 then we get 10(11) = 110, thus we need n = 11 to get 11(12) = 132 > 110.
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Problem 26

From the problem we are told that

m =
1

5
(a+ b+ c+ d+ e)

k =
1

2
(a+ b)

l =
1

3
(c+ d+ e)

p =
1

2
(k + l) .

From these definitions note that 5m = 2k + 3l so m = 2
5
k + 3

5
l and p = 1

2
k + 1

2
l. From these

we see that

m− p =

(
2

5
− 1

2

)

k +

(
3

5
− 1

2

)

l

= − 1

10
k +

1

10
l .

As k and l can be anything (they are not related in any way) the expression for m − p can
be made any sign. Thus there is no relationship between m and p.

Problem 27 (what is m?)

We can perform long division by y − 1 and y + 1 on the polynomial y2 +my + 2 to get

y2 +my + 2

y − 1
= y + (m+ 1) +

m+ 3

y − 1
,

and
y2 +my + 2

y + 1
= y + (m− 1) +

−m+ 3

y + 1
.

Then we see that R1 = m+ 3 and R2 = −m+ 3. If these two remainders are equal then we
must have that m = 0.

Problem 29 (taking classes)

For this problem we can draw the three groups mathematics students, english students, and
history students in a Venn diagram and introduce the “set” notationM , E, and H to denote
the events that a given student is taking a mathematics, english, or history class respectively.
Then using the Venn diagram as a reference in producing the various possible studentship
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class overlaps for the three classes we end with the following disjoint sets of students

MEcHc = students taking mathematics only

M cEHc = students taking english only

M cEcH = students taking history only

MEHc = students taking math and english but not history

MEcH = students taking math and history but not english

M cEH = students taking english and history but not mathematics

MEH = students taking mathematics, english, and history .

Then the total number of students must be decomposed into the various disjoint sets above.
That is if we let n(·) denote the number of students in a given set we first have that

28 = n(MEcHc) + n(M cEHc) + n(M cEcH) + n(MEHc) + n(MEcH) + n(M cEH) + n(MEH) . (162)

From the problem we are told that

n(MEHc) = n(MEcHc)

n(M cEHc) = n(M cEcH) = 0

n(MEcH) = 6

n(M cEH) = 5n(MEH) .

Then we we put these facts into Equation 162 we get

28 = n(MEHc) + 0 + 0 + n(MEHc) + n(MEcH) + 5n(MEH) + n(MEH) ,

or
28 = 2n(MEHc) + 6 + 6n(MEH) ,

or
11 = n(MEHc) + 3n(MEH) .

We are told that n(MEH) must be even and non-zero. From the above expression n(MEH) =
2 since if it is even an larger than this value the above equation will be violated. When
n(MEH) = 2 we get that n(MEHc) = 5.

Problem 31

Write each expression in terms of the “natural” log. That is we are looking for values x that
satisfy

ln(x)

ln(a)

ln(x)

ln(b)
=

ln(b)

ln(a)
.

or
ln(x)2 = ln(b)2 ,

or taking square roots
ln(x) = ±| ln(b)| .

There are two solution to this one for each sign above given by

x = e±| ln(b)| .

Thus we have two solutions.
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Problem 33 (the value of h+ k)

We write out 15! and then “factor out” as many 12s as we can. For example we have

15! = 15 · 14 · 13 · 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
= (3 · 5) · (2 · 7) · 13 · (12) · 11 · (2 · 5) · (3 · 3) · (2 · 2 · 2) · 7 · (2 · 3) · 5 · (12) · 2
= 125(5 · 7 · 13 · 11 · 5 · 7 · 3 · 5 · 2) .

Thus k = 5. We now do the same by factoring out as man 10s as we can. We find

15! = (3 · 5) · (2 · 7) · 13 · (12) · 11 · (10) · 9 · (2 · 4) · 7 · (2 · 3) · 5 · 4 · (3 · 2)
= 103(3 · 7 · 13 · 12 · 11 · 9 · 8 · 7 · 6 · 4 · 3) .

Thus h = 3 and we have that h + k = 8.

Problem 34 (the maximum of an expression)

Write the given expression as

4x2 + 8x+ 13

6(1 + x)
=

4(x2 + 2x+ 1) + 9

6(1 + x)

=
4(x+ 1)2 + 9

6(1 + x)
=

2(x+ 1)

3
+

3

2(x+ 1)
.

If we let y = 2(x+1)
3

then we have produced a one-to-one mapping of our original domain in
x of 0 ≤ x < +∞ into the domain for y of 2

3
≤ y <∞ and are now considering the extream

values of the function

y +
1

y
,

over that domain. The derivative of this expression is given by

1− 1

y2
.

From this we see that the above is decreasing (has a negative first derivative) when

1− 1

y2
< 0 for

2

3
≤ y ≤ 1 ,

and is an increasing function when the derivative is positive or

1− 1

y2
> 0 for y ≥ 1 .

Thus the point y = 1 is the smallest this function can ever be and we have y + 1
y
≤ 2.
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Problem 38 (getting a job done)

Let va, vb, and vc the the rate at which A, B, and C work on a task independently. This
means that 1

va
is the time that it takes for A to complete the job by himself. In the same

way 1
va+vb

is the time it takes A and B to complete the task together etc. Then from what
we are told we have

1

va
=

m

vb + vc
1

vb
=

n

va + vc
1

vc
=

x

va + vb
.

If we take the reciprocal of the above expressions we get

vb + vc = mva

va + vc = nvb

va + vb = xvc .

If we write the above as a system we get

−mva + vb + vc = 0

va − nvb + vc = 0

va + vb − xvc = 0 .

This is three equations and three unknowns. In order for it to not only have the trivial
solution (all v’s zero) the system as given must be singular, i.e. the determinant of the
coefficient matrix must be zero or

∣
∣
∣
∣
∣
∣

−m 1 1
1 −n 1
1 1 −x

∣
∣
∣
∣
∣
∣

= 0 .

Expanding this determinant we get

−m
∣
∣
∣
∣

−n 1
1 −x

∣
∣
∣
∣
− 1

∣
∣
∣
∣

1 1
1 −x

∣
∣
∣
∣
+ 1

∣
∣
∣
∣

1 −n
1 1

∣
∣
∣
∣
= 0 ,

or expanding the determinants above we get

−m(nx− 1)− (−x− 1) + (1 + n) = 0 .

Solving for x we get

x =
m+ n+ 2

mn− 1
.
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The 1966 Examination

Problem 1 (rationally related)

We are told 3x−4
y+15

= C. When we put in x = 2 and y = 3 we get that C = 1
9
. Then if y = 12

we would have
3x− 4

27
=

1

9
so x =

7

3
.

Problem 2 (transforming the area)

The original area is A = 1
2
bh. With the transformation of h and b suggested we have that

the new values (denoted by primes) must satisfy

b′ = 1.1b

h′ = 0.9h .

Then the new area is

A′ =
1

2
b′h′ =

1

2

(
11

10
b

)(
9

10
h

)

=
99

100
A .

This is a loss of 1%.

Problem 3 (looking for an equation)

Let r and s be the two unknown numbers. Then we are told that

r + s

2
= 6 and

√
rs = 10 ,

or
r + s = 16 and rs = 100 .

If a quadratic polynomial has two roots r and s then we must have

(x− r)(x− s) = x2 − (r + s)x+ rs = 0 .

Thus the equation that has the two roots with the given arithmetic and geometric means is
then

x2 − 12x+ 100 = 0 .

286



Problem 4 (a ratio of areas)

Let a be the length of the square the two circles refer to. The first circle has a radius given
by the length of the hypotenuse of a right triangle with sides a

2
and a

2
. This is the value a√

2
.

Thus the area of the first triangle is then given by

AC1 = π

(
a√
2

)2

=
πa2

2
.

The area of the second circle is given by

AC2 = π
(a

2

)2

=
πa2

4
.

The ratio of these two areas is then given by

AC1

AC2

=
1/2

1/4
= 2 .

Problem 5 (what are the solutions?)

The expression given is equal to (for all possible x values)

2x(x− 5)

x(x− 5)
= x− 3 .

As we cannot have a zero in the denominator of the above fraction we must have x 6= 0 and
x 6= 5. In that case the above simplifies to

2 = x− 3 or x = 5 .

As this would result in a zero denominator in the original expression we have no solutions.

Problem 6 (the length of AC)

The chord AC is the longest edge in a triangle with two equal sizes, each of length equal to
the radius of the circle or 5/2 and an angle between the two sides of 180 − 60 = 2π

3
. Then

using the law of cosigns we have that

AC2 =

(
5

2

)2

+

(
5

2

)2

− 2

(
5

2

)(
5

2

)

cos

(
2π

3

)

=
75

4
,

when we use the fact that cos
(
2π
3

)
= −1

2
. This means that the length of AC is 5

√
3

2
.
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Problem 7 (partial fractions)

We recognize that the requested expansion

35x− 29

x2 − 3x+ 2
=

N1

x− 1
+

N2

x− 2
,

is a partial fractions expansion of the left-hand-side. Multiply both sides by x2 − 3x+ 2 to
get

35x− 29 = N1(x− 2) +N2(x− 1) .

Let x = 2 to get N2 = 70− 29 = 41 and let x = 1 to get −N1 = 35− 29 or N1 = −6. Then
we see that N1N2 = −6(41) = −246.

Problem 8 (the distance between centers)

If we draw the two circles and a line connecting the centers of the circles. Let the left-most
circle center be denoted CL and the right-most circle center be denoted as CR. The common
cord intersects the line segment CLCR perpendicularly at its midpoint. Thus we have two
right triangles that have a height of 16

2
= 8 and two different hypotenuses (corresponding to

the radii of the two circles). The two unknown triangle legs (denoted by l1 and l2) sum to
the desired length of the total distance between centers. Using the Pythagorean theorem in
the triangle with a radius of 10 we have

l21 = 102 − 82 = 36 so l1 = 6 .

The same thing for the triangle with radius 17 gives

l22 = 172 − 82 = 225 so l2 = 15 .

Thus the total distance between the two centers is l1 + l2 = 21.

Problem 9 (evaluating log3(x))

Since log2(8) = 3 the expression for x becomes x = (log8(2))
3. Now since log8(2) =

1
3
the

expression for x becomes x =
(
1
3

)3
= 1

27
. Thus

log3(x) = log3

(
1

27

)

= − log3(27) = −3 .

Problem 10 (the sum of their cubes)

Let r and s be the two numbers then r + s = 1 and rs = 1. Note that we can write r3 + s3

in factored form
r3 + s3 = (r + s)(r2 − rs+ s2) .
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From what we know this can be written as

r3 + s3 = 1(r2 − 1 + s2) = r2 + s2 − 1 .

Now note that
r2 + s2 = (r + s)2 − 2rs = 12 − 2 = −1 ,

Thus we finally get r3 + s3 = −1− 1 = −2.

Problem 12 (an equation from the exponents)

Note that we can write the given expression as

26x+326x+12 = 212x+15 ,

or
6x+ 3 + 6x+ 12 = 12x+ 15 .

As this is true for all values of x there are more than three values of x that satisfy the given
equation (there are infinitely many).

Problem 14 (the area of △BEF )

Let the location of the four points A, B, C, and D be located in the Cartesian plane at
the locations (0, 0), (0, 3), (5, 3), and (5, 0). respectively. By the Pythagorean theorem the
length of the segment AC is given by

√
25 + 9 =

√
34. Thus the length of AE and AF is

given by 1
3

√
34 and 2

3

√
34 respectively. Denote the angle ∠CAD by θ and then from the

given rectangle that the line segment AC is in we see that

sin(θ) =
3√
34

cos(θ) =
5√
34
.

Using these values (and the lengths of AE and AF ) we can explicitly determine the x and
y locations of the points E and F . We have

Ex =

√
34

3
cos(θ) =

√
34

3

(
5√
34

)

=
5

3

Ey =

√
34

3
sin(θ) =

√
34

3

(
3√
34

)

= 1 .

In the same way, we have Fx = 10
3
and Fy = 2. Now that we have the Cartesian coordinates

of the three points of the triangle BEF we can use Equation 12 to compute the area. We
find

Area △BEF =
1

2

∣
∣
∣
∣
∣
∣

Bx By 1
Ex Ey 1
Fx Fy 1

∣
∣
∣
∣
∣
∣

=
1

2

∣
∣
∣
∣
∣
∣

0 3 1
5/3 1 1
10/3 2 1

∣
∣
∣
∣
∣
∣

= −3

2

(
5

3
− 10

3

)

+
1

2

(
10

3
− 10

3

)

=
5

2
.
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In the above I didn’t know beforehand that the determinant above would be positive. If it
was not, the area would then the the absolute value of the above expression.

Problem 15 (some inequalities)

From x− y > x we have that −y > 0 or y < 0. From x + y < y we have that x < 0. Thus
the two conditions are x < 0 and y < 0.

Problem 16 (an equation from powers)

We can write the two expressions as

22x−(x+y) = 23 and 32x+2y−5y = 243 .

Note that 243 = 35 so that the above two equations become

x− y = 3 and 2x− 3y = 5 .

Solving these two equations gives x = 4 and y = 1 thus xy = 4.

Problem 17 (points in common)

We have
x2 + 4y2 = 1 and 4x2 + y2 = 4 .

Thus the first equation gives x2 = 1− 4y2 which when we put this into the second equation
we get

4(1− 4y2) + y2 = 4 so y = 0 ,

is the only solution. If we put y = 0 into the first equation we get x = ±1.

Problem 18 (the common difference)

For this problem we will use Equations 18 with the numbers given imply

155 =
N

2
(2 + 29) =

N

2
(22 + (N − 1)d) .

Here we have two equations and two unknowns for N and d. From the first equation we get
31N = 2(155) or N = 310

31
= 10. Using the second equation we get 155 = 5(4+ 9d) so d = 3.
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Problem 19 (n when the two sums are equal)

Using the Equations 18 with the numbers given we have

s1 =
N

2
(2(8) + (N − 1)4) =

N

2
(16 + 4(N − 1))

s2 =
N

2
(2(17) + (N − 1)2) =

N

2
(34 + 2(N − 1)) .

If s1 = s2 we must have

16 + 4(N − 1) = 34 + 2(N − 1) so N = 10 .

Problem 21 (a n-pointed star)

Lets consider the example 5 star given and hope that the result we derive will generalize.
Denote the angles of the points of the “star” by θi for i = 1, 2, 3, 4, 5. We can place θi
“opposite” the side denoted i for i = 1, 2, 3, 4, 5. Consider the triangle that is external to the
convex polygon and that has θ1 as a vertex angle. Since the sum of the angles in a triangle
must is 180 we can write θ1 in terms of the other two internal angles. These two internal
angles are themselves supplementary to internal angles of the polygon. Denote the interior
angle between sides 3 and 4 as ∠34. This means that we can write θ1 as

θ1 = 180− (180− ∠34)− (180− ∠23) = ∠23 + ∠34− 180 .

When we do this for all of the angles in our five pointed star we get

θ2 = ∠34 + ∠45− 180

θ3 = ∠15 + ∠45− 180

θ4 = ∠15 + ∠12− 180

θ5 = ∠12 + ∠23− 180 .

If we now add these expressions together we see that every internal angle in the convex
polygon will be represented twice. In the general n sided polygon we would have

n∑

i=1

θi = 2
∑

ij

∠ij − n180 .

The sum above represents the sum over all interior angles of a n sided polygon. From
Equation 5 we know that this value is 180(n− 2). When we put that value into the above
formula we get that

n∑

i=1

θi = 180(n− 4) .

291



Problem 22 (which statements have nonzero solutions)

Part (I): We can find nonzero solutions to a2 + b2 = 0 by taking a = 1 and b = i.

Part (II): Squaring this expression we get a2+b2 = a2b2 or when we divide by a2b2 (assumed
nonzero) on both sides give

1

a2
+

1

b2
= 0 .

We can then find nonzero solutions if we let a = 1 and b = i.

Part (III): Squaring this expression we get a2 + b2 = a2 + 2ab+ b2 or 2ab = 0. Thus a = 0
or b = 0 so a nonzero solution could be a = 1 and b = 0.

Part (IV): Squaring this expression we get a2+ b2 = a2−2ab+ b2 or −2ab = 0. Thus a = 0
or b = 0 so a nonzero solution could be a = 1 and b = 0.

Thus all have nonzero solutions.

Problem 23 (for what values of x are we real)

Write the given expression as

(2y + x)(2y + x)− x2 + x+ 6 = 0 ,

or
(2y + x)2 − (x2 − x− 6) = 0 ,

or
(2y + x)2 − (x− 3)(x+ 2) = 0 .

We want to know the range of x for which y is real. Thus we need (x − 3)(x + 2) to be
positive. This happens with x < −2 or x > 3.

Problem 24 (an equation with logs)

Write the given expression as
ln(N)

ln(M)
=

ln(M)

ln(N)
,

or
ln(N)2 = ln(M)2 .

This means that ln(N) = ± ln(M) or ln(N) = ln(M±1) or

N =M±1 .

Since we are told that N 6= M we cannot use the +1 solution above. Thus we have that
N =M−1 so that NM = 1.
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Problem 25

The expression for F (n + 1) can be written as F (n + 1) = F (n) + 1
2
. If we iterate this

expression a few times looking for a pattern we get

F (1) = 2

F (2) = F (1) +
1

2
=

5

2
=

4 + 1

2

F (3) = F (2) +
1

2
=

6

2
=

4 + 2

2

F (4) = F (3) +
1

2
=

7

2
=

4 + 3

2
...

F (n) =
4 + (n− 1)

2
for n ≥ 1 .

Using this general formula we find that F (101) = 4+100
2

= 52.

Problem 26

We have

13x+ 11y = 700 and

y = mx− 1 .

Put the second equation into the first and solve for x to get

x =
711

13 + 11m
=

711

11(m+ 1) + 2
.

To find integer solutions for x we ask what are the factors of 711? Note that since it is
dividable by 3 (and again divisible by 3) we can write 711 as

711 = 32(7(11) + 2) .

Thus for x we have

x =
9(11(7) + 2)

11(m+ 1) + 2
.

Thus we need to take m+1 = 7 so m = 6. We could also try to find an integer m such that

11(m+ 1) + 2 = 3(11(7) + 2) or 11(m+ 1) + 2 = 9(11(7) + 2) ,

but these don’t have integer solutions. Thus m = 6 is the only solution.
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Problem 27 (rowing with/without a stream)

Let vs be the velocity of the stream and vm the velocity of the man. Then when rowing
downstream man travels at a rate of vs + vm in a time of 15

vs+vm
. When rowing upstream he

travels at a rate of vm − vs in a time of 15
vm−vs

. In the problem statement we are told that

15

vm + vs
+ 5 =

15

vm − vs
(163)

15

2vm + vs
+ 1 =

15

2vm − v2
. (164)

These are two equations and two unknowns from which we want to solve for vs. Equation 163
is equivalent to

15(vm − vs) + 5(vm + vs)(vm − vs) = 15(vm + vs) ,

or
5(v2m − v2s) = 30vs or v2m = v2s + 6vs .

Equation 164 is

15(2vm − vs) + (2vm + vs)(2vm − vs) = 15(2vm + vs) ,

or
4v2m − v2s = 30vs .

From what we know about v2m we thus have

4v2s + 24vs − v2s = 30vs or 3v2s = 6vs .

Thus vs = 0 or vs = 2.

Problem 28 (the point with a consistent ratio)

Let x be the length from B to P , then from the given problem statement we can conclude
that the lengths of the given segments are

OA = a

AB = b− a

BC = c− d

CD = d− c

BP = x so

PC = c− b− x

OP = b+ x .

Then to make AP : PD = BP : PC means that AP
PD

= BP
PC

. This first fraction can be written

AP

PD
=
AB +BP

PC + CD
=

b− a+ x

(c− b− x) + (d− c)
.
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The second fraction can be written as

BP

PC
=

x

c− b− x
.

Thus we have the relationship

b− a+ x

d− b− x
=

x

c− b− x
.

Since we want to find OP = b+ x we introduced the expression b+ x into the above to get

(b+ x)− a

d− (b+ x)
=

(b+ x)− b

c− (b+ x)
,

or
OP − a

d−OP
=
OP − b

c− OP
.

Clearing denominators gives

(OP − a)(c−OP ) = (OP − b)(d−OP ) ,

or expanding we get

OPc−OP 2 − ac + aOP = dOP − OP 2 − bd+ bOP ,

or solving for OP we get

OP =
ac− bd

c+ a− d− b
.

Problem 29 (counting numbers divisible by 5 and 7)

Notice that there are ⌊N−1
5

⌋ numbers in the range [1, N) that are divisible by 5. Thus the
number of numbers that are divisible by 5 in the range [1, 1000) is ⌊999

5
⌋ = 199. In the same

way there are ⌊N−1
7

⌋ numbers in the range [1, N) that are divisible by 7. Thus the number
of numbers that are divisible by 7 in the range [1, 1000) is ⌊999

7
⌋ = 142. Now there are 999

positive integers in the range [1, 1000) and if we remove the number of multiples of 5 and
7 computed above (i.e. 199 and 142) we have removed any number that is a multiple of
5 × 7 = 35 twice. There are ⌊999

35
⌋ = 28 such numbers. The number of numbers less than

1000 and that are not divisible by 5 and 7 is then

999− 199− 142 + 28 = 686 .

Problem 30 (finding the value of a+ c)

If we are given the roots of a polynomial then evaluating the polynomial at these values
must give zero. This means that we must have

1 + a + b+ c = 0

16 + 4a+ 2b+ c = 0

81 + 9a+ 3b+ c = 0 .
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Figure 6: Plots of the function v − 1
v
and −w − 1

w
.

This gives three equations and three unknowns. If we solve these three equations we get
a = −25, b = 60, and c = −36 thus a+ c = −61.

Problem 33 (counting the number of solutions)

Write the given expression as

x− a

b
− b

x− a
= −

(
x− b

a
− a

x− b

)

.

Next let v ≡ x−a
b

and w ≡ x−b
a

then the above is given by

v − 1

v
= −

(

w − 1

w

)

.

If we plot the left-hand-side of this expression (in green) and the right-hand-side of this
expression (in red) we get the plot given in Figure 6. Note that the green and the red curve
intersect in two places (see below for another discussion on this). Two places where the plots
intersect appear to be when the two curves cross the x-axis. This can happen when v− 1

v
= 0

or v2 − 1 = 0 or v = ±1. If v = +1 we have

x− a

b
= 1 or x = a+ b ,

while if v = −1 we have
x− a

b
= −1 or x = a− b ,

In either case we must also have −
(
w − 1

w

)
= 0 or w = ±1.
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When v = +1 then considering the two possible values for w we get that if w = +1 we would
have

x− b

a
= 1 or x = a + b ,

which is consistent. If w = −1 we would have

x− b

a
= −1 or x = a− b ,

which is not consistent. Thus we have found one solution for x = a+ b.

If v = −1 then in the same logic we would only have the solution corresponding to w = −1
which gave x = a− b.

Note: the method discussed here gives two solutions but I don’t see any way to use it to get
the third solution (corresponding to x = 0). This third solution can be seen to be true by
evaluating both sides at x = 0. If anyone sees a way to use the above to get the solution
x = 0 please contact me.

Problem 34 (a rolling wheel)

Let T be the period of the wheel in seconds (the amount of time it takes for the wheel to com-
plete one cycle). Then the wheel lays down an amount of “land” given by the circumference
C in time T . Thus C

T
= r. As we know that C = 11 feet we can write this as

11

T
= r or 11 = rT . (165)

Here r is the given velocity of the wheel. If we measure T in seconds then with the 11 in
units of feet the r above is in units of feet per second. We are then told that if T shrinks by
1
4
of a second then r will increase by 5 miles per hour. Lets find the conversion factor from

miles per hour to feet per second. We have

1mile

1 hour
=

1mile

1 hour
× 5280 feet

1mile
× 1 hour

3600 seconds
=

5280 feet

3600 seconds
=

22 feet

15 seconds
. (166)

Thus when T shrinks by 1
4
we have that r will increase by 5

(
22
15

)
= 22

3
. We can now write

the given relationship between T and r when the values of these variables change as

11

T − 1
4

= r +
22

3
.

The above is the same as

11 = Tr − 1

4
r +

22

3
T − 11

6
.

Using Equation 165 we can cancel 11 and Tr to get

−1

4
r +

22

3
T − 11

6
= 0 .
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Again using Equation 165 as T = 11
r
we get

−1

4
r +

22(11)

3r
− 11

6
= 0 .

The above is equivalent to
3

4
r2 +

11

2
r − 2 · 112 = 0 .

Solving for r we get

r =
−11

2
±
√

112

4
− 4

(
3
4

)
(2 · 112)

2
(
3
4

) =
−11

2
± 5

(
11
2

)

3
2

As we expect r to be positive we must take the positive sign above to get r = 44
3
. This is in

units of feet per second. To convert to miles per hour we multiply by 15
22

to get 44
3
· 15
22

= 10.

Problem 35 (inequalities in a triangle)

Note that for each of the terms in the sum s1 there is a side of the triangle that is larger
than in. Thus we have s1 < s2. Now considering s2 = AB +BC + CA not that

AB < AO +OB

BC < BO +OC

AC < AO +OC .

Adding these three gives
s2 < 2AO + 2OC + 2OB = 2s1 .

Thus we have s1 >
1
2
s2.

Problem 36 (evaluating a sum)

Note that if we let x = 1 in the expression given we get

(1 + 1 + 1)n = a0 + a1 + a2 + a3 + · · ·+ a2n−1 + a2n .

If we let x = −1 in the expression given we get

(1− 1 + 1)n = a0 − a1 + a2 − a3 + · · · − a2n−1 + a2n .

If we then add these two expressions we get

3n + 1 = 2(a0 + a2 + a4 + · · ·+ a2n−2 + a2n) .

Solving for the sum requested gives 1
2
(1 + 3n).
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Problem 37 (doing a job)

Let va, vb, and vc be the rates at which each member can do the job on their own. Then the
statements given mean that

1

va + vb + vc
=

1

va
− 6 (167)

1

va + vb + vc
=

1

vb
− 1 (168)

1

va + vb + vc
=

1

2vg
. (169)

This is three equations and three unknowns. Then let h = 1
va+vb

be what we want to compute.
From Equation 169 by taking the inverse of both sides we have

va + vb + vg = 2vg .

Thus vg = va + vb. Since we now know vg in terms of va and vb we can consider the other
two equations i.e. Equations 167 and 168 without the variable vg. This means we need to
solve the following two equations

1

va
− 6 =

1

vb
− 1 =

1

2(va + vb)
.

If we multiply the first equation by vavb we get

vb − 6vavb = va − vavb .

If we solve this for vb we get

vb =
va

1− 5va
. (170)

We then want to put this into 1
va

− 6 = 1
2(va+vb)

, which gives

1

va
− 6 =

1

2va

(
1− 5va
2− 5va

)

.

The above is equivalent to
60v2a − 29va + 3 = 0 ,

and has solutions given by

va =
29±

√

292 − 4(60)(3)

2(60)
=

29± 11

120
.

These two solutions are va = 3
20

and va = 1
3
. Given these two value of va and Equation 170

we get two values for vb of vb =
3
5
and vb = −1

2
. Since we expect vb > 0 we can only consider

the first solutions or (va, vb) = ( 3
20
, 3
5
) which gives va + vb =

3
4
. Thus h = 1

va+vb
= 4

3
.
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Problem 39 (repeating decimals in different bases)

For this problem it is useful to think about how one transforms a base 10 repeating decimal
into a proper fraction. Given the repeating decimal representation of a number

f = 0.37373737 . . . ,

we would multiply by 100 (the base squared) to get

100f = 37 + 0.37373737 = 37 + f .

We can then solve for f to get the fractional representation

f =
37

99
.

If the number is given in a different base (rather than 10) we must multiply by some power
of that base. For example, given a repeating fraction with two repeating digits (in base B)
as

f = 0.mnmnmnmn . . . ,

we would multiply by B2 to get

B2f = mB + n+ 0.mnmnmnmn . . . = mB + n+ f .

We can now solve for f to get

f =
mB + n

B2 − 1
. (171)

You can check that the above expression works for the base 10 example given earlier where
we had m = 3, n = 7, and B = 10. For the fractions given in the problem (with their
unknown bases) by using the above we would get

F1 =
3R1 + 7

R2
1 − 1

=
2R2 + 5

R2
2 − 1

, (172)

and

F2 =
7R1 + 3

R2
1 − 1

=
5R2 + 2

R2
2 − 1

.

Note that these are two equations for the two unknown bases R1 and R2. If we take their
ratio we get

3R1 + 7

7R1 + 3
=

2R2 + 5

5R2 + 2
.

Solving the above for R2 in terms of R1 we get

R2 =
1 + 29R1

29 +R1

. (173)

If we put this expression into Equation 172 (and simplify a bit) we get

3R1 + 7

R2
1 − 1

=
(29 +R1)(7 + 3R1)

40(R2
1 − 1)

.
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This gives a quadratic equation for R1 of

3R2
1 − 26R1 − 77 = 0 .

Solving this for R1 we get

R1 =
26±

√

262 + 4(3)(77)

2(3)
=

26± 40

6
.

In order that R1 be positive we must take the positive sign above and get R1 = 11. Then
for R2 using Equation 173 we get R2 = 8. Their sum is then 19.

Problem 40 (a relationship between x and y)

Let F be the point on the line AB when we drop a perpendicular from E and let the ∠EAF
be denoted θ. Since △EAF is a right triangle (and from the problem statement) we have

AE2 = x2 + y2 = DC2 . (174)

Now DC is the distance between a point on the circle and the line BC. Introduced a
Cartesian coordinate system (x̃, ỹ) with A at the origin (0, 0), O at the point (a, 0), B at the
point (2a, 0) etc. In this system the line ADC is given by

ỹ = tan(θ)x̃ .

This line will intersect the tangent BC when x̃ = 2a so ỹ = 2a tan(θ). Thus the point
C is located at (2a, 2a tan(θ)). Lets now find the coordinate of the point D which is the
intersection of the two curves

(x̃− a)2 + ỹ2 = a2 and

ỹ = tan(θ)x̃ .

Putting the second equation into the first we get

(x̃− a)2 + tan2(θ)x̃2 = a2 .

Expanding and canceling we get

x̃2 − 2ax̃+ tan2(θ)x̃2 = 0 .

One solution to this is x̃ = 0 and another solution must be

x̃ =
2a

1 + tan2(θ)
=

2a

sec2(θ)
= 2a cos2(θ) .

Thus the point D is located at (2a cos2(θ), 2a tan(θ) cos2(θ)). Now that we know the Carte-
sian locations of the points C and D we can compute the distance (squared) DC2 or

DC2 = (Dx − Cx)
2 + (Dy − Cy)

2

= (2a cos2(θ)− 2a)2 + (2a tan(θ) cos2(θ)− 2a tan(θ))2

= 4a2 sin4(θ) + 4a2 tan2(θ) sin4(θ)

= 4a2 sin4(θ)(1 + tan2(θ))

= 4a2 sin4(θ) sec2(θ) = 4a2 tan2(θ) sin2(θ) .
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Using this in Equation 174 we get

x2 + y2 = 4a2 tan2(θ) sin2(θ) = 4a2
(
y2

x2

)
y2

x2 + y2
.

The above is equivalent to

(x2 + y2)2 = 4a2
y4

x2
.

Taking the square root of both sides and using the fact that we know that everything is
positive we get

x2 + y2 = 2a
y2

x
.

When we solve for y2 in the above we get

y2 =
x3

2a− x
.
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The 1967 Examination

Problem 1 (adding two numbers)

When we add the two digits in the tens place we would get a + 2 = b assuming that a + 2
was not greater than 10 in which case we would have to carry over a 1 into the hundreds
place. Since the two digits in the hundreds place in the summands (2 and 3) do add to the
digit in the sum (here 5) there was no carry involved and we know that

a+ 2 = b , (175)

where b ≤ 9. Now if the sum or 5b9 is divisible by 9 that means that the sum of the digits
in that number must be divisible by 9 or

5 + b+ 9 = 0 (mod 9) .

This is the same as 14 + b = 0 (mod 9) or 5 + b = 0 (mod 9). For this to happen means that
b = 4. Using Equation 175 we then have that a = 2. Thus a + b = 6.

Problem 2 (simplify this)

We have the given expression equal to

x2y2 + x2 + y2 + 1 + x2y2 − x2 − y2 + 1

xy
=

2x2y2 + 2

xy
= 2xy +

2

xy
.

Problem 3 (the area of a square)

From the given description, lets compute the distance from any side of the triangle to the
center of the inscribed circle. If we draw a segment from a vertex of the triangle to the center
of the inscribed circle the angle of this segment to either of its two adjacent sides is π

6
or

60
2
= 30 degrees. Since this segment is the hypotenuse of a right triangle with a horizontal

leg length of s
2
we know that the vertical distance from a side of the triangle to the center

or the circle is given by

y =
s

2
tan

(π

6

)

=
s

2

(
sin (π/6)

cos (π/6)

)

=
s

2

(
1
2√
3
2

)

=
s

2
√
3
.

This is also the length of 1
2
of the diagonal of the square. Thus the length of the diagonal of

the square is given by s√
3
. If we denote the length of a side of the internal square as a then

a must satisfy

a2 + a2 =
s2

3
.

Thus a = s√
6
and our square has an area given by s2

6
.
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Problem 4 (simplifying some logs)

From the information given we can compute that a = xp, b = xq, c = xr. Thus the expression
we want to compute (in terms of x) looks like

b2

ac
=

x2q

xpxr
= x2q−p−r .

Thus y = 2q − p− r.

Problem 5 (a triangle around a circle)

Note that the three sides of the triangle are tangent to the circle at the points where they
touch the circle. Now draw three altitudes from the center of the circle to the three edges
of the triangle. Note that each of these altitudes has a length of r. Let the sides of the
triangle be a, b, and c. Then the total area K of the triangle is given by the sum of the three
triangles the altitudes above are drawn in. The bases of these three triangles are a, b, and
c. Thus we have

K =
1

2
(ar + br + cr) =

1

2
r(a+ b+ c) =

Pr

2
.

From this we see that P
K

= 2
r
.

Problem 6 (a difference equation)

We have
f(x+ 1)− f(x) = 44x − 4x = 34x = 3f(x) .

Problem 8 (an acid solution)

The m ounces of a m percent solution of acid has

m
( m

100

)

=
m2

100
,

amount of pure acid (not water). When we add x ounces of water we get a (m− 10) percent
solution. In this new solution the amount of pure acid stays the same. The amount of pure
acid in this solution is

(m+ x)

(
m− 10

100

)

.

Setting these two expressions equal to each other gives

m2

100
= (m+ x)

(
m− 10

100

)

.

Solving this for x gives

x =
10m

m− 10
.
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Problem 9 (values for the area K)

If we let s, a, and l be the short side, the altitude, and the long side of the trapezoid respec-
tively then since we know these three numbers are three terms in an arithmetic sequence we
have from Equation 17 that we can write s, a, and l in terms of (the unknown a1 and d) as

s = a1

a = a1 + d

l = a1 + 2d .

Then the area K of this trapezoid is given by

K =
1

2
a(s+ l) =

1

2
(a1 + d)(2a1 + 2d) = (s0 + h)2 .

As this expression can be an integer, rational, or irrational depending on the values of s0
and h the value of K can be any value also.

Problem 10 (partial fractions in disguise)

Write the given expression with y = 10x so that we want to write

2y + 3

(y − 1)(y + 2)
=

a

y − 1
+

b

y + 2
.

This is equivalent to
2y + 3 = a(y + 2) + b(y − 1) .

If we let y = 1 we get a = 5
3
. If we let y = −2 we get b = 1

3
. Thus a− b = 4

3
.

Problem 11 (dimensions of a rectangle)

Let h and w be the height and width of the given rectangle. The perimeter P is then given
by P = 2h + 2w. The diagonal d of this rectangle must satisfy d2 = h2 + w2. We want
to minimize d2 given that P is a constant. Solving for h we have h = P

2
− w. Using this

expression for h we get that d2 as a function of w is given by

d2(w) =

(
P

2
− w

)2

+ w2 =
P 2

4
− Pw + 2w2 .

Taking the w derivative of the above expression and setting it equal to zero gives

−P + 4w = 0 or w =
P

4
.

The second derivative of the expression above is 1
2
> 0 and so the value of w above is a

minimum. Since P = 20 we have w = 5 and h = 10− 5 = 5. Thus

d2 = 52 + 52 = 50 so d =
√
50 .
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Problem 12 (a convex region)

If we assume m < 0 (all of the suggested answers have m < 0) then drawing the given region
in the x-y plane shows that the convex region is a trapezoid. The height of this trapezoid
can be measured along the x-axis and is h = 4− 1 = 3. The longer base has a length equal
to the height of the point on the the line above x = 1 or y = 4m+4. The shorter base has a
length equal to the height of the point on the the line above x = 4 or y = m+ 4. The area
of the trapezoid is then given by

A =
1

2
h(b1 + b2) =

3

2
(m+ 4 + 4m+ 4) .

Setting this equal to 7 gives m = −2
3
.

Problem 13 (the number of triangles)

Since we are told the length BC (with a value of a) and the angle ∠ABC together these two
pieces of information allow us to construct the hypotenuse of a right triangle with an interior
angle of ∠ABC. Dropping the perpendicular from the end point C to the line segment AB
would complete the right triangle. If this dropped perpendicular is exactly the length of hc
then there are a multiple (an infinite number) of points where we can place the point A. If
this dropped perpendicular is not equal to hc then there are no such triangles.

Problem 14 (inverting a function)

In the expression y = f(x) = x
1−x

when we solve for x we get

x =
y

1 + y
.

This is equal to −f(−y).

Problem 16 (multiplication in different bases)

The given multiplication is
(12)(15)(16) = (3146) .

By multiplying out we can write the left-hand-side as

(b+ 2)(b+ 5)(b+ 6) = (b+ 2)(b2 + 11b+ 30) = b3 + 13b2 + 52b+ 60 .

While the right-hand-side is given by

3b3 + b2 + 4b+ 6 .
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Figure 7: A plot of the function b3 − 6b2 − 24b− 27 vs. b.

If we set these two expressions equal to each other and then simplify we get the following
polynomial equation

b3 − 6b2 − 24b− 27 = 0 .

In the R function prob 16 1967.R when we plot this equation as a function of b we get the
plot shown in Figure 7. From that we see that for b ≈ 9 this polynomial is near zero. If we
evaluate this polynomial at b = 9 we see that it is exactly zero. Thus Given this value of b
we can then compute s in base 10 where we find s = 40. Since this can be written as

40 = 4(9) + 4 ,

or in base b this number is 44.

Problem 17

The two roots of this quadratic is given by

r1,2 =
−p±

√

p2 − 4(8)

2
=

−p±
√

p2 − 32

2
.

Since we know that r1,2 are both real we must have that p2 − 32 > 0 or |p| > 4
√
2. Given

this fact by adding the two solutions above we see that

r1 + r2 = −p .

Thus we have that
|r1 + r2| = |p| > 4

√
2 .
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Problem 18 (bounding an expression)

Note that
x2 − 5x+ 6 < 0 so (x− 2)(x− 3) < 0 ,

which means that 2 < x < 3. Since x2 + 5x + 6 = (x + 2)(x + 3) and the bounds on x we
have that

4 < x+ 2 < 5

5 < x+ 3 < 6 ,

thus the product of these two factors is bounded as 20 < (x+ 2)(x+ 3) < 30.

Problem 19 (rectangle areas)

Let l and w be the length and width of the original rectangle. Then from the problem we
are told that (

l +
5

2

)(

w − 2

3

)

= lw =

(

l − 5

2

)(

w +
4

3

)

.

Expanding everything we get

lw − 2

3
l +

5

2
w − 5

3
= lw = lw +

4

3
l − 5

2
w − 10

3
.

The first of these two equations gives

−4l + 15w − 10 = 0 ,

while the second of these two equations gives

8l − 15w − 20 = 0 .

These are two equations and two unknowns. As a system this is
[
−4 15
8 15

] [
l
w

]

=

[
10
20

]

.

Using Cramer’s rule we find the two solutions for l and w given by

l =

∣
∣
∣
∣

10 15
20 −15

∣
∣
∣
∣

∣
∣
∣
∣

−4 15
8 −15

∣
∣
∣
∣

=

15(10)

∣
∣
∣
∣

1 1
2 −1

∣
∣
∣
∣

15(4)

∣
∣
∣
∣

−1 1
2 −1

∣
∣
∣
∣

=
5(−1− 2)

2(+1− 2)
=

15

2

w =

∣
∣
∣
∣

−4 10
8 20

∣
∣
∣
∣

∣
∣
∣
∣

−4 15
8 −15

∣
∣
∣
∣

=

4(10)

∣
∣
∣
∣

−1 1
2 2

∣
∣
∣
∣

15(4)

∣
∣
∣
∣

−1 1
2 −1

∣
∣
∣
∣

=
10(−2− 2)

15(+1− 2)
=

8

3
.

Now that we know l and w the original area is given by

lw =

(
15

2

)
8

3
= 20 .
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Problem 20 (nesting squares)

Let the ith square have a side length of Si. The the radius of the inscribed circle is Si

2
. The

square that is inscribed inside that circle will have a diagonal equal to 2
(
Si

2

)
= Si. Thus its

side Si+1 must be given by

S2
i+1 + S2

i+1 = Si
2 so Si+1 =

Si√
2
.

Thus it looks like the sides of the squares satisfy the above recursion relationship. If we start
this relationship with S0 = m we would have that

Si =
m

2
i
2

for i ≥ 0 .

The radius of the circle inscribed inside this square has a radius

Ri =
Si

2
=

m

2
i
2
+1
.

We want to evaluate

∞∑

i=0

πR2
i =

πm2

4

∞∑

i=0

1

2i
=
πm2

4

(
1

1− 1
2

)

=
πm2

2
.

Problem 21 (some triangles)

If we recall the angle bisector theorem (Page 6) the angle bisector divides the opposite
segment into sides that are proportional to the adjacent sides. Thus using the notation in
the problem we would have

A1B

A1C
=

5

3
.

Since the right triangle is a “345” triangle we know that BC = 4 and the above becomes

A1B

4− A1B
=

5

3
.

If we solve the above for A1B we find A1B = 5
2
. With this we know that

A1C = 4− A1B = 4− 5

2
=

3

2
.

We now have the lengths of two of the three sides in the triangle PRQ. Using the Pythagorean
theorem we would have that PQ2 = PR2 +RQ2 or

A1B
2 = A1C

2 +RQ2 .

Putting in what we know we get

25

4
=

9

4
+RQ2 so RQ = 2 .
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Again using the fact that in a triangle the angle bisector divides the impending side into
pieces that are proportional to the adjacent sides we have

P1R

QP1

=
A1C

A1B
=

3/2

5/2
=

3

5
.

Since QP1 = QR− P1R = 2− P1R the above is equivalent to

P1R

2− P1R
=

3

5
.

We can solve for P1R in the above and find P1R = 3
4
. Using this value we can finally compute

the length of PP1 since it is a hypotenuse to the triangle PRP1. We have

PP1
2 = PR2 + P1R

2 = A1C
2 + P1R

2 =
9

4
+

9

16
=

45

16
,

thus PP1 =
√
45
4

= 3
√
5

4
.

Problem 22 (the remainder when dividing by DD′)

From what we are told we have that

P = QD +R with R ≤ D − 1

Q = Q′D′ +R′ with R′ ≤ D′ − 1 .

From the expression for Q we get

P = D(Q′D′ +R′) +R = Q′DD′ +DR′ +R .

Thus the remainder when we divide by DD′ is DR′+R. This is assuming that we can show
that DR′ + R is smaller than or equal to DD′. From the two conditionals on the division
above we see that the proposed remainder is bounded above by

R +R′D ≤ D − 1 +D′D −D = DD′ − 1 ,

showing the required inequality.

Problem 23 (a limit)

Write the given expression as

log3

(
6x− 5

2x+ 1

)

.

Now as x→ ∞ note that 6x−5
2x+1

→ 3. Thus we have

log3

(
6x− 5

2x+ 1

)

→ log3(3) = 1 .
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Problem 24 (counting solutions)

We want to count the number of positive integer solutions to the linear equation 3x+ 5y =
501. Note that if x = 7 then we must find a value of y such that 5y = 480 or y = 96. Based
on this one solution lets look for more solutions for x and y that we can write as

x = 7 + ξ

y = 96 + η ,

for some values of ξ and η. For the above representation we are looking for values of ξ and
η that satisfy

3x+ 5y = 21 + 3ξ + 5(96) + 5η = 501 ,

or
3ξ + 5η = 0 . (176)

Thus we need to find integer values of ξ and η such that the above holds and x ≥ 1 and
y ≥ 1. In terms of ξ and η these are

7 + ξ ≥ 1 or ξ ≥ −6 (177)

96 + η ≥ 1 or η ≥ −95 . (178)

From Equation 176 we have that η = −3
5
ξ. When we put this into Equation 178 we get

−3

5
ξ ≥ −95 or ξ ≤ 475

3
= 158

1

3
.

Thus we need ξ and η to be integers with ξ in the range

−6 ≤ ξ ≤ 158
1

3
,

and ξ a multiple of 5 so that when we compute η = −3
5
ξ we get an integer. There are

158− (−6) + 1 = 165 ,

integers (not necessarily divisible by five) that we could consider. The number of these that
are divisible by five are ⌊

165

5

⌋

= 30 +

⌊
15

5

⌋

= 33 .

Thus this is the number of solutions to the given initial equation.

Problem 25 (can we divide?)

Write the unknown p as p = 2k + 1 for k ≥ 1. Then we can evaluate the expression

(p− 1)
1
2
(p−1) = (2k)

1
2
(2k) = (2k)k = 2kkk .
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Note that this is an even number. Given this result we can eliminate some of the possible
answers. Since the above is even and p is odd, the answer (C) cannot be true. Now as

(p− 1)
1
2
(p−1) is even we have that (p− 1)

1
2
(p−1) − 1 is given by

2kkk − 1 ,

and is odd. As p−1 is even (E) cannot be true. Now p−2 is 2k−1. Lets see if p−2 divides

(p− 1)
1
2
(p−1) − 1. That means we need to consider the fraction

(2k)k − 1

2k − 1
.

By recalling the expression for a geometric sum given by Equation 20 we see that the above
fraction is given by

k−1∑

n=0

(2k)n .

Thus this division is possible and (A) is correct.

Problem 26 (bounding log2(10))

Note that from the information given we have

103 = 1000 < 1024 = 210 .

If we take the log10 of both sides we get

3 < 10 log10(2) so log10(2) >
3

10
.

We also have
104 = 10000 > 8192 = 213 .

If we take the log10 of both sides we get

4 > 13 log10(2) so log10(2) <
4

13
.

Combining these two we have
3

10
< log10(2) <

4

13
.

Problem 27 (burning candles)

Let l1 be the length of the first candle as a function of time as it burns. Assume its initial
length is l0, and after 3 hours its length is 0. Then assuming l1(t) = A + Bt we must have
l1(0) = l0 and l1(3) = 0. This means that

B = l0 and 3A+ l0 = 0 so A = − l0
3
.
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Thus we have that l1(t) is given by

l1(t) = l0

(

1− t

3

)

.

In the same way the second candle has its length as a function of time given by

l1(t) = l0

(

1− t

4

)

.

Note that the first candle burns faster than the second since it burns to zero in less time
(three hours vs. four hours). If we light them at the same time, the time t for the first candle
become one half the length of the second candle will happen when

l1(t) =
1

2
l2(t) .

When we solve this for t we get t = 12
5
in units of hours. This is two hours and 12 minutes.

Since we want this to happen at 4 PM we should subtract this amount of time from then.
This gives 20

5
− 12

8
= 8

5
of an hour from 12 or 1:36 PM.

Problem 30 (selling radios)

To buy n radios at d dollars means that we are paying d
n
dollars per radio. Giving two radios

to the bazaar at one-half their cost means that we suffer a loss of 1
2

(
d
n

)
on each radio giving

a total loss of d
n
on both radios. The rest n − 2 radios are sold at a profit of $8 each for a

total profit of 8(n− 2). The overall profit is then

−d
n
+ 8(n− 2) .

which we are told equals 72. If we set the above equal to 72 and solve for d we find

d = 8n2 − 88n = 8n(n− 11) .

Now if n = 11 then d = 0 which is not possible. For n ≥ 12 we have d a positive integer.
Thus the smallest value for n is 12.

Problem 31

Given the value of a then we would have b = a + 1 and c = ab = a(a + 1). Using these lets
form an expression for D. We have

D = a2 + (a+ 1)2 + a2(a+ 1)2 = a2 + a2 + 2a + 1 + a2(a2 + 2a+ 1)

= 2a2 + 2a+ 1 + a4 + 2a3 + a2 = a4 + 2a3 + 3a2 + 2a+ 1 .
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Since we will be taking the square root of this expression lets look and see if it factors into a
square. Consider the most general square of a quadratic that would have a leading coefficient
of a4. We have

(a2 + Aa +B)2 = (a2 + Aa +B)(a2 + Aa+B)

= a4 + Aa3 +Ba2 + Aa3 + A2a2 + ABa+Ba2 + ABa +B2

= a4 + 2Aa3 + (2B + A2)a2 + 2ABa +B2 .

To make this match D we will need to take 2A = 2 so that A = 1 and

2B + A2 = 3 so 2B = 2 so B = 1 .

Thus using these values we have shown that

D = (a2 + a + 1)2 .

Note that if we can show that a2 + a + 1 > 0 for all a then
√
D = a2 + a+ 1. We can show

that a2 + a+ 1 > 0 by finding the minimum of this expression and showing that it its value
is larger than 0. To find the minimum we take the first derivative of a2 + a+ 1 with respect
to a to get

2a+ 1 = 0 so a = −1

2
.

Since the second derivative of a2 + a + 1 is the number 2 > 0 the value of a = 1
2
gives a

minimum of a2 + a + 1. The value of a2 + a + 1 at this minimum is 3
4
> 0. Thus we have

shown that
√
D = a2 + a + 1. From this we note that a is an integer then

√
D will not be

a rational or irrational number. This observation eliminates some choices. Lets try a few
values of a and see if we can observe a pattern. We have

a = 0 gives
√
D = 1

a = 1 gives
√
D = 3

a = 2 gives
√
D = 7 .

Thus it looks like this is always an odd integer so we will try to show that. Notice when a
is an integer then a(a+ 1) is the product of an odd and an even integer and thus will be an
even number. Since a(a+ 1) = a2 + a is always even we must have that a2 + a+ 1 is always
an odd number.

Problem 32

In the given problem we are told the lengths of the distance from each vertex to the point O
which is the intersection of the diagonals of the quadrilateral ABCD and the length of one
side namely AB. Since we have so many lengths we will use the law of cosigns to determine
the angles of the segments that meet at the point O. For example, since we know the length
of the segment AB we will use the law of cosigns on the triangle △ABO to get

AB2 = AO2 +BO2 − 2AOBO cos(∠AOB) .
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When we put in the numbers for this problem this gives

36 = 64 + 16− 2(8)(4) cos(∠AOB) .

Solving we find

cos(∠AOB) =
11

16
.

Since we want to determine the length AD we can write the law of cosigns for the triangle
△AOD where we have

AD2 = AO2 +DO2 − 2AODO cos(∠AOD) .

When we put in the numbers given in the problem we get

AD2 = 64 + 36− 2(8)(6) cos(∠AOD) . (179)

To evaluate this we need to know cos(∠AOD). Now we have that

∠AOD + ∠AOB = π ,

and thus

cos(∠AOD) = cos(π − ∠AOB) = − cos(∠AOB) = −11

16
.

Using this in Equation 179 we get

AD2 = 100 + 96

(
11

16

)

= 166 thus AD =
√
166 .

Problem 33

Let the segment AB lie along an x-axis of a coordinate system so that the point A is located
at (0, 0) and the point B is on the x-axis at the location (b, 0). Then point O is located at
(
b
2
, 0
)
and is the center of the circle of radius b

2
. Let the point C be located at a distance x

(an unknown) to the right of the point O.

We first note (to be used later) that with these definitions the segment CD is a leg of the
right triangle OCD which has a hypotenuse of length b

2
. Using the Pythagorean theorem we

thus have that

CD =

√
(
b

2

)2

− x2 . (180)

Next the center of the left-most circle is located at the midpoint between the points A and
C or at the location

1

2

(

0 +
b

2
+ x

)

=
1

2

(
b

2
+ x

)

.

This is also the length of the radius of this left-most circle. The center of the right most
circle is located at the midpoint between the points C and D or at

1

2

(

b+
b

2
+ x

)

=
1

2

(
3b

2
+ x

)

.
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Using this expression, the radius of the right-most circle is given by

b− 1

2

(
3b

2
+ x

)

=
b

4
− x

2
=

1

2

(
b

2
− x

)

.

With all of these variables introduced we can now compute the area of the shaded section.
We have

2Ashaded = area of large circle − area of left-most circle− area of right-most circle

2Ashaded = π

(
b

2

)2

− π

(
1

2

(
b

2
+ x

))2

− π

(
1

2

(
b

2
− x

))2

=
π

4

(
b2

2
− 2x2

)

,

when we simplify. To compute the ratio desired in the problem we have to divide this
area by the area of the circle with radius CD. This later circle has a radius CD given by
Equation 180 and has an area given by

π

(
b2

4
− x2

)

.

Thus the desired ratio is given by

π
8

(
b2

2
− 2x2

)

π
(
b2

4
− x2

) =
1

4
.

Problem 34

One thing to notice is from the problem statement if n→ ∞ we would have that the triangle
DEF lays directly “on top” of the triangle ABC since D → A, E → B, and F → C in that
limit. Thus the ratio of the two areas must be one. Thus taking the limit of each of the
choices we have that only solutions (A) and (D) have this property. In the same vein taking
the limit of n→ 0 we would in this case have D → B, E → C, and F → A and the ratio is
again one. Taking the limits of solutions (A) and (D) as n→ 0 we see that only solution (A)
has this property and thus must be the solution.

Problem 35

Start by dividing the given polynomial by its leading coefficient to get

x3 − 144

64
x2 +

92

64
x− 15

64
= x3 − 9

4
x2 +

23

16
x− 15

64
= 0 . (181)

Now the fundamental theorem of algebra states that we can factor the above polynomial as

(x− r1)(x− r2)(x− r3) = 0 ,
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here ri for i = 1, 2, 3 are the three roots. If we multiply these factors together we get

(x− r1)(x− r2)(x− r3) = (x− r1)(x
2 − (r2 + r3)x+ r2r3)

= x3 − (r2 + r3)x
2 + r2r3x− r1x

2 + r1(r2 + r3)x− r1r2r3

= x3 − (r1 + r2 + r3)x
2 + (r1r2 + r1r3 + r2r3)x− r1r2r3 .

Thus the constant term in the expanded expression −r1r2r3 is the negative of the product of
the roots and the coefficient of x2 is −(r1 + r2 + r3) or the negative of the sum of the roots.
If we take the three roots to be a− d, a, and a+ d then from the coefficient of x2 we have

r1 + r2 + r3 = 3a =
9

4
so a =

3

4
.

The negative product of the roots is the constant term so we have

(a− d)a(a+ d) =
15

64
,

or using what we know for a we have

3

4

(
3

4
− d

)(
3

4
+ d

)

=
15

64
.

Solving for d we get d = ±1
2
. Thus the three roots are

1

4
,
3

4
,
5

4
.

Given these values the difference between the largest and smallest root is 5
4
− 1

4
= 1.

Problem 39

Let ln be the smallest element in the nth set. For the sets given as examples we have

l1 = 1

l2 = 2

l3 = 4

l4 = 7 .

From this we can see that ln is given by (starting with l1 = 1)

ln = ln−1 + (n− 1) .

Since the nth set has n elements in it. We can check that this formula is correct

l2 = l1 + (2− 1) = 2

l3 = l2 + (3− 1) = 2 + 2 = 4

l4 = l3 + 3 = 4 + 3 = 7 .
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Using this recursion relationship we have ln− ln−1 = n−1. To evaluate ln explicitly in terms
of n we can sum both sides from n = 2 to n = N where we have

N∑

n=2

(ln − ln−1) =

N∑

n=2

(n− 1) .

For the left-hand-side we get

(lN − lN−1) + (lN−1 − lN−2) + · · ·+ (l3 − l2) + (l2 − l1) = lN − l1 .

For the right-hand-side we get

N∑

n=2

(n− 1) =

N−1∑

n=1

n =
1

2
N(N − 1) .

This means that

ln = l1 +
1

2
N(N − 1) = 1 +

1

2
N(N − 1) .

Now that we know the number of the first element in our nth set we can evaluate the sum
requested. We have

Sn =
ln+n−1∑

k=ln

k =
ln+n−1∑

k=1

k −
ln−1∑

k=1

k

=
1

2
(ln + n− 1)(ln + n)− 1

2
(ln − 1)ln

=
1

2

(
2nln + n2 − n

)
.

Using this we can evaluate what we are asked and find

S21 =
1

2

(
2(21)l21 + 212 − 21

)
.

So we need to evaluate l21 where we find from what we did before that

l21 = 1 +
21(20)

2
= 1 + 10(21) = 211 .

Given this we find

S21 =
1

2

(
42(211) + 212 − 21

)
= 4641 .

Problem 40

Let the equilateral triangle have sides with length l. We position the triangle with its lower
line segment AC along the x-axis so that in Cartesian coordinates we have that A = (0, 0)
and C = (l, 0). Since the internal angles in a equilateral triangle are π

3
we know the location

of the point B in terms of l. Namely it is located at

(
l

2
, l sin

(π

3

))

=

(

l

2
, l

√
3

2

)

.
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Now lets place the point P inside the triangle at a location P = (x, y). Then since we know
the distance between P and each of the vertices of the triangle we can write three equations
as

|AP | = 6 ⇒ x2 + y2 = 36 (182)

|BP | = 8 ⇒
(
l

2
− x

)2

+

(√
3

2
l − y

)2

= 64

|CP | = 10 ⇒ (x− l)2 + y2 = 100 ,

Note that these are three equations for the three unknowns x, y, and l. We can solve these
as follows. To begin we subtract the first one from the second and third ones to get

−2xl + l2 = 64 (183)

l2 − lx−
√
3ly = 28 . (184)

Note that the first equation is linear in x so we can solve for it to get

x =
l2 − 64

2l
.

We can put this into Equation 184 to get

l2

2
−

√
3ly = −4 .

This is a linear equation for y which we can solve to get

y =
4 + l2

2√
3l

.

Putting the expressions for x and y in terms of l into Equation 182 we get

(
l2 − 64

2l

)2

+

(

4 + l2

2√
3l

)2

= 36 .

We can simplify this to get the following equation for l

4l4 − 368l2 + 11920 = 0 .

We can use the quadratic equation to solve for l2 where we find

l2 ∈ {16.86156, 183.13844} .

We know that l2 can be the first value since l2 > 102 = 100. Since the area of an equilateral
triangle (given the side length l is) A =

√
3
4
l2 we can compute the area under the valid choice

to be
A = 79.30127 .

From the choices given in the problem the closest area is 79.
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The 1968 Examination

Problem 1 (increasing the circumference)

The circumference of the original circle (in terms of the diameter d) is given by C = πd. If
d goes to d + π then the circumference goes from C to C + ∆C with ∆C ≥ 0. Using the
expression for the circumference in terms of d we have that

C +∆C = π(d+ π) ⇒ ∆C = π2 .

Problem 2 (some ratios)

Write the expression involving division suggested as

64x−1

4x−1
=

43x−3

4x−1
= 42x−2 = 24x−4 .

Write the expression in terms of 256 as

2562x = 28(2x) = 216x .

Equating exponents of these two we get 4x− 4 = 16x or x = −1
3
.

Problem 3

The line x − 3y − 7 = 0 has a slope of 1
3
, so the line perpendicular to it must have a slope

of −3 and have the representation

y − y0 = −3(x− x0) .

To go through the point (0, 4) means the above equation is y = −3x+ 4.

Problem 4 (an expression)

From the given operator definition we have

4 ⋆ 4 =
16

8
= 2 .

Then we have

4 ⋆ (4 ⋆ 4) = 4 ⋆ 2 =
8

6
=

4

3
.
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Problem 5 (evaluating f(r)− f(r − 1))

From the given expression for f(n) we get

f(r)− f(r − 1) =
1

3
r(r + 1)(r + 2)− 1

3
(r − 1)r(r + 1)

=
1

3
r(r + 1)(r + 2− (r − 1)) = r(r + 1) .

Problem 6

Note if we draw the segment DC parallel to AB then we have

∠CDE = ∠BAD

∠DCE = ∠ABC ,

Thus
S = ∠CDE + ∠DCE = ∠BAD + ∠ABC = S ′ ,

so that S
S′

= 1 at least in this case. In the general case we recall two facts

• all of the angles in the quadrilateral must add to 360 degrees and

• the angles ∠CDE and ∠CDA are supplementary and the angles ∠DCE and ∠DCB
are supplementary

Using these we get that

360 = ∠BAD + ∠ABC + (180− ∠CDE) + (180− ∠DCE) ,

or when we simplify we get

0 = ∠BAD + ∠ABC − (∠CDE + ∠DCE) or 0 = S ′ − S ,

and we see that S
S′

= 1 in all cases.

Problem 7

Using Equation 14 we find that the radius requested is given by 6.25.

Problem 8

The error in percent (relative to the truth) is the expression truth−approximation
truth

. In this case
this equals

6x− x
6

6x
=

6− 1
6

6
=

35

36
= 1− 1

36
= 0.9722222 ,

or about 97%.
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Problem 9

The given expression
|x+ 2| = 2|x− 2| ,

is equivalent to
x+ 2 = ±2(x− 2) .

If we consider the plus sign we get x+ 2 = 2(x− 2) which has x = 6 as a solution. For the
negative sign we have x + 2 = −2(x − 2) which has the solution x = 2

3
. The sum of these

two solutions is 6 + 2
3
= 20

3
= 6 2

3
.

Problem 10

Some students are not fraternity members for if they all were then they are all honest (which
we know is not true from assumption I).

Problem 11

The arc length is given by rθ where θ is the angle measured in radians. Thus for the two
circles we have

Arc Length(60 ◦) = rI

(π

3

)

Arc Length(45 ◦) = rII

(π

4

)

.

If these are equal then we have

rI =
3

4
rII .

Because of this relationship the areas are related as

AI = πr2I = π

(
9

16
r2II

)

=
9

16
AII .

Problem 12 (the radius of the circumcircle)

This problem is asking for the circumcircle of the triangle. Reviewing our notes on triangles
on Page 6 we start by considering if a2 + b2 = c2 to see if the triangle given is in fact a right
triangle. It turns out that we do and because of this the hypotenuse is a diameter of the
circumcircle, and its center is exactly at the midpoint of the hypotenuse. Thus the radius of
the circumcircle is 1

2

(
121

2

)
= 25

4
.
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Problem 13

If the polynomial x2+mx+n = 0 has rootsm and n then it can be factored as (x−m)(x−n).
Expanding this product we get x2−(m+n)x+mn. Setting this equal to the original quadratic
polynomial we get that

mn = n and − (m+ n) = m.

The first equation can have a solution n = 0 and m can be arbitrary or n 6= 0 and then
m = 1. If we consider the first case and assume n = 0 then the second equation implies
that m = 0 also. This cannot be the solution values for m and n we are looking for since
in the problem we are told that n 6= 0 and m 6= 0. If we consider the second case where
n 6= 0 and m = 1 then the second equation requires that n = −2 and we have found that
(n,m) = (−2, 1). The sum of these two roots is -1.

Problem 14

From the two equations given we can write

y = 1 +
1

x
= 1 +

1

1 + 1
y

= 1 +
y

y + 1
=

2y + 1

y + 1
.

Multiplying by y + 1 on both sides gives

y2 + y = 2y + 1 or y2 − y − 1 = 0 .

This is a quadratic equation and has roots given by

y =
1±

√

1− 4(−1)

2
=

1±
√
5

2
.

Notice that the single equation for x is

x = 1 +
1

y
= 1 +

1

1 + 1
x

.

Since this is the same equation as for y we have that y = x.

Problem 15 (the product of consecutive positive odd integers)

The product P we are discussing would be of the form P = (2k − 1)(2k + 1)(2k + 3) for
k ≥ 1. If we start by trying to get a feel for what type of numbers P can be we find the first
ten value of P are given by

15 105 315 693 1287 2145 3315 4845 6783 9177
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Note that when k = 1 the value of P is divisible by 1, 3, 5, and 15. When k = 2 second
value of P = 3(5)(7) = 105 is divisible by three and five. When k = 3 the third value
of P = 5(7)(9) = 315 is divisible by three and five. Finally, when k = 4 we note that
P = 7(9)(11) = 693 which is not divisible by five. Thus we will guess that every value of P
is divisible by three. To prove this we know that whatever the value of k we must have one
of the following true

k mod 3 = 0

k mod 3 = 1

k mod 3 = 2 .

If the first condition on k is true (k mod 3 = 0) then k = 3m for some m ≥ 1 and the
product for P above looks like

(6m− 1)(6m+ 1)(6m+ 3) .

Notice that the last factor in the product is divisible by three. If the second condition on k
is true (k mod 3 = 1) then k = 3m+ 1 for some m ≥ 0 and the product P above looks like

(6m+ 2− 1)(6m+ 2 + 1)(6m+ 2 + 3) = (6m+ 1)(6m+ 3)(6m+ 5) .

Notice that the second factor in the above product is divisible by three. If the third condition
on k is true (k mod 3 = 2) then k = 3m+ 2 for some m ≥ 0 and the product P looks like

(6m+ 4− 1)(6m+ 4 + 1)(6m+ 4 + 3) = (6m+ 3)(6m+ 5)(6m+ 7) .

Notice that the first factor in the above product is divisible by three and thus every P
computed in this manner is also.

Problem 16

Lets first assume that x > 0 then under this assumption the inequality 1
x
< 2 means that

1 < 2x or x >
1

2
.

While the inequality 1
x
> −3 means that

1 > −3x or x > −1

3
.

The intersection of all three inequality regions mean that x > 1
2
. Next consider the case

where x < 0. Under this assumption the inequality 1
x
< 2 means that

1 > 2x or x <
1

2
.

While the inequality 1
x
> −3 means that

1 < −3x or x < −1

3
.

The intersection of all three inequality regions mean that x < −1
3
. Combining these two

regions means that we get

x >
1

2
or x < −1

3
.
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Problem 17

From the definition of xk = (−1)k and f(n) we have

f(1) =
x1
1

= −1

f(2) =
−1 + 1

2
= 0

f(3) = −1

3
f(4) = 0

f(5) = −1

5
,

and so on. These values look like
{
0,− 1

n

}
.

Problem 18

Drawing a picture of the given construction we can form the following conclusions.

• We have ∠FEG = ∠BAE by the parallel lines DEF and AB.

• We are told that ∠FEG = ∠GEC in the problem statement.

• We have ∠GEC = ∠BEA by opposite angles.

Thus the triangle BEA has two equal angles namely ∠BAE and ∠BEA and so is an isosceles
triangle. Since AB = 8 we have that BE = AB = 8. Next use the fact that △ABC is
similar to △ECD to write

5

8
=

CE

8 + CE
.

Solving the above for CE we have CE = 40
3
.

Problem 19 (making change)

Now ten dollars is 10 · 100 = 1000 cents and we want to count the number of ways to write
this in the form

1000 = 10n+ 25m,

for some n ≥ 1 and m ≥ 1. Since the left-hand-side is a multiple of ten m needs to be even
so we take m = 2m′ to enforce this. Thus we want to count the number of solutions to

1000 = 10n+ 50m′ = 10(n+ 5m′) or 100 = n + 5m′ .
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In this expression we see that n needs to be a multiple of five so we let n = 5n′ to enforce
this and we want to count the number of solutions to

20 = n′ +m′ ,

where n′ ≥ 1 and m′ ≥ 1. To solve the above we can have n′ ∈ {1, 2, · · · , 18, 19} and then
m′ is determined via m′ = 20− n′. Thus there are 19 ways to make the desired change.

Problem 20

Let αk be the kth interior angle (in degrees) then from the problem statement we have

αk = α0 + 5k ,

for some α0. Now we know that αn = α0 + 5n = 160 thus α0 = 160 − 5n. Recalling via
Equation 5 that the sum of the internal angles in a concave n-polygon is 180(n−2), we then
must have

n∑

k=1

(α0 + 5k) = α0n+ 5
n∑

k=1

k = α0n+
5

2
n(n+ 1)

= (160− 5n)n +
5

2
n(n + 1) .

Setting this equal to 180(n− 2) we get the quadratic for n of

n2 + 7n− 144 = 0 .

Solving this with using the quadratic equation gives

n =
−7 ±

√

49− 4(−144)

2
=

1

2
{18,−32} .

Taking the positive root (since we know n > 0) we have n = 9.

Problem 21

For this sum notice that for all terms larger than 10! each term in the sum will have 10 as a
factor and thus must end in a zero. Thus all terms larger than 10! don’t affect the value of
the ones digit. In fact if we compute several of the values in the sum we get

S = 1 + 2 + 6 + 24 + 120 + · · · .

Since the term 5! = 120 ends with a zero digit all terms in the sum S that follow this term
will also end in a zero digit and cannot affect the value of the ones digit. Thus the value of
the ones digit for S will be the same as the value of the ones digit for the sum

1 + 2 + 6 + 24 = 33 ,

or the value of three.
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Problem 22

To solve this problem recall that a quadrilateral can only exist if each of its sides is less than
the sum of the other three sides in length. Let the four sides be denoted si for i = 1, 2, 3, 4.
Then using the above constraint on the side s1 we would have

s1 < s2 + s3 + s4 , (185)

but since s1 + s2 + s3 + s4 = 1 we can solve for s2 + s3 + s4 = 1 − s1 and put this into the
right-hand-side of the above inequality to get

s1 < 1− s1 or s1 <
1

2
.

Since the first side is not special we have that si <
1
2
for all i. If we replace s1 with

1− s2 − s3 − s4 in Equation 185 we get

1− s2 − s3 − s4 < s2 + s3 + s4 or s2 + s3 + s4 >
1

2
.

Thus there must be at least one of s2, s3, or s4 that is larger than 1
2(3)

= 1
6
= 0.1666667 >

0.125 = 1
8
. Again since the first side is not special the above logic must hold for all four

sides. Since choices (B), (C), and (D) allow sides that are less than 1
6
they cannot be correct

and the answer must be (E).

Problem 23

To have the left-hand-side be real we need the argument of each logarithm to be positive
which will happen if x > −3 and x > 1. The right-hand-side of the given expression factors
as

log((x− 3)(x+ 1)) .

To have the argument of this logarithm positive we need x < −1 or x > 3. Since we are
told that all logarithms are real numbers any possible solution x must satisfy all of these
requirements and so x > 3. Now that we know the required domain for x we can subtract
the left-hand-side from the right-hand-side to get

log

(
(x− 3)(x+ 1)

(x+ 3)(x− 1)

)

= 0 .

Thus a solution x must satisfy
(x− 3)(x+ 1)

(x+ 3)(x− 1)
= 1 .

or
x2 − 2x− 3 = x2 + 2x− 3 ,

which has only the solution x = 0. Since this does not satisfy x > 3 there are no solutions
to this equation under the conditions required.
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Problem 24 (a wooden frame)

The wording of this problem was difficult for me and I had to look at the diagram given in
the book’s solutions to understand what it meant. After consulting that diagram I was able
to do the problem. We put a frame around the given picture in such a way that the widths
of the vertical sides are w and the heights of the horizontal sides are 2w. Now the area of
the picture is 18(24) = 432 inches squared. With the previous labels the area of the frame
is given by

Aframe = 2(18 + 2w)(2w) + 2(24w) ,

where the first term is the area of the top and bottom pieces of the frame and the second
terms is the area of the side pieces of the frame (excluding the top horizontal parts that were
included in the first term). Equating these two expressions gives a quadratic for w that has
its only positive solution w = 3. Then the picture frame has its height given by 24+4w = 36
and its width given by 18+ 2w = 24. The small to large dimensions are then 24 : 36 = 2 : 3.

Problem 25 (Flash vs. Ace)

Let f(t) be the position of Flash at time t and a(t) the position of Ace at time t. Then we
are told that

a(t) = y + vacet

f(t) = xvacet ,

since Ace gets a head start of y. Here vace is the running velocity of Ace. Flash will overtake
Ace at a time t∗ where

xvacet
∗ = y + vacet

∗ or t∗ =
y

vace(x− 1)
.

The distance that Flash must run to catch Ace is then f(t∗) or

xy

x− 1
.

Problem 26

We have S given by

S = 2 + 4 + 6 + · · ·+ 2N = 2(1 + 2 + 3 + · · ·N) = 2

(
N(N + 1)

2

)

= N(N + 1) .

If we want S > 106 then we need N(N + 1) > 106. The solution for the first N to satisfy
the previous inequality will be close to the solution to N2 > 106 which is N > 103. We can
check if this value of N actually works in our original inequality i.e. consider

N(N + 1) = 1000(1001) = 1001000 > 106 .

328



To see if a smaller value of N works as well (remember we found an approximate solution to
the original problem) we can try the value N = 999. In that case we have

N(N + 1) = 999(1000) = 999000 ,

which is not larger than 106 and thus this value of N does not satisfy N(N + 1) > 106 so
N = 1000 is the first integer where N(N + 1) is larger than 106. The sum of the digits in N
is one.

Problem 27

We are given Sn defined as

Sn = 1− 2 + 3− 4 + · · ·+ (−1)n−1n .

for n = 1, 2, 3, . . . . To start let n be even. Then in that case Sn has the last two terms in its
sum given by +(n− 1)− n. Thus we can write Sn as

Sn = [1 + 3 + 5 + · · ·+ (n− 3) + (n− 1)]− [2 + 4 + · · ·+ (n− 2) + n]

= [1 + 2 + 3 + 4 + · · ·+ (n− 3) + (n− 2) + (n− 1) + n]

− 2[2 + 4 + · · ·+ (n− 2) + n]

=
n∑

k=1

k − 2(2)

n/2
∑

k=1

k

=
n(n + 1)

2
− 4

(
(n/2)(n/2 + 1)

2

)

= −n
2
,

when we simplify. For a few values of n lets check that this expression gives the same value
for Sn as the definition. Using it we have

S2 = −1

S4 = −2 ,

which are both correct. If n is odd then we can write it as n = 2n′ + 1 for some n′ and get

Sn = S2n′ + (2n′ + 1) = −(n− 1)

2
+ n =

n+ 1

2
.

We again can check that this gives the correct expression for a few values of n

S1 = 1

S3 = 2 ,

both of which are correct. Then with these two expressions for Sn we can compute the
desired sum since

S17 =
18

2
= 9

S33 =
34

2
= 17

S50 = −50

2
= −25 .
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Thus adding these numbers we find

S17 + S33 + S50 = 1 .

Problem 28

From the problem statement we are told that

1

2
(a+ b) =

√
ab ,

or
a+ b = 4

√
ab .

If we divide by b we get
a

b
+ 1 = 4

√
a

b
.

Let r =
√

a
b
then the above expression is equivalent to

r2 − 4r + 1 = 0 .

We can solve for r using the quadratic equation to get

r =
4±

√
16− 4

2
= 2±

√
3 .

Thus
r2 =

a

b
= (2 +

√
3)2 = 4 + 4 + 4

√
3 + 3 = 7 + 4

√
3 ≈ 7 + 4(1.7) = 13.8 ,

which is close to 14.

Problem 29

When x < 1 we have that log(x) < 0. If we take the inequality x < 1 and multiplying both
sides by log(x) (and remember that log(x) is negative) we get x log(x) > log(x). Taking the
exponential of both sides of this expression gives

xx > x , (186)

and shows that y > x.

Lets now try to compare xx
x
and xx. When we take their ratio we get

xx
x

xx
= xx

x−x .
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We claim the above is less than one. To show that statement we will assume it is true and
derive a true statement that is equivalent to the one we want to prove. To do this we take
the logarithm of xx

x−x) < 1 to get

(xx − x) log(x) < 0 .

This is true since we know that xx − x > 0 by Equation 186 and that log(x) < 0. Thus we
have shown that z < y.

Lets now try to compare xx
x
and x. To do that consider their ratio to get

xx
x

x
= xx

x−1 .

I claim that this ratio is larger than one. To show that, we take the logarithm of xx
x−1 > 1

to get
(xx − 1) log(x) > 0 .

Then to show that this is true we need to show that xx < 1 which taking logarithms of that
expression gives x log(x) < 0 which is true. Thus we have shown that z > x.

In summary, we have shown that y > x, z < y and z > x so their ordering from smallest to
largest must be

x < z < y .

Problem 30

To get some understanding of this problem we will consider some simple cases first. If
we let P1 be a triangle (so that n1 = 3) and P2 be a square (so that n2 = 4) then we have
maximal intersection with the segments of the square when each of the corners of the triangle
“punctures” one side of the square. This will give rise to 2(3) = 2n1 = 6 intersections.

As another example, if P1 is a polygon with four sides (so that n1 = 4) then using each of
the corners of this polygon we can puncture one of the sides of P2. This gives 2(4) = 2n1 = 8
intersections. Continuing this argument for polygons of all sizes, by putting a corner of P1

through each of the sides of P2 we will have a total of 2n1 intersections.

Problem 31

Recall that the area of an equilateral triangle with a side length of a is given by
√
3
4
a2. Using

this we have that triangle I must have a side length given by

√
3

4
a2I = 32

√
3 or aI = 8

√
2 .
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We can also conclude that triangle III has a side length that is given by

√
3

4
a2III = 8

√
3 or aI = 4

√
2 .

Finally the side length of the square II must satisfy

a2II = 32 or aII = 4
√
2 .

Given that we know the three lengths above we know the initial length of AD and find it to
be

aI + aII + aIII = 8
√
2 + 4

√
2 + 4

√
2 = 16

√
2 .

Next we are told that the length of AD is reduced by 12.5% of itself while the lengths of
aI = AB and aIII = CD don’t change. The new size of AD is given by

(1− 0.125)AD = 0.875AD .

Given the constraints on AB and CD the new length of a′II = BC ′ is given by

0.875(16
√
2) = aI + a′II + aIII = 8

√
2 + a′II + 4

√
2 = 12

√
2 + a′II .

Solving for a′′II we get a′II = 2
√
2. The new area of the square is then a′II

2 = 8. The
percentage change in the area of II is then

8− 32

32
= −3

4
,

or a decrease of 75%.

Problem 32

Let A be moving from left to right along the x-axis and B moving from “bottom to top”
along the y-axis. Take t = 0 to be the time when A is at the origin (x, y) = (0, 0). Since
they move at a uniform speed their positions are given by

xA(t) = vAt

y(B(t) = vBt− 500 ,

with vA and vB both positive. Then in two minutes we have them equidistant from the origin
O or

xA(2) = |yB(2)| ,
or

2vA = |2vB − 500| .
Dividing this by two we get vA = |vB−250|. In eight minutes more they are again equidistant
from O again or

xA(10) = |yB(10)| or 10vA = |10vB − 500| .
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Dividing this by ten we get vA = |vB − 50|. Equating these two expressions for vA gives

|vB − 250| = |vB − 50| .

We are looking for the value of vB that will satisfy this. Notice that the absolute values in
the above expression are needed (or not) depending on where vB is relative to the value of
50 and 250. If for example 0 < vB < 50 then the above expression would become

−(vB − 250) = −(vB − 50) ,

which is an expression that simplifies to a contradiction. Thus there is no solution to the
above with vB in this range. The same conclusion is reached if we assume that vB > 250. In
the case where 50 < vB < 250 then the above becomes

vB − 250 = −(vB − 50) so vB = 150 .

We can then compute vA using either of the two formulas above. For example we have

vA = |vB − 250| = | − 100| = 100 or

vA = |vB − 50| = |150− 50| = 100 .

Using these value for vA and vB we compute

vA
vB

=
100

150
=

2

3
.

Problem 33 (a number in base 7 and 9)

Let the digits when N is written in base seven be d1, d2, and d3. Then from the problem
statement we have that

N = (d1d2d3)7 = d17
2 + d27 + d3

N = (d3d2d1)9 = d39
2 + d29 + d1 .

As these two are equal we can equate to get the constraint

24d1 − d2 − 40d3 = 0 .

We now must have three integers 0 ≤ di < 7 that satisfy the above equation. Solving the
above for d2 we get

d2 = 24d1 − 40d3 = 8(3d1 − 5d3) .

Only one solution for d1, d2, and d3 will satisfy this equation and have the correct bounds.
To find this solution we will specify possible values for d1, d2, and d3 and show that the
equation above gives an inconsistent value for d2 in all but one case.

• If we take d1 = 0 then we don’t have a three digit number and so we don’t need to
consider this case.
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• If we take d1 = 1 then from the above d2 = 8(3 − 5d3). If d3 = 0 the value for d2 is
larger than 7. If d3 ≥ 1 then d2 is negative. In each of these cases we have a violation
of the assumptions on the allowed values for d2.

• If we take d1 = 2 then from the above d2 = 8(6− 5d3). No valid values of d3 give valid
values for d2.

• If we take d1 ∈ {3, 4, 5, 6} then again no valid values of d3 give valid values for d2.

• If we take d1 = 5 then from the above d2 = 8(15− 5d3). If d3 ∈ {0, 1, 2} the computed
value of d2 is too large. If d3 ∈ {4, 5, 6} the computed value of d2 is negative. If d3 = 3
then d2 = 0.

From the above our digits are d1 = 5, d2 = 0 and d3 = 3. We can check that these values
indeed satisfy the required conditions of the problem as

(503)7 = 5(49) + 3 = 248

(305)9 = 3(81) + 5 = 248 ,

which are equal as they should be.

Problem 34

Let n and a be the number of nays and ayes in the first vote and n′ and a′ be the number
of nays and ayes in the second vote. Then we know that

n+ a = 400 = n′ + a′ ,

since that is the total number of voters. In the first vote the bill was defeated by a margin
m so that

n− a = m > 0 .

On the re-vote the bill passed by a margin twice of that when it was first defeated or

a′ − n′ = 2m = 2(n− a) .

The number of ayes on the second vote in terms of nays on the first vote is given by

a′ =
12

11
n .

There are four equations here and four unknowns n, a, n′, and a′ so we can determine each
variable in the above. These four equations are

n+ a = 400

n′ + a′ = 400

2n− 2a+ n′ − a′ = 0

12

11
n− a′ = 0 .

Solving this system we get n = 220, a = 180, n′ = 160, and a′ = 240. Then the problem
asks us to compute a′ − a = 240− 180 = 60.
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Problem 35

Let the center of the circle be located at the origin of a Cartesian coordinate system. A
circle with radius a centered at the origin has an equation

x2 + y2 = a2 .

Let the distance OG be denoted as d. Then since GH = HJ the distance GH must satisfy

d+ 2GH = a so GH =
a− d

2
.

Note that the y coordinate of the point D is d and the y coordinate of the point F is the
same as OH = d +GH or a+d

2
. As these two points are on the circle we can compute their

x coordinate in the first quadrant and find

xD =
√
a2 − d2 for the point D

xF =

√

a2 −
(
a + d

2

)2

=
1

2

√
3a2 − 2ad− d2 for the point F .

Now that we know these points we can compute the required areas. For the area of the
trapezoid K we have

K =
1

2
height× (base1 + base2)

=
1

2
GH (2xD + 2xF ) = GH

(√
a2 − d2 +

1

2

√
3a2 − 2ad− d2

)

.

For the area of the rectangle R we have

R = base× height = 2xF ×GH

=
√
3a2 − 2ad− d2 .

The ratio K : R is then given by

K

R
=

1

2
+

√
a2 − d2√

3a2 − 2ad− d2
=

1

2
+

√

a2 − d2

3a2 − 2ad− d2
.

If we let d approach the value of a we get that the limit inside the square root is of the type
0/0 and must be evaluated using L’Hospital’s rule. This then gives

lim
d→a

K

R
=

1

2
+

√

lim
d→a

(
a2 − d2

3a2 − 2ad− d2

)

=
1

2
+

√

lim
d→a

( −2d

−2a− 2d

)

=
1

2
+

√

1

2
.
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The 1969 Examination

Problem 1

From the problem statement we have

a+ x

b+ x
=
c

d
,

or

d(a+ x) = c(b+ x) so x =
ad− bc

c− d
.

Problem 2

Let c be the cost then we are told that x = 0.85c and y = 1.15c. Thus

y

x
=

1.15

0.85
=

115

85
=

23

17
.

Problem 3

This is just like subtraction in base 10 where we have to borrow from higher order digits and
the answer is (E).

Problem 4

From the given definition we have

(3, 2) ⋆ (0, 0) = (3− 0, 2 + 0) = (3, 2) ,

and
(x, y) ⋆ (3, 2) = (x− 3, y + 2) .

If these two are equal then we must have x = 6 and y = 0.

Problem 5

From the problem we are told that

N − 4

(
1

N

)

= R .
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As an equation for N this is equal to

N2 − RN − 4 = 0 .

Solving this with the quadratic equation we get

N =
R±

√

R2 − 4(−4)

2
=
R ±

√
R2 + 16

2
.

Thus adding the positive and negative roots we get the value of R.

Problem 6 (nested circles)

Let r2 and r1 be the radii of the larger and the smaller circle respectively. Draw a segment
(of length r2) connecting the common center to one of the locations where the cord touches
the larger circle. Draw a second segment (of length r1) from the common center to the point
of tangency. Then since this second segment is perpendicular to the chord we have that r2
is the hypotenuse of a right triangle with one leg of length r1 and the other legs must be

√

r22 − r21 .

We are told that
πr22 − πr21 = 12.5π ,

and thus r22 − r21 = 12.5 thus the total cord length (the above is 1/2 the total chord length)
is given by

2
√

r22 − r21 = 2

√

25

2
= 5

√
2 .

Problem 7

From the given expression for y we have that

y1 = a+ b+ c (187)

y2 = a− b+ c . (188)

If we subtract Equation 188 from Equation 187 we get

y1 − y2 = 2b = −6 so b = −3 .

Problem 8

From the given minor arc measures the angle measure of the vertex opposite the arc is given
by one-half the arc measures. Thus
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• the angle measure of ∠C is 1
2
(x+ 75)

• the angle measure of ∠A is 1
2
(2x+ 25)

• the angle measure of ∠B is 1
2
(3x− 22)

Since the angles in a triangle must sum to 180 degrees we know that

x+ 75 + 2x+ 25 + 3x− 22 = 360 .

Solving this for x we get x = 47 degrees. With this value of x the three interior angles take
the values

61 , 59.5 , 59.5 .

Problem 9

For this we need to compute

1

52

53∑

k=2

k =
1

52

(
1

2
(53)(53 + 1)− 1

)

=
1

52
(27(53)− 1) =

1430

52
= 27.5 .

Problem 10

The set of points that are equidistant from the two parallel tangents will be on a line that
bisects them and passes through the center of the circle. If r is the radius of the circle, then
each point on this bisecting line is of a distance r from either of the two parallel tangent.
Thus we need to find any points on this bisecting line that are a distance r from the circle.
There will be two points on this bisecting line and at a distance of 2r from the center and
the center of the circle itself. This gives three points total.

Problem 11

The distance PR+RQ will be smallest when the point R is on the line connecting the two
points. That line is

y − (−2) =

(−2 − 2

−1 − 4

)

(x+ 1) ,

or

y =
4

5
(x+ 1)− 2 .

If we let x = 1 to find the value of m we get

y =
4

5
(2)− 2 = −2

5
.
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Problem 12

Write F as

F =
6x2 + 16x+ 3m

6
= x2 +

8

3
x+

m

2
=

(

x+
4

3

)2

− 16

9
+
m

2
.

To have this be only the square of a linear expression in x means that

m

2
− 16

2
= 0 ,

or m = 2(16)
9

= 32
9
. Note that

3 =
27

9
< m <

36

9
= 4 .

Problem 13

From the statement of the problem we have

πR2 =
a

b
(πR2 − πr2) .

As the larger circle has more area (i.e. the left-hand-side of the above) than the amount of
area “inside the larger but outside the smaller” (i.e. the expression πR2−πr2) for the above
expression to make sense we must have a

b
> 1 or a > b. We can solve the above for R2 in

terms of r2 to get

R2 =
a

a− b
r2 ,

from which we see that
R : r =

√
a :

√
a− b .

The argument given earlier show that the square root is defined in the real numbers.

Problem 14

From the expression
x2 − 4

x2 − 1
> 0 , (189)

if x2−1 > 0 then the above is equivalent to x2−4 > 0. This later inequality has the solution
|x| > 2. For x2 − 1 > 0 we must have |x| > 1 and so the solution combining both of these
conditions is |x| > 2.

Now if x2 − 1 < 0 then Equation 189 is equivalent to x2 − 4 < 0 which has the solution
|x| < 2. For x2 − 1 < 0 then we must have |x| < 1 and so the solution combining both of
these conditions is |x| < 1.

Combining both of the possible solutions above we have that for Equation 189 to be true
that x must satisfy |x| > 2 or |x| < 1.
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Problem 15

We start by drawing the given picture. We are told that the length of AO is r. Since the
radius from O to M is perpendicular to AB we have that it bisects the segment AB and
thus the length of AM is r/2. From these two facts and the fact that △AOM is a right
triangle we have that

OM2 + AM 2 = AO2 .

From this we can solve for OM and find OM =
√
3
2
r.

Since MD meets AO at a perpendicular we have the following similar triangles

△AOM ∼ △AMD ∼ △MOD .

Using △AOM ∼ △AMD we have

AD

DM
=

r
2√
3
2
r
=

1√
3
. (190)

Using △AOM ∼ △MOD we have

DO

DM
=

√
3
2
r

r
2

=
√
3 . (191)

Since AD +DO = r we have that DO = r − AD. If we put this into Equation 191 we get

r −AD

DM
=

√
3 .

Replacing AD
DM

in the above with Equation 190 we get

r

DM
− 1√

3
=

√
3 so DM =

√
3

4
r .

Now that we know DM we have

AD =
1√
3
DM =

r

4
.

Thus the area we want is given by

1

2
AD ·MD =

1

2

(r

4

)
(√

3

4
r

)

=

√
3

32
r2 .

Problem 16

The first few terms of the binomial expansion are

(a− b)n = an −
(
n

1

)

an−1b+

(
n

2

)

an−2b2 + · · · .
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Using the values of the binomial coefficients we are told that

−nan−1b− n(n− 1)

2
an−2b2 = 0 ,

when a = kb. In that case the above is

−n(kb)n−1b− n(n− 1)

2
(kb)n−2b2 = 0 .

If we divide by nbnkn−2 this is

−k + n− 1

2
= 0 or n = 1 + 2k .

Problem 17

If we let v = 2x then our equation becomes

v2 − 8v + 12 = 0 ,

which factors to give
(v − 6)(v − 2) = 0 .

The two solutions to this are

2x = 6 or x =
log(6)

log(2)
and

2x = 2 or x = 1 .

Note that we can write the first solution above as

x =
log(2) + log(3)

log(2)
= 1 +

log(3)

log(2)
.

Problem 18

We will have solutions to the two equations if one of the factors in the product in each
expression is zero. Thus we should find the zeros to the first factor in each product

x− y + 2 = 0

x+ y − 2 = 0 or (x, y) = (0, 2) ,

zeros for the first factor in the first product and the second factor in the second product

x− y + 2 = 0

2x− 5y + 7 = 0 or (x, y) = (−1, 1) ,
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zeros for the second factor in the first product and the first factor in the second product

3x+ y − 4 = 0

x+ y − 2 = 0 or (x, y) = (1, 1) ,

zeros for the second factor in each product

3x+ y − 4 = 0

2x− 5y + 7 = 0 or (x, y) = (0.7647059, 1.7058824) .

Thus we have four solutions.

Problem 19

We can factor the given expression as

(x2y2 − 1)(x2y2 − 9) = 0 .

This has solutions when

x2y2 = 1

x2y2 = 9 ,

or taking square roots of both sides when

xy = ±1

xy = ±3 .

Now as we are told that both x and y must be positive we don’t need to consider the
negative sign in the above expressions. The number of integer solutions where xy = 1 is one
when both x = 1 and y = 1. The number of integer solutions where xy = 3 is two when
(x, y) = (1, 3) and (x, y) = (3, 1). Thus we have three total solutions of the type requested.

Problem 20

Name the two factors in the definition of P as p1 and p2 so that P = p1p2. From the numbers
given we know that

3.6 1018 < p1 < 3.7 1018

3.4 1014 < p2 < 3.5 1014 .

Thus we then have that

3.6(3.4) 1032 < p1p2 < 3.7(3.5) 1032 .

or
12.24 1032 < P < 12.95 1032 ,

or
1.224 1033 < P < 1.295 1033 ,

Thus P must have 33 + 1 = 34 digits in it.
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Problem 21

In the x-y plane the curve x2+ y2 = m is a circle with radius
√
m and the line x+ y =

√
2m

is a line with a negative slope. When we sketch each of these curves we see that the point of
tangency must be in the first quadrant. Let the point of tangency be denoted as P . At the
point of tangency the segment from the origin (0, 0) (denoted by the letter O) to the point P
and the line x+ y =

√
2m form a right angle. The intersection of the line x+ y =

√
2m and

the x-axis is the point (
√
2m, 0) (denoted by the point Q). Thus one leg of this right triangle

OPQ has a length of
√
m (the radius of the circle) and the hypotenuse of this right triangle

has a length
√
2m. The unknown leg PQ of then has a length given by the Pythagorean

theorem of
PQ2 = (

√
2m)2 − (

√
m)2 = 2m−m = m,

so l =
√
m. Since triangle OPQ has two equal sides of length OP = PQ =

√
m its acute

angles must equal 180−90
2

= 45 degrees (or π
4
radians). This point on the circle will be located

at

(x, y) =
(√

m cos
(π

4

)

,
√
m sin

(π

4

))

=

(√
m√
2
,

√
m√
2

)

.

Note that if we compute x+ y we find

2
√
m√
2

=
√
2m,

i.e. that point is on the line x + y =
√
2m.. Sine every value of m that is nonnegative will

have this property we have that m can be any non-negative real number.

Problem 22

If we draw the given region K in the x-y plane we can break the area up into three parts:
the triangle with vertices given by

(0, 0), (5, 0), (5, 5) ,

with an area of 1
2
(5)(5) = 25

2
. The rectangle with vertices

(5, 0), (8, 0), (8, 5), (5, 5) ,

with an area of 3(5) = 15. The triangle with vertices given by

(5, 5), (8, 5), (8, 11) ,

with an area of 1
2
(3)(11 − 5) = 9. The total area is then the sum of these three pieces or

36.5.
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Problem 23

If we let n = 2 we have that n!+1 = 3 and n!+n = 4 from which we see there are no primes
p that satisfy

3 < p < 4 .

If we let n = 3 we have that n! + 1 = 6 + 1 = 7 and n! + n = 6 + 3 = 9 from which we see
that there are also no primes p that satisfy

7 < p < 9 .

If we let n = 4 we have that n! + 1 = 24 + 1 = 25 and n! + n = 24 + 4 = 28 from which we
see that there are again no primes p that satisfy

25 < p < 28 .

The only answer that satisfies these conditions is A.

Problem 24

The information about the remainders of P and P ‘ mean that

P = DQ+R

P ′ = DQ′ +R ,

for some natural numbers Q and Q′. From the above expression we have that

PP ′ = (DQ+R)(DQ′ +R)

= D2QQ′ +DQR′ +DRQ′ +RR′

= D(DQQ′ +QR′ +RQ′) +RR′ .

Since we know the remainder of RR′ when divided by D is r′ we can write

RR′ = Dq′ + r′ ,

for some natural number q′. Putting this into the last expression for PP ′ we get

PP ‘ = D(DQQ′ +QR′ +RQ′) +Dq′ + r′ = D(DQQ′ + QR′ +RQ′ + q′) + r′ .

Thus the remainder of dividing PP ′ by D is r′. As we are also told that it is r we have that
r = r′.

Problem 25

The given expression is equivalent to

log2(ab) ≥ 6 or ab ≥ 26 .
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Thus we have a lower bound on the product of a and b. Since we want to consider the sum
of a and b we will recall the arithmetic and geometric mean inequality

x+ y

2
≥ √

xy . (192)

To use this we take a square-root of the lower bound for ab to get

√
ab ≥ 23 .

Thus using Equation 192 we have that

a + b ≥ 2
√
ab ≥ 24 = 16 .

Problem 26

To solve this problem introduce a Cartesian coordinate system and put the point A at (0, 0)
and the point B at (40, 0). Then the point M is at (20, 0) and the point C is located at
(20, 16). Next let the functional form form for our quadratic be given by y(x) = −ax2+bx+c.
We need to determine the values of a, b, and c. To have y(0) = 0 we must have c = 0. To
have y(40) = 0 we must have

−402a + 40b = 0 so b = 40a .

Thus at this point we know
y(x) = −ax2 + 40ax .

To have y(20) = 16 we must have

−a(400) + 40a(20) = 16 so a =
1

25
.

Thus using this value of a we now have

y(x) = − 1

25
x2 +

40

25
x = − 1

25
x2 +

8

5
x .

For the problem we want to evaluate

y(20 + 5) = y(25) = − 1

25
(25)2 +

8

5
(25) = 15 .

Problem 27 (a moving particle)

Assume the particle starts at the origin and travels one mile. Then the speed during the
second mile is C

1
= C since at that point the particle has traveled one integer miles. When

the particle is between two and three miles its speed is C
2
. When the particle is between

three and four miles its speed is C
3
. In the same way when the particle is between miles n
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and n + 1 its speed is C
n
. Since we are told that in the second mile (when it has a speed of

C
1
= C) the particle takes two hours to travel this mile we have

2C = 1 so C =
1

2
.

Thus the speed when the particles location x is between miles n and n + 1 (or the n + 1st
mile) is 1

2n
. The speed to travel the nth mile is then 1

2(n−1)
and so the time to travel the nth

mile is 2(n− 1).

We can use the given statement that the second mile n = 2 took two hours to travel to
eliminate all choices but A and E. As the velocity of the particle decreases as the number of
miles traveled increases the time to travel each subsequent mile must increase. Only solution
E has this property and is the correct answer.

Problem 28

The point P must be inside the unit circle and thus must satisfy

x2 + y2 < 1 .

Now without loss of generality let the diameter of the circle be the x-axis so the two endpoints
of the diameter are located at (1, 0) and (−1, 0) then we want the point P = (x, y) to satisfy

(x− (−1))2 + y2 + (x− 1)2 + y2 = 3 .

Expanding the left-hand-side we get the above is equivalent to

x2 + y2 =
1

2
,

which is an equation of a circle with a radius 1√
2
. As there are an infinite number of points

on this circle we have an infinite number of solutions.

Problem 29

We are told that x = t
1

t−1 and y = t
t

t−1 . First write the expression for y as

y =
(

t
1

t−1

)t

= xt .

Next if we consider the expression for y we have

y = t
t−1+1
t−1 = t1+

1
t−1 = tx ,

and we have t = y
x
. Using this in the relationship y = xt we get

y = x
y
x .

Take the x power of both sides of the above gives

yx = xy .
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Problem 30

Let the point C be located in a Cartesian coordinate system at the point (0, 0), let the side
AC and BC be of unit length length so that we can have A located at the point (−1, 0) and
B located at the point (0, 1). Then a point P = (x, y) will be located on the hypotenuse of
the right triangle ABC if it is on the line

y − 0 =

(
1− 0

0 + 1

)

(x+ 1) so y = x+ 1 .

For a general point P = (x, y) we have that

AP 2 = (−1 − x)2 + y2 = (1 + x)2 + y2

PB2 = (0− x)2 + (1− y)2 = x2 + (1− y)2 .

Thus

s = AP 2 + PB2 = 1 + 2x+ x2 + y2 + x2 + 1− 2y + y2 = 2 + 2x+ 2x2 − 2y + 2y2 .

For P to be on the hypotenuse we need to have y = x+ 1 so that s is given by

s = 2 + 2x+ 2x2 − 2(x+ 1) + 2(x+ 1)2

= 2 + 2x+ 2x2 − 2x− 2 + 2x2 + 4x+ 2

= 2 + 4x+ 4x2 .

The distance to the origin squared is CP 2 or

x2 + y2 = x2 + (x+ 1)2 = 2x2 + 2x+ 1 .

From this we see that s− 2CP 2 = 0 for all values of x.

Problem 31

From the given mapping from (x, y) into (u, v) we see that the four corners of the initial
square get mapped to

(0, 0) → (0, 0)

(1, 0) → (1, 0)

(1, 1) → (0, 2)

(0, 1) → (−1, 0) .

Since answers A, B, and E don’t pass through the point (0, 0) they cannot be the answer.
Points on the right-hand-side of the initial square (where (x, y) = (1, y) get mapped to

(1− y2, 2y) .

Notice that this is a quadratic in the first component thus answer C cannot be correct since
each of the boundaries in (u, v) are linear. Thus the answer must be D.
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Problem 32

Introduce the notation ∆un ≡ un − un−1 then in terms of ∆ we have

∆un = 3 + 4(n− 2) = 4n− 5 .

Then following the techniques in [1] by summing both sides we have

n∑

k=2

∆uk = un − u1 = 4
n∑

k=2

k − 5
n∑

k=2

1

= 4

(
n(n + 1)

2
− 1

)

− 5(n− 1) = 2n2 − 3n+ 1 .

If we solve for un given that u1 = 5 we get

un = 2n2 − 3n+ 6 .

The sum of these coefficients is 2− 3 + 6 = 5.

Problem 33

Using the expression given by Equation 18 for Sn and Tn we have

Sn =

n∑

k=1

ak =
n

2
(2a1 + (n− 1)da)

Tn =
n∑

k=1

bk =
n

2
(2b1 + (n− 1)db) ,

for some values of a1, da, b1, and db. Using the above expressions and what we are told in
the problem statement we have that we can write the ratio of Sn to Tn as

Sn

Tn
=

7n + 1

4n+ 27
=

2a1 + (n− 1)da
2b1 + (n− 1)db

. (193)

We want to know the value of a11
b11

= a1+10da
b1+10db

. We can get this ratio from Equation 193 if we
take n = 21. Then we have

a11
b11

=
2(a1 + 10da)

2(b1 + 10db)
=

7(21) + 1

4(21) + 27
− 148

111
= 1.333333 =

4

3
.

Problem 34

The information about the quotient means that

x100

x2 − 3x+ 2
= Q(x) +

R(x)

x2 − 3x+ 2
,
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where Q(x) and R(x) are the quotient and remainder polynomials respectively. Solving for
R(x) we get

R(x) = x100 −Q(x)(x2 − 3x+ 2) = x100 −Q(x)(x− 1)(x− 2) . (194)

Since we are told that R(x) is a first degree polynomial it has only two terms so we can write
it as R(x) = r1x+ r0. We can find the values for r0 and r1 by evaluating R(x) at x = 1 and
x = 2. We get

R(1) = r1 + r0 = 1

R(2) = 2r1 + r0 = 2100 .

Solving the above we for r0 and r1 we find r0 = 2− 2100 and r1 = 2100− 1 so that R(x) looks
like

R(x) = 2− 2100 +
(
2100 − 1

)
x = 2100(x− 1)− x+ 2 ,

which is one of the choices.

Problem 35

The function L(m) is the left-most solution x to the equation x2 − 6 = m or x = −
√
6 +m.

Then we want to compute

L(−m) − L(m)

m
=

−
√
6−m+

√
6 +m

m
,

as m shrinks to zero. The easiest way to do this is to write the above as

2

(√
6 +m−

√
6−m

2m

)

,

and then to recognize that as m → 0 the term in parenthesis will tend to the derivative of
the function

√
6 + x evaluated at x = 0. This derivative is

d

dx

√
6 + x

∣
∣
∣
∣
x=0

=
1

2
√
6 + x

∣
∣
∣
∣
x=0

=
1

2
√
6
.

Thus the limit we seek is then twice this value or 1√
6
.

Another way to solve this problem is to recall that for small m we have

√
6−m =

√
6

√

1− m

6
≈

√
6
(

1− m

12

)

√
6 +m =

√
6

√

1 +
m

6
≈

√
6
(

1 +
m

l2

)

.

Thus the fraction above is close to
√
6
(
−1 + m

12

)
+
√
6
(
1 + m

12

)

m

2
√
6

12
=

1√
6
,

the same result as before.
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The 1970 Examination

Problem 1

The given expression is equal to
√

1 +
√
2 .

Taking the fourth power of this we get

(1 +
√
2)2 = 1 + 2

√
2 + 2 = 3 + 2

√
2 .

Problem 2

We are told that
P = 4l = 2πr .

where P is the perimeter, l is the length of a side of the square, and r is the circles radius.
Then we want to compute

Acircle

Asquare

=
πr2

l2
=

πr2
(
πr
2

)2 =
4

π
.

Problem 3

From the equation for x we have 2p = x− 1. Then from the equation for y we have

y = 1 +
1

x− 1
=

x

x− 1
.

Problem 4

Let the three integers be denoted by i − 1, i, and i + 1 (it is usually advantageous to
make things as symmetric as possible). Then the sum of the squares of these three integers
(denoted by s) is given by

s = (i− 1)2 + i2 + (i+ 1)2 = i2 − 2i+ 1 + i2 + i2 + 2i+ 1 = 3i2 + 2 .

If i = 0 then s = 2 and an element of S is dividable by two. If i = ±1 then s = 5 and a
member of S is divisible by five. If i = ±2 then s = 14 and a member if S is divisible by
seven. The given expression for s (i.e. s = 3i2 + 2) means that when we divide by three we
have a remainder of two. Thus no member of the set S is divisible by three. We look to see
if a member of S is divisible by 11. If we take i = 5 we get s = 77 which is divisible by 11
and thus (B) is correct.
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Problem 5

When x = i we have that x4 = 1 and x2 = −1 so that f(i) = 1−1
i+1

= 0.

Problem 6

We write the given expression as

x2 + 8x = x2 + 8x+ 16− 16 = (x+ 4)2 − 16 .

Thus we see that this expression is always larger than the value of −16.

Problem 7

Let the square have vertices in an x-y coordinate system at the locations

• (0, 0) for the point A

• (s, 0) for the point B

• (s, s) for the point C and

• (0, s) for the point D.

Then the circle through A with a radius s is given by

x2 + y2 = s2 ,

The circle though the point B with a radius s is given by

(x− s)2 + y2 = s2 .

Now the distance from the point of intersection of these two circle to the segment CD is the
value of s− y. If we subtract the first equation from the second equation we get

−2sx+ s2 = 0 or x =
s

2
.

Put this into the first equation and we get y2 = s2 − s2

4
= 3s2

4
. Thus y = ±

√
3
2
s. Given this

the distance from the side CD is

s−
(√

3s

2

)

=
s

2
(2−

√
3) .
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Problem 8

Write the expression for a as

a = log8(225) =
log(225)

log(8)
=

log(152)

log(23)
=

2 log(15)

3 log(2)

Next write the expression for b as

b = log2(15) =
log(15)

log(2)
.

From these two we see that a = 2
3
b.

Problem 9

From the problem we are told that

AP

PB
=

2

3
,

AQ

QB
=

3

4
and PQ = 2 .

Here the points of the segment are (in order): A, P , Q, and then B. For ease of notation let
AP = x and AB = l then we want to evaluate l. From the first ratio we have

x

l − x
=

2

3
,

while from the second ratio we have

x+ 2

l − x− 2
=

3

4
.

These are two equations for two unknowns x and l. Using the first expression we have that
x = 2

5
l which when we put into the second expression gives l = 70.

Problem 10

Multiply the expression for F by 10 to get

10F = 4.8181 · · · .
Next multiply that expression by 100 to get

1000F = 481.818181 · · · .
Now subtract these two expressions to get

1000F − 10F = 990F = 481− 4 = 477 .

Thus we have that F = 477
990

. This can be reduced (by dividing by three twice) to get

F =
159

330
=

53

110
.

Thus 110− 53 = 57.
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Problem 11

Since the given expression is a third order polynomial with a leading coefficient of two we
can write it in terms of the two given factors as a product like (x+2)(x− 1)(2x+ r). When
we expand this we get

(x+ 2)(x− 1)(2x+ r) = (x2 + x− 2)(2x+ r) = 2x3 + 2x2 − 4x+ rx2 + rx− 2r

= 2x3 + (2 + r)x2 + (r − 4)x− 2r .

If this is to equal 2x3−hx+k then we must have r = −2. When r = −2 we then have h = 6
and k = 4. The expression we want to evaluate is then given by

|2h− 3k| = |12− 12| = 0 .

Problem 12

Draw the circle in the rectangle as specified. Then since the circle is tangent to the sides AB
and CD a line connecting these two tangent points must go through the center of the circle
(which we denote Q). Thus this dimension of the rectangle (call it this height) has a length
of 2r. Since the circle is also tangent to the segment AD we have that a line from the center
of the circle to its point of tangency (call that the point R) must be parallel to the segments
AB and CD and bisects the segment AD. Because of this bisecting property if we extend
the segment RQ it must also bisect the diagonal of the rectangle or AC (call this the point
M). Since we are told that M is also on the circle, if we drop a perpendicular from M to
the line AB we have that 1

2
AC is the length of a right triangle with legs of lengths 2r and

r. Thus using that the length AC can be determined from the Pythagorean theorem or

(
1

2
AC

)2

= (2r)2 + r2 .

This gives AC = 2
√
5r. Using this value for the length of the diagonal of the rectangle

ABCD and the fact that the height of the rectangle is of length 2r we have that the width
of the rectangle (denoted by w) is given by

AC2 = 4r2 + w2 so w = 4r ,

when we put in the expression for AC in terms of r. Thus the area of the rectangle is given
by (2r)(4r) = 8r2.

Problem 13

We will consider each of the given choices and show if they are correct or incorrect.

• a ∗ b = ab while b ∗ a = ba which are not equal.
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• a ∗ (b ∗ c) = ab
c
while (a ∗ b) ∗ c = (ab)c = abc which are not equal.

• (a ∗ bn) = ab
n
while (a ∗ n) ∗ b = (an) ∗ b = (an)b = anb which are not equal.

• (a ∗ b)n = (ab)n = anb while a ∗ (bn) = abn which are the same.

Problem 14

The two roots of the given quadratic are given by

−p±
√

p2 − 4q

2
.

If we take the difference of these two roots we get

(

−p +
√

p2 − 4q

2

)

−
(

−p−
√

p2 − 4q

2

)

=
√

p2 − 4q .

Since we are told that this equals one we have when we solve for p

p = ±
√

1 + 4q .

Since we are told that p is positive we must take the positive sign in the above expression.
Note if we took the difference of the roots in the opposite order we would get the same
answer.

Problem 15

All lines go though the point (3, 4) so we can’t eliminate any of them using the fact that
the resulting line must go through that point. We next find the trisection points of the line
segment which are given by

1

3
(−4, 5) +

2

3
(5,−1) = (−2, 1) ,

and
2

3
(−4, 5) +

1

3
(5,−1) = (−1, 3) .

None of the lines given go through the first point, but the line x− 4y+13 = 0 goes through
the second point and must be the answer.
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Problem 16

From the given recurrence relationship we compute

F (4) = 2

F (5) =
2 + 1

1
= 3

F (6) =
3(2) + 1

1
= 7 .

Problem 17

Since r > 0 we can divide by it to get p > q. If we negate both sides of that expression we
get −p < −q so the first choice (a) cannot be true. We can try to eliminate some remaining
choices by selecting values of p and q such that p > g and seeing if they satisfy the remaining
inequalities. To this end let p = 2 and q = 1 then

• Part (B) or −p > q is the statement −2 > 1 which is not true

• Part (C) or 1 > −q/p is the statement 1 > −1/2 which is true

• Part (D) or 1 < q/p is the statement 1 < 1/2 which is not true

Thus if we can prove that 1 > −q/p given p > q we are done. Rather than attempt to do
this directly, lets consider two different values of p and q such that p > q and see if the
inequality in Part (c) still holds. Towards that end let p = 1

2
and q = −1 then 1 > −q/p is

the statement 1 > 2 which is not true. Thus none of the given inequalities are true.

Problem 18

Denote this expression as E. If we square this expression we get

E2 = 3 + 2
√
2− 2

(√

3 + 2
√
2

)(√

3− 2
√
2

)

+ 3− 2
√
2

= 6− 2
√

9− 4(2) = 6− 2
√
1 = 4 .

Thus E = ±2. Since we know that
√

3 + 2
√
2 >

√

3− 2
√
2 the value of E must be positive

and thus we have E = 2.
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Problem 19

Using Equation 20 (with N → ∞) we are told that

a1
1− d

= 15

a21
1− d2

= 45 .

Solving these two equation we find a1 = 5 and d = 2
3
.

Problem 20

If BH and CK are both perpendicular to HK then we can draw HK as a “y-axis”, take
CK as a “x-axis”, and finally draw BH as a horizontal line parallel to CK. Then if we
draw a horizontal line through the midpoint of BC by using a property of parallel lines this
horizontal line must pass thought the midpoint of HK. Denote the midpoint of HK by the
letter M ′. Then as the right triangles HM ′M and KM ′M have equal legs (KM ′ = HM ′

andM ′M is a common leg) they must be equivalent triangles. This means thatMK =MH .

Problem 21 (use the snow tires?)

When the cars instrument panel is calibrated with the original tires the number of rotations
N , times the circumference of the original tire 2πr, must equal the distance traveled D or

2πrN = D . (195)

On the first trip we know
2πrN = 450 .

On the way back with the snow tires on, the radius of the tires r′ is different, the number of
rotations N ′ is different but the total distance traveled is the same or

2πr′N ′ = 450 . (196)

We are told that the instrument panel (thinking the old tires are still on) felt that the car
traveled 440 miles and thus N ′ must satisfy

2πrN ′ = 440 . (197)

Solving this for N ′ gives N ′ = 440
2πr

. Putting this into Equation 196 gives

r′

r
=

450

440
= 1 +

1

44
.

Thus

r′ = r +
r

44
= r +

15

44
= r + 0.3409091 .
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Problem 22

Using Equation 22 we can write the expression we are told in the problem as

3n∑

k=1

k −
n∑

k=1

k = 150 ,

as
1

2
(3n)(3n+ 1)− 1

2
n(n+ 1) = 150 .

Simplifying this we get
n

2
(8n+ 2) = 150 ,

or
4n2 + n− 150 = 0 .

This is a quadratic equation for n which has solutions

n =
−1 ±

√

12 − 4(4)(−150)

2(4)
=

−1± 49

8
,

which gives the two values −25
4
and 6. Since n must be an integer we must have n = 6 then

we want to evaluate
24∑

k=1

k =
1

2
(24)(25) = 300 .

Problem 23

Note that 10! can be written in its prime factors as

10! = 10(9)(8)(7)(6)(5)(4)(3)(2)1

= (2 · 5)(32)(23)(7)(2 · 3)(5)(22)(3)(2)
= 28(34)(52)7 = (22)4 · 34 · 52 · 7 = (4 · 3)4 · 52 · 7
= 124 · 52 · 7 .

Now 52 · 7 = 175 and this can be written in terms of 12 as

175 = 122 + 2 · 12 + 7 .

Thus we have
10! = 124(122 + 2 · 12 + 7) = 126 + 2 · 125 + 7 · 124 .

In terms of base 12 we have just shown that

10! = (1, 2, 7, 0, 0, 0, 0)12 ,

and thus ends with k = 4 zeros.
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Problem 24

Let the length of the side of the equilateral triangle be denoted s and the length of a side of
the regular hexagon be l. Then in the problem statement we are told that 3s = 6l so l = s

2
.

The area of an equilateral triangle (given the length of its side) is given by

Aequilateral triangle =

√
3

4
s2 . (198)

We are also told that the area of the triangle is two so using the above equation and solving

for s we find s = 2
(
2
3

)1/2
and thus that l =

(
2
3

)1/2
. Now the area of a regular hexagon with

a side length l is given by

Aregular hexagon =
3
√
3

2
l2 , (199)

when we put in what we know for l we get that the hexagon has an area of three.

Problem 25 (the cost of postage)

The best way to solve this problem is to describe the cost function using inequalities and
then find which of the given functions equals this description. From the problem the cost as
a function of weight is given by

Cost(W ) =







6 0 < W ≤ 1
12 1 < W ≤ 2
18 2 < W ≤ 3
· · ·

If we take W = 1 our cost is six cents since [1] = 1 we can drop from consideration the
solution (C) (which would give a cost of 0) and (D) (which would give a cost of 12 cents). If
we take W = 1/2 we can drop from consideration (A) (which would give a cost of 3 cents)
and (B) (which would give a cost of 0). Since we have eliminated all of the others the answer
must be (E). Note that for W = 1/2 (E) gives a cost of six cents as it must.

Problem 26

To satisfy the first graph we must have one of the two products be zero or

x+ y − 5 = 0 or 2x− 3y + 5 = 0 .

The same type of condition hold to satisfy the second graph. To satisfy both graphs at the
same time we then must find (x, y) pairs that make one of the factors in each graph vanish
or

x+ y − 5 = 0 and x− y + 1 = 0 or (x, y) = (2, 3)

x+ y − 5 = 0 and 3x+ 2y − 12 = 0 or (x, y) = (2, 3)

2x− 3y + 5 = 0 and x− y + 1 = 0 or (x, y) = (2, 3)

2x− 3y + 5 = 0 and 3x+ 2y − 12 = 0 or (x, y) = (2, 3) .
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As each of these pairs is satisfied by only one point.

Problem 27

Using Equation 16 we have that

r =
K
1
2
K

= 2 .

Problem 28

We first recall the facts that the medians of a triangle meet at a point (called the centroid)
and that this point divides each median into two segments in the ratio of 1:2. If we draw
the triangle as specified and let the centroid be denoted by O, the median of the side BC
be denoted by M , and the median of the side AC be denoted by N . Then to use the fact
that the medians are divided at the centroid into two segments in the ratio of 1:2 let the
length OM be denoted by u (so that OA is of length 2u) and the length ON be denoted
by v (so that OB is of length 2v). Then since the medians intersect at right angles by the
Pythagorean theorem we have that for the right triangle BOM that

BM 2 = OM2 +OB2 ,

or (
7

2

)2

= u2 + 4v2 .

For the right triangle AON we have that

AN 2 = AO2 +ON2 ,

or
32 = 4u2 + v2 .

These give two equations for the two unknowns u and v. Solving them we find u2 = 19
12

and
v2 = 8

3
. To determine the length of AB use the right triangle AOB and the Pythagorean

theorem as
AB2 = BO2 +OA2 or AB2 = 4v2 + 4u2 .

Using what we know about u and v we get that AB2 = 17.

Problem 29

If we measure angles clockwise starting at 12:00 (directly north looking at the fact of the
clock) when we are just at 10:00 o’clock the minute hand is at the angular position of O and
the hour hand is at the angular position

10

(
2π

12

)

=
5π

3
.
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Let the current time be t minutes past 10:00 o’clock. Then for 0 ≤ t ≤ 60 the angular
position of the minute and the hour hand is given by

θmin(t) =
2π

60
t

θhr(t) =
5π

3
+

2π

12(60)
t .

We are told that
θmin(t+ 6) + π = θhr(t− 3) .

Using the expressions above this becomes

2π

60
(t+ 6) + π =

5π

3
+

2π

12(60)
(t− 3) .

if we solve for t we find t = 15. Thus the time is 10:15.

Problem 30

Drop a perpendicular from the point D to the segment AB and call the point where this
perpendicular intersects AB the point D′. Drop a perpendicular from the point C to the
segment AB and call the point where this perpendicular intersects AB the point C ′. Then
since AB and CD are parallel we have that DD′ = CC ′. Lets call that distance h. Define
the angle at B to be θ. Then again, as AB is parallel to CD we have that ∠C = π − θ.
From the problem we are told that ∠D = 2θ and again using parallel lines we have that
∠A = π −∠D = π− 2θ. Thus we have all angles of the quadrilateral in terms of θ. We can
write the length AB as

AB = AD′ +D′C ′ + C ′B .

Using trigonometry we can write the above as

AB = a cos(π − 2θ) + b+
h

tan(θ)

= a(cos(π) cos(2θ) + sin(π) sin(2θ)) + b+
1

tan(θ)
(a sin(π − 2θ))

= −a cos(2θ) + b+
a

tan(θ)
(sin(π) cos(2θ)− cos(π) sin(2θ))

= −a cos(2θ) + b+ a
sin(2θ)

tan(θ)
= −a(cos2(θ)− sin2(θ)) + b+

2a sin(θ) cos(θ)

tan(θ)

= −a(cos2(θ)− sin2(θ)) + b+ 2a cos2(θ) = a sin2(θ) + b+ a cos2(θ) = a+ b .

Problem 31

The largest digit sum we can get from a five digit number will happen when each digit is a
nine where we would get the digit sum of 5×9 = 45. Because we are told that the digit sum
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Number Alternating Digit Sum
79999 7-9+9-9+9=7
97999 9-7+9-9+9=11
99799 9-9+7-9+9=7
99979 9-9+9-7+9=11
99997 9-9+9-9+7=7
88999 8-8+9-9+9=9
89899 8-9+8-9+9=7
89989 8-9+9-8+9=9
89998 8-9+9-9+8=7
98899 9-8+8-9+9=9
98989 9-8+9-8+9=11
98998 9-8+9-9+8=9
99889 9-9+8-8+9=9
99898 9-9+8-9+8=7
99988 9-9+9-8+8=9

Table 6: The five digits numbers that have their digits sum to 43.

of our five digit number is 43 we know that some of the digits must be less than nine. We
can get a sum of 43 by replacing one of the of the nines in an all nine digit number with a
seven or by replacing two nines with two eights. For each of these numbers we will want to
determine if it is divisible by eleven or not. To determine if a number is divisible by eleven
we will use the rule on Page 9. Thus we have the numbers given in Table 6. From that
table we see that from 15 numbers only the numbers 97999, 99979, and 98989 are divisible
by eleven. This gives a probability of 3

15
= 1

5
.

Problem 32

Draw a circle of radius r in an x-y plane and assume that A starts going counterclockwise
from the point (r, 0) and B starts going clockwise from the point (−r, 0). Let vA and vB be
the velocities of A and B respectively. Then if at time t1 they first meet after B has gone
100 yards this means that

vAt1 =
1

2
C − 100

vBt1 = 100 ,

where C is the circumference of the circle. If they meet again at time t2 or 60 yards before
A has completed one lap we have

vAt2 = C − 60

vBt2 =
1

2
C + 60 .
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If we take the ratios of the first two equations and the second two equations to get expressions
for vA

vB
we get

vA
vB

=
1
2
C − 100

100
=

C − 60
1
2
C + 60

.

If we solve this last equation for C we find C = 480.

Problem 33

We will solve this problem by finding an expression for the sum Sk of the digits 1, 2, . . . , 10
k−

2, 10k−1 by induction. Then the value of the expression we derive for k = 4 is one less than
the number we seek. k = 1 then we want to sum the digits

1, 2, 3, 4, 5, 6, 7, 8, 9 .

This is given by

S1 =
1

2
(9)(10) = 45 .

If k = 2 then we want to sum the digits of the numbers in the range

1− 9 , 10− 19 , 20− 29 , . . . , 80− 89 , 90− 99 .

Note that there are ten groups that will have their ones digits sum to the same S1 = 45
we computed above and nine groups that have their tens digits constant in each of the ten
ranges above. In each group the tens digit is repeated ten times. This gives

S2 = 10S1 + 10(1) + 10(2) + · · ·+ 10(8) + 10(9)

= 10S1 + 10(1 + 2 + · · ·+ 8 + 9) = 10S1 + 10S1 = 20S1 = 900 .

If k = 3 then we want to sum the digits of the numbers in the range

1− 99 , 100− 199 , 200− 299 , . . . , 800− 899 , 900− 999 .

Again there are ten groups that will have their tens and ones digits sum to the same S2

we computed above and nine groups that have their hundreds digits constant for all 100
numbers in each of the ten ranges above. This gives

S3 = 10S2 + 102S1 = 10(900) + 100(45) = 13500 .

The pattern for general k seems now clear

Sk = 10Sk−1 + 10k−1S1 = 10Sk−1 + 45 · 10k−1 .

Thus we want to evaluate

S4 = 10S3 + 45(1000) = 180000 .

The true sum we want is one larger than this or 180001.
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Problem 34

Let n be the integer we seek. Then the conditions of the problem imply that

13511 = an + b

13903 = cn + b

14589 = dn+ b ,

for some b such that 0 ≤ b ≤ n− 1. Subtracting pairs of these equations we get

13903− 13511 = 392 = (c− a)n (200)

14589− 13905 = 686 = (d− a)n (201)

14589− 13511 = 1078 = (d− a)n . (202)

Note that if from Equation 202 we subtract Equation 200 we get

1078− 392 = 686 = [(d− a)− (c− a)]n = (d− c)n ,

which is the same as Equation 201. Thus there are only two unique equations in the above set
of three. We next factor the numbers on the left-hand-side of Equation 200 and Equation 201
as

392 = 2(196) = 22(98) = 23(49) = 2372

686 = 2(343) = 2(7)(49) = 2 · 73 .
to make n as large as possible we should take n the greatest common denominator of these
two numbers or n = 2 · 72 = 98. Then we have

393 = 22(98) = 4(98)

686 = 7(98) .

Thus c− a = 4 and d− c = 7 but these relationships are not needed in this problem.

Problem 35

From the problem statement we must have the pension P given by P = C
√
T for some

constant C and T the variable representing the years of service (i.e. time). The given two
conditions on the pension imply that

C
√
T + a = C

√
T + p (203)

C
√
T + b = C

√
T + q . (204)

We want to derive an expression for C
√
T . The above is a system of two equations in the

two unknowns C and T and thus should have a solution we can find. To find it we first write
the two equations as

√
T + a =

√
T +

p

C√
T + b =

√
T +

q

C
.
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If we square each of these we get

T + a = T +
2p

C

√
T +

p2

C2
or a =

2p

C

√
T +

p2

C2
(205)

T + b = T +
2q

C

√
T +

q2

C2
or b =

2q

C

√
T +

q2

C2
. (206)

We solve for
√
T in Equation 205 to get

√
T =

Ca

2p
− p

2C
. (207)

Put this in Equation 206 to get

b =
2q

C

(
Ca

2p
− p

2C

)

+
q2

C2
=
qa

p
+
q(q − p)

C2
.

Solving for C2 in the above we get

C2 =
qp(q − p)

bp− aq
.

Thus taking the positive square root we have

C =

√

qp(q − p)√
bp− aq

.

Next we use Equation 206 to get and expression for
√
T

√
T =

a

2p

√

qp(q − p)√
bp− aq

− p

2

√
bp− aq

√

pq(q − p)
.

The pension (which is C
√
T ) is then given by

C
√
T =

c2a

2p
− p

2
=

aq(q − p)

2(bp− aq)
− p(bp− aq)

2(bp− aq)
=

aq2 − bp2

2(bp− aq)
.

As another solution method it might have been faster to take each of the five given expressions
for the pension and verify that they satisfy both of Equations 203 and 204. That approach
might have been faster than the algebraic one given here.
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The 1971 Examination

Problem 1

Write the given product as

21258 = 285824 = (2 · 5)824 = 108 · 16 ,

this is the number 16 followed by 8 zeros giving a total number of digits of 10.

Problem 2

From the given problem we have that the fraction f
bc

is the number of bricks laid per day
per man (or the rate of brick laying). Then to lay a total of b bricks with c men will take x
days where x must satisfy

xc

(
f

bc

)

= b so x =
b2

f
,

when we solve for x.

Problem 3

The slope of the line between the two points is

m =
8− 0

0 + 4
= 2 .

Thus the line is y = 2x+ 8. If we set y = −4 and solve for x we get x = −12
2
= −6.

Problem 4

Let x be the amount of money the boy scouts started with. Then from what we are told

x

(

1 +
0.05

12

)2

= 255.31 .

Solving for x gives x = 253.1956. Thus the interest credited is then 255.31− x = 2.114359
which gives 11 cents.
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Problem 6

Note that (A) and (B) must be true since “regular” multiplication has these properties. Note
that for (C) we have 1

2
⋆ a = a and so 1

2
is the multiplicative inverse. For (D) to be true we

must be able to find an inverse for every element a in S. If we denote a−1 by this inverse we
must have a−1 ⋆ a = 1

2
and thus

2(a−1)a =
1

2
so a−1 =

1

4a
.

Thus the inverse of a under the operation ⋆ exists and is given by 1
4a

for all a > 0. Note that
in (E) we have

a ⋆

(
1

2a

)

= 2a

(
1

2a

)

= 1 .

But 1 is not the multiplicative inverse for this operation, since a ⋆ 1 = 2a 6= a. Thus the
element 1

2a
is not what gives us the identity (which is 1

2
for this product) but 1

4a
is.

Problem 7

We can write the given expression as

2−(2k+1) − 2−(2k−1) + 2−2k = 2−2k(2−1 − 2 + 1) = 2−2k(2−1 − 1) = 2−2k(−2−1) = −2−(2k+1) .

Problem 8

Write the inequality as
6x2 + 5x− 4 < 0 .

The roots of the left-hand-side are given by the quadratic equation where we find

x =
−5 ±

√

25− 4(6)(−4)

2(6)
,

which simplify to −4
3
and 1

2
. Now if x < −4

3
or x > 1

2
the left-hand-side of the original

inequality is positive. If x is between these two limits (i.e. −4
3
< x < 1

2
) then the left-hand-

side is negative and the desired inequality is satisfied.

Problem 10

In this universe a person can only have blond or brunette hair and blue or brown eyes. Thus
all 50 people must be a member of one and only one of the following sets

Blond ∩ Blue ,Blond ∩ Brown ,Brunette ∩ Blue ,Brunette ∩ Brown .

366



Since there are 31 brunette people there must be 50 − 31 = 19 blond people. Since there
are 18 brown eyed people there must be 50 − 18 = 32 blue eyed people. Since there are 14
blond haired and blue eyed people there must be 19− 14 = 5 blond haired and brown eyed
people. Also since there are 14 blond haired and blue eyed people there must be 32−14 = 18
brunette and blue eyed people. Since we have the number of members in each of the above
sets but the one that we want the number of brunette and brown eyed people must be

50− 14− 5− 18 = 13 .

Problem 11

Note that both a and b must be larger than the largest digit in either of 47 or 74 which is
seven. The number 47 in base a means that

47a = 4a+ 7 ,

and the number 74 in base b means that

74b = 7b+ 4 .

As these numbers are the same we can subtract them to get zero or the relationship

4a− 7b+ 3 = 0 ,

or solving for a we get

a =
1

4
(7b− 3) .

We now need to find the two smallest integers a and b such that the above equation hold
true. Starting with b ∈ {8, 9, 10, 11, 12, 13, 14, 15} using the above equation to solve for a
we would find that the smallest value of b that gives a as an integer is b = 9 where we get
a = 15. We can check that we can’t get two smaller values by solving for b to get

b =
1

7
(4a + 3) .

When a ∈ {8, 9, 10, 11, 12, 13, 14, 15} the smallest value of a such that b > 7 is again given
by a = 15. Thus a+ b = 24 which is XXIV as a Roman numeral.

Problem 12

We first seek to find the number N that when we divide 69, 90, and 125 by that number we
get the same remainder. As 90 is divisible by two and three while at least one other number
in our list is not, we know that N 6= 2 and N 6= 3. As

69 mod 4 = 1 ,

while
90 mod 4 = 2 ,
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so that we know N 6= 4. As 125 is divisible by five and 69 is not we know that N 6= 5. As

69 mod 6 = 3

90 mod 6 = 4 ,

we know N 6= 6. For N = 7 note that

69 mod 7 = 6

90 mod 7 = 6

125 mod 7 = 6 ,

and for this value of N we have 81 mod 7 = 4. The value of four is such that 4 mod 7 = 4.

Problem 13

Write the expression we want to evaluate as

(1 + 0.0025)10 = (1 + 2.510−3)10 .

Then using the binomial theorem

(a+ b)n =
n∑

k=0

(
n

k

)

akbn−k ,

we can write the expression we are attempting to evaluate as

(1 + 2.5 10−3)10 = (2.5 10−3 + 1)10 =

10∑

k=0

(
10

k

)

(2.5 10−3)k

=

10∑

k=0

(
10

k

)(
5

2

)k

10−3k

= 1 + 10

(
5

2

)

10−3 +

(
10

2

)(
5

2

)2

10−6 +

(
10

3

)(
5

2

)3

10−9 + . . .

≈ 1 + 25 10−3 + 45

(
25

4

)

10−6 + 120

(
125

8

)

10−9

= 1 + 0.025 + c210
−6 + c310

−9 .

Because of their values the first and second terms won’t contribute to the digit in the fifth
decimal place. We next evaluate the two “coefficients” c2 and c3. For c2 we have

c2 = 45

(
24 + 1

4

)

= 45(6.25) = 281.25 ,

while for c3 we have

c3 = 30

(
125

2

)

= 15(125) = 1875 .

From these numbers the contribution of the third and fourth terms in the above sum are
then given by

0.00028125 and 0.000001875 .

The only nonzero digit in the fifth decimal place comes from the first number and has the
value eight.
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Problem 14

Factor the given expression as follows

248 − 1 = (224 − 1)(224 +1) = (212 − 1)(212 +1)(224 +1) = (26 − 1)(26 +1)(212 +1)(224 +1) .

The values of two of the products in the above expansion namely 26−1 = 63 and 26+1 = 65
are between 60 and 70 we have found the requested numbers.

Problem 15 (tipping the aquarium)

We are told that the height of the aquarium is 8 inches and the width of the aquarium is 10
inches. Let the depth of the aquarium be denoted as d and the unknown height of the water
(when the aquarium is flat) as h. Then the volume of the water when the aquarium is flat is

10hd .

Next we tip the aquarium forward slowly and then stop when the water just touches the top
and would spill out if we tipped forward any more. When viewed from the side the shape of
the water in that configuration has a triangular base with a height the full 10 inches of the
width. One length of the triangular base is the 8 inch height and the water goes 3

4
up the

bottom the volume of the water in this configuration is

height× area of triangular base = 10

(
1

2

(
3

4
d

)

(8)

)

= 30d .

Setting this equal to the expression above we can cancel d and get h = 3.

Problem 16

The correct average of the thirty-five numbers would be given by x̄ = 1
35

∑35
i=1 xi. Then from

what we are told the student did the average they computed would be given by

x̄′ =
1

36

[
35∑

i=1

xi + x̄

]

=
1

36
[35x̄+ x̄] = x̄ .

That is the student actually got the correct value for the average and the ratio is one.

Problem 17

Note that all answers are linear in n. This means that if we can determine the value of this
function (i.e. the maximum number of non-overlapping areas) for two values of n we can
find which of the given expressions is correct by observing if they give the known values on
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these two cases. For example when n = 1 the disk is split with 2 equally spaced radii (i.e. by
a diameter) the chord that will given the maximum number of non-overlapping areas is one
that does not go through the center and gives four areas. When n = 2 the disk is split into
four quadrants and (by observation) the maximal number of non-overlapping areas is when
the chord crosses through one point on an “up-down” radius and one point on a “right-left”
radius. Doing this will give seven areas. Evaluating each of the choices at n = 1 and n = 2
only the expression 3n+ 1 satisfies these two “base cases” and must be the right answer.

Problem 18 (a boat in a river)

Let vr and vb be the velocity of the river and boat respectively. We are told that vr = 3 and
that the length of each leg of the journey was four miles. Let td and tu be the time it takes to
go downstream/upstream. As equations the downstream and upstream journeys must then
satisfy

(vr + vb)td = 4 (208)

(vb − vr)tu = 4 . (209)

The total time takes one hour means that td + tu = 1. Using the fact that vr = 3 we get the
three equations

(3 + vb)td = 4

(vb − 3)tu = 4

td + tu = 1 .

in the three unknowns td, tu, and vb. Using the last equation in the other two we get

(3 + vb)(1− tu) = 4

(vb − 3)tu = 4 .

Thus from the last equation we get

tu =
4

vb − 3
.

Putting this into the first gives

(3 + vb)

(

1− 4

vb − 3

)

= 4 .

Simplifying this we get the quadratic

v2b − 8vb + 9 = 0 ,

which can be factored as

(vb − 9)(vb + 1) = 0 so vb = −1 or vb = 9 .

The velocity of the boat must be positive so the ratio requested is

vr + vb
vb − vr

=
3 + 9

9− 3
= 2 .
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Problem 19

The line y = mx+ 1 goes through the point (0, 1) and points either upwards or downwards
depending on the sign of m. The ellipse x2 + 4y2 = 1 can be written as

x2 +
y2
(
1
2

)2 = 1 ,

which shows that the ellipse goes through the points (1, 0),
(
0, 1

2

)
, (−1, 0) and

(
0,−1

2

)
.

Drawing this ellipse and drawing the line y = mx + 1 we see that if m < 0 the line could
intersect the ellipse at points in the first quadrant while if m > 0 the line could intersect the
ellipse at points in the second quadrant.

To find the locations x where these two curves intersect, put the given expression for y into
the equation for the ellipse to get

x2 + 4(mx+ 1)2 = 1 ,

or
(1 + 4m2)x2 + 8mx+ 3 = 0 .

Solving this with the quadratic equation we get

x =
−8m±

√

64m2 − 4(1 + 4m2)(3)

2(1 + 4m2)
=

−4m±
√
4m2 − 3

1 + 4m2
.

From this expression we will have zero, one, or two solutions depending on the value of
4m2 − 3. We will have only one intersection if 4m2 − 3 = 0 or m2 = 3

4
.

Problem 20 (the absolute value of h)

Method I: Solving the quadratic x2 + 2hx− 3 = 0 we get

x =
−2h±

√

4h2 − 4(−3)

2
= −h±

√
h2 + 3 .

Thus the sum of the two roots squared is given by

x2− + x2+ = (−h−
√
h2 + 3)2 + (−h +

√
h2 + 3)2

= (h +
√
h2 + 3)2 + (h−

√
h2 + 3)2

= h2 + 2h
√
h2 + 3 + h2 + 3 + h2 − 2h

√
h2 + 3 + h2 + 3

= 4h2 + 6 .

We are told this equals 10 which if we solve for h2 gives h2 = 1 or h = ±1. Thus |h| = 1.

Method II: From the form of the quadratic given in the problem the sum of the two roots
must take the form

x2− + x2+ = (3− 2hx+) + (3− 2hx−) = 6− 2h(x+ + x−) .

371



To evaluate this we recall that the two solutions to a quadratic

x2 + bx+ c = 0 ,

have roots that have their sum to −b and have their product of c. Thus the sum of x+ + x−
in this case must equal −2h and the above becomes

x2− + x2+ = 6 + 4h2 ,

the same result we had earlier. The rest of the solution is as above.

Problem 21

We start by solving each of the given expressions for x, y, and z respectively. For x we have

log3(log4(x)) = 1

log4(x) = 3

x = 43 = 64 .

For y we have

log4(log2(y)) = 1

log2(y) = 4

y = 24 = 16 .

For z we have

log2(log3(z)) = 1

log3(z) = 2

z = 32 = 9 .

Thus using these values we find x+ y + z = 89.

Problem 22

We start by expanding the product (1− w + w2)(1 + w − w2) as

(1− (w − w2))(1 + (w − w2)) = 1− (w − w2)2 = 1− (w2 − 2w3 + w4)

= 1− (w2 − 2 + w) = 3− w2 − w . (210)

In the above we have used the fact that w3 = 1. The solutions of the equation w3 = 1 are
the numbers

w = e
2πi
3

n for n = 0, 1, 2 .
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Since we are told that w is imaginary we know that n 6= 0 since that would give the root
w = 1 (which is not imaginary). Note that

w2 = e
4πi
3

n = e
6πi−2πi

3
n = e

6πi
3

ne−
2πi
3

n = w̄ ,

the complex conjugate of w. Thus the expression we want to simplify in Equation 210 above
is given by

3− w̄ − w = 3− (w + w̄) .

If n = 1 then we have w = w1 = e
2πi
3 and w̄ = e−

2πi
3 so that in this case we get

3− 2 cos

(
2π

3

)

= 3− 2

(

−1

2

)

= 4 .

If n = 2 then we have w = w2 = e
4πi
3 and w̄ = e−

4πi
3 so that in this case we get

3− 2 cos

(
4π

3

)

= 3− 2

(

−1

2

)

= 4 ,

the same value.

Problem 23 (two teams)

Let pn,m be the probability that A wins the series of games given that A needs n wins and
B needs m wins to win the series. Let p be the probability that A wins a single game when
playing against B (here we are told that p = 1

2
). Conditioning on the outcome of the next

game gives
pn,m = ppn−1,m + (1− p)pn,m−1 .

Using the above we desire to compute p2,3. Some simple boundary cases are

pn,0 = 0

p0,m = 1

p1,1 = p =
1

2
.

Using these we can compute

p1,2 = pp0,2 + (1− p)p1,1 =
1

2
(1) +

1

2

(
1

2

)

=
3

4

p2,1 = pp1,1 + (1− p)p2,0 =
1

2

(
1

2

)

+
1

2
(0) =

1

4

p2,2 = pp1,2 + (1− p)p2,1 =
1

2

(
3

4

)

+
1

2

(
1

4

)

=
1

2
.

With the above values we now compute the probability of interest

p2,3 = pp1,3 + (1− p)p2,2 =
1

2

(
1

2
p0,3 +

1

2
p1,2

)

+
1

2

(
1

2

)

=
1

2

(
1

2
(1) +

1

2

(
3

4

))

+
1

4
=

1

2
+

3

16
=

11

16
.

Thus the odds for A to win are 11 to 5.

373



Problem 24 (counting Pascal’s triangle)

Row n has n elements with two (the first and the last) that have the value one and so n− 2
non-ones. The number of non-ones up to and including row n is then

n∑

k=2

(k − 2) =

n∑

k=3

(k − 2) =

n−2∑

k=1

=
1

2
(n− 1)(n− 2) .

The number of ones up to and including row n is then

1 + 2 + 2 + · · ·+ 2 = 1 + 2(n− 1) = 2n− 1 .

Thus the quotient of the number of non-ones to the number of ones is given by

(n− 1)(n− 2)

2(2n− 1)
=
n2 − 3n+ 2

4n− 2
.

Problem 25

Let f and b be the fathers and boys age respectfully. Then the problem states that

100f + b− (f − b) = 4289 ,

or
99f + 2b = 4289 .

As 4289 = 43(99) + 32 lets write f = f̂ + 43 to get

99f̂ + 2b = 32 .

One solution to the above is f̂ = 0 and b = 16. Then one solution to the original equation is
f = 43 and b = 16. Using this information we have that all solutions to the original equation
are given by

f = 43− 2t

b = 16 + 99t ,

for t an integer. We can verify that these expressions are solutions as

99(43− 2t) + 2(16 + 99t) = 4289 ,

as required. From the expression for b given above we see that if t ≥ 1 the boy will not be a
teenage (if t < 0 his age is negative). The only value of t that does not give a contradiction
is when t = 0. In that case we find f + b = 59.

374



Problem 26

Draw a line through F and parallel to AE. Let the point of intersection of this line with the
segment BC be denoted F ′. Then triangles BF ′F is similar to BEG and thus we have

BG

BE
=
BF

BF ′ =
2BG

BF ′ .

Thus canceling BG from both sides we have

1

BE
=

2

BF ′ ,

or BF ′ = 2BE. Now as BF ′ = BE + EF ′ we get that EF ′ = BE.

Now triangle AEC is similar to FF ′C and thus

AC

EC
=
FC

F ′C
or

3AF

F ′C + EF ′ =
2AF

F ′C
.

In this last equation we cancel AF from both sides we get

3F ′C = 2(F ′C + EF ′) or F ′C = 2EF ′ .

Using this we can compute EC as

EC = EF ′ + F ′C = 3EF ′ ,

and since BE = EF ′ so the point E divides the side in the ratio of 1:3.

Problem 27

If we let r, b, and w be the number of red, blue, and white chips respectively then we are
told that

b ≥ 1

2
w (211)

b ≤ 1

3
r (212)

w + b ≥ 55 . (213)

If we consider the w-b plane then Equation 211 and Equation 213 place constraints on how
small b can be for a given value of w. Thus in the b-w space we draw the lines b = 1

2
w and

b = 55 − w. These two lines form a “V” in the b-w space such that the value of b must be
above this ’V” for any given value of w. These two lines have their vertex (i.e. intersect) at
the point

(w, b) =

(
110

3
,
55

3

)

= (36.66, 18.33) .

This is the location of the smallest value that b could be. As r, b, and w must be integers
we can have w ∈ {36, 37}. If w = 36 then b ≥ 55 − w = 19. If w = 37 then b ≥ 1

2
w = 18.5.

Thus the smallest b can be in each case is 19. Then using Equation 212 the smallest r can
be is 3b = 57.
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Problem 28

When we divide the triangle into n pieces with n − 1 parallel lines we take the original
triangles height of h and cut it into segments of length h

n
. If we envision the base of the

triangle “at the bottom” and of length b then each parallel line in the triangle is smaller
than the one before it by the fraction 1

n
b. That is the base has a length b, the parallel line

above this one is of length
(
n−1
n

)
b, the parallel line above that one is of length

(
n−2
n

)
b, etc.

Since we are told that we have n− 1 = 9 parallel lines we have n = 10 and the first parallel
line above the base has a length 9

10
b and a height of h

10
. The area bounded by the base at

the bottom and the first parallel line is a trapezoid and thus has an area of “one half times
the height times the sum of the bases” or

1

2

(
h

10

)(

b+
9

10
b

)

.

As we are told this equals 38 we can solve for 1
2
bh (the area of the original triangle) to get

1

2
bh = 200 .

Problem 29

We have
n∏

k=1

ak =
n∏

k=1

10k/11 = 10
1
11

∑n
i=1 k = 10

1
11(

n(n+1)
2 ) .

If we want this larger than 100000 = 105 we must have

n(n+ 1)

22
> 5 ,

or
n2 + n− 110 > 0 .

The roots of the quadratic on the left-hand-side are

n =
−1±

√

12 + 4(110)

2
=

−1±
√
441

2
=

−1 ± 21

2
.

The only positive value root is n = 10. Thus we need to take n > 10 or n ≥ 11.

Problem 30

Now as f35 = f5 we must have f34 = f4. To show this is true we assume that it is not i.e.
that is f34 6= f4 then f35 = f1(f34) 6= f1(f4) = f5 which is a contradiction on what we are
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told. In the same way we can conclude that

f33 = f3

f32 = f2

f31 = f1

f30 = x .

Thus one way to solve this problem it to consider the given expressions for f28 and from
them compute f30 and see for which of the choices we get x for f30.

For answer A if f28 = x then f29 = f1(x) and then f30 = f1(f1(x)) which one can compute
is not equal to x. Thus A cannot be true.

For answer B if f28 =
1
x
then

f29 =
2
(
1
x

)
− 1

(
1
x

)
+ 1

=
2− x

1 + x
,

and

f30 =
4−2x
1+x

− 1
2−x
1+x

+ 1
= 1− x 6= x .

Thus B cannot be true.

For answer C if f28 =
x−1
x

then

f29 =
2x−2
x

− 1
x−1
x

+ 1
=

x− 2

2x− 1
,

and

f30 =
2x−4
2x−1

− 1
x−2
2x−1

+ 1
=

1

1− x
6= x .

Thus C cannot be true.

For answer D if f28 =
1

1−x
then

f29 =
2

1−x
− 1

1
1−x

+ 1
=

1 + x

2− x
,

and

f30 =
2+2x
2−x

− 1
1+x
2−x

+ 1
= x ,

when we simplify. Thus answer D is the correct one.
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Problem 31

Let the center of the circle be denoted the point O. Then the length CD is the length of one
side of the triangle △COD. If we knew the value of the angle ∠COD (or its cosign) then
we could use the law of cosigns to compute the length of CD since we know the value of the
lengths of the adjacent two sides CO = DO = 2 (as the radius of the given circle is two).
Given this we will work to compute cos(∠COD).

Now as the radius of this circle is of length two we have that the two triangles △ABO and
△BCO both have two sides of length two and one side of length one. Since we know all
three sides of these triangles we can use the law of cosigns to compute the cosign of the
angles ∠AOB = ∠BOC. We have

cos(∠AOB) =
12 − 22 − 22

−2(2)(2)
=

7

8
.

Next note that we have

π = 2∠AOB + ∠COD so ∠COD = π − 2∠AOB .

The cosign that we want to evaluate is then given by

cos(∠COD) = cos(π − 2∠AOB) = − cos(2∠AOB) .

Using the double angle formula for cosign

cos(2θ) = cos(θ)2 − sin(θ)2 = 2 cos2(θ)− 1 , (214)

we get that

cos(∠COD) = −(2 cos2(∠AOB)− 1) = −17

32
,

when we use the known value for cos(∠AOB). Using this with the law of cosigns we can
compute the length CD as

CD2 = 22 + 22 − 2(2)(2) cos(∠COD) =
49

4
.

Thus CD = 7
2
.

Problem 32

Let r = 2−1/32 and then the product we want to evaluate is

(1 + r)(1 + r2)(1 + r4)(1 + r8)(1 + r16) .

Consider just multiplying two factors in the above product

(1 + r)(1 + r2) = 1 + r2 + r + r3 =
3∑

k=0

rk .
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What about multiplying three factors in the above product

(1 + r)(1 + r2)(1 + r4) =

(
3∑

k=0

rk

)

(1 + r4) =
3∑

k=0

rk +
3∑

k=0

rk+4 =
7∑

k=0

rk .

In the same way we compute the product of the first four and five factors to be

15∑

k=0

rk and
31∑

k=0

rk .

The above can be evaluated using the geometric series to get

1− r31+1

1− r
=

1− r32

1− r
=

1

2(1− 2−1/32)
.

Problem 33

A geometric progression takes the following form

a0 , a0r , a0r
2 , a0r

3 , . . . ,

so the product of n of its terms is

P =

n−1∏

k=0

aor
k = an0

n−1∏

k=0

rk = an0r
∑n−1

k=0 = an0r
n(n−1)

2 .

The sum of n of its terms is

S =
n−1∑

k=0

a0r
k = a0

1− rn

1− r
,

and the sum of n reciprocals of its terms is

S ′ =

n−1∑

k=0

1

a0
r−k =

1

a0

(
1− r−n

1− r−1

)

=
1

a0

(
rn − 1

rn − rn−1

)

==
1

a0

(
rn − 1

r − 1

)
1

rn−1
.

Note that we can write the above as

S ′ =
1

a0

(
S

a0

)
1

rn−1
so

S ′

S
=

1

a20

1

rn−1
(215)

Also note that P can be written

P =
[

a0r
1
2
(n−1)

]n

=
[
a20r

n−1
]n

2 . (216)

Solving for a20r
n−1 in Equation 215 we get

a20r
n−1 =

S

S ′ .

If we put this into Equation 216 we get

P =

(
S

S ′

)n/2

.
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Problem 34

Note: I’m not sure why this is wrong. If anyone sees what is wrong with this approach
please contact me.

The minute hand has a position given by θminute hand = 2π
(

t
69

)
with the angle “zero” be

when the minute hand points north (to the 12 on the clock). The worker work eight hours
according to this slow clock. This means the minute hand cycles eight times and each cycle
is 69 minutes so 8(69) = 552 minutes must pass This is

552

60
= 9.2 ,

hours. Thus an extra 1.2 hour of work. At time-and-one half we would pay six dollars per
hour for a total payment of 1.2(6) = 7.2 dollars. The “extra” pay would then be

7.2− 1.2(4) = 2.4 ,

dollars.

Problem 35

It helps with this problem to draw a right angle with two circles (one large and one small)
that are tangent to the rays emanating from the right angle. The smaller circle is “closer
to the corner” than the larger one. In my picture I had the right angle in the top-left of
my drawing and in the larger circle I drew two radii: one pointing upwards (and touching
the tangent point of the right angle) and one pointing to the center of the small circle (and
touching the tangent point between the two circles). In the smaller circle I drew one radius
pointing upwards (and touching the tangent point of the right angle).

We will now derive the radius of the larger circle in terms of the radius of the smaller circle.
Let the radius of the larger circle be denoted as R0 and the radius of the smaller circle be
denoted as R1. Notice that as measured along the radius that points upwards (North in the
picture) R0 is equal to the projection of the line segment that points from the center of the
larger circle to the center of the little circle plus the radius R1 of the smaller circle. Since
the angle between the two radii of the larger circle is π

4
we have that

R0 = (R0 +R1) cos
(π

4

)

+R1 =
1√
2
(R0 +R1) +R1 .

If we multiply by
√
2 and then solve for R1 we get

√
2R0 = R0 +R1 +

√
2R1 so R1 =

√
2− 1√
2 + 1

R0 .

We can simply the above expression by removing all square roots from the denominator as

R1 =

√
2− 1√
2 + 1

(√
2− 1√
2− 1

)

R0 =
(
√
2− 1)2

2− 1
R0 = (

√
2− 1)2R0 .
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I doing this we have shown the identity (which we will use later)

1√
2 + 1

=
√
2− 1 .

As the above holds for just two circles we can repeat this process an infinite number of times.
When we do that we get that the kth circle has a radius given by Rk = (

√
2 − 1)2kR0 for

k = 0, 1, 2, · · · . The ratio we are asked to compute for this problem πR2
0 divided by the sum

∞∑

k=1

(
√
2− 1)4kπR2

0 = R2
0π

(

(
√
2− 1)4

1− (
√
2− 1)4

)

.

Now as
(
√
2− 1)(

√
2 + 1) = 1 ,

if we multiply the top and bottom of this expression by (
√
2 + 1)4 we get

πR2
0

(
1

(
√
2 + 1)4 − 1

)

= πR2
0

(
1

(2 + 2
√
2 + 1)2 − 1

)

= πR2
0

(
1

(3 + 2
√
2)2 − 1

)

= πR2
0

(
1

(9 + 12
√
2 + 8)2 − 1

)

= πR2
0

(
1

16 + 12
√
2

)

.

Which gives the answer C.
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The 1972 Examination

Problem 1

Lets check that for the given three sides that we have a2 + b2 = c2 as they must when they
are the sides of a right triangle. We have

• I: 32 + 42 = 52 is true. This is the most “common” right triangle.

• II: We have that 42 + 7.52 = 8.52 which is true.

• III: We have 72 + 242 = 49 + 576 = 625 = 252 and so we have another right triangle.

• IV : We have 3.52 + 4.52 = 32.5 6= 5.52 = 30.25 and thus this is not a right triangle.

Problem 2

Lets assume that we purchase the goods at a price g and sell the goods are a price s for a
profit of

s− g

g
= x so s = (1 + x)g . (217)

If the price of goods decreases and goes to 0.92g while the profit increase to x+0.1 then we
must have

s− 0.92g

0.92g
= x+ 0.1 ,

or
s = 0.92g + 0.92g(x+ 0.1) . (218)

If we put Equation 217 into the left-hand-side of the above to get

(1 + x)g = 0.92g + 0.92g(x+ 0.1) ,

which gives x = 0.15 when we cancel g and solve for x.

Problem 3

We write the given expression as

1

x2 − x
=

1

x(x− 1)
.

For the given value of x we have that

x− 1 =
1− i

√
3

2
− 2

2
=

−1− i
√
3

2
.
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Thus the denominator is given by

x(x− 1) =

(

1− i
√
3

2

)(

−1− i
√
3

2

)

=
−1 − i

√
3 + i

√
3− 3

4
= −1 .

Thus 1
x(x−1)

= −1.

Problem 4 (an equation on sets)

From the description the set X could be any of

{1, 2} , {1, 2, 3} , {1, 2, 4} , {1, 2, 5} , {1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 4, 5} , {1, 2, 3, 4, 5} ,

which gives eight solutions.

Problem 5

Consider the function y = x1/x then ln(y) = 1
x
ln(x). Taking the derivative of this we get

1

y

dy

dx
= − 1

x2
ln(x) +

1

x2
=

1

x2
[1− ln(x)] .

Now ln(x) > 1 if x > e = 2.718282 so dy
dx
< 0 i.e. y decreases as x increases and is larger

than the number e. Thus we have shown that

31/3 > 81/8 > 91/9 .

We now need to compare 21/2 and 31/3. Comparing each of these is the same as comparing
each number when raised to the sixth power or

23 = 8 vs. 32 = 9 .

As nine is larger than eight we have that 31/3 > 21/2. We now need to compare 21/2 to 81/8.
Raising both to the eighth power we get

24 = 16 vs. 8 ,

showing that 21/2 > 81/8. Thus the largest and next largest numbers in this list are

31/3 , 21/2 .

Problem 6

Write the given expression as
(3x)2 − 10(3x) + 9 = 0 ,
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which is a quadratic equation in 3x. Solving this quadratic we get

3x =
10±

√

100− 4(9)

2
=

10± 8

2
,

which has the two roots 1 and 9. If 3x = 1 then x = 0. If 3x = 9 then x = 2 thus there are
two values for x2 + 1 which are one and five.

Problem 7

In the problem statement we are told that yz : zx : xy = 1 : 2 : 3 so we have

yz

zx
=

1

2
or

y

x
=

1

2
,

and
zx

xy
=

2

3
or

z

y
=

2

3
.

From these we compute that x
yz

: y
zx

is

x
yz
y
zx

=
x2

y2
= 4 .

Problem 8

In the expression
|x− log(y)| = x+ log(y) ,

if we assume that x > log(y) we get

x− log(y) = x+ log(y) or log(y) = 0 ,

Thus y = 1. If we assume that x < log(y) we get

−x+ log(y) = x+ log(y) or x = 0 .

Our two solutions are x = 0 and y = 1 which can be written as

x(y − 1) .

Problem 9

Let P be the number of papers in each box initially and let E be the number of envelopes
in the box initially. Then for Ann we have

E = P − 50 ,
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since she uses all the envelopes with one sheet letters and in doing so uses all but 50 pieces
of paper. For Sue we have

P

3
= E − 50 ,

since she used all of the paper (into letters with three pages each) and in doing so used all
but 50 envelopes. These are two equations in the two unknowns E and P . Solving them we
get P = 150 and E = 100.

Problem 10

Recall that the function |x− 2| is the function |x| shifted to the right by two units. Thus we
can plot the function |x− 2| and then draw horizontal lines at y = 1 and y = 7. The region
of xs where the function |x − 2| is greater than y = 1 and less than y = 7 is the region we
seek. The region of x where 1 ≤ |x− 2| is given by

(−∞, 1] and [3,+∞) .

The region of x where |x− 2| ≤ 7 is given by

[−5,+9] .

The intersection of these two regions is

[−5, 1] or [3, 9] .

Problem 11

Solve for x2 in the second equation to get

x2 = 3y − 12 .

Put that into the first equation to get

3y − 12 + y2 − 16 = 0 .

This is a quadratic equation with the solutions y = −7 and y = 4. If we put the solution
y = −7 back into the expression for x2 above we find that x2 = 3(−7)− 12 = −33 and thus
for x so solve this x would have to be imaginary. Thus the only solution we have is y = 4.

Problem 12

Let E be the edge length in feet. Then we are told that

E3 = 6(12E)2 or E = 6(122) = 864 ,

feet.
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Problem 13

Draw a line through the point M parallel to AB (and CD) with the point of intersection
of AD denoted by R and the point of intersection of BC denoted by S. Then because M
bisects AE using the similar triangles AMR and AED we have that

RM =
1

2
DE =

5

2
.

Thus the length of MS is

MS = 12− 5

2
=

19

2
.

Now triangle MRP is similar to MSQ so we have

RM

MS
=
PM

MQ
so

PM

MQ
=

5/2

19/2
=

5

19
.

Problem 14

Using the “law of sines” if L is the side opposite the angle π
6
then we have

L

sin
(
π
6

) =
8

sin
(
π
4

) ,

or
2L = 8

√
2 so L = 4

√
2 .

Problem 15

Let B be the number of bricks needed to finish the full job. If b1 is the number of bricks per
hour that the first bricklayer can lay and b2 is the number of bricks per hour that the second
bricklayer can lay then we are told that

9b1 = B

10b2 = B .

We are told that when the two bricklayers work together their combined rate is actually ten
bricks per hour less than what it would be otherwise. This means that combined their rate
of bricklaying is

b1 + b2 − 10 .

When they work together they finish the job in five hours or

5(b1 + b2 − 10) = B .

This gives three equations and three unknowns for us to solve for. Using the first two
equations we can write bi in terms of B and put them into the last expression to get

5

(
B

9
+
B

10
− 10

)

= B .

Solving this for B gives B = 900.
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Problem 16

Let the two numbers between three and nine be given by x and y. So the sequence is

3 , x , y , 9 .

Since the first three numbers are in a geometric progression we can write them as

3 , 3r , 3r2 .

Since the last three numbers are in an arithmetic progression we can write them as

9− 2h , 9− h , 9 .

Equating the expressions for x and y give

x = 3r = 9− 2h

y = 3r2 = 9− h .

These are two equations for the two unknowns r and h. Solving the second equation for h
we get h = 9− 3r2. Putting this into the first equation gives

6r2 − 3r − 9 = 0 .

Solving this for r we get the two roots

{−1, 1.5} .

We can’t have r = −1 since in that case 3r = −3 is not between three and nine. Thus
r = 1.5 and the sequence is

3 , 3(1.5) , 3(1.51) , 9 ,

or
3 , 4.5 , 6.75 , 9 .

The sum requested is 4.5 + 6.75 = 11.25.

Problem 17

Consider a unit string cut at the point p where 0 ≤ p ≤ 1. We want to know the probability
that

max(p, 1− p) ≥ xmin(p, 1− p) or
max(p, 1− p)

min(p, 1− p)
≥ x .

The left-hand-side of this last expression is a function of p that we can evaluate for 0 ≤ p ≤ 1
where we find

max(p, 1− p)

min(p, 1− p)
=

{
1−p
p

0 ≤ p ≤ 1
2

p
1−p

1
2
≤ p ≤ 1

.
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This will be greater than x when

1− p

p
≥ x or p ≥ x

x+ 1
.

Thus the given probability that this happens is given by

1

(
1

x+ 1

)

+

(

1− x

x+ 1

)

1 =
2

x+ 1
,

when we simplify.

Problem 18

One way to solve this is the following. In the drawing I did for this problem I have the
trapezoids bottom given by AB (of length 2b) and the trapezoids top given by CD (of
length b), such that starting at A and walking counterclockwise around the trapezoid we
visit the vertices in the order ABCD. Next extend the nonparallel segments AD and BC
until the meet at a vertex (denoted O) forming a triangle that is cut into two pieces with the
two parallel lines AB and CD. Then because AB = 2b = 2DC we also have CB = CO and
AD = DO. This is just the theorem that “in a triangle parallel lines grow in proportion to
the distance they are from their common vertex” and can be proved with similar triangles.
Note that because of this the diagonals AC and BD both go from a vertex of the triangle
ABO to the midpoint of their opposite side and are thus “medians” of the triangle ABO.
Because they are medians a theorem about medians of a triangle state that their common
point of intersection divides them in the ratio of 2 : 1. This means that

EC =
1

3
AC =

11

3
.

Another way to solve this problem is to recognize that triangle ABE is similar to triangle
CDE. Thus

AB

CD
=
AE

CE
,

or
2b

b
=
AC − CE

CE
,

or

2 =
11− CE

CE
.

This later expression has the solution CE = 11
3
the same as we had before.

Problem 19

Note that when n = 1 the sum of n terms is one. The only expressions where this is true
are B and D. When n = 2 the sum of n terms is four. From B and D the only option that
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gives four is D. We can prove that the given expression in D is true in the following way.
Let sk be defined as the sum

sk = 1 + 2 + · · ·+ 2k−1 =
k−1∑

l=0

2l =
1− 2k

1− 2
= 2k − 1 .

Then the true sum we want to evaluate is given by

sn =

n∑

k=1

sk =

n∑

k=1

(2k − 1) =

n∑

k=1

2k − n

=
n∑

k=0

2k − 1− n =
1− 2n+1

1− 2
− 1− n = 2n+1 − 2− n .

Problem 20

For the tangent of x to be as given means that the length of the side opposite the angle x
must be proportional to 2ab while the side adjacent to the angle x must be proportional to
a2 − b2. Thus the hypotenuse h of this triangle is given by

h2 = (a2 − b2)2 + 4a2b2 = a4 − 2a2b2 + b4 + 4a2b2 = a4 + 2a2b2 + b4 = (a2 + b2)2 .

Thus h = a2 + b2. Using this we have that

sin(x) =
2ab

h
=

2ab

a2 + b2
.

Problem 21

Introduce a point P where the segment F intersects AD and a point Q where the segment
EC intersects AD. For this problem we want to evaluate the sum of the angles

A+B + C +D + E + F .

To do this, we note that the sum B +D are two of the angles in the triangle BPD and so

B +D = 180− ∠BPD .

Also the sum A + C are two of the angles in the triangle CQA and so

A+ C = 180− ∠CQA .

Next the sum E + F are two of the angles in the quadrilateral EFPQ and so

E + F = 360− ∠FPQ− ∠EQP .

Putting these three expressions together we get

B +D + A+ C + E + F = (180− ∠BPD) + (180− ∠CQA) + (360− ∠FPQ− ∠EQP )

= 720− (∠BPD + ∠FPQ)− (∠CQA− ∠EQP )

= 720− 180− 180 = 360 ,

using supplementary angles.
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Problem 22

If we let the roots be denoted x1 and x2 then putting them into the given expression means
that

x1q + r = −x31
x2q + r = −x32 .

This gives two equations for the two unknowns q and r. Solving the first equation for r we
have r = −x31 − x1q. Putting this into the second equation gives

(x2 − x1)q = −x32 + x31 so q = −x
3
2 − x31
x2 − x1

.

Note that since
x32 − x31 = (x2 − x1)(x

2
2 + x2x1 + x21) ,

we can write the above as
q = −(x22 + x1x2 + x21) .

If we let x2 = a+ ib and x1 = a− ib then we find the above is equal to

q = −((a + ib)2 + (a + ib)(a− ib) + (a− ib)2)

= −(a2 + 2iab− b2 + a2 + b2 + a2 − 2iab− b2)

= −(3a2 − b2) = b2 − 3a2 .

Problem 23

If we let O denote the center of a x−y coordinate system with the x axis lying along the base
of the figure and the y axis lying perpendicular to the x axis though O. Then by symmetry,
the x-coordinate of the center of the enclosing circle must lie on the y axis and thus has
coordinate xc = 0. Let the enclosing circle have a center of (0, yc) and a radius r. From the
drawing it looks like the point (0, 1) could be the circles center. Visually it looks like the
farthest two points from a center on the y axis would be the point (1, 0) and the point

(
1
2
, 2
)
.

The distance from the point (1, 0) to the point
(
1
2
, 2
)
is

√
5
2

= 1.118, while the distance from

(0, 1) to the point (1, 0) is
√
2 = 1.4142 >

√
5
2
. This means that we could find a circle with a

smaller radius by selecting a value for yc that is less than one and going exactly though the
two points (1, 0) and

(
1
2
, 2
)
. This gives two equations

(0− 1)2 + (y − 0)2 = r2

(

0− 1

2

)2

+ (y − 2)2 = r2 .

If we solve these we find that y = 13
16
< 1 and r2 = 425

16
so r = 5

√
17

16
.
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Problem 24

Let the distance, rate, and time be denoted by d, r, and t. Then the problem statement

d = rt (219)

d =

(

r +
1

2

)(
4

5
t

)

(220)

d =

(

r − 1

2

)(

t+
5

2

)

. (221)

These are three equations and three unknowns so we should be able to solve for each variable.
Now Equation 220 is

5

4
d =

(

r +
1

2

)

t or
5

4
d = rt+

t

2
.

Replacing rt with Equation 219 (i.e. d) we get

5

4
d = d+

t

2
so t =

d

2
.

Equation 221 is given by

d = rt+
5

2
r − 1

2
t− 5

4
.

Since rt = d we get

0 = 5r + t− 5

4
so r =

(5/4)− t

5
.

But we can write t in terms of d to get

r =
(5/4)− (d/2)

5
.

Now that we have r and t in terms of d we can write Equation 219 all in terms of d as

d =

(
(5/4)− (d/2)

5

)(
d

2

)

.

We can solve this for d to find d = 15 miles.

Problem 25

When placing the given quadrilateral into the circle we are told that the four corners of the
quadrilateral are on the circle. Breaking the quadrilateral up into four triangles by the using
the diagonals of the quadrilateral we get four triangles that have the same circle as their
circumcircle. Lets determine the length of the diagonal BD using the law of cosign. From
△BCD we have

BD2 = 392 + 522 − 2(39)(52) cos(C) = 4225− 4056 cos(C) .
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Using △BAD we have

BD2 = 252 + 602 − 2(25)(60) cos(A) = 4225 + 3000 cos(A) .

Since ∠A and ∠C are opposite angles of the inscribed quadrilateral we have that ∠A+∠C =
π and thus cos(A) = − cos(C). Using this we can use the above two equations to solve for
BD and cos(C). We find cos(C) = 0 so ∠C = π

2
and BD = 65. The diameter of the

circumcircle of any triangle is given by any one of the triangles sides divided by the sin of
the angle opposite that side. Thus the diameter of the circumcircle for this problem is given
by

BD

sin(C)
= BD = 65 .

Problem 27

Let the base of the triangle be the segment AB and the height is then the length of the
segment from the base AB to the point C. We are told that

1

2
AB · h = 64 . (222)

The information about the geometric mean is that

√
AB ·AC = 12 . (223)

Let the height intersect the line the base is on at the point D. Then since the height is a
leg of the right triangle △CAD we have that h = AC sin(A). If we put this expression for
h into Equation 222 we get

ABAC sin(A) = 128 .

Using Equation 223 we have that

sin(A) =
128

144
=

8

9
.

Problem 28

If we imaging placing the origin of a x-y Cartesian coordinate system on the center of the
checkerboard then the corners of the checkerboard are located at the locations (counterclock-
wise from North-East to South-West)

(4, 4) , (−4, 4) , (−4,−4) , (4,−4) .

On this x-y system we also place a circle with a radius r = 4. This means that the points
(x, y) that are inside (or on) the circle satisfy

x2 + y2 ≤ 16 .
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We want to then count the number of unit squares from the checkerboard that are fully inside
this circle. By symmetry the number of complete unit squares that are in the entire circle
will be four times the number of complete unit squares inside the first quadrant. There are
4×4 = 16 squares in the upper right corner of the checkerboard. Thus one technique to solve
this problem would be to determine which of these 16 squares have all four of their corners
inside the circle. We can simply the amount of calculations we have to do by working row
by row and then stopping when we find the first square that has one of its corners outside
the circle.

For the first row of squares the corner point that is farthest from the origin are

(1, 1) , (2, 1) , (3, 1) , (4, 1) .

Only the first three are inside the circle.

For the second row of squares the corner point that is farthest from the origin are

(1, 2) , (2, 2) , (3, 2) , (4, 2) .

Again the first three are inside the circle.

For the third row of squares the corner point that is farthest from the origin are

(1, 3) , (2, 3) , (3, 3) , (4, 3) .

Only the two are inside the circle.

For the fourth row of squares the corner point that is farthest from the origin are

(1, 4) , (2, 4) , (3, 4) , (4, 4) .

None of these points are inside the circle. Thus we have

3 + 3 + 2 = 8 ,

complete squares in the first quadrant and thus 4 × 8 = 32 total squares covered by the
circular disk.

Problem 29

From what we are given lets compute

1 +
3x+ x3

1 + 3x2
=

1 + 3x2 + 3x+ x3

1 + 3x2
=

(x+ 1)3

1 + 3x2

1− 3x+ x3

1 + 3x2
=

1 + 3x2 − 3x− x3

1 + 3x2
=

(1− x)3

1 + 3x2
.

Then we have

f

(
3x+ x3

1 + 3x2

)

= log

[
(x+ 1)3

1 + 3x2

(
1 + 3x2

(1− x)3

)]

= log

[(
1 + x

1− x

)3
]

= 3 log

[
1 + x

1− x

]

= 3f(x) .
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Problem 30

Let the point of fold on the line AB be denoted E and the point where the corner B
(when folded) intersects the AD segment be denoted by F . Then the triangle EBC and
EFC are the same i.e. they have equal side lengths and equal angles. Because of this
∠BEC = ∠FEC = π

2
− θ, EB = EF , and

∠AEF = π −
(π

2
− θ
)

−
(π

2
− θ
)

= 2θ .

Now from the angle θ in triangle ECB we have that

EB = L sin(θ) . (224)

From ∠AEF in triangle AEF we have that

6− EB = EF cos(2θ) = EB cos(2θ) .

This last expression means that

EB =
6

1 + cos(2θ)
=

6

1 + cos2(θ)− sin2(θ)
=

6

1 + cos2(θ)− (1− cos2(θ))

=
6

2 cos2(θ)
=

3

cos2(θ)
.

If we put this expression for EB into Equation 224 we get

3

cos2(θ)
= L sin(θ) or L = 3 sec2(θ) csc(θ) .
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Problem 31

Lets see if we can determine a pattern for the remainder of 2n when we divide by 13 and
then apply this pattern when n = 1000. Notice that

20 mod 13 = 1 mod 13 = 1

21 mod 13 = 2 mod 13 = 2

22 mod 13 = 4 mod 13 = 4

23 mod 13 = 8 mod 13 = 8

24 mod 13 = 16 mod 13 = 3

25 mod 13 = 32 mod 13 = 6

26 mod 13 = 64 mod 13 = 12

27 mod 13 = 128 mod 13 = 11

28 mod 13 = 256 mod 13 = 9

29 mod 13 = 512 mod 13 = 5

210 mod 13 = 1024 mod 13 = 10

211 mod 13 = 7

212 mod 13 = 1

213 mod 13 = 2

214 mod 13 = 4

215 mod 13 = 8

216 mod 13 = 3

217 mod 13 = 6 .

Thus it looks like the cycle of remainders above repeats (from one to seven) as the powers of
two change from 0 to 11. Notice that every 12 powers of two bring us back to a remainder
of one. If we next break 1000 into groups where the remainder cycles as above we have

1000 = 12(83) + 4 .

Thus the first 12(83) powers of two will have remainders that cycle through the above
numbers and end back with the value of one. We then need to count from the pattern of
remainders starting at one four more values. This gets us to the remainder of three. Thus

21000 mod 13 = 3 .

Problem 32

If we take E as the origin of a (x, y) coordinate system and let the center of the circle be
located at (x0, y0) then the three points A, B, and D must satisfy the equation of a circle or

(x− x0)
2 + (y − y0)

2 = r2 ,
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for some radius r. Putting in the known (x, y) values for the three points we get the equations

(6− x0)
2 + y20 = r2 (225)

(−2− x0)
2 + y20 = r2 (226)

x20 + (−3− y0)
2 = r2 . (227)

Taking the difference of Equations 225 and 226 we get

(6− x0)
2 − (2 + x0)

2 = 0 .

This gives a single equation for x0 which has the solution x0 = 2. Putting this into Equa-
tions 225 and 227 we get

16 + y20 = r2 (228)

4 + (3 + y0)
2 = r2 . (229)

Setting these two equations equal to each other gives

16 + y20 = 4 + 9 + 6y0 + y20 or y0 =
1

2
.

Now that we know (x0, y0) we can put these into Equation 225 to get r2 = 65
4
. Thus the

radius is the square root of this and the diameter is then
√
65.

Problem 33

Let our three digit number be abc with value 100a + 10b+ c and each digit is in the range
[0, 9]. Then

f =
100a+ 10b+ c

a+ b+ c
.

We want to minimize f . Lets first write f as

f = 1 +
9(11a+ b)

a+ b+ c
.

To minimize f we must then minimize the fraction in the above expression for f . As c only
appears in the denominator of the above fraction we can make f as small as possible by
taking c as large as possible. Thus we take c = 9 and we see to minimize

f = 1 +
9(11a+ b)

a+ b+ 9
.

We now write f as

f = 1 +
9(a+ b+ 9 + 10a− 9)

a+ b+ 9
= 1 + 9

(

1 +
10a− 9

a + b+ 9

)

= 10 +
9(10a− 9)

a + b+ 9
.

Now a 6= 0 or otherwise we don’t have a true three digit number thus a ≥ 1 and 10a−9 ≥ 1.
To minimize f we thus need to minimize the fraction on the right-hand-side of the above.
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Since b only appears in the denominator of the above we can minimize the fraction by taking
b as large as possible. We can’t take b = 9 since we know that c = 9 thus we take b = 8 and
get

f = 10 +
9(10a− 9)

a+ 17
.

This expression we will write as follows

f = 10 +
9(10(a+ 17− 17)− 9)

a + 17

= 10 +
9(10(a+ 17)− 179)

a + 17

= 100− 9(179)

a+ 17
.

To make f as small as possible we want to make the fraction above as large as possible thus
we take a = 1 Thus our three digit number is 189 and the smallest quotient has the value
189

1+8+9
= 10.5.

Problem 34

From the problem statement we are told (using the obvious notation) that

3d+ t = 2h and

2h3 = 3d3 + t3 .

To start the solution we note that we can write the first equation as

2(h− d) = d+ t . (230)

Next note that we can write the second equation as

2(h3 − d3) = d3 + t3 , (231)

which if we factor both sides gives

2(h− d)(h2 + hd+ d2) = (d+ t)(d2 − dt+ t2) .

Using Equation 230 we can cancel the expression 2(h − d) on the left with the expression
(d+ t) on the right to get

h2 + hd+ d2 = d2 − dt+ t2 ,

or canceling d2 on both sides gives

h2 + hd = −dt+ t2 .

This we can write as
h2 − t2 = −d(t+ h) ,

or factoring we have
(h− t)(h + t) = −d(t + h) .
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When we cancel (t+ h) on both sides we get

h− t = −d or t = d+ h .

Use this expression for t in Equation 230 to get 4d = h. As we are told that h and d are
relatively prime the only way this equation can hold is if d = 1 so that h = 4. With these
values we get that t = d+ h = 1 + 4 = 5. and the expression we seek to evaluate

d2 + h2 + t2 = 12 + 42 + 52 = 42 .

Problem 35

To start this problem it can be helpful to draw the triangle rotating around inside the square
for several steps of its path. One thing to notice is that since the side of inner triangle has
a length of two the distance each point moves on a single rotation will be some fraction of
the circumference of a circle with this radius i.e. a fraction of 2π(2) = 4π. Solving this
problem is then really just a careful accounting of the number of times and the fractional
amount that each corner moves under as the triangle translates around. As the triangle is an
equilateral triangle the angular amount that an point can move under one rotation is either
180− 60 = 120 degrees or 90− 60 = 30 degrees.

We document the steps (and angular distance traveled by each corner of the triangle) for
one movement of the triangle and then compute the solution to the requested problem by
summing the total distance each point travels under all rotations. To begin notice that the
triangle starts at the “position” ABP where A is in the left corner, B is along the bottom
side of the square, and P is the point in the interior of the square.

Then

• In step 1: P moves clockwise 120 degrees, A moves clockwise 120 degrees, and B does
not move.

• In step 2: P does not move, A moves 30 degrees, and B moves 30 degrees.

• In step 3: P moves 120 degrees, A does not move, and B moves 120 degrees.

• In step 4: P moves 30 degrees, A moves 30 degrees, and B does not move.

• In step 5: P does not move, A moves 120 degrees, and B moves 120 degrees.

• In step 6: P moves 30 degrees, A does not move, and B moves 30 degrees.

• In step 7: P moves 120 degrees, A moves 120 degrees, and B does not move.

• In step 8: P does not move, A moves 30 degrees, and B moves 30 degrees.

During this sequence of rotations the point A, B, and P moved a total of
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• P moved 120 + 0 + 120 + 30 + 0 + 30 + 120 + 0 = 420 degrees.

• A moved 120 + 30 + 0 + 30 + 120 + 0 + 120 + 30 = 450 degrees.

• B moved 0 + 30 + 120 + 0 + 120 + 30 + 0 + 30 = 330 degrees.

At this point the triangle is in the position PAB namely P is in the left corner, A along the
bottom side of the square, and B in the interior of the square. If we repeat the same sequence
of rotations we will end with the triangle in position BPA and repeating the sequence of
rotations again finally in position ABP which is the position we started with. The total
angular amount that the point P traveled to get back to its starting locations during all of
these rotations is then the sum of

• 420 degrees for the triangle to go from positions ABP to PAB.

• 450 degrees for the triangle to go from positions PAB to BPA since now P is at the
location of A in the initial triangle whose movement we documented in detail.

• 330 degrees for the triangle to go from positions BPA to ABP since now P is at the
location of B in the initial triangle whose movement we documented in detail.

Summing these we get 1200 degrees of travel. This is 1200
360

= 10
3
of a full circle giving a length

traveled of
10

3
(4π) =

40

3
π .
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The 1973 Examination

Problem 1

Drawing a picture of this situation we have two radii from the center to the circle to the
intersection of the chord and the circle and a third radius that is bisected by this chord.
This gives two right triangles each with a hypotenuse of length twelve and one leg of length
six. The only unknown in each right triangle is one of the legs which is also 1/2 the total
length of the chord. Thus the length of the chord is

2
√
122 − 62 = 2

√
108 = 12

√
3 .

Problem 2

Let the smaller unit cubes be called cubits. Of the 1000 cubits, the ones that have at least
one face painted are the “outer” cubits. Notice that these outer cubits surround an inner
cube of entirely unpainted cubits. Thus if we “shave” off one cubit from each of the six faces
of the large cube we end up with an inner cube of all unpainted cubits. In this inner cube
there are 83 of these cubits. Thus the number of painted cubits are

1000− 83 = 488 .

Problem 3

If the stronger Goldbach conjecture is true then we should be able to write 126 as

126 = p1 + p2 ,

where p1 and p2 are both prime and p1 6= p2. Without loss of generality lets assume that
p1 < p2. Then to have the largest value of p2 − p1 we would like to take p1 “as small as
possible”. We can consider the first few primes for p1 and determine the first time if they
determine a value for p2 that is also prime. For example

p1 = 2 so p2 = 124 which is not prime since it is divisible by 2

p1 = 3 so p2 = 123 which is not prime since it is divisible by 3

p1 = 5 so p2 = 121 which is not prime since it is divisible by 11

p1 = 7 so p2 = 119 which is not prime since it is divisible by 7

p1 = 11 so p2 = 115 which is not prime since it is divisible by 5

p1 = 13 so p2 = 113 which is prime .

Thus we should take p1 = 13 so that p2 = 113 and p2 − p1 = 100 for the largest difference.
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Problem 4

If we lay the hypotenuse along the x-axis then the “inner” triangle we want to compute
the area of is an isosceles triangle with a base length of twelve and two equal angles of 30
degrees. By symmetry the height of this triangle is located 1/2 way along the hypotenuse.
Thus because the two equal angles are 30 degrees this height has a value of

6 tan(30◦) =
6√
3
.

Thus the area of the triangle in question is 1
2
bh = 1

2
(12)

(
6√
3

)

= 12
√
3.

Problem 5

Define the operator ∗ as

a ∗ b = 1

2
(a+ b) .

With this we will see which of the four suggested properties are true by computing both
sides and seeing whether or not they are equal.

For the first property I the left-hand-side of (a ∗ b) ∗ c = a ∗ (b ∗ c) is

(a ∗ b) ∗ c =
(
1

2
(a+ b)

)

∗ c

=
1

2

(
1

2
(a + b) + c

)

,

while the right-hand-side is

a ∗ (b ∗ c) = a ∗
(
1

2
(b+ c)

)

=
1

2

(

a+
1

2
(b+ c)

)

,

which is not equal to the left-hand-side.

The second property II is the statement that a ∗ b = b ∗ a which when we simplify both sides
can be seen to be true.

The third property III is the statement that a ∗ (b + c) = (a ∗ b) + (a ∗ c). This has a
left-hand-side given by

a ∗ (b+ c) =
1

2
(a+ b+ c) ,

while the right-hand-side is

(a ∗ b) + (a ∗ c) = 1

2
(a+ b) +

1

2
(a + c) ,
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which is not equal to the left-hand-side.

For the fourth IV property a + (b ∗ c) = (a + b) ∗ (a+ c) the left-hand-side is equal to

a + (b ∗ c) = a +
1

2
(b+ c) ,

while the right-hand-side is equal to

(a+ b) ∗ (a+ c) =
1

2
(a+ b+ a+ c) = a+

1

2
(b+ c) .

which is equal to the left-hand-side.

For the fifth V property to have averaging have an identity element e we would need to have
e satisfy a ∗ e = a or

1

2
(a+ e) = a ,

or e = a. Since this changes for each a there is no identity.

Problem 6

The number 24 in base b is 2b+ 4 in decimal. Squaring that number we get

(2b+ 4)2 = 4b2 + 16b+ 16 .

We are told that is the number 554 in base b or 5b2 + 5b+ 4 in decimal. Equating these two
decimal numbers gives

4b2 + 16b+ 16 = 5b2 + 5b+ 4 ,

which can be solved for b. We get (b− 12)(b+ 1) = 0 so b = 12 or b = −1. Since b must be
positive we have that b = 12.

Problem 7

We want to evaluate

34∑

k=5,6,7,···
(10k + 1) = 10

34∑

k=5

k +

34∑

k=5

1

= 10

(
34∑

k=1

k −
4∑

k=1

k

)

+ (34− 5 + 1)

= 10

(
34(35)

2
− 4(5)

2

)

+ 30 = 5880 .
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Problem 8

We would have the amount of paint needed P given by an expression of the form P = knh2

where k is a constant, n is the number of statues to paint, and h is the statue height. We
are told that P = 1 when n = 1 and h = 6 so that using our formula for P we have

1 = k(1)(36) so k =
1

36
.

Thus P = 1
36
nh2. If we then have n = 540 and h = 1 we find

P =
1

36
540(12) = 15 .

Problem 9

For this problem we are told that the area of △CHM is K. This means that

1

2
MH × CH = K .

Since the segments CM and CH trisect the 90 degree angle ∠ACB we have that ∠ACM ,
∠MCH , and ∠HCB are all 30 degrees. This in tern means that

MH = CH tan(30◦) =
CH√

3
.

Using this in the formula for the area of △CHM we get

1

2

(
1√
3

)

CH2 = K or CH2 = 2
√
3K .

Next note that

tan(∠HCB) =
HB

CH
so HB =

CH√
3
,

as ∠HCB = 30◦. Since the area of △ABC is 1
2
AB×CH and we know what CH is in terms

of K we need to get AB terms of K. To do that note that

1

2
AB =MB =MH +HB =

CH√
3
+
CH√

3
=

2CH√
3
,

so AB = 4CH√
3

which can be written in terms of K. Using everything so far we find the area
of △ABC given by

1

2
AB × CH =

1

2

(
4CH√

3

)

CH =
2√
3
CH2 =

2√
3
(2
√
3K) = 4K .
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Problem 10

There is no solution to this set of equations if the determinant of the matrix A in the linear
system Ax = b is zero or in this case that is

∣
∣
∣
∣
∣
∣

n 1 0
0 n 1
1 0 n

∣
∣
∣
∣
∣
∣

= 0 ,

or expanding about the bottom row this is

∣
∣
∣
∣

1 0
n 1

∣
∣
∣
∣
+ n

∣
∣
∣
∣

0 1
1 n

∣
∣
∣
∣
= 0 ,

or
1 + n3 = 0 .

This has the real solution of n = −1.

Problem 11

Let the value of a (described in the footnote) take the value a = 2. Then inequality |x|+|y| ≤
2 is a “diamond” shape with its “points” at the North-East-West-South coordinate locations
i.e. the locations (0, 2), (2, 0), (0,−2), and (−2, 0). The inequality

√

2(x2 + y2) ≤ 2 is equal
to

x2 + y2 ≤ 2 =
√
2
2
= 1.4142142 ,

which is a circle with a radius 1.414214 < 2 and thus the points that satisfy this inequality
lie inside the previously inequality |x| + |y| ≤ 2. Finally the inequality 2max(|x|, |y|) ≤ 2
becomes

max(|x|, |y|) ≤ 1 ,

which is a square with corners at the locations (1, 1), (−1, 1), (−1,−1), and (1,−1). The
points that satisfy this inequality lie inside the previous circular disk region. Thus we have
that choice II (or B) is the correct one.

Problem 12

From the problem statement we are told that

35 =
1

D

D∑

i=1

di (232)

50 =
1

L

L∑

j=1

lj . (233)
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Here D is the number of doctors with di their individual ages while L is the number of
lawyers with li their individual ages. We are also told that

1

D + L

(
D∑

i=1

di +
L∑

j=1

lj

)

= 40 .

If we solve for the sums in Equation 232 and 233 and put them into the above expression
we get

35D + 50L = 40(D + L) or 10L = 5D .

Thus we have that D
L
= 2.

Problem 13

Let the given expression be denoted x and then square its value to get

x2 =
4

9

(

2 + 2
√
12 + 6

2 +
√
3

)

=
4

9

(

8 + 2
√
12

2 +
√
3

)

=
8

9

(

4 +
√
12

2 +
√
3

)

=
16

9
.

Taking the square root (and taking the positive root) gives x = 4
3
.

Another (more complicated) way to solve this problem is to write it as

2(
√
2 +

√
6)

3
√

2 +
√
3

=
2
√
2(1 +

√
3)

3
√
2
√

1 +
√
3
2

=
2

3




1 +

√
3

√

1 +
√
3
2





=
2

3




1 +

√
3

√

1 +
√
3
2









√

1−
√
3
2

√

1−
√
3
2



 =
2

3







√

(1 +
√
3)2
(

1−
√
3
2

)

√

1− 3
4







=
2

3







√

(1 + 2
√
3 + 3)

(

1−
√
3
2

)

1
2







=
4

3

√
√
√
√(4 + 2

√
3)

(

1−
√
3

2

)

=
4

3

√

4 + 2
√
3− 2

√
3− 3 =

4

3

√
1 =

4

3
,

the same value as before.
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Problem 14

Let A, B, C be the rates at which water from the corresponding valves flow into the tank.
Let V be the total amount of water that the tank can hold. Then we are told that

(A+B + C)1 = V

(A+ C)1.5 = V

(B + C)2 = V .

We want to know the value of n such that (A+B)n = V . The above is three equations and
three unknowns which we can solve. Doing this we find

A =
V

2

B =
V

3

C =
V

6
.

From these we have that A+ B = 5
6
V . Thus n = 6

5
= 1.2 hours to fill the tank with A and

B.

Problem 15

The circle that circumscribes the sector will be the same one that circumscribes the triangle
we obtain from the two radial edges and the cord that their intersection with the circle makes
(drawing a few pictures of this case should make this argument seem reasonable). In that
case we will use Equation 15 to find the radius of this circumscribing circle. To use that
formula we need to know the length of the side of the triangle that is opposite to the angle
θ. If we denote this length by l it can be computed using the law of cosigns or

l2 = r2 + r2 − 2r2 cos(θ) = 2r2(1− cos(θ)) .

Using the the fact that sin2(θ) = 1−cos(2θ)
2

we have that

1− cos(θ) = 2 sin2

(
θ

2

)

.

Using this we can write the above as

l2 = 4r2 sin2

(
θ

2

)

so l = 2r sin

(
θ

2

)

.

With this the radius of the circumscribing circle is then given by Equation 15 where we find

2r sin
(
θ
2

)

2 sin(θ)
=

r sin
(
θ
2

)

2 sin
(
θ
2

)
cos
(
θ
2

) =
r

2 cos
(
θ
2

) .

If we take r = 6 the above becomes 3 sec
(
θ
2

)
.
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Problem 16

Recall that the sum of the interior angles of a n sided polygon is given by Equation 5. If we
let θ∗ be the angle that we did not include in our sum we must have that

180(n− 2) = 2190 + θ∗ .

If we consider the given values for n and subtract the “sum minus the angle θ∗” (or the value
2190) from the products of 180(n− 2) we find that for the suggested values of n the possible
values for θ∗ would then be

-210 150 510 870 1230

Since any convex polygon must have its internal angle less than 180 degrees the only value
of the second one or n = 15.

Problem 17

We are told that

sin

(
1

2
θ

)

=

√

x− 1

2x
,

and θ is a acute angle. From this value we have

cos

(
1

2
θ

)

=

√

1−
(
x− 1

2x

)

=

√

2x− x+ 1

2x
=

√

x+ 1

2x
.

Now using sin(2θ) = 2 sin(θ) cos(θ) we have

sin(θ) = 2 sin

(
1

2
θ

)

cos

(
1

2
θ

)

= 2

√
(
x− 1

2x

)(
x+ 1

2x

)

= 2

√

x2 − 1

4x2
=

√
x2 − 1

x
.

Now for cos(2θ) we have the identities

cos(2θ) = cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ) .

Using this we have

cos(θ) = 1− 2 sin2

(
1

2
θ

)

= 1− 2

(
x− 1

2x

)

=
x− (x− 1)

x
=

1

x
.

Thus with expressions for sin(θ) and cos(θ) we can now compute

tan(θ) =
sin(θ)

cos(θ)
=

√
x2 − 1 .
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Problem 18

For p a prime number for this question we want to know when

p2 − 1

24
=

(p− 1)(p+ 1)

24
,

has no remainder.

By trying several small prime values for p we notice that when p = 7 we have that p2−1 = 48
which 24 will divide. Thus we have at least one value of p (other than p = 5) that works.

Now as p is prime it must be odd so p− 1 and p+ 1 are both even. As they are consecutive

even integers they are both divisible by two and one of them is divisible by four. Thus their
product is divisible by 2× 4 = 8. From the three consecutive integers p− 1, p, and p+ 1 we
must have that one of them is divisible by three. It cannot be the prime number p and thus
one of p − 1 or p + 1 is divisible by three. Thus the product (p − 1)(p + 1) is divisible by
8× 3 = 24 and thus the given statement is true for all prime p ≥ 5.

Problem 19

From the given definition we have

728!

182!
=

72(72− 8)(72− 16)(72− 24)(72− 32)(72− 40)(72− 48)(72− 56)(72− 64)

18(18− 2)(18− 4)(18− 6)(18− 8)(18− 10)(18− 12)(18− 14)(18− 16)
.

As 72 = 8(9) and 18 = 2(9) the above is given by

728!

182!
=

9(8)× 8(8)× 7(8)× 6(8)× 5(8)× 4(8)× 3(8)× 2(8)× 1(8)

9(2)× 8(2)× 7(2)× 6(2)× 5(2)× 4(2)× 3(2)× 2(2)× 1(2)

=
89

29
=

(
8

2

)9

= 49 .

Problem 20

Introduce a Cartesian coordinate system where the stream runs East-West along the x-axis,
the cowboy is located at the point (0,−4), and the cabin is located at (8,−4−7) = (8,−11).
Let the location where the cowboy waters his horse be located on the stream at (w, 0) where
0 ≤ w ≤ 8. Then the total distance the cowboy travels to get to the stream and then to his
cabin is

D =
√
w2 + 16 +

√

(w − 8)2 + 121 .

We want to find the minimum of D as a function of w. Taking the derivative of the above
expression with respect to w and then setting the result equal to zero gives

dD

dw
=

2w

2
√
w2 + 16

+
2(w − 8)

2
√

(w − 8)2 + 121
= 0 .
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This is equivalent to the equation

w
√

(w − 8)2 + 121 + (w − 8)
√
w2 + 16 = 0 ,

or
−w
√

(w − 8)2 + 121 = (w − 8)
√
w2 + 16 .

If we square both sides of this expression we get

w2((w − 8)2 + 121) = (w − 8)2(w2 + 16) .

Expanding everything and simplifying we end up with

105w2 + 256w − 1024 = 0 ,

which has solutions given by

w =
−256±

√

2562 + 4(105)(1024)

2(105)
=

−256± 704

2(105)
=

{

−25

7
,
25

15

}

.

Only the positive value of w is valid. With this value of w to compute the total distance
traveled we need to also compute

w2 + 16 = 20.55111

(w − 8)2 + 121 = 155.4178

D = 17 .

Problem 21

Let the first number in the set be denoted by 1 ≤ x < 100 then if the set has t ≥ 2 terms it
will consist of the numbers

{x, x+ 1, x+ 2, · · · , x+ t− 2, x+ t− 1} .

The sum of these terms is given by

tx+
t−1∑

k=0

k = tx+
t(t− 1)

2
.

If this is to equal to 100 then we must have

tx+
t(t− 1)

2
= 100 or t(2x+ (t− 1)) = 200 . (234)

Thus we need to now consider the factors of 200. Since 200 = 23 · 52 we have that possible
values for t could be any number we could make from the product 23 · 52 and satisfying the
constraints that t ≥ 2. Thus for t we could have numbers of the form 2i 5j for 0 ≤ i ≤ 3 and
0 ≤ j ≤ 2. These give

t ∈ {2, 4, 8, 5, 10, 20, 40, 25, 50} .
For each of these values of t we can put it into Equation 234 and solve for x. If we have
a valid value of x then we have found one solution to our problem. For the given possible
value for t we find x given by
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[1] 49.5 23.5 9.0 18.0 5.5 -4.5 -l7.0 -8.0 -22.5

There are only two numbers above that are valid values for x. Thus we have only two
solutions.

Problem 22

We want to find all solutions to

|x− 1|+ |x+ 2| < 5 .

To solve this problem we recall the definition of the absolute value function

|x| =
{

x x ≥ 0
−x x < 0

.

In what follows for simplicity we will ignore the “equality at x = 0” in the greater than or
equal to part in the above definition. Then using the definition of the absolute value the
first term in the above can be written

|x− 1| =
{

x− 1 x− 1 > 0
−(x− 1) x− 1 < 0

=

{
x− 1 x > 1
−x + 1 x < 1

.

In the same way the second term can be written as

|x+ 2| =
{

x+ 2 x+ 2 > 0
−x− 2 x+ 2 < 0

=

{
x+ 2 x > −2
−x− 1 x < −2

.

Therefore the sum of these two expressions can be written as

|x− 1|+ |x+ 2| =







−x+ 1− x− 2 x < −2
−x+ 1 + x+ 2 −2 < x < 1
x− 1 + x+ 2 x > 1

=







−2x− 1 x < −2
3 −2 < x < 1

2x+ 1 x > 1
.

Now with this expression we see that |x − 1| + |x + 2| < 5 will certainly be true when
−2 < x < 1 (since it evaluates to the value of three (which is less than five). For other
regions we can expand our valid region of x “to the left” until

−2x− 1 = 5 or x = −3 .

We can expand our valid region “to the right” until

2x+ 1 = 5 or x = 2 .

Thus combining these two results the region of interest is −3 < x < +2.
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Problem 23

Let R be the event that the card is red on both sides. Let B be event that the card is red
on one side and blue on the other. Finally let F be the event that the face up is red. Then
we want to evaluate P (R|F ). Using Bayes’ rule we have

P (R|F ) = P (FIR)P (R)

P (F |R)P (R) + P (R|B)P (B)
=

1(1/2)

1(1/2) + (1/2)(1/2)
=

2

3
.

Problem 24

Let s, c, and p be the price of one sandwich, one cup of coffee, and one piece of pie respectively.
From the problem statement we are told that

3s+ 7c+ p = 3.15

4s+ 10c+ p = 4.20 .

We can solve for s and c in terms of p. When we do that we get

s = −3

2
p + 1.05

c =
1

2
p .

Thus we find that the sum desired is given by

s+ c+ p = −p + 1.05 + p = 1.05 .

Problem 25

The area of the full grass plot is π62 = 36π. If we draw a circle in the x-y plane then the y
value of the points on the circle is given by

y = ±
√
62 − x2 .

Thus the area of the gravel path is given by

A = 2

∫ 3

0

y(x)dx = 2

∫ 3

0

√
36− x2dx .

To evaluate this let x = 6 sin(θ) then dx = 6 cos(θ)dθ and we have

A = 2(36)

∫ π/6

0

√

1− sin2(θ) cos(θ)dθ

= 72

∫ π/6

0

cos2(θ)dθ = 36

∫ π/6

0

(1 + cos(2θ))dθ

= 36

(

π

6
−
(
sin(2θ)

2

∣
∣
∣
∣

π/6

0

)

= 36

(

π

6
−

√
3

4

)

.
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Thus the area of the circular grass with the gravel path removed is

36π − 36

(

π

6
−

√
3

4

)

= 30π − 9
√
3 .

Problem 26

We are told that (with 2n the index of the last term)

a1 + a3 + · · ·+ a2n−1 = 24

a2 + a4 + · · ·+ a2n = 30 .

If ak is an arithmetic sequence with a common difference d then the odd and even terms are
another arithmetic sequence with common difference 2d. Thus using Equation 18 we can
evaluate the given sums on the left-hand-side to get

n∑

k=1

a2k−1 =
n

2
(2a1 + 2(n− 1)d) = 24

n∑

k=1

a2k =
n

2
(2a2 + 2(n− 1)d) =

n

2
(2(a1 + d) + 2(n− 1)d) = 30 .

The first of these two equations means that

n(a1 + (n− 1)d) = 24 ,

while the second means that

n(a1 + (n− 1)d+ d) = 30 .

If we use this first expression in the second expression we get

nd = 30− 24 = 6 .

We are also told that a2n − a1 = 10.5. Now using Equation 17 this means that

a1 + (2n− 1)d− a1 = 10.5 or (2n− 1)d = 10.5 .

As we know that nd = 6 when we use that in the above we get d = 1.5. Solving for n then
gives n = 6

d
= 4. As this is one-half of the total number of terms we must have eight terms

in the original sum.

Problem 27

To solve this problem we will need to recall the definition of the average velocity (when the
velocity v(t) can be a function of time)

v̄ =
1

T

∫ T

0

v(t)dt , (235)
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we will use this relationship to compute values for x and y. Next, let the distance both cars
travel be denoted as D. For car A, let tu and tv be the times that the car travels with speeds
u and v respectively. As each of these times correspond to one half of the distance D we
have

tu =
D

2u

tv =
D

2v
.

Then as the total distance traveled is D we know that

utu + vtv = D .

Let the total time traveled by car A be denoted TA then

TA = tu + tv =
D

2

(
1

u
+

1

v

)

.

Using Equation 235 we can compute the average velocity of car A

x =
1

TA

∫ TA

0

velocity(t)dt

=
1

TA

[∫ tu

0

udt+

∫ tu+tv

tu

vdt

]

=
1

TA
[utu + vtv] =

D

TA

=
D

D
2

(
1
u
+ 1

v

) =
2

1
u
+ 1

v

.

For car B, let TB be the amount of time it takes this car to drive the distance D. As we
drive with the velocity u for one-half of the time (and with velocity v for the other one-half
of the time) we have

(
TB
2

)

u+

(
TB
2

)

v = D .

Again using Equation 235 we can compute the average velocity of car B

y =
1

TB

∫ TB

0

velocity(t)dt

=
1

TB

[
∫ TB/2

0

udt+

∫ TB

TB/2

vdt

]

=
1

TB

[

u

(
TB
2

)

+ v

(
TB
2

)]

=
u+ v

2
.

From the above two expressions we want to compare the values of

x =
2

1
u
+ 1

v

vs. y =
1

2
(u+ v) .

We can get a hint of what we should try to prove if we take u = 1 and v = 1
3
we get

x =
2

1 + 3
=

1

2
,
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and

y =
1

2

(

1 +
1

3

)

=
2

3
.

Thus we see that for this example x < y. We can get equality between x and y if we let
u = v = 1. Based on these examples we should try to prove

2
1
u
+ 1

v

≤ 1

2
(u+ v) .

We will assume that this statement is true and see if we can derive a true statement from it.
If we can (and we can reverse all steps taken) then we have proved the desired inequality.
The above is equivalent to

(u+ v)

(
1

u
+

1

v

)

≥ 4 ,

which is equivalent to

1 +
u

v
+
v

u
+ 1 ≥ 4 or

u

v
+
v

u
≥ 2 .

If we let ξ = u
v
the above is

ξ +
1

ξ
≥ 2 or ξ2 + 1 ≥ 2ξ or ξ2 − 2ξ + 1 ≥ 0 or (ξ − 1)2 ≥ 0 .

Since this true we have the original statement x ≤ y is true.

Problem 28

Here we are told that the terms a, b, and c are in a geometric progression which means that
b
a
= r and c

b
= r for some r. From that we can conclude that b = ar and c = ar2. As we

know that 1 < a < b < c we can conclude that r > 1. Now we have

loga(n) =
log(n)

log(a)

logb(n) =
log(n)

log(b)
=

log(n)

log(a) + log(r)

logc(n) =
log(n)

log(c)
=

log(n)

log(a) + 2 log(r)
.

Thus the reciprocals of these numbers look like

1

loga(n)
=

log(a)

log(n)

1

logb(n)
=

log(a) + log(r)

log(n)

1

logc(n)
=

log(a) + 2 log(r)

log(n)
.

These numbers are in a arithmetic progression with a starting value of log(a)
log(n)

and a common

difference of log(r)
log(n)

.
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Problem 29

Let the two boys be denoted by 1 and 2 and the radius of the track be R. Then the time it
takes each boy to go around the track will be

T1 =
2πR

5

T2 =
2πR

9
.

Thus each boy will be back at the start in Ti time i = 1, 2. They will stop running when the
both meet at the starting point again which means that the first time we have

n1T1 = n2T2 ,

where n1 and n2 are integers that are as small as possible. This means that

n1

n2
=
T2
T1

=
5

9
.

The solution with the smallest values of n1 and n2 is n1 = 5 and n2 = 9.

With these, the total amount of time each boy is running is then given by

n1T1 = n2T2 = 5

(
2πR

5

)

= 2πR .

Assume that the first boy starts running counter-clockwise while the second by runs clockwise
and measure angles clockwise positive from the x-axis. The angular frequency of each boy
is given by

ω1 =
2π

T1
=

5

R

ω2 = −2π

T2
= − 9

R
.

With these values, the angular position of each boy as a function of time is given by

θ1(t) = ω1t =

(
5

R

)

t

θ2(t) = ω2t = −
(
9

R

)

t .

Now we want to know for how many times the boys meet before the each meet at where
they started. This will happen when

θ1(t)− θ2(t) = 2πm ,

for integer values of m. Using what we know for θ1(t) and θ2(t) from the above we have this
is equal to (

5

R

)

t+

(
9

R

)

t = 2πm .
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Solving the above for t we get

t =
2πmR

14
.

Now as we know that 0 ≤ t ≤ 2πR we can put the expression for t into that inequality to
get

0 ≤ 2πmR

14
≤ 2πR ,

or
0 ≤ n ≤ 14 .

The value of n = 0 corresponds to t = 0 which is when the two boys start running. The
value of n = 14 corresponds to t = 2πR and is when the boys stop running thus there are
15− 2 = 13 crossings.

Problem 30

Note that the set of points in S are the ones inside a circle with a center at the point (T, 0)
and a radius of T . Thus the center of the circle is not on the line y = x (since it is on the
x-axis only). This also means that points in S are in the fourth quadrant.

Next we will try to understand the function [t] and t − [t]. For the first function using the
definition given we have

[t] =







0 0 ≤ t < 1
1 1 ≤ t < 2
2 2 ≤ t < 3
3 3 ≤ t < 4
4 4 ≤ t < 5
...

...

.

Using this we find that

t− [t] =







t− 0 0 ≤ t < 1
t− 1 1 ≤ t < 2
t− 2 2 ≤ t < 3
t− 3 3 ≤ t < 4
t− 4 4 ≤ t < 5
...

...

.

If we plot this function we find that it is a “sawtooth” or linear segments that start on the
x-axis at the values of t = 0, 1, 2, · · · with a slope of one and stop when they get to the next
integer (i.e. t + 1) and don’t include the right most endpoint. Thus |t − [t]| < 1 for all t.
This means that the area of S must be less than that of a circle with a radius of one or less
than π12 = π.

Next consider the value of t = 0.5 then we have t − [t] = 0.5 − 0 = 0.5 so S is the set of
points that satisfy

(x− 0.5)2 + y2 ≤ 0.52 .

Note that (0, 0) is in the above set.
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Problem 31

We are told that
Y E ·ME = TTT .

Notice that for any digit of T the right-hand-side TTT can be factored as T (111) = T ·3 ·37.
Thus the left-hand-side must have the same factors 3, T , and 37. Because of this one of Y E
or ME must be a two digit number that has a factor of 37. The two choices thus are

1× 37 = 37 or

2× 37 = 74 .

If we assume that Y E is 37 then we have E = 7 and we must find digits M and T such that

37 ·M7 = T · 3 · 37 ,

or
M7 = 3 · T

For the values of T ∈ {1, 2, · · · , 8, 9} the only product 3 · T that ends in a seven is when
T = 9 and this gives M = 2. With this case we have

E +M + T + Y = 7 + 2 + 9 + 3 = 21 .

Trying to let Y E equal 74 will result in a contradiction downstream. Thus we have found
the only solution above.

Problem 32

The volume of a pyramid is V = 1
3
Ah where A is the area of the base and h is the height of

the pyramid. Since the base is an equilateral triangle with a side length s = 6 we have that
its area is (using the formula for the area of an equilateral triangle)

A =

√
3

4
s2 = 9

√
3 .

We now need to determine the height h of the pyramid. To do this note that the vertex
of the pyramid is right over the centroid of the equilateral triangle that is its base. This
centroid is located at a point that is a distance r from any vertex where r satisfies

r cos(30◦) =
6

2
= 3 so r = 2

√
3 .

The height of the pyramid is then the length of a leg of a right triangle with a hypotenuse
of

√
15 and an other leg of length r = 2

√
3 thus h must satisfy

15− 4(3) = h2 so h =
√
3 .

Using all of these parts we find V = 9.
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Problem 33

Let p be the percentage of acid in the original mixture. Let V be the volume of the original
mixture in ounces. Then pV is the amount of acid and (1 − p)V is the amount of water in
ounces. When we add one ounce of water we have pV ounces of acid and (1−p)V +1 ounces
of water. This has a percentage of acid given by 1

5
or

pV

pV + (1− p)V + 1
=

pV

V + 1
=

1

5
.

Next we add one ounce of acid to this mixture we get pV +1 ounces of acid and (1−p)V +1
ounces of water which gives a percentage of acid given by

pV + 1

pV + 1 + (1− p)V + 1
=
pV + 1

V + 2
=

1

3
.

Solving for pV in the first equation and putting this into the second equation gives
1
5
(V + 1) + 1

V + 2
=

1

3
.

Solving this for V gives V = 4. Putting this into the first equation we can solve for p. Doing
this we get p = 1

4
= 0.25.

Problem 34

Let v be the velocity of the plane in still air and vw the velocity of the wind. Then if D is
the distance between the two towns then on the trip that was against the wind we have

84(v − vw) = D .

On the return trip the plane took nine minutes less than T or

(T − 9)(v + vw) = D ,

where T is the time to fly in a still wind and so must satisfy

Tv = D or T =
D

v
.

If we divide each of these two equations by v (and use the above) we get

84
(

1− vw
v

)

= T

(T − 9)
(

1 +
vw
v

)

= T .

This is two equations and two unknowns T and vw
v

that we can solve. Using the first we get
vw
v
= 1− T

84
. If we put that into the second we get

(T − 9)

(

2− T

84

)

= T ,

or
T 2 − 93T + 1512 = 0 .

Solving this we get T = 21 or T = 72. The number of minutes for the return trip is T − 9
which could be 12 or 63 minutes.
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Problem 35 (d vs. s)

From the diagram we know that the angles ∠NOR, ∠POQ, and ∠MOP must all be the
same. Since MN , PQ, and OR are parallel then QN = PM = NR = s. Thus the angles
∠QON and ∠MOR′ are all equal. This means that each “wedge” of the circle in the upper
1/2 plane has an angle of 180

5
= 36 degrees. We can use the law of cosigns to compute the

lengths s and d. We have

s2 = 12 + 12 − 2(1)(1) cos(36◦) = 2− 2 cos(36◦)

d2 = 12 + 12 − 2(1)(1) cos(3(36◦)) = 2− 2 cos(108◦) .

Using the identity that

1− cos(θ) = 2 sin2

(
θ

2

)

,

we can write the above as

s2 = 4 sin2(18◦) so s = 2 sin(18◦)

d2 = 4 sin2(54◦) so d = 2 sin(54◦) .

Now that we have expressions for s and d we can see which of the given expressions hold
true. Using the following trigonometric identities

sin(θ) = cos(90− θ)

cos(2θ) = cos2(θ)− sin2(θ)

= 1− 2 sin2(θ)

= 2 cos2(θ)− 1 ,

we can write s (dropping the degree notation for now) as

s = 2 sin(18) = 2 cos(72) = 2 cos(2(36))

= 2(2 cos2(36)− 1) = 2(2 sin2(54)− 1)

= 2

(
d2

2
− 1

)

= d2 − 2 . (236)

We can also write d as

d = 2 sin(54) = 2 cos(36) = 2 cos(2(18))

= 2(1− 2 sin2(18))

= 2

(

1− s2

2

)

= 2− s2 . (237)

If we add these two equations together we get

s+ d = d2 − 2 + (2− s2) = d2 − s2 = (d− s)(d+ s) so d− s = 1 .

Since this means that d = 1 + s if we put that into Equation 236 we get

s = (1 + s)2 − 2 .
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Which has solutions s = −1±
√
5

2
. We have to take the positive sign to make sure that s > 0.

This means that

d = 1 + s =
1 +

√
5

2
.

This means that

ds =

(

−1 +
√
5

2

)(

1 +
√
5

2

)

=
5− 1

4
= 1 .

If we then use Equations 236 and 237 we compute

d2 − s2 = (s+ 2)− (2− d) = s+ d =
−1 +

√
5

2
+

1 +
√
5

2
=

√
5 .
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The 1974 Examination

Problem 1

Solving for y we get

y =
6x

x− 4
,

which is not listed. Solving for x we get

x =
4y

y − 6
,

which is one of the choices.

Problem 2

The two equations that must be true are

3x21 − hx1 = b

3x22 − hx2 = b .

If we subtract these two we get

3(x21 − x22)− h(x1 − x2) = 0 ,

or factoring the first term we get

3(x1 − x2)(x1 + x2)− h(x1 − x2) = 0 .

Since we know that x1 6= x2 we have that x1 − x2 6= 0 and we can divide by this to get

3(x1 + x2)− h = 0 .

Which we can then solve for the sum x1 + x2.

Problem 3

We have

(1 + x(2− x))4 =
4∑

k=0

(
4

k

)

(x(2− x))k =
4∑

k=0

(
4

k

)

xk(2− x)k .

This last expression expands as

1 + 4x(2− x) +

(
4

2

)

x2(2− x)2 +

(
4

3

)

x3(2− x)3 + x4(2− x)4 .
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Only the last term of x4(2 − x)4 will have any terms of the form x7. This means that we
need to find the coefficient of x7 in

x4(2− x)4 = x4(x− 2)4 = x4
4∑

k=0

(
4

k

)

xk(−2)4−k .

Thus we need to consider k = 3 which gives the coefficient
(
4

3

)

(−2)1 = 4(−2) = −8 .

when we recall that
(
4
3

)
= 4.

Problem 4

We will write our division problem as

x51 + 51

x+ 1
= Q(x) +

R

x+ 1
.

Here Q(x) is a polynomial of degree 50 and R is a scalar. Multiplying this by x+ 1 we get

x51 + 51 = Q(x)(x+ 1) +R ,

and solving for R we get
R = x51 + 51−Q(x)(x+ 1) .

If we take x = −1 we get
R = −1 + 51−Q(−1)(0) = 50 .

Thus the remainder of dividing x51 + 51 by x+ 1 is just 50.

Problem 6

From the definition we can see that the operator is commutative. To show it is associative
we need to show that (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z). The left-hand-side of this is given by

(x ⋆ y) ⋆ z =

(
xy

x+ y

)

⋆ z

=

xyz
x+y

xy
x+y

+ z
=

xyz

xy + xz + yz
.

The right-hand-side of this is given by

x ⋆ (y ⋆ z) = x ⋆

(
yz

y + z

)

=

xyz
y+z

x+ yz
y+z

=
xyz

xy + xz + yz
.

Notice that these two are equal and our operator is associative.
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Problem 7

If we let P be the initial population, then from then problem statement we have that

(P + 1200)(1− 0.11) = P − 32 .

If we solve for P we get P = 10000.

Problem 8

Note that 311 is a product that starts with the number three (an odd number) and each
additional multiplication by three gives another odd number. The product 513 starts with
five (an odd number) and each additional multiplication gives another odd number. Thus
the sum of these two numbers is even and thus divisible by two.

Problem 9

From the description when we have an odd row say 1, 3, 5, . . . , if we index these odd rows
as 2k + 1 where we would need to take k = 0, 1, 2, . . . , then the first element in each row is
2 + 8k. That odd row then will hold the four numbers

2 + 8k , 3 + 8k , 4 + 8k , 5 + 8k ,

in the columns two, three, four, and five. The number 1000 will be “close” to the row where
2 + 8k = 1000 which would have k = 124.75. As k must be an integer that value is not
possible. If we take k = 124 then the four elements in that row are the numbers 994, 995,
996, 997. As the even rows count backwards from column four to column one, the number
998 would be in column four, the number 999 in column three, and finally the number 1000
would be in column two.

Problem 10

Expanding the given expression to produce a quadratic equation in “standard form” we get

(2k − 1)x2 − 8x+ 6 = 0 .

The discriminant of this quadratic is given by

b2 − 4ac = 64− 4(2k − 1)6 = 8(11− 6k) .

To have no real roots this must be negative which will happen when k > 11
6
= 1 5

6
. Thus the

smallest integer value where this happens is k = 2.
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Problem 11

The slope is given by m = d−b
c−a

and the distance (squared) between these two points is given
by

d2 = (a− c)2 + (b− d)2 = (a− c)2
(

1 +
(b− d)2

(a− c)2

)

= (a− c)2(1 +m2) .

Thus
d = |a− c|

√
1 +m2 .

Problem 12

To evaluate f(1/2) lets find the value of x such that g(x) = 1/2. This means that

1− x2 =
1

2
so x = ± 1√

2
.

Then

f

(

g

(

± 1√
2

))

= f

(
1

2

)

=
1− 1/2

1/2
= 1 .

Problem 13

D is equivalent to the given statement.

Problem 14

• A is true since if x < 0 then x2 > 0 so x2 > x.

• B is not true if x = −1 since x2 > 0 but x is not greater than zero.

• C is not true when x = −2.

• D is not true when x = 2.

• E is not true when x = −2.

Problem 15 (some absolute values)

We have that

|1 + x| =
{

1 + x if x > −1
−1 − x if x < −1

.
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Figure 8: Left: A plot of the function 1−|1+x|. Right: A plot of the function |1−|1+x||.

Thus

1− |1 + x| =
{

1− 1− x if x > −1
1− (−1− x) if x < −1

=

{
−x if x > −1
2 + x if x < −1

Then taking the absolute value of the above we get

|1− |1 + x|| =
{

|x| if x > −1
|2 + x| if x < −1

Now as x < −2 we have 2 + x < 0 so |2 + x| = −2 − x which is B.

Another way to solve this problem is to construct the function |1− |1+ x|| graphically. The
function |1 + x| is the absolute value function (a “V” shape pointing upwards out of the
origin) but shifted to start and x = −1. Then −|1 + x| is this shape reflected about the
x-axis. To get the curve 1 − |1 + x| we shift this curve upwards by one unit. This gives
the plot in Figure 8 (left). Taking the absolute value of this curve gives a plot like that
in Figure 8 (right). From that second plot we see that the curve when x < −2 is the line
y = −2 − x which is again B.

Problem 16

We first draw the triangle with the inscribed and circumscribed circles. Because the triangle
is a right triangle the hypotenuse of the triangle is the diameter of the circumscribed circle.
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Because the triangle is isosceles the top vertex (the right angle) is located above the center
of the diameter of the circumscribed circle. This configuration also puts the inscribed circle
such that its center is also above the center of the diameter.

From the center of the inscribed circle we drop a perpendicular to center of the diameter
of the circumscribed circle. We also draw a line segment from the center of the inscribed
circle to one of the acute angles of the isosceles right triangle. Then the perpendicular we
dropped (of length r) from the center of the inscribed circle to the center of the diagonal
of the circumscribed circle is one leg of a right triangle. Another leg is the radius of the
circumscribed circle (or length R). The smallest acute angle of this right triangle has a size

1

2

(π

4

)

=
π

8
.

Using the definition of the tangent of this angle we thus have

tan
(π

8

)

=
r

R
.

Using this we have
r

R
= tan

(π

8

)

= tan

(
1

2

(π

4

))

.

To evaluate this we will use the half-angle formula for tan
(
1
2
θ
)
or

tan

(

±θ
2

)

=
± sin(θ)

1 + cos(θ)
. (238)

When we take θ = π
4
we have

tan
(π

8

)

=
sin
(
π
4

)

1 + cos
(
π
4

) =
1/
√
2

1 + 1/
√
2
=

1√
2 + 1

.

Therefore
R

r
=

√
2 + 1 .

Problem 17

From the binomial expansion we have

(1 + i)20 − (1− i)20 = (i+ 1)20 − (i− 1)20

=
20∑

k=0

(
20

k

)

ik −
20∑

k=0

(
20

k

)

ik(−1)20−k

=
20∑

k=0

(
20

k

)

ik(1− (−1)20−k) .
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If 20 − k is even then 1 − (−1)20−k = 0. This will happen when k = 0, 2, 4, · · · , 16, 18, 20.
Thus the above sum becomes

(1 + i)20 − (1− i)20 =
∑

k=1,3,··· ,17,19

(
20

k

)

ik(1− (−1)20−k)

= 2
∑

k=1,3,··· ,17,19

(
20

k

)

ik

= 2

9∑

l=0

(
20

2l + 1

)

i2l+1 .

In the above sum the terms can be paired since
(
20

19

)

=

(
20

1

)

(
20

17

)

=

(
20

3

)

etc.

When we do that we get

(1 + i)20 − (1− i)20 = 2
∑

l∈{0,9}

(
20

2l + 1

)

i2l+1 + 2
∑

l∈{1,8}

(
20

2l + 1

)

i2l+1

+ 2
∑

l∈{2,7}

(
20

2l + 1

)

i2l+1 + 2
∑

l∈{3,6}

(
20

2l + 1

)

i2l+1

+ 2
∑

l∈{4,5}

(
20

2l + 1

)

i2l+1 .

Notice that each of above sums evaluates to

(1 + i)20 − (1− i)20 = 2

(
20

1

)
∑

l∈{0,9}
i2l+1 + 2

(
20

3

)
∑

l∈{1,8}
i2l+1

+ 2

(
20

5

)
∑

l∈{2,7}
i2l+1 + 2

(
20

7

)
∑

l∈{3,6}
i2l+1

+ 2

(
20

9

)
∑

l∈{4,5}
i2l+1 .

and that each of these sums evaluates to zero. Thus the total sum is zero.

Problem 18

We will convert all logarithms into logarithms with respect to a common base of e as

p =
ln(3)

ln(8)
=

ln(3)

3 ln(2)

q =
ln(5)

ln(3)
.
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Thus the expression we seek to evaluate can be written as

log10(5) =
ln(5)

ln(10)
=

ln(5)

ln(5) + ln(2)
=

1

1 + ln(2)
ln(5)

.

From the expressions for p and q above we can get the ratio

ln(2)

ln(5)
=

ln(3)
3p

q ln(3)
=

1

3pq
.

Thus we have

log10(5) =
1

1 + 1
3pq

=
3pq

1 + 3pq
.

Problem 19

Each side of the square ABCD has a length of one. Let the distance BN be denoted x (so
that AN = 1 − x). Then by the Pythagorean theorem we have that the length of CN is
given by

CN =
√
1 + x2 .

As the triangle CMN is equilateral we know CN = MN = CM =
√
1 + x2. Again using

the Pythagorean theorem we have that

AM 2 + AN2 =MN 2 or AM 2 + (1− x)2 = 1 + x2 .

This give AM =
√
2x. As triangle CDM has CD = 1 and CM =

√
1 + x2 again using the

Pythagorean theorem we can compute that DM = x. Then

DM + AM = 1 we have x+
√
2x = 1 .

Solving this for
√
x gives

√
x =

−
√
2±

√
6

2
.

We must take the positive sign or else x > 1. Then we have

x = 2−
√
3 .

With this value of x, the length of a side of the equilateral triangle CMN is

√
1 + x2 =

√

8− 4
√
3 .

Using the formula for the area of an equilateral triangle with a side length s given by A =
√
3s2

4

we have that the area of triangle CMN is

√
3

4

(

8− 4
√
3
)

= 2
√
3− 3 .
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Problem 20

Consider rationalizing the denominator of the fraction

1√
n+ 1−√

n
=

1√
n + 1−√

n

(√
n + 1 +

√
n√

n + 1 +
√
n

)

=

√
n + 1 +

√
n

(n + 1)− n
=

√
n+ 1 +

√
n .

Doing this to each term the sum T can be written

T = (
√
9 +

√
8)− (

√
8 +

√
7) + (

√
7 +

√
6)− (

√
6 +

√
5) + (

√
5 +

√
4)

=
√
9 +

√
4 = 5 .

Problem 21

Recalling Equation 19 from the problem statement we are told that

a5 − a4 = a1r
4 − a1r

3 = 576 (239)

a2 − a1 = a1r − a1 = 9 . (240)

From the first of these equations we have

a1r
3(r − 1) = 576 .

Putting Equation 240 into the previous one gives

9r3 = 576 so r = 4 .

Then again using Equation 240 we find a1 = 3. The sum of the first five terms is then
computed with Equation 20 where we find S5 = 1023.

Problem 22

The given function has as its first derivative

f ′(A) =
1

2
cos

(
A

2

)

+

√
3

2
sin

(
A

2

)

.

If we set this equal to zero we get that

tan

(
A

2

)

= − 1√
3
.

Now since tan
(
5π
6

)
= − 1√

3
we have that

A

2
=

5π

6
so A =

5π

3
.

This is 300 degrees and is not one of the listed options.
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Problem 23

Let the center of the circle be located at the origin of a coordinate system. Then the point
T ′ is located at the location (0,−r), the point T is located at the location (0, r), the point
P is located at (4, r), the point Q is located at (9,−r).

The line PQ is then the equation

y − r =

(
r − (−r)
4− 9

)

(x− 4) ,

or

y = r − 2r

5
(x− 4) . (241)

The line OT ′′ must be perpendicular to the the segment PQ and thus has a slope given by

− 1

−2r
5

=
5

2r
.

Thus the line OT ′′ is given by

y =
5

2r
x . (242)

If we solve Equations 241 and 242 for x and y (the coordinates of the point T ′′ in terms of
r) we find

x =
26r2

25 + 4r2

y =
65r

25 + 4r2
.

As this point (x, y) must also be on the circle x2 + y2 = r2 we have that

262r4

(25 + 4r2)2
+

652r

(25 + 4r2)2
= r2 .

If we simplify this we get
4r4 − 119r2 − 900 = 0 .

This has roots r2 = −6.25 and r2 = 36. Taking the positive root we get r = 6.

Problem 24

The statement “at least a five” means on a single roll we can roll a five or a six. We can roll
at least a five with a probability of p = 2

6
= 1

3
. The number of times this happens in n (here

n = 6) rolls is a binomial random variable with n = 6 and p = 1
3
. Thus the probability we

seek is (
6

5

)(
1

3

)5(
2

3

)

+

(
6

6

)(
1

3

)6(
2

3

)0

.

This simplifies to give 13
36

= 13
729

.
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Problem 25

From the diagram in terms of area we have

△QAM = △CDM
△PBM = △DCN .

Then building the area we want out of the areas we have we have

△QPO = �OMABN +△QAM +△PBN
= �OMABN +△CDM +△DCN
= �OMABN +△CON +△CDO +△DOM +△CDO
= �ABCD +△CDO ,

since we have constructed the area of �ABCD from its four internal regions. Thus we need
to find the area of △CDO in terms of the area of �ABCD. Next notice that the height of
△OCD “looks to be about” 1

4
that of the original parallelogram ABCD. If we assume this

idea then we have that the area of △CDO is given by 1
2
bh or

1

2
· CD ·

(
1

4
height of parallelogram ABCD

)

=
1

8
k .

Then the area of △QPO is given by

k +
1

8
k =

9k

8
.

Problem 26

The number given can be written

(30)4 = (2 · 3 · 5)4 = 24 · 34 · 54 .

Then any number of the form 2i · 3j · 5k for i, j, and k integers in the set {0, 1, 2, 3, 4} will
divide this number. As there are five choices for each of i, j, and k there are

53 = 125 ,

possible integer divisors. Two of these are the values one (when i = j = k = 0) and 304 (when
i = j = k = 4). Thus the number of divisors excluding these two numbers is 125− 2 = 123.

Problem 27

Start with the statement that

|f(x) + 4| < a when |x+ 2| < b .
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From the expression for f(x) is this is the statement that

|3x+ 2 + 4| < a when |x+ 2| < b ,

or the statement
|x+ 2| < a

3
when |x+ 2| < b .

Using this we can work backwards. If b ≤ a
3
then we have

|x+ 2| < b ≤ a

3
.

Reversing logic above show that this implies |f(x) + 4| < 3b ≤ a or |f(x) + 4| < a.

Problem 28

Note that if ai = 0 for all i then x = 0 and thus the value of zero must be in the range of
valid x values. Next if ai = 2 for all i then

x = 2

25∑

i=1

1

3i
= 2

24∑

i=0

1

3i+1
=

2

3

24∑

i=0

1

3i

=
2

3

(

1−
(
1
3

)25

1− 1
3

)

≤ 2

3

(
1
2
3

)

= 1 .

Thus x < 1. Finally note that if a1 = 2 while ai = 0 for all other i then x = 2
3
thus the value

of 2
3
must be in the range of valid x values. There is only one interval listed that will cover

all of these cases.

Problem 29

Using Equation 18 we have that

Sp =
40

2
(2p+ 39(2p− 1)) = 20(80p− 39) .

Thus we want to evaluate

10∑

p=1

Sp = 20

10∑

p=1

(80p− 39) = 1600

10∑

p=1

p− 780

10∑

p=1

1

=
1600

2
(10)(11)− 780(10) = 80200 .

As another way to solve this problem, from the problem statement we have that

p =
40∑

k=1

(p+ (2p− 1)(k − 1)) .
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We can evaluate this as

Sp = 40p+ (2p− 1)

40∑

k=1

(k − 1) = 40p+ (2p− 1)

(
1

2
(39)(40)

)

= 40p+ 20(39)(2p− 1) = 1600p− 780 .

Then we have

10∑

k=1

Sk = 1600
10∑

k=1

k − 780(10)

= 1600

(
1

2
(10)(11)

)

− 7800 = 80200 .

Problem 30

Let the segment be of length L and let x such that 0 ≤ x ≤ 1
2
be the fraction of L that is

the smaller one i.e. xL < (1− x)L. Then the statement about x is that

xL

L− xL
=

(1− x)L

L
or

x

1− x
= 1− x . (243)

Thus we see that x satisfies

x = (1− x)2 or x = 1− 2x+ x2 or x2 − 3x+ 1 = 0 . (244)

Using this last expression, we see that in future expressions we can replace x2 with a linear
expression since

x2 = 3x− 1 . (245)

Then R is given by

R =
xL

(1− x)L
=

x

1− x
.

Using Equation 243 we see that
R2 = (1− x)2 ,

and
R−1 = 1− x .

Using these two we have

R2 +
1

R
= (1− x)2 +

1

1− x
.

We can simplify this as

R2 +
1

R
=

(1− x)3 + 1

1− x
=

1− 3x+ 3x2 − x3 + 1

1− x

=
2− 3x+ 3x2 − x3

1− x
.
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Using Equation 245 we see that this is equal to

R2 +
1

R
=

2− 3x+ 3(3x− 1)− x(3x− 1)

1− x

=
−1 + 7x− 3x2

1− x
=

−1 + 7x− 3(3x− 1)

1− x

=
2− 2x

1− x
= 2 .

Thus when we track this through the expression the expression we are given we end with
the value of two.
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The 1975 Examination

Problem 1

For this problem we just simplify from the outside inwards. We have that

2− 1

2
=

3

2
,

and that

2− 2

3
=

4

3
,

and that

2− 3

4
=

5

4
,

so the expression evaluates to 4
5
.

Problem 2

Since the two lines have a different y intercepts they will have a point of intersection if they
have different slopes. This means that

m 6= (2m− 1) or m 6= 1 .

Problem 3

To start, recall that we are told that x < a, y < b, and z < c.

The relationship xy + yz + zx < ab + bc + ca is false. To show that let x = −10, a = 1,
y = −10, b = 1, z = −10, and c = 1. Then xy + yz + zx = 300 and ab + bc + ca = 3 so
xy + yz + zx > ab+ bc + ca in that case.

The relationship x2 + y2 + z2 < a2 + b2 + c2 is also false. The previous example would get
x2 + y2 + z2 = 300 and a2 + b2 + c2 = 3 so x2 + y2 + z2 > a2 + b2 + c2 in this case.

The relationship xyz < abc is false. To show that let x = −1, a = 1, y = −2, b = 1, z = 2
3
,

and c = 1. Then xyz = 4
3
and abc = 1 so xyz > abc.
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Problem 4

Let the side of the first square be d and the side of the second square be s. Then as d is the
diagonal of the second square we have that

2s2 = d2 so s2 =
d2

2
.

The ratio we seek is d2

s2
= 2.

Problem 5

Expanding the product as desired we would have

(x+ y)9 =

9∑

k=0

(
9

k

)

ykx9−k .

Then k = 1 is the second term and k = 2 is the third term. These terms are
(
9

1

)

y1x8 = 9(1− p)p8

(
9

2

)

y2x7 = 36(1− p)2p7 .

If we set these two expressions equal we get

p = 4(1− p) or p =
4

5
.

Problem 6

We want to evaluate
80∑

k=1

2k −
80∑

k=1

(2k − 1) = 80 .

Problem 7

As the absolute value function is always positive the given fraction will be positive is x > 0.
When x > 0 the numerator is |x − |x|| = 0 thus the fraction is never positive (it is always
zero).
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Problem 8

This would be II and IV.

Problem 9

From Equation 17 we have

an = 25 + d(n− 1)

bn = 75 + h(n− 1) .

From this we have
a100 + b100 = 100 + 99(d+ h) = 100 .

This means that d+ h = 0. If we then want to evaluate

100∑

n=1

(an + bn) =

100∑

n=1

(100 + (n− 1)(d+ h)) =

100∑

n=1

100 = 10000 .

Problem 10

Consider (10p + 1)2 from which we find

(10p + 1)2 = 102p + 2 10p + 1 .

The number 102p has a single digit 1 with 2p zeros. The number 2 10p has a single digit 2
with p zeros. The number 1 has only the single digit one. Adding these parts together gives
a number that has a total of 1 + 2 + 1 = 4 ones. This result is independent of the power p.

Problem 11

One chord (the chord drawn through the center of the circle and P ) will have its midpoint
at the center of the circle O. Another chord (the one perpendicular to this last one drawn)
will have its midpoint at P . As we draw chords around the point P the midpoint of the
remaining chords trace a circle with a diameter of PO.

Problem 12

Factor the left-hand-side to get

(a− b)(a2 + ab+ b2) = 19(a− b)3 .
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Since a 6= b we know that a− b 6= 0 and the above equals

a2 + ab+ b2 = 19(a− b)2 .

Expanding the right-hand-side of this expression gives

a2 + ab+ b2 = 19(a2 − 2ab+ b2) .

When we simplify this we get
6a2 − 13ab+ 6b2 = 0 .

This expression factors as
(2a− 3b)(3a− 2b) = 0 .

Thus b = 2
3
a or b = 3

2
a. Since x = a− b for each of these solutions we have

x = a− 2

3
a =

1

3
a for the first solution

x = a− 3

2
a = −1

2
a for the second solution .

Problem 13

If we write the given expression as

x6 + 8 = x(3x4 + 6x2 + 1) ,

we see that there can be no negative roots since when x < 0 the left-hand-side is always
positive while the right-hand-side is always negative. That we have at least one positive root
can be seen by evaluating the polynomial at x = 0 where we find

x6 − 3x5 − 6x3 − x+ 8
∣
∣
x=0

= 8 > 0 .

Evaluating this same polynomial at x = 1 we find

x6 − 3x5 − 6x3 − x+ 8
∣
∣
x=1

= 1− 3− 6− 1 + 8 = −1 < 0 .

Thus there must be at least one real zero in the range 0 < x < 1.

Problem 14

Here the expression “so and so” means two values of “so”. To simplify notation we let

W = whatsis

H = whosis

I = is

S = so .
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The first statement we are told is that if H = I and 2S = IS then we can conclude that
W = S. Then we are asked value of HW when H = S, 2S = S2, and I = 2. The second
of these statements or 2S = S2 when S is not zero means that S = 2. Thus taking the
two statements 2S = S2 and I = 2 together we have that (I, S) = (2, 2). Including the
first statement (or H = S) means that H = 2 also. Thus we want the value of HW in the
situation where

(H, I, S) = (2, 2, 2) .

We now use the first statement (since both H = I and 2S = IS are true) to conclude that
W = S = 2. Thus the value of HW = 4 this is the same as “so and so” or S2 = 4.

Problem 15

We are told that a1 = 1 and a2 = 3 and that the rest of the elements in the sequence can be
obtained by

an = an−1 − an−2 for n ≥ 3 . (246)

Then we could to compute the sum the first one-hundred elements as

S =
100∑

n=1

an = a1 + a2 +
100∑

n=3

an = a1 + a2 +
100∑

n=3

(an−1 − an−2)

= a1 + a2 +
100∑

n=3

an−1 −
100∑

n=3

an−2 = a1 + a2 +
99∑

n=2

an −
98∑

n=1

an

a1 + a2 +

(
98∑

n=2

an + a99

)

−
(

a1 +

98∑

n=2

an

)

= a2 + a99 .

Using the given recurrence Equation 246 to compute additional terms in this sequence we
find

1 , 3 , 2 ,−1 ,−3 ,−2 , 1 , 3 , 2 ,−1 , · · ·
Thus we see a pattern of values that repeats. From the above we can conclude that the value
of an for all n is given by

a1+3k = (−1)k

a2+3k = 3(−1)k

a3+3k = 2(−1)k ,

for k ≥ 0. Using this, we see that a99 = a3+3(32) = 2(−1)32 = 2. Thus S = 3 + 2 = 5.

Problem 16

Let the terms in the geometric sequence be given by a0r
k for k ≥ 0. Then we are told that

∑

k≥0

a0r
k = 3 ,
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or
a0

1− r
= 3 so a0 = 3(1− r) .

Now as r = 1
n
for some positive integer n we can write a0 as

a0 = 3

(

1− 1

n

)

= 3

(
n− 1

n

)

.

Since a0 is a positive integer we must have n = 3 so that a0 = 2. From that we know that
r = 1

n
= 1

3
and we have the sum of the first two terms given by

a0 + a0r = 2 +
2

3
=

8

3
.

Problem 17

Let the symbols T and B stand for train and bus respectively. Then without any conditions
we might expect that the following would be possible values for his morning and evening
commutes respectively

(T,B) , (T, T ) , (B, T ) , (B,B) .

From the problem statement the pair (T,B) is possible since if he takes the train in the
morning he then will take the bus in the evening. The pair (B, T ) is also possible since if he
takes the train in the evening he must have taken the bus in the morning. The pair (T, T )
is not possible for the same reason (he couldn’t have taken the train in the morning if we
see him taking the train in the evening). The pair (B,B) is also possible. The the variables
xTB, xBT , and xBB be the number of times our commuter commutes as (T,B), (B, T ), and
(B,B) respectively. Then we have

8 = xBT + xBB

15 = xTB + xBB

9 = xTB + xBT .

This is a system of three equations and three unknowns. Solving it we get

xTB = 8

xBT = 1

xBB = 7 .

Then x the number of working days is the sum of all the different possible day types

x = xTB + xBT + xBB = 16 .
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Problem 18

There are 9 × 10 × 10 = 900 non-reducible three digit numbers. In order for log2(N) to be
a integer it must be one of

27 = 128

28 = 256 or

29 = 512

This gives a probability of 3
900

= 1
300

.

Problem 19

The given expression can be written
(
log(x)

log(3)

)(
log(5)

log(x)

)

=
log(5)

log(3)
,

or
log(x)

log(x)
= 1 .

This is true for any x for which we can perform the above division or all positive x 6= 1.

Problem 20

Introduce a coordinate system with BC along the x-axis and the point B be located at the
origin (0, 0). Let the point A be located at (x, y), the point M be at (r, 0), and the point C
at (2r, 0). From the given distances we know that

x2 + y2 = 16

(x− r)2 + y2 = 9

(x− 2r)2 + y2 = 64 .

Expanding the second and the third equations and using the first equation to replace any
x2 + y2 with 16 we get

−2rx+ r2 = −7

−rx+ r2 = 12 .

These give two equations and two unknowns x and r. If we subtract the first equation from
the second equation we get rx = 19. If we put this into the second equation above we get

−19 + r2 = 12 or r =
√
31 .

Thus the length of BC is 2r = 2
√
31.
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Problem 21

If we let a = b = 0 the given expression gives f(0)2 = f(0) and since f(0) > 0 we have
f(0) = 1. Next if we take b = −a we get

f(a)f(−a) = f(0) = 1 or f(−a) = 1

f(a)
.

Next if we consider f(3a) we get

f(3a) = f(a+ a + a) = f(a)f(a+ a) = f(a)3 so f(a) = 3
√

f(3a) .

We then need to check if f(b) > f(a) if b > a. That this does not have to be true can be
seen by considering the function f(a) = 0.5a which satisfies all of the previous statements
but has

f(a+ 1) = f(1)f(a) = 0.5f(a) < f(a) .

Problem 22

Factor the given polynomial into its two roots as

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2 .

Then r1r2 = q. Since q is prime one of r1 and r2 must take the value of one. Assume that
r1 = 1 then r2 = q and we have

(x− 1)(x− q) = x2 − (q + 1)x+ q .

This means that p = q+1. The only two consecutive primes are two and three and we have
that q = 2 and p = 3. Using these numbers we see that all of the given expressions are true.

Problem 23

Let the square have a side of length l. Then the area of AOCD is the area of the square
ABCD minus the area of the triangles MBC and the triangle AMO. The area of ABCD
is l2. The area of MBC is 1

2

(
l
2

)
l = l2

4
. The triangle AMO has a base length of l

2
and we

need to determine the height of this triangle. The height of this triangle is the y location of
the intersection of the segments AN and MC. If we put this square in a coordinate system
with the point A at the origin then the line segment AN is the line

y =
l/2

l
x =

x

2
.

The line segment MC is the line

y − 0 =

(
l − 0

l − l/2

)(

x− l

2

)

= 2x− l .
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These two lines intersect at the point

x =
2

3
l

y =
1

3
l .

Thus the triangle AMO has an area of

1

2

(
l

2

)(
l

3

)

=
l2

12
.

With this we compute the area of AOCD is

l2 − l2

4
− l2

12
=

2

3
l2 .

This has a ratio with l2 of 2
3
.

Problem 27

If we write the polynomial in factored form as

(x− q)(x− q)(x− r) = 0 ,

we can expand the left-hand-side of this expression to get

x3 − (p+ q + r)x2 + (rq + pq + pr)x− pqr = 0 .

Comparing this to the original polynomial we see that

p+ q + r = 1 (247)

rq + pq + pr = 1 (248)

pqr = 2 . (249)

We could try to solve this system of nonlinear equations for p, q, and r. Since we know the
value of p+ q + r we might try cubing this expression since we know that will give us

p3 + q3 + r3 + other terms ,

and maybe we can evaluate the values of the “other terms” using the algebraic relationships
above. To start down this path we note that

1 = 13 = (p+ q + r)3 = (p+ q + r)(p+ q + r)2

= (p+ q + r)(p2 + pq + pr + pq + q2 + qr + rp+ rq + r2)

= (p+ q + r)(p2 + q2 + r2 + 2pq + 2pr + 2qr)

= (p+ q + r)(p2 + q2 + r2 + 2) ,
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where we have used Equation 248 to evaluate and inner product like sum in the second to
last equation. Continuing to expand the right-hand-side of the above we have

1 = p3 + pq2 + pr2 + 2p+ qp2 + q3 + qr2 + 2q + rp2 + rq2 + r3 + 2r

= p3 + q3 + r3 + pq2 + pr2 + qp2 + qr2 + rp2 + rq2 + 2(p+ q + r)

= p3 + q3 + r3 + q(pq + rq) + r(pr + qr) + p(pq + rp) + 2

= p3 + q3 + r3 + q(1− pr) + r(1− qp) + p(1− rq) + 2 .

Here we have used Equations 247 and 248. Continuing to expand the above we have

1 = p3 + q3 + r3 + (q + r + p)− 3pqr + 2

= p3 + q3 + r3 + 1− 3(2) + 2 = p3 + q3 + r3 − 3 .

In deriving the last line we have used Equation 247 and 249. Solving for the expression
desired we find p3 + q3 + r3 = 4.

Problem 29

Warning: I tried to work this problem using a simple approximation (1 + x)1/2 ≈ 1 +
x
2
. I quickly found that this was not accurate enough and then tried to use higher order

approximations of the above expression. While this must work in principle all of the steps
I did by “by-hand” gave approximations that were not accurate enough. Rather than push
this through I ended up stopping. Below is what I initially tried in case anyone finds it
useful.

To undo square roots we need to “square” things. We can do that by writing the expression
as

E ≡ (
√
3 +

√
2)6 = ((

√
3 +

√
2)2)3 = (3 + 2

√
6 + 2)3 = (5 + 2

√
6)3 .

From this expression we first evaluate

(5 + 2
√
6)2 = 25 + 20

√
6 + 4(6) = 49 + 20

√
6 .

Multiplying this expression by another 5 + 2
√
6 we get

E = 245 + 100
√
6 + 98

√
6 + 240 = 485 + 198

√
6 . (250)

We now need to estimate the value of
√
6. We can first try to do this by “taking out the big

part” using methods from [2]. We have

√
6 =

√
9− 3 =

√
9

√

1− 1

3
= 3

√

1− 1

3
≤ 3

(

1− 1

6

)

=
5

2
.

This has an error of order
(
1
3

)2
= 1

9
≈ 0.1. Using this we find

E ≤ 485 + 198

(
5

2

)

= 980 .
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As this is not one of the choices our approximation used to compute
√
6 above is not accurate

enough. In fact we could have known that before we computed the full value of E since the
approximation error is of order 0.1 and when we multiply by 3(198) as needed to evaluate
Equation 250 the error in E will be of order 198(3)(0.1) = 59.4 ≈ 60 which is way too large
if we want to estimate E to the nearest integer. One way to get higher accuracy is to use
higher order Taylor expansions of the square root function. We know the number of terms
we need to use since we must have the total error in our approximation of E to be less than
one or

198× error in Taylor series approximation of
√
6 < 1 .

This will be true if we require

error in Taylor series approximation of
√
6 <

1

200
.

Since if we enforce that expression the error will certainly be less than 1
198

(as 1
200

< 1
198

). Or

since we really are approximating
√
6 as 3

√

1− 1
3
that

error in Taylor series approximation of

√

1− 1

3
<

1

600
.

Since the previous approximation is not accurate enough we can use a larger number of terms
in the Taylor series of (1 + x)1/2 to increase the accuracy. The Taylor series of (1 + x)1/2 is
given by4

(1 + x)1/2 = 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + · · · .

Then with x = −1
3
we find that some of the various terms are given by

1

2
x = −1

6

−1

8
x2 = −1

8

(
1

9

)

= − 1

72

1

16
x3 =

1

16

(

− 1

27

)

= − 1

432

− 5

128
x4 = − 5

128

(
1

81

)

= − 5

10368

7

256
x5 = − 7

256

(
1

243

)

= − 7

62208
.

To have the error small enough we need to use a Taylor series that includes the first four

terms. In that case we have
√

1− 1

3
≈ 1− 1

6
− 1

72
− 1

432
− 5

10368
− O

(
7

62208

)

=
8467

10368
− O

(
7

62208

)

.

Using this approximation we then get that E is given by

E ≈ 485 + 198

(

3

(
8467

10368

))

− O

(

198(3)

(
7

62208

))

= 970.0885− O(0.06684028) .

4https://en.wikipedia.org/wiki/Taylor series
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This would make one conclude that the result is 971 which is incorrect. In fact even high
order approximations would need to be taken to solve the problem using this method and I
stopped working. It should be said that I wouldn’t expect anyone to be able to work this
problem in this way on the actual test and in fact while the manipulations above “could”
be done “by-hand” at some point it would take too much time to work the problem in this
manner on the actual test.

Problem 30

Let w = cos(36) and y = cos(72) if we take θ = 36 in

cos(2θ) = 2 cos2(θ)− 1 ,

we get
y = 2w2 − 1 .

Then if we take θ = 18 in

cos(2θ) = 1− 2 sin2(θ) = 1− 2 cos2(90− θ) ,

we get
w = 1− 2 cos2(90− 18) = 1− 2 cos2(72) = 1− 2y2 .

Adding these two equations for w and y gives

y + w = 2(w2 − y2) = 2(w − y)(w + y) or 2(w − y) = 1 .

Solving for x = w − y we get x = 1
2
.
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The 1976 Examination

Problem 1

The given statement means that

1− 1

1− x
=

1

1− x
.

Solving for x we get x = −1.

Problem 2

The expression under the square root will be negative unless it is zero which will only happen
if x = −1. Thus there is only one real number where the given expression is a real number.

Problem 3

If we put the square in a coordinate system with the corners at (0, 0), (2, 0), (2, 2), and (0, 2)
then the distances from (0, 0) for midpoints of the sides is

1 ,
√
22 + 12 ,

√
22 + 12 , 1 .

Summing these we get 2 + 2
√
5.

Problem 4

We are told that
n∑

k=1

rk−1 =
n−1∑

k=0

rk =
1− rn

1− r
= s ,

which is to be compared to

n−1∑

k=0

r−k =
1− r−n

1− r−1
=

rn − 1

rn(1− r−1)

=
1

rn−1

(
1− rn

1− r

)

=
s

rn−1
.
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Problem 5

Since our integer n is such that 10 < n < 100 we can write it as the two digit number n1n2

where

1 ≤ n1 ≤ 9

0 ≤ n2 ≤ 9 .

Then the problem is to count how many solutions to the following two digit subtraction
problem there are

n2n1 − n1n2 = 9 .

The above expression is equal to

(10n2 + n1)− (10n1 + n2) = 9 ,

or
10(n2 − n1) + n1 − n2 = 9 .

Thus we need to count the number of solutions to −10k + k = 9 for k ≡ n1 − n2. That last
equation has the unique solution k = −1. We are then lead to consider for how many values
of n1 and n2 do we have n1 − n2 = −1. We can have this later equation satisfied if

• If we have n1 = 1 then we need to have n2 = 2.

• If we have n1 = 2 then we need to have n2 = 3.

• If we have n1 = 3 then we need to have n2 = 4.

• (pattern continues)

• If we have n1 = 8 then we need to have n2 = 9.

This gives eight possible solutions.

Problem 6

The solutions to
x2 − 3x+ c = 0 , (251)

are

x =
3±

√
9− 4c

2
. (252)

Next the solutions to
x2 + 3x− c = 0 , (253)

are

x =
−3 ±

√
9 + 4c

2
. (254)
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If we consider one solution to Equation 251 say the positive solution from 252 and take the
negative of that expression we get

−3−
√
9− 4c

2
.

For this to be a solution to Equation 253 means that

−3 −
√
9− 4c

2
=

−3±
√
9− 4c

2
,

or
−
√
9− 4c = ±

√
9 + 4c ,

or squaring both sides we have −4c = +4c so that c = 0. Using the other root we also
conclude that c = 0. Thus Equation 251 is really

x2 − 3x = 0 ,

so x = 0 or x = 3.

Problem 7

The given expression will be positive if both factors are positive or both factors are negative.
If both factors are positive we need to have

1− |x| > 0 or |x| < 1 or − 1 < x < +1

1 + x > 0 or x > −1 .

Thus for both these conditions to hold we need to have −1 < x < +1. If both factors are
negative we need to have

1− |x| < 0 or |x| > 1 or x < −1 or x > +1

1 + x < 0 or x < −1 .

Thus for both these conditions to hold we need to have x < −1. These give two conditions
under which the given expression is positive

−1 < x < +1 or x < −1 .

These cannot be combined to be x < +1 since if x = −1 the product is zero and not positive.

Problem 8

The region specified is a square with vertices (+4,−4), (+4,+4), (−4,+4), and (−4,−4).
There are nine integer points per row and nine rows giving a total if 81 points that satisfy
the conditions stated.
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We now need to count how many integer points (i, j) satisfy

√

i2 + j2 ≤ 2 or i2 + j2 ≤ 22 .

This is a circle of radius 2 inside the square drawn earlier. Drawing it in the square we can
count the number of points that fall in side of it. We find thirteen points do. Thus the
desired probability is 13

81
.

Problem 9

Let the base of triangle ABC be AB. As D bisects AB and E bisects DB if we let the
length of EB be x we have

EB = x

DE = x

AD = 2x

AB = 4x .

Let the height of triangle ABC be denoted h. Then since we know triangle ABC’s area we
have

96 =
1

2
ABh =

1

2
(4x)h .

Thus xh = 48. Now for triangle AEF as F is the midpoint of leg BC this triangle has a
height of one-half that of triangle ABC. Thus its area is given by

1

2
AE

(
1

2
h

)

=
1

2
(3x)

(
1

2
h

)

=
3

4
xh .

Using what we know about xh we find this to be equal to 36.

Problem 10

The expression f(g(x)) is given by

f(g(x)) = m(px+ q) + n = mpx+mq + n ,

while the expression g(f(x)) is given by

g(f(x)) = p(mx+ n) = pmx+ pn + q .

If these are two be equal we must have

mq + n = pn+ q .

We can write the above as
n(1− p)− q(1−m) = 0 .
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Problem 11

Statements I and II directly contradict the given statement. Thus statement III and IV are
true.

Problem 12 (the largest number of crates)

To “make sure” we have crates with duplicate number of apples we could give ourselves
the worst case situation by putting as many different apples in each crate as possible. If
we let A be the number of apples in a crate then from the problem statement we are told
that 120 ≤ A < 144. Then to spread the number of apples out as much as possible we can
imagine a scenario where we start with

• we could have the first crate with 120 apples

• we could have the second crate with 121 apples

• we could have the third crate with 122 apples

• etc.

The crate number c to apple number a are related by c = a − 119. Thus the crate number
when we get the largest possible number of apples is c = 143 − 119 = 24. Thus every 24
creates we have spread the apples out as thinly as they will go. We can fill five blocks of
creates like this with eight left over as

128 = 5(24) + 8 .

Because we have this left over the largest value of n will be n = 5 + 1 = 6.

Problem 13

From the problem statement we have that x cows will produce x+1
x+2

cans of milk per-day and
thus the per-cow-per-day rate of milk production is given by dividing this expression by x
or

x+ 1

x(x+ 2)
.

With d days and x+ 3 cows we would produce an amount of milk given by

d(x+ 3)
x+ 1

x(x+ 2)
.

To have this be equal to the value of x+ 5 we must have d such that

d(x+ 3)
x+ 1

x(x+ 2)
= x+ 5 so d =

x(x+ 2)(x+ 5)

(x+ 1)(x+ 3)
.
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Problem 14

The sum of all the interior angles in a regular n-gon is given by Equation 5. Then using
Equation 18 as we know the values for the first and last element in the sequence we can
equate this to n

2
(100 + 140) and then solve for n. We find n = 6.

Problem 15

The given information means that when we divide each of the numbers by d we have

1059 = n1d+ r

1417 = n2d+ r

2312 = n3d+ r .

For some positive numbers n1, n2, and n3. If we subtract pairs of these equations we get

358 = (n2 − n1)d

1253 = (n3 − n1)d

895 = (n3 − n2)d .

Thus we see that d must be common divisor of the three numbers listed. If we look for the
largest common divisor we will have the smallest value for r. Using python we can find the
largest common divisor of the three numbers on the left-hand-side as

from fractions import gcd

gcd(358,gcd(1253,895)) # gives 179

Note that since 179 is prime there can be no smaller value for d (other than the value of one,
which is not allowed by the problem). Now that we know the value of d we go back to the
three equations we wrote down at the beginning and write

1059 = 5(179) + 164

1417 = 7(179) + 164

2312 = 12(179) + 164 .

Thus r = 164. Using what we know we have d− r = 179− 164 = 15.

Problem 16

We first draw both triangles. Then drop a perpendicular from vertex C to the segment AB
and denote that point G. This will bisect the segment AB which means that it divides the
triangle ABC into two triangles of equal area. The sides of the triangle AGC have lengths
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of h, GC and AC and angles of α, π
2
, and β. The altitude in triangle DEF (from F to

the segment DE intersecting at H) also divides this triangle into two other triangles one
of which is DHF . The lengths of this triangle are DH , h and DF . As we are told that
AC = DF we have that the triangles AGC and DHF are congruent and DH = GC. This
means that

∠ACB + ∠DFE = 2β + 2α = 2(β + α) = 2
(π

2

)

= π ,

and these two angles are supplementary. As there are two congruent triangles per big triangle
the areas of ABC and DEF are equal also.

Problem 17

Consider squaring the expression given. We have

(sin(θ) + cos(θ))2 = sin2(θ) + cos2(θ) + 2 sin(θ) cos(θ)

= 1 + sin(2θ) = 1 + a .

Taking the square root of this gives sin(θ) + cos(θ) =
√
1 + a. We take the positive square

root since we are told that θ is an acute angle.

Problem 18

We extend the segment DB until it intersects the circle at a point E. We have BCBE = AB2

or
3(DE + 6) = 36 so DE = 6 .

Now draw segments OE and OC each of length r the radius of the circle. Then if we use
the law of cosigns for triangle ODC we get

r2 = 22 + 32 − 2(2)(3) cos(θ) = 13− 12 cos(θ) ,

where θ is the angle ∠ODC. Again using the law of cosigns this time for the triangle ODE
we get

r2 = 62 + 22 − 2(6)(2) cos(π − θ) = 40 + 24 cos(θ) .

If we equate these two expressions and solve for θ we get cos(θ) = −3
4
. Putting this value

into either of the above two expressions gives r2 = 22 so r =
√
22.

Problem 19

The degree of the remainder when we divide p(x) by (x − 1)(x − 3) must be one less than
(x− 1)(x− 3) and so must be of the form ax+ b for constants a and b. Thus we have

p(x) = q(x)(x− 1)(x− 3) + ax+ b . (255)
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From what we are told we know that

p(x) = q1(x)(x− 1) + 3

p(x) = q2(x)(x− 3) + 5 .

Thus we know that p(1) = 3 and p(3) = 5. Using these two facts in Equation 255 we get

3 = a + b

5 = 3a+ b .

If we solve for a and b we get a = 1 and b = 2. Thus the remainder is x+ 2.

Problem 20

Our given expression is

4(loga(x))
2 + 3(logb(x))

2 = 8(loga(x))(logb(x)) .

Converting everything into natural logarithms we have

4

(
log(x)

log(a)

)2

+ 3

(
log(x)

log(b)

)2

= 8

(
log(x)

log(a)

)(
log(x)

log(b)

)

.

If we divide by log(x)2 (since x is never one) we get

4

log(a)2
+

3

log(b)2
=

8

log(a) log(b)
,

or
4(log(b))2 + 3(log(a))2 = 8 log(a) log(b) ,

or
4(log(b))2 − 8 log(a) log(b) + 3(log(a))2 = 0 .

If we let x = log(b) and y = log(a) then this is

4x2 − 8xy + 3y2 = 0 ,

which factors as
(2x− 3y)(2x− y) = 0 .

Thus the two solutions to the above are

2 log(b) = 3 log(a) or

2 log(b) = log(a) ,

or simplifying a bit

b2 = a3 or

b2 = a .

From which we see that none of the suggested solutions are correct.
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Problem 21

The expression given has an exponent that equals

1

7

n∑

k=0

(2k + 1) =
1

7

(

2

n∑

k=0

k + (n+ 1)

)

=
1

7

(

2

n∑

k=1

k + n+ 1

)

=
1

7

(

2

(
n(n + 1)

2

)

+ n+ 1

)

=
1

7
(n + 1)2 .

Now we want to have

2
(n+1)2

7 > 1000 = 103 = 23 · 53 .
We can find an approximate value for n by approximating the right-hand-side as

23 · 53 > 23 · 43 = 23 · 26 = 29 .

This means we want
(n+ 1)2

7
> 9 ,

or

n+ 1 > 8

√

1− 1

64
≈ 8

(

1− 1

128

)

.

Thus

n > 7− 8

128
= 7− 1

16
.

Thus we might try n = 7 and see if this works. In that case we have

(n + 1)2

7
=

64

7
=

63 + 1

7
= 9 +

1

7
.

Then with this we have

2
(n+1)2

7 = 29 · 21/7 < 512 · 21/2 ≈ 512(1.41) = 716.8 < 1000 .

Lets then try n = 8 and see if this works. We have

(n+ 1)2

7
=

81

7
=

70 + 11

7
= 10 +

11

7
.

Then with this we have

2
(n+1)2

7 = 210 · 211/7 = 1024 · 211/7 > 1000 .

Thus we have n = 8. Note the solution to this problem is wrong. We can use a computer to
calculate

n = 7 where 2
(n+1)2

7 = 567

n = 8 where 2
(n+1)2

7 = 3043.3 > 1000 .
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Problem 22

Lets put the vertices of the triangle at the locations (0, 0), (s, 0), and

(

s cos
(π

3

)

, s sin
(π

3

))

=

(

1

2
s,

√
3

2
s

)

.

Then the sum of the distance squared (lets call it D) to each of the vertices is the expression

D = x2 + y2 + (s− x)2 + y2 +
(s

2
− x
)2

+

(√
3

2
s− y

)2

= 3(x2 + y2)− 3sx−
√
3sy + 2s2 ,

when we expand and simplify. If we set this equal to a we get

x2 − sx+ y2 − 1√
3
sy =

1

3
(a− 2s2) .

If we “complete the square” of the quadratic expressions for x and y we get

(

x− s

2

)2

+

(

y − s

2
√
3

)2

=
1

3
(a− s2) .

This is a circle as long as a > s2.

Problem 23

The given expression is equal to
(
n− k − k − 1

k + 1

)(
n

k

)

=

(
n− k − (k + 1)

k + 1

)(
n

k

)

=

(
n− k

k + 1
− 1

)(
n

k

)

=

(
n− k

k + 1

)(
n

k

)

−
(
n

k

)

.

As we know that
(
n
k

)
is always an integer our given expression will be an integer if the first

part of the above is. To study that part we write it as
(
n− k

k + 1

)(
n

k

)

=
n− k

k + 1

(
n!

k!(n− k)!

)

=
n!

(k + 1)!(n− k − 1)!
=

n!

(k + 1)!(n− (k + 1))!

=

(
n

k + 1

)

,

which is an integer for all n and k.
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Problem 25

Using the definition of ∆ we can compute

∆1 = 1− 1 = 0

∆n = (n+ 1)− n = 1

∆n2 = (n+ 1)2 − n2 = n2 + 2n+ 1− n2 = 2n + 1

∆n3 = (n+ 1)3 − n3 = n3 + 3n2 + 3n + 1− n3 = 3n2 + 3n+ 1 .

Using these we have

∆2n3 = ∆(3n2 + 3n+ 1) = 3∆n2 + 3∆n+ 0

= 3(2n+ 1) + 3(1) = 6n+ 6 ,

and
∆3n3 = 6∆n + 0 = 6 .

Thus we see that ∆4n3 = 0.

Problem 27

Lets denote the total expression as N . Then to start this problem we move the expression
√

3− 2
√
2 to the left-hand-side and square. When we do this we get

(N −
√

3− 2
√
2)2 =

(√√
5 + 2 +

√√
5− 2

√√
5 + 1

)2

.

The right-hand-side can be simplified as

√
5 + 2 + 2

√
5− 4 +

√
5− 2√

5 + 1
=

2
√
5 + 2√
5 + 1

= 2 .

If we then use this and then solve for N we get

N = ±
√
2−

√

3− 2
√
2 .

From the expression originally given in the problem statement for N we know that N > 0
and thus we need to take the positive square root. Now note that we can write

3− 2
√
2 = 2− 2

√
2 + 1 = (

√
2− 1)2 ,

thus when we take the square root of this required by the expression above for N we get

N =
√
2− (

√
2− 1) = 1 .
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Problem 28

In this problem we want to count distinct intersections. As there are 100 total lines there

would be

(
100
2

)

= 4950 intersections if the lines were assumed to have no structure. We

know that 25 of these lines are parallel and thus cannot have an intersection. Thus we need

to remove

(
25
2

)

= 300 from the previous number. In addition, another 25 (the lines

L1, L5, · · ·L97) intersect at a single point and thus from all

(
25
2

)

= 300 pairs of these

single point intersection lines there is only one distinct point added to the count (and not
(

25
2

)

). Thus the number of distinct intersections is then

(
100
2

)

−
(

25
2

)

−
((

25
2

)

− 1

)

= 4950 .

Problem 30

The first time I tried to solve this problem I was unable to do so. When I revisited this
problem when working the “review” problems for the test in 2000 I was able to make more
progress and with a “peak” at the solutions was able to derive a solution.

We can make these equations more “symmetric” if we let

u = x

v = 2y

w = 4z .

These are almost “trivial” transformations and given (u, v, w) we can immediately determine
(x, y, z). Using the above transformations the given equations become

u+ v + w = 12

uv + vw + uw = 44

uvw = 48 .

Its hoped that the above are “recognized” as the coefficients of t in the expansion of

(t− u)(t− v)(t− w) .

What I mean is that expanding the above gives

t3 − (u+ v + w)t2 + (uv + uw + vw)t− uvw ,

and from the equations given we can evaluate the coefficients of ti for i ∈ {0, 1, 2} to find

(t− u)(t− v)(t− w) = t3 − 12t2 + 44t− 48 .
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Now the right-hand-side of the above is a third degree polynomial in t and as such has three
roots. From the left-hand-side of the above this means that each root could equal one of
u, v, or w. Factoring the right-hand-side of the above gives the roots t ∈ {2, 4, 6}. Thus
(u, v, w) for example can equal (2, 4, 6) or any permutation of these three numbers. There
are 3! = 6 such permutations and thus six solutions to the given original system.
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The 1977 Examination

Problem 1

For this we have
x+ y + z = x+ 2x+ 2(2x) = 7x .

Problem 2

We could have equilateral triangles that have different edge lengths and are thus not con-
gruent to each other.

Problem 3

We have
50n+ 25n+ 10n+ 5n+ n = 273 .

Solving for n gives n = 3. The total number of coins he has is then 5n = 15.

Problem 4

We start this problem by defining a few angles. First let x = ∠ECD and y = ∠FBD. Then
since △ECD is isosceles we have θ = ∠CDE = ∠DEC. Since △FBD is isosceles we have
φ = ∠FDB = ∠DFB. As we know that ∠CAB = 80◦ we have that

x+ y = 180− 80 = 100 .

The same theorem for the sum of the angles in the triangles ECD and DFB gives

x+ 2θ = 180 (256)

y + 2φ = 180 . (257)

If we add all of the angles in the quadrilateral AEDF up we get

80 + (180− θ) + (180− φ) + ∠EDF = 360 ,

or
80− θ − φ+ ∠EDF = 0 . (258)

If we add Equations 256 and 257 together we get

x+ y + 2(θ + φ) = 360 .

But we know that x + y = 100 and so the above becomes θ + φ = 130. Using this in
Equation 258 we get

80− 130 + ∠EDF = 0 so ∠EDF = 50 .
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Problem 5

Points on the line segment between A and B will certainly have their undirected distance
sum to the length between AB. Note that an ellipse has the sum of the distances equal to
a fixed constant larger than the distance between A and B.

Problem 6

Let a = 2x and b = y
2
then the expression we are given is equivalent to

(a+ b)−1

(
1

a
+

1

b

)

= (a + b)−1

(
a + b

ab

)

=
1

ab
.

From what we know about a and b this is equal to

1

2x
(
y
2

) =
1

xy
.

Problem 7

Write this expression for t as

1

1− 21/4
=

1 + 21/4

(1− 21/4)(1 + 21/4)
=

1 + 21/4

1− 21/2

=
(1 + 21/4)(1 + 21/2)

(1− 21/2)(1 + 21/2)
=

(1 + 21/4)(1 + 21/2)

(1− 2)

= −(1 + 21/4)(1 + 21/2) .

Problem 8

Notice that if x < 0 then x
|x| = −1 and if x > 0 then x

|x| = +1. Now the expression abc can
be positive or negative depending on the signs of a, b, and c. In Table 7 we enumerate the
possible signs of a, b, the sign of the product abc, and the value of the requested sum. Looking
in that table we see that there are only three possible values for the the sum {−4, 0,+4}.

Problem 9

Let the arc AB be x and AD be y. Then from the problem statement we have that

3x+ y = 360

1

2
(x− y) = 40 .
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sign of a sign of b sign of c sign of abc value
+ + + + 4
+ + − − 0
+ − + − 0
− + + − 0
− − + + 0
− + − + 0
+ − − + 0
− − − − −4

Table 7: The possible values for the desired expression.

Solving these for x and y we find x = 110 and y = 30. We want ∠ACD which is 1
2
(y− 0) =

30
2
= 15.

Problem 10

We want the value of the sum a7 + a6 + · · ·+ a1 + a0 which we will get if we set x = 1 in the
function given. This gives the desired sum as the value

(3− 1)7 = 27 = 128 .

Problem 11

The value of [x] is the unique value of n such that n ≤ x < n + 1. If we add one to this we
get

n + 1 ≤ x+ 1 < (n+ 1) + 1 .

Thus we see that [x+ 1] = n+ 1 = [x] + 1.

We can show that [x + y] 6= [x] + [y] by considering the following case. Let x = y = 0.5
so that x + y = 1. From these values we get [x] = [y] = 0 and [x + y] = [1] = 1. Thus
[x+ y] = 1 6= [x] + [y] = 0.

Next we can show that [xy] 6= [x][y] by considering the following example. Let x = 0.5 and
y = 2. Then we have [x] = 0 and [y] = 2. The product however is [xy] = [1] = 1 6= [x][y] = 0.
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Problem 12

From the given problem statement (using obvious notation) we have

a = b+ c+ 16 (259)

a2 = (b+ c)2 + 1632 . (260)

Using Equation 259 in Equation 260 we have

a2 = (a− 16)2 + 1632 ,

which simplifies to a = 59. Using this in Equation 260 we then have

592 = (b+ c)2 = 1632 ,

which simplifies to b + c = ±43. As a, b, and c are ages they are all positive and we have
b+ c = 43. From all of this we have that

a+ b+ c = 102 .

Problem 13

To be a geometric progression we need to have an+1 = ran for some constant r. If we iterate
the given expression (assuming we are given values for a0 and a1) we have

a3 = a1a2

a4 = a2a3 = a1a
2
2 = r(a1a2) so r = a2

a5 = a4a3 = (a1a
2
2)(a1a2) = a21a

3
2 = r(a1a

2
2) so r = a1a2

a6 = a5a4 = (a21a
3
2)(a1a

2
2) = a31a

5
2 = r(a21a

3
2) so r = a1a

2
2

a7 = a6a5 = (a31a
5
2)(a

2
1a

3
2) = a51a

8
2 = r(a31a

5
2) so r = a21a

3
2 .

In order to make this true for all n we would need a value of r that satisfied the above
expressions. This can only happen if a1 = a2 = 1.

Problem 14

If m = 0 then we must have n = 0 and if n = 0 then we must have m = 0. Thus one solution
is (m,n) = (0, 0). Solving for n gives

n =
m

m− 1
.

Note we can’t have m = 1 to have a valid solution for n. If m = 1 then we would need to
have 1 + n = n which cannot be true for any integer value of n. Thus m 6= 1. The above
solution for n will not be a integer unless m− 1 divides m. This can only happen if m = 2.
Then n = 2 and we have our only other solution.
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Problem 15

We need to determine the length of one side of this triangle to answer this problem. We can
do this if from the centers of the bottom two circles we drop perpendiculars to the x-axis
and draw segments into the two corners on the base of the triangle. Consider the left-most
bottom circle. Note that the segment drawn from its center to the left-most corner of the
triangle is the hypotenuse of a right triangle with a leg equal to the radius of the circle of
three. Thus the other leg has a length h where h is given by

tan(30◦) =
3

h
so h = 3

√
3 .

Using this the length of one side of the triangle is given by

3
√
3 + 2(3) + 3

√
3 = 6(1 +

√
3) .

The perimeter of the triangle is then given by three times this or 18(1 +
√
3).

Problem 16

Note that we can write the expression we are summing as

cos(45 + 90n) = cos(45) cos(90n)− sin(45) sin(90n)

=
1√
2
(cos(90n)− sin(90n)) .

Now for n = 1 the expression without the
√
2 fraction evaluates

0− 1 = −1

For n = 2 the expression without the
√
2 fraction evaluates to

−1− 0 = −1

For n = 3 the expression without the
√
2 fraction evaluates to

0− (−1) = 1 .

For n = 4 the expression without the
√
2 fraction evaluates to

1− 0 = 1 .

For larger values of n these values repeat periodically with a period of four. Using this
information we can write the sum we want to evaluate as

40∑

n=0

in cos(45 + 90n) =
∑

n=0,4,8,··· ,40
in cos(45 + 90n) +

∑

n=1,5,9,··· ,37
in cos(45 + 90n)

+
∑

n=2,6,10,··· ,38
in cos(45 + 90n) +

∑

n=3,7,11,··· ,39
in cos(45 + 90n)

=
1√
2

(
40

4
+ 1

)

+
i√
2
(−10) +

−1√
2
(−10) +

−i√
2
(+10)

=
1√
2
(21− 20i) .
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Problem 17

To have the numbers on the die be in an arithmetic progression with a common difference
of one means that the three numbers must able to be ordered into one of the following sets

(1, 2, 3) , (2, 3, 4) , (3, 4, 5) , (4, 5, 6) .

These are 3! orderings of the three numbers in each tuple above. This means there are
4(3!) = 24 possible orderings of the numbers on the die that are of the desired type. As
we can have 63 = 216 possible orderings of three face numbers the probability we get the
ordering we want is

24

216
=

1

9
.

Problem 18

For this we write y as

y =

(
ln(3)

ln(2)

)(
ln(4)

ln(3)

)

· · ·
(
ln(32)

ln(31)

)

=
ln(32)

ln(2)
= log2(32) = 5 .

Problem 19

In each triangle, the center of the circumscribing circle is at the intersection of the perpen-
dicular bisectors of the three sides. Note that one of the three sides of each of the four
triangles is on the diagonal. Considering one of the two diagonals, note that the perpendic-
ular bisectors on the two sides of E must be parallel. This means that these two sides of
our quadrilateral must be parallel. In the same way, the other two sides of our quadrilateral
are parallel since they must pass though the perpendicular bisectors of the other two parts
of the other diagonal. Thus PQRS is a parallelogram.

Problem 20

At the location of each letter in the given grid define the value of n to be the number of
ways that we can finish the word CONTEST starting at that letter. Computing this value
for the bottom row is easy. At each of these letters there is only one way to finish the word
by walking from the outside inward. In the same way there is only one way to finish the
word CONTEST starting at any location in the middle column (the tallest one that spells
CONTEST vertically). Thus we have evaluated n at the following locations

C 1

O 1
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N 1

T 1

E 1

S 1

T 1 1 1 1 1 1 1 1 1 1 1 1 1

C O N T E S T S E T N O C

I’ve placed the word CONTEST along the horizontal and vertical axis to help orient the
reader. Lets now consider the row before the last one. At the (S, S) location there are two
ways to finish the word CONTEST, we could go down or right. This fills in the following
two locations

C 1

O 1

N 1

T 1

E 1

S 2 1 2

T 1 1 1 1 1 1 1 1 1 1 1 1 1

C O N T E S T S E T N O C

At the location (S,E) to complete the word CONTEST if we go right we have two paths
where if we go down we have only one path. This means that we have a total of three ways
to complete our word. This gives the following

C 1

O 1

N 1

T 1

E 1

S 3 2 1 2 3

T 1 1 1 1 1 1 1 1 1 1 1 1 1

C O N T E S T S E T N O C

In general it seems the pattern is to add together the number on the right with the number
below. Following this pattern we get for the second to last row

C 1

O 1

N 1

T 1

E 1

S 6 5 4 3 2 1 2 3 4 5 6
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T 1 1 1 1 1 1 1 1 1 1 1 1 1

C O N T E S T S E T N O C

We can continue this pattern and we end up with the following

C 1

O 6 1 6

N 15 5 1 5 15

T 20 10 4 1 4 10 20

E 15 10 6 3 1 3 6 10 15

S 6 5 4 3 2 1 2 3 4 5 6

T 1 1 1 1 1 1 1 1 1 1 1 1 1

C O N T E S T S E T N O C

To compute the total number of ways to spell CONTEST we add up the numbers over each
of the “C”s in the above grid. We find

1 + 2(6) + 2(15) + 2(20) + 2(15) + 2(6) + 2(1) = 127 .

Problem 21

We first solve for a in the second equation given to get

a = x2 − x .

Put this into the first equation to get

x2 + (x2 − x)x+ 1 = 0 ,

or
x3 + 1 = 0 .

This has three solutions of which there is only one real solution. The real solution is x = −1
and so with that we have a = 2.

Problem 22

If we take a = b = 0 then the given relationship would give 2f(0) = 0 and thus f(0) = 0
(and not f(0) = 1). If we take a = 0 then we get

f(b) + f(−b) = 0 + 2f(b) = 2f(b) ,

or
f(−b) = f(b) ,

which is one of the choices.
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Problem 23

Let the roots of the expression
x2 +mx+ n = 0 , (261)

be given by r1 and r2. Then we can write the above in factored form as

(x− r1)(x− r2) = 0 .

Expanding this and equating coefficients with Equation 261 we see that

r1r2 = n (262)

−(r1 + r2) = m. (263)

The next part of the problem tells us that the roots of

x2 + px+ q = 0 , (264)

can be written as
(x− r31)(x− r32) = 0 . (265)

When we expand the above and compare coefficients with Equation 264 we must have

r31r
3
2 = q (266)

−(r31 + r32) = p . (267)

Now from Equations 262 and 266 we have n3 = q. Next if we cube Equation 263 we get

−(r1 + r2)
3 = m3 ,

or expanding
−(r31 + 3r21r2 + 3r1r

2
2 + r32) = m3 .

Since we know that r31 + r
3
2 = −p from Equation 267 we can write the previous expression as

−(−p + 3r1r2(r1 + r2)) = m3 .

Again using Equation 262 and 263 the above becomes

−(−p + 3n(−m)) = m3 .

If we solve the above for p we get p = m3 − 3mn.

Problem 24

We will use partial fractions to write the terms in the sum as

1

(2n− 1)(2n+ 1)
=

A

2n− 1
+

B

2n+ 1
.
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Multiplying by (2n+ 1)(2n− 1) this means that

1 = A(2n + 1) +B(2n− 1) .

If we let n = 1
2
then we get

1 = A(1 + 1) so A =
1

2
.

If we let n = −1
2
then we get

1 = B(−2) so B = −1

2
.

Thus we have shown that

1

(2n− 1)(2n+ 1)
=

1

2(2n− 1)
− 1

2(2n+ 1)
.

Thus the sum we want to evaluate can be written as

128∑

n=1

1

(2n− 1)(2n+ 1)
=

1

2

128∑

n=1

1

2n− 1
− 1

2

128∑

n=1

1

2n+ 1

=
1

2

128∑

n=1

1

2n− 1
− 1

2

129∑

n=2

1

2(n− 1) + 1

=
1

2

128∑

n=1

1

2n− 1
− 1

2

129∑

n=2

1

2n− 1

=
1

2

(

1 +

128∑

n=2

1

2n− 1
−

128∑

n=2

1

2n− 1
− 1

2(129)− 1

)

=
1

2

(

1− 1

257

)

=
128

257
.

Problem 25

Using the prime factorization theorem we can write 1005! as the product of primes

1005! = 2p3q5r7s11t . . . .

The largest value of n that we can divide 1005! by 10n will be the smaller of the two numbers
p and r in the above prime factorization. We will now determine the number r. The numbers
between one and 1005 that are divisible by five at least once are

5 , 10 , 15 , 20 , . . . .

This is ⌊1005
5
⌋ = ⌊201⌋ = 201 numbers. The numbers between one and 1005 that are divisable

by five at least twice are the numbers

25 , 50 , 75 , . . . .
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There are ⌊1005
25

⌋ = ⌊40.2⌋ = 40 of these numbers. In the same way the numbers between
one and 1005 that are divisable by five at least three times are ⌊1005

125
⌋ = ⌊8.04⌋ = 8 and the

numbers between one and 1005 that are divisable by five at least four times are ⌊1005
625

⌋ = 1.

The power of five in the prime factorization of 1005! is then

r = 4(1) + 3(8− 1) + 2(40− 8) + 1(201− 40) = 250 .

This is the sum of one number that is divisable by 54. Of the eight numbers that are divisable
by 53 (one is already counted) and the others give three powers of five each. Of the fourth
numbers that are divisable by 52 (eight have already been counted) and the others give two
powers of five each etc.

Another way to compute this same number is to recognize that we have 201 numbers that will
contribute at least one power of five in the prime factorization, 40 numbers that contribute
at least another power of five, 8 numbers that contribute yet another power of five and finally
one number that will contribute one more power of five. This would give

r = 201 + 40 + 8 + 1 = 250 .

As ⌊1005
2
⌋ = 502 we have p > 502 so the number n = min(p, r) = r = 250.

Problem 26

Draw the quadrilateral with vertices as MNPQ. Then by drawing the two diagonals we can
write the area A of the full quadrilateral in terms of the two triangles (using the law of sines)
that each diagonal divides it into. For example we have

A = △MNP +△PQM

=
1

2
ab sin(N) +

1

2
cd sin(Q) ,

and

A = △MNQ +△NPQ

=
1

2
ad sin(M) +

1

2
bc sin(P ) .

If we multiply both of these expressions for A by 1
2
and then add (to get back A) we get

A =
1

4
ab sin(N) +

1

4
cd sin(Q) +

1

4
ad sin(M) +

1

4
bc sin(P )

≤ 1

4
(ab+ cd+ ad+ bc) =

1

4
(a + c)(b+ d) .

This inequality will be an equalty if and only if sin(N) = sin(Q) = sin(M) = sin(P ) = 1
which means that all angles are 90 degrees and we have a rectangle.
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Problem 27

The equation of a sphere with a radius of a that is tangent to the two vertical walls and the
horizontal floor must have its center at a distance of a from each of these “planes”. If we take
the intersection of the walls and the floor as the origin of a three dimensional corridinate
system the equation of the sphere is given by

(x− a)2 + (y − a)2 + (z − a)2 = a2 .

We are next told that the point (5, 5, 10) is on each ball (we assume this means that it is on
the surface of the sphere). Thus for both spheres we have

(5− a)2 + (5− a)2 + (10− a)2 = a2 .

If we expand the quadratics in this expression and simplify we get

75− 20a+ a2 = 0 .

We can solve this quadradic equation for a to get

a =
20±

√

400− 4(75)

2
,

which simplify to the two numbers 5 and 15. As these are radius of the two balls the sum of
the two diameters is then 10 + 30 = 40.

Problem 28

To start we note that we can sum the terms of g(x) using the geometric series to get

g(x) =
1− x6

1− x
.

From this we see that the roots of g(x) will be the roots of the numerator 1− x6 = 0 (which
are the six roots of unity) but not the value x = 1 which is the zero of the denominator.
These give five roots x = ri for i = 0, 1, 2, 3, 4 where four roots are complex and one root
x = −1 is real. For each of these numbers we must have have x6 = 1.

Next note that if we want to divide g(x12) by g(x) then we can write

g(x12) = Q(x)g(x) +R(x) , (268)

where Q(x) is the quotient polynomial and R(x) is the remainder polynomial in this division.
As the degree of g(x) is five and the degree of the remainder polynomial R(x) must be less
than that of g(x) the degree of R(x) will be four or less.

For the five roots of g(x) we found above let x = ri and since for these roots x12 = (x6)2 =
12 = 1 Equation 268 becomes

g(1) = Q(1)g(1) +R(ri) so 6 = R(ri) .

As this holds true for the five roots i = 0, 1, 2, 3, 4 we see that R(x) is a polynomial of degree
four or less that equals 6 at five distinct points. Because of this R(x) must in fact be the
constant function and we have R(x) = 6 for all x.
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Problem 29

If we expand the left-hand-side of the given expression we get

x4 + x2y2 + x2z2 + x2y2 + y4 + y2z2 + x2z2 + y2z2 + z4 ,

or
x4 + y4 + z4 + 2(x2y2 + x2z2 + y2z2) . (269)

Using this in the left-hand-side of the inequality given for this problem we have

2(x2y2 + x2z2 + y2z2) ≤ (n− 1)x4 + (n− 1)y4 + (n− 1)z4 .

On solving for n−1
2

we get
n− 1

2
≥ x2y2 + x2z2 + y2z2

x4 + y4 + z4
.

Note that if x = y = z then the right-hand-side of the expression simplifies and we get

n− 1

2
≥ 1 so n ≥ 3 .

This means that for the given inequality to be true we must have n ≥ 3. We can show that
n = 3 is the smallest n can be as if we take x = y = z then the left-hand-side of the given
inequality becomes

9x4 ,

while the right-hand-side of the given inequality becomes

3nx4 ,

and these two expressions are equal if n = 3.

Problem 30

We first draw a circle through the ten corner points of the nonagon. We next draw segments
(of length r) from the center of this circle to create isosceles triangles with sides a, b and d.
Note that the top vertex angle of the isosceles triangle with the base of length a (and two
equal sides of r) will have an angle of

360

9
= 40 ,

as there are nine sides to a nonagon. In the same way, the top vertex angles of the isosceles
triangles with base lengths of b and d are

2

(
360

9

)

= 80

4

(
360

9

)

= 160 ,
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respectively. Next we need a result on isosceles triangles that relates the lengths of the two
equal sides to that of the base. If we let the two equal sides of the isosceles triangle be of
length r, the top vertex angle be θ, and the base be of length b then

b

2
= r cos

(
π

2
− θ

2

)

= r sin

(
θ

2

)

.

Using this result for the three isosceles triangles introduced above we have

a = 2r sin(20)

b = 2r sin(40)

d = 2r sin(80) .

From these three equations we want to eliminate r to get an equation that relates a, b, and
d. To do that we will use

sin(x) + sin(y) = 2 sin

(
x+ y

2

)

cos

(
x− y

2

)

. (270)

If we consider

a+ b = 2r (sin(20) + sin(40))

= 2r(2) sin(30) cos(10) .

Recall that sin(30) = 1
2
and cos(10) = sin(80) = d

2r
to get

a+ b = 4r

(
1

2

)(
d

2r

)

= d .
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The 1978 Examination

Problem 1

We start by writing the given equation as

(
2

x

)2

− 2

(
2

x

)

+ 1 = 0 .

Using the quadratic equation on the variable 2
x
we get

2

x
=

2±
√

4− 4(1)

2
= 1 .

Problem 2

In this problem we are told that
4

C
= d ,

or if we write everything in terms of the radius r we get

4

2πr
= 2r .

Solving for r we get r = ± 1√
π
. Using this we have that the area is given by

A = πr2 =
π

π
= 1 .

Problem 3

If we put everything in terms of x. We have
(

x− 1

x

)(

y +
1

y

)

=

(

x− 1

x

)(
1

x
+ x

)

= x2 − 1

x2
= x2 − y2 .

Problem 4

Let the given expression be denoted E. Then we have

E = (a+ b+ c− d) + (a+ b− c+ d) + (a− b+ c+ d) + (−a + b+ c− d)

= 2a+ 2b+ 2c+ 2d

= 2(a+ b+ c+ d) = 2(1111) = 2222 .
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Problem 5

From the problem statement if we let b1, b2, b3, and b4 be the amount each of the boys payed.
Then from the problem statement we have

b1 + b2 + b3 + b4 = 60

b1 =
1

2
(b2 + b3 + b4)

b2 =
1

3
(b1 + b3 + b4)

b3 =
1

4
(b1 + b2 + b4) .

These are four equations and four unknowns which we can write as follows

b1 + b2 + b3 + b4 = 60

2b1 − b2 − b3 − b4 = 0

−b1 + 3b2 − b3 − b4 = 0

−b1 − b2 + 4b3 − b4 = 0 .

We can solve such a system by hand or using R as follows

d = c( 1, 1, 1, 1, 2, -1, -1, -1, -1, 3, -1, -1, -1, -1, 4, -1 )

A = matrix( data=d, nrow=4, ncol=4, byrow=T )

b = c( 60, 0, 0, 0 )

solve( A, b )

This gives

[1] 20 15 12 13

Thus the fourth boy pays 13.

Problem 6

We are given the following two equations

x = x2 + y2 (271)

y = 2xy . (272)

If y = 0 then Equation 272 is satisfied for all x. If y = 0 then Equation 271 is x = x2

which has the solutions x = 0 or x = 1. Thus (0, 0) and (1, 0) are two solutions to the above
equations.
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If we next assume that y 6= 0 then Equation 272 becomes 1 = 2x so x = 1
2
. Putting this

value into Equation 271 we get

1

2
=

1

4
+ y2 so y = ±1

2
.

Thus we have found two more solutions
(
1
2
,±1

2

)
.

Problem 7

If we draw rays diagonally across the hexagon, connecting adjacent vertices, then all rays
intercept at the center of the hexagon and will break the hexagon up into six equal triangles.
The central angle in each triangles that is pointing into the center of the hexagon has a
degree measure of

360

6
= 60 .

If we draw a vertical segment perpendicular to two sides of the hexagon and through the
center we split this 60 degree angle in half to get a 30 degree angle. This later angle is in a
right triangle with one edge length 6 which is one-half of the length 12 (the distance across
the hexagon) and another leg of length one-half the side of the hexagon. Lets denote this
last length by s

2
where s is the length of a side of the regular hexagon. Thus we have that

tan(30◦) =
s/2

6
,

or
1√
3
=

s

12
so s = 4

√
3 .

Problem 8

As x, a1, a2, and y is an arithmetic sequence it takes the form

an = x+ nh for n = 0, 1, 2, 3, . . . ,

for some value of h. If we let n = 3 then we see that

3 = y = x+ 3h so h =
y − x

3
.

In the same way as x, b1, b2, b3, and y is an arithmetic sequence it takes the form

bn = x+ nk for n = 0, 1, 2, 3, . . . ,

or some value of k. If we let n = 4 then we see that

4 = y = x+ 4k so k =
y − x

4
.
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Using this we can then compute

a2 − a1
b2 − b1

=
(x+ 2h)− (x+ h)

(x+ 2k)− (x+ k)
=
h

k

=
y − x

3

(
4

y − x

)

=
4

3
.

Problem 9

If x < 0 then x− 1 < −1 and

√

(x− 1)2 = |x− 1| = −(x− 1) ,

since x− 1 is negative. Thus in this case

|x−
√

(x− 1)2| = |x+ (x− 1)| = |2x− 1| .

As we are told that x < 0 we have 2x < 0 so 2x − 1 < −1 i.e. 2x − 1 is negative and now
know that taking the absolute value of this expression is the same as multiplying by negative
one or

|2x− 1| = 1− 2x .

Problem 10

If we draw a picture of the suggested situation we see that if A is located outside of the
circle on the ray from P to B the it will be closer to B then to all the other points on the
circle. We can even bring the point A inside the circle until it reached the center at P . If
we pass through the center the points on the ”bottom” of the circle will be closer to A than
the point B and we won’t have the desired condition hold. This gives the set of point that
are on the ray starting at the point P and in the direction of B.

Problem 11

Our two equations are

x+ y = r (273)

x2 + y2 = r . (274)

Note that the first equation is a diagonal line though the points (r, 0) and (0, r) and the
second equation is a circle centered at the origin with a radius

√
r. If we draw the line first

and then imagine increasing the radius of a circle centered at the origin until it touches the
line we see that it must touch the line with a radius that is at an angle of 45 degrees with
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the x-axis. This means if T is the point of tangency then the point T has x and y coordinate
given by

x =
√
r cos

(π

4

)

=

√
r√
2

y =
√
r sin

(π

4

)

=

√
r√
2
.

If we put these values into Equation 273 we get.

√
r√
2
+

√
r√
2
= r ,

or
√
r =

√
2 and thus r = 2.

Problem 12

Drawing the suggested triangle, lets denote the angles ∠DAE and ∠AED with the variables
x and y respectively. As the angles in a triangle must sum to 180 degrees we have that

x+ 140 + y = 180 or x+ y = 40 .

This is one relationship between x and y. To find another one we will draw the other segments
as described in the problem and relate the angles formed. As DE = DC the triangle △CDE
is isosceles and we have that ∠DCE = y. As AB = BC the triangle △ABC is also isosceles
and we have that ∠ACB = x. As the segment ACE is a straight line we have that

∠ACB + ∠BCD + ∠DCE = 180 .

As we know ∠ACB + ∠DCE = x + y = 40 this means that ∠BCD = 140. Next as
BC = CD we have that the triangle △BCD is isosceles and ∠CBD = ∠CDE. The fact
that all three angles in this triangle must sum to 180 means that

∠CBD + ∠CDE + ∠BCD = 180 .

But ∠BCD = 140 so the above becomes

2∠CBD = 40 so ∠CBD = ∠CDE = 20 .

As the segment ABD is a straight line we have

∠ABC = 180− ∠CBD = 180− 20 = 160 .

Finally as the triangle △ABC is isosceles we have that

∠BAC + ∠ACB + ∠ABC = 180 or 2x+ 160 = 180 .

Thus x = 10.
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Problem 13

We are told that c and d satisfy
x2 + ax+ b = 0 , (275)

and that a and b satisfy
x2 + cx+ d = 0 , (276)

and we want to know the value of a + b+ c + d. From Equation 275 we know that c and d
must be given by

−a±
√
a2 − 4b

2
, (277)

and from Equation 276 we know that a and b must be given by

−c±
√
c2 − 4d

2
, (278)

If we now try to evaluate a+ b+ c+ d by using Equation 277 for c and d we get

a+ b+

[−a +
√
a2 − 4b

2

]

+

[−a−
√
a2 − 4b

2

]

= b .

We could also seek to evaluate a + b+ c+ d by using Equation 278 for a and b we get
[−c +

√
c2 − 4d

2

]

+

[−c−
√
c2 − 4d

2

]

+ c+ d = d .

Thus as both b and d equal a + b + c + d we have shown that b = d. Thus lets call the
common value b i.e. we replace the variable d with the variable b in our problem statement.
Restated in this way, we have that c and b are solutions to

x2 + ax+ b = 0 ,

and a and b are solutions to
x2 + cx+ b = 0 .

Since b is a solution of both equations we have that

b2 + ab+ b = 0 and b2 + cb+ b = 0 .

If we subtract these two equations we get (a − c)b = 0. Since b 6= 0 we must have a = c.
Replacing all c’s with a’s our problem is now the statement that a and b are solutions to

x2 + ax+ b = 0 .

As a and b are roots this means that the previous polynomial must factor as

(x− a)(x− b) = x2 + ax+ b .

If we multiply out the left-hand-side and equate the coefficients of x with the polynomial on
the right-hand-side we get that

−(a+ b) = a

ab = b .

As we are told that b 6= 0 the second equation gives that a = 1. If we put that in the first
equation we get −1− b = 1 so b = −2. In summary then we have the values a = 1, b = −2,
c = 1, and d = −2. With these values we find a+ b+ c+ d = −2.
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Problem 14

We are told that n is a solution to the given equation. This means that

n2 − an + b = 0 .

We are also told that a in base n is 18 so

a = n+ 8 .

Then the first equation gives
n2 − (n + 8)n+ b = 0 ,

or
−8n + b = 0 or b = 8n .

This statement is the same as b in base n is 80.

Problem 15

Square the given expression to get

sin2(x) + 2 sin(x) cos(x) + cos2(x) =
1

25
,

or

2 sin(x) cos(x) =
1

25
− 1 = −24

25
. (279)

Note that when 0 ≤ x < π we have that sin(x) > 0. The above expression states that the
product of sin(x) and cos(x) must be negative. This means that cos(x) must be negative
(since we know that sin(x) > 0) and we thus have that π

2
< x < π. The left-hand-side of

Equation 279 is equal to sin(2x) and we thus have

sin(2x) = −24

25
.

Using this we can compute

cos(2x) = ±
√

1− sin2(2x) = ±

√

1−
(
24

25

)2

= ± 7

25
.

Now since we know that π
2
< x < π we know that π < 2x < 2π and thus that cos(2x) < 0.

Thus we need to take the minus sign in the above. Using this we can conclude that

tan(2x) =
−24

25

− 7
25

=
24

7
.

If we then recall the double-angle formula for tan we have

tan(2x) =
2 tan(x)

1− tan2(x)
. (280)
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If we let T ≡ tan(x) then using what we know

24

7
=

2T

1− T 2
.

This is a quadratic equation in T that has two solutions which are T = −4
3
and T = 3

4
.

Given what quadrant the angle x is located the sign of the tangent must be negative and we
have that tan(x) = −4

3
.

Problem 16

The answer to this problem cannot be N since otherwise every person would have shaken
hands with every other person (and we are told that at least one person has not done this).
The answer cannot also be N − 1 for this would mean that only one other person has not
shaken hands with everyone. As an example of how this statement is inconsistent assume
that the person A has not shaken hands with person B. But this also means that B has not
shaken hands with everyone for he has not shaken hands with A. The answer can be N − 2
which we can get by singling out two people, say A and B from our N total who will not
shake hands with each other. These two people will shake hands with everyone else and all
other people will shake hands with everyone.

A simple example with N = 4 shows that this can hold true. Draw each person as a point
in two dimensions and draw lines between points to represent the fact that the two people
have shaken hands. For two of these four points draw lines from each of them to the other
three. You will see that there are two points i.e. N−2 = 4−2 = 2 without a line connecting
them.

Problem 17

If we are told that
[
f(x2 + 1)

]
√
k
= k ,

then we can simplify the expression we are given by writing the outermost exponent as

√
12

y
= 2

√
3

y
.

The notice that we have

[

f

(
9 + y2

y2

)]
√

12
y

=

[

f

(
9

y2
+ 1

)]2
√

3
y

=







[

f

(
9

y2
+ 1

)]
√

3
y







2

= k2 .

Where we let x2 = 9
y2
.
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Problem 18

We want the smallest n such that

√
n−

√
n− 1 < 0.01 .

If we multiply both sides by
√
n +

√
n− 1 and simplify we get

1 < 0.01(
√
n +

√
n− 1) .

Thus we also want the smallest n such that

√
n+

√
n− 1 > 100 .

Now for all positive integer n we have the strict inequalities

2
√
n− 1 <

√
n+

√
n− 1 < 2

√
n . (281)

If we want to guarantee that
√
n+

√
n− 1 will be larger than 100 we can set the left-hand-

side of the above to 100 and solve for n. When we do that we get n = 2501. Thus if n = 2501
we have shown that

2
√
n− 1 = 100 <

√
n +

√
n− 1 ,

and our desired inequality holds for this value of n. We might wonder if there is a smaller

value of n. To see that is not true let n = 2500 then from the right-hand-side of Equation 281
if n = 2500 then we have √

n+
√
n− 1 < 2

√
2500 = 100 ,

and our inequality is not satisfied. Thus the smallest n is n = 2501.

Problem 19

The sum of all of the probabilities that we select each integer must equal one. Thus we need
to have

100∑

n=1

P{N = n} = 1 ,

or given what we know about the probability of an integer in each region we have

50p+ 3p(100− 51 + 1) = 1 .

This means that p = 1
200

. Next we note that the perfect squares in the range of the integers
1 ≤ n ≤ 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 and thus we have seven of them that are
less than 50 and three of them that are greater than 50. Thus the probability of drawing a
perfect square is

7p+ 3(3p) = 16p =
16

200
= 0.08 .
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Problem 20

Let y equal the common expression given by each term, namely

y =
a + b− c

c
=
a− b+ c

b
=

−a + b+ c

a

=
a + b

c
− 1 =

a+ c

b
− 1 =

b+ c

a
− 1 .

From the above notice that we have

a + b

c
=
a + c

b
=
b+ c

a
= y + 1 . (282)

Thus the expression for x can be written

x =

(
a+ b

c

)(
b+ c

a

)(
a+ c

b

)

= (y + 1)3 . (283)

Now if we take the first equality from Equation 282 we get

b(a + b) = c(a + c) .

We can write this as
a(b− c) = c2 − b2 .

If we factor the right-hand-side we can write this as

b− c = (c− b)

(
c+ b

a

)

.

If we assume that c 6= b we can divide both sides by c− b to get

−1 =
c+ b

a
.

Looking again at Equation 282 we see that this means that y + 1 = −1 or y = −2. Using
this and Equation 283 we see that x = (−1)3 = −1.

Lets check that this value for x is correct by considering a numerical example and making
sure that everything is consistent. To do that we take a = 2, b = −1 and c = −1. Then
with these numbers we have

a+ b− c

c
=

2− 1− (−1)

−1
= −2

a− b+ c

b
=

2 + 1 + 1

−1
= −2

−a + b− c

a
=

−2 − 1− 1

2
= −2 ,

so all expressions equal the same thing as they must. Next we have

x =

(
a + b

c

)(
b+ c

a

)(
a + c

b

)

= (−1)

(−1− 1

2

)(
2− 1

−1

)

= (−1)3 = −1 .
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Problem 21

To start we use loga(b) =
log(b)
log(a)

on each of the three terms to get

log(3)

log(x)
+

log(4)

log(x)
+

log(5)

log(x)
=

log(3(4)(5))

log(x)
=

log(60)

log(x)
.

Then using the first relationship in reverse, the previous expression is equal to

1

log60(x)
.

Problem 22

Notice that by assuming that any two pairs of statements were true we would get a contra-
diction. This means that at most one statement from the four can be true. If we consider
the assignment of the one true statement to each of the possible four statements it is only
when we make the third statement true do we get a consistent set.

Problem 23

From the point F , drop a perpendicular towards the segment AB and let the point of
intersection be denoted as P . Let the length AP be denoted x and the length PB be

denoted y. Now as AB =
√

1 +
√
3 we have that

x+ y =

√

1 +
√
3 . (284)

By construction, the triangle AEB is an equilateral triangle so the angle EAB is 60 degrees.
As DB is a diagonal of the square the angle FBA is 45 degrees. The tangent of these two
angles are related by

tan(60◦) =
FP

x

tan(45◦) =
FP

y
.

Since tan(60◦) =
√
3 and tan(45◦) = 1 the above becomes

x =
FP√
3

and y = FP .

Putting these expressions in Equation 284 we can solve for FP where we get

FP =

√
3

√

1 +
√
3
.
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Now to compute the area of the triangle ABF we use the formula “1
2
times the base times

the height” where the base is the segment AB and the height is the segment FP and we
compute

1

2

√

1 +
√
3

( √
3

√

1 +
√
3

)

=

√
3

2
.

Problem 24

Since the three expressions are in geometric progression we can write

x(y − z) = a0

y(z − x) = a0r

z(x− y) = a0r
2 ,

for some values of a0 6= 0 and r. If we add the three equations the left-hand-side gives zero
and we end with

a0 + a0r + a0r
2 = 0 .

If we divide by a0 we get 1 + r + r2 = 0.

Problem 25

In the R code prob 25 1978.R we draw the region specified by the given inequalities for
a = 4. This plot is given in Figure 9. There we see that this figure has six sides.

Problem 26

To start with note that ∠BCA is 90 because the triangle ABC is a 3-4-5 right triangle. Let
the point where the circle is tangent to the side AB be denoted L and draw the segment
LC. As we are told that at the point L the circle is tangent to AB we know that ∠ALC is
90 and that LC = 2r where r is the radius of the inscribed circle.

Let the angle ∠LCA be denoted θ. Then using various right triangles we know that

∠CAB =
π

2
− θ

∠LCB =
π

2
− θ

∠CBA = θ .

These angles mean that triangle ABC is similar to triangle CBL and triangle ACL.
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Figure 9: The polygon for Problem 25.

We now use the given lengths of the outer triangle to derive other line segment lengths.
Using the right triangle ACL we have that

AC2 = CL2 + AL2 or 64 = (2r)2 + AL2 .

This means that
AL = 2

√
16− r2 . (285)

Now using the fact that the triangle ACL is similar to the triangle ABC we have

AL

AC
=
AL

8
=
AC

AB
=

8

10
.

If we put in the expression for Equation 285 into the above we can solve for r to get r = 12
5
.

Let the center of the circle be denoted by O. Now that we know the value of r, from the
center of the circle draw segments (of length r) to the points R and Q. Now note that the
triangle COQ is isosceles with a base of CQ and two equal sides of length r. In this triangle
the two equal angles are θ and so we have

tan(θ) =
AC

BC
=

8

6
=

4

3
in the same way

tan
(π

2
− θ
)

=
BC

AC
=

6

8
=

3

4
.
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In the triangle COQ drop a perpendicular of length h to the base CQ then using these right
triangles we have

tan(θ) =
h

CQ/2
=

4

3
(
CQ

2

)2

+ h2 = r2 .

Solving these two equations for h and CQ where we get CQ = 72
25
.

Next note that the triangle COR is isosceles with a base of CR and two equal sides of length
r. In this triangle the two equal angles are π

2
− θ. In the triangle COR drop a perpendicular

of length h (here I am just reusing a variable name and its value is different perhaps than
the h above) to the base CR then using these right triangles we have

tan
(π

2
− θ
)

=
h

CR/2
=

3

4
(
CR

2

)2

+ h2 = r2 .

Solving these two equations for h and CR where we get CR = 2(48)
25

.

Now that we know the lengths CQ and CR we have that

RQ =
√

CQ2 + CR2 =
2(12)

5
= 4.8 ,

when we put in the numbers above.

Problem 27

We want to find the smallest two numbers m1 and m2 (where m1 < m2) that are each
divisible by all k such that 2 ≤ k ≤ 11 with a remainder of one. This means that we can
write these mi as

mi = qik + 1 ,

for all k in the range above. Intuitively to have this property means that we can write mi as

mi = (2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11)qi + 1 ,

for some integer qi. Note that a number of this form will have the needed divisibility property
but it is not the smallest such number. For example, the multiple of 10 in the product above
is already found in the product of 2 · 5 found earlier and thus there is no need to specify it
explicitly. Dropping all “duplicate” factors we end up with a representation

mi = (23 · 32 · 5 · 7 · 11)qi + 1 .

The smallest number of this form would have q1 = 1 and we get m1 = 27721. The next
smallest number of this form would have q2 = 2 and we would get m2 = 55441. Their
difference is given by 27720.
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Problem 29

I wish I had time to draw a nice figure but given constraints I’ll just have to describe it as
best as I can. I drew the quadrilateral ABCD with corner labeling clockwise with A the
southwest corner, followed by B as the northwest corner, C as the northeast corner, and D
as the southeast corner. I then extended the edges AB to B′, BC to C ′, etc the required
lengths. In my drawing the segment BCC ′ was almost horizontal. Consider the triangle
BB′C ′ then in that figure. Notice that if we “fold” the segment BB′ into the segment AB
(they are the same length) across the segment BCC ′ this larger triangle will have the same
height as the triangle ABC in the original quadrilateral. What is different however is that
this larger triangle will have a base BCC ′ that is twice the base BC. Thus this triangle will
have twice the area as the triangle ABC which is totally inside the original quadrilateral.

In the same way we have the following relationships between triangle areas

△C ′BB′ = 2△CBA
△A′DD′ = 2△ADC
△CC ′D′ = 2△CBD
△B′A′A = 2△BAD .

Notice also that the original quadrilateral can be split along each diagonal and has an area
equal to the sum of

△CBA+△ADC ,
or

△CBD +△BAD .

Thus the area of the larger quadrilateral is equal to the sum of all four triangles above plus
the original quadrilateral. Adding the four triangles together in pairs such that in a pair the
total area is twice the area of the two specific smaller triangles that complete the original
quadrilateral we get that the larger quadrilateral has an area of

2(areaABCD) + 2(areaABCD) + areaABCD = 2(10) + 2(10) + 10 = 50 .

Problem 30

There will be
(
3n
2

)
= 3n(3n−1)

2
total games that must be played between all players. There

will be
(
n
2

)
matches played between two men,

(
2n
2

)
matches played between two woman and

n(2n) = 2n2 matches played between a woman and a man. We can verify that these numbers
are correct by checking that

3n(3n− 1)

2
=
n(n− 1)

2
+

2n(2n− 1)

2
+ 2n2 ,

which is a true statement. As the number of wins the women get to the number of wins that
the men get are in proportion 7 : 5 we can let the number of wins the woman get be 7q and
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the number wins the men get be 5q (for q ≥ 1) then we must have

7q + 5q =

(
3n

2

)

or 3n(3n− 1) = 24q .

If we factor 24 = 23 · 3 this means that

n(3n− 1) = 23q .

For the possible values of n none of the expressions n(3n − 1) is divisible by eight so the
correct value of n is not given.
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The 1979 Examination

Problem 1

The smaller rectangle will have an area 1/4 that of the larger rectangle or 72
4
= 18.

Problem 2

Divide the expression by xy to get
1

y
− 1

x
= 1 ,

so the expression desired must be −1.

Problem 3

From the square ABCD we know that ∠DAB is 90 degrees. As △AEB is an equilateral
we know that ∠BAE is 60 degrees. Thus ∠DAE is 150 degrees. As △AED is isosceles we
have that

∠AED =
180− 150

2
= 15 ,

degrees.

Problem 4

Note that the sign of the x3 term must be positive while the sign of the x2 must be negative.
Only one choice satisfies both of these conditions.

Problem 5

Let the number be written as d1d2d3. Then this number must equal d3d2d1 so that

100d1 + 10d2 + d3 = 100d3 + 10d2 + d1 .

This simplifies to give 99(d1−d3) = 0 thus d1 = d3 so our three digit number is really d1d2d1.
To be the largest possible even number d1 = 8 and d2 = 9 so the number is 898. The sum of
these digits is 25.
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Problem 6

Notice that we can write the given sum as

1 +
1

2
+ 1 +

1

4
+ 1 +

1

8
+ · · · − 7 = 6 +

6∑

k=1

(
1

2

)k

− 7 .

If we evaluate the given sum above we get

−1 +

(

1−
(
1
2

)7

1− 1
2

− 1

)

= − 1

64
,

when we simplify.

Problem 7

We are told that x = n2 for some n. The next larger perfect square is (n+1)2 so expanding
we get

n2 + 2n+ 1 = x+ 2
√
x+ 1 ,

is the next perfect square.

Problem 8

The graph of x2 + y2 = 4 is a circle of radius two. The graph of y = |x| cuts a wedge with
an interior angle of 90 degrees and angles of 45 degrees to the positive and negative x-axis.
This means that its area is 1/2 of 1/2 of the area of the circle. The area is then 1

4
(π22) = π.

Problem 9

The product we want to evaluate can be written as

41/3 · 81/4 = 22/3 · 23/4 = 2
2
3
+ 3

4 = 2
17
12 = 21+

5
12 = 2(25)

1
12

= 2(32)
1
12 = 2

12
√
32 .

Problem 10

One needs to draw the regular hexagon P1 · · ·P6 (six equal sides) and the points Qi. I drew
the points Pi clockwise. In that case one sees that the quadrilateral Q1Q2Q3Q4 occupies
part of the area in the right one-half of the regular hexagon. Drawing segments from the
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center to Q1, Q2, Q3, and Q4 we get the quadrilateral broken up into three isosceles triangles
with two edges having a length of two. Because the vertex of each of these triangles (the
angle that corresponds with the center of the hexagon) has the angle 360

6
= 60 degrees these

triangles are actually equilateral (have all three sides equal). Recalling that an equilateral
triangle with side length s has an area of

√
3

4
s2 . (286)

The area of the quadrilateral is

3

(√
3

4
22

)

= 3
√
3 .

Problem 11

Write the given fraction as
∑2n

k=1 k − 2
∑n

k=1 k

2
∑n

k=1 k
=

115

116
,

or ∑2n
k=1 k

2
∑n

k=1 k
− 1 =

115

116
.

If we evaluate these two sums we get

2n(2n+1)
2

2n(n+1)
2

− 1 =
115

116
.

Simplifying this we get

1− 1

n+ 1
=

115

116
,

which has a solution n = 115.

Problem 12

In the given figure draw the segment OB. Then as the triangle BOE is isosceles we have
that

∠OBE = ∠OEB = x .

As triangle ABO is also isosceles we have that

∠BAO = ∠BOC = y .

Now in triangle OBE the angles must sum to 180 degrees so

2x+ ∠BOE = 180 . (287)
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Along a straight line ACOD the angles must also sum to 180 degrees so

y + ∠BOE + 45 = 180 . (288)

Finally in triangle AEO the angles must sum to 180 degrees so

y + x+ y + ∠BOE = 180 . (289)

This gives three equations and three unknowns which we can solve. If we use Equation 287
to solve for ∠BOE and put that into Equation 288 and 289 we get

y − 2x = −45

2y − x = 0 .

Solving these give x = 30 and y = 15 so ∠BAO = y = 15 degrees.

Problem 13

We want to know when is y − x <
√
x2 satisfied. Now as

√
x2 = |x| the above is equal to

y − x < |x| ,

or
y < x+ |x| .

Now if x < 0 then |x| = −x and the right-hand-side of the above is zero and we get y < 0.
If x > 0 then |x| = x and the right-hand-side of the above is 2x. Thus the expression on the
right-hand-side of the above inequality can be written

x+ |x| =
{

0 x < 0
2x x > 0

Since we know how to evaluate the right-hand-side we can plot the y values that are less
then this value. We see that this is all values of y that are less than zero and y values that
are less than 2x.

Note that the point (x, y) = (−1,+1) shows that the second choice cannot be correct.

Problem 14

For this problem we are told that a1 = 1 and that

n∏

k=1

ak = n2 ,

for all n. If we take n = 3 this is
3∏

k=1

ak = 9 .
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This means that (
2∏

k=1

ak

)

a3 = 9 or 22a3 = 9 or a3 =
9

4
.

If we take n = 5 in this expression we get

5∏

k=1

ak = 25 .

This means that (
4∏

k=1

ak

)

a5 = 25 or 16a5 = 25 or a5 =
25

16
.

Using these two values we can compute

a3 + a5 =
61

16
.

Problem 15

Let the volume of the two identical jars be x. Then in the first we have p
p+1

x volume of

alcohol and 1
p+1

x volume of water. In the second we have q
q+1

x volume of alcohol and 1
q+1

x
volume of water. When we mix we will have

p

p+ 1
x+

q

q + 1
x ,

and
1

p+ 1
x+

1

q + 1
x ,

for the volumes of alcohol and water respectively. The ratio of alcohol to water is the ratio
of these two expressions. We can take that ratio and simplify to get 2pq+p+q

p+q+2
.

Problem 16

Let r be the radius of the smaller circle. We are told that A1 + A2 = 9π thus

A2 = 9π − πr2 .

If A1, A2, and A1+A2 are in a arithmetic sequence the difference between any two sequential
terms is the common difference d. Taking this difference between the last two and the first
two terms of the sequence we have

(A1 + A2)− A2 = πr2 = d

A2 − A1 = A2 − πr2 = d .
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Using what we know about A2 from before in the second of these expressions we get

9π − 2πr2 = d .

Setting this equal to the first expression gives

9π − 2πr2 = πr2 .

Solving for r we find r =
√
3.

Problem 17

Let P be the top point in the triangle. From the given information in the problem the side
BP is of length x, the side BC is of length y − x, and the side PC is of length z − y. Now
we will use the triangle inequality on each side of this triangle. This inequality states that
the sum of the lengths of any two sides of a triangle must be longer than the other side.

If we apply this inequality in the form PB +BC > PC we have

x+ y − x > z − y or y >
z

2
.

This is in contradiction to III.

If we apply this inequality in the form PC + CB > PB we have

z − x > x or x <
z

2
.

This is the statement I.

If we apply this inequality in the form BP + PC > BC we have

z + z − y > y − z or y < x+
z

2
.

This is statement II. Thus only two statements are true.

Problem 18

Write log5(10) as

log5(10) = log5(2(5)) = log5(2) + log5(5) = 1 + log5(2) = 1 +
log10(2)

log10(5)
.

Again using loga(b) =
1

logb(a)
on the expression log10(5) on the right-hand-side we get

log5(10) = 1 + log10(2) log5(10) .

We can solve this for log5(10) to get

log5(10) =
1

1− log10(2)
=

1

1− 0.301
=

1

0.699
≈ 1

0.7
=

10

7
.
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Problem 19

Using 256 = 28 we write x256 = x2
8
and 25632 = (28)32 = 28(32) = 2256 = 22

8
. Thus we have

x2
8 − 22

8

= 0 .

We can write this as
x256 = 2256 .

Taking the 1/256th root of both sides we get |x| = 2 so x = ±2 for the real roots. The sum
of the squares of all the real roots is (−2)2 + 22 = 8.

Problem 20

From the given expressions for a and b we find b = 1
3
. Recall that

tan(α + β) =
tan(α) + tan(β)

1− tan(α) tan(β)
.

Thus

tan(arctan(a) + arctan(b)) =
a+ b

1− ab
= 1 ,

when we use the given values of a and b. This means that

arctan(a) + arctan(b) =
π

4
.

Problem 21

To start we draw the right triangle with a base length of a and a vertical length of b and the
inscribed circle. Dropping perpendiculars from the center of the circle to each of the three
sides we see that

a = r + x

b = r + y .

In other words the lengths of the sides are equal to the radius r plus two other lengths x
and y. By drawing edges from two of the vertices of the right triangle to the center of the
circle we obtain two congruent triangles that show that the hypotenuse h can be written as

h = x+ y , (290)

From the Pythagorean theorem we also have that

h2 = (x+ r)2 + (y + r)2 . (291)
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This gives two equations and two unknowns x and y. If we use Equation 290 for h in
Equation 291 by expanding and simplifying we get

xy = r(x+ y) + r2 .

Again using Equation 290 for x+ y = h we get

xy = rh+ r2 .

Now the ratio that we want to compute is

R =
πr2

1
2
ab

=
2πr2

(r + y)(r + x)

=
2πr2

r2 + r(x+ y) + xy
.

As we know expressions for x+ y and xy in terms of r and h we put those in the above and
simplify to get

R =
πr

r + h
.

Problem 22

It seems a common way to prove that there are no solutions in the integers is to show that
one expression is divisible by a factor while the other expression cannot be divisible by that
factor. That is the approach we will take for this problem. Note that the left-hand-side can
be written as

m(m2 + 6m+ 5) = m(m+ 1)(m+ 5) .

This is not obviously divisible by anything but if we write it as

m(m+ 1)(m+ 2 + 3) = m(m+ 1)(m+ 2) + 3m(m+ 1) .

Note that for any integer m the expression m(m + 1)(m+ 2) will be divisible by three and
so will the expression 3m(m + 1). Thus the left-hand-side is divisible by three. Note that
the right-hand-side can be written as

3n(9n2 + 3n+ 3) + 1 ,

and thus has a remainder of one when divided by three. Thus there can be no solutions in
the integers to this equation.

497



Problem 23

In a 3d Cartesian coordinate system the vertices of a tetrahedron with an edge length of a
are given by

A =

(

− a

2
√
3
,
a

2
, 0

)

(292)

B =

(

− a

2
√
3
,−a

2
, 0

)

C =

(
a√
3
, 0, 0

)

D =

(

0, 0,

√

2

3
a

)

.

This puts the top of the vertex on the z-axis and the other vertices on the xy-plane.

Using this configuration the point P = (x, y, 0) will have coordinates x = − 1
2
√
3
a and a y

value such that
−a
2
≤ y ≤ a

2
.

The point Q will then be on a line from the point

(
a√
3
, 0, 0

)

,

to the point (

0, 0,

√

2

3
a

)

,

We can parameterize this line by introducing t such that 0 ≤ t ≤ 1 and then

x(t) =
a√
3
(1− t)

y(t) = 0

z(t) =

√

2

3
at .

The distance (squared) between the point P and Q as a function of t is then given by

d2(t) = (xp − xq)
2 + (yp − yq)

2 + (zp − zq)
2

=

(

− a

2
√
3
− a√

3
(1− t)

)2

+ (yp − 0)2 +

(

0−
√

2

3
at

)2

.

To make d2(t) as small as possible we should take yp = 0. Thus we get

d2(t) =
a2

3

(
3

2
− t

)2

+
2

3
a2t2 .
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For this problem we are told that a = 1. Next note that at the two end points of t we have

d2(0) =
1

3

(
3

2

)2

=
3

4

d2(1) =
1

3

(
1

4

)

+
2

3
=

3

4
.

As there might be smaller value of d2(t) for a t such that 0 ≤ t ≤ 1 we will take the derivative
of d2(t) with respect to t, set the result equal to zero, and solve for t. The derivative set
equal to zero is

d(d2(t))

dt
=

2

3

(
3

2
− t

)

(−1) +
4

3
t = 0 .

Solving for t we find t = 1
2
. For this value of t we find that

d2
(
1

2

)

=
1

3
+

1

6
=

1

2
.

As this is smaller than the values of d2(0) and d2(1) it is the minimum we seek. Thus the
smallest distance is d

(
1
2

)
= 1√

2
.

Problem 24

We start by drawing the quadrilateral ABCD and then extend the segments AB and CD
until they meet at a point E. Next let β be the angle ∠CBE and θ the angle ∠BCE. Then
we have that

cos(β) = − cos(∠ABC) = sin(∠BCD) = sin(θ) .

As cos(β) = sin(θ) we have that β + θ = π
2
. Because BCE is a triangle this means that

∠BEC is also π
2
so we have △BCE a right triangle with BC the hypotenuse. Using that

fact we have that

BE = BC cos(β) = 5

(
3

5

)

= 3 .

Next using BC2 = BE2 + CE2 we find CE = 4. The length AD is given by using the
Pythagorean theorem as

AD2 = (3 + 4)2 + (4 + 20)2 = 625 .

Thus AD = 25.

Problem 25

The statements given mean that

x8 = q1(x)

(

x+
1

2

)

+ r1

q1(x) = q2(x)

(

x+
1

2

)

+ r2 .
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Using these we have that

x8 =

(

x+
1

2

)(

q2(x)

(

x+
1

2

)

+ r2

)

+ r1

= q2(x)

(

x+
1

2

)2

+ r2

(

x+
1

2

)

+ r1 .

If we let x = −1
2
we get

1

28
= r1 .

Thus we have just shown that

x8 = q2(x)

(

x+
1

2

)2

+ r2

(

x+
1

2

)

+
1

28
,

or
x8 − 1

28

x+ 1
2

= q2(x)

(

x+
1

2

)

+ r2 . (293)

If we take p = −1
2
and recall that

x8 − p8

x− p
=

7∑

k=0

x7−kpk . (294)

Now we want to evaluate Equation 293 at x = −1
2
. To do that we use Equation 294 with

x = −1
2
= p to evaluate the left-hand-side. We have

7∑

k=0

p7−kpk = 8p7 = 8

(

−1

2

)7

= − 1

16
.

Using that in Equation 293 we get

r2 = − 1

16
.

Problem 26

In the given expression let y = 1 to get

f(x) + 1 = f(x+ 1)− x− 1 or f(x+ 1)− f(x) = x+ 2 . (295)

In terms of the forward difference operator this is

∆f(x) = x+ 2 .

If we sum this from x = 1 to x = X we get

X∑

x=1

∆f(x) =
X∑

x=1

(x+ 2) =
X∑

x=1

x+ 2
X∑

x=1

1 =
X(X + 1)

2
+ 2X .
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The sum of the left-hand-side is f(X + 1)− f(1) so that we get

f(X + 1) =
1

2
X2 +

5

2
X + 1 .

This means that

f(X) =
1

2
(X − 1)2 +

5

2
(X − 1) + 1 =

1

2
X2 +

3

2
X − 1 .

The above is a valid solution for f for all real x. We now want to find out when f(n) = n.
Using the above expression this is

1

2
n2 +

3

2
n− 1 = n .

We can simplify and write this as

(n + 2)(n− 1) = 0 .

This has two solutions only one of which is not n = 1.

Problem 27

As b and c are integers such that |b| ≤ 5 and |c| ≤ 5 the number of possible choices for b (or
c) are 5 + 5 + 1 = 11. Thus the total number of choices is given by 112 = 121.

The roots of x2 + bx+ c = 0 are

x =
−b±

√
b2 − 4c

2
.

For the two roots to be distinct means that we must have b2 − 4c > 0 or that c < b2

4
. Both

roots will be positive if and only if the smaller of the two roots is positive or that

−b−
√
b2 − 4c

2
> 0 .

This is equivalent to
−b >

√
b2 − 4c .

This in tern is equivalent to
b2 > b2 − 4c and b < 0 .

This is equivalent to
0 > −4c and b < 0 .

This is finally equivalent to
c > 0 and b < 0 .

Thus the region of interest is then

0 < c <
b2

4
and b < 0 .
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We now count how many integer points are in this region. For various value of b we find

b = −5 then c ∈ {1, 2, 3, 4, 5}
b = −4 then c ∈ {1, 2, 3}
b = −3 then c ∈ {1, 2} .

For b = −2 and b = −1 there are no valid c values. Counting the above we see that there
are a total of 10 points that satisfy the inequalities above. This means that the probability
that we have two positive and distinct roots is 10

121
. The probability we don’t have this is

then one minus this number or 111
121

.

Problem 28

Lets introduce a Cartesian coordinate system with the point A at the origin. Then as ABC is
an equilateral triangle with an edge length of two we have that B = (2 sin(30),−2 cos(30)) =
(1,−

√
3) and C = (−1,−

√
3).

From the point A the points on the circle of radius r are the ones that satisfy

x2 + y2 = r2 . (296)

From the point B the points on the circle of radius r are the ones that satisfy

(x− 1)2 + (y +
√
3)2 = r2 . (297)

From the point C the points on the circle of radius r are the ones that satisfy

(x+ 1)2 + (y +
√
3)2 = r2 . (298)

To find the point C ′ we want to find the intersection of Equation 296 and 298. If we expand
Equation 298 and use Equation 296 to cancel quadratic terms finally end with

x = 2 +
√
3y .

If we use this to replace x in Equation 296 in terms of y we get

(2 +
√
3y)2 + y2 = r2 .

Solving for y we get

y =
−
√
3±

√
r2 − 1

2
= −

√
3

2
± 1

2

√
r2 − 1 .

The value −
√
3
2

is half-way from the origin at A to the line connecting the segment BC. As
the point C ′ is above this line we would take the positive sign in the above expression and
the (x, y) coordinate of C ′ is located at

x = 2 +
√
3y =

1

2
+

1

2

√

3(r2 − 1)

y = −
√
3

2
+

1

2

√
r2 − 1 .
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By symmetry the point B′ is then located at

x = −1

2
− 1

2

√

3(r2 − 1)

y = −
√
3

2
+

1

2

√
r2 − 1 .

Given these two points the length of B′C ′ is then

B′C ′2 =
(

1 +
√

3(r2 − 1)
)2

+ 0 .

Thus
B′C ′ = 1 +

√

3(r2 − 1) .

Problem 29

Notice that (

x3 +
1

x3

)2

= x6 + 2 +
1

x6
.

Thus we can write f(x) as

f(x) =

(
x+ 1

x

)2 −
(
x3 + 1

x3

)2

(
x+ 1

x

)3
+
(
x3 + 1

x3

) .

Let

u = x+
1

x

v = x3 +
1

x3
.

Then f can be written as

f(x) =
u6 − v2

u3 + v
=

(u3 − v)(u3 + v)

u3 + v
= u3 − v .

This means that we can write f(x) as

f(x) =

(

x+
1

x

)3

−
(

x3 +
1

x3

)

= x3 + 3x2
(
1

x

)

+ 3x

(
1

x

)2

+
1

x3
− x3 − 1

x3

= 3x+
3

x
= 3

(

x+
1

x

)

.

Now the smallest value for x+ 1
x
when x > 0 is when

1− 1

x2
= 0 or x = 1 .

The function f at this value take the value of f(1) = 2. Thus we have that

f(x) ≥ 3(2) = 6 .
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The 1980 Examination

Problem 1

Besides simple division, we can simply see if the proposed values for n work. That is we first
note that

7(14) = 98 ,

which is less than 100. Next note that

7(15) = 105 ,

which is greater than 100. Thus n = 14.

Problem 2

The two highest powers in the left-most and right-most products are x8 and x9 giving a
polynomial with degree 8 + 9 = 17.

Problem 3

We have
2x− y

x+ y
=

2

3
.

Divide the top and bottom of the fraction on the left-hand-side by y and let r = x
y
to get

2r − 1

r + 1
=

2

3
.

Solving this for r gives r = 5
4
.

Problem 4

Since the triangle CDE is equilateral then each of its angles must be 60◦. We also know that
each of the angles in the two squares are 90◦, namely ∠DEF = ∠DCB = 90◦. Lets continue
the line segment CE to the left and to the right forming a “base” for the given geometrical
figure. Introduce points L “far to the left” andR “far to the right” on this line. Then knowing
the angles in the triangle and the square we have ∠FER = ∠BCL = 180− 60− 90 = 30◦.

Next draw a line parallel to LCER and though the point D. Let the point where this line
intersects the segment AB be denoted H and the point where this line intersects the segment
GF be denoted I. By the two parallel lines we have that both ∠HDC and ∠IDE are 60◦
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since they are equal ∠DCE and ∠DEC respectively. Note that ∠HDC+∠CDE+∠EDI =
180◦ as it should, as each angle in the sum is 60◦.

Next note that

• As ∠EDG = 90◦ and ∠EDI = 60◦ we must have that ∠IDG = 30◦.

• As ∠CDA = 90◦ and ∠CDH = 60◦ we must have that ∠HDA = 30◦.

Using supplementary angles we must have

∠HDA+ ∠ADG+ ∠IDG = 180◦ .

Using what we know about the values of ∠HDA and ∠IDG we get

∠ADG = 180− 2(30) = 120◦ .

Problem 5

Note that using the diagram that

tan(60◦) =
CQ

PQ
=
AQ

PQ
.

The left-hand-side is

tan(60◦) =
sin(60◦)

cos(60◦)
=

√
3/2

1/2
=

√
3 .

Thus
PQ

AQ
=

1√
3
=

√
3

3
.

Problem 6

The given expression is equal to √
x− 2x < 0 ,

or √
x(1− 2

√
x) < 0 .

As
√
x > 0 we can divide by it to get

1− 2
√
x < 0 or x >

1

4
.
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Problem 7

Draw a line segment from A to C. The length of this segment must be five as it forms a
hypotenuse of a 3, 4, 5 right triangle. Next note that

122 + 52 = 144 + 25 = 169 = 132 ,

Thus the other triangle is a 5, 12, 13 right triangle and therefore ∠ACD = 90◦. summing
the area of these two right triangles the area A of this figure is given by

A =
1

2
(4)(3) +

1

2
(12)(5) = 36 .

Problem 8

Multiply the given expression by a+ b to get

a + b

a
+
a + b

b
= 1 .

Simplifying some we get
b

a
+
a

b
= −1 .

Let x = a
b
and our previous equation is

1

x
+ x = −1 .

If we multiply by x we get
x2 + x+ 1 = 0 .

Solving this with the quadratic equation gives

x =
−1±

√
1− 4

2
=

−1±
√
−3

2
.

Note that x is not real and thus a and b cannot both be real otherwise their ratio would be
contradicting what we derived above. Thus there are no real solutions to this equation.

Problem 9

If we draw a picture of this situation we will find a triangle with edge lengths x, 3, and
√
3

and an internal angle of 30◦. Using the law of cosigns on this triangle we have

(
√
3)2 = 32 + x2 − 2(3)x cos(30) .

Expanding and simplifying we get

x2 − 3
√
3x+ 6 = 0 .
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Solving with the quadratic equation we get

x =
3
√
3±

√

9(3)− 4(6)

2
,

which simplifies to give the numbers 2
√
3 and

√
3. A condition that three numbers a, b, and

c are valid sides of a triangle5 is

max(a, b, c) <
1

2
(a + b+ c) . (299)

As both of these solutions satisfy this we don’t have enough information to have a unique
solution.

Problem 10

The angular speed ω is related to the linear speed v via. the radius r as v = ωr. As all gears
are touching they must all have the same linear speed or

ωArA = ωBrB = ωCrC .

We can write this as
ωA

1
rA

=
ωB

1
rB

=
ωC

1
rC

.

This means that the angular speeds are in proportion

1

rA
:
1

rB
:
1

rC
.

As we have that the radius of each disk is proportional to the number of teeth we have that
the angular speeds are in proportion

1

x
:
1

y
:
1

z
.

If we multiply this expression by the constant xyz we get

yz : xz : xy .

Problem 11

The terms of an arithmetic sequence are given by

an = a0 + dn , (300)

5https://en.wikipedia.org/wiki/Triangle inequality
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for n = 0, 1, 2, . . . and we are told that

9∑

n=0

an = 100 (301)

99∑

n=0

an = 10 . (302)

For this problem we want to evaluate
∑109

n=0 an. Using Equation 300 in Equation 301 we can
evaluate the left-hand-side to get

10a0 + 45d = 100 .

Doing the same thing in the left-hand-side of Equation 302 gives

100a0 + 4950d = 10 .

Solving these two equations for a0 and d gives a0 =
1099
100

and d = −11
50
. Using Equation 300

in the expression we want to evaluate we find

109∑

n=0

an = 110a0 + d

109∑

n=1

n = 110a0 + d

(
109(110)

2

)

= 110a0 + 5995d = −110 .

Problem 12

From the description of the problem line one is given by y = mx and line two by y = nx.
Then as line one has four times the slope of line two we have that

m = 4n . (303)

Let θ be the angle between the x-axis and line two. Then θ is also be the angle between line
two and line one so that 2θ is the angle between line one and the x-axis. Using these angles
we have that

tan(θ) = n

tan(2θ) = m.

Using the fact that

tan(2θ) =
2 tan(θ)

1− tan2(θ)
=

2n

1− n2
,

we have that
2n

1− n2
= m. (304)

If we solve Equation 303 and 304 for m and n we have

m = ± 1√
2

n = ±2
√
2 .

Using these we have that

mn =

(

± 1√
2

)(

±2
√
2
)

= 2 .
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Problem 13

The size of the step take a the nth step is given by

dn =

(
1

2

)n−1

,

for n ≥ 1. Lets enumerate the points that our bug goes to on each step.

• After one step (1, 0)

• After two steps
(
1, 1

2

)

• After three steps
(
3
4
, 1
2

)

• After four steps
(
3
4
, 3
8

)

• After five steps
(
13
16
, 3
8

)

• After six steps
(
13
16
, 13
32

)

Let (x∗, y∗) be the limiting point that the bug is working towards. Then we can argue that
the location of this point is given by

x∗ = 1− 1

4
+

1

16
− 1

32
+ · · · =

∞∑

k=0

(

−1

4

)k

=
1

1− (−1/4)
=

4

5
,

and

y∗ = 0 +
1

2
− 1

8
+

1

32
+ · · · = 1

2

(

1− 1

4
+

1

16
− · · ·

)

=
1

2

∞∑

k=0

(

−1

4

)k

=
1

2

(
4

5

)

=
2

5
.

Note that our bug will get infinitely close to (x∗, y∗).

Problem 14

Consider f(f(x)) where we find

f(f(x)) =
c
(

cx
2x+3

)

2
(

cx
2x+3

)
+ 3

=
c2x

2cx+ 6x+ 9
,

when we simplify. If we set this equal to x we get the following quadratic

c2x = 2cx2 + 6x2 + 9x or 0 = 2(c+ 3)x2 + (9− c2)x .

This will hold true for all x if c = −3.
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Problem 15

Let x be the price of the item in cents (and thus it is an integer) then from the problem we
know that 1.04x = 100n where n is also an integer. If we multiply this expression by 100 we
get

104x = 104n .

As everything is an integer lets try to factor both sides into a product of primes. As 104 =
23 · 13 we can write the above as

23 · 13 · x = 24 · 54 · n .

If we divide by 23 this is
13x = 2 · 54 · n .

If we want n to be as small as possible then we must take x to be as small as possible such
that the above expression holds. This leads us to take n = 13 and x = 2 · 54 = 1250.

Problem 16

The surface area of the cube with a side of length one is 6(12) = 6. The edge length of the
tetrahedron is the length of the diagonal of one of the faces of the cube or

√
2. Thus we

need to compute the surface area of a tetrahedron with that edge length. This tetrahedron
has four sides each of which is a equilateral triangle with an edge length of

√
2. The area of

such a triangle is √
3

4
(
√
2)2 =

√
3

2
.

Thus the surface area of the tetrahedron is then four times this value or 2
√
3. The ratio we

are asked for is then
6

2
√
3
=

√
3 .

Problem 17

Expand the given expression can be expanded as

(n+ i)4 =

4∑

k=0

(
4

k

)

ikn4−k

= i0n4 + 4i1n3 +

(
4

2

)

i2n2 + 4i3n + i4

= n4 + 4n3i− 4(3)

2
n2 − 4ni+ 1

= 1− 6n2 + n4 + 4n(n2 − 1)i .

This will be an integer if n(n2 − 1) = 0. This happens for n ∈ {−1, 0,+1}.

510



Problem 18

As we are told that logb(sin(x)) = a we can write this as

ln(sin(x))

ln(b)
= a .

This means that ln(sin(x)) = a ln(b) = ln(ba) or sin(x) = ba. Now

cos(x) = ±
√

1− sin2(x) = ±
√
1− b2a .

As we are told that cos(x) > 0 we must take the positive sign above. Thus

logb(cos(x)) = logb((1− b2a)1/2) =
1

2
logb(1− b2a) .

Problem 19

Draw a diameter to the circle and the three cords all parallel to each other. Then draw a
perpendicular from the center of the circle through the diameter and the three cords. Draw
segments of length r from the center of the circle to the points where the three cords meet
the circle. Each of these is of length r (the radius of the circle). Let the vertical distance
from the center of the circle to the first chord C1 be x and the distance between C1 and C2

and C2 and C3 be d. Then from right triangles we have

x2 + 102 = r2 (305)

(x+ d)2 + 82 = r2 (306)

(x+ 2d)2 + 42 = r2 . (307)

If we subtract Equation 305 from Equation 306 we get

2xd+ d2 = 36 . (308)

If we subtract Equation 306 from Equation 307 we get

2xd+ 3d2 = 48 . (309)

These are two linear equations in the two unknowns xd and d2. Subtracting Equation 308
from Equation 309 gives

2d2 = 12 so d =
√
6 .

If we put that value into Equation 308 we can solve for x to get x = 15√
6
. Then using

Equation 305 we find

r =
5
√
11√
2
.
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Problem 20

The probability we draw p pennies, n nickels, and d = 6 − p − n dimes when drawing six
coins is given by a multivariate hypergeometric distribution where we have

P (p, n, d ≡ 6− p− n) =

(
2
p

)(
4
n

)(
6

6− p− n

)

(
12
6

) ,

for 0 ≤ p ≤ 2, 0 ≤ n ≤ 4, 0 ≤ d ≤ 6, and p + n + d = 6. Note that

(
12
6

)

= 924. Only

some combinations will give a monetary value greater than 50 cents. We see that unless
d ∈ {4, 5, 6} there is no way for the coins chosen to sum to the desired amount. The only
way we can get a sum 50 cents or larger are for

• d = 4 with n = 2 and p = 0.

• d = 5 with n = 1 and p = 0 or with n = 0 and p = 1.

• d = 6 with n = 0 and p = 0.

Thus the probability that this happens is then

p =
1

924

((
2
0

)(
4
2

)(
6
4

)

+

(
2
0

)(
4
1

)(
6
5

)

+

(
2
1

)(
4
0

)(
6
5

)

+

(
2
0

)(
4
0

)(
6
6

))

=
90 + 24 + 12 + 1

924
=

127

924
.

Problem 21

Let G be the midpoint of the segment CD. Then as G is the midpoint of CD and E is the
midpoint of AC in triangle ACD we have that EG is parallel to AD.

First note that the area of triangle BEG is 2
3
of that of the triangle BEC. This is because if

the base is taken from BC the height of each triangle is from E to this base (i.e. the same)
while the base of the triangle BEG (the segment BG) is 2

3
as large as the base in the larger

triangle BEC (the segment BC). Thus we have

△BEG =
2

3
△BEC .

Now in triangle BEG as D is the midpoint of BG and DF is parallel to EG we have that F
must bisect the segment BE. This means that the area of the triangle BFD is one quarter
that of BEG.
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Figure 10: A plot of the three lines 4x+ 1, x+ 2, and −2x+ 4 as a function of x.

In symbols we have argued that

△BFD =
1

4
(△BEG)

=
1

4

(
2

3
△BEC

)

=
1

6
△BEC

=
1

6
(�FECD +△BFD) .

Solving for △BFD we get

△BFD =
1

5
�FECD .

Problem 22

We can plot the given functions (they are all lines) and then to compute f at a given value
of x we take the minimum of the three functions pointwise. When we do that we get the
plot given in Figure 10. From that plot the maximum value of the function f is at the
intersection of the two lines x+ 2 and −2x+ 4. This point is x = 2

3
and y = 8

3
.

Problem 23

From a trisected hypotenuse if we drop perpendiculars and horizontals to the two legs of the
right triangle we divide these legs into three equal parts. Now let the horizontal leg have one
third of its length be denoted a (so the total length of the leg of the original right triangle is
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3a) and the vertical leg have one third of its length be denoted b (so that the length in the
original triangle is 3b). Then drawing the two triangles with hypotenuse lengths of cos(x)
and sin(x) using the Pythagorean theorem on each we can write

(2b)2 + a2 = sin2(x)

b2 + (2a)2 = cos2(x) .

If we add these two equations we get

5b2 + 5a2 = 1 .

This gives that a2 + b2 = 1
5
. Now the length (squared) of the hypotenuse h of the original

triangle is equal to

h2 = (3a)2 + (3b)2 = 9(a2 + b2) =
9

5
,

so the length we want is h = 3√
5
.

Problem 24

From what we are told we know that

8x3 − 4x2 − 42x+ 45 = Q(x)(x− r)2 = Q(x)(x2 − 2rx+ r2) ,

for some polynomial Q(x) of degree one. Lets take the form of Q(x) to be Q(x) = 8x+ t for
some unknown value t. I choose the leading coefficient to be 8x so that it will cancel with
the 8x3 on the left-hand-side when we expand. Expanding we get

8x3 − 4x2 − 42x+ 45 = (8x+ t)(x2 − 2rx+ r2)

= 8x3 + (−16r + t)x2 + 2r(4r − t)x+ tr2 .

This means that we must have

−4 = −16r + t

−42 = 2r(4r − t)

45 = tr2 . (310)

In the first equation we have t = −4+16r which we can put into the second equation to get

−42 = 2r(4r + 4− 16r) ,

or
−12r2 + 4r + 21 = 0 .

We can solve the above to find

r =
−4±

√
1024

(−24)
=

−4± 32

(−24)
,

which simplify to the two numbers −7
6
and 3

2
. From these two possible values of r using the

fact that t = −4+ 16r we get the two numbers −68
3
and 20. From Equation 310 we see that

t > 0 so the second solution is the one we are interested in. This means that we have

t = 20 with r =
3

2
= 1.5 .

The number from the choices closest to 1.5 is 1.52.
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Problem 25

Note that from the problem statement we are told that

⌊
√
n+ c⌋ = an − d

b
,

is constant for ranges of n. For example when

• 2 ≤ n ≤ 4 the above right-hand-side is the same value.

• 5 ≤ n ≤ 9 the above right-hand-side is the same value

As there are an odd number of terms in each constant range and

1 + 3 + 5 + 7 + · · ·+ (2N − 1) + (2N + 1) = (N + 1)2 ,

In general the right-hand-side will be constant for n such that

(N − 1)2 + 1 ≤ n ≤ N2 ,

for the different values of N ∈ {1, 2, 3, . . .}.

This means that taking n = 2 and n = 4 (from the range 2 ≤ n ≤ 4) we have that

⌊
√
2 + c⌋ = a2 − d

b
=
a4 − d

b
= ⌊

√
4 + c⌋ .

Note that c = 0 will not work as ⌊
√
2⌋ 6= ⌊2⌋ = 2. Also notice that c = −1 will work as as

⌊
√
1⌋ = 1 = ⌊

√
3⌋ = 1.

Taking n = 5 and n = 9 (from the range 5 ≤ n ≤ 9) we have that

⌊
√
5 + c⌋ = a5 − d

b
=
a9 − d

b
= ⌊

√
9 + c⌋ .

Note that here too c = −1 will also work as

⌊
√
5− 1⌋ = ⌊2⌋ = 2 = ⌊

√
8⌋ .

Now in general for n in the range

(N − 1)2 + 1 ≤ n ≤ N2 ,

then if we take c = −1 as we have

⌊
√

(N − 1)2 + 1 + c⌋ = ⌊
√
N2 + c⌋ ,

which means that for n in the range above the fractions an−d
b

will all be equal.
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To find values for b and d we need when n = 1 that

b⌊
√
0⌋+ d = 1 so d = 1 .

We also need that when n = 2 that

b⌊
√
1⌋ + d = 3 so b = 2 .

From all of this we have found that the sequence takes the form

an = 2⌊
√
n− 1⌋+ 1 .

Thus
b+ c+ d = 2− 1 + 1 = 2 .

Problem 27

Let x be given by the given expression so

x =
3

√

5 + 2
√
13 +

3

√

5− 2
√
13 .

Next using
(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 .

We find

x3 = 5 + 2
√
13 + 3(5 + 2

√
13)2/3(5− 2

√
13)1/3 + 3(5 + 2

√
13)1/3(5− 2

√
13)2/3 + 5− 2

√
13

= 10 + 3[(5 + 2
√
13)2(5− 2

√
13)]1/3 + 3[(5 + 2

√
13)(5− 2

√
13)2]1/3

= 10 + 3[(5 + 2
√
13)(25− 2(13))]1/3 + 3[(25− 52)(5− 2

√
13)]1/3

= 10 + 3[(5 + 2
√
13)(−27)]1/3 + 3[(−27)(5− 2

√
13)]1/3

= 10− 9(5 + 2
√
13)1/3 − 9(5− 2

√
13)1/3

= 10− 9x .

This means that x must satisfy
x3 + 9x− 10 = 0 .

Thus x must be is root of this polynomial. One root that is “easy” to find is x = 1. This
means that we can factor the above into

x3 + 9x− 10 = (x− 1)(x2 + x+ 10) = 0 .

The quadratic x2 + x+ 10 = 0 has a discriminant given by

b2 − 4ac = 12 − 4(1)(10) = −39 ,

which is negative meaning that the two roots of this quadratic are complex. As the only real
root is x = 1 this must be the value of x above.
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The 1981 Examination

Problem 1

If we square this twice we get (22)2 = 16.

Problem 2

The side of the square has a length given by
√
22 − 1 =

√
3. This means that the area of

the square is then (
√
3)2 = 3.

Problem 3

Write this as
1

x

(

1 +
1

2
+

1

3

)

=
1

x

(
6

6
+

3

6
+

2

6

)

=
1

x

(
11

6

)

.

Problem 4

Lets take our two numbers be denoted x and y with x > y. Then from the problem statement
we are told are

3x = 4y (311)

x− y = 8 . (312)

From Equation 311 we have that y = 3
4
x. If we put that into Equation 312 we can solve for

x to get x = 32.

Problem 5

From the angles given in triangle BCD we know that ∠CDB is 40 degrees. As CD and AB
are parallel this means that ∠DBA = ∠CDB = 40. As triangle ABD is isosceles we know
that ∠DBA = ∠DAB = 40. This means that ∠ADB = 180− 2(40) = 100.
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Problem 6

Let the right-hand-side of this expression be denoted by r then we have from the problem
statement that

x

x− 1
= r .

If we solve for x in the above we get

x =
r

r − 1
.

Using the expression we defined for r we compute that

r − 1 =
1

y2 + 2y − 2
,

Thus evaluating r
r−1

we see that

x = y2 + 2y − 1 .

Problem 7

The numbers N that are divisible by these numbers take the form

N = 22x3y5z ,

for positive integers x, y, and z such that x ≥ 2, y ≥ 1, and z ≥ 1. To have N ≤ 100 = 2252

we see that we could take x = 2, y = 1, z = 1 (which is the number 223151 = 60) but that
x = 2, y = 2, z = 1 and x = 2, y = 1, z = 2 are too large. Larger values for x, y, and z will
also have a N that is too large. This means that there is only one such number N = 60.

Problem 8

The given expression is equivalent to
(
x−1 + y−1 + z−1

x+ y + z

)(
(xy)−1 + (yz)−1 + (zx)−1

xy + yz + zx

)

.

In the first factor multiply the “top and bottom” by xyz to get
(

yz + xz + xy

(xyz)(x+ y + z)

)(
(xy)−1 + (yz)−1 + (zx)−1

xy + yz + zx

)

=
(xy)−1 + (yz)−1 + (zx)−1

(xyz)(x+ y + z)
.

Next we multiply the “top and bottom” by

(xy)(yz)(zx) = x2y2z2 ,

we get
(yz)(zx) + (xy)(zx) + (xy)(yz)

(xyz)3(x+ y + z)
=

(xyz)(z + x+ y)

(xyz)3(x+ y + z)
=

1

x2y2z2
.

518



Problem 9

Let the side of the cube be denoted s. Then using the Pythagorean theorem the diagonal of
a face has a length √

s2 + s2 =
√
2s .

Again using the Pythagorean theorem we can write

PQ2 = a2 = 2s2 + s2 = 3s2 .

This means that s = a√
3
. The surface area of the cube is then

6s2 = 6

(
a2

3

)

= 2a2 .

Problem 10

We can eliminate several solutions by considering the following special case. If we consider
an arbitrary line parallel to y = x say y = x+ b then the y-intercept on that line (i.e. (0, b))
is reflected to the point (0,−b) and the symmetric line is y = x− b. In this special case we
have a = 1 and the only line from the solutions that reproduces this case is 1

a
x− b

a
.

We can derive the line symmetric to y = ax+ b (through y = x) in the following way. Due
to the reflection one point on this line is the point (b, 0). Another point on this line is where
y = ax+ b and y = x intersect. This location is

(
b

1− a
,

b

1− a

)

.

The slope between these two points is then

b
1−a

− 0
b

1−a
− b

=
1

a
.

The line that has that slope and goes thorough (b, 0) is

y =
1

a
(x− b) .

which is one of the solutions.

Problem 11

One set of triples that will satisfy a2 + b2 = c2 is the 3-4-5 multiples or numbers of the form

a = 3n

b = 4n

c = 5n ,
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for some integer n ≥ 1. Notice that this means that

a = 3n

b = 3n+ n

c = 3n+ 2n ,

which has the sides a, b, and c in an arithmetic progression where the common difference
is n. Thus to have a triangle with this property we need one of the sides to be divisible by
three, one of the sides to be divisible by four, and one of the sides divisible by five. Note
that none of the numbers are divisible by four or five but that 81 is divisible by three and no
other number is. In that case we see that a = 81 = 3(27) so that n = 27. This means that
the other sides of our right triangle have lengths of b = 4(27) = 108 and c = 5(27) = 135.

Problem 12

We want to know when
M
(

1 +
p

100

)(

1 +
q

100

)

> M .

If we cancel M , expand the above product, and simplify a bit we get

p− q − pq

100
> 0 .

We can solve this for p and using the fact that 100− q < 0 we get

p >
100q

100− q
.

Problem 13

We want to find n such that
N(1− 0.1)n ≤ 0.1N ,

or
0.9n ≤ 0.1 .

Taking the log10 of both sides we get

n log10

(
9

10

)

≤ log10

(
1

10

)

.

We can write the above as
n (log10(9)− 1) ≤ −1 ,

or
n (2 log10(3)− 1) ≤ −1 .

We are told that 2 log10(3) = 0.954 so that

n ≥ 1

0.954
= 21.739 .

Thus we should take n = 22 years.
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Problem 14

Our sequence will take the form an = a0r
n for n ≥ 0. Then we are told that

a0 + a1 = a0 + ra0 = 7
5∑

i=0

ai =

1∑

i=0

ai + a0

5∑

i=2

ri = 91 .

This means that

a0

5∑

i=2

ri = 91− 7 = 84 ,

or

a0r
2

3∑

i=0

ri = a0r
2

(
1− r4

1− r

)

= 84 .

We want to know the value of

3∑

i=0

a0r
i =

1∑

i=0

ai + a0

3∑

i=2

ri = 7 + a0r
2

1∑

i=0

ri

= 7 + a0r
2(1 + r) = 7 + r2(a0 + a0r) = 7 + 7r2 = 7(1 + r2) . (313)

Thus we need to solve

a0(1 + r) = 7

a0r
2

(
1− r4

1− r

)

= 84 ,

for a0 and r. If we take the second equation and multiply by one over the first equation we
get

r2
(
1− r4

1− r2

)

=
84

7
= 12 ,

or
r2(1 + r2) = 12 .

This is a quadradic equation for r2. Solving that we find

r2 =
−1 ± 7

2
.

Taking the real root we see that r2 = 3. Putting this in Equation 313 we see that the sum
we seek is given by 7(1 + 3) = 28.

Problem 15

We start with the problem statement of

(2x)logb(2) − (3x)logb(3) = 0 ,
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which we write as
(2x)logb(2) = (3x)logb(3) .

If we take the logb(·) of each side we get

logb(2) logb(2x) = logb(3) logb(3x) ,

or
logb(2) [logb(2) + logb(x)] = logb(3) [logb(3) + logb(x)] .

Solving for logb(x) in this expression we get

logb(x) = − logb(3)
2 − logb(2)

2

logb(3)− logb(2)
= − logb(3)− logb(2) = logb

(
1

6

)

,

which means that x = 1
6
.

Problem 16

Let the expression given be denoted by E and we start by writing the largest terms first.
We have

E = 1 · 319 + 2 · 318 + 1 · 317 + 1 · 316 + 2 · 315 + · · ·
= 1 · (32)9 · 3 + 2 · (32)9 + 1 · (32)8 · 3 + 1 · (32)8 + 2 · (32)7 · 3 + · · ·
= 3 · 99 + 2 · 99 + 3 · 98 + 1 · 98 + 6 · 97 + · · ·
= 5 · 99 + 4 · 98 + 6 · 97 + · · ·

The leading coefficient has a value of five.

Problem 17

If we start with the problem statement

f(x) + 2f

(
1

x

)

= 3x , (314)

and let x→ 1
x
we get

f

(
1

x

)

+ 2f(x) =
3

x
.

If we solve for f(x) in Equation 314 and put that in the previous expression we get

f

(
1

x

)

+ 2

(

3x− 2f

(
1

x

))

=
3

x
.

We can solve for f
(
1
x

)
where we get

f

(
1

x

)

= 2x− 1

x
.
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In this expression if we let x→ 1
x
we get

f(x) =
2

x
− x .

This means that the expression f(x) = f(−x) is equivalent to

2

x
− x = −2

x
+ x ,

which is equivalent to x2 = 2 which has two solutions x = ±
√
2.

Problem 18

If we plot sin(x) and x
100

we see that there will be an intersection of these two curves (and
thus a solution to the given equation) for x ≥ 0 approximately given by

0, π, 2π, 3π, 4π, . . . .

In fact in each of the intervals (2nπ, (2n+1)π) for n = 0, 1, 2, . . . there is a root closer to the
left-end-point (i.e. 2nπ) followed by a root closer to the right-end-point (i.e. (2n+1)π). As n
increases the location of these two roots in each given interval “move inwards” and eventually
the two roots migrate close to the x location where the sin(x) curve in that interval is largest
or the x location

x =
1

2
(2nπ + (2n + 1)π) = 2nπ +

π

2
.

At this point the sin(x) function takes the value one. Thus the last possible interval where
we could have a root is the one where when x = 2nπ + π

2
and we have

x

100
= 1 .

Solving this last equation we get

n =
100− π

2

2π
= 15.66549 .

The last interval where we have roots is then when n = 15. As we have two roots in each
interval for n = 0, 1, 2, . . . , 14, 15 we have 16 × 2 = 32 positive roots in all. We should also
have 32 negative roots (corresponding to the roots when x < 0) but one of these roots is
repeated i.e. x = 0. Thus we have in total

32 + 31 = 63 ,

real roots.
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Problem 19

Extend the segment BN until it intersects the line AC. Let the point of intersection be
denoted D. With that edge drawn we have that triangle ABN is congruent to triangle
ADN . This is because these two triangles share the same side (the side AN) and have

∠BAN = ∠DAN

∠ANB = ∠AND .

This means that BN = ND. From the problem statement we are also told that BM =MC
by the fact that M is the midpoint of side BC. This means that MN is parallel to DC so
triangle CBD is similar to triangle MBN . This means that

DC

NM
=
BD

BN
=

2BN

BN
= 2 .

Now DC = 5 from the above we have that NM = 5
2
.

Problem 20

If we start at the angle ∠ADC and denote it by θ and then work “backwards” towards A
we will arrive at a condition that will make starting at A not possible. As the points of
reflection (in the text) are labeled R3, R2, and R1 we will follow that convention and denote
earlier points as R0, R−1, R−2 etc. From what we are told we compute

∠BR3D = 90− θ .

Then using
2∠R1R3R2 + ∠R2R3B = 180 ,

we get ∠R2R3B = 2θ. Then ∠R3R2B = 90− 2θ. Using

2∠R3R2B + ∠R1R2R3 = 180 ,

we get ∠R1R2R3 = 4θ. Then

∠R2R1R3 = 180− ∠R1R2R3 − ∠R2R3R1 = 180− 4θ − (90− θ) = 90− 3θ .

This then gives ∠R2R1R0 = 6θ.

At this point we see a pattern in the size of the angles. The size of the angle “between” the
two equal angles at each reflection (working from A backwards) is given by

2mθ ,

for m ≥ 1 and the two equal angles at each reflection is given by

90− 2mθ

2
= 90−mθ ,
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again for m ≥ 1.

For example using these results, the point R2 on the line AD will have its three angles
(m = 2) given by

90− 2θ , 4θ , 90− 2θ .

Starting at the point R2 we would have n = 1 reflections until B.

The point R1 on the line CD will have its three angles (m = 3) given by

90− 3θ , 6θ , 90− 3θ .

Starting at the point R1 we would have n = 2 reflections until B.

The point A = R0 on the line AD will have its three angles (m = 4) given by

90− 4θ , 8θ , 90− 4θ .

Starting at the point R0 we would have n = 3 reflections until B.

In general then, the point R4−m for m ≥ 1 will have its three angles given by

90−mθ , 2mθ , 90−mθ .

Starting at the point R4−m we would have m− 1 reflections until B.

We can start this process from a point R4−m as long as 90−mθ > 0 or

m <
90

θ
=

90

8
= 11.25 .

Thus the largest m can be is m = 11. This would have n = m− 1 = 10 reflections until B.
From this point the three angles are

2 , 176 , 2 ,

all in degrees.

Problem 21

From what we are told we know that

(a+ b+ c)(a+ b− c) = (a + b)2 − c2 = 3ab ,

which once we expand (a+ b)2 we can write as

a2 − ab+ b2 − c2 = 0 .

For all triangles, the law of cosigns gives

c2 = a2 + b2 − 2ab cos(θ) .

If we put this in the above (for c2) we get

−ab+ 2ab cos(θ) = 0 .

This means that cos(θ) = 1
2
so that θ = π

3
or 60 degrees.
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Problem 24

Note that if x = e±iθ then x−1 = e∓iθ and that using Euler’s formula we have

x+ x−1 = (cos(θ)± i sin(θ)) + (cos(θ)∓ i sin(θ)) = 2 cos(θ) .

In this case we have that xn = e±inθ and x−n = e∓inθ so that in the same way

xn + x−n = 2 cos(nθ) .

Problem 25

To start we will recall/prove The Angle Bisector Theorem. Draw the triangle ABC
with sides opposite the angles of lengths a, b, and c. Here I am imagining A “at the top”,
followed by B, followed by C in a counterclockwise manner.

Then draw a segment from the vertex A bisecting the angle ∠BAC to the side BC intersecting
at D. Let the length of the segment to the left of D be given by d and the length of the
segment to the right of D be denoted by e. Let the angle ∠ADB be denoted θ. Then the
law of signs in triangle ABD is

sin(α)

d
=

sin(θ)

c
so

sin(α)

sin(θ)
=
d

c
.

Because ∠ADC = π − ∠ADB = π − θ we have

sin(∠ADC) = sin(π − θ) = sin(π) cos(−θ) + cos(π) sin(−θ) = sin(θ) .

This means that the law of signs in triangle ADC is given by

sin(α)

e
=

sin(π − θ)

b
=

sin(θ)

b
so

sin(α)

sin(θ)
=
e

b
.

Equating these two expressions we get

d

c
=
e

b
. (315)

Now in the triangle given let the lengths of AB = x, AD = y, AE = z and AC = w. Then
using the angle bisector theorem on the triangle △BAE we find

2

x
=

3

z
so z =

3

2
x .

Next using the angle bisector theorem on the triangle △DAC we find

3

y
=

6

w
so y =

1

2
w .
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If we let the common angle measure in ∠BAD = ∠DAE = ∠EAC be denoted by α by
using the law of cosigns to express cos(α) we have

cos(α) =
4− x2 − y2

2xy
=

9− y2 − z2

2yz
=

36− z2 − w2

2zw
.

We will use the above two expressions for z and y and write the first and second and the first
and third equations as a system in the unknowns x and w. Note that these two unknowns
are the unknown lengths of the two sides of the triangle △ABC. When I do this I get

4− x2 − 1
4
w2

xw
=

9− 1
4
w2 − 9

4
x2

3
2
xw

4− x2 − 1
4
w2

xw
=

36− 9
4
x2 − w2

3xw
.

I can write these two equations as

3

2
x2 − 1

4
w2 = 6

−3

4
x2 +

1

4
w2 = 24 .

If we add these two together we get x2 = 40 or x = 2
√
10 = 6.324555. Using this then gives

that w2 = 216 = 6
√
6 = 14.69694. As the length of the side BC = 11 the smallest side has

a length AB = x = 2
√
10.

Problem 26

For C to roll a six first A and B must not roll sixes. They each do not roll sixes with a
probability of 5

6
. Thus C will roll a six first if the first six is rolled on the 3, 6, 9, 12, . . . time.

This will happen with a probability of

P (C) =

(
5

6

)2
1

6
+

(
5

6

)5
1

6
+

(
5

6

)8
1

6
+ · · ·

=

(
5

6

)2
1

6

∞∑

k=0

(
5

6

)3k

=
52

63

(

1

1−
(
5
6

)3

)

=
25

91
.

Problem 30

Since we are told that a, b, c, and d are solutions (i.e. roots) we can write

x4 − bx− 3 = (x− a)(x− b)(x− c)(x− d) .

Expanding the right-hand-side gives the expression

x4 − (a + b+ c + d)x3 + (cd+ (a+ b)(c + d) + ab)x2 − (cd(a+ b) + ab(c + d))x+ abcd .
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This is still equal to the left-hand-side from before. Equating powers of x we see that since
there is no term O(x3) in the left-hand-side we have that

a + b+ c+ d = 0 .

Using this we see that

a + b+ c = −d
a+ b+ d = −c
a+ c + d = −b
b+ c + d = −a .

This means that the four ratios given are equal to

−1

d
,−1

c
,−1

b
,−1

a
.

Now the key observation to make is that if

x4 − bx− 3 = 0 ,

has solutions x ∈ {a, b, c, d} then taking x→ − 1
v
this equation will have solutions

v ∈
{

−1

a
,−1

b
,−1

c
,−1

d

}

.

This equation is
(

−1

v

)4

− b

(

−1

v

)

− 3 = 0 .

Simplifying this is
3v4 − bv3 − 1 = 0 .
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The 1982 Examination

Problem 1

We want to find r(x) such that we can write

x3 − 2 = (x2 − 2)q(x) + r(x) .

Using long-division we can show that r(x) = 2x− 2.

Problem 2

This would be
1

4
(8x+ 2) = 2x+

1

2

Problem 3

For this value of x note that xx = 22 = 4 so the expression given is 44 = 256.

Problem 4

Drawing this figure the perimeter P and area A would be related by

P =
1

2
(2πr) + 2r = A =

1

2
πr2 .

Solving for r in this expression we get

r = 2 +
4

π
.

Problem 5

From the problem statement we are told that

x

y
=
a

b
.

Now as a < b this means that x < y and the smaller of the two numbers (between x and y)
is x. From the fact that x+ y = c we have y = c− x. If we put this into the first expression
and solve for x we get

x =
ac

a+ b
.
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Problem 6

The sum of the interior angles of a polygon with n sides is 180(n− 2). Thus we know that
n must be such that

180(n− 2) = 2570 + θ ,

for some angle θ > 0. Thus we need to have 180(n − 2) ≥ 2570 which means that n ≥
16.27778. As n is a positive integer we will take n = 17 and then 180(n − 2) = so that
θ = 130.

Problem 7

We can see that (A) and (D) are true for all x. If we consider (C) we see that the left-hand-
side is given by

(x− 1) ⋆ (x+ 1) = x(x+ 2)− 1 = x2 + 2x− 1 ,

while the right-hand-side is given by

(x ⋆ x)− 1 = ((x+ 1)(x+ 1)− 1)− 1

= (x2 + 2x+ 1− 1)− 1 = x2 + 2x− 1 ,

which are equal.

If we consider (E) we see that the left-hand-side is given by

x ⋆ (y ⋆ z) = x ⋆ ((y + 1)(z + 1)− 1)

= (x+ 1)((y + 1)(z + 1))− 1

= (x+ 1)(y + 1)(z + 1)− 1 ,

while the right-hand-side is given by

(x ⋆ y) ⋆ z = ((x+ 1)(y + 1)− 1) ⋆ z

= ((x+ 1)(y + 1))(z + 1)− 1

= (x+ 1)(y + 1)(z + 1)− 1 ,

which are equal.

For (B) the left-hand-side is given by

x ⋆ (y + z) = (x+ 1)(y + z + 1)− 1 ,

while the right-hand-side is given by

(x ⋆ y) + (x ⋆ z) = ((x+ 1)(y + 1)− 1) + ((x+ 1)(z + 1)− 1)

= (x+ 1)(y + z + 1)− 1 + x+ 1− 1

= (x+ 1)(y + z + 1)− 1 + x ,

which are not equal.
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Problem 8

An arithmetic progression means that the difference between two terms in the sequence is
equal. For this sequence that means that

(
n

2

)

−
(
n

1

)

= d ,

and (
n

3

)

−
(
n

2

)

= d ,

so that both differences equal a whole number (here d). Using the given expression for
(
j
k

)

these are
n!

2!(n− 2)!
− n!

1!(n− 1)!
= d =

n!

3!(n− 3)!
− n!

2!(n− 2)!
,

or
n(n− 1)

2
− n =

n(n− 1)(n− 2)

6
− n(n− 1)

2
.

If we divide by n and multiply by six we get

3(n− 1)− 6 = (n− 1)(n− 2)− 3(n− 1) .

This simplifies to
0 = n2 − 9n+ 14 .

This has two solutions

n =
9±

√

81− 4(14)

2
=

9±
√
81− 56

2
=

9± 5

2
,

or
n ∈ {2, 7} .

As we are told that n > 3 the solution to take is n = 7.

Problem 9

The area of the triangle can be computed from various parts in the figure. The first is the
area of a rectangle with corners

(0, 0), (9, 0), (9, 1), (0, 1) ,

which is
1(9) = 9 .

From this we first subtract the triangle with vertices (0, 0), (9, 0), and (9, 1) which has area

1

2
(1)(9) =

9

2
.
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Next we also subtract the area of the triangle with vertices (0, 0), (1, 1), and (0, 1) which has
area

1

2
(1)(1) =

1

2
.

Using all of these results the area of original triangle is

9− 9

2
− 1

2
= 9− 5 = 4 .

Next note that the line AB can be written as

y =

(
1− 0

9− 0

)

x =
x

9
.

Now if we cut this triangle into two parts using a vertical line at x then the triangle with
vertices

(
x, x

9

)
, (9, 1), and (x, 1) will have an area

1

2
(1− x

9
)(9− x) .

To have an area equal to one-half of the original area We want to find x such that

1

2

(

1− x

9

)

(9− x) =
4

2
.

This can be solved where we find x = 3 or x = 15. To have 0 < x < 9 we need to take x = 3.

Problem 10

First note that the triangle AMN is similar to the triangle ABC. Let the smaller triangle
have lengths that are that of the larger triangle but scaled by x where x < 1. This means
that MN = 24x. Also along side AB we have

AM = 12x

MB = 12(1− x) .

Finally along side AC we have

AN = 18x

NC = 18(1− x) .

The perimeter of the triangle AMN is then

12x+ 18x+ 24x = 54x .

To evaluate this we need to determine the value of x. As MN is parallel to BC we know
that

∠CBO = ∠BOM

∠BCO = ∠CON .

Because BO and CO are angle bisectors. We then get two isosceles triangles (MBO and
NCO) and thus have MO = BM and ON = NC. As

MN = 24x =MO +ON =MB +NC = 12(1− x) + 18(1− x) ,

we can solve for x and find x = 5
9
. Using this we find the perimeter of triangle AMN given

by 54x = 30.

532



n4 number of valid choices for n1

1 1
2 2
3 2
4 2
5 2
6 2
7 2
8 1
9 1

Table 8: The possible values for n1 given the value of n4.

Problem 11

Let our integer be written as n4n3n2n1 where each ni is a digit in the appropriate range. For
example we would require that 1 ≤ n4 ≤ 9. One condition on the numbers we want is that
|n1 − n4| = 2. This is equivalent to

n1 = n4 ± 2 .

If we take 1 ≤ n4 ≤ 9 and then consider the possible choices we can get for n1 (using the
above formula if possible) we get Table 8. This gives a total of

1 + 2× 6 + 1 + 1 = 15 ,

ways to pick the digits n1 and n4. Now to pick the digits n2 and n3 for each we can select
any digit in the range 0− 9 but excluding the two digits selected when we picked the digits
n1 and n4. This gives 8 × 7 = 56 ways to pick these two digits and have them be distinct.
In total then we have

15× 56 = 840 ,

ways to pick four digit numbers of the desired type.

Problem 12

Note that f(x) = g(x)− 5 with g(x) an odd function. This means that

f(−7) = g(−7)− 5 = 7 so g(−7) = 12 .

Using this and the fact that g(x) is odd we know that g(7) = −12. This means that

f(7) = g(7)− 5 = −12− 5 = −17 .
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Problem 13

From the given expression we can write

p logb(a) = logb(logb(a)) ,

or
logb(a

p) = logb(logb(a)) .

Applying the function f(x) = bx to both sides we get

ap = logb(a) .

Problem 14

As AG is tangent to the circle we know that ∠PGA is a right angle. Lets draw a line through
N and parallel to the segment PG. Let this segment/line intersect AG at the pointM . Then
∠AMN is also a right angle. By correspondence we see that △ANM is similar to △APG.
This means that

AN

NM
=
AP

GP
,

or
3r

MN
=

5r

r
so MN =

3

5
r .

Now draw the segment NF which will have length r. By the Pythagorean theorem we have

MF 2 +MN 2 = r2 .

Using the above expression for MN we get that

MF =
4

5
r .

Now the length of EF is

2MF =
8

5
r .

When r = 15 this is 24.

Problem 15

To start this problem lets assume that the [·] does not change the (x, y) solution and instead
solve the system

y = 2x+ 3

y = 3(x− 2) + 5 .
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For this we find x = 4 and y = 11. Note that these are integers. Let’s see if a value of x
“close” to four will also work. If we have something less than four i.e. if 3 < x < 4 then
1 < x− 2 < 2 so that [x] = 3 and [x− 2] = 1. Using these in the right-hand-sides of the two
original expressions for y we get

y = 2(3) + 3 = 9

y = 3(1) + 5 = 8 ,

which are not equal showing that no solutions for x in the range 3 < x < 4 exist. Lets now
consider the case where 4 < x < 5. Then [x] = 4 and as x − 2 > 2 we have [x − 2] = 2.
Using these in the right-hand-sides of the two original expressions for y we get

y = 2(4) + 3 = 11

y = 3(2) + 5 = 11 ,

which is true. Thus we should take 4 < x < 5 to have a solution. In this case y = 11 thus

4 + 11 < x+ y < 5 + 11 so 15 < x+ y < 16 .

Problem 16

The full surface of the cube without any holes is 6 · 32. Once we “cut” the center out we
increase the surface area by the four sides of the 1× 1 cube “inside” each face. That is by

6× 4× (1× 1) = 24 .

This also removes the surface area of the 1× 1 square on the faces of the six sides. In total
then the surface area is

6 · 32 + 6 · 4− 6 · 1 = 72 .

Problem 17

We write this as
32(3x)2 − 33(3x)− 3x + 3 = 0 ,

or
9(3x)2 − 28(3x) + 3 = 0 .

Then if we let v = 3x we have the equation

9v2 − 28v + 3 = 0 .

This has solutions

v ∈
{
1

9
, 3

}

.

This means that x has solutions x = −2 and x = 1 so two real solutions.
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Problem 18

Let the square HGDC have dimensions s × s and the rectangle HFBC have dimensions

d × s. Then as vectors we have
−−→
HB = (d, 0, s) and

−−→
HD = (0, s, s). Then the cosign of the

angle between HB and HD is given by

−−→
HB · −−→HD

||HB|| · ||HD|| =
s2√

d2 + s2
√
s2 + s2

=
s√

2
√
d2 + s2

.

Now from the given diagram we see that

cos
(π

6

)

=
s√

d2 + s2
=

√
3

2
.

Using this in the above we find the cosign of ∠BHD given by

1√
2
·
√
3

2
=

√
6

4
.

Problem 19

To start we write the function as

f(x) = |x− 2| − 2|x− 3|+ |x− 4| .

If −∞ < x < 2 the function above is equal to

f(x) = −(x− 2)− 2(−x+ 3) + (−x+ 4) = 0 .

If 2 < x < 3 the function above is equal to

f(x) = x− 2− 2(−x+ 3) + (−x+ 4) = 2x− 4 .

If 3 < x < 4 the function above is equal to

f(x) = x− 2− 2(x− 3) + (−x+ 4) = −2x+ 8 .

If 4 < x <∞ the function above is equal to

f(x) = x− 2− 2(x− 3) + (x− 4) = 0 .

Plotting each of these regions we see that the minimum of f(x) is zero and the maximum of
f(x) is two giving a sum of two.

536



Problem 20

We want to find solutions to
x2 + y2 = x3 ,

with (x, y) both integers. To start if we let x = y then we get 2x2 = x3 so x = 2 i.e. we have
at least one solution. If we take x = 1 then we get

1 + y2 = 1 so y = 0 .

Thus we have no positive integer solutions when x = 1. Thus we must have x ≥ 2 to have
solutions. I next claim that we must have y > x for if y < x note that

x2 + y2 < x2 + x2 = 2x2 .

This will be smaller than x3 (and could not be equal to x3) when x > 2. Based on this lets
write y = x+ p with p ≥ 1. Then we have

x2 + (x+ p)2 = x3 .

Expanding and simplifying we get

p2 + 2px− x3 + 2x2 = 0 .

This is a quadratic equation for p. Solving we get

p =
−2x±

√

4x2 − 4(−x3 + 2x2)

2
= −x± x

√
x− 1 .

If we take the negative root we would see that p < 0 so we must take the positive root and
have

p = −x + x
√
x− 1 .

Using this we find that y is given by

y = x+ p = x
√
x− 1 .

This will not be an integer unless x− 1 is a perfect square say x− 1 = n2 which means that
x = n2 + 1. Now that we have a representation for x this means that

y = n(1 + n2) .

Lets check that the values of (x, y) found above give an integer solution to the original
equation. We have

x2 + y2 = (n2 + 1)2 + n2(1 + n2)2 = (n2 + 1)3 ,

which is x3 as it needs to be to be a solution. Thus we have an infinite number of solutions
for n ≥ 1. Note that n = 1 gives the first solution we found x = y = 2.
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Problem 21

To solve this problem we remember that “medians are area bisectors” and their intersection
at the centroid (denoted by O) of the triangle divides each median into portions that are 2/3
and 1/3 of the total median length. Let the length of AC be 2y (so that CN = NA = y)
and the length of AB be 2x (so that BM = MA = x). Then as triangle ABC is a right
triangle we can write that is area is given by

AABC =
1

2
s(2y) = sy .

Triangle BNC is also a triangle made by a median so by the “area bisector” theorem we
have its area given by

ABNC =
1

2
AABC =

1

2
sy .

But also since triangle BNC is a right triangle we have

ABNC =
1

2
(m+ n)p =

1

2
sy .

Here m is the distance from B to O (the centroid), n is the distance from O to N , and p is
the distance from O to C. This means that solving for m+ n we have

m+ n = s

(
y

p

)

.

Now
y

p
=

1
p
y

=
1

cos(∠OCN)
.

Using the diagram given we can show that ∠OCN = ∠OBC so that

cos(∠OCN) = cos(∠OBC) =
m

s
,

or
m+ n = s

( s

m

)

.

Because the centroid divides the median in the proportions 1 : 2 we have

m =
2

3
(m+ n) ,

which when we put in the above gives

m+ n =
3s2

2(m+ n)
.

Solving this for m+ n gives

m+ n = BN =

√
3s√
2

=

√
6

2
s .
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Problem 22

Let the left-most corner be denoted as A and the right-most corner denoted as B so the
“base” of the figure is the segment APB. Now

∠PRQ = 180− ∠APR− ∠BPQ = 180− 75− 45 = 60 .

Thus we see that △PQR is an equilateral triangle with a side length of a. Draw a line from
R and parallel to APB. Let this intersect the segment BQ at the point C. Then ∠RCQ is
a right angle and

∠RQC = 180− ∠PQB − ∠PQR = 180− 45− 60 = 75 .

Next we also have

∠QRC = 90− ∠RQC = 90− 75 = 15 = ∠ARP .

Thus by angle-side-angle we see that △PRA is congruent to △QRC so that RC = AR = h.
But RC = AB = w so we have just shown that w = h.

Problem 23

Let the lengths of the triangle be n−1, n, and n+1. The largest angle must be opposite the
largest side and the smallest angle must be opposite the smallest side. Introduce a triangle
ABC with side lengths

AB = n

BC = n− 1

AC = n + 1 ,

and angles

∠A = θ

∠B = 2∠A = 2θ

∠C = 180− ∠B − ∠A = 180− 3∠A = 180− 3θ .

We want to know the value of cos(∠A) = cos(θ). Using the law of cosigns (around ∠A = θ)
we can write

(n− 1)2 = (n+ 1)2 + n2 − 2n(n+ 1) cos(θ) .

Expanding and simplifying we can write this as

cos(θ) =
n+ 4

2(n+ 1)
.

Again using the law of cosigns (this time around ∠B = 2θ) we can write

(n+ 1)2 = n2 + (n− 1)2 − 2n(n− 1) cos(2θ) .
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Expanding and simplifying we can write this as

cos(2θ) =
n− 4

2(n− 1)
.

Using the fact that
cos(2θ) = 2 cos2(θ)− 1 ,

we can relate these two expressions to get

n− 4

2(n− 1)
=

1

2

(
n+ 4

n+ 1

)2

− 1 .

We can expand this to get
2n3 − 7n2 − 17n+ 10 = 0 .

We want an integer solution n > 1. The possible rational solutions p
q
of this expression will

have p a factor of 10 or
p ∈ {±1,±2,±5,±10} ,

and q a factor of two or
q ∈ {±1,±2} .

The only possible integers n > 1 would then be {2, 5, 10}. Trying each of these we find that
n = 5 is a root and thus we can factor n− 5 from the above polynomial to get

2n3 − 7n2 − 17n+ 10 = (n− 5)(2n2 + 3n− 2) .

This last quadratic has solutions n = 1
2
and n = −2. Thus we have that n = 5 and thus

cos(θ) =
n+ 4

2(n+ 1)
=

3

4
,

when we simplify.

Problem 24

Let the length BD be equal to a, the length DE be equal to x, the length CE be equal to b,
and the length AH be y. Then using the Intersecting Secants Theorem6, which is a theorem
about the lengths of segments drawn to a circle from an exterior point we can write

y(y + 7) = 2(2 + 13) = 30 .

This is equivalent to
y2 + 7y − 30 = 0 ,

which we can factor as
(y − 3)(y + 10) = 0 .

6https://www.mathopenref.com/secantsintersecting.html
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The only positive solution to this equation is then y = 3. Knowing that length and because
△ABC is an equilateral triangle we have the length of BJ given by

BJ = 16− 7− y = 16− 7− 3 = 6 .

The intersecting secants theorem for the secants CD and CG gives

b(b+ x) = 1(1 + 13) = 14 ,

The intersecting secants theorem for the secants BH and BE gives

a(a + x) = 6(6 + 7) = 78 .

Finally because △ABC is an equilateral triangle we have

a+ x+ b = 16 .

In summary we have three equations and three unknowns i.e. x, a, and b i.e.

bx+ b2 = 14 (316)

ax+ a2 = 78 (317)

x+ a+ b = 16 . (318)

From the last of these we have
x = 16− a− b ,

which if we put into the first two equations we get

16b− ab = 14

16a− ab = 78 .

If we multiply the second of these by minus one and add to the first we get

b = a− 4 .

Putting this into x+ a+ b = 16 we get

x+ a+ (b− 4) = 16 ⇒ a = 10− x

2
.

If we put this expression for a in terms of x into Equation 317 we get

(

10− x

2

)

x+
(

10− x

2

)2

= 78 .

Expanding and simplifying this I find

x =
√
88 = 2

√
22 .

541



Problem 25

Label the intersections (i, j) for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4 with i increasing as we move
East and j increasing as we move South. Let pi,j be the probability that we pass through
intersection (i, j) moving from A to B. Then starting at the upper left corner and working
towards the lower right corner (towards intersection B) we have that

p0,0 = 1

p1,0 = p0,1 =
1

2

p2,0 = p0,2 =
1

4

p3,0 = p0,3 =
1

8
,

since the only to get to these intersections is to sequentially step horizontally or vertically.
We then compute

p1,1 =
1

2
p0,1 +

1

2
p1,0 =

1

2
,

since to get to the intersection (1, 1) we must either come from intersection (0, 1) or (1, 0)
each is equally likely. Using that same logic we can compute

p2,1 = p1,2 =
3

8

p1,3 =
1

4

p2,3 =
5

16
.

We cannot use that logic to compute p3,j for j ≥ 1. For example to compute p3,1 we have

p3,1 = 1p3,0 +
1

2
p2,1 =

1

8
+

1

2

(
3

8

)

=
5

16
.

This is because we will enter intersection (3, 1) with certainty if we come from intersection
(3, 0) and one-half of the time if we come from intersection (2, 1). In the same way we
compute

p3,2 = 1p3,1 +
1

2
p2,2 = 1

(
5

16

)

+
1

2

(
3

8

)

=
1

2
,

and

p3,3 = 1p3,2 +
1

2
p2,3 = 1

(
1

2

)

+
1

2

(
5

16

)

=
16

32
+

5

32
=

21

32
.

Problem 26

We are told that
(ab3c)8 = a83 + b82 + 3 · 8 + c = n2 , (319)
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for some integer n. Lets write n in base eight as

n = (de)8 = d8 + e ,

where 1 ≤ d ≤ 7 and 0 ≤ e ≤ 7. Then

n2 = (d8 + e)2 = d282 + 2de8 + e2 .

Comparing this to Equation 319 we must have

a83 + b82 + 3 · 8 + c = d282 + 2de8 + e2 . (320)

From this we see that d2 must have a factor of eight or otherwise a would be zero. For
1 ≤ d ≤ 7 we have that only 42 = 16 has a factor of eight. This means that d = 4 and the
above becomes

a83 + b82 + 3 · 8 + c = 2 · 83 + e82 + e2 . (321)

From this we have that a = 2 and

b82 + 3 · 8 + c = e82 + e2 .

As 0 ≤ e ≤ 7 the term e82 does not have any powers of eight higher than two which means
that b = e and we are left with

3 · 8 + c = e2 .

Taking e = 0, 1, · · · , 6, 7 and computing c = e2 − 3 · 8 for the possible values of c I get

[1] -24 -23 -20 -15 -8 1 12 25

As we know that 0 ≤ c ≤ 7 the only value in the above where that is true is if c = 1.

Problem 27

If we take the conjugate of the given equation we get

c4z̄
4 − ic3z̄

3 + c2z̄
2 − ic1z̄ + c0 = 0 .

Note that we can introduce −z̄ and write this as

c4(−z̄)4 + ic3(−z̄)3 + c2(−z̄)2 + ic1(−z̄) + c0 = 0 .

This means that −z̄ = −a + bi is a solution to the original equation.
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Problem 28

Recall that

1 + 2 + 3 + · · ·+ (n− 1) + n =
1

2
n(n+ 1) .

Then if we remove the number m where 1 ≤ m ≤ n from this sum we have

1 + 2 + 3 + · · ·+ (n− 1) + n−m =
1

2
n(n+ 1)−m,

for the new sum. To get the average value we divide that sum by the number of terms which
is n− 1 and we get

1

n− 1

(
1

2
n(n+ 1)−m

)

= 35
7

17
=

602

17
.

We can expand the left-hand-side we can write the above as

17(n(n+ 1)− 2m) = 1204(n− 1) .

Note that everything is an integer and that 1204 = 22 · 7 · 43 so we can write

17(n(n+ 1)− 2m) = 22 · 7 · 43 · (n− 1) .

From the form of the left-hand-side we must have at least one factor of seventeen in the
product expression found in the right-hand-side. This means that

n− 1 = 17c so n = 17c+ 1 ,

for some c = 1, 2, 3, . . . . Putting this expression for n in the above gives

17((17c+ 1)(17c+ 2)− 2m) = 22 · 7 · 43 · 17 · c ,

or
(17c+ 1)(17c+ 2)− 22 · 7 · 43 · c = 2m,

or under further expansion
289c2 − 1153c+ 2 = 2m.

We can take c = 1, 2, 3, . . . and for each compute the value of m using the above formula.
Once we know c we also know n as n = 17c+ 1. Doing this in the following R code

cs = 1:10

ms = ( 289 * cs^2 - 1153 * cs + 2 ) / 2

ns = 17*cs + 1

R = rbind(cs, ns, ms)

rownames(R) = c(’c’, ’n’, ’m’)

print(round(R, 2))

gives
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

c 1 2 3 4 5 6 7 8 9 10

n 18 35 52 69 86 103 120 137 154 171

m -431 -574 -428 7 731 1744 3046 4637 6517 8686

From the problem statement we know that 1 ≤ m ≤ n. The only column where this is true
is when c = 4 where we have n = 69 and m = 7.

Problem 29

Let the minimum m0 be given by m0 = x0y0z0 and assume that the variables are ordered as

x0 ≤ y0 ≤ z0 .

We know that z0 < 2x0 from the problem statement but I claim that at the minimum of the
product xyz over all feasible values for (x, y, z) we must have z = 2x. If this was not true
consider a new product x1y1z1 where z1 < 2x1 and such that

x1 = x0 + h

y1 = y0

z1 = 2x0 − h .

Thus the point (x1, y1, z1) is a feasible point (satisfies all of the constraint conditions) and
perturbed from one where z0 = 2x0. Then

x1y1z1 = (x0 + h)y0(2x0 − h) = (x0 + h)(y0(2x0)− hy0)

= x0y0(2x0)− hx0y0 + hy0(2x0)− h2y0 = m0 + hx0y0 − h2y0

≈ m0 + hx0y0 ,

for h≪ 1. From this we see that the product x1y1z1 would then be larger than the product
when we take h = 0 and enforce z = 2x.

As x+ y+ z = 1 under the condition that z = 2x we have that y = 1−x− z = 1− 3x. This
means that

m = xyz = x(1 − 3x)(2x) = 2x2(1− 3x) .

Define the right-hand-side of the above to be equal to f(x). The extreme points of f(x) are
given by solving

f ′(x) = 4x(1− 3x) + 2x2(−3) = 0 .

This is equivalent to
f ′(x) = 4x− 18x2 = 0 .

This has solutions x = 0 or x = 2
9
= 0.2222222. Now from the ordering requirement

x0 < y0 < z0 specialized to what we have determined above we need to have

x0 < 1− 3x0 < 2x0 .
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The “left-most” inequality gives that

x0 < 1− 3x0 or x0 <
1

4
= 0.25 .

The “right-most” inequality gives that

1− 3x0 < 2x0 or x0 >
1

5
= 0.2 .

Thus the valid ranges for x0 are

0.2 =
1

5
≤ x0 ≤

1

4
= 0.25 .

There are three values for x0 (the two endpoints and the value 2
9
) that we must evaluate to

see which gives the smallest value for f(x). We have

f

(
2

9

)

= 2

(
4

81

)(

1− 6

9

)

=
8

81
· 3
9
=

8

27 · 9 =
8

243
= 0.03292181

f

(
1

5

)

=
2

25

(

1− 3

5

)

=
2

25

(
2

5

)

=
4

125
= 0.032

f

(
1

4

)

=
2

16

(

1− 3

4

)

=
1

8

(
1

4

)

=
1

32
= 0.03125 .

Thus we see that the smallest value of f(x) is when x0 =
1
4
, y0 = 1− 3x0 =

1
4
, z0 = 2x0 =

1
2

and m0 =
1
32
.
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The 1983 AHSME Examination

Problem 1

Solving for y we have y = x
16
. Using that in the first expression gives x

2
= x2

162
. As x 6= 0 we

can divide by it and then solve for x to get x = 162

2
= 128.

Problem 2

Draw a circle around P of radius 3. This second circle can intersect C in at most two points.

Problem 3

If we try enumerating primes such that 1 < p < q we start with p = 2 and q = 3 so that
r = 5. For these numbers we see that all needed conditions are satisfied.

Problem 4

Draw the segment BE dividing the region into two equal parts. Then the height of EBCD
is

1 sin(60◦) =

√
3

2
.

Thus the area of EBCD is

1

2
h(b1 + b2) =

1

2

(√
3

2

)

(1 + 1) =

√
3

2
.

As we have two of these the area of the full figure is twice this or
√
3.

Problem 5

If we draw this triangle we find the length of AC given by

√
9− 4 =

√
5 .

This then means that

tan(B) =

√
5

2
.
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Problem 6

Write the given expression as

x5
(

x+
1

x

)(

1 +
2

x
+

3

x3

)

= x(x2 + 1)(x3 + 2x2 + 3) ,

which we see will be a polynomial of degree 1 + 2 + 3 = 6.

Problem 7

Alice’s commission is
0.1(L− 10) .

Bob’s commission is
0.2(L− 20) .

Setting these equal and solving for L gives L = 30.

Problem 8

Note that

f(−x) = −x+ 1

−x− 1
=
x− 1

x+ 1
,

which is one over f(x).

Problem 9

Let W and M be the number of women and men. Then we are told that

W

M
=

11

10
so W =

11

10
M .

The average A of the full sample would be given by

A =
34W + 32M

W +M
.

Using the first expression for W in terms of M in the above for A (and canceling M) we get

A =
34(11) + 32(10)

11 + 10
=

694

21
= 33

1

21
.
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Problem 10

Draw the center of the circle on the segment AB and denote it as the point O. Draw a radius
from O to E which is of length one (the length of the radius). As △ABC is equilateral we
have ∠ABC = 60 degrees. Now △EOB has OB = OE (both are radius of the circle) so
that ∠BEO is also 60 degrees and △EOB is also an equilateral triangle. This means that
∠EOB = 60 so that ∠EOA = 120 degrees or 2π

3
radians. Using the law of cosigns on the

triangle AOE we have

AE2 = 12 + 12 − 2(1)(1) cos

(
2π

3

)

= 2 + 1 .

This means that AE =
√
3. Note in the original wording of this problem I originally thought

the radius of the circle was two and not one.

Problem 11

Call this expression E. Then by expanding sin(x− y) and cos(x− y) we have

E = (sin(x) cos(y)− cos(x) sin(y)) cos(y) + (cos(x) cos(y) + sin(x) sin(y)) sin(y)

= sin(x) cos2(y)− cos(x) cos(y) sin(y) + cos(x) cos(y) sin(y) + sin(x) sin2(y)

= sin(x) .

Problem 12

The given expression is equivalent to

log3(log2(x)) = 1 ,

or
log2(x) = 3 ,

or
x = 23 = 8 .

This means that

x−1/2 =
1

81/2
=

1

2
√
2
.

Problem 13

From the definitions given we note that

(ab)2

abc
=
ab

c
=

(xy)(xz)

yz
= x2 ,
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and
(ac)2

abc
=
ac

b
=

(xy)(yz)

xz
= y2 ,

and finally
(bc)2

abc
= z2 ,

using the same logic. Thus the expression x2 + y2 + z2 is given by (E).

Problem 14

Note that we can write the given number N as

N ≡ 31001 · 71002 · 131003 = (3 · 7 · 13)1001 · 7 · 132 ,
and the value of the term in parenthesis is 3 · 7 · 13 = 273. Determining the units digit of
powers of 273 is simple. For example, if we let “ud” be the function that returns the “units
digit” we see that

ud(2731) = 3

ud(2732) = 9

ud(2733) = 7

ud(2734) = 1

ud(2735) = 3

ud(2736) = 9 ,

and the pattern of units digits repeats. This means that after five exponents we are back to
where we started and thus

ud(2731001) = ud(2731) = 3 ,

since 1001 = 200 · 5+1. Next note that as 132 = 169 we have ud(132) = 9. Thus using what
we have shown thus far we have

ud(N) = ud(3 · 7 · 9) = ud(21 · 9) = 9 .

Problem 15

If a draw is represented as the tuple (a, b, c) with each of the letters selected from the set
{1, 2, 3} then there are three ways to choose a, three ways to choose b, and three ways to
choose c. This gives a total of 33 = 27 possible valid tuples of three numbers.

The sum of the numbers drawn (i.e. S = a + b + c) will equal six if we draw the number
two three times or the numbers 1, 2, 3 (in any order). There are 3! = 6 ways to draw the
numbers 1, 2, and 3 in any order. Thus there are 6 + 1 = 7 ways to have our sum equal six.
Thus the probability that we get a sum of six is

P (S = 6) =
7

27
.
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The probability we are asked for is (using Bayes’ rule) given by

P ((2, 2, 2)|S = 6) =
P (2, 2, 2)

P (S = 6)
=

1/27

7/27
=

1

7
.

Problem 16

In the number described there will first be the digits 1−9 (each taking one character/space)
for a total of nine characters. Second, we will write the numbers 10 − 99 each taking two
characters/spaces. This is

99− 10 + 1 = 90 ,

numbers and as each takes two spaces we have a total of 90 × 2 = 180 spaces used. Third
we will put the numbers 100− 999 (each taking three characters/spaces) which is

999− 100 + 1 = 900 ,

numbers for a total of 900 × 3 = 2700 spaces. To find the digit at the location 1983 note
that the “ones-digit” numbers and the “twos-digit” numbers will take up

9 + 180 = 189 ,

spaces. We then need to “use up”

1983− 189 = 1794 ,

more spaces. As 1793 = 589× 3 this is 589 three digit numbers starting with the first three
digit number which is 100. This means that the last number we will write down will be 597
so the digit at the 1983rd spot is a seven.

Problem 17

Let the point F be denoted in polar coordinates as |F |eiθ. From the fact that F is outside
the unit circle and the angle we have |F | > 1 and θ > 0. This means that one-over F (in
polar) takes the form

1

|F |e
−iθ .

We know that 1
|F | < 1 and the negative angle means that one-over F is below the x-axis.

Thus the point should be C.

Problem 18

We are told that
f(x2 + 1) = x4 + 5x2 + 3 = (x2)2 + 5x2 + 3 .
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Thus we see
f(x2) = (x2 − 1)2 + 5(x2 − 1) + 3 .

Using this we have

f(x2 − 1) = (x2 − 2)2 + 5(x2 − 2) + 3 = x4 + x2 − 3 ,

when we expand and simplify.

Problem 19

Using the law of cosines to get the length BC we have

BC2 = 62 + 32 − 2(6)(3) cos

(
2π

3

)

= 36 + 9− 36

(
1

2

)

= 63 .

This means that BC =
√
63 = 3

√
7. Note that AD bisects ∠BAC. Then by the “angle

bisector theorem” we have
AB

AC
=
BD

DC
so

6

3
=
BD

DC
,

Thus we have that BD = 2DC. We also know that

BC = BD +DC = 3
√
7 ,

or using what know about BD in terms of DC we have

2DC +DC = 3
√
7 ,

so DC =
√
7 and BD = 2

√
7. Now using the law of sines in △ABC gives

sin(∠BAC)

sin(∠ABC)
=

3
√
7

3
.

As

sin(∠BAC) = sin

(
2π

3

)

=

√
3

2
.

Using these two expression we have

sin(∠ABC) =

√
3

2
√
7
=

1

2

√

3

7
.

Now using the law of sines in △ABD as

sin(∠BAD)

sin(∠ABD)
=

2
√
7

AD
,

or
sin
(
π
3

)

sin(∠ABC)
=

√
3
2

1
2

√
3
7

=
2
√
7

AD
.

Using that expression we can solve for AD and find AD = 2.
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Problem 20

We are told that tan(α) and tan(β) are roots to x2 − px+ q = 0 which means that when we
write this polynomial in factored form as

(x− tan(α))(x− tan(β)) = 0 ,

and expand we will find that

p = tan(α) + tan(β)

q = tan(α) tan(β) .

In the same way for the given roots of x2 − rx+ s = 0 we would have

r = cot(α) + cot(β)

s = cot(α) cot(β) .

Using these if we consider the expression rs we find

rs =

(
1

tan(α)
+

1

tan(β)

)
1

tan(α) tan(β)

=

(
tan(α) + tan(β)

tan(α) tan(β)

)
1

q
=
p

q

(
1

q

)

=
p

q2
.

Problem 21

For the numbers A and B note that

102 = 100

(3
√
11)2 = 9 · 11 = 99 .

Thus A = 10− 3
√
11 is positive and B = 3

√
11− 10 is negative.

For C we have

182 = 324

(4
√
13)2 = 25 · 13 = 325 ,

so C = 18− 5
√
13 is negative.

For the numbers D and E note that

512 = 2601

(10
√
26)2 = 100 · 26 = 2600 .

Thus D = 51− 10
√
26 is positive and E = 10

√
26− 51 is negative.
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Thus there are only two positive numbers A and D to compare. We need to know which one
is smaller. Note that

1

A
=

1

10− 3
√
11

(

10 + 3
√
11

10 + 3
√
11

)

=
10 + 3

√
11

100− 99
= 10 + 3

√
11 ,

and
1

D
=

1

51− 10
√
26

(

51 + 10
√
26

51 + 10
√
26

)

=
51 + 10

√
26

1
= 51 + 10

√
26 .

As “each number is larger” we have that

10 + 3
√
11 < 51 + 10

√
26 or

1

A
<

1

D
so D < A .

Thus the smallest positive number is D.

Problem 22

To find the points where these two curves intersect if we take y = g(x) = 2ax+ 2ab and put
this in the expression for the other curve y = f(x) = x2 + 2bx+ 1 we get

2ax+ 2ab = x2 + 2bx+ 1 .

We can simplify this to get

x2 + 2(b− a)x+ 1− 2ab = 0 .

This will have no real solutions if

4(b− a)2 − 4(1− 2ab) < 0 .

If I expand this and simplify I get
a2 + b2 < 1 ,

which is the interior of a circle with a radius of one. This has an area of π · 12 = π.

Problem 23

If we assume that the ratio of the radius of consecutive circles is constant then we would
have

ri
ri+1

= c ,

for i ∈ {1, 2, 3, 4} and some constant c. This means that

r1
r5

=

4∏

i=1

ri
ri+1

= c4 =
8

18
=

4

9
.
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This means that c =
√

2
3
. The radius of the middle circle can be obtained from

r1
r3

=

2∏

i=1

ri
ri+1

= c2 =
2

3
.

Solving for r3 I find r3 = 12.

Problem 24

If the right triangle has legs a and b then the hypotenuse has a length of
√
a2 + b2. The area

is then
1

2
ab ,

and the perimeter is
a + b+

√
a2 + b2 .

If these two are to be equal we must have

a+ b+
√
a2 + b2 =

1

2
ab .

Note if we can find one solution to this equation we have found an infinite number of solutions
as ka and kb are also solutions. We can find one solution by taking a = b and putting this
in the above where we find

a = b = 2(2 +
√
2) .

Thus the given condition has an infinite number of solutions.

Problem 25

We start with

60a = 3 (322)

60b = 5 , (323)

and want to evaluate
x = 12

1−a−b
2(1−b) .

Note that we can write x as

x = 12
1
2(1−

a
1−b) = 12

1
212

− a
2(1−b) .

Now from Equation 323 we have

60−b = 5−1 so 601−b = 60 · 5−1 =
60

5
= 12 .
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If we take the 1− bth root of both sides of this last equation we get

60 = 12
1

1−b .

Next take the ath power of both sides to get

60a = 12
a

1−b .

Using Equation 322 we get
12

a
1−b = 3 .

Taking the square root of this gives

12
a

2(1−b) = 3
1
2 so 12−

a
2(1−b) = 3−

1
2 .

From the expression we derived for x we then have that

x = 121/23−1/2 = 2 · 31/2 · 3−1/2 = 2 .

Problem 26

Using
P (A ∪B) = P (A) + P (B)− P (A ∩B) ,

we have
P (A ∩B) = P (A) + P (B)− P (A ∪B) .

As P (A∪B) ≤ 1 we know that −P (A∪B) ≥ −1 so using that with P (A) = 3
4
and P (B) = 2

3

we get

P (A ∩ B) ≥ P (A) + P (B)− 1 =
3

4
+

2

3
− 1 =

5

12
.

Next using

P (A ∪B) ≥ max(P (A), P (B)) =
3

4
,

we have that −P (A ∪ B) ≤ −3
4
so that

P (A ∩B) ≤ 3

4
+

2

3
− 3

4
=

2

3
.

This means that P (A ∩ B) ∈
[

5
12
, 2
3

]
.

Problem 28

In the triangle we draw the line segment DE. Then we have

Area△ABE = Area△DBE +Area△DEA ,
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and
AreaBEFD = Area△DBE +Area△DEF .

From these two we have that

Area△DEA = Area△DEF .

These two triangles have a common base i.e. the segment DE and as they have the same
area they must have the same heights. This means that the points A and F are the same
distance from the segment DE. This in tern means that AFC is parallel to DE. As the
segment DE divides the triangle △ABC with a segment parallel to its base we have

BE

BC
=
BD

BA
=

3

5
.

Then

Area△ABE =
3

5
AreaABC =

3

5
(10) = 6 .

This is because if we drop a perpendiculars to the segment ADB from the points C and
E (i.e. heights in △ABC and △DBE) we see that fraction BE

BC
scales down the length

of the hypotenuse CB to that of EB and correspondingly the lengths of the heights of
the perpendiculars from C and E (by trigonometry) while the bases of the corresponding
triangles remain the same.

Problem 29

Let the point A be at the origin of a Cartesian coordinate system. Then B would be the
point (1, 0), the point C would be located at (1, 1), and D is located at the point (0, 1). Let
P be located at the point (x, y). Based on these coordinates the distance conditions in the
problem become

x2 + y2 = u2

(1− x)2 + y2 = v2

(1− x)2 + (1− y)2 = w2 .

The condition u2 + v2 = w2 then becomes

x2 + y2 + (1− x)2 + y2 = (1− x)2 + (1− y)2 .

If we expand and simplify this we can write this constraint as

x2 + 2y + y2 − 1 = 0 ,

or as
x2 + (y + 1)2 = 2 .

Note that this constraint is that the point P = (x, y) is on a circle of radius
√
2 with a center

at (0,−1).
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Based on this observation ,the largest distance the point P can be from D is when P is
located at the southern most point on that circle. This is the point (0,−1−

√
2). This point

is located at a distance
1 + 1 +

√
2 = 2 +

√
2 ,

from the point D.

Problem 30

From the given drawing we have that CM = CN = CA = r the radius of the circle. We
have

∠ACP = 180◦ − 40◦ = 140◦ .

Then using △CAP we have that

∠APC = 180◦ − 140◦ − 10◦ = 30◦ .

Now in △CPB using the law of sines we have

sin(∠CPB)

r
=

sin(10◦)

CP
.

Now in △ACP using the law of sines we have

sin(10◦)

CP
=

sin(∠APC)

r
=

sin(30◦)

r
=

1

2r
.

Setting these two expressions equal to each other gives that

sin(∠CPB) =
1

2
.

From the drawing we know that ∠CPB > 90◦ so we must have ∠CPB = 150◦. Then using
△CPB we have

∠BCN = 180◦ − ∠CPB − ∠PBC = 180◦ − 150◦ − 10◦ = 20◦ .

The 1983 AIME Examination

Problem 1

We are told that

logxw = 24

logy w = 40

logxyz w = 12 ,
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and we want to compute logz w = ln(w)
ln(z)

. Lets write what we know in terms of the natural
logarithm. We have

ln(w)

ln(x)
= 24

ln(w)

ln(y)
= 40

ln(w)

ln(xyz)
= 12 .

This last expression means
ln(xyz)

ln(w)
=

1

12
,

or
ln(x)

ln(w)
+

ln(y)

ln(w)
+

ln(z)

ln(w)
=

1

2
.

Using more of what we know this is

1

24
+

1

40
+

ln(z)

ln(w)
=

1

12
,

so that
ln(z)

ln(w)
=

1

60
so

ln(w)

ln(z)
= 60 ,

which is what we wanted to compute.

Problem 2

Our function can be written

f(x) = |x− p|+ |x− 15|+ |x− (p+ 15)| .

Now if x < p this becomes

f(x) = −(x− p)− (x− 15)− (x− (p− 15))

= −x+ p− x+ 15− x+ p+ 15 = −3x+ 2p+ 30 .

If p < x < 15 it becomes

f(x) = x− p− x+ 15− x+ (p+ 15) = −x+ 30 .

Finally if 15 < x < p+ 15 then it becomes

f(x) = x− p+ x− 15− x+ (p+ 15) = x .

Note that over p < x < 15 we have f(x) is decreasing so the smallest value it will take will
be when x = 15 to take a value of f(15) = 15.
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Problem 3

Define v ≡ x2 + 18x+ 30, then the equation we are given can be written as

v = 2
√
v + 15 . (324)

If we square this we get v2 = 4(v + 15) which we can write

v2 − 4v − 60 = 0 .

This has two solutions v ∈ {−6, 10}. Now v > 0 from Equation 324 and so v = −6 is is not
a valid solution. It follows that the only solution is v = 10. In that case the equation for x
is

10 = x2 = 18x+ 30 or x2 + 8x+ 20 = 0 . (325)

We can solve for x to get

x =
−18±

√

182 − 4(20)

2
= −9 ±

√
61 .

The product of the two real solutions is then

(−9 +
√
61)(−9−

√
61) = 81− 61 = 20 .

Note that the product of the two solutions is also the a0 term (i.e. the constant) in the
second expression in Equation 325.

Problem 4

Let point B be the origin of a Cartesian coordinate system with A at (0, 6) and C at (2, 0).
We are told that A and C are on a circle of radius

√
50. Let the center of that circle be

denoted by (p, q) so its equation is given by

(x− p)2 + (y − q)2 = 50 .

Putting the values of (x, y) for the points A and C we get

p2 + (6− q)2 = 50 (326)

(2− p)2 + q2 = 50 .

Expanding both sides and simplifying gives

p2 + q2 = 14 + 12q

p2 + q2 = 46 + 4p .

If we set these equal to each other we have

14 + 12q = 46 + 4p so p = −8 + 3q .

If we put that expression for p into Equation 326 we can simplify and get

q2 − 6q + 5 = 0 .

This has roots q = 1 and q = 5. For these two values of q we have p = −5 and p = 7
respectively. We expect (p, q) to be in the second quadrant so we should take the first
solution where (p, q) = (−5, 1). This means that

p2 + q2 = 25 + 1 = 26 .

560



Problem 5

We are told that

x2 + y2 = 7

x3 + y3 = 10 .

To use this information we note that

(x+ y)2 = x2 + y2 + 2xy = 7 + 2xy (327)

(x+ y)3 = x3 + 3x2y + 3xy2 + y3 = 10 + 3xy(x+ y) . (328)

Using Equation 327 have

xy =
(x+ y)2 − 7

2
.

If we put this in Equation 328 we get

(x+ y)3 = 10 +
3

2
(x+ y)((x+ y)2 − 7) .

Note that this is an equation in z ≡ x+ y given by

z3 = 10 +
3

2
z3 − 21

2
z .

Note that we can write this as
z3 − 21z + 20 = 0 .

For this equation to have a rational root of the form p
q
then p must be a factor of an = 20

(unit coefficient) and q must be is a factor of a0 = 1 (the coefficient of highest power of z).
For this polynomial this means that

p ∈ {±1,±2,±4,±5,±20} and q ∈ {±1} .
By inspection z = 1 is one solution and we can factor to get

z3 − 21z + 20 = (z − 1)(z2 + z − 20) .

Another solution is z = 4 so factoring again we have

z3 − 21z + 20 = (z − 1)(z − 4)(z + 5) = 0 .

This has solutions z = 1, z = 4, or z = −5 the largest number is then z = 4.

Problem 6

We will write the expression for an as

an = (7− 1)n + (7 + 1)n

=

n∑

k=0

(
n

k

)

7k(−1)n−k +

n∑

k=0

(
n

k

)

7k1n−k

=

n∑

k=0

(
n

k

)

7k((−1)n−k + 1) .
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We could have expanded the terms (7 − 1) and (7 + 1) above “in the other order” and we
would have gotten

an =

n∑

k=0

(
n

k

)

7n−k((−1)k + 1k) .

Notice that when k is odd the term vanishes. Using this expression we have

a83 =
83∑

k=0

(
83

k

)

783−k((−1)k + 1)

=
82∑

k=0,2,4,···

(
83

k

)

783−k × (2) = 2
41∑

k=0

(
83

2k

)

783−2k

= 14
41∑

k=0

(
83

2k

)

782−2k

= 14

((
83

0

)

782 +

(
83

2

)

780 +

(
83

4

)

778 +

(
83

6

)

776 + · · ·+
(
83

80

)

72 +

(
83

82

))

.

Note that each of the terms above (except potentially the last) is divisible by 49 = 72 so the
remainder of a83 when dividing by 49 will be the same as the remainder when dividing (the
last term)

14×
(
83

82

)

,

by 49. Note that

14×
(
83

82

)

= 2× 7× 83

= 2× 7× (10× 7 + 13)

= 2× 7× (11× 7 + 6) = 22× 72 + 2× 6× 7 .

The first term is divisible by 49. The second term has a value of 84 which when dividing by
49 has a remainder of 35.

Problem 7

Consider the more general case where we have n knights. Then we can choose three knights
to go on the quest in

(
n
3

)
ways. There are n groups of three that can be found by linking

a knight to the two to his or her right. These are the triples that have three neighboring
knights in them. We now ask how many triples have two neighboring knights in them.
To count these note that there are n pairs of knights and for each of these pairs we can
create a set of three knights (of which only two were neighbors) by drawing another of the
n− 2− 2 = n− 4 knights from somewhere else around the table. This gives n(n− 4) groups
of three knights of which two were neighbors in the original table. Using this we have the
probability of interest given by

P =
n + n(n− 4)

(
n
3

) =
6(n− 3)

(n− 1)(n− 2)
.

If we take n = 25 this becomes P = 11
46
.
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Problem 9

Let v ≡ x sin(x) then our function is

f(v) =
9v2 + 4

v
= 9v +

4

v
.

Now over the range of x given by 0 < x < π we see that v(x) starts at zero goes to a
maximum, and then falls back down to zero when x = π all the time having v(x) ≥ 0. In
terms of f(v) this means that the term 9v will start small, increase, and then decrease. The
term 4

v
will start large (when x ≈ 0) and then decrease as x→ π. Lets look for the extremes

of f(v). Taking the derivative and setting it equal to zero gives

f ′(v) = 9− 4

v2
= 0 ⇒ v2 =

4

9
,

so

v = ±2

3
.

Only the solution v = 2
3
is positive. For the second derivative I compute

f ′′(v) =
8

v3
> 0 ,

so the value v = +2
3
is a minimum of f(v). This function has a minimum value of f(2

3
) =

9(2
3
) + 4(3

2
) = 6 + 6 = 12. The only thing we have to check is to make sure that there is an

0 < x < π such that

x sin(x) =
2

3
.

This is equivalent to looking for a solution to

sin(x) =
2

3x
.

Plotting these two functions for 0 < x < π we see that there does exist a solution x such
that v(x) = 2

3
.

Problem 10

Consider a four digit number of the form n1n2n3n4. To count how many number we might
have of the desired form we first pick which 2 digits are identical in

(
4
2

)

=
4!

2!2!
=

4 · 3
2

= 6 ,

ways. We then pick which specific digit 0− 9 to use in these two spots which can be done in
ten ways. We then pick the other 2 digits in 9 · 8 = 72 ways to get a total of 6 · 10 · 72 ways
to pick 4 digits with 2 digits repeating. The argument just given will over-count since the
first digit n1 can only be 1 and not any of 0, 2, . . . , 9. Thus to count the number we really
want we take only 1

10
th of the previous number or 6 · 72 = 432.
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Problem 12

Let the length of AB be denoted by the two digit number nm. Then the length of CD is
given by the two digit number mn. For both of these numbers to not have a leading zero we
will need to take 1 ≤ n ≤ 9 and 1 ≤ m ≤ 9. As we know that AB > CD we must have that
n > m. Now using the Pythagorean theorem in the triangle △CHO we have that

OH2 +HC2 = OC2 .

If we multiply this expression by four we get

(2OH)2 + (2HC)2 = (2OC)2 .

In terms of the chords given and the length of OH (defined as r) this is

(2r)2 + CD2 = AB2 .

In terms of the two digits m and n representing the lengths CD and AB we can write this
as

(2r)2 + (10m+ n)2 = (10n+m)2 .

If we expand these and simplify we can write this as

(2r)2 = 99(n2 −m2) = 32 · 11 · (n−m)(n+m) .

As the right-hand-side of this expression is an integer the left-hand-side must be an integer
and so 2r must be an integer. In order that 2r be an integer we must have another factor of
11 on the right-hand-side. As n > m we know that n+m > n−m so let

n+m = α · 11 .

From the range of n and m the only possible value for α is one and we have n +m = 11.
This then gives

(2r)2 = 32 · 112(n−m) .

To have both sides be perfect squares we must have n−m be a perfect square. Again from
the range of n and m the only possible perfect squares for n−m would be {1, 4, 9}.

If n+m = 11 and n−m = 1 we would have n = 6 and m = 5 which is a valid configuration.
If n+m = 11 and n−m = 4 we would have n = 15

2
which is not an integer and not a valid

configuration. If n +m = 11 and n − m = 9 we would have n = 10 which again is not a
valid configuration.

Thus it looks like (n,m) = (6, 5) and the above expression for 2r becomes

(2r)2 = 32 · 112 .

This means that r = 33
2
and the length AB is 65.
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The 1984 AHSME Examination

Problem 1

Write this fraction as

10002

2522 − 2482
=

10002

(252− 248)(252 + 248)
=

10002

4(500)
= 500 .

Problem 2

Multiply by a “form of one” given by xy
xy

to write this fraction as

x− 1
y

y − 1
x

× xy

xy
=
x2y − x

xy2 − y
=
x(xy − 1)

y(xy − 1)
=
x

y
.

Problem 3

From the unique factorization theorem we have that we can write n as

n = 11p · 13q · 17l · · · .

Small value of n correspond to small values of p, q, l, etc. If we take p = q = 1 (and all
other powers zero) we get n = 143. If we take p = 2, q = 0, and again all other powers zero
we get n = 121. This is in the range 120 < n ≤ 130.

Problem 4

Draw perpendicular bisectors from the center of the circle bisecting the segments EF and
BC. Let the intersection of these bisectors with EF be denoted Q and the intersection of
the bisectors with BC be denoted P . Then as BC = 5 we have BP = 5

2
. Note that PQ is

parallel AD and DQ is parallel to AP so we have

DQ = AP = 4 + 2.5 = 6.5 ,

and
DQ = DE + EQ = 3 + EQ .

Setting these two expressions equal gives EQ = 3.5. Using that we have EF = 2EQ = 7.
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Problem 5

Apply the function f(x) = log5(x) to both sides of the given expression to get

200 log5(n) < 300 ,

or

log5(n) <
3

2
= 1.5 .

This means that we want the largest integer n such that

n < 51.5 = 51+
1
2 = 5

√
5 ,

or
n2 < 25 · 5 = 125 .

If n = 10 we have n2 = 100. If n = 11 we have n2 = 121. If n = 12 we have n2 = 144 > 125.
Thus we should take n = 11.

Problem 6

From the given statement we have b = 3g and g = 9t. From these we have that b = 3(9t) =
27t. The requested sum in terms of teachers is then

b+ g + t = 27t+ 9t+ t = 37t .

In terms of boys (using t = b
27
) this is

37

27
b .

Problem 7

Let sd, ld, and td be the speed (in steps per minute), length of a step, and total time walking
for Dave. From the problem we have that

sd = 90 steps/minute

ld = 75 cm

td = 16 minutes .

The same thing for Jack gives

sj = 100 steps/minute

lj = 60 cm ,

where tj is unknown. Then since the distance to the school is the same for both students we
must have

sjtjlj = sdtdld .

Putting in numbers and solving I get tj = 18 minutes.
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Problem 8

Drop perpendiculars from A and B (called A′ and B′ respectively where they intersect the
segment DC). Then the length of BB′ is given by

BB′ = 3
√
2 cos

(π

4

)

= 3 = B′C = AA′

Lets now try to compute the length of DA′. From the given figure we have

tan
(π

3

)

=
AA′

DA′ =
3

DA′ .

Recalling that tan
(
π
3

)
=

√
3 we can compute that DA′ = 3√

3
=

√
3. Using what we have

computed we can now find that

DC = DA′ + A′B′ +B′C =
√
3 + 5 + 3 = 8 +

√
3 .

Problem 9

Lets call this number v. Then by manipulating v we have

v = 416 · 525 = (4 · 5)16 · 59 = (20)16 · 59 = 216 · 1016 · 59
= (2 · 5)9 · 27 · 1016 = 27 · 1025 .

Now recall that 27 = 128 so
v = 128 · 1025 ,

which is the number 128 followed by 25 zeros. This number will then have 3+25 = 28 digits
in it.

Problem 10

Plotting the given three points in the complex plane and we can see that the fourth point
should be at +2− i.

Problem 11

One step of the algorithm given is

f(x) = (x2)−1 = x−2 .

Then n steps of this algorithm is f(x) composed with itself n times. Two steps would be

f (2)(x) = f(f(x)) = f(x−2) = (x−2)−2 = x(−2)2 .
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Three steps would be

f (3)(x) = f(f (2)(x)) = f(x(−2)2) = (x(−2)2)−2 = x(−2)3 .

From the pattern above we see that n steps of this algorithm would be

f (n)(x) = x(−2)n .

Problem 12

From the given recurrence we can write

an+1 − an = 2n .

Summing both sides from n = 1 to n = N and using the fact that the sum on the left-hand-
side is telescoping we have

aN+1 − a1 = 2
N∑

n=1

n = 2

(
(N + 1)N

2

)

= N(N + 1) .

If we take N = 99 we get
a100 = 2 + 99(100) = 9902 .

Problem 13

Multiply by the “form of one” given by

(
√
2 +

√
3)−

√
5

(
√
2 +

√
3)−

√
5
,

to write our fraction as

2
√
6√

2 +
√
3 +

√
5
× (

√
2 +

√
3)−

√
5

(
√
2 +

√
3)−

√
5
=

2
√
6(
√
2 +

√
3−

√
5)

(
√
2 +

√
3)2 − 5

=
2
√
6(
√
2 +

√
3−

√
5)

2 + 3 + 2
√
6− 5

=
√
2 +

√
3−

√
5 .

Problem 14

If we take f(x) = log10(x) of both sides we get

log10(x)
2 = 1 .

This means that log10(x) = ±1 so x = 10−1 or x = 10. The product of these two roots is
one.
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Problem 15

Write this expression as

cos(2x) cos(3x)− sin(2x) sin(3x) = 0 ,

or
cos(2x+ 3x) = 0 .

This means that cos(5x) = 0 so

5x = (2n+ 1)
π

2
,

for n an integer. With n = 0 and π as 180 degrees we have x = 18 degrees.

Problem 16

From the statement that f(2 + x) = f(2 − x) we can conclude that the function f(x) is
symmetric across x = 2. If we take x → x− 2 in that expression we see that

f(x) = f(2− (x− 2)) = f(4− x) .

From the above, if x is a root of f there will be another root with value 4 − x. Thus if we
have four roots of f(x) they must be of the form x1 and 4− x1 and x2 and 4− x2. The sum
of these four roots is eight.

Problem 17

Let the length of AH be denoted x, the length CH be denoted y, and the length of CB be
denoted z. Then the area of △ABC is

1

2
y(x+ 16) .

Using the Pythagorean theorem in △AHC we have

x2 + y2 = 152 , (329)

in △HBC we have
y2 + 162 = z2 , (330)

and finally in △ABC we have
152 + z2 = (x+ 16)2 . (331)

These are three equations and three unknowns. Putting Equation 330 into Equation 331
expanding and simplifying we get

y2 = x2 + 32x− 152 .
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If we put this into Equation 329 and simplify we get

x2 + 16x− 152 = 0 .

This has the solutions x = 9 and x = −25 < 0. Only the positive root could be valid so
taking x = 9 in Equation 329 gives y2 = 144 so y = 12. Then the area of △ABC is

1

2
(12)(9 + 16) = 6 · 25 = 150 .

Problem 18

For the point (x, y) to be equally distant from the x and y axis means that it must be on
the line y = x or the line y = −x.

To be equidistant from the line y = 2− x means that the point (x, y) must also be on a line
parallel to this line. These points must satisfy y = b− x for some b. Using geometry where
we draw the lines y = 2 − x and y = b − x we can determine that a point on that second
line will be

|b− 2|√
2

,

away from the line y = 2− x.

If we take x = y in y = b−x we have that x = y = b
2
. Then as this is also the distance from

that point to the x and y-axis to have this point be an equal distance to the line y = 2 − x
we must have

b

2
=

|b− 2|√
2

.

To solve for b we first consider if b > 2. Then in that case we need to solve

b

2
=
b− 2√

2
.

This has the solution

b =
2
√
2√

2− 1
.

Note that for this solution we have b > 2 so we have a consistent solution. This means that

x = y =
b

2
=

√
2√

2− 1
.

If we multiply by the “form of one” √
2 + 1√
2 + 1

,

we can write x and y as

x = y =

√
2(
√
2 + 1)

2− 1
= 2 +

√
2 .
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If instead we assumed that b < 2 then we must solve

b

2
=

−b+ 2√
2

.

This has the solution

b =
2

(

1 + 1√
2

) =
2
√
2

1 +
√
2
.

Note that from the above expression we have b < 2 and have found another consistent
solution. With this solution we can write x and y as

x = y =
b

2
=

√
2(
√
2 + 1)

2− 1
= 2 +

√
2 .

We can do the same arguments as above but requiring that y = −x. Doing this gives us
two more solutions. In either case there are more than one solution and x is not uniquely
determined.

Problem 19

In the integers given, there are six odd numbers i.e. 1, 3, 5, 7, 9, 11 and five even numbers
2, 4, 6, 8, 10. As sum of six balls will be odd if the number of odd balls drawn is itself odd.
We can do this if we draw 1 odd ball (5 even balls), 3 odd balls (3 even balls), or 5 odd balls
(1 even ball).

If we let the odd balls be denoted as “special” then the number of odd balls drawn d from
eleven when there are six odd ball is given by a hypergeometric random variable

P (d) =

(
6
d

)(
5

6−d

)

(
11
6

) for 1 ≤ d ≤ 6 .

To have the sum be odd will happen if d ∈ {1, 3, 5} which happens with a probability of

P (1) + P (3) + P (5) =
118

231
,

when we expand and simplify.

Problem 20

From the given expression we have that

x− |2x+ 1| = ±3 .

571



Now if 2x+ 1 ≥ 0 (or x ≥ −1
2
) then the above expression is

x− (2x+ 1) = ±3 .

This has two solutions x = −4 and x = 2. Only the solution x = 2 is larger than −1
2
.

If 2x+ 1 < 0 (or x < −1
2
) then the above expression is

x+ (2x+ 1) = ±3 .

This has two solutions x = −4
3
and x = 2

3
. Only the solution x = −4

3
is less than −1

2
.

Thus this expression has two solutions.

Problem 21

Write these two equations as

b(a + c) = 44

c(a + b) = 23 .

Note that the number 23 is prime so that we must have c = 23 and a + b = 1 or c = 1 and
a+ b = 23. In the first case we cannot have a+ b = 1 and have a and b be positive integers.
As we have learned that c = 1 the first expression then gives

b(a + 1) = 44 .

Using this with a+ b = 23 (or b = 23− a) we can solve for a and b. The expression for a is
quadratic and has solutions a = 1 and a = 21. Using b = 23− a if a = 1 then b = 22 and if
a = 21 then b = 2. Thus the solutions (a, b, c) take the form

(1, 22, 1) or (21, 2, 1) .

Problem 22

The vertex of the parabola will happen when

dy

dx
= 2ax+ t = 0 so xt = − t

2a
.

Putting this in the expression for the parabola y = ax2 + tx+ c we get

yt = c− t2

4a
.

Now if we plot this point
(

− t

2a
, c− t2

4a

)

,

as a function of t note that as t = −2axt we have that yt = c− ax2t and so this point is
(
xt, c− ax2t

)
,

which represents a parabola.
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Problem 23

From the equations

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x)

sin(x− y) = sin(x) cos(y)− sin(y) cos(x) ,

if we add these we get

sin(x) cos(y) =
1

2
(sin(x+ y) + sin(x− y)) .

Now if we take

u = x+ y

v = x− y ,

we have

x =
1

2
(u+ v)

y =
1

2
(u− v) ,

so we get

sin(u) + sin(v) = 2 sin

(
u+ v

2

)

cos

(
u− v

2

)

. (332)

Next using

cos(x+ y) = cos(x) cos(y)− sin(y) sin(x)

cos(x− y) = cos(x) cos(y) + sin(y) sin(x) ,

if we add these we get

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) .

In terms of u and v (defined above) this is

cos(u) + cos(v) = 2 cos

(
u+ v

2

)

cos

(
u− v

2

)

. (333)

Using Equation 332 we thus have

sin(10) + sin(20) = 2 sin(15) cos(5) .

Using Equation 332 we thus have

cos(10) + cos(20) = 2 cos(15) cos(5) .

Thus the ratio is given by
sin(15)

cos(15)
= tan(15) .
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Figure 11: A plot of the region of admissible a and b.

Problem 24

To have real roots the discriminant must be positive. This means that

a2 − 4(2b) > 0 or b <
1

8
a2 ,

and
(2b)2 − 4a > 0 or b2 > a .

This last inequality is equivalent to |b| > √
a but as b must be positive we must have b >

√
a.

Drawing these two regions in the (a, b) Cartesian plane we get Figure 11. Note that there is
a region in the upper right that is satisfied by both inequalities. To make a + b as small as
possible we will make each number as small as possible. This means we need to find (a, b)
at the intersection of the two curves above. Thus we need to solve

b =
1

8
a2

b =
√
a .

Doing this we get (a, b) = (4, 2) so that a+ b = 6.

Problem 25

If we draw a general rectangular box with length, width, and height given by l, w, and h
respectively then the first condition (the total area of all faces) is that

2hw + 2wl + 2lh = 22 or hw + wl + lh = 11 .
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The second condition (the length of all edges) is

4l + 4w + 4h = 24 or l + w + h = 6 .

If we square this last expression we have

36 = (l + w + h)2 = l2 + w2 + h2 + 2lw + 2lh+ 2wh .

In terms of d the length of an internal diagonal this is

36 = d2 + 2(lw + lh + wh) = d2 + 2(11) .

Solving for d we get d =
√
14.

Problem 27

To start this problem let AD = x and BF = y. Then using the Pythagorean theorem in
△ABC we have

AB2 + (x+ 1)2 = (y + 1)2 . (334)

Using the Pythagorean theorem in △ABD we have

AB2 + x2 = 12 .

If we subtract these two equations we get

(x+ 1)2 − x2 = (y + 1)2 − 1 ,

or
2x+ 1 = y2 + 2y . (335)

Now using the Pythagorean theorem in △AFC we have

AF 2 + 12 = (1 + x)2 .

Using the Pythagorean theorem in △BFA we have

AF 2 + y2 = AB2 .

If we subtract these two equations we get

1− y2 = (x+ 1)2 −AB2 .

If we use Equation 334 to replace AB we get

1− y2 = (1 + x)2 − (1− x2) = 2x+ 2x2 ,

when we simplify.
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As this point we have the two equations

y2 + 2y = 2x+ 1

−y2 = 2x2 + 2x− 1 , (336)

which we can solve for x and y. To do that we add these two equations to get

y = x2 + 2x ,

and put that into Equation 336 which gives the polynomial

x4 + 4x3 + 6x2 + 2x− 1 = 0 .

From the above if we try x = −1 we see that it is a solution so we can factor x+1 from the
above to get

(x+ 1)(x3 + 3x2 + 3x− 1) = 0 .

As we know that the solution we are looking for is not x = −1 we need to consider the cubic
polynomial. It was difficult for me to find the roots of this polynomial by hand. One method
to get a solution to the given problem however is to note that what we are looking for is
the length AC = 1 + AD = 1 + x. Thus lets write the cubic polynomial above in terms of
v ≡ x+ 1. In that case we would be considering

(v − 1)3 + 3(v − 1)2 + 3(v − 1)− 1 = 0 .

Expanding and simplifying the left-hand-side we get

v3 − 2 = 0 .

Thus v = 3
√
2.

Problem 28

Write the second equation as √
1984−√

y =
√
x .

Note that if y = 1984 and x = 0 then this equation is satisfied and that no y ≥ 1984 is
allowed as if y ≥ 1984 the left-hand-side of this equation would be negative or zero and for
the integer solutions we seek we must have

√
x ≥ 1.

If we square both sides of the above we get

1984− 2
√

1984y + y = x ,

or
2
√

1984y = 1984 + y − x = 1984 + (y − x) > 1984 .

Note that for integer solutions x and y the expression 1984+ (y− x) will also be an integer.
Now as

1984 = 26 · 31 ,
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we have √
1984 = 23 ·

√
31 .

This means that we can write the condition above as

24
√

31y = 26 · 31 + y − x .

In this the left-hand-side will be irrational while the right-hand-side will be an integer unless
y is a multiple of 31 and a perfect square i.e. y = 31β2 with β an integer and β ≥ 1. In that
case we have

24 · 31β = 26 · 31 + 31β2 − x .

If we solve for x in the above we get

x = 31(β2 − 16β + 64) = 31(β − 8)2 .

Now we also need to have x < y which means that

31(β − 8)2 < 31β2 .

We can expand this to get that β > 4.

From earlier we also know that we need to have y < 1984 = 26 · 31 which means that

31β2 < 26 · 31 .

This is equivalent to
β < 8 .

The integer values for β satisfying both of these conditions i.e. 4 < β < 8 are β ∈ {5, 6, 7}
and so there are three integer solutions. These are given by

(x, y) = (31(β − 8)2, 31β2) ,

for the above β.

Problem 29

The largest value of m = y
x
will be when the line y = mx is tangent to the circle in its

North-West corner. By drawing this circle in the Cartesian coordinate plane we see that this
line intersects the circle in an upwards sloping direction in the first quadrant. Let this point
of intersection be denoted A, let the origin of the Cartesian coordinate plane be denoted C
and let the center of the circle be denoted as O. Draw a segment from the center of the circle
O to A and from O to C forming a triangle. As the line y = mx is tangent to the circle we
have that ∠CAO = π

2
. Then as AO is a radius of the circle we have |AO| =

√
6. We also

compute that
|CO| =

√
32 + 32 = 3

√
2 .
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Given that we have a right triangle we can use the Pythagorean theorem to compute |AC|
we find

|AC|2 = |CO|2 − |AO|2 = 18− 6 = 12 .

Thus |AC| = 2
√
3.

Let the Cartesian coordinates of the point A be denoted as (p, q). Then since A is on the
original circle and at a known distance from the origin (the point O) we have that

(p− 3)2 + (q − 3)2 = 6

p2 + q2 = 12 .

If I expand the first equation and then put in the second equation I get

p+ q = 4 so p = 4− q .

Putting this into p2 + q2 = 12 gives

q2 − 4q + 2 = 0 .

This has the two solutions q = 2 ±
√
2. From the location of the point A we must have

q > 3 so we take the positive sign and conclude that q = 2 +
√
2. With this we have

p = 4− q = 2−
√
2. Using these expressions we have that

m =
q

p
= 3 + 2

√
2 ,

when we simplify.

Problem 30

The sum we want to evaluate is
N∑

k=1

kwk ,

for w = ei
2π
9 and N = 9. Now from standard references we have that

N∑

k=1

kwk−1 =
1− wN+1

(1− w)2
− (N + 1)wN

(1− w)
, (337)

so that the sum we want is

N∑

k=1

kwk =
w(1− wN+1)

(1− w)2
− (N + 1)wN+1

(1− w)
.

Now as N = 9 we have that wN = 1 so wN+1 = w and the right-hand-side of the above
becomes

9∑

k=1

kwk =
9w

w − 1
.
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As |w| = 1 we have

∣
∣
∣
∣
∣

9∑

k=1

kwk

∣
∣
∣
∣
∣
=

9

|w − 1| =
9

| cos(40)− 1 + i sin(40)|

=
9

√

(cos(40)− 1)2 + sin2(40)
=

9
√

1− 2 cos(40) + 1

=
9

√

2(1− cos(40))
.

Now using the fact that

sin2(θ) =
1

2
(1− cos(2θ)) or 1− cos(2θ) = 2 sin2(θ) ,

we have that
1− cos(40) = 2 sin2(20) ,

and we get ∣
∣
∣
∣
∣

9∑

k=1

kwk

∣
∣
∣
∣
∣
=

9

2 sin(20)
,

from this we can determine the inverse of this expression and the answer.

The 1984 AIME Examination

Problem 1

From the problem description for an we know that an = a0 + n for n ≥ 0 and a0 unknown
(for now). From the given sum we have

137 = a1 + a2 + · · ·+ a97 + a98

= 98a0 +

98∑

k=1

k = 98a0 +
98(99)

2
.

Solving the above for a0 I find a0 = −4714
98

. Then

49∑

k=1

a2k = 49a0 +

49∑

k=1

2k = 40

(

−4714

98

)

+ 2

(
50(49)

2

)

= 93 ,

when we simplify.
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Problem 2

Note that n = 15c = 3× 5× c for some c. As n is a multiple of five it must end in a zero or
a five. As all of the digits in n are zero or eight it cannot end in a five and it must end in
a zero. As three is a divisor of n the sum of the digits of n must be divisible by three. To
make n as small as possible we would need to place at three eights as close to the units digit
as possible. This gives the number 8880. Dividing that by fifteen we get 592.

Problem 4

Here S = {xi}ni=1 and without loss of generality lets take x1 = 68. Then we are told that

1

n

n∑

i=1

= 56 ,

or
1

n

(

68 +
n∑

i=2

xi

)

= 56 . (338)

We are also told that
1

n− 1

n∑

i=2

xi = 55 ,

which means that
∑n

i=2 xi = (n− 1)55. Putting this into Equation 338 gives

1

n
(68 + (n− 1)55) = 56 so n = 13 .

Thus we have now learned that

13∑

i=1

xi = 56(13) = 728

13∑

i=2

xi = 55(12) = 660 .

As all of the numbers {xi}13i=2 are xi ≥ 1 and their sum is 660 we can make one of these xi
as large as possible by making all of the others as small as possible. As there are twelve
numbers in that sum we can do this if we take eleven of the numbers equal to one and then
one number equal to

660− 11(1) = 649 .

Problem 5

Write the first equation in terms of a common logarithm as

log(a)

log(8)
+ 2

log(b)

log(4)
= 5 .
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Figure 12: Plots of the three circles in this problem and a line that comes close to bisecting
the desired areas.

Doing the same thing for the second equation I find

log(b)

log(8)
+ 2

log(a)

log(4)
= 7 . (339)

If we subtract these two equations we get

log(a/b)

log(8)
+

2 log(b/a)

log(4)
= −2 .

Using the fact that log(b/a) = − log(a/b) we can solve for log(a/b) in the above equation
where I find

log(a/b) = 3 log(2) = log(8) .

This means that a
b
= 8 or a = 8b. If we put this into Equation 339 I get

log(b)

log(8)
+

2(log(8) + log(b))

log(4)
= 7 .

If we solve the above for log(b) I find log(b) = 3 log(2) = log(8). Thus b = 8 = 23 and
a = 64 = 26. Using this means that ab = 29 = 512.

Problem 6

In Figure 12 I have drawn the three circles from the problem and a line (in red) that looks
like it might divide the areas of the two circles into two equal parts. This gives an idea about
the type of the line we are looking for. Note that every line through (17, 76) will divide the
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Figure 13: A plot of the function f(n) vs. n.

area of the circle centered at (17, 76) into two equal parts and so we don’t need to worry
about the area of that circle.

To make sure that the red line divides the areas of the other circles equally note that the
center of mass of these two circles is the point (16.5, 88) and that any line though this point
will divide them into equal parts. Thus if the red line goes though the two points (17, 76)
and (16.5, 88) it will have the desired property. A line of this type will have a slope of

m =
88− 76

16.5− 17
= −24 .

Problem 7

As it seems the “form” of f(n) changes for n around 1000 lets compute by hand several
values of f(n) in that region and see if we can determine a pattern. We have

f(999) = f(f(1004)) = f(1001) = 1001− 3 = 998

f(998) = f(f(1003)) = f(1000) = 997

f(997) = f(f(1002)) = f(999) = 998

f(996) = f(f(1001)) = f(998) = 997

f(995) = f(f(1000)) = f(997) = 998

f(994) = f(f(999)) = f(998) = 997

f(993) = f(f(998)) = f(997) = 998 .

From these results it looks like when n ≤ 1000 we have

f(n) =

{
998 n is odd
997 n is even

. (340)

582



A plot of this function is given in Figure 13. If this is true then we have f(84) = 997.

To prove that the above is true we start by asking for what values of n is f(n) = 998. Note
that above we have shown that when

n ∈ {993, 995, 997, 999} ,

we have f(n) = 998.

If we also ask for what values of n is f(n) = 997. Note that above we have shown that when

n ∈ {996, 998, 1000} ,

we have f(n) = 997.

We will now prove the above expression for f(n) in Equation 340 by induction for n < 995
(we computed it exactly when 993 ≤ n ≤ 1000). Let n be odd and n < 995. In that case we
have n+ 5 < 1000 and if n is odd then n + 5 is even so

f(n) = f(f(even)) = f(997) = 998 .

Now let n be even and n < 995. In that case we have n + 5 < 1000 and n + 5 is odd so we
have

f(n) = f(f(odd)) = f(998) = 997 .

Problem 8

Let v = z3 to get v2 + v + 1 = 0. This last equation has the solutions

v =
1

2
(−1± i

√
3) .

To write these two solutions in polar form first note that |v| = 1. Thus we have two sets of
solutions

z3 =
1

2
(−1− i

√
3) = e

4
3
πi

z3 =
1

2
(−1 + i

√
3) = e

2
3
πi .

To take the cube root of the first expression we write it as

z3 = e
4
3
πi+2πni ,

for n ∈ {0, 1, 2}. Then we have

z = e
4
9
πi+ 2

3
πni .

In the same way, for the other possible solution we have

z = e
2
9
πi+ 2

3
πni ,
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again for n ∈ {0, 1, 2}. If we evaluate all of these angular exponents over this range of n and
then list them in increasing order (without the i) we get

2

9
π ,

4

9
π ,

8

9
π ,

10

9
π ,

14

9
π ,

16

9
π .

As 1
2
π is 90 degrees and π is 180 degrees the angle above that is between these two limits is

8
9
π. This is

8

9
(180) = 160 ,

degrees.

Problem 9

The volume of a tetrahedron is V = 1
3
A0h where A0 is the area of a “base” and h is the

height from the base to the vertex not in that base. If we take A0 to be the area of face
ABC we need to determine the value of h (since we are told A0 = 15).

For visualization lets draw the tetrahedron with face ABC in the x-y plane such that the
segment AB runs along the x-axis (A is at (0, 0) and B is at (3, 0)), the point C is in
the fourth quadrant (has a positive x coordinate and a negative y coordinate). With this
configuration the point D is above the x-y plane.

As we are told that the area of triangle ABD is twelve and a possible “base” of this triangle
is AB = 3 the height of this triangle from that base must be given by

1

2
(3)hABD = 12 or hABD = 8 .

If we draw this height on the face ABD (from the segment AB to the vertex at D) then since
the angle between the faces ABC and ABD is thirty degrees when we drop a perpendicular
from D to the face ABC we form a right triangle with a hypotenuse of length hABD = 8, a
vertical leg (which is also the height of the tetrahedron), and an angle of 30 degrees between
the hypotenuse and the leg of this triangle in the ABC face.

Using trigonometry we then have that

h = hABD sin
(π

6

)

= 8

(
1

2

)

= 4 .

This means that the volume of the tetrahedron is given by

1

3
(15)(4) = 20 .
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Value of c Score Range of n Range of s
14 70 + n 0 ≤ n ≤ 16 70 ≤ s ≤ 86
15 75 + n 0 ≤ n ≤ 15 75 ≤ s ≤ 90
16 80 + n 0 ≤ n ≤ 14 80 ≤ s ≤ 94
17 85 + n 0 ≤ n ≤ 13 85 ≤ s ≤ 98
18 90 + n 0 ≤ n ≤ 12 90 ≤ s ≤ 102
19 95 + n 0 ≤ n ≤ 11 95 ≤ s ≤ 106
20 100 + n 0 ≤ n ≤ 10 100 ≤ s ≤ 110
21 105 + n 0 ≤ n ≤ 9 105 ≤ s ≤ 114
22 110 + n 0 ≤ n ≤ 8 110 ≤ s ≤ 118
23 115 + n 0 ≤ n ≤ 7 115 ≤ s ≤ 122
24 120 + n 0 ≤ n ≤ 6 120 ≤ s ≤ 126
25 125 + n 0 ≤ n ≤ 5 125 ≤ s ≤ 130
26 130 + n 0 ≤ n ≤ 4 130 ≤ s ≤ 134
27 135 + n 0 ≤ n ≤ 3 135 ≤ s ≤ 138
28 140 + n 0 ≤ n ≤ 2 140 ≤ s ≤ 142
29 145 + n 0 ≤ n ≤ 1 145 ≤ s ≤ 146
30 150 n = 0 s = 150

Table 9: The possible values for c and the corresponding values of Mary’s score s.

Problem 10

The score on the math exam is defined as

s = 30 + 4c− w ,

where c is the number of correctly answered questions and w is the number of wrong answers.
As one can leave a question blank let n be the number of questions not answered. Then as
there are thirty problems on the test we have

30 = c + w + n so w = 30− c− n .

If we put this expression for w into the formula for s we find

s = 5c+ n .

The numbers c and n are constrained to be integers such that 0 ≤ c ≤ 30 and 0 ≤ n ≤ 30.
The upper bound of thirty is true as there are only thirty problems on the test. Tighter
constraints on these numbers could be derived. We have now written Mary’s score in terms
of the sum of two nonnegative numbers. In addition, we are told that

s = 5c+ n ≥ 80 .

From the above expression for s (in terms of c and n) we can gain some insight by letting c
take different values and looking at the possible values of s for that range of n. Note that if
we are given a value for c then the possible values for n are then 0 ≤ n ≤ 30− c. We do this
in Table 9.
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Using that table, we notice that for certain values of s if we know its value we can determine
c exactly. For example, if s = 150 then we know that c = 30, if 145 ≤ s ≤ 146 then we know
that c = 29 and so forth. Also for some s a given score can be obtained in more than one
way. For example if s = 130 we could have c = 25 with n = 5 or c = 26 with n = 0 and we
can’t determine c exactly. If one works towards smaller values of s one finds that for s = 119
there is a unique correct score c = 23 but for smaller s there is not.

Problem 11

The number of ways we can order all trees is given by

(3 + 4 + 5)!

3!4!5!
= 27720 ,

which is obtained by imagining that each tree is unique and then recognizing that the three
maple trees, the four oak trees, and the five birch trees are indistinguishable.

Next we will first count the number of ways we can get the desired situation (where no two
birch trees are next to each other). To count this, note that we can put down the maple and
the oak trees in

(3 + 4)!

3!4!
= 35 ,

unique ways. Then with a given ordering of the seven trees just planted, we can place the
birch trees in any of the eight locations (the spaces between each already planted tree and
the spaces “at the end”). To make sure that we have no birch trees together once we “use
up” a space by planting a tree there no other tree can go in that space. This gives

8× 7× 6× 5× 4

5!
= 56 ,

ways to plant the five indistinguishable birch trees such that no two are next to each other.
Thus the number of ways to plant all trees such that no two birch trees are adjacent is
35× 56 = 1960.

The probability we seek is thus
1960

27720
=

7

99
.

Thus we find m+ n = 99 + 7 = 106.

Problem 12

This function f(x) is symmetric across the lines x = 2 and x = 7. If we let v = 2 + x (then
x = v − 2) and the first relationship gives

f(v) = f(2− x) = f(2− (v − 2)) = f(4− v) . (341)
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If we let v = 7 + x (then x = v − 7) then in the same way the second relationship gives

f(v) = f(14− v) . (342)

It stands to reason that the “important” values of f(x) will be when 2 < x < 7. At least
we can start by looking at the function f(x) in that domain and see what conclusions we
can draw. Note that if we take x ∈ [2, 7] then using Equation 341 this interval maps to the
interval [−3, 2] and “flips”. What I mean by this is that x = 2 maps to

4− x = 4− 2 = 2 ,

x = 7 maps to
4− x = 4− 7 = −3 ,

and as x moves from left to right in the domain [2, 7] the variable 4− x moves from right to
left in the domain [−3, 2]. Thus we have concluded that f(x) “looks the same” in the two
intervals

[2, 7] and [−3, 2] .

If we map the interval [−3, 2] under the transformation x → 4 − x we get back the interval
[2, 7].

In the same way, if we map the interval [−3, 2] under the transformation x→ 14− x we get
the interval [7, 12]. Thus we have concluded that f(x) “looks the same” in the intervals

[2, 7] and [−3, 2] and [7, 12] .

Note that if we map the interval [7, 12] under the transformation x → 14 − x we get back
the interval [2, 7].

In the above discussion each time we “map the interval” because we are applying a trans-
formation of the form x → C − x the “direction” of f(x) flips. What this means is that if
f(x) is increasing as x increases after the flip it is decreasing as x increases.

If we apply these transformations in alternative orders we can expand the interval [2, 7] as
far to the left and right as desired. For example, if we alternately apply x→ 4− x followed
by x → 14− x we get the intervals

[2, 7] ↔ [−3, 2] ↔ [12, 17] ↔ [−13,−8] ↔ · · · .

If we alternately apply x→ 14− x followed by x→ 4− x we get the intervals

[2, 7] ↔ [7, 12] ↔ [−8,−3] ↔ [17, 27] ↔ · · · .

We could apply these transformations “forever” effectively covering the entire real line with
copies of the function for x ∈ [2, 7]. Based on the patterns above it looks like these intervals
can all be written as

[2, 7] + 5m, (343)

for m ∈ Z. Because of the “flipping” of f(x) if m is even, the direction of f(x) is the same
as in the original interval [2, 7] while if m is odd the direction is the opposite.
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Now if x = 0 is a root of f(x) then this is in the interval given by Equation 343 for m = −1
and as we argued above this root will be in every interval for all m. The location of these
mapped roots is then

5 + 5m,

for the same m as above m ∈ Z. Two of these mapped zeros are the limits of the domain
we are looking for roots over i.e. x = ±1000. When m = 199 the interval is

[997, 1002] ,

and when m = −201 the interval is

[−1003,−998] .

Thus there are at least 199− (−201)+1 = 401 roots in the domain −1000 ≤ x ≤ 1000. This
is the minimum number of roots since there could be more roots than that number.

Problem 13

This problem is easy if one recalls

cot(x+ y) =
cot(x) cot(y)− 1

cot(x) + cot(y)
. (344)

As the cotangent function is one-to-one this means that the above is equivalent to

x+ y = cot−1

(
cot(x) cot(y)− 1

cot(x) + cot(y)

)

.

In this expression let

x = cot−1(a)

y = cot−1(b) ,

so that the above becomes

cot−1(a) + cot−1(b) = cot−1

(
ab− 1

a + b

)

. (345)

Using this, we find the argument of cot in the expression we are given to be equal to

cot−1

(
21− 1

10

)

+cot−1

(
273− 1

34

)

= cot−1(2)+ cot−1(8) = cot−1

(
16− 1

10

)

= cot−1

(
3

2

)

.

This means that our expression is equal to

10 cot

(

cot−1

(
3

2

))

= 15 .
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Problem 15

The problem statement is the same as the statement that

x2

t− 1
+

y2

t− 9
+

z2

t− 25
+

w2

t− 49
= 1 ,

for t ∈ {4, 16, 36, 64}. If we clear the denominator we can write this as

x2(t− 9)(t− 25)(t− 49) + y2(t− 1)(t− 25)(t − 49) + z2(t− 1)(t − 9)(t − 49) + w2(t− 1)(t− 9)(t− 25)

= (t− 1)(t− 9)(t− 25)(t − 49) .

If we put everything on one side of the equality sign we get an expression

P (t) ≡ (t− 1)(t− 9)(t− 25)(t− 49)

− x2(t− 9)(t− 25)(t− 49) + y2(t− 1)(t− 25)(t− 49)

− z2(t− 1)(t− 9)(t− 49) + w2(t− 1)(t− 9)(t− 25) = 0 .

This is a fourth order polynomial in t that vanishes at the four points listed above and thus
by the uniqueness of polynomials must be equal to

(t− 4)(t− 16)(t− 36)(t− 64) .

If we subtract this expression from P (t) (defined above) the result must be zero as these are
two different forms for the same polynomial. The exact expression we get when we do this
subtraction is helped by doing the algebra with sympy as

import sympy

from sympy import *

x, y, z, w, t = symbols(’x y z w t’)

# The first polynomial form:

P_t = (t-1)*(t-9)*(t-25)*(t-49) \

- x**2 * (t-9)*(t-25)*(t-49) - y**2 * (t-1)*(t-25)*(t-49) \

- z**2 * (t-1)*(t-9 )*(t-49) - w**2 * (t-1)*(t-9 )*(t-25)

# The second polynomial form:

PF = (t-4)*(t-16)*(t-36)*(t-64)

# Extract the coefficients of t (the right-hand-side) is zero:

p = poly(P_t - PF, t)

p.coeffs()

Running the above python code gives for the coefficient of t3 the following expression

−w2 − x2 − y2 − z2 + 36 .

As this must equal the value zero, we have just determined that the sum we seek has the
value of 36.
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The 1985 AHSME Examination

Problem 1

From this we have that 4x+ 2 = 16 so that 4x+ 1 = 15.

Problem 2

The fraction of the circle removed is f = 60
360

= 1
6
. The perimeter of the monster is then

C = 2πr − 1

6
(2πr) + 2r = 2 +

5π

3
.

when we take r = 1 and simplify.

Problem 3

From the description we have that

MB = AB − AM = 13− 12 = 1 ,

and BN = 5. Thus we see that NM = BN −MB = 5− 1 = 4.

Problem 4

Let p, d, and q be the number of each type of coin (for penny, dime, and quarter). Then we
are told that

d = 2p

q = 3d = 6p .

The total amount of money M is then

M = p+ 10d+ 25q = p+ 20p+ 25(6)p = 171p .

If we take p = 2 we get 342.

Problem 5

Note that we can write the value of this sum S as

1

2

(

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6

)

= S .
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This means that

2S = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
.

The smallest common denominator of all of these fractions is

12 · 5 = 60 .

If we multiply by that number we get

2 · 12 · 5 · S = 60 + 30 + 20 + 15 + 12 + 10 = 147 .

This means that

S =
147

2 · 5 · 12 =
49

2 · 5 · 4 =
72

23 · 5 =
49

40
= 1 +

9

40
.

Thus our sum S is 9
40

larger than one. Note that

1

4
+

1

5
=

9

20
.

So if we remove the terms
1

2

(
1

4
+

1

5

)

=
1

8
+

1

10
,

our sum should be one. Lets check that this is correct. Consider

1

2

(

1 +
1

2
+

1

3
+

1

6

)

= 1 ,

as it should be.

Problem 6

Let b and g be the number of boys and girls in the class respectively. Then the probability
we select a boy is

Pb =
b

b+ g
,

and the probability we select a girl is

Pg =
g

b+ g
= 1− Pb .

We are told that that

Pb =
2

3
Pg =

2

3
(1− Pb) .

Solving this for Pb we find Pb =
2
5
which is the desired answer.
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Problem 7

The given expression
a∇ · b− c+ d ,

is evaluated first as
a∇ · b− (c+ d) ,

and then as
a

b− (c+ d)
.

This is equivalent to a
b−c−d

.

Problem 8

Starting with
ax+ b = 0 and a′x+ b′ = 0 ,

we get two solutions

x = − b

a
and x = − b′

a′
.

For the problem statement we want

− b

a
< − b′

a′
,

or
b

a
>
b′

a′
.

Problem 9

The fact that the even numbered rows are shifted one “column width” to the left does not
matter in observing the pattern in that we can imagine each even numbered row shifted so
that all columns of numbers “line up”. From the pattern described in the problem the first
row has the integers

2k + 1 ,

for 0 ≤ k ≤ 3. The second row has numbers of this form for 4 ≤ k ≤ 7 (but written from
right to left). The third row has numbers of this form for 8 ≤ k ≤ 11 and so on.

In general then for row r it looks like the values of k that make up that row are

4(r − 1) ≤ k ≤ 4r − 1 .

The number 1985 has k = 1985−1
2

= 992. Using the above this will happen on row r = 249.
As this number is odd the numbers in this row are increasing as we move to the right and
1985 will be in the first position from the right. As this is an odd row this is the second
column of numbers (considering the shifting).
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Problem 10

If we imagine making taking a circle very large then at any location on the circle the arc it
cuts looks like a line which we can make intersect the graph y = sin(x) as many times as we
like by making the circle arbitrarily large.

Problem 11

There are 2! = 2 ways to order the two vowels O and E. The five other consonants (assumed
distinct) can be ordered in 5! = 120 ways. Thus the total number of ways to get words of
the desired form (with the two Ts assumed distinct) is 2× 120 = 240. As there are two Ts
(assumed distinct that are actually not distinct) as distinct they can be arranged in 2! = 2
ways this number over counts the total number of arrangements. Thus there are 240

2
= 120

ways to arrange the letters in the requested form.

Problem 12

The choices A and E are not perfect cubes. The choices B, C, and D have n as a divisor and
D is the smallest of the three.

Problem 13

In the given figure draw a horizontal line connecting the left-most and right-most vertexes of
the quadrilateral. Then dropping verticals to this horizontal line from the other two vertices
I get the region divided up into four triangles which have bases and heights that are easy to
determine. Denoting these triangles in the same way we would denote the four quadrants of
the Cartesian axis I compute

AI =
1

2
(3)(2) = 3

AII =
1

2
(1)(2) = 1

AIII =
1

2
(3)(1) =

3

2

AIV =
1

2
(1)(1) =

1

2
.

Adding these together I find the total area given by six.
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Problem 14

If n are the number of sides of a polygon then the sum of the interior angles is 180(n− 2).
As we have three obtuse angles if we denote one of them by θ then we have that

90 < θ < 180 .

From our n interior angles we have n − 3 of them that must be acute (i.e. less than 90
degrees). This means that we must have

180(n− 2) < (n− 3)90 + 3(180) .

This is equivalent to
n < 7 .

Thus the largest n can be is six.

Problem 15

If we take the natural logarithm of both sides of the first equation we get

b ln(a) = a ln(b) .

Using the second equation b = 9a to eliminate b from that expression gives

9a ln(a) = a(ln(a) + ln(9)) ,

or
8a ln(a) = a ln(9) .

One solution to this equation is a = 0. If a 6= 0 then another solution is

a = 91/8 = (91/2)1/4 = 31/4 =
4
√
3 .

Problem 16

Expand the given expression E to get

E ≡ 1 + tan(A) + tan(B) + tan(A) tan(B) .

Now recall that

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
, (346)

so that
tan(x) + tan(y) = tan(x+ y)(1− tan(x) tan(y)) .

Using this above we find

E = 1 + tan(A+B)(1− tan(A) tan(B)) + tan(A) tan(B) .

Note that A+B = 45 degrees so tan(A +B) = 1 and we get

E = 1 + (1− tan(A) tan(B)) + tan(A) tan(B) = 2 .
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Problem 17

Moving from D to B, along the line segment DB I label the intersection of DB with the
line L as the point E and the intersection of DB with the line L′ as the point F . Along the
segment DC I label the intersection with line L as the point G. I then denote the lengths
AD = h, DG = a, and GC = b. Then using the Pythagorean Theorem we can derive
several equations.

h2 = 12 + AE2 using the right triangle AED (347)

12 + EG2 = a2 using the right triangle DEG (348)

22 + FC2 = (a+ b)2 using the right triangle DFC (349)

h2 + a2 = (AE + EG)2 using the right triangle ADG (350)

(a+ b)2 + h2 = 32 using the right triangle DCB . (351)

Noting that by the symmetry of the problem FC = AE these become a system of five
equations in the five unknowns

h , a , b , AE ,EG .

If we use Equation 347 to eliminate h2 from all equations we get

1 + EG2 = a2 (352)

4 + AE2 = (a + b)2 (353)

1 + a2 = 2AEEG+ EG2 (354)

(a+ b)2 + AE2 = 8 . (355)

If we use Equation 352 to eliminate EG, since EG =
√
a2 − 1, we get

4 + AE2 = (a + b)2 (356)

1 = AE
√
a2 − 1 (357)

(a + b)2 + AE2 = 8 . (358)

Using Equations 356 and 358 to eliminate AE2 and solve for (a+ b)2 we find

a + b =
√
6 .

Then using Equation 356 this means that AE =
√
2. Knowing this and using Equation 347

we have that h =
√
3.

From what we have computed thus far we can evaluate the area of ABCD as

h(a+ b) =
√
3
√
6 =

√
18 = 3

√
2 = 4.242641 .

Problem 18

To solve this problem we note that the number of marbles in the sets “Jane”, “George”,
and “chipped” are distinct. Let C be the number of chipped marbles, J be the number of
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marbles received by Jane, and G be the number of marbles received by George. Then as the
total number of marbles is 140 we have

J +G+ C = 140 .

We are told that J = 2G. If we put that into the above and solve for G we get

G =
140− C

3
.

Now C must be one of the numbers listed i.e. C ∈ {18, 19, . . . , 34} and G must be an integer.
If we try each of the possible values for C in the above fraction the only integer for G is
when C = 23.

Problem 19

The first equation is
y = Ax2 , (359)

and we can write the second equation as

y2 − 4y + 3 = x2 . (360)

If we solve Equation 359 for x2 and put that in Equation 360 we get

y2 −
(

4 +
1

A

)

y + 3 = 0 .

This equation will have two real solutions for y if and only if

(

4 +
1

A

)2

− 4(3) > 0 .

This can be written as ∣
∣
∣
∣
4 +

1

A

∣
∣
∣
∣
>

√
12 = 2

√
3 .

The above will be true if

1

A
+ 4 > 2

√
3 or

1

A
+ 4 > −2

√
3 .

These are
1

A
> 2

√
3− 4 = −0.5358984 or

1

A
> −2

√
3− 4 .

As A > 0 and both of the right-hand-sides of the above are negative both of these inequalities
are true. Because of this there are two real solutions for y. Note that we solve the above for
y we can show that both the two real solutions we have y > 0. Then using Equation 359 for
each of these we have two solutions

x = ±
√
y

A
.

Thus we have 2× 2 = 4 points where the graphs intersect.
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Problem 20

We will ask how many of the smaller n3 cubes will have only one black face. Note that

• The “corner” cubes have three black faces and there are eight of them.

• The “edge” cubes will have two black faces and there are n− 2 of them per edge for a
total of 12(n− 2) of them.

• The “face” cubes will have one black face each and there are n2 − 2n − 2(n − 2) =
n2 − 4n+ 4 per face for a total of 6(n2 − 4n+ 4) of them.

The number of cubes completely free of paint will then be

n3 − (8 + 12(n− 2) + 6(n2 − 4n+ 4)) = n3 − 6n2 + 12n− 8 .

We want to set this equal to the number of cubes with just one face painted black to get the
expression

n3 − 6n2 + 12n− 8 = 6(n2 − 4n+ 4) .

This gives the polynomial
n3 − 12n2 + 36n− 32 = 0 .

This polynomial will have potential integer roots that are factors of −32 or

{±1,±2,±4,±8,±16,±32} .

I find roots to be n = 2 (twice) and n = 8.

Problem 21

If the exponent of this expression is zero (or x = −2) and the argument of the exponent is
not zero then we have a solution. As the argument of the exponent when x = −2 is

4 + 4− 1 = 7 ,

this is one integer solution.

If the argument of the exponent is one or

x2 − x− 1 = 1 or x2 − x− 2 = 0 or (x− 2)(x+ 1) = 0 .

This gives x ∈ {−1, 2} and two more integer solutions.

If the argument of the exponent is −1 or

x2 − x− 1 = −1 ,
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or
x2 − x = 0 .

Then we have x = 0 and x = 1. To have powers of negative one equal one the exponent
needs to be even. The exponent if x = 0 is two while the exponent if x = 1 is three. Thus
we have one more integer solutions.

All together this gives a total of four integer solutions.

Problem 22

Now ∠CAD = 1
2
C̃D = 1

2
(60) = 30 degrees. This means that triangle ABO is a right triangle

with ∠BOA its right angle. From the “High School Exterior Angle Theorem” (HSEAT) we
have that

∠CBA = ∠BAO + ∠BOA = 30 + 90 = 120 ,

degrees. Next draw the line segment OC. Then as OC = OA = r (the radius of the circle)
we see that triangle OCA is an isosceles triangle and because of this that

∠OCB = ∠OAB = 30 ,

degrees. Thus △CBO has angle measures given by

∠CBO = 120

∠BCO = 30

∠COB = 180− 30− 120 = 30 ,

all in degrees. Thus triangle CBO is isosceles so that CB = BO = 5.

Problem 23

Notice as complex numbers we have |x| = 1 and |y| = 1. Writing them in polar form we
have

x = e(π−
π
3 )i = e

2πi
3

y = e(π+
π
3 )i = e

4πi
3 .

The denominators (of three) in the angle part of the complex representation for x and y
means that

x3 =
(

e
2πi
3

)3

= e2πi = 1 ,

with a similar derivation to show that y3 = 1. This means that any power of x (or y) that
is a multiple of three can be evaluated to one. This fact alone is enough to show us that
x9 + y9 = 1 + 1 = 2 6= −1.
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Problem 24

We have

P (d = 2) = log10(3)− log10(2) = log10

(
3

2

)

.

Note that for any sequence of numbers of the form {k, k + 1, k + 2, . . . , k + l − 1, k + l} we
can show

P ({k, k + 1, · · · , k + l − 1, k + l}) = log10(k + l − 1)− log10(k) = log10

(
k + l + 1

k

)

.

Using this we compute

P ({2, 3}) = log10

(
4

2

)

= log10(2)

P ({4, 5, 6, 7, 8}) = log10

(
9

4

)

= log10

((
3

2

)2
)

= 2 log10

(
3

2

)

= 2P (d = 2) .

As this probability is the one we seek, we can stop.

Problem 25

Let the dimensions of the rectangular solid be a, b, and c. Then we are told that

abc = 8 (361)

2ab+ 2ac+ 2bc = 32 . (362)

In addition as the lengths are in geometric progression we can take

a = a0

b = a0r

c = a0r
2 .

If we put these expressions into Equation 361 we get

a30r
3 = 8 so a0r = 2 . (363)

If we put these expressions into Equation 362 we get

2a20r + 2a20r
2 + 2a20r

3 = 32 .

We can simply this using Equation 363 to get

a0 + 2r = 6 .
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Using a0 =
2
r
in the above we get r2 − 3r + 1 = 0 which has solutions

r =
3±

√
5

2
.

As r > 0 we must take the positive root so r = 3+
√
5

2
. Using this we have

a = a0 =
2

r
= 3−

√
5 ,

when we simplify. We then also have

b = a0r = 2

c = a0r
2 = 2r = 3 +

√
5 .

Now the sum of “all” the lengths is then

4a+ 4b+ 4c = 4(a+ b+ c) .

We can compute part of the later as

a+ b+ c = (3−
√
5) + 2 + (3 +

√
5) = 8 .

This means that the sum of all the lengths is then 4× 8 = 32.

Problem 26

The smallest value of n will be when we can factor out the smallest prime p from the
numerator and the denominator. Thus for that value of n we will have

n− 13 = pCn

5n+ 6 = pCd .

Solving both of these for n we get

n = 13 + pCn

n =
pCd − 6

5
.

Setting these two equal to each other we get

13 + pCn =
1

5
(pCd − 6) .

We can “solve” for p to get
p(Cd − 5Cn) = 71 .

As 71 is prime the above can be true if

p = 71 and Cd − 5Cn = 1 .

For that value of p we would have

n− 13 = 71Cn

5n + 6 = 71Cd .

To have n be as small as possible we should take Cn = 1 so that n = 84.
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Problem 27

Consider the sequence x1 = p and xn = (xn−1)
p for n ≥ 2. If we iterate this we find

x2 = pp

x3 = (pp)p = pp
2

x4 = (pp
2

)p = pp
3

.

The general solution looks to be
xn = pp

n−1

,

for n ≥ 1. If p = 3
√
3 then pn−1 will be an integer if n− 1 = 3. This means that n = 4.

Problem 28

The law of sines in this triangle gives

sin(A)

a
=

sin(3A)

c
or

sin(A)

27
=

sin(3A)

48
.

Now note that

sin(3A) = sin(A+ 2A) = sin(A) cos(2A) + 2 cos(A) sin(A) cos(A)

= sin(A)(cos2(A)− sin2(A)) + 2 sin(A)(1− sin2(A))

= sin(A)(1− 2 sin2(A)) + 2 sin(A)(1− sin2(A))

= 3 sin(A)− 4 sin3(A) . (364)

Using this in the above we get

sin(A)

27
=

1

48
(3 sin(A)− 4 sin3(A)) .

We can solve this for sin(A) and get sin(A) =
√
11
6
. Again using the law of sines gives

sin(A)

27
=

sin(B)

b
=

sin(π − 4A)

b
=

sin(4A)

b
.

We can write

sin(4A) = sin(2(2A)) = 2 sin(2A) cos(2A) = 4 sin(A) cos(A) cos(2A) .

Notice that since we know sin(A) we have

cos(2A) = 1− 2 sin2(A) = 1− 2

(
11

36

)

=
7

18

cos(A) =
√

1− sin2(A) =
5

6
.

Using all of this in the above we can solve for b where we find that

b =
27 sin(4A)

sin(A)
= 35 ,

when we simplify.
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Problem 29

Let a = 8t and b = 5t with t the base ten number made of 1985 ones. Then

9ab = 360t2 .

Note that we can write t as

t =

1984∑

i=0

10i .

Thus

t2 =
1984∑

i,j=0

10i+j .

If we change the variable in the summation such that v ≡ i+ j we can write the double sum
above as

t2 =
1984∑

v=0

(
v∑

i=0

10v

)

+

2(1984)
∑

v=1985

(
1984∑

i=v−1984

10v

)

,

or since the inner sums don’t depend on i we can write this as

t2 =

1984∑

v=0

(v + 1)10v +

2(1984)
∑

v=1985

(1984− (v − 1984) + 1)10v

=
1984∑

v=0

(v + 1)10v +

2(1984)
∑

v=1985

(3969− v)10v .

If the coefficients in front of 10v were always positive integers between zero and nine the
above would be a base 10 representation of t2 or close to one. As this is not true we would
need to convert the terms above into powers of ten and rearrange the terms in the sums
accordingly. As this seemed difficult to do I choose to work this problem in another way.

Note that the base ten number with n nines is given by

10n − 1 ,

so the base ten number with n ones is given by

1

9
(10n − 1) .

The base ten number made of n digits d with 0 ≤ d ≤ 9 is given by

d

9
(10n − 1) .

Thus a in this problem is of that form with n = 1985 and d = 8 and b in this problem is of
that form with n = 1985 and d = 5. Thus we can write 9ab as

9ab =
9 · 5 · 8

92
(10n − 1)2 =

40

9
(10n − 1)2 .
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Figure 14: The left and right-hand-sides.

As the above product has 10 as a factor the last digit in the base 10 representation is zero.
Thus sum of the digits of that number is the same as the sum of the digits of that number
divided by 10 or

4

9
(10n − 1)2 .

At this point we come to a very important point about problems like this one. The number
n = 1985 in this problem seems very arbitrary i.e. it is obviously related to the year the test
was given and not to any specific property that number might have. Thus we might be able
to guess the answer by taking smaller values of n and looking for a pattern. For n = 1 the
above number is 36 which have digits that sum to 9. For n = 2 the above number is 4356
which has digits that sum to 18. For n = 3 the above number is 443556 which has digits
that sum to 27. From these few cases we might guess that the answer for general n is 9n.
Evaluating this for n = 1985 gives 17865.

Problem 30

Note that the function ⌊x⌋ is monotonically increasing but the function

x− ⌊x⌋ ,

is periodic. Thus if we introduce this function into the given equation we can write it as

x− ⌊x⌋ = 1

40
(−4x2 + 40x− 51) .

Plotting the left and right-hand-sides on the same graph using the following R code
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xs = seq(0, 10, length.out=200)

y_1 = xs - trunc(xs)

y_2 = (-4*xs^2 + 40*xs - 51)/40

plot(xs, y_1, type=’p’, pch=19, cex=0.5, col=’blue’, xlab=’x’, ylab=’ys’)

lines(xs, y_2, type=’l’, lwd=3, col=’black’)

grid()

we get Figure 14. There we see that these two graphs intersect at four locations.

The 1985 AIME Examination

Problem 1

From the given expression for xn we have xnxn−1 = n for n > 1. To use this, we write the
desired product as

(x8x7)(x6x5)(x4x3)(x2x1) = 8 · 6 · 4 · 2 = 384 .

Problem 2

Let the right triangle we are considering have sides a and b with a hypotenuse of c such that
the vertices are located in the x-y Cartesian plane at (0, 0), (b, 0), and (0, a).

To solve this problem we will need the volume of the above triangle rotated about the y-axis.
The line connecting the points (b, 0) and (0, a) is given by

y = a− a

b
x so x = − b

a
(y − a) .

Then the volume of rotation can then be given by integration

V =

∫ a

y=0

(πx2)dy = π

∫ a

y=0

b2

a2
(y − a)2dy

=
πb2

a2

∫ a

0

(y − a)2dy =
1

3
(πb2)a ,

when we integrate and simplify.

Using the above results if V1 is the volume enclosed when we rotate this triangle about the
vertical (i.e. the y-axis). We are told that

V1 = 800π =
1

3
πb2a .
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If V2 is the volume enclosed when we rotate this triangle about the horizontal (i.e. the
x-axis). We are told that

V2 = 1920π =
1

3
πa2b .

We will then solve these two equations for a and b. Taking the ratio of these two volumes
we have

V1
V2

=
b

a
so b =

V1
V2
a =

5

12
a ,

when I simplify. If I put this into the expression for V2 and solve for a we find a = 24 and
then b = 10. We then have

c =
√
a2 + b2 =

√
242 + 102 = 26 .

Problem 3

Expanding the given expression we have

c = (a + bi)3 − 107i

= a3 + 3a2(bi) + 3a(bi)2 + (bi)3 − 107i

= a3 − 3ab2 + (3a2b− b3 − 107)i .

As c is a positive number we must have the imaginary part of the above equal to zero. This
is equivalent to

b(3a2 − b2) = 107 .

Now 107 is a prime integer so this means that b = 1 (so that 3a2 − b2 = 107) or b = 107 (so
that 3a2 − b2 = 1).

In the first case (where b = 1) the other equation then gives

a2 = 36 ,

the only positive solution is a = 6.

In the second case (where b = 107) the other equation then gives

3a2 = 1 + 1072 = 11450 .

but 11450 is not divisible by three so in this case the solution for a would not be an integer.

Based on these arguments we have

c = a3 − 3ab2 = 198 .
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Problem 4

Let the small square in the center of the larger square have a side length of s. Let the
segment that connects C with the segment AB intersect the segment AB at a point A′. Let
the the segment that connects B with the segment AD intersect the segment AD at a point
D′. Let the the segment that connects A with the segment CD intersect the segment CD
at a point C ′. From A′ draw a segment parallel to BD′ forming a small right triangle in
the lower left corner of the square ABCD. This triangle has vertices at A, A′, and a point
on the segment AC ′ denote this last point A′′. Then in the triangle AA′A′′ let the angle
∠A′′AA′ = θ. This triangle has lengths

AA′ =
1

n
A′A′′ = s ,

so that
sin(θ) =

s
1
n

= sn .

Now drop a perpendicular from C ′ to the segment AB and intersecting AB at the point E.
The segment C ′E will have length one and the segment AE will have length 1 − 1

n
. This

means that

sin(θ) =
1

√

1 +
(
1− 1

n

)2
.

Setting these two equal we have

sn =
1

√

1 +
(
1− 1

n

)2
.

As we are told that the area of the small internal square is 1
1
985 we have that

s =
1√
1985

.

Using this in the above expression we have a single equation for n given by

n2

1985
=

1

1 +
(
1− 1

n

)2 .

We can simplify this to
n2 − n− 992 = 0 ,

which has solutions n = 32 and n = −31. To have n > 0 we must take n = 32.

Problem 5

We can write this difference equation as

an − an−1 + an−2 = 0 ,
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and try the solution an = rn to get

rn − rn−1 + rn−2 = 0 .

If we divide by rn−2 we get
r2 − r + 1 = 0 .

This has solutions

r =
1±

√
3i

2
= cos

(π

3

)

± i sin
(π

3

)

= e±iπ
3 .

Denote these two solutions r− and r+. Then the general solution is

an = C−r
n
− + C+r

n
+ .

Note that for these two roots we have some special properties that can help us simplify the
results below. We have

r6n− = r6n+ = 1

r3n− = r3n+ = (−1)n ,

for n an integer. Using the above for n = 1 we have

r3− = −1 so r2− = − 1

r−
= −r+ .

The same logic gives
r2+ = −r− .

Now we are told that
1492∑

n=1

an = 1985 .

Using Equation 20 we can evaluate the left-hand-side of this to get

C−r−

(
1− r1492−
1− r−

)

+ C+r+

(
1− r1492+

1− r+

)

= 1985 .

Since 1492 = 248(6) + 4 we have the above is equal to

C−r−

(
1− r4−
1− r−

)

+ C+r+

(
1− r4+
1− r+

)

= 1985 .

Then as r4± = −r± we can write the above as

C−r−

(
1 + r−
1− r−

)

+ C+r+

(
1 + r+
1− r+

)

= 1985 . (365)

We are also told that
1985∑

n=1

an = 1492 .
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Again using Equation 20 we can evaluate the left-hand-side of this to get

C−r−

(
1− r1985−
1− r−

)

+ C+r+

(
1− r1985+

1− r+

)

= 1492 .

Since 1985 = 330(6) + 5 we have that the above is equal to

C−r−

(
1− r5−
1− r−

)

+ C+r+

(
1− r5+
1− r+

)

= 1492 ,

or

C−r−

(
1 + r2−
1− r−

)

+ C+r+

(
1 + r2+
1− r+

)

= 1492 .

Now using r2± = −r∓ this becomes

C−r−

(
1− r+
1− r−

)

+ C+r+

(
1− r−
1− r+

)

= 1492 . (366)

Now to solve these lets define

D− =
C−r−
1− r−

D+ =
C+r+
1− r+

,

and we have the two equations

D−(1 + r−) +D+(1 + r+) = 1985

D−(1− r+) +D+(1− r−) = 1492 .

This is a system to solve for D±. Doing so we get

D− =
493− 1985r− − 1492r+

r2+ − r2−

D+ =
−493 + 1492r− + 1985r+

r2+ − r2−
.

The sum we want to evaluate is
2001∑

n=1

an ,

which can be done using Equation 20 to get

C−r−

(
1− r2001−
1− r−

)

+ C+r+

(
1− r2001+

1− r+

)

.

Since 2001 = 333(6) + 3 we have the above is equal to

C−r−

(
1− r3−
1− r−

)

+ C+r+

(
1− r3+
1− r+

)

,
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or using r3± = −1 this is

C−r−

(
2

1− r−

)

+ C+r+

(
2

1− r+

)

.

From the definition of D± this is
2D− + 2D+ .

Putting in what we know for D± I find that this becomes

2(D− +D+) =
2

r2+ − r2−
(−493r− + 493r+) =

986

r2+ − r2−
(−r− + r+)

=
986

r+ + r−
=

986

2 cos
(
π
3

) = 986 .

Problem 6 (triangles with equal heights)

For this problem we will use the fact that if two triangles have the same height then their
areas are proportional to their bases. To start, we denote the point inside the triangle where
the three internal segments intersect as P , the area of the left-most triangle as x, and the
area of the right-most triangle as y.

Let the location where the segment from C intersects AB be denoted C ′ (for opposite C).
Then as the triangles APC ′ and BPC ′ with areas 40 and 30 respectively have the same
height (through the point P ) their areas must be in proportion to their bases that is

40

30
=
AC ′

C ′B
.

Also note that larger triangles ACC ′ and CC ′B have the same heights (this time through
the point C) and thus their areas must be in proportion to their bases so

40 + y + 84

30 + 35 + x
=
AC ′

C ′B
.

Equating these two we get
40 + y + 84

30 + 35 + x
=

40

30
. (367)

Doing the same thing for the smaller and larger triangles that have their base the segment
AC we get

84 + x+ 35

y + 40 + 30
=

84

y
. (368)

Doing the same thing for the smaller and larger triangles that have their base the segment
AC we get

y + 84 + x

40 + 30 + 35
=

x

35
. (369)

These together give three equations and two unknowns for x and y. Solving any two of them
we find x = 70 and y = 56. Using these two numbers we can easily compute the area of the
full triangle.
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Problem 7

What what we are told we have c = d2/3 and a = b4/5 so that the expression c − a = 19
becomes

d2/3 − b4/5 = 19 .

Note that we can factor the above as

(d1/3 − b2/5)(d1/3 + b2/5) = 19 .

If d1/3 and b2/5 are not integers then neither would c and a thus the above is an integer
factorization of 19. As 19 is prime this means that either

d1/3 − b2/5 = 1

d1/3 + b2/5 = 19 .

or

d1/3 − b2/5 = 19

d1/3 + b2/5 = 1 .

As d1/3 − b2/5 < d1/3 + b2/5 only the first condition is possible. In that case we can solve for
d1/3 and b2/5 to get

d1/3 = 10

b2/5 = 3 .

Thus we have that d = 1000 and b = 243. This means that d− b = 1000− 243 = 757.

Problem 8

We would want to pick Ai to be the number “two” or “three” otherwise the value of |Ai−ai|
could be made smaller by changing Ai to one of those. Note that if all Ai = 2 then

∑

iAi = 14
(which is smaller than nineteen) and if all Ai = 3 then

∑

iAi = 21 (which is larger than
nineteen). Thus we expect to have some Ai equal two and some equal to three. If n is the
number of Ai that equal two and m are the number of Ai that equal three we have

2n+ 3m = 19 .

To determine which i should have Ai equal two and which should have Ai equal three we
compute

|2− a1| = 0.56

|2− a2| = 0.61

|2− a3| = 0.65

|2− a4| = 0.71

|2− a5| = 0.79

|2− a6| = 0.82

|2− a7| = 0.86 ,
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and that

|3− a1| = 0.44

|3− a2| = 0.39

|3− a3| = 0.35

|3− a4| = 0.29

|3− a5| = 0.21

|3− a6| = 0.18

|3− a7| = 0.14 .

In general the “errors” are smaller when most of the Ai are three. To see how many Ai we
can take to be three note that if

• If m = 7 and n = 0 then
∑

iAi = 21 which is too large.

• If m = 6 and n = 1 then
∑

iAi = 20 which is too large.

• If m = 5 and n = 2 then
∑

iAi = 19 which is the desired number.

• If m = 4 and n = 3 then
∑

iAi = 18 which is too small.

• If m = 3 and n = 4 then
∑

iAi = 17 which is too small.

• If m = 2 and n = 5 then
∑

iAi = 16 which is too small.

• If m = 1 and n = 6 then
∑

iAi = 15 which is too small.

• If m = 0 and n = 7 then
∑

iAi = 14 which is too small.

Thus we should take m = 5 and n = 2. To make M as small as possible we will take

Ai = 3 for 3 ≤ i ≤ 7 ,

and
Ai = 2 for 1 ≤ i ≤ 2 .

Based on the absolute values above this gives

M = max
i

|Ai − ai| = 0.61 .

Thus 100M = 61.

Problem 9

Let r be the radius of the circle and imagine radii drawn from the center of the circle to the
end points of the chords at the angles α, β, and α+β. Next introduce a segment that is the
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perpendicular bisector of all three chords and that also bisects the three angles. Then from
the problem description we have

2

2
= 1 = r sin

(α

2

)

(370)

3

2
= r sin

(
β

2

)

(371)

4

2
= 2 = r sin

(
α + β

2

)

. (372)

Notice that this has given us three equations for the three unknowns r, α, and β. We will
try to eliminate two of the variables in order to get one equation in one variable which we
can solve. To do that we start by expanding Equation 372 and then using the others we
have

2 = r sin
(α

2

)

cos

(
β

2

)

+ r sin

(
β

2

)

cos
(α

2

)

= cos

(
β

2

)

+
3

2
cos
(α

2

)

.

Using Equations 370 and 371 we have

cos

(
β

2

)

=

√

1−
(

3

2r

)2

cos
(α

2

)

=

√

1−
(
1

r

)2

.

If we put this into the above we get

2 =

√

1−
(

3

2r

)2

+
3

2

√

1−
(
1

r

)2

.

This is a single equation in the variable 1
r2

which we can solve. We find

1

r2
=

15

64
so

1

r
=

√
15

8
.

Using Equation 370 and

cos(α) = 1− 2 sin2
(α

2

)

,

we get

cos(α) = 1− 2

r2
= 1− 15

32
=

17

32
.

Problem 11

The equation for an ellipse with the two foci given is
√

(9− x)2 + (20− y)2 +
√

(49− x)2 + (55− y)2 = 2a , (373)
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where 2a is the length of the major axis (so that a is the length of the semi-major axis).

If the ellipse is tangent to the x-axis then there is a point on the ellipse (x∗, 0) such that

dy

dx
(x∗, 0) = 0 .

Taking the derivative of Equation 373 with respect to x gives

2(9− x)(−1) + 2(20− y)
(
−dy

dx

)

2
√

(9− x)2 + (20− y)2
+

2(49− x)(−1) + 2(55− y)
(
−dy

dx

)

2
√

(49− x)2 + (55− y)2
= 0 .

Evaluating the above at the point (x∗, 0) with the knowledge that the derivative is zero and
calling the point x∗ = x for notational simplicity gives

−(9 − x)
√

(9− x)2 + 202
− (49− x)
√

(49− x)2 + 552
= 0 .

We can write this as

(9− x)
√

(49− x)2 + 552 = −(49− x)
√

(9− x)2 + 202 . (374)

If we square both sides (and recognizing this might give us a spurious root) we get

(9− x)2(49− x)2 + 552) = (49− x)2((9− x)2 + 202) .

Expanding and simplifying gives us

21x2 − 122x− 5723 = 0 .

The two roots to this are given by

x ∈
{

−97

7
,
59

3

}

.

If we put x = −99
7
into Equation 374 we get a left-hand-side and a right-hand-side that are

of opposite sign (meaning it is a spurious root). If we take x = 59
3
we see that Equation 374

is satisfied. Putting this value into Equation 373 we find 2a = 85.

Problem 12

Let pn be the vector with the ith component for 1 ≤ i ≤ 4 representing the probability that
the bug is at the location i = 1 (i.e. A), i = 2 (i.e. B), i = 3 (i.e. C), and i = 4 (i.e. D) at
the nth step in the bugs walk. Then since the bug starts at A we have

p0 =







1
0
0
0






.
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And in moving from the nth step to the n + 1 step we have

pn+1 =







0 1
3

1
3

1
3

1
3

0 1
3

1
3

1
3

1
3

0 1
3

1
3

1
3

1
3

0






pn =

1

3







0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0






pn .

If we call the matrix above E then the solution to the above iteration equations is

pn =

(
1

3

)n

Enp0 ,

for n ≥ 0. There might be easier way to derive the answer needed but for me the easiest was
to compute the needed matrix power i.e. E7 by performing repeated matrix multiplications.
We can do that in R with the following code

data = c(0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0)

E = matrix(data, ncol=4, nrow=4, byrow=TRUE)

print(E %*% E %*% E %*% E %*% E %*% E %*% E)

for which we find E7 is given by

[,1] [,2] [,3] [,4]

[1,] 546 547 547 547

[2,] 547 546 547 547

[3,] 547 547 546 547

[4,] 547 547 547 546

This means that

p7 =
1

37
E7







1
0
0
0






.

The solution to this problem is the first component of p7. From the above we see that is
given by

546

37
=

182

729
.
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The 1986 AHSME Examination

Problem 1

We would have

x− y + z − (x− y − z) = z − y + z − x+ y + z = 2z .

Problem 2

This would be y = 1
3
x+ 8.

Problem 3

Now ∠ABC = 90 − 20 = 70 and ∠DBC = 70
2
= 35, so ∠BDC = 90 − 35 = 55. All angles

are in degrees.

Problem 4

The number 33 has digits that sum to six which is divisible by six but the number 33 is not
divisible by six.

Problem 5

We can simplify as follows

(

271/6 −
(

6
3

4

)1/2
)2

=

(

271/6 −
(
27

4

)1/2
)2

= 271/3 +
27

4
− 2 · 271/6 ·

(
27

4

)1/2

= 3 +
27

4
− 27

1
6
+ 1

2 = 3 +
27

4
− 27

2
3

= 3 +
27

4
− 32 =

3

4
.
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Problem 6

Let w and h be the width (along the horizontal i.e. x-axis) and the height (along the vertical
i.e. y-axis) of the block respectively. Let t be the table’s height. Then from the configurations
shown and the numbers given we have

r = h+ (t− w) = 32

s = w + (t− h) = 28 .

If we add these two equations together we get 2t = 60 so that t = 30.

Problem 7

From the given solutions (most overlap largely with the domain 2 < x < 3) if x is in that
range we see that

⌊x⌋ + ⌈x⌉ = 2 + 3 = 5 ,

is true. Now if x = 2 then we have

⌊x⌋ + ⌈x⌉ = 2 + 2 = 4 6= 5 ,

and if x = 3 then
⌊x⌋ + ⌈x⌉ = 3 + 3 = 6 6= 5 .

Thus the solution set is 2 < x < 3.

Problem 8

This would be the number

FPP =
3615122× 52802

226504825
.

Since the answers are all given with one the first digit distinct we should be able to use crude
approximations to estimate this number. We have

FPP ≈ 3.6× 106 × 52 × 106

226× 106
=

(
3.6× 25

226

)

106 .

In this lets take
3.6× 25

226
≈ 3.6× 52

52 × 9
=

3.6

9
= 0.4 .

Thus I would estimate
FPP ≈ 4× 105 = 400000 .
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Problem 9

We can write this product as

10∏

k=2

(

1− 1

k2

)

=

10∏

k=2

(
k2 − 1

k2

)

=

10∏

k=2

(
(k − 1)(k + 1)

k2

)

=

∏10
k=2(k − 1)×

∏10
k=2(k + 1)

∏10
k=2 k

2
=

∏9
k=1 k ×

∏11
k=3 k

∏10
k=2 k

2

=
1
(∏9

k=2 k
)
×
(∏9

k=2 k
) (

11·10
2

)

∏10
k=2 k

2
=

11 · 10
2 · 102 =

11

20
.

Problem 10

Note that in the word AHSME there are no duplicated letters. Considering all of the 5!
possible orderings when we place them in dictionary order we will place all words starting
with the letter A first. These are the words A followed by the 4! = 24 permutations of the
letters E, H , M , and S. Next we would place all words starting with the letter E. This
would be another 4! = 24 words giving a total of 24 + 24 = 48 words that we have placed.
Next we would place all words that start with the letter H . This would be another 24 words
for a total of 3× 24 = 72. If we added all of the words that start with the next letter M we
would have a total of 96 words which is larger than the target word number. Thus the target
word starts with the letter M . After we have placed that letter we will place the letters A,
E, H , and S. In placing these in dictionary we will first place the A followed by the other
letters for a total of 3! = 6 words. This brings us to 72 + 6 = 78 words. Next we will place
the E followed by the other letters for a total of six words for a total of 78 + 6 = 84. Next
we will place the H but we can’t place all of the other letters without missing our target
word. Thus the target word starts with MH and we need to place the A, E, and S starting
with A. These we can do by hand. The 85th word will be MHAES so the 86th word will
be MHASE which has a last letter of E.

Problem 11

The solution in the book is to quote the fact that the line segment from the right angle to
the midpoint of the hypotenuse is of length one half that of the hypotenuse. Thus the length
of MH would be 1

2
AB = 6.5. Here I present a very short proof of this using Cartesian

coordinates.

Create a right triangle in the x-y plane by placing points at (0, 0), (a, 0) and (0, b). Then
the two legs are of length a and b and the hypotenuse has a length of c =

√
a2 + b2. The

“line” of the hypotenuse is given by

y = − b

a
(x− a) = − b

a
x+ b ,
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for 0 ≤ x ≤ a. Let the midpoint of the hypotenuse be denoted by the point M which will
be located at the Cartesian point (ξ, y(ξ)) such that the distances from (0, b) and (a, 0) are
equal (i.e. at the midpoint of the hypotenuse). These two distances (squared) are given by

(0− ξ)2 + (b− y(ξ))2 = ξ2 +
b2

a2
ξ2

(a− ξ)2 + (0− y(ξ))2 = (a− ξ)2 +
b2

a2
(ξ − a)2 .

If we set these two expressions equal we could expand everything and get a quadratic equation
in ξ to solve to find the x location of the point M . Note from the form of the equations
above if

ξ2 = (a− ξ)2 ,

then both equations will be equal. As in this problem we have ξ > 0 and a− ξ > 0 so taking
the square root and keeping these two roots gives

ξ = a− ξ so ξ =
a

2
.

Thus the point M is (
a

2
,− b

a

(a

2

)

+ b

)

=

(
a

2
,
b

2

)

.

The distance from the right angle (here the origin) to this point is
√
(a

2

)2

+

(
b

2

)2

=
1

2

√
a2 + b2 ,

showing the desired result.

Problem 12

Let c, w, and u be the number of correct, wrong, and unanswered problems that John had
on this years AHSME. Under the new scoring system we would have

5c+ 2u = 93 . (375)

Under the old scoring system we would have

30 + 4c− w = 84 or 4c− w = 54 . (376)

Finally as there are thirty problems on the AHSME test we have

c+ u+ w = 30 . (377)

As the problem asks about the value of u we will create an equation for u. From Equation 375
we have

c =
93− 2u

5
.

From Equation 376 we have

w = 4c− 54 =
4

5
(93− 2u)− 54 .

If we put these two expressions into Equation 377 we can solve for u and find u = 9.
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Problem 13

For the parabola y = ax2 + bx+ c the vertex will satisfy

y′(x) = 2ax+ b = 0 so x = − b

2a
.

As we are told that

− b

2a
= 4 ,

we get that
b = −8a . (378)

As y(4) = 2 from the form of y(x) we get that

16a+ 4b+ c = 2 . (379)

We are also told that y(2) = 0 or

4a+ 2b+ c = 0 so c = −4a− 2b ,

which if we put this expression for c into Equation 379 and simplify we get

6a+ b = 1 .

Using Equation 378 in this we get a = −1
2
, b = 4 and finally c = −6. Thus

abc = 12 .

Problem 14

Let h, s, and j be lengths in a given unit (say meters) then we are told that

bh = cs (380)

dj = eh (381)

fj = g . (382)

From the last of these and using the ones above we have that one meter is given by

1 =
fj

g
=
f

g

(
eh

d

)

=
f

g

(e

d

)(cs

b

)

=

(
fec

gdb

)

s .

Problem 15

The correct result is A = 1
3
(x+ y + z) which is to be compared with

Ã =
1

2

(
1

2
(x+ y) + z

)

=
1

4
x+

1

4
y +

1

2
z .
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Computing Ã−A we find

Ã−A =

(
1

4
− 1

3

)

x+

(
1

4
− 1

3

)

y +

(
1

2
− 1

3

)

z

= − 1

12
(x+ y) +

z

6
= − 1

12
(−x− y + 2z)

=
1

12
(z − x+ z − y) > 0 ,

as both z − x > 0 and z − y > 0. Thus Ã will always overestimate (be larger than) A.

Problem 16

From the given similar triangles we can write

AC

AB
=
CP

PA
=
PA

BP
.

Using what we know about the lengths above we have

6

8
=
CP

PA
=

PA

7 + CP
,

From the first equality above we have

PA =
4

3
CP .

If we put this into the second equality above gives

3

4
=

4
3
CP

7 + CP
.

Solving this for CP we get CP = 9.

Problem 17

To determine the smallest number of socks that we have to draw to guarantee we get p pairs
we have to assume that on each draw the “universe” is working against us in such a way
that each draw try’s not to give us a pair when that socks color is considered with the colors
of the other socks drawn.

For example we could draw four socks and have them all be different colors but on the fifth
draw we are guaranteed to get at least one pair. Thus the number of draws to guarantee
one pair is

d1 = 5 .
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Lets assume that the color of the pair just produced is X . On the sixth draw we could get
another pair but to guarantee that we get two pairs we have to assume that the sixth draw
gives us the color X and we are assured that the seventh draw gives us a second pair or

d2 = 7 .

From this pattern we need two additional draws to get each additional pair so

d3 = 9

d4 = 11 ,

etc. It looks like the formula is dn = dn−1 + 2. To get 10 pairs we need to know d10 from
which using the above I compute d10 = 23.

Problem 18

If the plane were to cut the cylinder at a “right” angle the the intersection would be a circle
with a radius of one. As we tilt the plane at an angle θ with respect to the horizontal the
cut forms an ellipse. The minor axis will be of length two (twice the radius of the circle)
and the major axis then must be of length

1.5× 2 = 3 .

Problem 19

As we have a hexagon the number of sides is n = 6. Lets draw this hexagram with two
horizontal sides, a top right corner denoted A, a middle right corner denoted B, a bottom
right corner denoted C, and a bottom left corner denoted D. Assume that Alice start at A
then she ends at a point P midway between C and D.

Draw the line segment AC forming △ABC. Recall that the interior angle of a regular
polygon is given by 180(n−2)

n
= 120. This means that ∠BAC = ∠BCA = 180−120

2
= 30. This

then means that

AC = 2(2 cos(30)) = 2

(

2×
√
3

2

)

= 2
√
3 .

Now to determine AP we use the Pythagorean identity

AP 2 = PC2 + AC2 or AP 2 = 12 + 4(3) = 13 .

Thus AP =
√
13.
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Problem 20

We are told that

x =
A

y
,

and x increases by a fraction f (i.e. f is a number like 0.05) then the new value of x or x′

is given by
x′ = (1 + f)x ,

and

y′ =
A

x′
=

A

(1 + f)x
=

y

1 + f
.

We have that y has decreased by an amount

y′ − y

y
=
y′

y
− 1 =

1

1 + f
− 1 = − f

1 + f
.

In terms of p% we have f = p
100

so the above is

−
p

100

1 + p
100

= − p

100 + p
.

This number is the fraction of the decrease in y. The percentage decrease would be that
number multiplied by 100.

Problem 21

Note that triangle CAB is a right triangle. Thus the area of the left-most shaded area is

1

2
(AB)(AC)− π(AC)2

(
θ

2π

)

.

The area of the right-most shaded area is

π(AC)2
(
θ

2π

)

.

Setting these two areas equal and simplifying gives

AB = 2θAC . (383)

From the figure we have

tan(θ) =
AB

AC
,

so if we solve for AB in that expression and put it into Equation 383 and simplify we get

2θ = tan(θ) .
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Problem 22

There are 10 · 9 · 8 · 7 · 6 · 5 ways to select the six numbers. For the second smallest to be
a three means that we need to select a one and a three or a two and a three from the set
{1, 2, 3, . . . , 10}. The number of sequences like that can be computed by recognizing that we
can place the three in one of the six spots (in six ways). Then select a one or a two (in two
ways). Then select the spot for the one or the two to go (in five ways). Then select numbers
from {4, 5, 6, 7, 8, 9, 10} to go in the four remaining spaces (in 7 · 6 · 5 · 4 ways). Thus the
probability of selecting a number of the required form is

6 · 2 · 5 · (7 · 6 · 5 · 4)
10 · 9 · 8 · 7 · 6 · 5 =

1

3
.

Problem 23

If we let x = 69 we see that

N = x5 + 5x4 + 10x3 + 10x2 + 5x+ 1 = (x+ 1)5 = 705 .

If we factor 70 into primes we get 70 = 2 · 5 · 7. This means that

N = 255575 .

From this representation the numbers that can divide N are made of taking the product of
2m5n7l where m, n, and l are elements of {0, 1, 2, 3, 4, 5}. This gives 6 · 6 · 6 = 63 = 216
possible divisors.

Problem 24

We can divide x4 + 6x2 + 25 by p(x) (using polynomial long division) to show that

x4 + 6x2 + 25

p(x)
= x2 − bx+ (6− c+ b2) +

b(2c− 6− b2)x+ (c2 − b2c− 6c+ 25)

p(x)
.

As we are told that p(x) divides this polynomial we must have that

b(2c− 6− b2) = 0 (384)

c2 − b2c− 6c+ 25 = 0 . (385)

One solution to Equation 384 is b = 0 which if we put this into Equation 385 we would
require that c satisfy

c2 − 6c+ 25 = 0 .

This last quadratic has complex roots so c would not be an integer if b = 0. Another solution
to Equation 384 is

−b2 + 2c− 6 = 0 ,
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or

c = 3 +
b2

2
. (386)

If I put this into Equation 385 and simplify a bit I find

b4 + 12b2 − 64 = 0 .

This has solutions b2 = 4 or b2 = −16. To have b be an integer we need to take b2 = 4 so
that b = ±2. In either case using Equation 386 we have c = 5. Thus there are two possible
polynomials that could be the solution to this problem

p1(x) = x2 − 2x+ 5

p2(x) = x2 + 2x+ 5 .

We will now see which of these two polynomials divides the second polynomial given. We
find

3x4 + 4x2 + 28x+ 5

p1(x)
= 3x2 + 6x+ 1 .

Thus we don’t have to check p2(x). From this expression we find p(1) = p1(1) = 4.

Problem 25

Using the fact that log2(x) is an increasing function note that for x = 1 we have

log2(1) = 0 so ⌊log2(1)⌋ = 0 .

Next for x = 2 we have
log2(2) = 1 so ⌊log2(2)⌋ = 1 .

Next for x = 4 we have
log2(4) = 2 so ⌊log2(x)⌋ = 1 ,

for 2 ≤ x ≤ 3. Note that we can write this last range as 21 ≤ x ≤ 22 − 1. Now for x = 8 we
have

log2(8) = 3 so ⌊log2(x)⌋ = 2 ,

for 4 ≤ x ≤ 7. Note that we can write this last range as 22 ≤ x ≤ 23 − 1. Now for x = 16
we have

log2(16) = 4 so ⌊log2(x)⌋ = 3 ,

for 8 ≤ x ≤ 15. Note that we can write this last range as 23 ≤ x ≤ 24 − 1. This pattern
continues and we can write our desired sum S as

S =
1024∑

N=2

⌊log2(N)⌋

=
22−1∑

N=2

⌊log2(N)⌋ +
23−1∑

N=22

⌊log2(N)⌋ +
24−1∑

N=23

⌊log2(N)⌋+ · · ·+
210−1∑

N=29

⌊log2(N)⌋ +
210∑

N=210

⌊log2(N)⌋

=
9∑

k=1

2k+1−1∑

N=2k

⌊log2(N)⌋ + ⌊log2(1024)⌋ .
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As each term in the left-most sum has a value of k and there are

2k+1 − 1− 2k + 1 = 2k ,

terms we can write S as

S =
9∑

k=1

k2k + 10 .

Using Equation 337 with w = 2 and N = 9 to evaluate this we find S = 8204.

Problem 27

Now as AB ‖ DC we have that △ABC is similar to △CDE. This means that

DE

EB
=
EC

AE
=
DC

AB
. (387)

Now let θ be the angle ∠ABD then the area of △CDE is

1

2
DC ×DE × sin(θ) .

The area of △ABE is
1

2
AB ×EB × sin(θ) .

Thus the ratio of these two is

r =

(
DC

AB

)(
DE

EB

)

.

From Equation 387 these two ratios are equal.

Draw the segment AD. Now the angle of ∠ADB is ninety degrees so

cos(α) =
DE

AE
.

Now AE = EB as △AEB is an isosceles triangle so

cos(α) =
DE

EB
.

Using this, the ratio r is r = cos2(α).

Problem 30

Recall that the fixed points of the mapping

x = f(x) ≡ 1

2

(

x+
a

x

)

,
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are the points x = ±√
a. Note that these fixed point iterates are the Newton root iterates

when we seek to find the root to the nonlinear equation g(x) ≡ x2 − a = 0. This means that
if we start from an arbitrary point (x0, y0, z0, w0) and we iterate the vector mapping







y
z
w
x






=

1

2







x+ a
x

y + a
y

z + a
z

w + a
w






,

we expect each variable to converge to either
√
a or −√

a.

From the given equations we see that if x > 0 then y > 0 then z > 0 and w > 0 thus all
variables are positive. In the same way if x < 0 then all the other variables are also negative.
Thus there are only two solutions to the above system of equations and they are

(
√
a,
√
a,
√
a,
√
a) ,

and
(−

√
a,−

√
a,−

√
a,−

√
a) .

In this problem a = 17.

The 1986 AIME Examination

Problem 1

Let v = 4
√
x then the given expression is

v =
12

7− v
.

We can write this as v2 − 7v + 12 = 0 or (v − 3)(v − 4) = 0. This means that

v = 3 or v = 4 .

In terms of x this means that

x = 34 = 81 or x = 44 = 256 .

The sum of these two values is 337.
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Problem 2

Denote this expression as E then we have

E = (
√
5 +

√
6 +

√
7)(

√
5 +

√
6−

√
7)(

√
5−

√
6 +

√
7)(−

√
5 +

√
6 +

√
7)

= (
√
5 +

√
5(
√
6−

√
7) +

√
5(
√
6 +

√
7) + (6− 7))

× (−5 +
√
5(
√
6 +

√
7) +

√
5(
√
6−

√
7)− (

√
6−

√
7)(

√
6 +

√
7))

= (4 + 2
√
30)(−5 + 2

√
30− (6− 7))

= (4 + 2
√
30)(−4 + 2

√
30) = 22(2 +

√
30)(−2 +

√
30)

= −4(2 +
√
30)(2−

√
30) = −4(4− 30) = 104 .

Problem 3

Recall that

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
.

Next multiply the second equation given by tan(x) tan(y) to get

tan(y) + tan(x) = 30 tan(x) tan(y) .

This means that

tan(x) tan(y) =
25

30
=

5

6
.

Using this value we can now compute

tan(x+ y) =
25

1− 5
6

= 150 .

Problem 4

Add all of the equations together to get

6(x1 + x2 + x3 + x4 + x5) = 186 ,

or
x1 + x2 + x3 + x4 + x5 = 31 .

If we put this expression into each equation we get

x1 + 31 = 6

x2 + 31 = 12

x3 + 31 = 24

x4 + 31 = 48

x5 + 31 = 96 .

Each of these is easy to solve and we find x4 = 17 and x5 = 65. This means that 3x4+2x5 =
181.
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Problem 5

Using long division to divide n3 + 100 by n+ 10 we get

n3 + 100

n+ 10
= n2 − 10n+ 100− 900

n+ 10
. (388)

Now to have n3 +100 be divisible by n+10 we need the right-hand-side of Equation 388 to
be an integer. By looking at for the roots to n2−10n+100 = 0 we learn that n2−10n+100
is always a positive integer when n is an integer. The fraction 900

n+10
is not an integer however

when n is large. Thus when we subtract it the entire expression will not be an integer if n
is too large. The largest n can be and have the entire expression be an integer is if

900

n + 10
= 1 or n = 890 .

Problem 6

Recall that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

To this expression we add a number m where 1 ≤ m ≤ n and get

n(n + 1)

2
+m = 1986 = 2 · 3 · 331 . (389)

To solve this lets imagine that this page was not added then n must solve

n2 + n− 22 · 3 · 331 = 0 .

Solving this gives n ≈ 62.5. Now as n must be an integer if n = 62 we have

n(n + 1)

2
= 1953 ,

which is less than 1985. Next if n = 63 we have

n(n + 1)

2
= 2016 ,

which is larger than 1985. If n = 62 then the expression in Equation 389 gives m = 33 which
could be a possible solution. If n = 61 in Equation 389 gives m = 95 which is greater than
n = 62. Other values of n don’t give consistent solutions for m.

Problem 7

Number of the given form look like

an =
∞∑

k=0

bk3
k ,
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n b0 b1 b2 b3 an
1 1 0 0 0 1
2 0 1 0 0 3
3 1 1 0 0 4
4 0 0 1 0 9
5 1 0 1 0 10
6 1 1 1 0 13
7 0 0 0 1 27

Table 10: The first few numbers an for n ∈ {1, 2, 3, 4, 5, 6, 7}.

where bk is either zero or one. If we look at a few of these numbers we get the table 10. If we
look at the pattern we see that the sequence of bk that are turned to one from zero to produce
an are the binary representation of n (flipped left to right). Or said another way, b0 is the
units digit in the binary representation of n, b1 is the twos digit in the binary representation
of n, b2 is the fours digit in the binary representation of n etc. Thus for n = 100 the binary
representation is

100 = (b0 , b1 , b2 , b3 , b4 , b5 , b6)2 = (0, 0, 1, 0, 0, 1, 1)2 ,

and all other bk’s are zero. This means that

a100 = 32 + 35 + 36 = 981 .

Problem 8

The sum we want to evaluate is

S =
∑

d

log10(d) ,

where d is a proper divisor of the number 106. Note that

106 = (2 · 5)6 = 26 · 56 .

This means that all the dividers of 106 are numbers of the form d = 2m ·5n where 0 ≤ m ≤ 6
and 0 ≤ n ≤ 6. For d to be a proper divisor it means that (m,n) 6= (0, 0) and (m,n) 6= (6, 6).
Let I be the set of integers (m,n) that give a proper divisor d in the form above. Then we
have

S =
∑

I

log10(2
m · 5n) =

∑

I

(m log10(2) + n log10(5))

=

6∑

m=0

6∑

n=0

(m log10(2) + n log10(5))− (0 + 0)− (6 log10(2) + 6 log10(5)) .
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Where in the last equation we have put the terms (m,n) = (0, 0) and (m,n) = (6, 6) into
the sum and then subtracted them. We can evaluate the above sum as

S =
6∑

m=0

(6 + 1)m log10(2) +
6∑

n=0

(6 + 1)n log10(5)− 6 log10(10)

= 7 log10(2)
∑

m=0

6m+ 7 log10(5)
6∑

n=0

n− 6

= 7 log10(2)

(
6(7)

2

)

+ 7 log10(5)

(
6(7)

2

)

− 6

= 3 · 72 log10(10)− 6 = 141 .

Problem 9

Using various parallel lines in the problem we have that

DG = 510−AD − CG = 510− IP −HP = 510− d

EH = 450− CH − BE = 450−GP − FP = 450− d

FI = 425−AI −BF = 425−DP −EP = 425− d .

Using the fact that △DPG is similar to △ABC we have

DP

AB
=
DG

AC
,

or using the lengths we know and what we know for DG we get

DP

425
=

510− d

510
. (390)

Using the fact that △PHE is similar to △ACB we have

PE

AB
=
EH

BC
,

or using the lengths we know and what we know for EH we get

PE

425
=

510− d

450
. (391)

Using the fact that d = DP + PE with Equations 390 (solved for DP ) and 391 (solved for
PE) we get a single equation for d. Solving this we get d = 306.
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Problem 10

To start we write down the forms of the number we start with x = (abc) and the numbers
we add together. We have

(abc) = a · 102 + b · 10 + c

(acb) = a · 102 + c · 10 + b

(bac) = b · 102 + a · 10 + c

(bca) = b · 102 + c · 10 + a

(cab) = c · 102 + a · 10 + b

(cba) = c · 102 + b · 10 + a .

If we add all of these together the left-hand-side gives

(2a+ 2b+ 2c) · 102 + (2a+ 2b+ 2c) · 10 + (2a+ 2b+ 2c) ,

or
2(a+ b+ c)(102 + 10 + 1) = 222(a+ b+ c) .

We are told this must equal N − x and so we have

222(a+ b+ c) = N + x .

As a + b + c is an integer the left-hand-side is a multiple of 222 say 222k. As x > 0 the
multiple must be such that 222k > N . Thus k > N

222
= 14.38739. We can consider multiples

k ≥ 15 compute the product 222k and then compute x using the above expression or

x = 222(a+ b+ c)−N .

If the x we find has only three digits that sum to k we have found a solution. Doing this in
the following R code

ks = 15:19

N = 3194

xs = 222 * ks - N

print(data.frame(k=ks, x=xs))

we get

k x

1 15 136

2 16 358

3 17 580

4 18 802

5 19 1024

From this we see that x = 358.
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Problem 11

Now we can write p(x) as

p(x) = 1− x+ x2 − x3 + x4− · · ·+ x16 − x17 =
17∑

k=0

(−x)k

=
1− (−x)18

1 + x
=

1− x18

1 + x

Then when we x = y − 1 we would have g(y) = p(y − 1)

g(y) =
1− (y − 1)18

1 + (y − 1)
=

1− (y − 1)18

y

=
1

y

(

1−
18∑

k=0

(
18

k

)

yk(−1)18−k

)

=
1

y

(

1−
(

1 + 18y(−1)17 +

(
18

2

)

y2(−1)16 +

(
18

3

)

y3(−1)15 +

18∑

k=4

(
18

k

)

yk(−1)18−k

))

=
1

y

(

18y −
(
18

2

)

y2 +

(
18

3

)

y3 −
18∑

k=4

(
18

k

)

yk(−1)18−k

)

= 18−
(
18

2

)

y +

(
18

3

)

y2 −
18∑

k=4

(
18

k

)

yk−1(−1)18−k .

From this we see that the coefficient of y2 is
(
18
3

)
= 816.
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The 1987 AHSME Examination

Problem 1

We have
(1 + x2)(1− x3) = 1− x3 + x2 − x5 .

Problem 2

Notice that △BED is an equilateral triangle with sides of length one. Thus DE = 1 and
CE = AD = 2. Using these, the perimeter of the quadrilateral is

3 + 2 + 1 + 2 = 8 .

Problem 3

Numbers less than 100 that end with a seven include

7 , 17 , 27 , 37 , 47 , 57 , 67 , 77 , 87 , 97 .

Tests of divisibility by three eliminate many of these (and 77 = 7 × 11) leaving only six
numbers.

Problem 4

Let E be the given expression so

E =
2 + 1 + 1

2
1
4
+ 1

8
+ 1

16

.

Multiply this by 16
16

and we get

32 + 16 + 8

4 + 2 + 1
=

56

7
= 8 .

Problem 5

As N times the “percent frequency” must be an integer number of cases in that bin we have
that

0.125N , 0.5N , 0.25N ,

must all be integers. The smallest N can be to have this be true is N = 8.
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Problem 6

Let the angle “below” the angle y be denoted by y′ and let the angle “below” the angle z be
denoted by z′. Then in the “outside” triangle summing all of the interior angles we have

x+ (z + z′) + (y + y′) = 180 .

Summing all of the interior angles in the smaller inside triangle we have

w + z′ + y′ = 180 so z′ + y′ = 180− w .

If we put this expression for z′ + y′ into the first expression we get

x+ y + z + (180− w) = 180 ,

so solving for x we have
x = −y − z + w .

Problem 7

Let x be the common value of a− 1 = b+ 2 = c− 3 = d+ 4 then we have

a = x+ 1

b = x− 2

c = x+ 3

d = x− 4 .

From this we see that d < b < a < c.

Problem 8

Drop a perpendicular to AB from D. Let the point where that perpendicular intersects AB
be called D′. Then AD′ = 13− 3 = 10. To compute the length AD we can use Pythagorean
theorem in △AD′D as

AD =
√
102 + 42 .

To compute BD again use the Pythagorean theorem in △DCB where we find

BD =
√
32 + 42 = 5 .

This means that

AD +BD = 5 +
√
100 + 16 = 5 + 10

√

1 +
16

100
≈ 5 + 10

(

1 +
8

100

)

= 15.8 .

Here we have used the fact that (1 + x)α ≈ 1 + αx.
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Problem 9

An arithmetic sequence sn with a common difference d takes the form sn = a+ dn for n an
integer. Taking the first term in the sequence to be n = 1 we are told that

s1 = a+ d = x so d = x− a .

Thus
sn = a + (x− a)n .

Using this we have
s2 = a+ 2(x− a) = 2x− a = b ,

and
s3 = a+ 3(x− a) = 3x− 2a = 2x .

This last expression means that x = 2a. The ratio we are looking for is

a

b
=

a

2x− a
=

a

4a− a
=

1

3
.

Problem 10

From the statements in the problem we must have

a = bc (392)

b = ac (393)

c = ab . (394)

If we put Equation 393 into Equation 392 we get

a = bc = ac2 so a(1− c2) = 0 .

Thus a = 0 or c = ±1. As we are told that a 6= 0 we can ignore the solution a = 0.

If c = 1 then Equation 392 and 393 give a = b and Equation 394 gives

ab = 1 or a2 = b2 = 1 .

This means that a = b = +1 or a = b = −1. Thus we have found the solutions

(a, b, c) = (−1,−1, 1) and (a, b, c) = (1, 1, 1) .

If c = −1 then Equation 392 and 393 give a = −b and Equation 394 gives

ab = −1 with a = −b this is b2 = 1 .

This means that b = ±1 and the “pairs” (a, b) = (−1, 1) and (a, b) = (1,−1). Thus we have
found the solutions

(a, b, c) = (−1, 1,−1) and (a, b, c) = (1,−1,−1) .

This gives a total of four solutions.

635



Problem 11

Lets add these two equations to get

(c+ 1)x = 5 or x =
5

c+ 1
.

From x− y = 2 we have that

y = x− 2 =
5

c+ 1
− 2(c+ 1)

c+ 1
=

3− 2c

c+ 1
.

To be in the first quadrant we must have x > 0 and y > 0. To have x > 0 we must have
c > −1. To have y > 0 we need to have

3− 2c > 0 or c <
3

2
.

Combining these two we have

−1 < c <
3

2
.

Problem 12

The choice D is not possible for once the secretary types the fourth letter her box must have
letters 1, 2, 3. If the fifth letter comes before she can type another letter her box would then
look like 1, 2, 3, 5 and she would type the fifth letter next (as there are only a total of five
letters). After that she would type the third letter.

Problem 13

Following the hint the total length is

L =

599∑

i=0

2πri ,

with

ri = 1 +
4

599
i ,

for 0 ≤ i ≤ 599. Thus the total length is given by

L = 2π
599∑

i=0

(

1 +
4

599
i

)

= 2π

(

600 +
4

599

599∑

i=1

i

)

= 2π

(

600 +
4

599

(
599(600)

2

))

= 3600π ,

when we simplify. To get meters we divide by 100 to get 36π.
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Problem 14

Method 1: Let the side of the square be of length 2m and draw the segment MN . Then
using the Pythagorean theorem we have

|MN | =
√
2m

|AM | =
√

(2m)2 +m2 =
√
5m.

Next draw a line from A to C bisecting the line segment MN at the point P . Then

|MP | = 1

2
|MN | = m√

2
.

From this we have that

sin

(
θ

2

)

=
|MP |
|AM | =

1√
10
,

and

cos

(
θ

2

)

=

√

1− sin

(
θ

2

)2

=

√

1− 1

10
=

3√
10
.

From these two we have

sin(θ) = 2 sin

(
θ

2

)

cos

(
θ

2

)

= 2

(
3

10

)

=
3

5
.

Method 2: Using the law of sines in the triangle △AMN we would have

sin(θ)

|MN | =
sin(∠AMN)

|AN | .

Now as |AM | = |AN | we have that

∠AMN =
π − θ

2
=
π

2
− θ .

Thus

sin(∠AMN) = sin

(
π

2
− θ

2

)

= cos

(
θ

2

)

.

This means that the law of sines gives

sin(θ)√
2m

=
cos
(
θ
2

)

√
5m

=
3√
50m

.

Solving for sin(θ) we get 3
5
as before.
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Problem 15

Consider the expression
x2y + xy2 + x+ y = 63 ,

and replace xy using xy = 6 in the above to get

6x+ 6y + x+ y = 63 ,

or
x+ y = 9 .

If we square this we get
(x+ y)2 = x2 + 2xy + y2 = 81 ,

so
x2 + y2 = 81− 2xy = 81− 2(6) = 81− 12 = 69 .

Problem 16

If we let the smallest integer be denoted n then we are told that

n = V Y Z5 = V · 52 + Y · 5 + Z

n + 1 = V Y X5 = V · 52 + Y · 5 +X

n + 2 = V VW 5 = V · 52 + V · 5 +W .

Note that each of the numbers {V,W,X, Y, Z} must be a number that is between zero and
four. In going from n+1 to n+2 note that the “fifth” place changes from Y to V . This will
only happen if X = 4, W = 0, and V = Y + 1. Also in going from n to n+ 1 we must have
Z + 1 = X . As X = 4 this means that Z = 3. Thus the only digits remaining for Y and V
to be are {1, 2} and to have V = Y + 1 we must have Y = 1 and V = 2. This means that

XY Z5 = 4 · 52 + 1 · 5 + 3 = 100 + 5 + 3 = 108 .

Problem 17

Let A, B, C, and D be the scores of the four people taking the test. Then we are told that

B +D = A+ C . (395)

We are also told that
A+ C > B +D ,

when B and C change scores. This means that the relationship in terms of the original
variables is

A+B > C +D . (396)
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Finally we are told that
D > B + C . (397)

Now using Equation 397 as all numbers are positive we can conclude that D > B and D > C.
Thus if D > A then D is the largest score. We will now use Equation 395 to eliminate A
from Equation 396. Now from equation 395 we have A = B +D − C and putting that into
Equation 396 we get

B +D − C +B > C +D which becomes B > C .

Thus we now know thatD > B > C. This alone can be used to eliminate some of the answers
for this problem. The question we now face is where does A fall in the above rankings. Using
Equation 395 we have A = B +D − C and then using the fact that D > C we have

A > B + C − C = B ,

using the fact that B > C we get

A > C +D − C = D .

Thus the order is A > D > B > C.

Problem 18

Let a be the length of an algebra book and g the length of a geometry book. Let L be the
shelf-length. Then we are told that

Aa +Hg = L

Sa+Mg = L

Ea = L .

From this last equation we have E = L
a
. Using Cramer’s rule to solve the first two equations

above for a I find

a =

∣
∣
∣
∣

L H
L M

∣
∣
∣
∣

∣
∣
∣
∣

A H
S M

∣
∣
∣
∣

=
LM −HL

AM − SH
= L

(
M −H

AM − SH

)

.

This means that

E =
AM − SH

M −H
.
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Problem 19 (what number is closest?)

Write the given expression as

√
65−

√
63 =

√
64 + 1−

√
64− 1

= 8

(

1 +
1

64

)1/2

− 8

(

1− 1

64

)1/2

≈ 8

(

1 +
1

128
− 1

512
+

1

4096

)

− 8

(

1− 1

128
− 1

512
− 1

4096

)

(398)

= 2

(
8

128

)

+ 2

(
8

4096

)

=
33

256
= 0.12890625 .

Here in Equation 398 we have used the Taylor series

(1 + x)α = 1 + αx+

(
α
2

)

x2 +

(
α
3

)

x3 +O(x4) . (399)

Note that we have to compute at least the cubic term in the Taylor series above as using
only up to the quadratic term would give

√
65−

√
63 ≈ 1

8
= 0.125 ,

which does not allow us to choose between the choices (A) and (B).

Problem 20

Write this expression as

45∑

k=1

log10

(
sin(k)

cos(k)

)

+

89∑

k=46

log10

(
sin(k)

cos(k)

)

.

Recall that sin(x) = cos(90− x) and cos(x) = sin(90− x) so the above can be written as

45∑

k=1

log10

(
sin(k)

cos(k)

)

+

89∑

k=46

log10

(
cos(90− k)

sin(90− k)

)

.

If we let l = 90− k this last sum can be written as

44∑

l=1

log10

(
cos(l)

sin(l)

)

.

This means that the full sum we have is

45∑

k=1

log10

(
sin(k)

cos(k)

)

+
44∑

l=1

log10

(
cos(l)

sin(l)

)

,
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or

log10

(
sin(45)

cos(45)

)

+
44∑

k=1

log10

(
sin(k)

cos(k)
· cos(k)
sin(k)

)

,

or

log10(1) +
44∑

k=1

log10(1) = 0 .

Problem 21

Let the side of the inscribed square in the Figure 1 triangle be denotes by s. Then we are
told that s2 = 441 so s = 21. Also in that triangle let A′ be the point where the square’s
corner intersects the segment BC, let B′ be the point where the square’s corner intersects
the segment AC, and finally let C ′ be the point where the square’s corner intersects the
segment AB.

As △ABC is an isosceles triangle we have that ∠A = ∠C = 45 degrees. We also have
that ∠A′B′C = ∠C ′B′A = 45 degrees. Thus △A′CB′ and △AC ′B′ are also isosceles right
triangles and A′C = A′B′ = s = C ′B′ = AC ′.

From the fact that A′B′ is parallel to AB and A′ bisects BC we have that B′ bisects AC.

We also have
BC = 2A′B = 2s = AB = 42 ,

so that
AC =

√
4s2 + 4s2 =

√
2(2s) = 42

√
2 .

Finally the area of the full triangle is then

1

2
(2s)(2s) = 2s2 = 882 .

Now in Figure 2 let the side of the inscribed square be given the length s′. Now as the small
triangles with corners A and C are congruent and isosceles we have

s′ = AC − s′ − s′ = 42
√
2− 2s′ .

Solving this gives s′ = 14
√
2 so that the area of this inscribed triangle is s′2 = 392.

Problem 22

If we imagine this situation if we drop a perpendicular from the center of the sphere O to
the bottom of the spherical “bowel” region it will “puncture” the original plane of the water
at the center of a circle C with a diameter 24. Let this center point be denoted by C. The
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distance from O to C is r − 8 if r is the radius of the sphere. If we draw the radius of the
sphere from the center O to a point on the circle C (denoted A) that segment will have a
length r. Thus in a two dimensional plane the three points O, C, and A will form a right
triangle with sides of length OC = r − 8, CA = 24

2
= 12, and AO = r. Then using the

Pythagorean theorem we have
OC2 + CA2 = AO2 ,

or
(r − 8)2 + 122 = r2 .

Solving this for r we get r = 13.

Problem 23

We can write this expression as
x2 = p(x− 444) .

This means that p divides x2 and as p is prime this means that p divides x. Thus we can
write x = np for some n. Putting this back into the above gives

n2p2 = p(444− np) or n(n + 1)p = 444 = 22 · 3 · 37 .

This means that p ∈ {2, 3, 37}. We can take each of these values for p, put it in the original
equation, and then solve for x. Doing this in the following R code

ps = c(2, 3, 37)

for( p in ps ){

print(polyroot(c(-444*p, p, 1)))

}

We see that only p = 37 gives integer roots for x i.e. we have x ∈ {−148, 111}.

Problem 24

Let our function be denoted

f(x) =
N∑

n=0

anx
n ,

where we must have aN 6= 0 or else the polynomial is not Nth degree (it would be of degree
less than N). For this expression we have

f(x2) =

N∑

n=0

anx
2n . (400)
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We also have

f(x)2 =

(
N∑

n=0

anx
n

)(
N∑

m=0

amx
m

)

=

2N∑

n=0

(
n∑

k=0

akan−k

)

xn . (401)

In the above we have followed the convention that ak = 0 if k > N .

As an aside, lets check that the above formula gives the correct coefficient for x2N . In
Equation 401 this coefficient is

(
2N∑

k=0

aka2N−k

)

.

Now as ak = 0 if k > N so the above simplifies to
(

N∑

k=0

aka2N−k

)

.

Now also a2N−k = 0 if 2N − k > N or k < N . This means that the only nonzero element of
the sum is when k = N and we get the coefficient of a2N (as we should).

Now if f(x2) = f(x)2 then this means that

N∑

n=0

anx
2n =

2N∑

n=0

(
n∑

k=0

akan−k

)

xn . (402)

We will now equate the coefficients of different powers of x in the above expression. Equating
the coefficients of x2N on both sides of the above gives

aN = a2N or aN (1− aN ) = 0 .

Now aN 6= 0 so we must have aN = 1.

Next equating the coefficients of x2N−1 on both sides of the above gives

0 =

2N−1∑

k=0

aka2N−1−k .

Using the fact that ak = 0 for k > N the right-hand-side of this becomes

0 = aN−1aN + aNaN−1 = 2aNaN−1 = 2aN−1 .

This means that aN−1 = 0.

Next equating the coefficients of x2N−2 on both sides of the above gives

aN−1 =
2N−2∑

k=0

aka2N−2−k .
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Using the fact that ak = 0 for k > N the right-hand-side of this becomes

aN−1 = aN−2aN + a2N−1 + aNaN−2 .

Using the fact that aN = 1 and aN−1 = 0 in the above we have that aN−2 = 0.

Next equating the coefficients of x2N−3 on both sides of the above gives

0 =

2N−3∑

k=0

aka2N−3−k .

Using the fact that ak = 0 for k > N the right-hand-side of this becomes

0 = aN−3aN + aN−2aN−1 + aN−1aN−2 + aNaN−3 .

Using the fact that aN = 1 and aN−2 = aN−1 = 0 in the above we have that aN−3 = 0.

At this point it looks like when we study the coefficients of x2N−p we learn that aN−p = 0.
We have shown this for p ∈ {1, 2, 3}. If we assume this holds true for all p the largest value
we can take for p is p = N where we would conclude that a0 = 0. This means that we have
shown that

f(x) = xN .

Notice that for any N we have

f(x2) = (x2)N = f(x)2 = (xN )2 ,

is true. As N can take any natural number we have an infinite number of such functions.
Note this is a different result than the back of the book obtains. If anyone sees anything
wrong/correct with what I have done please contact me.

Problem 25

The area of this triangle can be written as

A =
1

2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

0 0 1
36 15 1
x y 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

=
1

2
|36y − 15x| = 3

2
|12y − 5x| .

Now to make this as small as possible where x and y are integers we need the expression
|12y− 5x| to be equal to one. One way we can do this is to take x = 5 and y = 2. Thus the
smallest area is 3

2
.

Problem 26

Let X be a uniform random variable drawn from [0, 2.5] and let Y = 2.5−X . To solve this
problem we will make a simple table of the ranges of X (and thus Y ) such that the given
condition will hold. For example if

0 < X < 0.5 so 2 < Y < 2.5 ,
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then [X ] = 0 and [Y ] = 2. Here [·] is the “round” operation. Here [X ] + [Y ] 6= 3. Next if

0.5 < X < 1.0 so 1.5 < Y < 2.0 ,

then [X ] = 1 and [Y ] = 2. Here [X ] + [Y ] = 3. Next if

1.0 < X < 1.5 so 1.0 < Y < 1.5 ,

then [X ] = 1 and [Y ] = 1. Here [X ] + [Y ] 6= 3. Next if

1.5 < X < 2.0 so 0.5 < Y < 1.0 ,

then [X ] = 2 and [Y ] = 1. Here [X ] + [Y ] = 3. Finally if

2.0 < X < 2.5 so 0.0 < Y < 0.5 ,

then [X ] = 2 and [Y ] = 0. Here [X ] + [Y ] 6= 3.

Thus we can get a sum of three if

0.5 < X < 1.0 or 1.5 < X < 2.0 .

This will happen with a probability of

∫ 1.0

0.5

dx

2.5
+

∫ 2.0

1.5

dx

2.5
=

2

5
.

Problem 28

As the coefficients of the given polynomial are real all complex roots must come in complex
conjugate pairs. Thus we can write the four roots as z1, z̄1, z2, and z̄2. As we are told that
|zi| = 1 we know that zi = eiθi and thus z̄i = e−iθi = 1

zi
for i ∈ {1, 2}. Given all of this when

we write our polynomial in root factored form we would have

(z − eiθ1)(z − e−iθ1)(z − eiθ2)(z − e−iθ2) = 0 .

If we expand this and compare our result to the original polynomial given in the problem
we will find that

−(eiθ1 + e−iθ1 + eiθ2 + e−iθ2) = a ,

or

−
(

1

z̄1
+

1

z1
+

1

z̄2
+

1

z2

)

= a .

Thus the desired sum we see is −a.
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Problem 29

For the given sequence we want to know the value of n such that tn = 19
87
. To start this

problem lets evaluate a tn for a few n. We have

t1 = 1

t2 = 1 + t1 = 2

t3 =
1

t2
=

1

2
(403)

t4 = 1 + t2 = 1 + 2 = 3

t5 =
1

t4
=

1

3

t6 = 1 + t3 = 1 +
1

2
=

3

2
.

From the above we notice that if n is even have

tn > 1 ,

and for n odd

tn < 1 .

These are is easily proved using
tn = 1 + t(n

2 )
,

when n is even and mathematical induction. Because of that as in this problem we are
looking for the n such that tn = 19

87
< 1 we know that n is odd. Because we now know that

n is odd the remaining part of this problem will be to take the given recursion relationships
and work backwards using them getting expressions for tX for somewhat complicated values
for X until we reach an identity such as tX = 1 from which we can conclude that X ≡ 1.

To start this process as we know that n is odd we have

tn =
1

tn−1

=
19

87
so tn−1 =

87

19
.

As n is odd n− 1 is even so

1 + t(n−1
2 ) =

87

19
so t(n−1

2 ) =
68

19
.

Here we see that t(n−1
2 ) > 1 so we know that n−1

2
is even and we have

t(n−1
2 ) = 1 + t(n−1

4 ) =
68

19
so t(n−1

4
) =

49

19
> 1 .

This means that n−1
4

is also even and so

t(n−1
4 ) = 1 + t(n−1

8 ) =
49

19
so t(n−1

8 ) =
30

19
.
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As this is larger than one know that n−1
8

is also even and that t(n−1
8 ) must satisfy

1 + t(n−1
16 ) =

30

19
,

thus

t(n−1
16 ) =

11

19
< 1 .

As this is less than one we know that n−1
16

is odd and must satisfy

t(n−1
16 ) =

1

t(n−1
16

−1)

=
11

19
.

Which means that

t(n−17
16

) =
19

11
> 1 .

This means that n−17
16

is even. At this point the pattern of what we are doing is clear and
we will finish the calculations with less comments. The above means that

1 + tn−17
32

=
19

11
so tn−17

32
=

8

11
< 1 .

Thus n−17
32

is odd so that

1

t(n−17
32

−1)

=
8

11
so t(n−49

32
) =

11

8
> 1 .

Thus n−49
32

is even so that

1 + t(n−49
64

) =
11

8
so tn−49

64
=

3

8
< 1 .

So n−49
64

is odd so that
1

t(n−49
64

−1)

=
3

8
so t(n−113

64
) =

8

3
> 1 .

So n−113
64

is even so that

1 + t(n−113
128

) =
8

3
so t(n−113

128
) =

5

3
> 1 .

So n−113
128

is even so that

1 + t(n−113
256

) =
5

3
so t(n−113

256
) =

2

3
< 1 .

So n−113
256

is odd so that
1

t(n−369
256

)

=
2

3
so t(n−369

256
) =

3

2
> 1 .

So n−369
256

is even so that

1 + t(n−369
512

) =
3

2
so t(n−369

512
) =

1

2
.

At this point from Equation 403 we know that t3 =
1
2
so we must have

n− 369

512
= 3 ⇒ n = 1905 .

This means that the sum of digits in n is 15.
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Problem 30

We first consider if the point E is on the segment AC or BC. Let hE be the vertical
height/distance from the point E to the segment AB and hC the same same thing from the
point C. Then

Area△ADE
Area△ACB =

hEAD

hCAB
.

Now using the angles in the triangle ADE (namely angles ∠EAD and ∠EDA) we have

AD = hE + hE
1

tan(60◦)
= hE

(

1 +
1√
3

)

.

Now using the angles in the triangle ABC (namely angles ∠CAB and ∠ABC) we have

AB = hC + hC cot(30◦) = hc

(

1 +
√
3
)

.

This means that

Area△ADE
Area△ACB =

h2E

(

1 + 1√
3

)

h2C
(
1 +

√
3
) =

h2E
h2C

√
3
.

If we consider “sliding” the point E to C from where it is located in the original drawing
note that triangles ADE and ABC then have the same height

hE = hC ,

This means that
Area△ADE
Area△ACB =

1√
3
>

1

2
.

This means that the point E must be on the segment AC as in the original drawing.

From that argument we know that
hE = αhC ,

with α < 1. Now if

Area△ADE =
1

2
Area△ABC ,

we must have
1

2
ADhE =

1

4
ABhC ,

or using the angles in the two triangles as above we have

1

2

(

1 +
1√
3

)

h2E =
1

4

(

1 +
√
3
)

h2C ,

or

α2

(

1 +
1√
3

)

=
1

2
(1 +

√
3) .

If we solve for α we get

α =

(
3

4

)1/4

.
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We then have

AD

AB
=

(

1 + 1√
3

)

αhC

(1 +
√
3)hC

=
1

4
√
12
,

when we simplify.

The 1987 AIME Examination

Problem 1

To get the desired number when we don’t allow any carrying the units digit of m can be

• zero and then the units digit of n would then need to be two or

• one and then the units digit of n would then need to be one or

• two and then the units digit of n would then need to be zero.

This gives three possible choices for the units digits for m and n such that their sum has a
units digit of two.

In the same way, to get the desired sum the tens digit of m can be

• zero and then the tens digit of n would then need to be nine or

• one and then the tens digit of n would then need to be eight or

• two and then the tens digit of n would then need to be seven or

• three and then the tens digit of n would then need to be six or

• four and then the tens digit of n would then need to be five or

• five and then the tens digit of n would then need to be four or

• six and then the tens digit of n would then need to be three or

• seven and then the tens digit of n would then need to be two or

• eight and then the tens digit of n would then need to be one or

• nine and then the tens digit of n would then need to be zero.
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This gives ten possible choices for the tens digits for m and n such that their sum has a tens
digit of nine.

In the same way, there are five ways to specify the hundreds digits of m and n and two ways
to specify the thousands digit for m and n. This gives a total number of “simple” numbers
with this sum of

3× 10× 5× 2 = 300 .

Problem 2

The largest distance between two points on two spheres will be the points on the spheres
where the segment connecting their two centers (when extended if needed) would intersect
the spheres. This largest distance would then go from the farthest point of the first sphere
to that sphere’s center (say C1), from that center to the other spheres center (say C2), and
then from C2 to the farthest point on the second sphere. This gives a maximum distance of

r1 + d(C1, C2) + r2 = 19 +
√

(12 + 2)2 + (8 + 10)2 + (−16− 5)2 + 87 = 137 .

Problem 3

If we write down the divisors of a natural number k in increasing order we have

1 , d1 , d2 , . . . , dn−1 , dn , k .

For example, the divisors of twelve are

1 , 2 , 3 , 4 , 6 , 12 .

When we write down the divisors of a number in this way if n is we always have the fact
that the “outer” products of the divisors equal k or

1 · k = d1 · dn = d2 · dn−1 = d3 · dn−2 = · · · .

From this if our number k is “nice” then we can only have two divisors and n = 2 since
otherwise the product of these numbers would be larger than k and we have

k = d1 · d2 .

By the Fundamental Theorem of Arithmetic the divisors of k will be products of powers of
prime numbers. This means that d1 will be the smallest prime that divides k and d2 will be
the next smallest prime that divides k or d21 (if d

2
1 is a divisor of k). We can find the first ten

“nice” numbers by computing them using the above rules. The first few prime numbers are

{2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29} .
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Then the numbers that are the product of the first two distinct primes are

2 · 3 = 6

2 · 5 = 10

2 · 7 = 14

2 · 11 = 22

2 · 13 = 26

2 · 17 = 34

2 · 19 = 38

3 · 5 = 15

3 · 7 = 21

3 · 11 = 33

3 · 13 = 39

5 · 7 = 35

5 · 11 = 55 .

The numbers that are the product of a prime and second power of that prime are

2 · 22 = 8

3 · 32 = 27

5 · 52 = 125 .

We could go further but these are all of the numbers we need to find the first ten “nice”
numbers. Selecting and then ordering them from the above numbers we find the sum we
need is given by

sum(c(6, 8, 10, 14, 15, 21, 22, 26, 27, 33))

This evaluates to 182.

Problem 4

If x > 60 then this expression is

|y| = −3

4
x+ 60 .

Now as |y| > 0 the valid x values for the right-hand-side are when

60− 3

4
x > 0 or x < 80 .

Thus when 60 < x < 80 we have the two lines

y = ±
(

60− 3

4
x

)

.
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When x = 60 we have |y| = 15 and when x = 80 we have |y| = 0. Now if 0 < x < 60 this
expression is

|y| = 5

4
x− 60 .

To have |y| > 0 the values of x must be constrained as

5

4
x− 60 > 0 or x > 48 .

When x = 48 we have |y| = 0 and we can draw a picture in the (x, y) plane of what this
shape looks like. We can also show that if 0 < x < 48 or x < 0 then our equation has no
solution. From a drawing of the four lines that make up this shape we can break the total
area up into the area of four triangles to get the total area is

A = 2

(
1

2
(60− 48)15 +

1

2
20(15)

)

= 15 · 32 = 480 .

Problem 5

Lets “complete-the-square” involving the x and y variables. To do this lets write this ex-
pression as

y2 + 3x2y2 − 30x2 = 517 .

Then lets write the left-hand-side as

(y2 + A)(Bx2 + C) = Bx2y2 + Cy2 + ABx2 + AC .

To have this equal the right-hand-side we must take A = −10, B = 3, and C = 1 so that
the original expression can be written as

(y2 − 10)(3x2 + 1) + 10 = 517 ,

or
(y2 − 10)(3x2 + 1) = 507 ,

If we perform a prime factorization of 507 we get

(y2 − 10)(3x2 + 1) = 3 · 132 .

As x and y are integers the left-hand-side will also be an integer thus we have two factoriza-
tions. This can happen only if

y2 − 10 ,

is equal to one of 1, 3, 13, 3 · 13, 132, or 3 · 132. Solving for y in each of these the only one
that has an integer solution for y is when

y2 − 10 = 3 · 13 = 39 so y = ±7 .

If this is true then we must have

3x2 + 1 = 13 so x = ±2 .

Using these we can compute
3x2y2 = 3 · 4 · 49 = 588 .
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Problem 6

Let h be the height of the trapezoid XPQY so that its area can also be written as

Area(XPQY ) =
1

2
h(PQ+XY ) . (404)

As BC = 19 the area of the trapezoid ZWPQ i.e. the one “above” the trapezoid XPQY
can be written as

1

2
(9− h)(PQ+WZ) .

As we are told that all areas are equal by setting these two expressions equal to each other
and using the fact that WZ = XY we get

h(PQ+XY ) = (19− h)(PQ+XY ) .

This means that h = 19− h so we see that h = 19
2
.

The area of the trapezoid XPQY is 1
4
the area of the rectangle ABCD so

Area(XPQY ) =
1

4
AB · BC . (405)

Next note that XY is 1
4
the perimeter of the rectangle ABCD so

XY =
1

4
(2AB + 2BC) =

1

2
(AB + 19) .

Using Equations 404 and 405 we can write area of the trapezoid XPQY as

1

2
h(PQ+XY ) =

1

4
AB · BC .

or using what we know about h, PQ, the expression for XY , and BC we get

1

2

(
19

2

)(

87 +
1

2
(AB + 19)

)

=
1

4
AB · 19 .

If we solve for AB we find AB = 193.

Problem 7

From the Fundamental Theorem of Arithmetic we have that a, b, and c can be written as

a = 2a23a35a57a7 · · ·
b = 2b23b35b57b7 · · ·
c = 2c23c35c57c7 · · · .
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From this we can conclude that

[a, b] = 2max(a2,b2)3max(a3,b3)5max(a5,b5)7max(a7,b7) · · · ,

and as we are told that
[a, b] = 1000 = 23 · 53 ,

The only prime factors of a and b must be the numbers two and five and we have that

max(a2, b2) = 3

max(a5, b5) = 3 .

In the same way from
[b, c] = 24 · 53 ,

we conclude that

max(b2, c2) = 4

max(b5, c5) = 3 .

From
[c, a] = 24 · 53 ,

we conclude that

max(a2, c2) = 4

max(a5, c5) = 3 .

The powers of two and five decouple and for the variables a2, b2, and c2 we must satisfy

max(a2, b2) = 3 (406)

max(b2, c2) = 4 (407)

max(a2, c2) = 4 . (408)

We would like to count how many solutions to the above equations there are. From Equa-
tion 406 we see that a2 = 3 (with 0 ≤ b2 ≤ 3) or b2 = 3 (with 0 ≤ a2 ≤ 3).

In the first case if a2 = 3, with 0 ≤ b2 ≤ 3, then from Equation 408 we see that c2 = 4. This
means that

a ∝ 23

b ∝ 2b2 where 0 ≤ b2 ≤ 3

c ∝ 24 .

There are four “numbers” of this form.

In the second case if b2 = 3, with 0 ≤ a2 ≤ 3, then from Equation 407 we see that c2 = 4.
This means that

a ∝ 2a2 where 0 ≤ a2 ≤ 3

b ∝ 23

c ∝ 24 .
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There are four “numbers” of this form. Note that in this last set if a2 = 3 we have a “form”
of a number that is found in the previous set. This gives 4 + 3 = 7 total numbers that can
be the “base two factorization” of a, b, and c.

The powers five imply that for the variables a5, b5, and c5 we must satisfy

max(a5, b5) = 3 (409)

max(b5, c5) = 3 (410)

max(a5, c5) = 3 . (411)

We now would like to count how many solutions to the above equations there are. From
Equation 409 we see that a5 = 3 (with 0 ≤ b5 ≤ 3) or b5 = 3 (with 0 ≤ a5 ≤ 3).

In the first case, if a5 = 3 with 0 ≤ b5 ≤ 3, then

• if 0 ≤ b5 ≤ 2 then from Equation 410 we have c5 = 3.

• if b5 = 3 then from Equation 410 we can have 0 ≤ c5 ≤ 3.

Both of these satisfy all of the required maximization conditions on a5, b5, and c5. This
means that

a ∝ 53

b ∝ 5b5 with 0 ≤ b5 ≤ 2 and c ∝ 53

b ∝ 53 with c = 5c5 with 0 ≤ c5 ≤ 3 .

If we write the “thing” that a, b, and c must be proportional to based on the above conditions
as a three term column vector the above conditions give the following factors





53

50

53



 ,





53

51

53



 ,





53

52

53



 ,





53

53

50



 ,





53

53

51



 ,





53

53

52



 ,





53

53

53



 .

These are seven distinct things.

In the second case, if b5 = 3 with 0 ≤ a5 ≤ 3, then

• if 0 ≤ a5 ≤ 2 then from Equation 411 we have c5 = 3.

• if a5 = 3 then from Equation 411 we can have 0 ≤ c5 ≤ 3.

Both of these satisfy all of the required maximization conditions on a5, b5, and c5. This
means that

b ∝ 53

a ∝ 5a5 with 0 ≤ a5 ≤ 2 and c ∝ 53

a ∝ 53 with c = 5c5 with 0 ≤ c5 ≤ 3 .
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Again if we write the “thing” that a, b, and c must be proportional to based on the above
conditions as a three term column vector the above conditions give the following factors





50

53

53



 ,





51

53

53



 ,





52

53

53



 ,





53

53

50



 ,





53

53

51



 ,





53

53

52



 ,





53

53

53



 .

There are seven items in this list and of these we get four of them (the last four) that are
duplicates of items in the previous list giving 7 + 7 − 4 = 10 unique ways we can have a
“five” factor for a, b, and c.

Combining the seven ways we can have a “two” factor and the ten ways we can have a “five”
factor for a, b, and c we get a total of 7× 10 = 70 tuples of the form (a, b, c).

Problem 8

The given inequality can be written as two others. One of them is

8(n+ k) < 15n ,

which we can simplify to
8k < 7n . (412)

The second one is
13n < 7(n+ k) ,

which can be simplified to
6n < 7k . (413)

The above two inequalities can be “solved” for k to get

6n

7
< k <

7n

8
. (414)

Lets see what restrictions this inequality has on possible values for k. If we take n = 1 in
Equation 414 we get

6

7
< k <

7

8
,

from which we see that no integer k ≥ 1 satisfies this.

Taking n = 2 Equation 414 gives

12

7
< k <

14

8
or 1

5

7
< k < 1

3

4
,

from which we again see that no integer k ≥ 1 satisfies this.
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Taking n = 3 Equation 414 gives

18

7
< k <

21

8
or 2

4

7
< k < 2

5

8
,

from which we see that no integer k ≥ 1 satisfies this.

Notice that we can write Equation 414 as

48n

56
<

56k

56
<

49n

56
.

or
48n < 56k < 49n . (415)

Again taking a few small n we see that no k exists that will satisfy this condition. We would
like to make n as large as possible so that there is only one value of k that satisfies the above.
In between (and not including them) the two integers 48n and 49n there are

49n− 48n− 1 = n− 1 ,

integers. Thus if we pick a n such that there are two multiples of 56 i.e.

n− 1 = 2(56) = 112 ,

Then for that value of n = 113 we will have two integer solutions for k. For example with
n = 113 we find the bounds in Equation 415 given by

5424 < 56k < 5537 .

In the above k ∈ {97, 98} satisfy this. If we take n = 112 then we find the bounds in
Equation 415 given by

5376 < 56k < 5488 .

In the above only k = 97 satisfy this. Thus n = 112 is the largest n with a unique k.

Problem 9

As all angles at P are equal we have

∠APB = ∠BPC = ∠APC =
360

3
= 120◦ .

Recall that

cos(120◦) = −1

2
.

As this expression is so “clean” lets use the law of cosigns in the triangle APB as

AB2 = AP 2 +BP 2 − 2AP ·BP cos(120◦)

= 102 + 62 − 2(10)(6)

(

−1

2

)

= 196 .
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Using the Pythagorean theorem in the triangle ABC we have

196 +BC2 = AC2 (416)

Next using the law of cosigns in the triangle BPC as

BC2 = 362 + CP 2 − 2(6)(CP )

(

−1

2

)

= 36 + CP 2 + 6CP . (417)

Using the law of cosigns in the triangle APC as

AC2 = 102 + CP 2 − 2(10)(CP )

(

−1

2

)

= 100 + CP 2 + 10CP . (418)

As I want to solve for CP we will use Equation 417 (to replace BC2) and 418 (to replace
AC2) in Equation 416 to get

196 + 36 + CP 2 + 6CP = 100 + CP 2 + 10CP ,

which solving gives CP = 33.

Problem 10

Let va be the velocity of Al and vb be the velocity of Bob (in steps per unit time). Then we
are told that

va = 3vb .

Now let Ta and Tb be the time that Al and Bob take to do their walk. Then we are told that

vaTa = 150

vbTb = 75 .

In terms of vb the first equation above is

3vbTb = 150 or vbTb = 50 .

This means that
Ta
Tb

=
50

75
=

2

3
.

If we let L be the length of the escalator in steps then we also have

L = (va + ve)Ta (419)

L = (vb − ve)Ta . (420)

Here ve is the velocity of the escalator. We can write Equation 419 as

veTa = L− 150 ,

and Equation 419 as
veTb = 75− L .

If we take the ratio of these two and use the result above we get

Ta
Tb

=
L− 150

75− L
=

2

3
.

Solving for L I find L = 120.
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Problem 11

Lets write 311 as the sum of k terms starting at a value of s in the following way

311 = s+ (s+ 1) + (s+ 2) + · · ·+ (s+ k − 1)

=
k−1∑

l=0

(s+ l) = sk +
k−1∑

l=0

l = sk +
k−1∑

l=1

l

= sk +
1

2
(k − 1)k = k

(

s+
k − 1

2

)

. (421)

To make sure that both sides are of this expression are integers we need to write the above
like

2 · 311 = k(2s+ k − 1) .

Based on how s and k are defined to maximize k we would want to minimize s at the same
time. Based on the above factorization and that we want to maximize k (we could put the
factor of two with the factor 2s+ k − 1) we will propose that

k = 2 · 3p

2s+ k − 1 = 311−p .

for some p where 0 ≤ p ≤ 11. Now for p’s in this range the above will be an identity. Based
on this we have that

s =
311−p − k + 1

2
=

311−p − 2 · 3p + 1

2
.

Now we can make k large by taking p large. The largest we can take p is p = 11 but then if
we do that from the above we see that s < 0. Thus we want to take p large such that s > 0.
This last condition is

311−p − 2 · 3p + 1 > 0 . (422)

We can multiply this by 3p to get a quadratic equation is 3p that we can solve to get
approximately

3p ≈ 311/2 .

This means that p should be “close” to p ≈ 11
2

= 5.5. We will take p = 5 and see if
Equation 422 is satisfied. We find that for p ≤ 5 it is while for p ≥ 6 it is not. This means
that

p = 5

k = 2 · 3p = 486

s = 122 .

Problem 12

For this problem we want to find the smallest m such that

n < 3
√
m = n+ r < n+ 10−3 . (423)

659



This is equivalent to finding the smallest m such that

n3 < m < (n+ 10−3)3 . (424)

Now as n is fixed in Equation 424 from all possible integers m that could satisfy the above
the smallest one would be m = n3+1 (i.e. one more than the left-hand-end point). Because
of that argument we will find the smallest n (this will then make m the smallest) such that

n3 + 1 < (n + 10−3)3 .

If we expand the right-hand-side of this we get

n3 + 1 < n3 + 3n2(10−3) + 3n(10−3)2 + 10−9 ,

which is equivalent to

n2 +
n

103
− 1

3

(
109 − 1

106

)

> 0 . (425)

Obviously for n large this will be true but for small n (say n = 0) it will not be true. Thus
lets find the values of n where the left-hand-side is equal to zero. To simplify the algebra
lets approximate the above quadratic with

n2 +
n

103
− 103

3
> 0 . (426)

Using the quadratic formula on the left-hand-side (set equal to zero) and simplifying we find

n =
− 1

103
±
√

1
106

− 4
(
−103

3

)

2
=

−10−3 ±
√

10−3 + 4
3
103

2

≈ ±1

2

√

4

3
103 = ± 1√

3
103/2 .

Evaluating this approximately (since n > 0) we have

n ≈ 1√
3
93/2 =

1√
3
33 =

√
3 · 32 =

√
3 · 9 ≈ 1.7 · 9 ≈ 18 .

While there are a lot of approximations in the above we can start with n = 18 and then
evaluate the right-hand-side of Equation 425 to see if it is satisfied and then move n up or
down by one until it is. We can do that in the following R code

ns = c(18, 19)

rhs = function(n){

n^2 + n/1000 - (1/3)*(10^9 - 1)/10^6

}

sapply(ns, rhs)

Running the above gives
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[1] -9.315333 27.685667

Thus n = 18 is “too small” but n = 19 is large enough to make the left-hand-side positive.
With this value of n we have m = n3 + 1. We can check that these numbers satisfy the
constraints of the original problem. In R we have

n = 19

m = n^3 + 1

print(c(n, m^(1/3), n+10^(-3)))

This gives the output

[1] 19.00000 19.00092 19.00100

indicating that we have found a solution. One can check that for smaller n Equation 423 is
not satisfied.

Problem 13

From the given “bubble” procedure as we progress during the first pass when we consider
exchanging two numbers at locations i and i+1 (for 1 ≤ i ≤ n− 1) before the exchange the
number at location i is the largest of the rj numbers for j ≤ i. Another way to say this is
to note that when we compare r1 and r2 and exchange if needed when we end we have

r′2 = max(r1, r2) .

Comparing the value r2 with the unseen r3 when finished we see that

r′3 = max(r′2, r3) = max(r1, r2, r3) .

Comparing the value r′3 with the unseen r4 when finished we see that

r′4 = max(r′3, r4) = max(r1, r2, r3, r4) .

Thus if during the first pass when we compare r′19 to r20 the only way r20 will stay where it
is will be if

r20 > max(r1, r2, . . . , r18, r19) .

Then we need the numerical value of r20 to be large enough that it would move to the 30th
location so this means that it must be larger than all of r21, r22, up to r29 and r30 or

r20 > max(r21, r22, . . . , r29, r30) ,

but it can’t be larger than r31 or else it would exchange locations and move to the thirty-first
spot.
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From these arguments in the original ordering of the first thirty-one numbers r31 must be
the largest and r20 must be the second largest. As there are 31! ways to place 31 numbers
in 31 spots and (31 − 1 − 1)! = 29! ways to order 31 numbers where we require the largest
in the 31st spot and the second largest in the 20th spot the probability this happens is

29!

31!
=

1

31× 30
=

1

930
.

Thus p+ q = 931.

Problem 14

To start we recognize that 324 = 22 · 34 = 4 · 34. Then the expression we are given can be
written as

E =
(104 + 4 · 34)(224 + 4 · 34)(344 + 4 · 34)(464 + 4 · 34)(584 + 4 · 34)
(44 + 4 · 34)(164 + 4 · 34)(284 + 4 · 34)(404 + 4 · 34)(524 + 4 · 34) .

Now based on the form of this expression consider

x4 + 4y4 = x4 + 4x2y2 + 4y4 − 4x2y2

= (x2 + 2y2)2 − 4x2y2

= (x2 + 2y2 + 2x2y2)(x2 + 2y2 − 2x2y2)

= (x2 + 2xy + y2 + y2)(x2 − 2xy + y2 + y2)

= ((x+ y)2 + y2)((x− y)2 + y2) .

The first factor in the above product is the “up” factor while the second factor is the “down”
factor. Using this we can write the product we are given with all “up” factors first and then
all “down” factors second as

E =
(132 + 32)(252 + 32)(372 + 32)(492 + 32)(612 + 32)× (72 + 32)(192 + 32)(312 + 32)(432 + 32)(552 + 32)

(72 + 32)(192 + 32)(312 + 32)(432 + 32)(552 + 32)× (12 + 32)(132 + 32)(252 + 32)(372 + 32)(492 + 32)

=
612 + 32

11 + 32
=

3730

10
= 373 ,

once we cancel many of the common factors and simplify.

Problem 15

The sides of the two squares are given by

s1 =
√
441 = 21

s2 =
√
440 =

√
23 · 5 · 11 = 2

√
2 · 5 · 11 = 2

√
110 .

Lets let the angles at the points A and B be denoted by the angles A and B. The usage
should be clear from context. In each triangle the location of the point C will be taken in
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the Cartesian coordinate plane as (0, 0), the location of the point A will be (0, v), and the
location of the point B will be (h, 0). Thus part of this problem is to determine

AC + CB = v + h .

From the given triangles and the definitions above we have

tan(A) =
h

v

tan(B) =
v

h
,

plus all other trigonometric relations on the angles A and B can be written in terms of the
variables h and v.

Based on the first figure (with the square S1) the point (21, 21) is on the line connecting
AB. This line is given by

y = v − v

h
x . (427)

If we put the point (21, 21) in that expression we get

21

v
+

21

h
= 1 . (428)

This is one relationship between h and v.

Moving to the second figure (with the square S2) let the left-most corner of the square S2

be denoted by the point D, the northern-most corner of the square S2 be denoted by the
point E, the east-most corner by F , and the southern-most corner by G. Then from the
right angles involved we have

∠ADE = ∠B

∠CDG = ∠A

∠CGD = ∠B

∠FGB = ∠A ,

and all other angles are right-angles. Using these triangles we will compute the x and y
coordinate of the point F . First the point G is located at

x =
√
440 cos(B) ,

and y = 0. Then the point F is located at

x =
√
440 cos(B) +

√
440 cos(A) ,

and
y =

√
440 sin(A) .

Putting the coordinates for F into Equation 427 we get

√
440 sin(A) = v − v

h

√
440(cos(B) + cos(A)) ,
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or

sin(A) =
v√
440

− 1

h
(cos(B) + cos(A)) ,

or as cos(B) = sin(A) this is

sin(A)

v
=

1√
440

− 1

h
(sin(A) + cos(A)) ,

or (
1

v
+

1

h

)

sin(A) =
1√
440

− cos(A)

h
.

Using Equation 428 we can simplify the left-hand-side of this to get

sin(A)

21
=

1√
440

− cos(A)

h
,

or
sin(A)

21
+

cos(A)

h
=

1√
440

.

From the original triangle we have that

sin(A) =
h√

v2 + h2

cos(B) =
h√

v2 + h2
= sin(A)

cos(A) =
v√

v2 + h2
,

thus we can write the above as a single equation in terms of h and v as

h

21
+
v

h
=

√
v2 + h2√
440

. (429)

At this point we have two equations 428 and 429 and two unknowns h and v which we could
attempt to solve for. The algebra for these remaining steps seems to be complicated.
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The 1988 AHSME Examination

Problem 1

We have √
8 +

√
18 = 2

√
2 + 3

√
2 = 5

√
2 .

Problem 2

By similar triangles we will have
ZY

BC
=
XY

AB
.

From what we are told this means that

Y Z

4
=

5

3
.

Thus Y Z = 20
3
= 62

3
.

Problem 3

The vertical bars (ignoring overlaps) will take up an area

10× 1× 2 = 20 .

The horizontal bars will take up an area of the same amount but that area also includes the
area of four squares that the vertical bars take up. Thus with out these the horizontal bars
take up

20− 4× 1× 1 = 16 .

The total area covered is then 20 + 16 = 36.

Problem 4

Write this expression as

y = 2− 2

3
x ,

then the slope is −2
3
.
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Problem 5

Expanding we have

(x+ 2)(x+ b) = x2 + (2 + b)x+ 2b = x2 + cx+ 6 .

This means that 2b = 6 so that b = 3. Then c = 2 + b = 5.

Problem 6

This is a rectangle.

Problem 7

This would be
60× 512

120
=

1

2
(512) = 256 ,

seconds. If we divide this by 60 to get the time in minutes as four minutes is 240 seconds
the answer is four minutes.

Problem 8

We are told that
b

a
= 2 and

c

b
= 3 ,

We want to compute
a + b

b+ c
=

a
b
+ 1

1 + c
b

=
1
2
+ 1

1 + 3
=

3

8
,

when we simplify.

Problem 9

The side S must be larger than the “diagonal of the table”. This means that

S >
√
102 + 82 =

√
164 .

Recalling that 122 = 144, 132 = 169, and 142 = 196. Thus for S to be a the smallest integer
such that S2 > 164 we should take S = 13.

666



Problem 10

The given statement means that

−0.00312 < C − 2.43865 < +0.00312 ,

or solving for C this means that

2.43553 < C < 2.44177 .

Thinking about rounding the numbers on either side of C above we see that when both are
rounded to the second digit to the right of the decimal point we have C = 2.44.

Problem 11

Working out the percentage increases I find

∆A

A
=

10

40
=

1

4
= 0.25

∆B

B
=

20

50
=

2

5
= 0.4

∆C

C
=

30

70
=

3

7
≈ 0.42 as

1

7
≈ 0.14

∆D

D
=

30

100
=

3

10
= 0.3

∆E

E
=

40

120
=

1

3
= 0.3333 .

Based on these the largest is C.

Problem 12

To solve this problem create a grid with nine rows representing the value of the first draw
and nine columns representing the value of the second draw. At the intersection of the row
and the column place the sum of the two draws. We can then count the number of times
that each digit appears as the units digit of each sum. I find that the digit 0 appears nine
times and each other digit appears eight times. Thus 0 appears the most.

Problem 13

The given expression means that
tan(x) = 3 .
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The “triangle” that identity would indicate is one with a base leg of length one, a vertical
leg of length three, and a hypotenuse of length

√
1 + 9 =

√
10. This is the triangle in the

x-y coordinate plane with vertices A = (0, 0), B = (1, 0) and C = (1, 3) and x the angle
∠BAC. Then from that configuration we have

sin(x) =
3√
10

cos(x) =
1√
10
.

This means that

sin(x) cos(x) =
3

10
.

Problem 14

From the definition of
(
a
k

)
the denominator of both

(− 1
2

100

)
and

( 1
2

100

)
is the same so we have

(− 1
2

100

)

( 1
2

100

) =
n(n− 1)(n− 2) · · · (n− 98)(n− 99)

p(p− 1)(p− 2) · · · (p− 98)(p− 99)
,

for n = −1
2
and p = 1

2
. The numerator of this fraction can be written

(

−1

2

)(

−3

2

)(

−5

2

)

· · ·
(

−197

2

)(

−199

2

)

.

The denominator of this fraction can be written
(
1

2

)(

−1

2

)(

−3

2

)(

−5

2

)

· · ·
(

−195

2

)(

−197

2

)

.

Thus the desired ratio is then (
−199

2

)

1
2

= −199 .

Problem 15

We do long division of ax3 + bx2 + 1 by x2 − x− 1 to show that

ax3 + bx2 + 1

x2 − x− 1
= ax+ (b+ a) +

(2a+ b)x+ a+ b+ 1

x2 − x+ 1
.

Then to be a factor means that

2a + b = 0

a + b+ 1 = 0 .

These two equations have the solution a = 1 and b = −2.
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Problem 16

Let h be the height of the triangle ABC. Let a be the length of a side of the triangle ABC.
Note that ∠ACB is 60 degrees. This mean that

a cos
(π

3

)

= h so h =
a

2
.

This means that for an equilateral triangle with a side of length a and a height h we have
an area given by

1

2
ah =

1

2
(2h)h = h2 .

Let the height of the inside triangle be denoted by h′. We want to determine h′ in terms of
h. Note that

h′ = h− AA′ − h

6
,

so we need to determine AA′. Now as ∠C ′CB is thirty degrees we have that

CC ′ = AA′ =
h/6

sin
(
π
6

) =
h/6

1/2
=
h

3
.

This means that

h′ = h− h

3
− h

6
=
h

2
.

Then as the inside triangle is also an equilateral triangle the ratio of their two areas is

(h′)2

h2
=

(h/2)2

h2
=

1

4
.

Problem 17

If x > 0 and y > 0 then these two equation are

2x+ y = 10

x = 12 .

This has the solutions x = 12 and y = −14. This solution is not consistent with the
assumption that x > 0 and y > 0 and thus is not an actual solution to the original equations.

If x > 0 and y < 0 then these two equation are

2x+ y = 10

x− 2y = 12 .

This has the solutions x = 32
5
and y = −14

5
. This solution is consistent with the assumption

that x > 0 and y < 0 and thus is a solution to the original equations. In this case we have
x+ y = 18

5
.
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If x < 0 and y > 0 then these two equation are

y = 10

x = 12 .

This solution is not consistent with the initial assumptions and thus is not an actual solution
to the original equations.

Finally, if x < 0 and y < 0 then these two equation are

y = 10

x = 32 .

This solution is not consistent with the initial assumptions and thus is not an actual solution
to the original equations.

Problem 18

If there are n people in the tournament there are two ways that the outcome of the nth and
the n − 1th game can happen. There are two possible outcomes of the game between the
winner of this last game and the person in the n− 2 spot. Following this logic there are

2n−1 ,

possible outcomes with n people. When n = 5 this is sixteen.

Problem 19

Note that we can write the numerator of the given fraction as

(bx+ ay)(a2x2 + b2y2) + 2a2bxy2 + 2ab2x2y .

When we divide this by bx+ ay we get

a2x2 + b2y2 +
2abxy(ay + bx)

bx+ ay
= a2x2 + b2y2 + 2abxy = (ax+ by)2 .

Problem 20

Let the side of the square be denoted “s” then we see that

AF =
s

2
= FD = BE = EC ,
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and

DE =

√

s2 +
s2

4
=
s
√
5

2
.

Now
XY = DE +DE = s

√
5 .

Now the area of the rectangle must equal the area of the original square thus we must have

Y Z ·XY = Y Z · s
√
5 = s2 so Y Z =

s√
5
.

This means that
XY

Y Z
=
s
√
5

s√
5

= 5 .

Problem 21

As z = a+ bi we have
z + |z| = a+ bi =

√
a2 + b2 = 2 + 8i .

This means that b = 8 and a +
√
a2 + b2 = 2. This last equation is

√
a2 + 64 = 2− a ,

which we can solve for a to get a = −15. In this case we have

|z|2 = a2 + b2 = 289 .

Problem 22

From the law of cosigns we have under the standard labeling of a triangle we have

a2 = b2 + c2 − 2bc cos(A) .

Note that if |A| < π
2
then cos(A) > 0 so that

a2 < b2 + c2 .

Lets call this the “quadratic triangle inequality”. If we apply this to the three given lengths
10, 24, and x we must enforce

102 < 242 + x2 ⇒ x2 > −476

242 < 102 + x2 ⇒ x2 > 476 ⇒ |x| > 21.81742

x2 < 102 + 242 ⇒ x2 > 676 ⇒ |x| < 26 .

From these inequalities for x we can have x ∈ {22, 23, 24, 25}.
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Problem 23

Recall that a tetrahedron is a 3D object with a triangular base and triangular sides. In that
solid we label the four vertices of our tetrahedron with the letters A, B, C, and D. Now
on any face of the tetrahedron we have a triangle so the triangle inequality must hold. For
example, as AB = 41 and if the other sides of the triangle with that edge are AD and BD
(so that the vertex not in the plane of △ABD is C) then we must have

AD +BD > 41 .

Now as AB = 41 the other sides AC, BC, AD, and BD must be drawn from the lengths
{7, 13, 18, 27, 36}. Intuitively, as 41 is the largest of all of the side lengths we will be able to
enforce the triangle inequality only if the four edges that “connect” to AB are taken from
the largest lengths available i.e. the numbers {13, 18, 27, 36}. We might try

AC = 36 and BC = 13 ,

with
AD = 27 and BD = 18 .

In that configuration CD would have the smallest length of seven.

If we draw that tetrahedron we would have a face △ACD with lengths AD = 27, AC = 36,
and CD = 7. This cannot be a valid configuration as

CD + AD = 7 + 27 = 34 ≯ 36 = AC ,

meaning that the triangle inequality is not satisfied in this triangle. This means that we
need to increase the length of the segment CD. If we make it the next larger number from 7
we would take CD = 13 (and then take BC = 7) we can check that the triangle inequality
is satisfied for all the faces of the tetrahedron.

Problem 24

An isosceles trapezoid means that the two “legs” (not the bases) are of the same length.

Method 1: Let the angle between the bottom base and each leg be denoted by α. Then
we are told that

sin(α) = 0.8 so cos(α) =
√
1− 0.82 = 0.6 .

Note that 0.6 : 0.8 : 1.0 = 3 : 4 : 5 and thus the two base triangles are three-four-five
triangles. Let the legs have a lengths x and the top base have a length of y. Then dropping
perpendiculars from the corers on the top base to the bottom base and using the three-four-
five triangles we see that the height is

h = 0.8x .
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Projecting the legs onto the horizontal gives a length 0.6x and thus the base of the trapezoid
has a length

0.6x+ y + 0.6x = y + 1.2x .

If we know the theorem that a circumscribing rectangle has sides that sum to the same value
we can write

2x = (y + 1.2x) + y = 2y + 1.2x .

As the bottom base has a length of 16 we also have

16 = 1.2x+ y .

These give two equations with a solution (x, y) = (10, 4). This means that the area is then

A =
1

2
(0.8x)(1.2x+ y + y) = 80 .

Method 2: In this method lets explicitly draw the circle inside the isosceles trapezoid. Let
its center be denoted as O and then from the vertices on the bottom base draw segments to
this center. The angle with these segments and the bottom base is then α

2
. The radius of

this circle is given by

tan
(α

2

)

=
r

8
.

Recalling that

tan(2θ) =
2 tan(θ)

1− tan2(θ)
,

with 2θ = α we get

tan(α) =
sin(α)

cos(α)
=

0.8

0.6
=

4

3
=

2 tan(θ)

1− tan2(θ)
.

Solving this for tan(θ) and noting that tan(θ) > 0 we get tan(θ) = 1
2
. This means that

r = 8 tan(θ) = 4 .

The height of the trapezoid is h = 2r = 8.

Next we need to determine the length of the top base. To do that we next draw line segments
fromO to two tangents. One is drawn to the leg of the trapezoid OL and the other is drawn to
the horizontal base OT . Using segments from O to the left-most corner of the trapezoid and
the fact that the angles of triangle sum to 180 degrees we can show that the angle between
these two segments LO and OT is also α and that if the upper corner of the trapezoid is
denoted U then ∠UOT = θ. This means

1

2
top length = r tan(θ) = 4

(
1

2

)

= 2 .

Thus the length of the top is four and that the area is then

A =
1

2
a(a+ b) =

1

2
(8)(16 + 4) = 80 .
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Problem 25

Let the number of elements in X , Y , and Z be denoted by nx, ny, and ny. Let the sum of
the samples in X , Y , and Z be denoted by Sx, Sy, and Sz i.e.

Sx =

nx∑

i=1

xi ,

and the same for Sy and Sz. From the information given in the problem we have

1

nx
Sx = 37

1

ny
Sy = 23

1

nz
Sz = 41

1

nx + ny
(Sx + Sy) = 29

1

nx + nz
(Sx + Sz) = 39.5

1

ny + nz
(Sy + Sz) = 33 .

We can use the first three equations to solve the above for S in terms of n and put these
into the last three equations. When I do that and simplify I get

4nx − 3ny = 0

−5nx + 3nz = 0

−5ny + 4nz = 0 .

Notice that this is a system of three equations and three unknowns. From the first equation
we have nx = 3

4
ny which if you put into the other two equations gives

−15

4
ny + 3nz = 0

−5ny + 4nz = 0 .

This second equation multiplied by 3
4
is the first equation. Thus there are only two indepen-

dent equations

4nx + 3ny = 0

−5nx + 3nz = 0 .

If we Let nz be arbitrary these two equations can be written as

nx =
3

5
nz

ny =
4

5
nz .
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Using these we have

Sx = 37

(
3

5
nz

)

=
111

5
nz

Sy = 23

(
4

5
nz

)

=
92

5
nz

Sz = 41nz =
205

5
nz ,

and

nx + ny + nz =
12

5
nz ,

when we simplify. The average of the elements in the set X ∪ Y ∪ Z is then

Sx + Sy + Sz

nx + ny + nz
=

408
5
nz

12
5
nz

= 34 .

Problem 26

Let x be the common value then we have

x = log9(p) or p = 9x (430)

x = log12(q) or q = 12x (431)

x = log16(p+ q) or p+ q = 16x . (432)

From Equations 430 and 431 we have

q

p
=

12x

9x
=

4x

3x
=

(
4

3

)x

.

From Equations 432 and 431 we have

1 +
p

q
=

16x

12x
=

(
4

3

)x

=
q

p
.

If we let r = q
p
then this equation is

1 +
1

r
= r .

If we multiply by r this can be converted to the quadratic

r2 − r − 1 = 0 ,

which has solutions

r =
1±

√
5

2
.

As p and q are positive we must take the positive sign above.
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Problem 27

The area we seek is given by the area of the bottom rectangle plus the top triangle. We can
write this as

Area = BC · CD +
1

2
BC · (AB − CD)

=
BC

2
(CD + AB) .

Drop a perpendicular from O and onto BC and let O′ be that intersection. Let ∠DOO′ = θ.
Then as AB ‖ CD we have that ∠OAB = θ also. Let the radius of the circle be denoted by
r. Then from the diagram we have

BC = 2r sin(θ)

AB = r + r cos(θ) = r(1 + cos(θ)) (433)

CD = r − r cos(θ) = r(1− cos(θ)) . (434)

Then, using these, the area can be written as

Area =
1

2
(2r sin(θ))(2r) = 2r2 sin(θ) .

We now need to solve for r and θ in terms of AB and CD. These are given by solving
Equation 433 and 434 where we find

r =
AB + CD

2
,

and

cos(θ) =
AB − CD

AB + CD
.

From this last equation we have

sin(θ) =
√

1− sin2(θ) =
2
√
AB · CD

AB + CD
.

Using these we have
Area = (AB + CD)

√
AB · CD .

Now AB + CD will be an integer if AB and CD are. To have the area be an integer we
have to make sure that the square root gives an integer. From the choices given (D) has
AB · CD = 36 which is a perfect square.

Problem 28

For a binomial random variable like this one we have

w =

(
5
3

)

p3(1− p)2 .
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We are told that w = 144
625

= 2432

54
and compute that

(
5
3

)

= 10. Thus we have

p3(1− p)2 =
2332

55
=

(
2

5

)3(
3

5

)2

.

By inspection this is true if p = 2
5
. Thus there is at least one root. To show that there are

at least two roots 0 < p < 1 let

f(p) ≡ p3(1− p)2 − 2332

55
.

We note that f(0) < 0 and f(1) < 0 while f
(
1
2

)
> 0. Thus there should be at least one real

root p such that 0 < p < 1
2
and another such that 1

2
< p < 1.

Problem 29

Let the “best fit” line be denoted by y(x) = b +mx. Then we want to find b and m such
that

L(b,m) =
3∑

i=1

(yi − b−mxi)
2 ,

is as small as possible. The minimum will happen when the first order conditions hold i.e.
∂L
∂b

= ∂L
∂m

= 0. We find

∂L

∂b
=

3∑

i=1

2(yi − b−mxi)(−1) = 0

∂L

∂m
=

3∑

i=1

2(yi − b−mxi)(−xi) = 0 .

We can write these two equations as

3b+mSx = Sy

Sxb+mSxx = Sxy ,

where we have defined

Sx =
3∑

i=1

xi

Sy =
3∑

i=1

yi

Sxx =

3∑

i=1

x2i

Sxy =

3∑

i=1

xiyi .
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To solve this problem we need to solve the system above for m (we don’t need the value of
b).

To simplify things first note that from conditions given in the problem we have

Sx = x1 + x2 + x3 = x1 + x2 + (2x2 − x1) = 3x2 .

To solve for only m we will use Cramer’s rule where we have

m =

∣
∣
∣
∣

3 Sy

Sx Sxy

∣
∣
∣
∣

∣
∣
∣
∣

3 Sx

Sx Sxx

∣
∣
∣
∣

=
3Sxy − SxSy

3Sxx − S2
x

.

For the numerator N I find

N = 3Sxy − SxSy = 3(x1y1 + x2y2 + x3y3)− 3x2(y1 + y2 + y3) = 3(x1 − x2)y1 +3(x3 − x2)y3 .

For the denominator D I find

D = 3Sxx − S2
x = 3(x21 + x22 + x23)− (3x2)

2 = 3(x21 − 2x22 + x23) .

To further simplify things let h ≡ x2 − x1 = x3 − x2 and we can write

x1 = x2 − h

x3 = x2 + h

x3 − x1 = 2h ,

in the above to get

N = −3hy1 + 3hy3

D = 3((x2 − h)2 − 2x22 + (x2 + h)2) = 6h2 ,

when I simplify. This means that

m =
y3 − y1
2h

=
y3 − y1
x3 − x1

.

Problem 30

If we pick a value for x0 such that x0 = f(x0) then the given sequence will take on only one

value i.e. x0. To see what values for x0 cause this we should solve

x = f(x) = 4x− x2 .

This has solutions x = 0 and x = 3. And if we start our iteration with this value of x we get
the constant sequence. We now ask for what values of x will one mapping of f(x) bring us
to either {0, 3}. For the first we need to solve

0 = 4x− x2 so x ∈ {0, 4} .
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Thus we have a new value in our set of points that have a finite number of items in their
iterated sequence. For the second we need to solve

3 = 4x− x2 ,

which has complex roots. At this point, the set S giving rise to a finite number of iterations
is

S = {0, 3} ∪ {4} .
Next we want to see for what value of x will we have f(x) = 4 or

4 = 4x− x2 so x ∈ {2} .
and our set is

S = {0, 3} ∪ {4} ∪ {2} .
Next we want to see for what value of x will we have f(x) = 2 or

2 = 4x− x2 so x ∈ {0.5857864, 3.4142136} .
We see that the number of points that are mapped to points already in S is increasing at
each step (in the above case by two). Thus there seem to be an infinite number of them.

The 1988 AIME Examination

Problem 1

The total number of combinations for this lock under the redesign would be

N =

9∑

k=1

(
10

k

)

,

while the number of combinations for this lock under the original design would have been

O =

(
10

5

)

.

We can write N in terms of O as

N =

(
10

1

)

+

(
10

2

)

+

(
10

3

)

+

(
10

4

)

+

(
10

5

)

+

(
10

6

)

+

(
10

7

)

+

(
10

8

)

+

(
10

9

)

= O + 2

(
10

1

)

+ 2

(
10

2

)

+ 2

(
10

3

)

+ 2

(
10

4

)

= O + 2(10) + 2

(
10!

8!2!

)

+ 2

(
10!

7!3!

)

+ 2

(
10!

6!4!

)

= O + 20 + 10 · 9 + 10 · 3 · 8 + 10 · 3 · 2 · 7
= O + 770 .
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Where in the above I have used the fact that
(
n

k

)

=

(
n

n− k

)

,

for 0 ≤ k ≤ n. Thus there are 770 more combinations.

Problem 2

When asked for the value of a “function” at a large integer argument one of the only ways
to solve such a problem (without the use of a computer) is to find that the sequence you are
looking at is periodic. Thus one think you should always try is to compute as many terms as
possible looking for the numbers to repeat. This is the method of solution for this problem.

From the definition of fn we have

f1(11) = 22 = 4

f2(11) = f1(f1(11)) = f1(4) = 16

f3(11) = f1(f2(11)) = f1(16) = (1 + 6)2 = 49

f4(11) = (4 + 9)2 = 132 = 169

f5(11) = (1 + 6 + 9)2 = 162 = 256

f6(11) = (2 + 5 + 6)2 = 132 = 169

f7(11) = 256

f8(11) = 169

f9(11) = 256 etc.

Thus it looks like

fn(11) =

{
169 n even
256 n odd

,

when n ≥ 4. Based on this we have

f1988(11) = 169 .

When I originally worked this problem I mistakenly thought that the definition of f1 was
the sum of the squared digits (i.e. square the digits and then sum vs. sum the digits and
then square the result). Interestingly that problem also has a periodic solution. In that case
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using this modified definition of fn we have

f1(11) = 2

f2(11) = f1(f1(11)) = f1(2) = 4

f3(11) = f1(f2(11)) = f1(4) = 16

f4(11) = 1 + 36 = 37

f5(11) = 9 + 49 = 58

f6(11) = 25 + 64 = 89

f7(11) = 64 + 81 = 145

f8(11) = 1 + 16 + 25 = 42

f9(11) = 16 + 4 = 20

f10(11) = 4

f11(11) = 16 etc.

Note that

f10(11) = 4 = f2(11)

f11(11) = 16 = f3(11) ,

thus we expect
fn+8(11) = fn(11) ,

for n ≥ 2. Then using this and as

1988 = 248× 8 + 4 ,

we have
f1988(11) = f4(11) = 37 .

Problem 3

We can write the given expression in terms of log(x) i.e. the logarithm to base ten as

log(log8 x)

log 2
=

log(log2 x)

log 8
=

log(log2 x)

3 log 2
,

or

log

(
log x

log 8

)

=
1

3
log

(
log x

log 2

)

.

This is equivalent to

log(log(x))− log(log 8) =
1

3
(log(log(x))− log(log(2))) .

We can solve the above for log(log(x)) to find

log(log(x)) =
3

2
log(3) + log(log(2)) = log

(
33/2 log(2)

)
.
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This means that
log(x) = 3

3
2 log(2) .

If we divide both sides by log(2) we get

log(x)

log(2)
= 3

3
2 ,

or converting this back into log2(x) we get

log2(x) = 3
3
2 .

If we square this I get
(log2(x))

2 = 33 = 27 .

Problem 4

As the absolute value is always a non-negative number the right-hand-side of this expression
is bounded below as

19 + |x1 + x2 + · · ·+ xn| ≥ 19 .

This means that to have a solution we must have

|x1|+ |x2|+ · · ·+ |xn| ≥ 19 .

Now
n∑

i=1

|xi| <
n∑

i=1

1 = n .

This means that the left-hand-side is smaller than n. From this if we were to have n = 19
then the left-hand-side is smaller than 19 while the right-hand-side is greater than or equal
to 19. Thus we see that n > 19 and the smallest value we can have for n is n = 19+ 1 = 20.

Problem 5

The “target” number we want to find divisors for can be written as 299 · 599. All divisors of
this number come in the form of 2i · 5j where

0 ≤ i ≤ 99 and 0 ≤ j ≤ 99 .

This gives a total of 100×100 = 104 possible divisors of our target number. To be a multiple
of 1088 = 288 · 588 means that our divisor must be of the form 288+m · 588+n for

0 ≤ m ≤ (99− 88) = 11

0 ≤ n ≤ (99− 88) = 11 .

There are 12× 12 = 144 numbers of this form. This means that the probabilities is

144

10000
=

9

625
.

The answer we want is then
m+ n = 9 + 625 = 634 .
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4a
3a 74
2a b 186
a 2b− 74 103
0

Table 11: Our initial grid (with variables).

Problem 6

In the grid given if we put a a in the first column above the zero then as the first column
(moving upwards) is an arithmetic sequence starting with zero and a first element equal to
a the rest of the elements moving upwards are

2a , 3a , 4a .

Next we introduce a variable b in the second column below the 74. Then in this second
column moving upwards from the b to the 74 we have a common difference of 74− b. Thus
all entries in this column can be determined by adding or subtracting 74− b to the previous
entry. This means that the value in the spot below b is given by

b− (74− b) = 2b− 74 .

Our grid now looks like that given in Table 11.

Using that grid the common difference in the second row from the bottom can be computed
in two ways. We have

2b− 74− a = 103− (2b− 74) .

Which we can write
2(2b− 74)− a = 103 .

Now in the third row from the bottom the common difference is b − 2a and thus as 186 is
three “steps” from b we have

b+ 3(b− 2a) = 186 .

These gives two equations and two unknowns a and b which we can write as

−a + 4b = 257

−6a + 4b = 186 .

Solving these gives a = 13 and b = 66. Thus the common difference in the second column is
74− b = 74− 66 = 8. With all of this we can fill the first and second columns with numbers
to get Table 12.

Using this table the common difference in the top row is given by

82− 52 = 30 .

683



52 82
39 74
26 66 186
13 58 103
0 50

Table 12: Our grid with the first two columns completed.

Thus the location with the star has a value of

52 + 30 · 3 = 142 .

Problem 7

If we draw this triangle with BC along an x-axis and put the point A above the segment
BC. Then we drop an altitude from A onto the segment BC, let the intersection point be
denoted by P and the length of AP be h. Now let the angle CAB be broken up into

∠CAB = ∠BAC = ∠BAP + ∠PAC = x+ y ,

where I have defined the variables x = ∠BAP and y = ∠PAC. Next we recall that

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
.

From the right triangles in the diagram we see that

tan(x) =
3

h

tan(y) =
17

h
,

As we know that

tan(∠CAB) =
22

7
,

we can write the above as
22

7
=

3
h
+ 17

h

1− 3·17
h2

.

So solve this we v = 1
h
then the above can be written as

561v2 + 70v − 11 = 0 .

Using the quadratic equation we find

v =
−70 ±

√

702 − 4(561)(−11)

2(561)
=

−70± 172

2(561)
.
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As v = 1
h
must be positive we must take the positive sign above and find that

v =
51

561
=

1

11
,

thus
h = 11 .

This means that the area of △ABC is given by

1

2
bh =

1

2
(11)(3 + 17) = 110 .

Problem 8

From the given expressions we have

f(x, x+ y) =

(
x+ y

y

)

f(x, y) .

In this we will take z ≡ x+ y so that y = z − x. This means that

f(x, z) =

(
z

z − x

)

f(x, z − x) . (435)

Using this expression we can start with what we want to evaluate and sequentially make the
arguments “smaller” until we get something we can evaluate directly. At each step to use the
above in evaluating f(x, z) we need z > x. If not we will use the fact that f(x, z) = f(z, x)
to get an equivalent expression where it is true. With this discussion we have

f(14, 52) =

(
52

52− 14

)

f(14, 38) =

(
52

38

)

f(14, 38)

=

(
52

38

)(
38

24
f(14, 24)

)

=

(
52

24

)

f(14, 24)

=

(
52

24

)(
24

10
f(14, 10)

)

=
52

10
f(14, 10)

=
52

10
f(10, 14)

=
52

10

(
14

4
f(10, 4)

)

=
52

10
· 14
4

(
10

6
f(4, 6)

)

=
52

10
· 14
4

· 10
6

· 6
2
f(4, 2)

=
52

10
· 14
4

· 10
6

· 6
2
f(2, 4)

=
52

10
· 14
4

· 10
6

· 6
2

(
4

2
f(2, 2)

)

=
52

10
· 14
4

· 10
6

· 6
2
· 4
2
· 2 .

If we simplify this we get 364. Notice that we first used f(x, z) = f(z, x) in going from the
third line to the fourth.
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Problem 9

To have the cube of a number n end in the digit eight means that n must end in a two. Thus
n = 10k + 2 for some integer k ≥ 0. With that form we have

n3 = (10k + 2)3 = (10k)3 + 3(10k)2(2) + 3(10k)(22) + 8

= 1000k3 + 600k2 + 120k + 8 .

The terms in the above are decreasing in size from right to left. For the above to end with
the two digits 88 means that 100k must end with the digits of 80 or that 12k must end with
the digit 8. This then means that k must end in a 4 or a 9. This means that k takes the
form k = 5m+ 4 where m ≥ 0. This means that n3 takes the form

n3 = (10(5m+ 4) + 2)3 = (50m+ 42)3

= 125000m3 + 315000m2 + 264600m+ 74088 .

From the above this number will end with the two digits 88. To end with the three digits
888 we need m× 6 to end in an 8. The smallest m that does this is m = 3. This means that
k = 15 + 4 = 19 so that n = 10k + 2 = 190 + 2 = 192.

Problem 11

Write the given expression as
n∑

k=1

zk =

n∑

k=1

wk .

From the given numbers wk we can write the above as

n∑

k=1

zk = (32− 7− 9 + 1− 14) + (170 + 64 + 200 + 27 + 43)i = 3 + 504i .

As we are told that zk is on the line y = mx+ 3 we have that

zk = xk + iyk = xk + i(mxk + 3) ,

for 1 ≤ k ≤ n. Using this the above is

n∑

k=1

xk + i

n∑

k=1

(mxk + 3) = 3 + i504 .

This means that
n∑

k=1

xk = 3 ,

and so by equating the imaginary part of the above and using this with n = 5 we have

504 = m
n∑

k=1

xk + 3(5) = 3m+ 15 .

This means that m = 163.
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Problem 13

If x2 − x− 1 is a factor of ax17 + bx16 + 1 we must be able to write

ax17 + bx16 + 1 = (x2 − x− 1)(Ax15 +Bx14 + Cx13 + · · · ) ,
for various coefficients A, B, C, etc. This means that any root of the right-hand-side is also
a root of left-hand-side. Some roots of the right-hand-side are the solutions to

x2 − x− 1 = 0 ,

or

x =
1±

√

1− 4(−1)

2
=

1±
√
5

2
.

Lets define p ≡ 1+
√
5

2
and q ≡ 1−

√
5

2
. For the numbers p and q to be roots of the left-hand-side

means that

ap17 + bp16 + 1 = 0 (436)

aq17 + bq16 + 1 = 0 . (437)

If we multiply Equation 436 by q16 and Equation 437 by p16 we get

ap(pq)16 + b(pq)16 + q16 = 0

aq(pq)16 + b(pq)16 + p16 = 0 .

To evaluate this note that pq = 1−5
4

= −1 and we then get

ap(−1)16 + b(−1)16 + q16 = 0

aq(−1)16 + b(−1)16 + p16 = 0 ,

or

ap + b+ q16 = 0 ⇒ ap+ b = −q16
aq + b+ p16 = 0 ⇒ aq + b = −p16

Using this we can solve for a and b. If we subtract these two equations we get

ap− aq = −q16 + p16 ,

or

a =
−q16 + p16

p− q
=
p16 − q16

p− q

The right-hand-side of this can be factored. We find

a =
(p8 − q8)(p8 + q8)

p− q
=

(p4 − q4)(p4 + q4)(p8 + q8)

p− q

=
(p2 − q2)(p2 + q2)(p4 + q4)(p8 + q8)

p− q
= (p+ q)(p2 + q2)(p4 + q4)(p8 + q8) .

For these p and q we have p+ q = 1. This means that

p2 + q2 = (p+ q)2 − 2pq = 12 − 2(7) = 3

p4 + q4 = (p2 + q2)2 − 2p2q2 = 9− 2(−1)2 = 7

p8 + q8 = (p4 + q4)2 − 2(p4q4)2 = 49− 2(−1)4 = 47 .

Thus we find that a = 1 · 3 · 7 · 47 = 987.
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Problem 14

If we draw the curve xy = 1 (or y = 1
x
) and the line y = 2x in the x-y plane. Now for a

point on C = (u, v) the “mapped” point on C∗ = (x, y) will be on the line perpendicular to
the line y = 2x. That means it will be on a line with a slope −1

2
. This means that

y − v

x− u
= −1

2
.

At the same time the midpoint between (x, y) and (u, v) is on the line y = 2x this means
that

y + v

2
= 2

(
x+ u

2

)

.

We cans solve these for u and v to get

u =
4y − 3x

5

v =
4x+ 3y

5
.

Now as the point (u, v) is on the curve uv = 1 we have

(
4y − 3x

5

)(
4x+ 3y

5

)

= 1 .

If we expand this and simplify we get

12x2 − 7xy − 12y2 + 25 = 0 .

Thus b = −7 and c = −12 so bc = 84.
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1983 – 1988 Dropped AHSME Problems

Problem 1

We start with the given equation

√
x2 − 7ax+ 10a2 −

√
x2 + ax− 6a2 = x− 2a . (438)

Note that we can factor each of the quadratics in the square roots to get

√

(x− 2a)(x− 5a)−
√

(x+ 3a)(x− 2a) = x− 2a . (439)

If we are lucky enough we might notice that x = 2a is a root i.e. it makes both sides of this
expression zero regardless of the value of a. In the following we will “sort of” assume x 6= 2a.
The assumption that x 6= 2a is not really needed but when we take the intersection of two
domains below there is a “hidden” domain intersection at the single point x = 2a and it is
often easier to be “thinking” x 6= 2a in the manipulations below. We just need to be sure to
remember that in the end x = 2a is a solution to the original equation for all a. See below
for a bit more detail on this.

The ordering of the “roots” in the arguments of the square root depend on the sign of a.
Now if a > 0 then these roots in increasing ordered are

−3a < 0 < 2a < 5a , (440)

while if a < 0 then these roots in increasing order are

5a < 2a < 0 < −3a . (441)

We will start by considering the case when a > 0 and Equation 440 holds. In that case as the
right-hand-side of Equation 439 is a real number, the square roots in the left-hand-side of
that expression are only defined in a domain of x where their arguments are positive. Then
from the first square root term on the left-hand-side of Equation 439 we must have

x ≤ 2a or x ≥ 5a .

and from the second square root term on the left-hand-side of Equation 439 we must have

x ≤ −3a or x ≥ 2a .

To have the left-hand-side of Equation 439 be real we need to consider the intersection of
these two regions. One “intersection” of these two domains is the single point x = 2a.
As noted above, this point is also a solution to the original equation. A more nontrivial
intersection of these two domains is

x ≤ −3a or x ≥ 5a . (442)
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We start by assuming that x ≤ −3a. Then in that case x− 2a ≤ −5a < 0 and we can write
Equation 439 as

√

−(x− 2a)(5a− x)−
√

−(x− 2a)(−x− 3a) = x− 2a .

Now as x− 2a ≤ 0 we can “factor”
√
2a− x from each of the three terms above to get

√
2a− x

(√
5a− x−

√
−x− 3a

)
= −

√
2a− x ·

√
2a− x .

From this expression we see that x = 2a is a solution (but unfortunately its not in the
domain x ≤ −3a). If x 6= 2a we can “divide’ out”

√
2a− x to get

√
5a− x−

√
−x− 3a = −

√
2a− x . (443)

For real a > 0 and x < −3a all of the above radicands are positive. If we square this (keeping
in mind we might be introducing spurious solutions in doing so) we get

(5a− x)− 2
√

(5a− x)(−x − 3a) + (−x− 3a) = (2a− x) .

If we simplify this we get
x = −2

√

(5a− x)(−x − 3a) .

Squaring this (keeping the comment above about spurious solutions in mind) and simplifying
we get

3x2 − 8ax− 60a2 = 0 . (444)

Using the quadratic equation we find roots to the above given by

x = −10

3
a and x = 6a . (445)

Only the first root is in the domain we are considering here of x ≤ −3a. If we put this root
back into the original expression given by Equation 443 we get

5

√
a

3
−
√
a

3
= 4

√
a

3
= −4

√
a

3
,

which is not true. Thus we have found no solutions when a > 0 and x ≤ −3a.

We now assume the other “side” for x where we have nonnegative square roots when a > 0
that is x ≥ 5a. In that case x− 2a ≥ 3a > 0 and we can write Equation 439 by “factoring”√
x− 2a from each of the three terms to get

√
x− 2a

(√
x− 5a−

√
x+ 3a

)

=
√
x− 2a ·

√
x− 2a .

From this expression we see that x = 2a is a solution (but not in the domain x ≥ 5a).
Assuming x 6= 2a we can “divide out”

√
x− 2a to get

√
x− 5a−

√
x+ 3a =

√
x− 2a . (446)

If I square both sides of the above I get

(x− 5a)− 2
√

(x− 5a)(x+ 3a) + (x+ 3a) = x− 2a .
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Simplifying gives
x = 2

√

(x− 5a)(x+ 3a) .

If I square both sides and simplify I again get Equation 444 which again has solutions given
by Equation 445. In this case only the second root is in the domain x ≥ 5a. If we put this
root back into the original expression given by Equation 446 we get

√
a−

√
9a =

√
4a ,

which is not true. Thus we have found no solutions when a > 0 and x ≥ 5a.

In summary then when a > 0 we have only the solution x = 2a.

We now considering the case when a < 0 and Equation 441 holds. As the right-hand-side
of Equation 439 is a real number, the square roots in the left-hand-side are only defined in
a domain of x where their arguments are positive. From the first square root term on the
left-hand-side of Equation 439 we must have

x ≤ 5a or x ≥ 2a .

and from the second square root term on the left-hand-side of Equation 439 we must have

x ≤ 2a or x ≥ −3a .

Again note that one of the intersections of these two domains is the point x = 2a. Thus
we have one root/solution when a < 0 for x = 2a. A “larger” nontrival domain where both
radicands are positive is

x ≤ 5a or x ≥ −3a . (447)

For a < 0 and based on this domain where the solutions x must lie to have positive radicands
we first consider the case that x ≤ 5a. In that case x − 2a ≤ 3a < 0 and we can write
Equation 439 by “factoring”

√

−(x− 2a) from each of the three terms to get

√

−(x− 2a)(5a− x)−
√

−(x− 2a)(−x− 3a) = −
√
2a− x ·

√
2a− x .

When x 6= 2a we can divide by
√

−(x− 2a) to get

√
5a− x−

√
−x− 3a = −

√
2a− x . (448)

For real a < 0 when x < 5a all of the above radicands are positive. If we square this (keeping
in mind we might be introducing spurious roots) we get

(5a− x)− 2
√

(5a− x)(−x − 3a) + (−x− 3a) = (2a− x) .

If we simplify this we get
x = −2

√

(5a− x)(−x − 3a) .

If I square both sides and simplify I again get Equation 444 which again has solutions given
by Equation 445. In this case only the second root is in the domain x ≤ 5a. If we put this
root back into the original expression given by Equation 448 we get

√
−a−

√
−9a = −

√
−4a ,

691



which is true. Thus when a < 0 and x ≤ 5a we have found the solution x = 6a.

Finally, we consider a < 0 and x ≥ −3a. In that case x − 2a ≥ −5a > 0 so Equation 439
becomes √

x− 5a−
√
x+ 3a =

√
x− 2a . (449)

For real a < 0 when x ≥ −3a all of the above radicands are positive. If we square this we
get

(x− 5a)− 2
√

(x− 5a)(x+ 3a) + (x+ 3a) = (x− 2a) .

If we simplify this we get
x = 2

√

(x− 5a)(x+ 3a) .

If I square both sides and simplify I again get Equation 444 which again has solutions given
by Equation 445. In this case only the first root is in the domain x ≥ −3a. If we put this
root back into the original expression given by Equation 449 we get

√

−10

3
a− 5a−

√

−10

3
a+ 3a =

√

−10

3
a− 2a ,

which simplifies to
√

−25

3
a−

√

−1

3
a =

√

−16

3
a ,

or

5

√

−1

3
a−

√

−1

3
a = 4

√

−1

3
a ,

which is true. Thus when a < 0 and x ≥ −3a we have found the solution x = −10
3
a.

In summary then when a < 0 we have the solutions

x ∈
{

6a, 2a,−10

3
a

}

.

Thus if a > 0 the sum of the solutions is 2a while if a < 0 the sum of the solutions is 14
3
a.

Problem 2

In Figure 15 we plot the function g(x). As h(x) is g(x) shifted upwards by an amount ǫ from
that figure we see that the root of g(x) at x = −3 becomes two roots of h(x), the root of
g(x) at x = −2 becomes two roots of h(x), the root of g(x) at x = 1 stays one root of h(x),
and the root of g(x) at x = 3 is not a root of h(x). This gives five roots for g(x).

Problem 3

Given the “traditional formula” of

x =
−b±

√
b2 − 4ac

2a
,
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Figure 15: The left and right-hand-sides.

we can multiply by a “form of one” given by

O ≡ −b∓
√
b2 − 4ac

−b∓
√
b2 − 4ac

,

to get

x× O =
b2 − (b2 − 4ac)

2a(−b∓
√
b2 − 4ac)

=
2c

−b ∓
√
b2 − 4ac

.

Problem 4

Note that we can write the given equations as

c =
a + e

2
(450)

c =
b+ d

2
(451)

d =
c + e

2
. (452)

This means that c is “between” a and e and also between b and d as the first two equations
above state that it is the midpoint of the line segments ae and bd. The third equation states
that d is the midpoint of the line segment ce. Thus the smallest/largest number from this
set cannot be the points c or d.

From Equation 450 we can place c on a number line and “surround” it as

a < c < e or e < c < a .
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To start let assume the first of these or that a < c < e. We can “draw” this situation as
follows

a c e

where there are exactly the same number of spaces (10) between the a and the c as between
the c and the e. From Equation 452 we know where d must go in this figure (exactly between
the c and the e) or

a c d e

We have yet to place the number b. Now given Equation 451 we can write

b = 2c− d

= c+ (c− d) = c− (d− c) .

The strange way that we wrote the above is indicative of how we will find the location the
point b in terms of its location relative to c and distances we know. That is we know from
the above that b is located exactly in between a and c and we get

a b c d e

In this case then the largest and smallest of the given numbers are {e, a}.

Next if we assume the other inequality or that e < c < a. We can “draw” this situation as
follows

e c a

where there are exactly the same number of spaces (10) between the e and the c as between
the c and the a. From Equation 452 we know where d must go in this figure (exactly between
the c and the e) or

e d c a

Again we have yet to place the number b. Now given Equation 451 we can write

b = 2c− d

= c+ (c− d) .

Again this indicates how we will find the location the point b in terms of its location relative
to c and distances we know. That is we know from the above that b is located exactly in
between c and a and we get
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e d c b a

Again we see that the largest and smallest of the given numbers are {a, e}.

Problem 5

Recall that the discriminant D is given by

D = b2 − 4ac .

If b is even then it takes the form b = 2n and D is

D = 4n2 − 4ac .

This means that D is divisible by four. If b is odd then it takes the form b = 2m+ 1 and D
is then

D = (2m+ 1)2 − 4ac = 4m2 + 4m+ 1− 4ac

= 4(m2 +m− ac) + 1 .

This means that D−1 is dividable by four. Thus as b must be either even or odd this means
that D or D − 1 must be dividable by four.

From the numbers given we see that for D′ = 23 since neither D′ or D′− 1 = 22 is dividable
by four it cannot be the value for a discriminant of a quadratic equation.

Problem 7

Draw the given figure with the bus at a point B at the center of a Cartesian coordinate
system, the road extending at an angle of 30◦ from the x-axis towards the North-East, a
point A on that road towards which the runner will run. Finally on the x-axis is the point
P where the runner is currently. We assume that if she runs towards A she will meet the
bus at that location. Let v be the velocity of the bus. This means that the time it takes
for the bus to get to A must be more than the time it takes the runner to get there. This
means that

BA

v
≥ PA

15
,

or

v ≤ 15BA

PA
.

This gives an upper bound on the buses speed. If the bus was going any faster then it would
not possible for the runner to catch it meaning that

v = 15

(
BA

PA

)

max

,

695



where we have expressed v in terms of the maximal possible value for the ratio BA
PA

.

Let ∠BPA = θ then by the law of sines we have

BA

sin(θ)
=

PA

sin(30)
= 2PA ,

or
BA

PA
= 2 sin(θ) .

This means that (
BA

PA

)

max

= 2 sin(90◦) = 2 ,

so that v = 15(2) = 30.

Problem 8

From the definition of fn+1(x) we see that

f1981(x) = f1982(x) ,

is equal to
f1981(x) = |1− f1981(x)| .

Thus if we let v ≡ f1981(x) the above is equal to

v = |1− v| .

To solve the above we have
v = ±(1− v) .

The plus sign gives

v = 1− v where v =
1

2
.

The minus sign gives
v = −1 + v ,

which has no solution. Thus to solve this problem we now need to determine the number of
solutions to

f1981(x) =
1

2
.

Lets consider the question of how many solutions to

fn(x) =
1

2
,

there are. For n = 1 this is

f1(x) = |1− x| = 1

2
,
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this has two solutions x ∈
{

1
2
, 3
2

}
. For n = 2 this is

f2(x) = |1− |1− x|| = 1

2
,

which based on f1(x) =
1
2
has two solutions

|1− x| = 1

2
or |1− x| = 3

2
.

The first of these two equations gives x ∈
{

1
2
, 3
2

}
while the second of these gives

x ∈
{

−1

2
,
5

2

}

.

This gives in total four solutions to f2(x) =
1
2
. For n = 3 we have

f3(x) = |1− f2(x)| =
1

2
,

Thus we need f2(x) =
1
2
which has four solutions (by the above) or f2(x) =

3
2
which is

|1− |1− x|| = 3

2
,

or

1− |1− x| = ±3

2
,

Splitting this into two equations (for the plus and the negative sign) the plus sign has no
solutions while the negative sign has two given by x ∈

{
−3

2
, 7
2

}
giving two more solutions

for a total of six solutions to f3(x) =
1
2
. These solutions are

x ∈
{

−3

2
,−1

2
,
1

2
,
3

2
,
5

2
,
7

2

}

.

The pattern seems clear. The number of solutions to fn(x) =
1
2
is 2n. Thus the number of

solutions to f1981(x) =
1
2
is 2(1981) = 3962.

Problem 10

Let n2 − 440 = b2 so that
n2 − b2 = 440 .

This means that
(n− b)(n + b) = 440 = 23 · 5 · 11 .

As the product of (n− b)(n + b) is even if n was even and b was odd or vice-versa then the
left-hand-side of the above would be the product of two odd numbers and hence odd which
is a contradiction. Thus both n and b must be even. From the above factorization n − b
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must have a factor of two or four and n+ b must have a factor or two or four. Thus we have
to consider two cases

2|n− b and 4|n+ b , (453)

or
4|n− b and 2|n+ b , (454)

If Equation 453 is true then the possible “factors” are

n− b ∈ {2 · 5 · 11 , 2 · 1 · 11 , 2 · 5 · 1 , 2 · 1 · 1} paired with

n+ b ∈ {4 · 1 · 1 , 4 · 5 · 1 , 4 · 1 · 11 , 4 · 5 · 11} .

If Equation 454 is true then the possible “factors” are

n− b ∈ {4 · 5 · 11 , 4 · 1 · 11 , 4 · 5 · 1 , 4 · 1 · 1} paired with

n+ b ∈ {2 · 1 · 1 , 2 · 5 · 1 , 2 · 1 · 11 , 2 · 5 · 11} .

These are 4 + 4 = 8 systems of equations for n and b. If we solve these we get the following
solutions

x1 x2 x3 x4 x5 x6 x7 x8

n 57 21 27 111 111 27 21 57

b -53 -1 17 109 -109 -17 1 53

As we are looking for the number of n ≥ 1 we see that there are four distinct numbers.

Problem 12

Lets assume that on the current month (month “zero”) the amount of sugar we can buy if
we have D0 dollars and sugar costs S0 (per gram) is

A0 =
D0

S0
,

grams. Now if in the next month (month “one”) we have

D1 =
(

1 +
q

100

)

D0

S1 =
(

1 +
p

100

)

S0 ,

then we can now buy

A1 =
D1

S1
=

(
1 + q

100

)

(
1 + p

100

)

(
D0

S0

)

.

grams. This means that
A1

A0
− 1 =

1 + q
100

1 + p
100

− 1 . (455)
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Now from Equation 455 we get

A1

A0
− 1 =

1 + q
100

− 1− p
100

1 + p
100

= − p− q

100 + p
.

Now
p− q

100 + p
<
p− q

100
.

Thus the decrease is less than p− q%.

Problem 13

Lets call this expression E. Then with some algebra we have

E =

(
1
2

k

)

=

(
1
2

) (
1
2
− 1
) (

1
2
− 2
)
· · ·
(
1
2
− k + 1

)

k(k − 1)(k − 2) · · ·2 · 1 .

The numerator of the above has k terms. Lets multiply the top and bottom by 2k (and then
simplify) to get

E =
1(1− 2)(1− 4)(1− 6) · (1− 2k + 2)

2kk!

=
1(−1)(−3)(−5) · · · (3− 2k)

2kk!

=
(−1)k−11 · 3 · 5 · · · (2k − 5)(2k − 3)

2kk!

=
(−1)k−11 · 2 · 3 · 4 · 5 · · · (2k − 5) · (2k − 4) · (2k − 3) · (2k − 2)

2kk!(2 · 4 · 6 · · · (2k − 4) · (2k − 2))

=
(−1)k−1(2k − 2)!

2kk!2k−1(1 · 2 · 3 · · · (k − 2) · (k − 1))

=
(−1)k−1(2k − 2)!

22k−1k!(k − 1)!

=
(−1)k−1(2k − 2)!

22k−1k(k − 1)!(k − 1)!
.

Next note that
(
2k − 2

k − 1

)

=
(2k − 2)!

(k − 1)!(2k − 2− k + 1)!
=

(2k − 2)!

(k − 1)!(k − 1)!
.
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This means that we have

E =
(−1)k−1

22k−1k

(
2k − 2

k − 1

)

=
(−1)k−1

4k2−1k

(
2k − 2

k − 1

)

=
(−1)k−1

4k−1 · 41 · 2−1k

(
2k − 2

k − 1

)

=

(

−1

4

)k−1
1

2k

(
2k − 2

k − 1

)

.

Problem 14

Lets call this expression E. Then we have that

E =
3

√

1000 +
3

108
− 3

√

1000 +
15

109

= 3

√

103
(

1 +
3

1011

)

− 3

√

103
(

1 +
15

1012

)

= 10
3

√

1 +
3

1011
− 10

3

√

1 +
15

1012
.

Now using the fact that
(1 + x)α ≤ 1 + αx when α < 1 .

Using the above inequality as an approximate equality we have

E ≈ 10

(

1 +
1

1011

)

− 10

(

1 +
5

1011

)

=
1

1010
− 5

1011
=

10− 5

1011
=

5

1011
.

This means
E ≈ 0.000, 000, 000, 05 .

In the above I have placed commas to separate groups of zeros and make the number easier
to read.

Problem 16

One difficulty with this problem is that when the first person says that “I use base” 10 what
that means is that he uses the number

(10)b = b ,

as his base. It seems too easy to assume that he means that he uses ten as his base. The
insight into this problem is to understand that we don’t know what the bases are that the
two speakers are using.

700



If we let the first speakers base be b and the set of people that use this base as B so that
the number that use this base can be written as |B| then we know that

|B| = (26)b = 2b+ 6 .

From this first speakers comment the other base (which we denote as c) is

c = (14)b = b+ 4 .

Finally, if we let C be the set of people that speak this second base then we have

|C| = (22)b = 2b+ 2 .

We know that the second speaker must use the second base c as the quoted total number
of residents N at 25 could not be a number in base b as it is smaller than the first persons
statement that (26)b people use his base. Thus from this second speakers comments we know
that

N = (25)c = 2c+ 5 ,

and
|B ∩ C| = (13)c = c+ 3 .

Then from the inclusion-exclusion identity we have

N = 1c + |B|+ |C| − |B ∩ C| ,

which using what we know becomes

2c+ 5 = 1 + (2b+ 6) + (2b+ 2)− (c+ 3) .

Simplifying this we get
3c = 1 + 4b .

Putting in what we know about c in terms of b we can solve for b and find b = 11. From
that we have c = 11 + 4 = 15 so that N = 30 + 5 = 35.

Problem 17

In working this problem I found two solutions that are equivalent to the correct one but have
a much different looking form. This is very consistent with the comments given in the book
for reasons why this problem was rejected.

Method 1: As x is acute we know that both sin(x) and cos(x) are positive so we can take

sin(x) =
√

1− cos2(x) .

If we put this into the given expression we get

√

1− cos2(x) + cos(x) =
4

3
.
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Squaring both sides gives

1 + 2 cos(x)
√

1− cos2(x) =
16

9
,

or

cos(x)
√

1− cos2(x) =
7

18
.

If we square again we get

cos2(x)(1− cos2(x)) =
72

182
.

We can write this as

cos4(x)− cos2(x) +
72

182
= 0 .

If we let v = cos2(x) this is a quadratic equation for v and has a solution given by

v =
1

2

(

1±
√

1− 4

(
49

182

))

=
1

2

(

1± 4
√
2

9

)

.

As
√
2 < 2 both of these expressions are positive. As cos(x) is a decreasing function for

0 < x < π
2
to have x be the largest angle we want the smaller of the two expressions above

and thus we take the minus sign. This means that

cos2(x) =
1

2

(

9− 4
√
2

9

)

.

Note that we can write
9− 4

√
2 = (−1 + 2

√
2)2 .

The argument of the square above is positive so taking the square root we have

√

9− 4
√
2 = −1 + 2

√
2 .

Using this we have

cos(x) =
−1 + 2

√
2

3
√
2

,

or

x = cos−1

(

−1 + 2
√
2

3
√
2

)

.

If we numerically compute this we find that it numerically matches the solution (D).

Method 2: If we draw a right triangle in the Cartesian plane with an acute angle x, a leg
along the positive x-axis of length a, an vertical leg of length o, and hypotenuse of length h
then we can write

sin(x) =
o

h

cos(x) =
a

h
.
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We can write the given equation as

o

h
+
a

h
=

4

3
,

or

o+ a =
4

3
h .

As we have a right triangle we have that h =
√
o2 + a2. If we put that into the above and

square we get

(o+ a)2 =
16

9
(o2 + a2) .

We can expand and simplify to get

7o2 − 18oa+ 7a2 = 0 .

If we then divide by a2 we get

7
(o

a

)2

− 18
(o

a

)

+ 7 = 0 .

Note that the above is a quadratic for o
a
= tan(x). Numerically we can solve it and then

take the tan−1 to determine the value of x. Doing this I get

> atan(polyroot(c(7, -18, 7)))

[1] 0.4455613+0i 1.1252351-0i

The larger of these two numbers (the second) matches the solution (D).

Problem 18

We are told that
a+ b = 1 (456)

and that a2 + b2 = 2 and want to find the value of a3 + b3. If we square the first equation
we have

(a+ b)2 = 1 .

Expanding this we get
a2 + 2ab+ b2 = 1 .

If we then use the second equation in this we get

2 + 2ab = 1 .

This means that

ab = −1

2
. (457)

Next consider
(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 .
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Using Equation 456 and 457 we can write this as

1 = a3 + b3 + 3

(

−1

2

)

a+ 3

(

−1

2

)

b .

We can write this as

1 = a3 + b3 − 3

2
(a+ b) .

Again using Equation 456 we find

a3 + b3 =
5

2
.

Problem 19

By symmetry, the circle will need to sit above the parabola y = x2 and have its center on
the y-axis. Thus it will need to have it center at (0, r) and an equation given by

x2 + (y − r)2 = r2 .

This means that
y = r ±

√
r2 − x2 .

To be above the parabola we needed to have the circle above y = x2 or

r ±
√
r2 − x2 ≥ x2 .

for all −r ≤ x ≤ +r. The expression using the plus sign in the above will always be above
the expression we get when we use the minus sign and thus the condition we actually need
to enforce is

r −
√
r2 − x2 ≥ x2 .

We can write this as √
r2 − x2 ≤ r − x2 ,

If we square this we get
r2 − x2 ≤ r2 − 2rx2 + x4 ,

or simplifying
x4 + (1− 2r)x2 ≥ 0 .

Dividing by x2 we get
x2 ≥ 2r − 1 .

Recall that this has to hold for all −r ≤ x ≤ +r. The smallest the left-hand-side happens
when x = 0 and thus r must satisfy

0 ≥ 2r − 1 .

This means that r ≤ 1
2
. The largest value of r is thus r = 1

2
.
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Problem 20

Write this function as

y =
log(x+ 1)

log(x)
.

We need x > 0 for log(x) to be defined. We also need x 6= 1 so that the denominator of the
above is not zero.

Now if 0 < x < 1 then log(x) < 0 and over that range we have

−∞ < log(x) < 0− .

Over this range of x we have log(x+ 1) > 0 and so

0+ < log(x+ 1) < log(2) .

This means that over 0 < x < 1 we have

0− < y < −∞ ,

with a vertical asymptote at x = 1.

Next when x > 1 we have
0+ < log(x) <∞ ,

while
log(2) < log(x+ 1) <∞ .

Using these results, the limit of this ratio for x→ 1+ tends to +∞ and the limit of this ratio
for large x tends to

lim
x→∞

log(x+ 1)

log(x)
= 1 .

Thus over x > 1 we have
1 < y < +∞ .

Combining these two results we get a plot that looks like (E).

Problem 21

Recall that to evaluate logb(x) for any base b we must have x > 0. Thus we must have x > 0
so that log1/2(x) is defined. Next we must have log1/2(x) > 0 so that

log2(log1/2(x)) ,

defined. Now to have
log1/2(x) > 0 .
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If we let p = log1/2(x) then equivalently we have

(
1

2

)p

= x .

When p > 0 we see that we will have 0 < x < 1. Finally we need to have

log2(log1/2(x)) > 0 ,

so that log1/2(log2(log1/2(x))) will be defined. Now to have

log2(log1/2(x)) > 0 ,

We need to have
log1/2(x) > 1 .

This means that
(
1

2

)log1/2(x)

<

(
1

2

)1

,

or

x <
1

2
.

Thus we need to take the intersection of all of these domains or

{x|x > 0} ∩ {x|x < 1} ∩
{

x|x < 1

2

}

.

This is the set {

x|0 < x <
1

2

}

.

Problem 22

Let the shorter arm have a length of l so that the longer arm will have a length 1.05l. Then
under one weighing we have

210(1.05l) = lW1 .

Under the second weighing we have

W2(1.05l) = 210l .

We can solve the above for W1 and W2 we get W1 = 220.5 and W2 = 200. Thus W1 +W2 =
420.5.
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Problem 23

Let the side of the equilateral triangle be denoted s. Let AF = a and FB = b so that
a + b = s. We are told in the problem that AF = pFB or a = pb. Since this problem has
a tangent to a circle and two secants given by AC and BC we will use the Tangent-Secant

Theorem. Using this theorem for the tangent-secant AF and AC we have

ADs = a2 .

Using this theorem for the tangent-secant BF and BC we have

BEs = b2 .

If we divide these two expressions we get

AD

BE
=
a2

b2
.

As we know that a
b
= p we have that

AD

BE
= p2 .

Problem 24

From the definition of r we have 0 < r < 1 so that ⌊r⌋ = 0 and thus (B) and (E) always
only give the integer zero and thus cannot be correct.

Lets consider the expression ⌊10r⌋. Note that we have

P{⌊10r⌋ = 0} = P{0 ≤ 10r < 1}

= P

{

0 ≤ r <
1

10

}

=
1

10
,

which is not good as the uniform probability we get an integer between 0− 10 should be 1
11
.

To see the problem we can compute

P{⌊10r⌋ = 10} = P{10 ≤ 10r < 11}

= P

{

1 ≤ r <
10

11

}

= 0 .

Thus we will never get the integer 10. By both of these arguments (A) cannot be correct.

707



Lets consider (C). Then we compute

P{⌊10r + 0.5⌋ = n} = P{n ≤ 10r + 0.5 < n + 1}

= P

{

n− 1

2
≤ 10r < n+

1

2

}

= P

{
1

10

(

n− 1

2

)

≤ r <
1

10

(

n +
1

2

)}

=

∫ min( 1
10(n+

1
2),1)

max( 1
10(n−

1
2),0)

dr .

If we take n = 0 the above is
∫ 1

20

0

=
1

20
.

If we take n = 10 the above is
∫ 1

1
10(

19
2 )

= 1− 19

20
=

1

20
.

If n ∈ {0, 10} then the integral above evaluates to

1

10

(

n+
1

2

)

− 1

10

(

n− 1

2

)

=
1

10
.

Note that these probabilities are not all equal and thus (C) cannot be correct.

All of these indicate that (D) is correct.

Problem 26

The number of heads H is a binomial random variable with parameters (p = 0.5, n). Thus
we have

µ = np =
n

2

σ2 = npq =
n

4
.

This means that σ =
√
n
2
. Then we know that

P {|H − µ| < 2σ} ≈ 0.95 ,

or using the above we have

P
{n

2
−

√
n < H <

n

2
+
√
n
}

≈ 0.95 .

This is the statement given. We can write this as

P

{

−1 <
H − 0.5n√

n
< +1

}

= 0.95 . (458)
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Now for this problem we want to find n such that

P{0.4n ≤ H ≤ 0.6n} = 0.95 .

We can write this as

P

{

−0.1n√
n

≤ H − 0.5n√
n

≤ +
0.1n√
n

}

= 0.95 .

This will match Equation 458 if

0.1n√
n

= 1 or n = 100 .

Problem 27

Lets call this expression E. We start by expanding this and then grouping terms. We have

E = ab(c2 + d2) + cd(a2 + b2)

= abc2 + abd2 + cda2 + cdb2 .

If we group the first and third terms together and the second and fourth terms together we
get

E = (abc2 + cda2) + (abd2 + cdb2)

= ac(bc+ ad) + bd(ad+ cb)

= (ac+ bd)(ad+ cb) .

Thus we see that ac+bd is a factor of E. Note that we can eliminate some choices by selecting
values for a, b, c, and d computing the value of E and looking which of the suggested solutions
are not factors of E. For example we might try

a = 1

b = 3

c = 2

d = 5

a*b*(c^2 + d^2) + c*d*(a^2 + b^2) ##= 187 this is our ’target’ we want to factor

The number 187 factors as

factor 187

187: 11 17

The possible factors (from the solutions) take the form
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c( a*b, c^2 + d^2, a*b + c*d, a*c + b*d )

which are

[1] 3 29 13 17

Only (D) is correct in this list.
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1983 – 1988 Dropped AIME Problems

Problem 1

Note that

(37abc) = 37000 + (abc)

(37bca) = 37000 + (bca)

(37cab) = 37000 + (cab) .

Thus for 37 to divide the left-hand-side is must divide the numbers (abc), (bca), and (cab).

Let x = (abc), y = (bca), and z = (cab) then note

10x− y = a · 103 + b · 102 + c · 10− b · 102 − c · 10− a

= a · 103 − a = a(103 − 1) = 999a . (459)

In the same way we have

10y − z = 999b

10z − x = 999c .

Now 999 = 27 · 37 so we see that 37 divides 999. From these equations we have that if any
one of x, y, or z is divisible by 37 then the others are also and we have a valid solution
to our problem. Thus this problem now reduces to finding how many numbers of the form
x = (abc) are divisible by 37. Numbers like this are the “multiples of 37” or

000 , 037 , 074 , 111 ,

etc. There are
999

37
= 27 ,

non-zero multiples numbers like that giving 27 + 1 = 28 total numbers of the desired form.

Problem 2

If x is an integer then
x− ⌊x⌋ = 0 ,

and thus the second equation becomes

y = 18.4 .

If we put that into the first equation we get

⌊x⌋ = 7.4 ,
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which is not possible so we know that x is not an integer. This means that

x− ⌊x⌋ ,

is the fractional part of x and as x is not an integer we know that

0 < x− ⌊x⌋ < 1 ,

with both inequities strict (i.e. not equal). Then using the second equation we have

y = 18.4− (x− ⌊x⌋) .

Using the above we have that
−1 < −(x− ⌊x⌋) < 0 ,

so adding 18.4 to this we get that

17.4 < y < 18.4 .

This means that ⌊y⌋ ∈ {17, 18}.

Lets assume that ⌊y⌋ = 18. Then from the first equation given we have

y = 25.8− ⌊x⌋ .

If we put this into the second equation given we get an expression that we can write as

⌊x⌋ − (x− ⌊x⌋) = 7.4 .

Now ⌊x⌋ is an integer and x−⌊x⌋ is a floating point number positive and less than one. This
will be satisfied if ⌊x⌋ = 8 and x− ⌊x⌋ = 0.6 so that x = 8.6. Putting this into the second
equation given we get

8.6 + y − 8 = 18.4 so y = 17.8 .

This solution has ⌊y⌋ = 17 not ⌊y⌋ = 18 as was assumed at the start. Thus we can’t have
⌊y⌋ = 17.

Thus we now assume that ⌊y⌋ = 17. Then from the first equation given we have

y = 26.8− ⌊x⌋ .

If we put this into the second equation given we get an expression that we can write as

⌊x⌋ − (x− ⌊x⌋) = 8.4 .

Following the same arguments as above this will be satisfied if ⌊x⌋ = 9 and x−⌊x⌋ = 0.6 so
that x = 9.6. Putting this into the second equation given we get

9.6 + y − 9 = 18.4 so y = 17.8 .

This value of y has ⌊y⌋ = 17 as assumed.
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At this point we have (x, y) = (9.6, 17.8) Lets check that this solution solves the given two
equations. We have

9 + 17 + 17.8 = 43.8

9.6 + 17.8− 9 = 18.4 .

Showing that it is a solution.

This means that
100(x+ y) = 100(27.4) = 274 .

Problem 4

From the fact that DE is parallel to AB we have

△APB ∼ △EPD .

This means that
Area(△APB)

Area(△EPD)
= α2 ,

for some number α. From the problem we are told the value of this ratio

α2 =
36

25
so α =

6

5
.

Now as △APB and △ACB have the same base (the segment AB) their areas are propor-
tional to their heights and we have

Area(△ACB)

Area(△APB)
=
hACB

hAPB
.

Let h1 be the height of △APB, h2 the height of △EPD, and h3 the height of △DCE. Then

Area(△ACB)

Area(△APB)
=
h1 + h2 + h3

h1
. (460)

As △APB ∼ △EPD we have

h1 =
6

5
h2 or h2 =

5

6
h1 ,

and also that

AB =
6

5
DE .

Now as △ACB ∼ △DCE and using the previous expression we see that the “expansion
factor” from △ACB to △DCE is 5

6
. Thus

h1 + h2 + h3 =
6

5
h3 .
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Putting in what we know about h2 in terms of h1 and solving this for h3 we get

h3 =
55

6
h1 .

This all means that

h1 + h2 + h3 = h1 +
5

6
h1 +

55

6
h1 = 11h1 .

Using Equation 460 we have that

Area(△ACB) = 11Area(△APB) = 11(36) = 396 .

Problem 5

Adding these two equations together to get

x3 + y3 = 16(x+ y) .

Factoring the left-hand-side gives

(x+ y)(x2 − xy + y2) = 16(x+ y) .

As x+ y 6= 0 we have
x2 − xy + y2 = 16 . (461)

Subtracting these two equations together gives

x3 − y3 = 10x− 10y = 10(x− y) .

Factoring the left-hand-side gives

(x− y)(x2 + xy + y2) = 10(x− y) .

As x− y 6= 0 we have
x2 + xy + y2 = 10 . (462)

If we add Equation 461 and 462 we get

x2 + y2 = 13 .

If we subtract Equation 461 from 462 we get

2xy = −6 or xy = −3 .

Now the expression we want to evaluate can be written in terms of x2 + y2 and xy as

(x2 − y2)2 = x4 − 2x2y2 + y4 = x4 + 2x2y2 + y4 − 4x2y2

= (x2 + y2)2 − 4x2y2

= 132 − 4(9) = 133 .
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Problem 7

We are told that

y2 − zx = −103 (463)

z2 − xy = 22 . (464)

If we subtract Equation 463 from 464 we get

z2 − y2 − xy + zx = 125 ,

or
z2 − y2 − x(y − z) = 125 ,

or
(z + y)(z − y) + x(z − y) = 125 ,

or
(z − y)(x+ y + z) = 125 .

Now 125 factors as 53 so we have that

x+ y + z ∈ {1, 5, 52, 53} .

Now x + y + z cannot equal one or five as we are told that x, y, and z are positive and
distinct. Thus we only have

x+ y + z ∈ {25, 125} .
In the first case we would have

x+ y + z = 25 ,

and the other “factor” must be five so

z − y = 5 so z = 5 + y .

Thus
x+ y + z = 25 becomes x+ 2y = 20 or x = 20− 2y .

As 2y is even and 20 is even x must be even. Lets put these two expressions for z and x in
terms of y into Equation 463 to get

3y2 − 10y + 3 = 0 ,

when we simplify. This has solutions y ∈
{

1
3
, 3
}
of which only y = 3 is an integer. If y = 3

then we would have x = 14 and z = 8 so that the expression we want to evaluate is given by

x2 − yz = 172 .

In the second case we would have

x+ y + z = 125 ,
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and the other “factor” must be one so

z − y = 1 so z = 1 + y .

Thus
x+ y + z = 25 becomes x+ 2y + 1 = 125 or x = 124− 2y .

Lets put these two expressions for z and x in terms of y into Equation 463 to get

3y2 − 122y − 21 = 0 ,

when we simplify. This has non-integer roots so the only possible value for x2 − yz is 172.

Problem 8

Let the lengths AD = a and BE = b. Then from the problem we are told that AC = 3AD =
3a so that

CD = AC − AD = 3a− a = 2a ,

and that BC = 4BE = 4b so that

CE = BC −BE = 4b− b = 3b .

Next draw the segments AE and BD. Now as AB is a diameter of the circle we have
AE ⊥ BC and BD ⊥ AC. Using the Pythagorean theorem in the right triangles △ADB
and △AEB we have

a2 +BD2 = 900 (465)

b2 + AE2 = 900 . (466)

Now using the Pythagorean theorem in the right triangles △BDC and △CEA we get

(2a)2 +BD2 = (4b)2 (467)

(3b)2 + AE2 = (3a)2 . (468)

Using Equation 465 and 466 to get expressions for BD2 and AE2 we put these into Equa-
tions 467 and 468 to get

3a2 − 16b2 = −900 (469)

9a2 − 8b2 = 900 . (470)

If we use Equation 469 to solve for 3a2 and put that into 470 we get one equation for b
that we can solve to find b = 3

√
10. Then using Equation 469 we get a = 6

√
5. Using

Equation 466 we get
AE =

√
900− b2 = 9

√
10 .

To find the area of the triangle △ACB we can sum the area of two right triangles. We have

Area(△ACB) = Area(△AEB) + Area(△AEC)

=
1

2
AE · b+ 1

2
AE(3b)

= 2b · AE = 2(3
√
10)(9

√
10) = 540 .
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Problem 9

For N of the given form we would have

N = (abc) + (cba)

= (100a+ 10b+ c) + (100c+ 10b+ a)

= 100(a+ c) + 20b+ a+ c

= 101(a+ c) + 20b .

We are told that a 6= 0 and c 6= 0 which means that

1 ≤ a ≤ 9

0 ≤ b ≤ 9

1 ≤ c ≤ 9 .

To count how many Ns are of the above form we need to ask when 1 ≤ a ≤ 9 and 1 ≤ c ≤ 9
how many distinct values of a+ c are there. The smallest this sum can be is when a = c = 1
(so a + c = 2) and the largest this sum can be is when a = c = 9 (so a + c = 18). This
means we have 18 − 2 + 1 = 17 possible distinct values for a + c. Next as b can be any of
the numbers 0 ≤ b ≤ 9 we have ten choices for b. This means that the number of possible
Ns are given by

17× 10 = 170 .

Problem 10

It helps to draw this triangle with AB along an x-axis and the vertex C above the segment
AB. The point P is in the interior of the triangle creating three smaller triangles △PAB,
△PBC, and △PCA.

Since we are given the length of three sides of this triangle to start this problem we will first
use Heron’s formula to compute its area. To do that we need to compute the semi-perimeter
s as

s =
1

2
(13 + 14 + 15) = 21 .

Then Heron’s formula states

A2 = s(s− a)(s− b)(s− c) = 32 · 72 · 24 .

Taking the square root gives A = 84.

Since three angles are all equal we can define them as θ so that

∠PAB = ∠PBC = ∠PCA = θ .

Next lets introduce the notation x = AP , y = BP , and z = CP . Then using the law of
cosigns in the triangles △PAB, △PBC, and △PCA to “compute” the sides y, z and x
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respectively we have

y2 = x2 + 132 − 26x cos(θ)

z2 = y2 + 142 − 28y cos(θ)

x2 = z2 + 152 − 30z cos(θ) .

If we add these three equations together (and simplify a bit) we get

132 + 142 + 152 = 2(13x+ 14y + 15z) cos(θ) . (471)

Notice from the drawing we can compute the areas of the three smaller triangles as

13x sin(θ) = 2Area(△PAB)

14y sin(θ) = 2Area(△PBC)
15z sin(θ) = 2Area(△PCA) .

So the right-hand-side of Equation 471 can be written

RHS = 2

[
2Area(△PAB)

sin(θ)
+

2Area(△PBC)
sin(θ)

+
2Area(△PCA)

sin(θ)

]

cos(θ)

= 4
cos(θ)

sin(θ)
Area(△ABC) = 4 · 84cos(θ)

sin(θ)
.

This means that

tan(θ) =
4 · 84

132 + 142 + 152
=

168

295
.
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The 1989 AHSME Examination (AHSME 40)

Problem 1

(−1)25 + 1 = −1 + 1 = 0 .

Problem 2

For this we have √

1

9
+

1

16
=

√

16 + 9

9 · 16 =
5

3 · 4 =
5

12
.

Problem 3

Let s be the dimension of the side of the square. The the perimeter of one of the vertical
rectangles can be written in terms of s as

24 = 2s+ 2
(s

3

)

.

Solving for s we get s = 9 so that the area is given by s2 = 81.

Problem 4

Let the perpendicular from A to the segment CD intersect CD at the point called A′. Then
denoting the distance from D to A′ as x and by “dropping” the length of the segment AB
onto DF we have that

2x+ 4 = 10 ,

so that x = 3. Let the height of the trapezoid be denoted by h. Then in the right triangle
DAA′ we have

52 = x2 + h2 = 32 + h2 ,

so h = 4.

Now again using right triangles we have

DB2 = (4 + x)2 + h2 = 72 + 42 = 65 ,

this means that DB =
√
65.

Now DE = 2DB = 2
√
65. As AB is parallel to DC and intersects the midpoint of DE it

also intersects the midpoint of EF . Thus

EF = 2h = 8 .
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In the right triangle DEF we have

EF 2 +DF 2 = DE2 ,

or
82 + (10 + CF )2 = 4 · 65 = 260 .

Expanding this becomes
CF 2 + 20CF − 96 = 0 .

Solving for CF we find that the only positive solution is CF = 4.

Problem 5

There are 10 + 1 = 11 vertical lines with 20 toothpicks in each and there are 20 + 1 = 21
horizontal lines with 10 toothpicks in each for a total of

11 · 20 + 21 · 10 = 430 ,

toothpicks.

Problem 6

From the given line if we take x = 0 we get y = 6
b
and if we take y = 0 we get x = 6

a
. This

means that this graph is a right triangle with a “base” of length 6
a
and a “height” of length

6
b
. This means that the area of the triangle is

1

2

(
6

a

)(
6

b

)

=
18

ab
.

If this is equal to six then solving for ab we have ab = 3.

Problem 7

Now ∠B = 50◦ and ∠BHA = 90◦ so ∠BAH = 40◦. As ∠A = 100◦ we have

∠HAC = 100− ∠BAH = 100− 40 = 60 .

This means that triangle AHC is a 30− 60− 90 right triangle. Then as ∠C = 30◦ we have

AH = AC sin(30◦) =
1

2
AC = AM .

Thus the triangle HAM has AM = AH so it is an isosceles triangle with a vertex angle of
60◦. This means that

∠AHM = ∠AMH =
180− 60

2
= 60 .

This means that △AHM is actually equilateral. Finally we have

∠MHC = ∠AHC − ∠AHM = 90− 60 = 30 .
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Problem 8

Lets factor this polynomial as

x2 + x− n = (x+ a)(x+ b) ,

which means that

a + b = 1

ab = −n .

From the first expression we have that b = 1− a. When we put this in the second we get

n = a(a− 1) .

As a and b must be integers from how n is calculated it is also an integer. Note that if

a = 1 then n = 0

a = 2 then n = 2

a = 3 then n = 6

a = 4 then n = 12

a = 5 then n = 20

a = 6 then n = 30

a = 7 then n = 42

a = 8 then n = 56

a = 9 then n = 72

a = 10 then n = 90

a = 11 then n = 110 .

Larger values of a will have n > 100. Counting the number of values of a where n is in the
desired range we see that there are 10− 2 + 1 = 9 of them.

Problem 9

The last name of this child will be the same as its parents and thus will start with a Z. Now
we can select two different letters to use for the first letter in the first name and the first
letter in middle name in (26 − 1) × (26 − 2) = 25 × 24 = 600 ways. This is because there
are 26− 1 = 25 ways to select the first letter of the first name (excluding the letter Z) and
then 25−1 = 24 ways to select the first letter of the second name excluding Z and the letter
picked for the first name. If we want these two letters to be in alphabetical order we will
need to ignore one-half of these 600 giving a total of 300 ways to select the monogram.
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Problem 10

Now from the formula given we have

un+1 = − 1

un + 1
= − 1

− 1
un−1+1

+ 1

=
−(un−1 + 1)

−1 + un−1 + 1
=

−1− un−1

un−1

= − 1

un−1
− 1 = − 1

(

− 1
un−2+1

) − 1

= un−2 + 1− 1 = un−2 .

We can write the above un+1 = un−2 as un = un−3 or un = un+3. Thus

u1 = u4 = u7 = u10 = u13 = u16 = u19 .

Problem 11

From a < 2b and b < 3c we have
a < 2(3c) = 6c .

Then using c < 4d in the above we get

a < 6(4d) = 24d .

Thus the largest a can be is bounded by how large d can be. Working backwards then if
d < 100 the largest d can be is d = 99. Then from c < 4d we get that c < 396. Thus the
largest c can be is c = 395. Then from b < 3c we have that b < 1185 so the largest b can be is
b = 1184. Finally from a < 2b we have a < 2368 thus the largest a can be is 2368−1 = 2367.

Problem 12

The velocity of westbound cars observed by the eastbound driver is 120 miles per hour. Now
five minutes is

1

12
,

of an hour. Thus the eastbound car will “pass” 120
(

1
12

)
= 10 miles of westbound cars. If he

passes 20 cars spaced W apart we must have

(20− 1)W = 10miles .

This means that

W =
10

20− 1
=

1

2− 1
10

.
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In 100 miles there would be 100
W

cars or

100

(

2− 1

10

)

= 200− 10 = 190 .

This is closest to 200.

Problem 13

If α = 0 the area of the shaded part of the given figure is infinite which means that choice A
cannot be the correct answer (as it gives an area of zero).

Note that the given figure is a parallelogram. Recall that the area S of a parallelogram is
given by

S = ab sin(α′) ,

where a and b are the lengths of the two sides of the parallelogram and α′ is the angle between
them. We will let a be the length of the horizontal side and b be the length of the ”vertical”
side. Then for the horizontal side length a as the distance between the two vertical parallel
lines is one we have

1 = a sin(α) so a =
1

sin(α)
.

In the same way for the ”vertical” side length b as the distance between the two horizontal
parallel lines is one we have

b sin(α) = 1 so b =
1

sin(α)
.

This means that

S =
sin(α′)

sin(α)2
=

sin(180◦ − α)

sin(α)2
=

sin(α)

sin(α)2
=

1

sin(α)
.

Problem 14

We want to simplify

E = cot(10) + tan(5) =
cos(10)

sin(10)
+

sin(5)

cos(5)
.
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Using the double angle formulas for cos(10) and sin(10) we get

E =
cos2(5)− sin2(5)

2 sin(5) cos(5)
+

sin(5)

cos(5)

=
cos(5)

2 sin(5)
− sin(5)

2 cos(5)
+

sin(5)

cos(5)

=
cos(5)

2 sin(5)
+

sin(5)

2 cos(5)
=

cos2(5) + sin2(5)

2 sin(5) cos(5)

=
1

sin(10)
= csc(10) .

Problem 15

Method 1: Using the law of cosigns in △ABC gives

cos(∠A) =
72 − 52 − 92

−2(9)(5)
=

19

30
.

We next drop a perpendicular from the point B to the segment AC and denote its intersection
with AC as the point AHb. Then

AHb = AB cos(∠A) = 5

(
19

30

)

=
19

6
.

Next note that the segment BHb is a height in the isosceles triangle ABD and thus

AD = 2AHb =
19

3
.

As AC = 9 we have CD = 9− 19
3
= 8

3
from which we see that

AD : DC =
19

3
:
8

3
= 19 : 8 .

Method 2: In this method we also drop a perpendicular from the point B to the segment
AC and denote its intersection with AC as the point AHb. Then the Pythagorean theorem
in △ABHb we have

BH2
b = AB2 − AH2

b = 25−AH2
b . (472)

The Pythagorean theorem in △BHbC gives

BH2
b = BC2 −HbC

2 = 49− (AC − AHb)
2 = 49− (9−AHb)

2 . (473)

Setting these two expressions equal to each other gives

25−AH2
b = 49− (9 = AHb)

2 .

We can solve this for AHb and find

AHb =
19

6
,
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as before. Using this in Equation 472 gives

BH2
b = 25−

(
19

6

)2

=
539

36
.

Thus

BHb =

√
72 · 11
6

=
7
√
11

6
.

The Pythagorean theorem in △BHbD gives

HbD
2 = BD2 −BH2

b = 25− 539

36
=

361

36
,

so

HbD =
19

6
.

Thus

AD = AHb +HbD =
19

6
+

19

6
=

19

3
,

and

DC = AC − AD = 9− 19

3
=

8

3
.

So the proportion we are interested in is given by

AD : DC =
19

3
:
8

3
= 19 : 8 .

Problem 16

The slope of the line between the two points given is

m =
281− 17

48− 3
=

264

45
=

88

15
.

This means that the line connecting these two points is given by

y − 17 =
88

15
(x− 3) .

We can manipulate this to write it in the form

−88x+ 15y = −9 .

Thus our problem is to determine the number of integer solutions to the above equation
where

3 ≤ x ≤ 48 and 17 ≤ y ≤ 281 .

To simplify this a bit let

x = 3 + p

y = 17 + q ,
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where the domain of p and q are

0 ≤ p ≤ 45 and 0 ≤ q ≤ 264 .

Putting these expressions in the above linear equation gives

−88(3 + p) + 15(17 + 9) = −9 ,

or
−88p+ 15q = 0 . (474)

As p increases the left-hand-side decreases by 88 and we will need q to increase by a multiple
to offset this so that the total sum is still zero. This leads us to consider the least-common-
multiple of 88 and 15. We find

lcm(88, 15) = 1320 .

Note that
1320

88
= 15 and

1320

15
= 88 .

This means that as I increase p by 15 I have to increase q by 88. The number of times I can
do this and stay in the bounds above for p and q are given by

15np ≤ 45 ⇒ np ≤ 3 ,

for p and
88nq ≤ 264 ⇒ nq ≤ 3 ,

for q. This means that the integer solutions to Equation 474 are given by

(p, q) ∈ {(0, 0) , (15, 88) , (30, 176) , (45, 264)} ,
giving four integer solutions.

Problem 17

Let the side of the equilateral triangle be a and the side length of the square be s. Then the
perimeters of the triangle and the square are given by

Ptriangle = 3a

Psquare = 4s .

We are told that
Ptriangle − Psquare = 1989 ,

and that a = s + d. This means that

3(s+ d)− 4s = 1989 ,

or
3d− s = 1989 .

We must have s > 0. If s = 0 (corresponding to the smallest that d could be i.e. d would
need to be larger than that number) we would have

3d = 1989 = 32 · 13 · 17 .
This means that d = 3 · 13 · 17 = 663. Thus we must have d > 663 and d cannot be in the
range 1 ≤ d ≤ 663.
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Problem 18

Call this expression E. Then we can write E as

E = x+
√
x2 + 1− 1

x+
√
x2 + x

(

x−
√
x2 + 1

x−
√
x2 + 1

)

= x+
√
x2 + 1−

(

x−
√
x2 + 1

x2 − (x2 + 1)

)

= x+
√
x2 + 1−

(

−x+
√
x2 + 1

)

= 2x .

So for this expression to be rational x must be rational.

Problem 19

Let the vertices of the triangle be denoted by A, B, and C with AC along the x-axis and
B above the segment AC. Let the center be denoted O, the radius of the circle be denoted
R and the arcs AB, BC, and CA be three, four, and five respectively. Draw segments from
A, B, and C to the circles center O forming three isosceles triangles △AOB, △BOC, and
△AOC.

From the given arc lengths we have that

2πR = 3 + 4 + 5 = 12 .

Thus we have R = 6
π
. The central angles are given by

∠AOB =
3

R
=
π

2

∠BOC =
4

R
=

2π

3

∠AOC =
5

R
=

5π

6
.

Now the area of the triangle △ABC is the sum of the three isosceles triangles. Recall that
the area of an isosceles triangle with a vertex angle θ and legs of length l is given by

Aisosceles =
l2

2
sin(θ) .

Thus what we want is given by

Area(△ABC) = 1

2
R2 sin

(π

2

)

+
1

2
R2 sin

(
2π

3

)

+
1

2
R2 sin

(
5π

6

)

=
1

2

[

1 +

(√
3

2

)

+

(
1

2

)]

R2

=
9

π2
(3 +

√
3) ,

when we simplify.
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Problem 20

Let A be the event where we are told that

⌊
√
x⌋ = 12 .

This means that
12 ≤

√
x < 13 ,

or
144 ≤ x < 169 .

Now let B be the event where
⌊
√
100x⌋ = 120 .

This means that
120 ≤

√
100x < 120 ,

or
14400 ≤ 100x < 14641 ,

or
144 ≤ x < 146.41 .

To find the probability we seek we have

P (B|A) = P (B ∩A)
P (A)

=
P (144 ≤ x < 146.41)

P (144 ≤ x < 169)

=
146.41−144

100
169−144

100

=
241

2500
,

when we simplify.

Problem 21

To start we let the square flag have a sides of length one. Next we let the inner blue square
(denoted B) have sides of length b. Next, in each of the four red arms create rectangles
(denoted R) by creating four isosceles triangles in each corner. Let the width of each R
rectangles be denoted r so that each rectangle is of dimension r × b. Let these isosceles
triangles have a side of length l.

Then we can decompose the area of the entire cross as the sum of the square B the four
rectangles R, and the four corner isosceles triangles. This is the statement

b2 + 4br + 4

(
1

2
l2
)

= 0.36 . (475)
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Next in each isosceles right-triangle we have

l2 + l2 = b2 so b = l
√
2 . (476)

As a side of the square has a length of one and each isosceles triangle has a edge length of l
the “middle” portion of a side is of length

1− 2l .

This is also the length of the hypotenuse of a right triangle with two legs of length r. This
means that

2r2 = (1− 2l)2 so r =
1− 2l√

2
. (477)

If we put Equation 476 (for b) and 477 (for r) into Equation 475 we

2l2 + 4(l
√
2)

(
1− 2l√

2

)

+ 2l2 = 0.36 .

When we simplify this we get
l2 − l + 0.09 = 0 .

This has two solutions l = 0.1 or l = 0.9. Now 2l < 1 by the geometry of this problem and
so we have that l = 0.1. This means that b2 = 2l2 = 2(0.01) = 0.02 or 2%.

Problem 22

We want blocks that differ from the given one in only two ways. There are
(
4
2

)
= 6 ways

that can happen. For example by changing the material and size or changing the material
and color etc. Once we pick the two characteristics that will be different we then look at the
number of possible choices for each that would result in a different selection. For example if
we change the material (of which there are two choices and we have used one) and size (of
which there are three choices and we have used one) then we have

(2− 1)× (3− 1) = 2 ,

additional blocks that differ in the two attributes suggested.

Following this procedure if we change

• material and color we get 1× 3 = 3 additional blocks.

• material and shape we get 1× 3 = 3 additional blocks.

• size and color we get 2× 3 = 6 additional blocks.

• size and shape we get 2× 3 = 6 additional blocks.
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• color and shape we get 3× 3 = 9 additional blocks.

Together this gives
2 + 3 + 3 + 6 + 6 + 9 = 29 ,

additional blocks.

Problem 23

If we look at the path drawn we see that it is a “single step” followed by a walk half-way
around a square of size 1× 1, followed by another “single step” followed by by a walk half-
way around a square of size 2 × 2, followed by another “single step” followed by by a walk
half-way around a square of size 3 × 3 etc. The length walked after n of these “single step
followed by 1/2 of a square” units is

Ln = 1 +
1

2
(4)

+ 1 +
1

2
(4 · 2)

+ 1 +
1

2
(4 · 3)

...

+ 1 +
1

2
(4n)

= n+

n∑

k=1

1

2
(4k) = n + 2

n∑

k=1

k

= n+ n(n + 1) = n2 + 2n .

Lets check this function Ln for some simple inputs n. We compute

L1 = 1 + 2 = 3

L2 = 4 + 4 = 8

L3 = 9 + 6 = 15 .

These agree with the diagram given in the text. Overriding notation we note that if n is
odd, the final location of Ln steps from the origin is on the y-axis at the location (0, n). In
the same way if n is even the final location of Ln steps from the origin is on the x-axis at
(n, 0).

Next we ask for what value of n is Ln ≈ 1989. If we solve

n2 + 2n− 1989 = 0 ,

we have n ≈ 43.6. Note that

L43 = 1935 < 1989

L44 = 2024 > 1989 .
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From the above argument we see that after taking L43 steps our particle is located at (0, 43)
and we need to walk

1989− 1935 = 54 ,

more steps. The first step will be a step “up” to (0, 44). The next 53 steps will start by
going around a square with sides 44 × 44. Thus after 44 steps along this path our particle
are will be at (44, 44) and have 53− 44 = 9 more to go. These will be downwards ending at
the point

(44, 44− 9) = (44, 35) .

Problem 24

As a general problem solving strategy note that as the answers to this problem are relatively
small numbers we should be able to explicitly enumerate all of the solutions if we can’t come
up with a more general way of computing (f,m). Thus we consider the following cases

• Imagine we have zero females and five males. Then (f,m) = (0, 5).

• Next assume we have only one female and four males. If we draw that table we see
that (f,m) = (2, 5).

• Next assume we have two females and three males. In this case we can have the two
females sitting next to each other (or not). If they sit next to each other we see that
(f,m) = (4, 5). If they do not we have (f,m) = (3, 4).

• If we have three females we then have two males. By symmetry with the two female
and three male case above we have (f,m) = (5, 4) or (f,m) = (4, 3).

• If we have four females and one male then again by symmetry with the one female four
male case we have (f,m) = (5, 2).

• Finally, if we have five females we have no males and by symmetry with the above we
have (f,m) = (5, 0).

Counting up the choices above we get

(f,m) ∈ {(0, 5) , (2, 5) , (4, 5) , (3, 4) , (5, 4) , (4, 3) , (5, 2) , (5, 0)} .

Thus there are eight choices.

Problem 25

The sum of all the ranks of all ten runners is

1 + 2 + 3 + · · ·+ 9 + 10 =
1

2
(10)(11) = 55 .
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Now every winning score must be an integer less than half of this

1

2
(55) = 27.5 ,

and greater than the lowest possible score which is

1 + 2 + 3 + 4 + 5 = 15 .

This gives 27 − 15 + 1 = 13 winning scores. Note that for a winning score s in the range
15 ≤ s ≤ 27 the loosing score must be l = 55− s and is in the range 28 ≤ 55− s ≤ 40. Note
that there are thirteen scores in that range (as there must be).

Problem 26

One should first attempt to draw this figure. Notice that this regular octahedron is composed
of two pyramids “on top of each other” each pyramid has a square base. As we are told that
this is a regular octahedron we know that all of edge lengths are equal.

Let the side length of the cube be denoted l. Then imagining the square base projected onto
the x-y plane we note that it has a side length that is the hypotenuse of a right triangle with
legs l

2
. This means that it has a length of

(
l

2

)√
2 =

l√
2
.

The heights of each pyramid are that of one-half of l or l
2
. This gives a pyramidal volume of

1

3

(
l√
2

)2(
l

2

)

=
l3

12
.

The volume of the regular octahedron twice this or

2l3

12
=
l3

6
.

The ratio of the two volumes requested is then

l3

6

l3
=

1

6
.

Problem 27

Write this expression as

x+ y =
n− z

2
.

Note that for x and y to have integer solutions if n− z must be even. This means that if n
then z must be even also and if n is odd then z must be odd also.
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To solve this problem we can start with n = 14 and see what conclusions we might be able
to reach. From the above we have

x+ y =
14− z

2
,

and we must have z even. The smallest choice for z is then z = 2 and we have

x+ y = 6 .

The only values for (x, y) that solve the above are

(x, y) ∈ {(1, 5) , (2, 4) , (3, 3) , (4, 2) , (5, 1)} ,

for five solutions. We could also have z = 4 and have

x+ y = 5 .

The only values for (x, y) that solve the above are

(x, y) ∈ {(1, 4) , (2, 3) , (3, 2) , (4, 1)} ,

for four solutions. We could have z = 6 and have

x+ y = 4 .

The only values for (x, y) that solve the above are

(x, y) ∈ {(1, 3) , (2, 2) , (3, 1)} ,

for three solutions. We could have z = 8 and have

x+ y = 3 .

The only values for (x, y) that solve the above are

(x, y) ∈ {(1, 2) , (1, 2)} ,

for two solutions. Finally we could have z = 10 and have

x+ y = 2 .

The only values for (x, y) are (1, 1) for one more solution. This gives a total of

5 + 4 + 3 + 2 + 1 = 15 ,

total solutions. As we are looking for 28 solutions this value of n is “too low”.

Generalizing a bit it looks like when n is even the choices for z are

[n− 4, n− 6, . . . , 4, 2] .

For each of these the number of solutions (x, y) are
[

1, 2, . . . ,
n

2
− 3,

n

2
− 2
]

.
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The total number of solutions in this case is then

Tn ≡
n
2
−2
∑

k=1

k =
1

2

(n

2
− 2
)(n

2
− 1
)

.

Using this formula we find T16 = 21 and T18 = 28. Thus n = 18 works.

Using the same logic as above if n is odd the choices for z are

[n− 4, n− 6, . . . , 3, 1] .

For each of these the number of solutions (x, y) are
[

1, 2, . . . ,
n− 1

2
− 2,

n− 1

2
− 1

]

.

The total number of solutions in this case is then

Tn ≡
n−1
2

−1
∑

k=1

k =
1

2

(
n− 1

2
− 1

)(
n− 1

2

)

.

Using this formula we find T17 = 28 and T19 = 36. Thus n = 17 also works and we have
shown that n ∈ {17, 18}.

Problem 28

Let v = tan(x) then the equation for v is a quadratic with solutions

v =
9±

√
77

2
.

Then x = tan−1(v). The standard range of the x = tan−1(v) function is such that −π
2
< x <

π
2
, where if v > 0 then x > 0 and if v < 0 then x < 0. Because 77 < 81 = 92 both of the v

numbers above are positive. For each positive v there will be a root xI in the first quadrant
(from the standard range of tan−1(v)) and another in the third quadrant given by

xIII = xI + π .

Let the two value of v above be given by v− and v+ and their corresponding standard range
values by x− and x+. Then we want to evaluate

x− + x+ + (x− + π) + (x+ + π) = 2(x− + x+) + 2π . (478)

Now
x− + x+ = tan−1(v−) + tan−1(v+) .

We can evaluate this using trigonometric identities. Using

tan(θ1 + θ2) =
tan(θ1) + tan(θ2)

1− tan(θ1) tan(θ2)
,
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we have (changing θi → xi) that

x1 + x2 = tan−1

(
tan(x1) + tan(x2)

1− tan(x1) tan(x2)

)

.

Using the fact that tan(x1) and tan(x2) are two roots of a quadratic equation we have

tan(x1) + tan(x2) = −(−9) = 9

tan(x1) tan(x2) = 1 .

This means that

x1 + x2 → lim
t→1

(

tan−1

(
9

1− t

))

.

The limit on the right-hand-side would depend on whether t → 1− or t → 1+ in the former
the limit would be −π

2
while in the later it would be π

2
. As xi > 0 the limit should be π

2
and

we have
x1 + x2 =

π

2
.

Using this in Equation 478 we get the sum we want given by

2
(π

2

)

+ 2π = 3π .

Problem 29

Note that using the binomial theorem we have

(1 + i)99 =

99∑

k=0

(
99

k

)

1ki99−k = −i
99∑

k=0

(
99

k

)

i−k .

In the above we have used

i99 = i100−1 = i100i−1 =
1

i
= −i .

The above also shows that i−k = (−1)kik so we can write

(1 + i)99 = −i





98∑

k even

(
99

k

)

(−1)kik +

99∑

k odd

(
99

k

)

(−1)kik





= −i
[

49∑

k=0

(
99

2k

)

(−1)2ki2k +

49∑

k=1

(
99

2k + 1

)

(−1)2k+1i2k+1

]

= −i
[

49∑

k=0

(
99

2k

)

(−1)k − i

49∑

k=1

(
99

2k + 1

)

(−1)k

]

= −
49∑

k=1

(
99

2k + 1

)

(−1)k − i

49∑

k=0

(
99

2k

)

(−1)k .
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Notice that the sum we want to evaluate is proportional to the imaginary term above. Thus
if we can evaluate the imaginary part of

(1 + i)99 ,

we have our desired sum. Note that

1 + i =
√
2e

π
4
i .

Thus

(1 + i)99 = 299/2e
99π
4

i = 299/2e
100π

4
ie−

π
4
i = 299/2e25πie−

π
4
i

= 299/2eπie−
π
4
i = −299/2

(
1√
2
− i√

2

)

= −249 + 249i .

Equating the two terms and extracting the imaginary part we get

−
49∑

k=0

(
99

2k

)

(−1)k = 249 .

The 1989 AIME Examination

Problem 1

We want to evaluate E ≡
√

n(n + 1)(n+ 2)(n+ 3) + 1 for n = 28. If we expand everything
under the radicand we get √

n4 + 6n3 + 11n2 + 6n+ 1 .

We now ask (hope) that this factors into a perfect square or that we can write the above as

√

(n2 + An+ 1)(n2 + An+ 1) ,

for some value of A. If we expand the argument of the radicand above we get

√

n4 + 2An3 + (A2 + 2)n2 + 2An+ 1 .

This will match what we are given above if we take A = 3. Thus we have shown that we
can write E as √

(n2 + 3n+ 1)2 = n2 + 3n+ 1 .

Taking n = 28 this gives E = 869.
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The 1990 AHSME Examination (AHSME 41)

Problem 1

This is
x2

8
= 8 ,

or
x2 = 64 so x = ±8 .

Problem 2

This is
(
1

4

)− 1
4

= 41/4 = (41/2)1/2 = 21/2 =
√
2 .

Problem 3

If we let ai be the measure of angle i with i = 1 the smallest and i = 4 the largest angle.
Then from what we are told we have

a1 = 75

a2 = 75 + d

a3 = 75 + 2d

a4 = 75 + 3d .

This means that

360 =
4∑

i=1

ai = 4(75) + (0 + d+ 2d+ 3d) = 300 + 6d .

Solving we find d = 10 so that a4 = 105.

Problem 4

As ABCD is a parallelogram we have DC = AB = 16 which means that EC = DC+ED =
16 + 4 = 20. Next note that

△FED ∼ △BEC ,
so we can write

ED

EC
=
FD

BC
so

4

20
=
FD

10
,

so FD = 2.
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Problem 5

Write each of these in the same “way” as

(51/3 · 61/3)1/2 = 51/6 · 61/6 = (5 · 6)1/6 = 301/6

(61/2 · 51/6)1/2 = 51/6 · 61/2 = 51/6(63)1/6 = (1080)1/6

(51/2 · 61/6)1/2 = (53 · 6)1/6 = (750)1/6

(51/3 · 61/6)1/2 = (52 · 6)1/6 = (150)1/6

(61/3 · 51/6)1/2 = (62 · 5)1/6 = (180)1/6 .

The second of these is the largest.

Problem 6

A line will be d from a given point if it is tangent to the circle of radius d at that point.
Thus we next draw the point A and then the point B with circles of radius two and three
around each. Next we imagine tangents at each of the points on the circle drawn around
A of radius two. When we do that we see that three lines will also be tangent to the circle
drawn around B of radius three.

Problem 7

Let s1, s2, and s3 be the integer length of the sides of the given triangle. With out loss of
generality lets take s1 ≤ s2 ≤ s3. Now we must have

1

3
(s1 + s2 + s3) ≤ s3 , (479)

for if not we would have 3s3 < s1 + s2 + s3 and three multiples of s3 (the largest side) is
smaller than the perimeter of the triangle which is a contradiction. We must also have that

1

2
(s1 + s2 + s3) > s3 , (480)

for if not we would have
1

2
(s1 + s2 + s3) ≤ s3 .

This inequality is equivalent to
s1 + s2 ≤ s3 ,

which is a violation of the triangle inequality and would be another contradiction. Thus we
need an integer s3 such that

1

3
(8) ≤ s3 <

1

2
(8) or 2

2

3
≤ s3 < 4 .

738



To be an integer this means that s3 = 3. Thus we have

3 ≥ s2 ≥ s1 .

We also need s1 + s2 = 5. This can happen only if s2 = 3 and s1 = 2. This is an isosceles
triangle with equal legs of length three and a base of length two. This has a height given by

h2 = 32 −
(
2

2

)2

= 8 .

Thus the area of this triangle is
1

2
(2)

√
8 = 2

√
2 .

Problem 8

If we assume that x ≥ 3 then this equation is

x− 2 + x− 3 = 1 or 2x− 5 = 1 .

This has a solution x = 3 which is in the domain x ≥ 3 and so there is at least one solution
to this equation. If 2 < x < 3 then this equation is

x− 2− (x− 3) = 1 ,

which is an identity for all x. Thus there are an infinite number of solutions to this equation.

Problem 9

To have “few” black edges we want most of the cube to be composed of red edges. If we start
by considering a cube with only one black edge then we have two faces that have that edge
in common. To have fewer black edges the next black edge should be placed adjacent to a
face different than the previous two. This will then “cover” two additional faces. As a cube
has six total faces we need to place one more black edge to cover the 6−2−2 = 2 remaining
uncovered faces. This gives three black edges to perform the requested construction.

An example of this covering in the unit cube [0, 1]3 would be to color black the segments

• (0, 0, 0) ↔ (1, 0, 0)

• (0, 0, 1) ↔ (0, 1, 1)

• (1, 1, 0) ↔ (1, 1, 1)
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Problem 10

From a “corner” one should be able to see all cubes on three faces which would be

3× 112 = 363 .

Some of the cubes on the different faces are “the same” and the above number has “double
counted” the cubes along common edges and “triple counted” the corner cube. Along any
two faces that are adjacent there will be 11 cubes that are common between the two (along
the edge). Excluding the “corner” cube there are 10 cubes common between each pair of
faces. There are three pairs of faces that can be seen from one corner. Removing the double
counted common edge cubes and then tripled counted corner cube gives

363− 3× 10− 2 = 331 ,

cubes that can be seen from one location.

If we think of the three faces as the “sets” A, B, and C with elements equal to the cubes on
that face that can be seen from a location then we can use the inclusion-exclusion identity
to determine |A ∪ B ∪ C| we have

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| = 3×112−11−11−11+1 = 331 .

Here |A| = |B| = |C| = 112 = 121 as we can see the full face of cubes. The intersections i.e.
|A ∩B| = 11 are the number of cubes we can see in common between faces A and B etc.

Problem 11

Let our integer be denoted N and a divisor of N by d. Then the number N
d
is another divisor

of N . Thus if

d 6= N

d
,

each divisor comes with another distinct one and there will be an even number of divisors
for N . This is true unless

d =
N

d
or N = d2 ,

i.e. N is a perfect square. The perfect squares less than 50 are

12 , 22 , 32 , 42 , 52 , 62 , 72 .

There are seven of these numbers.

Problem 12

From the definition of f(x) we have

f(
√
2) = 2a−

√
2 .
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Thus
f(f(

√
2)) = a(2a−

√
2)2 −

√
2 = a(4a2 − 4

√
2a + 2)−

√
2 .

Setting this equal to −
√
2 means that

a(4a2 − 4
√
2 + 2) = 0 .

This will be true if a = 0 or 2a2− 2
√
2a+1 = 0. This last quadratic equation has the single

solution

a =

√
2

2
.

Problem 13

If we follow this procedure for a bit we see that each new pair of the variables X and S is
given by

(X,S) = (3, 0)

(X,S) = (5, 5)

(X,S) = (7, 12)

(X,S) = (9, 21) ,

etc. The changes to X are simple. If we let n = 0 correspond to the first values for (X,S)
we have X0 = 3 and

Xn = Xn+1 + 2 .

The above means that
Xn = 3 + 2n ,

for n ≥ 0.

The update of S depends on the value of X and we have S0 = 0 with

Sn = Sn−1 +Xn ,

for n ≥ 1. This means that
Sn = Sn−1 + 3 + 2n .

In terms of the ∆ notation this is
∆Sn = 3 + 2n ,

or summing both sides this is

N∑

n=1

∆Sn =

N∑

n=1

(3 + 2n) ,

or

SN − S0 = 3N + 2

(
N(N + 1)

2

)

= 3N +N2 +N = N2 + 4N + 4− 4 = (N + 2)2 − 4 .
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As S0 = 0 the above is an expression for SN . The first value of N where SN ≥ 10000 or

(N + 2)2 ≥ 10004 ,

or
N ≥ 98.02 .

If N = 98 I find S98 = 9996 and S99 = 10197. We exit the loop when N = 99 and find
X99 = 201.

Problem 14

Recalling some angle to arc length identities we have that

x =
1

2
C̃B (481)

∠ABC =
1

2
ÃC (482)

∠ACB =
1

2
ÃB . (483)

As these two later angles are equal we have ÃC = ÃB. Using this in

ÃB + B̃C + ÃC = 360 ,

we have
2ÃB + B̃C = 360 . (484)

Next we have

∠CDB = ∠D =
1

2
(C̆AB − C̃B) =

1

2
(2ÃB − C̃B) . (485)

In the problem we are told that ∠D = 1
2
∠ACB so using Equation 483 we in Equation 485

we get
1

2

(
1

2
ÃB

)

= ÃB − 1

2
C̃B ,

or

C̃B =
3

2
ÃB . (486)

If we put that into Equation 484 we get

2ÃB +
3

2
ÃB = 360 so ÃB =

720

7
.

Using Equation 486 we get C̃B = 1080
7

so that

x =
1

2
C̃B =

540

7
.

In radians this is given by

x =
540

7
× π

180
=

3π

7
.
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Problem 15

Let our four numbers be a, b, c, and d. Considering the sums we would have when we drop
a variable each time we get

a+ b+ c = 180 (487)

a+ b+ d = 197 (488)

a + c+ d = 208 (489)

b+ c+ d = 222 . (490)

This is a system of four equations and four unknowns. Adding all of the equations together
we get

3(a+ b+ c+ d) = 807 ,

so
a + b+ c + d = 269 . (491)

If from this we subtract Equation 487 above we find d = 89. If from this we subtract
Equation 488 we find c = 72. If from this we subtract Equation 489 we find b = 61. Finally,
if from Equation 491 we subtract Equation 490 we find a = 47. The largest of these numbers
is 89.

Problem 16

If everyone shook hands there would be
(

26
2

)

,

handshakes. This would include the 13 husband-wife handshakes and the

(
13
2

)

handshakes

between the women. Thus the total number of handshakes is given by
(

26
2

)

− 13−
(

13
2

)

= 234 ,

when we simplify.

Problem 17

Lets assume our number is of the form abc with a, b, and c digits with 1 ≤ a ≤ 9, 0 ≤ b ≤ 9,
and 0 ≤ c ≤ 9. To count the increasing numbers lets start with a = 1. Then we are
considering numbers of the form 1bc with 1 < b < c. We can have

• b = 2 so that our number is 12c and to have 2 < c there are seven choices
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• b = 3 so that our number is 13c and to have 3 < c there are six choices

• b = 4 so that our number is 14c and to have 4 < c there are five choices

• Continuing this logic

• b = 8 so that our number is 18c and to have 8 < c there is one choice

Thus there are

1 + 2 + 3 + · · ·+ 6 + 7 =
8(7)

2
= 28 ,

“increasing” numbers of the form 1bc.

Next lets start with a = 2. Then we are considering numbers of the form 2bc with 2 < b < c.
We can have

• b = 3 so that our number is 23c and to have 3 < c there are six choices

• b = 4 so that our number is 24c and to have 4 < c there are five choices

• Continuing this logic

• b = 8 so that our number is 28c and to have 8 < c there is one choice

Thus there are

1 + 2 + 3 + · · ·+ 6 =
7(6)

2
= 21 ,

“increasing” numbers of the form 2bc.

If this pattern continues we expect to have

1 + 2 + 3 + · · ·+ 5 =
6(5)

2
= 15 ,

“increasing” numbers of the form 3bc.

Numbers of the form n(n+1)
2

are called triangular numbers Tn

https://en.wikipedia.org/wiki/Triangular_number

Using that definition the number of “increasing” numbers of the form 1bc is T7. The number
of “increasing” numbers of the form 2bc is T6. The number of “increasing” numbers of the
form 3bc is T5. Continuing this pattern the number of “increasing” numbers of the form 7bc
is T8−7 = Tl = l. Thus the total number of “increasing” numbers abc is

7∑

k=1

Tk .
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We can evaluate this to find its value given by 84.

Next we look for “decreasing” numbers of the form abc. To do that lets start with a = 9.
Then we are considering numbers of the form 9bc with 9 > b > c. We can have

• b = 8 so that our number is 98c and to have 8 > c there are eight choices for c i.e.
c ∈ {7, 6, 5, 4, 3, 2, 1, 0}

• b = 7 so that our number is 97c and to have 7 > c there are seven choices

• b = 6 so that our number is 96c and to have 6 > c there are six choices

• Continuing this logic

• b = 2 so that our number is 92c and to have 2 > c there is one choice

Thus there are

1 + 2 + 3 + · · ·+ 7 + 8 =
9(8)

2
= 36 ,

“decreasing” numbers of the form 9bc. Note that this number is T8. We could now do the
same for numbers of the form 8bc and would find that there are T7 of them. The logic at this
point is the same as that in the previous part. In total, the number of “decreasing” numbers
abc are

8∑

k=1

Tk .

We find this number to be 120.

Adding this number to the number of “increasing” numbers we get a total of 84+120 = 204
total numbers of the required type.

Problem 18

The first few powers of three are

31 = 3

32 = 9

33 = 27

34 = 81

35 = 243 .

Thus the units value for powers of three take the form {3, 9, 7, 1} and then repeat. This
means that when a is drawn from the given set of 100 numbers i.e. {1, 2, 3, . . . , 99, 100}
there are 100

4
= 25 of them where 3a will have a units digit of each of the choices {3, 9, 7, 1}.
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The first few powers of seven are

71 = 7

72 = 49

73 = 343

74 = 2401

75 = 16807 .

Thus the units value for powers of seven take the form {7, 9, 3, 1} and then repeat. This
also means that when b is drawn from the given set of 100 numbers i.e. {1, 2, 3, . . . , 99, 100}
there are 100

4
= 25 of them where 7b will have a units digit of each of the choices {7, 9, 3, 1}.

To get a units digit of an eight in a sum of the form 3a + 7b we need to have the units digit
of 3a and 7b both nine, or the units digit of one be one and the other be seven.

Let U(n) be a function that returns the units digit of the number n, thus U(123) = 3 and
U(654321) = 1. Then the number of ways we could get a units digit of an eight is the size
of the set

[(U(3a) = 9) ∩ (U(7b) = 9)] ∪ [(U(3a) = 1) ∩ (U(7b) = 7)] ∪ [(U(3a) = 7) ∩ (U(7b) = 1)] .

In the union above the sets are distinct and we can simply sum the sizes of the three sets
above. We find

|(U(3a) = 9) ∩ (U(7b) = 9)| = 252 ,

as the draws of a and b are independent. The same calculation can be done for the other
two sets. The total number of possible units digits is 1002. Thus the probability we seek is

3(252)

1002
=

3

16
,

when we simplify.

Problem 19

Notice that we can write this fraction f(N) as

f(N) ≡ (N + 4− 4)2 + 7

N + 4
=

(N + 4)2 − 8(N + 4) + 16 + 7

N + 4

= N + 4− 8 +
23

N + 4
= N − 4 +

23

N + 4
.

Now I claim that this fraction f will not be in lowest terms if N + 4 is a multiple of 23 i.e.
when N + 4 = 23k for some k. Lets check this for k = 1. If N + 4 = 23 then our fraction is

f(19) =
192 + 7

19 + 4
=

368

23
=

24 · 23
23

,
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which is not in lowest terms. For k = 2 we would have N + 4 = 2(23) or N = 42 we find

f(42) =
422 + 7

42 + 4
=

1771

46
=

7 · 11 · 23
2 · 23 ,

which is also not in lowest terms.

We now ask for how many N such that 1 ≤ N ≤ 1990 or 4 ≤ N + 4 ≤ 1994 are multiples of
23. In terms of the multiples k these are

4

23
≤ N + 4

23
≤ 1994

23
,

or
0.173913 ≤ k ≤ 86.6957 .

Thus there are 86 possible values for k.

Problem 20

From the given problem note that

∠FBC + ∠FCB = 90◦ (492)

∠FCB + ∠FCD = 90◦ (493)

∠FCD + ∠EDC = 90◦ . (494)

If we subtract Equation 493 from 492 we get ∠FBC = ∠FCD. If we subtract Equation 494
from 493 we get ∠FCB = ∠EDC. Together these mean that

△BFC ∼ △CED ,

so
FC

ED
=
BF

EC
=
BC

DC
or

FC

5
=
BF

7
. (495)

In the same way as the above (using three sets of complementary angles) we can argue that
∠ADE = ∠BAF and ∠DAE = ∠ABF and so that △AED ∼ △BFA so

AF

ED
=
BF

AE
=
AB

AD
or

3 + EF

5
=
BF

3
. (496)

Using the fact that FC = EC − EF = 7 = EF in Equation 495 we have that

7− EF

5
=
BF

7
. (497)

This with Equation 496 gives two equations in the two unknowns EF and BF . Solving these
we get EF = 4 and BF = 21

5
= 4.2.
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Problem 21

Let the base of the pyramid be located at the points A =
(
−1

2
, 1
2
, 0
)
, B =

(
1
2
,−1

2
, 0
)
,

C =
(
1
2
, 1
2
, 0
)
, and D =

(
−1

2
, 1
2
, 0
)
. Note that the area of the base of this pyramid is one and

by symmetry the vertex of the pyramid is located at P = (0, 0, h) for some h. The volume
of the pyramid is then h

3
.

The angle 2θ is related to the points of the pyramid as from the dot product of

−→
PC · −−→PB = ||−→PC|| ||−−→PB|| cos(2θ) . (498)

Note that

−→
PC =

(
1

2
− 0

)

î+

(
1

2
− 0

)

ĵ + (0− h)k̂ =
1

2
î+

1

2
ĵ − hk̂

−−→
PB =

(
1

2
− 0

)

î+

(

−1

2
− 0

)

ĵ + (0− h)k̂ =
1

2
î− 1

2
ĵ − hk̂ .

These mean that −→
PC · −−→PB =

1

4
− 1

4
+ h2 = h2 ,

and

||−→PC|| =
√

1

4
+

1

4
+ h2 =

√

1

2
+ h2 = ||−−→PB|| .

Using these results Equation 498 becomes

h2 =

(
1

2
+ h2

)

cos(2θ) .

Solving for h2 we get

h2 =
cos(2θ)

2(1− cos(2θ))
.

If we recall the “double angle formula for cosign” or Equation 214 we can write

1− cos(2θ) = 2 sin2(θ) ,

and so

h2 =
cos(2θ)

4 sin2(θ)
so h =

√

cos(2θ)

2 sin(θ)
,

and the volume of our pyramid is then given by 1
3
of this or

√

cos(2θ)

6 sin(θ)
.
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Problem 22

For x we have
x6 = −64 = −26 = 26eiπ+2πik ,

for k ∈ Z. This means that the six solutions for xk are

xk = 2e
πi
6
+ 2πi

6
k = 2e

πi
6
+πi

3
k .

for k ∈ {0, 1, 2, 3, 4, 5}. If we compute these we find

x0 = 2e
iπ
6 = 2

(

cos
(π

6

)

+ i sin
(π

6

))

= 2

(√
3

2
+
i

2

)

x1 = 2e
iπ
6
+ iπ

3 = 2e
iπ
2 = 2(0 + i)

x2 = 2e
iπ
6
+ i2π

3 = 2e
i5π
6 = 2

(

−
√
3

2
+
i

2

)

x3 = 2e
iπ
6
+iπ = 2e

i7π
6 = 2

(

−
√
3

2
− i

2

)

x4 = 2e
iπ
6
+ i4π

3 = 2e
i3π
2 = 2(0− i)

x5 = 2e
iπ
6
+ i5π

3 = 2e
i11π
6 = 2

(√
3

2
− i

2

)

.

The product desired is then given by

x0x5 = 2e
iπ
6 · 2e i11π

6 = 4e
i2π
6 = 4ei2π = 4 .

Problem 23

Write the first equation as
ln(x)

ln(y)
+

ln(y)

ln(x)
=

10

3
.

If we let v = ln(x)
ln(y)

then the above can be written as

v2 − 10

3
v + 1 = 0 .

Solving this we see that the two solutions are

v ∈
{
1

3
, 3

}

.

This means that
ln(x)

ln(y)
=

1

3
or

ln(x)

ln(y)
= 3 .
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These mean that
x = y1/3 or x = y3 .

Putting these into xy = 144 we get

y4/3 = 144 or y4 = 144 .

Solving these and then solving for x we find

y = 1443/4 and x = 1441/4

y = 1441/4 and x = 1443/4 .

In either case we have

1

2
(x+ y) =

1

2
(1443/4 + 1441/4) = 13

√
3 ,

when we simplify.

Problem 24

In Adams high school let bA be the number of boys and gA be the number of girls. Then
from the averages given in that school we have

71bA + 76gA
bA + gA

= 74 ,

or
71bA + 76gA = 74bA + 74gA ,

or
−3bA + 2gA = 0 . (499)

In Baker high school let bB be the number of boys and gB be the number of girls. Then from
the averages given in that school we have

81bB + 90gB
bB + gB

= 84 ,

or
−bB + 2gB = 0 . (500)

Now for the average of the boys in Adams and Baker we have

71bA + 81bB
bA + bB

= 79 ,

or multiplying by bA + bB and simplifying we get

−4bA + bB = 0 . (501)
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We want to evaluate
76gA + 90gB
gA + gB

.

In this we will use Equation 499 to replace gA with bA and Equation 500 to replace gB with
bB to get

76
(
3
2
bA
)
+ 90

(
1
2
bB
)

3
2
bA + 1

2
bB

,

which simplifies to
228bA + 90bB
3bA + bB

.

Use Equation 501 to replace bB with bA to get

228bA + 90(4bA)

3bA + (4bA)
= 84 .

Problem 25

Lets imagine the cube in a three dimensional Cartesian coordinate system. We can place
the corners of the cube at the (x, y, z) locations

(
1

2
,
1

2
,±1

2

)

,

(
1

2
,−1

2
,±1

2

)

,

(

−1

2
,
1

2
,±1

2

)

,

(

−1

2
,−1

2
,±1

2

)

.

Then one sphere is located with its center at (0, 0, 0). This sphere is surrounded by four
spheres “above” and “below” it. If we imagine the four spheres “above” this center sphere
note that if they have a radius of r then their centers must be located offset from the corner
of the square by (r, r, r) and so at the points
(
1

2
− r ,

1

2
− r ,

1

2
− r

)

,

(
1

2
− r ,−1

2
− r ,

1

2
− r

)

,

(

−1

2
− r ,

1

2
− r ,

1

2
− r

)

,

(

−1

2
− r ,−1

2
− r ,

1

2
− r

)

.

The distance from each of these four points to the center of the central sphere located at
(0, 0, 0) is given by 2r. Selecting the point

(
1

2
− r ,

1

2
− r ,

1

2
− r

)

,

this means that

(2r)2 =

(
1

2
− r

)2

+

(
1

2
− r

)2

+

(
1

2
− r

)2

.

If we expand and simplify this we get

r2 + 3r − 3

4
= 0 .

Solving this we find

r =
−3± 2

√
3

2
,

of which only the plus sign gives a positive value for r.
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Problem 26

Let the number each person picks be given by xi for 1 ≤ i ≤ 10. Here i = 1 is the “Northern
most” person and the people are enumerated clockwise around this circle. From the averages
given that are announced we have

2(1) = x10 + x2 (502)

2(2) = x1 + x3 (503)

2(3) = x2 + x4 (504)

2(4) = x3 + x5 (505)

2(5) = x4 + x6 (506)

2(6) = x5 + x7 (507)

2(7) = x6 + x8 (508)

2(8) = x7 + x9 (509)

2(9) = x8 + x10 (510)

2(10) = x9 + x1 . (511)

This problem asks us to find the value of x6. Using Equations 506, 504 502, 510, and 508
(in that order) we get a single equation involving x6. We have

x6 = 10− x4

= 10− 6 + x2 = 4 + x2

= 4 + (2− x10) = 6− x10

= 6− (18− x8) = −12 + x8

= −12 + (14− x6) = 2− x6 .

We can solve this for x6 where we find x6 = 1.

Problem 27

Given the ith height hi (altitude) for 1 ≤ i ≤ 3 the area of the triangle is given by

A =
1

2
bihi ,

where bi is the “base” (i.e. side) of the triangle that the ith height impinges on. Thus

bi =
2A

hi
,

for 1 ≤ i ≤ 3. The triangle inequality means that

b1 + b2 > b3 ,

for any ordering of the sides. In terms of hi this is

1

h1
+

1

h2
>

1

h3
.
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If we are looking for a violation of this fact then lets order the three heights given as h1 ≥
h2 ≥ h3 which is opposite the order given. We can then check this inequality for the given
altitudes. We find

• 1
2
+ 1√

3
= 1.07735 > 1

1
= 1 which is true.

• 1
5
+ 1

4
= 0.45 > 1

3
= 0.333333 which is true.

• 1
13

+ 1
12

= 0.160256 > 1
5
= 0.2 which is not true.

• 1√
113

+ 1
8
= 0.219072 > 1

7
= 0.142857 which is true.

• 1
17

+ 1
15

= 0.12549 > 1
8
= 0.125 which is true.

Thus (C) is not possible for a set of altitudes.

Problem 30

Note that for the given values for a and b we have

ab = (3 + 2
√
2)(3− 2

√
2) = 9− 8 = 1 ,

and
a + b = 2 · 3 = 6 .

Next lets try to get a recurrence relationship for Rn. If we multiplying the definition of Rn

by a + b we get

Rn(a+ b) =
1

2
(an+1 + abn + ban + bn+1) = Rn+1 +

1

2
(abn + ban) .

As ab = 1 the above becomes

Rn(a+ b) = Rn+1 +
1

2
(bn−1 + an−1) = Rn+1 +Rn−1 .

Now using the fact that a + b = 6 we can write the above as

Rn+1 = 6Rn − Rn−1 . (512)

From the definition of Rn we have
R0 = 1 ,

and

R1 =
1

2
(a+ b) = 3 .

Using these two values and Equation 512 we have

R2 = 6R1 − 1 = 6(3)− 1 = 17 ,
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and
R3 = 6(17)− 3 = 99 .

At this point the units digits of Rn for 0 ≤ n ≤ 3 are

1 , 3 , 7 , 9 .

We will use Equation 512 to see if we can find a pattern in the units digit. Using the following
R code

Rs = c(1, 3)

for( n in seq(2, 15) ){

n = length(Rs)

Rs = c(Rs, 6*Rs[n] - Rs[n-1])

}

Rs = data.frame(n=seq(0, length(Rs)-1), Rn=Rs, Units=(Rs %% 10))

print(Rs)

we get the following table

n Rn Units

1 0 1 1

2 1 3 3

3 2 17 7

4 3 99 9

5 4 577 7

6 5 3363 3

7 6 19601 1

8 7 114243 3

9 8 665857 7

10 9 3880899 9

11 10 22619537 7

12 11 131836323 3

13 12 768398401 1

14 13 4478554083 3

15 14 26102926097 7

16 15 152139002499 9

From this we see that the units digit repeats at a period of six so

UnitsDigit(Rn+6) = UnitsDigit(Rn) .

If we “divide” 12345 by six we find that

12345 = 2057× 6 + 3 .

This means that
UnitsDigit(R12345) = UnitsDigit(R3) = 9 .
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The 1991 AHSME Examination (AHSME 42)

Problem 1

For this we have

(1,−2,−3) =
−3 + 1

−3 + 2
= 2 .

Problem 2

This is |3− π| = π − 3.

Problem 3

This would be

(4−1 − 3−1)−1 =

(
3

12
− 4

12

)−1

=

(

− 1

12

)−1

= −12 .

Problem 4

An isosceles triangle has two equal sides. A scalene triangle has all sides of unequal length.
An obtuse triangle has one angle greater than ninety degrees. Thus an obtuse right triangle
would have a right angle and another angle greater than ninety degrees. The sum of these
two would be larger than 180 degrees which is not possible.

Problem 5

We can write the area of this polygon in terms of the “rectangle” part (first) and the “tri-
angle” part (second) as

A = 10(20) +
1

2
bh = 200 + 10(10) = 300 .

Here the area of the “triangle” part is the area of a isosceles triangle with a base b =
5 + 10 + 5 = 20 and angles ∠ABC = ∠AGF = 45◦. This means that this triangle has a
height given by

h

10
= tan(45◦) = 1 thus h = 10 .
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Problem 6

Call this expression E. We can simplify the given expression as

E =

√

x

√

x
√
x =

√

x
√

xx
1
2

=

√

x
√

x
3
2 =

√

x− x
3
4

=
√

x
7
4 = x

7
8 .

Problem 7

We have
a+ b

a− b
=

a
b
+ 1

a
b
− 1

=
x+ 1

x− 1
.

Problem 8

The volume of the liquid X in the box is

6 · 3 · 12 ,

centimeters cubed. The volume of liquid X when pored out is

(πr2)0.1 ,

in the same units. If we set these equal and solve for r we get

r =

√

2160

π
.

Problem 9

If we start with a population P at time t = 0 then the fractional change at t = 2 is given by

P
(
1 + i

100

) (
1 + j

100

)
− P

P
=

i

100
+

j

100
+

ij

104
.

The percent change is this multiplied by 100 or

i+ j +
ij

100
.
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Problem 10

For this problem I drew two concentric circles (centered on C) with the smaller one having
a radius r = 9 and the larger one having a radius of R = 15. Then P is a point on the inner
circle and let the two endpoints of the chord be denoted A and B. Then as the endpoints
of the chord AB are on the outer circle, the distance from the circle center C to each of A
and B is fifteen. The distance AB can be computed with the law of cosigns as

AB2 = R2 +R2 − 2R2 cos(∠ACB) ,

or
AB2 = 2R2(1− cos(∠ACB)) .

With R = 15 this is

AB = 15
√

2(1− cos(∠ACB)) = 3 · 5
√

2(1− cos(∠ACB)) . (513)

Now if we think about the possible values for the angle ∠ACB we see that the largest ∠ACB
can be is when the chord AB passes through C so that ∠ACB = π. In this case the length
of the chord is 2R = 30.

The smallest angle is when the chord AB is perpendicular (tangent) to the smaller circle so
that CP ⊥ AB. If we draw this situation the triangle △ACB is isosceles with its vertex
angle ∠ACB, with two equal sides of length R = 15 and a height h = CP = r = 9. This
means that each half of this isosceles triangle is a right triangle with its other leg of length

√
152 − 92 =

√
144 = 12 .

This means the shortest cord has a length of 2× 12 = 24.

Note that the possible angles given above are for the segment AB to one side of the segment
CP . There are another symmetric set of angles for ∠ACB on the other side.

As the longest chord is of length 30 and the smallest chord is of length 24 as we change the
angle ∠ACB we move continuously between these two values. There are 30 − 24 + 1 = 7
integers inclusive between 30 and 24. Counting the symmetry above we would have 2×7 = 14
integer length chords but that would double count the cords of length 30 and 24 and thus
we have 14− 2 = 12 cords of integer length.

Problem 11

After the ten minute (1/6th of an hour) head start Jack is at the location

1

6
(15) =

5

2
,

kilometers from the start while Jill is still at the starting location.
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Jack will take
5− 5/2

15
=

1

6
,

of an hour more to get to the top of the hill five kilometers away. After this amount of time
Jill will be at the location

1

6
(16) =

8

3
,

kilometers from the start. At this point Jack starts coming back down the hill. For t in
hours the location of Jill (from their joint starting point) is given by

xJill =
8

3
+ 16t ,

while the location of Jack (from their joint starting point) is at

xJack = 5− 20t .

They will meet when these two expressions are equal. Setting these equal and then solving
for t gives t = 7

108
hours. At this time Jack will be 5− xJack from the top or

20× 7

108
=

35

27
,

kilometers.

Problem 12

Recall that the sum of the interior angles in a n sided polygon is given by Equation 5. If
n = 6 this gives the value 720◦. Lets denote the values of the internal angles by the sequence

m,m− d ,m− 2d ,m− 3d ,m− 4d ,m− 5d .

Here m is the largest internal angle. Then the sum of these is given by

6m− d
5∑

i=1

i = 6m− d

(
5(6)

2

)

= 6m− 15d .

From the above we must have
6m− 15d = 720 ,

or dividing by three we have
2m− 5d = 240 . (514)

As 5 | 240 and 5 | 5d we must have that 5 | m where the symbol | means “divides”. To be
convex means that m < 180◦. The smallest integer less than 180 and divisible by five is 175.
Taking this number in Equation 514 we get d = 22 and the internal angles are

175 , 153 , 131 , 109 , 87 , 65 .
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Problem 13

The probability that X wins is 1
4
. The probability that Y wins is 3

5
. The probability that Z

wins is then

1− 1

4
− 3

5
=

3

20
.

The probability that Z looses is then 17
20
. The odds against Z winning are then 17-to-3.

Problem 14

Let n be the number we cube and consider the prime factorization of n so that

n3 = (pn1
1 p

n2
2 · · · pnk−1

k−1 p
nk
k )3 = p3n1

1 p3n2
2 · · ·p3nk−1

k−1 p3nk
k .

where p1 , p2 , . . . pk−1 , pk are distinct primes and ni ≥ 1 for 1 ≤ i ≤ k.

To count the number of divisors of the number n3, note that from the first factor any number
of the form

pt11 ,

for t1 and integer in the range 0 ≤ t1 ≤ 3n1 will be a factor of n3. There are 3n1+1 integers
in this range and thus 3n1 + 1 numbers of the form pt11 .

From the second factor any number of the form

pt22 ,

for t2 and integer in the range 0 ≤ t2 ≤ 3n2 will also be a factor of n3. There are 3n2 + 1
integers in this range and thus 3n2+1 numbers of the form pt22 . The product of two numbers
of this form will also be a divisor of n3. Following this pattern we see that in general all
divisors of n3 will be numbers of the form

pt11 p
t2
2 · · · ptk−1

k−1 p
tk
k ,

with 0 ≤ ti ≤ 3ni for all 1 ≤ i ≤ k. There are 3ni + 1 numbers for each i and thus

k∏

i=1

(3nk + 1) ,

total divisors of n3. A number of this form can be written as 3n+1 for some integer n. The
only numbers (from the choices possible) that is of this form is 202.

Problem 15

If we space the people out with a gap of two between each person then placing another
person in any of those gap seats will force that new person to be sitting next to an existing
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person. When you diagram this you are specifying the sequence: filled, empty, empty, filled,
empty, empty, filled, empty, empty, etc. These are “groups” of three chairs with one person
placed per group. There are

60

3
= 20 ,

groups/persons that we can place at a 60 seat table. Thus N = 20.

Problem 16

Let m be the number of seniors taking the AHSME and n the number of non-seniors taking
the AHSME. Then we are told that

m+ n = 100 , (515)

and
n = 1.5m. (516)

Solving these two equations we find m = 40 and n = 60. Next let S be the sum of the
seniors’ scores and O (for other) be the sum of the non-seniors scores on the AHSME. We
are told that

1

100
(S +O) = 100

1

m
S = 1.5

(
1

n
O

)

.

Since we know m and n we can solve the above for S and O and find S = O = 5000. This
means that the average of the seniors is given by 1

m
S = 5000

40
= 125.

Problem 17

All two digit palindromes must look like dd for some digit d where 1 ≤ d ≤ 9. Trying
different values for d we see that the only two digit prime palindromes is 11.

Next the range of possible choices for the three digit prime factor n must be such that

1000 ≤ 11n ≤ 2000 ,

or
90.9091 ≤ n ≤ 181.818 .

As n is an integer we have that
91 ≤ n ≤ 181 .

As we need n to be three digits we are further restricted to

100 ≤ n ≤ 181 .
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n Prime or Not
101 Yes
111 No
121 No
131 Yes
141 No
151 Yes
161 No
171 No
181 Yes

Table 13: Numbers of the form 1m1.

Our three digit palindrome n in terms of its digits takes the form dmd. We cannot have
d ∈ {0, 2, 4, 5, 6, 8} or else dmd will not be a prime number. Thus d ∈ {1, 3, 7}. From the
above considerations we must have d = 1. We can then enumerate all numbers of the form
1m1 from the above range and determine if they are prime. This is done in Table 13.

Using the above table we find the numbers with the properties requested are

11× 101 , 11× 131 , 11× 151 , 11× 181 ,

or four numbers.

Problem 18

Let our real number be r. Then our condition is that

(3 + 4i)z = r .

Then solving for z we have

z =
r

3 + 4i
=
r(3− 4i)

9− 16
=
r(3− 4i)

−5
=
r

5
(−3 + 4i) .

This means

z = x+ iy = −3r

5
+

4r

5
.

Thus

x = −3r

5

y =
4r

5
.

Solving for r in the first equation we have r = −5
3
x. Putting this into the second equation

gives

y = −4

3
x ,

which is a line through the origin.
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Problem 19

As we are told that DE is parallel to AC we have that ∠DEC = 90◦. Using the Pythagorean
theorem in the right triangle △ACB we get that AB = 5. Using the Pythagorean theorem
in the right triangle △DAB we get that

DB2 = 122 + 52 = 169 so DB = 13 .

Next recall that the sum of the interior angles in a n sided polygon is given by Equation 5
thus when n = 4 we find this sum to be 360◦. As ∠C = ∠E = ∠DAB = 90◦ this becomes

3× 90 + ∠CAB + ∠ADE = 360 .

Which is equivalent to
∠ADE = 90− ∠CAB = ∠CBA ,

where in the last step we have used the fact that triangle △ACB is a right triangle.

Note that the expression we want or DE
DB

is equal to cos(∠BDE) which we can write as

cos(∠BDE) = cos(∠EDA− ∠ADB)

= cos(∠EDA) cos(∠ADB) + sin(∠EDA) sin(∠ADB) . (517)

AS ∠EDA = ∠CBA using △ACB we see that

cos(∠EDA) =
4

5

sin(∠EDA) =
3

5
.

Thus Equation 517 becomes

DE

DB
=

4

5
cos(∠ADB) +

3

5
sin(∠ADB) .

Using △DAB we see that

cos(∠ADB) =
12

13

sin(∠ADB) =
5

13
,

Using these Equation 517 becomes

DE

DB
=

4

5
· 12
13

+
3

5
· 5

13
=

63

65
.

This means that m = 63 and n = 65 so that m+ n = 128.
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Problem 20

Let

v = 2x − 4

w = 4x − 2 ,

then the given expression is
v3 + w3 = (v + w)3 .

We can factor the left-hand-side of this to get

(v + w)(v2 + vw + w2) = (v + w)3 .

One solution to this is if v + w = 0. In terms of x this means that

4x + 2x − 6 = 0 ,

or factoring
(2x + 3)(2x − 2) = 0 .

To make the above true we need 2x = −3 (which has no real solutions) or 2x = 2 which has
the solution x = 1.

To find other solutions we assume that v + w 6= 0 and divide by it to get

v2 + vw + w2 = (v + w)2 .

If we expand the right-hand-side and then simplify we get

wv = 0 .

This means that
(2x − 4)(4x − 2) = 0 .

The two solutions to this are 2x = 4 (or x = 2) and 4x = 2 (or x = 1
2
). Thus the sum of all

real solutions is given by

1 + 2 +
1

2
=

7

2
.

Problem 21

In the given expression let

v =
x

x− 1
,

and solve for x in terms of v to get

x =
v

v − 1
.

This means that

f(v) =
1
v

v−1

=
v − 1

v
= 1− 1

v
.

From this we find that
f(sec2(θ)) = 1− cos2(θ) = sin2(θ) .
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Problem 22

By symmetry, we can draw a line from the center of the larger circle (denoted O) through the
center of the smaller circle (denoted o) and then through the point P . Draw the segments
OB and oA which by tangents will both be perpendicular to the segment BP . Let the larger
circle have a radius R, the smaller circle have a radius r, and the distance along the line
OoP from the “edge” of the smaller circle to the point P by l.

First using the Pythagorean theorem in the right triangle △oAP we have

42 + r2 = (r + l)2 . (518)

Next by the similar triangles △OBP ∼ △oAP we have

OB

oA
=
BP

AP
or

R

r
=

8

4
= 2 ,

thus R = 2r.

Using these two similar triangles again we have

OP

oP
=
R + 2r + l

r + l
=
BP

AP
=

8

4
= 2 ,

so we end with
R + 2r + l = 2r + 2l ,

so l = R = 2r.

If we use what we know in Equation 518 to write everything in terms of r we get

16 + r2 = (3r)2 or r2 = 2 .

This means that πr2 = 2π.

Problem 23

Let A = (0, 0), C = (2, 0), D = (2, 2), and A = (0, 2) so that F = (1, 0) and E = (0, 1).
Then the line ED is

y − 1 =

(
2− 1

2− 0

)

(x− 0) or y = 1 +
x

2
.

The line BE is y = x. The line AF is

y − 2 =

(
0− 2

1− 0

)

x or y = 2− 2x .
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Now point I is the intersection of AF and ED which has an x coordinate of

2− 2x = 1 +
x

2
or x =

2

5
.

For this x we have y = 6
5
and thus I =

(
2
5

6
5

)
.

Now point H is the intersection of BD and AF which has an x coordinate of

x = 2− 2x or x =
2

3
.

For this x we have y = 2
3
and thus H =

(
2
3

2
3

)
.

We now compute several areas. Note that

Area△AIE =
1

2
(1)

(
2

5

)

=
1

5

Area△BHF =
1

2
(1)

(
2

3

)

=
1

3

Area△ABF =
1

2
(2)(1) = 1 .

Using these areas we have

Area [EIHB] = Area△ABF −Area△AIE −Area△BHF = 1− 1

5
− 1

3
=

7

15
.

Problem 24

The mapping between the original space and the rotated space is best derived/remembered
by using polar coordinates. For a counter-clockwise rotation the new point z′ = r′eiθ

′

gets
mapped to the point

z = reiθ = r′ei(θ
′−π

2 ) ,

as the new angle θ′ must be larger than the original angle θ by π
2
. Note that we can write

the above as
z = r′eiθ

′

(−i) = −iz′ .
This means that the new location (x′, y′) relative to the old location (x, y) is given by

x+ iy = −i(x′ + iy′) = y′ − ix′ ,

or

x = y′

y = −x′ .

Using these in the equation y = log10(x) we get

−x′ = log10(y
′) or y′ = 10−x′

.

765



Problem 25

From the definition of Tn and a summation identity we have

Tn =
1

2
n(n+ 1) .

This means that

Tn
Tn − 1

=
1
2
n(n+ 1)

1
2
n(n + 1)− 1

=
n2 + n

n2 + n− 2
=

n(n + 1)

(n− 1)(n+ 2)
.

Note that this fraction is larger than one for n ≥ 2. Using this the expression for Pn can be
written as

Pn =
n∏

k=2

Tk
Tk − 1

=
n∏

k=2

k(k + 1)

(k − 1)(k + 2)

=

∏n
k=2 k(k + 1)

∏n
k=2(k − 1)(k + 2)

=
(
∏n

k=2 k)
(∏n+1

k=3 k
)

(∏n−1
k=1 k

) (∏n+2
k=4 k

)

=

(
n ·
∏n−1

k=2 k
) (

3 ·
∏n+1

k=4 k
)

(
1 ·
∏n−1

k=2 k
) (

(n+ 2) ·
∏n+1

k=4 k
) =

3n

n + 2
.

As we want to evaluate this for n = 1991 (a relatively large value for n) we write the above
as

Pn = 3

(
n+ 2− 2

n+ 2

)

= 3

(

1− 2

n + 2

)

.

Then we find

P1991 = 3

(

1− 2

1993

)

≈ 3

(

1− 2

2000

)

= 3(1− 0.001) = 3− 0.003 = 2.997 .

Problem 26

Let the six digits of this number be given by d1, d2, d3, d4, d5, d6. Then as every digit is
divisible by one the first digit d1 can be anything. As we need d1d2d3d4d5 divisible by five
we have that d5 = 5.

As we need d1d2, d1d2d3d4, and d1d2d3d4d5d6 divisible by two, four, and six respectively we
need to have d2, d4, and d6 all be even numbers. Using the digits {1, 2, 3, 4, 5, 6} this means
that the possible values of these digits are given by the templates in Table 14.

Now for the number d1d2d3d4 to be divisible by four means that the number d3d4 must be
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d1 d2 d3 d4 d5 d6
2 4 5 6
2 6 5 4
4 2 5 6
4 6 5 2
6 2 5 4
6 4 5 2

Table 14: Possible choices for the digits {2, 4, 6} in a six digit cute number.

divisible by four. Some multiples of four that have two digits are given by

4× 3 = 12

4× 4 = 16

4× 5 = 20

4× 6 = 24

4× 8 = 28

4× 9 = 32

4× 10 = 36

4× 11 = 40

4× 12 = 44

4× 13 = 48

4× 14 = 52

4× 15 = 56

4× 16 = 60

4× 17 = 64

4× 18 = 68

4× 19 = 72 .

Note that for larger multiples of four, the product will include the digits seven, eight, nine
or have three digits and thus is not a valid two digit number for this problem. Now some of
the two digit numbers above are actually not possible for this problem. For example the two
digit number d3d4 cannot have the digit zero, or have repeated digits, or include the digit
five. Because of this, the valid the multiples of four that are two digits and end in a two are
then

12 , 32 .

The valid multiples of four that end in a four are then

24 , 64 .

The valid multiples of four that end in a six are then

16 , 36 .
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Next we place these possible two digit numbers into the locations in Table 14. For example,
one of the multiples of four that end in a two is 12 and this could possibly be placed into
rows three and five to give the numbers

?41256 and ?61254 .

Using the final missing digit these would need to become the numbers

341256 and 361254 .

Each of these numbers is not cute as three does not divide the first three digits of each i.e.
341 or 361.

The other multiples of four that end in a two is 32 and again this could possibly be placed
into rows three and five to give the numbers

?43256 and ?63254 .

Using the final missing digit (of one) these would need to become the numbers

143256 and 163254 .

Each of these numbers is not cute as three does not divide 143 or 163.

Next, one of the multiples of four that end in a four is 24 and this could possibly be placed
into rows one and six to give the numbers

?22456 and ?62452 .

Each of these numbers has a duplicate two’s digit and is thus not cute.

The other multiples of four that end in a four is 64 and again this could possibly be placed
into rows one and six to give the numbers

?26456 and ?66452 .

Each of these numbers has a duplicate six’s digit and is thus not cute.

Next, one of the multiples of four that end in a six is 16 and this could possibly be placed
into rows two and four to give the numbers

?21654 and ?41652 .

Using the final missing digit (of three) these would need to become the numbers

321654 and 341652 .

This first number is cute. Three does not divide 341 and so the second number is not cute.

The other multiples of four that end in a six is 36 and again this could possibly be placed
into rows two and four to give the numbers

?23654 and ?43652 .

768



Using the final missing digit (of one) these would become the numbers

123654 and 143652 .

This first number is cute. Three does not divide 143 and so the second number is not cute.

In summary then we have found two cute six digit numbers

321654 and 123654 .

Problem 27

Multiply the second fraction on the left-hand-side by the “form of one” given by

x+
√
x2 − 1

x+
√
x2 − 1

,

to get

x+
√
x2 − 1 +

x+
√
x2 − 1

x− (x2 − 1)
= 20 ,

or
x+

√
x2 − 1 + x+

√
x2 − 1 = 20 ,

or
x+

√
x2 − 1 = 10 ,

or √
x2 − 1 = 10− x .

If we square this we get
x2 − 1 = 100− 20 + x2 .

Solving for x we get x = 101
20
. Now let the expression we want to evaluate be denoted by E.

Then applying the same trick i.e. by multiplying the second fraction on the left-hand-side
by the “form of one” this time given by

x2 −
√
x4 − 1

x2 −
√
x4 − 1

,

we get

E = x2 +
√
x4 − 1 + +

x2 −
√
x4 − 1

x4 − (x4 − 1)
= 2x2 .

For the value of x found above we have

E = 2

(
101

20

)2

= 51.005 .

769



Problem 28

For this problem we repeatedly draw three marbles from the urn. On each draw, we look at
the three marbles and then depending on which of the four cases from the problem we have
drawn we make the given substitution.

In all cases, we start with three marbles and remove them and replace them with either
one, two, two, or two marbles. Thus each application of this procedure will reduce the total
number of marbles in the urn by one or two. Thus, if it is possible to end with the given
configurations we must imagine the three marbles in the urn before the last application of
this procedure. Some “final configurations” can be eliminated using this logic. For example,
it is not possible to start with the final three marbles (of any color) and end up with either
two black marbles or one white marble. Thus choices (A) and (E) are not possible.

Next notice that the net change in colors for each of the given transformations is given by

• −3B +B = −2B

• −2B −W +B +W = −B

• −B − 2W + 2W = −B

• −3W +B +W = −2W +B

Notice that we only ever decrease the white marbles by two. Thus given that we start with
an even number we will always have an even number of white marbles. This means that the
final three marbles could not be

• three white or

• one white with 2 black

Both of these “map to” choice (D) meaning that it is not possible.

Finally, notice that every set that removes any white marbles places some white marbles
back in the urn. Thus we cannot ever end this procedure with zero white marbles. This
means that choice (C) is not possible. These considerations mean that only choice (B) is
possible.

Problem 29

From the way the figure is constructed we have ∠BAC = ∠ABC = ∠ACB = ∠PA′Q = 60◦,
∠APQ = ∠QPA′, ∠AQP = ∠PQA′, AP = PA′, and AQ = QA′. Thus we have that

△APQ ∼= △A′PQ .
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Summing the three angles in the triangle △A′PB we have

∠BA′P + ∠A′PB + 60 = 180 .

Considering the supplementary angles at A′ we have

∠BA′P + 60 + ∠QA′C = 180 .

If we subtract these two equations we get that ∠A′PB = ∠QA′C. Using this with the fact
that ∠QCB = ∠ABC = 60◦ we have

△BA′P ∼ △CQA′ ,

from this since BA′ = 1 and A′C = 2 we have

BP

2
=

1

QC
=
PA′

A′Q
. (519)

Using the fact that BP = 3− PA, QC = 3−AQ, PA′ = PA, and A′Q = AQ we can write
the above as

3− PA

2
=

1

3− AQ
=
PA

AQ
.

Let x = PA and y = AQ and the above are the two equations

(3− x)(3− y) = 2

y = x(3− y) .

Expanding we get

9− 3y − 3x+ xy = 2 (520)

y = 3x− xy . (521)

From the last equation we get xy = 3x− y which if we put into Equation 520 and simplify
gives

7− 4y = 0 so y =
7

4
.

Using this in Equation 521 will give x = 7
5
. As we now know the lengths of PA′ and QA′ we

can use the law of cosigns to compute PQ2. We have

PQ2 = PA′2 + A′Q
2 − 2PA′A′Q cos(∠PA′Q)

=

(
7

5

)2

+

(
7

4

)2

− 2

(
7

5

)(
7

4

)

cos(60) =
49 · 21
16 · 25 .

Thus PQ = 7
√
21

20
.
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Problem 30

Recalling that n(S) = 2|S| we can write the given expression as

2100 + 2100 + 2|C| = 2|A∪B∪C| ,

or
2101 + 2|C| = 2|A∪B∪C| ,

or
1 + 2|C|−101 = 2|A∪B∪C|−101 . (522)

Now the left-hand-side of the above is larger than one. Based on that the right-hand-side
must be larger than one and thus

|A ∪ B ∪ C| > 101 .

Also |A∪B ∪C| is an integer so the right-hand-side of Equation 522 will be a power of two.
The only way this can happen is if

|C| = 101 and|A ∪B ∪ C| = 102 .

The inclusion-exclusion formula states that

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C| .

Using what we know we can write

102 = 100 + 100 + 101− |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C| ,

or solving for what we want |A ∩B ∩ C| gives

|A ∩ B ∩ C| = |A ∩ B|+ |A ∩ C|+ |B ∩ C| − 199 .

Lets use |X ∩ Y | = |X|+ |Y | − |X ∪ Y | three times in the above to write

|A ∩B ∩ C| = |A|+ |B| − |A ∪B|
+ |A|+ |C| − |A ∪ C|
+ |B|+ |C| − |B ∪ C| − 199

= 200 + 200 + 202− 199− |A ∪ B| − |A ∪ C| − |B ∪ C|
= 403− (|A ∪ B|+ |A ∪ C|+ |B ∪ C|) .

As A∪B, A∪C, and B ∪C are subsets of A∪B ∪C they must have sizes that are smaller
than A ∪B ∪ C or 102. This means that

|A ∪ B|+ |A ∪ C|+ |B ∪ C| ≤ 306 ,

so that
|A ∩ B ∩ C| ≥ 403− 306 = 97 .

This is the smallest possible size for A ∩B ∩ C.
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The 1992 AHSME Examination (AHSME 43)

Problem 1

Write what we are given as

6(8x+ 10π) = 22 · 3(4x+ 5π) = 22P = 4P .

Problem 2

From the statement that 20% of the objects are beads we know that 80% of the objects must
be coins. From the statement that 40% of the coins are silver we know that 60% of the coins
are gold. This means that

0.8× 0.6 = 0.48 ,

or 48% of the objects are gold coins.

Problem 3

The equation for m as described is

m =
m− 3

1−m
or m3 = 3 .

The positive solution is m =
√
3.

Problem 4

The expression 3a is always odd regardless of the value of a. The expression b− 1 is even if
b is odd so (b− 1)2 is even. Then (b− 1)2c is even no mater what c is. Thus the sum

3a + (b− 1)2c ,

will be an odd number plus an even number and so is odd.

Problem 5

This is 6 · 66 = 67.
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Problem 6

Write the given expression as

xyyx

yyxx
=
xy

xx
· y

x

yy
= xy−xyx−y =

(y

x

)x−y

=

(
x

y

)y−x

.

Problem 7

The given statements mean that

w

x
=

4

3
(523)

y

z
=

3

2
(524)

z

x
=

1

6
. (525)

We want to evaluate w
y
. If we divide equation 523 by Equation 524 we get

w

x
· z
y
=

4

3
· 2
3
,

or
w

y

(z

x

)

=
8

9
.

Using Equation 525 we can write this as

w

y
= 6

(
8

9

)

=
16

3
.

This means that w : y = 16 : 3.

Problem 8

Considering a n = 5 square floor there are 5 black squares on each diagonal and so 2× 5− 1
black squares in both the diagonals avoiding “double counting” the central square. For a
n× n square floor there will be 2n− 1 diagonal squares. For this problem this means

2n− 1 = 101 so n = 51 .

The total number of tiles is then n2 = 2601.
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Problem 9

If we just add up the area of the five equilateral triangle we will double count the area of
overlap. If A(s) is the formula for the area of an equilateral triangle with side length s i.e.

A(s) =

√
3

4
s2 ,

then as the overlapping triangles are also equilateral triangles with sides of length s = 2
√
3

2
=√

3 the area requested would be

5A(2
√
3)− 4A(

√
3) =

√
3

4
(5(4 · 3)− 4 · 3) = 12

√
3 ,

when we simplify

Problem 10

As k and x are integer if we write the given expression as

12 = kx− 3k = k(x− 3) .

We see that both k and x− 3 must be integer factors of 12. As k ≥ 1 this means that

k ∈ {1, 2, 3, 4, 6, 12} .

We can then compute x− 3 = 12
k
to find that

x− 3 ∈ {12, 6, 4, 3, 2, 1} .

so the solutions x are
x ∈ {15, 9, 7, 6, 5, 4} .

Thus there are six solutions.

As an alternative but similar problem we can be given the equation

kx− 12 = 3x ,

and want to know for how many positive integers k does the above have integer solutions
for x. Note that in the above the right-hand-side is 3x and not 3k.

To solve this version of the problem we write the above as

(k − 3)x = 12 .

If k 6= 3 then we have

x =
12

k − 3
.
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As we are told that we want k to be a positive integer we know that k ≥ 1. In addition x
will not be an integer if

k − 3 ≥ 13 or k ≥ 16 .

Thus we can just enumerate all of the possible k’s between 1 ≤ k ≤ 15 (with k 6= 3) and
see which ones give integer solutions for x. We could do this by hand as there are not that
many numbers to compute but using R we have

ks = c(1:2, 4:15)

xs = 12/(ks-3)

print(xs)

The outputs of this are

[1] -6.000000 -12.000000 12.000000 6.000000 4.000000 3.000000

[7] 2.400000 2.000000 1.714286 1.500000 1.333333 1.200000

[13] 1.090909 1.000000

From the above we see that x is an integer for eight of these value for k.

Problem 11

Let r be the radius of the small circle and R be the radius of the larger circle. Then we are
told that R = 3r. Let O be the common circles center and let T be the point of tangent of the
segment BC with the smaller circle. Then OT is perpendicular to TC so the Pythagorean
theorem gives

TC2 + r2 = (3r)2 ,

so TC =
√
8r. As T is on the perpendicular bisector of BC we have that BT = TC =

√
8r,

so that BC = 2TC = 2
√
8r.

Next note that ∠ABC = 90 as B is on the circle and AC is a diameter. Another application
of the Pythagorean theorem gives

AB2 +BC2 = AC2 ,

or using what we know this is

122 + (2
√
8r)2 = (6r)2 .

If we expand and simplify this we find r = 6. This means that R = 3r = 18.
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Problem 12

The given line goes though the following two points
(
0, 11

3

)
and (−11, 0). Reflecting these

two points thought the x-axis we see that the point (−11, 0) will not change (it is its own
reflection) and the point

(
0, 11

3

)
will go to the point

(
0,−11

3

)
. This means that the new line

must satisfy

y − 0 =

(−11
3
− 0

0 + 11

)

(x+ 11) ,

or

y = −x
3
− 11

3
.

In this form we see that m = −1
3
and b = −11

3
so that

m+ b = −12

3
= −4 .

Problem 13

The given expression is equivalent to

a2 + b−1 = 13(a−1 + b) ,

or multiplying by ab we get
a2b+ a = 13(b+ ab2) ,

which we can write as
a(ab+ 1) = 13b(1 + ab) ,

or
a = 13b .

Now to have a + b ≤ 100 means that

13b+ b ≤ 100 so b ≤ 100

14
= 7.14286 .

For b to be a positive integer in this range means that b ∈ {1, 2, 3, 4, 5, 6, 7}. Thus there are
seven solutions.

Problem 14

The expression in I is the equation for of line. The expression II is equivalent to the line
in I but not at the point x = −2 where the right-hand-side is undefined. Thus II is the
same as the line in I but with the point (−2,−4) from that line “removed”. When x 6= −2
the expression III is equivalent to II but at x = −2 the value of y can be anything and the
expression evaluates is true. Thus none of these three are exactly equivalent.
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Problem 15

From the given relationship we have that

z1 = 0

z2 = i

z3 = −1 + i

z4 = (−1 + i)2 + i = 1− 2i− 1 + i = −i
z5 = (−i)2 + i = −1 + i = z3

z6 = z4 = −i
z7 = z5 = z3 .

Thus we see that we have z2n+1 = z3 for n ≥ 1 and z2n = −i for n ≥ 2. As 2n + 1 = 111
when n = 55 we have that z111 = −1 + i. Thus |z111| =

√
12 + 12 =

√
2.

Problem 16

Let u = x
y
and v = z

y
then write the given expression as

1

u− v
=
u+ 1

v
= u .

These are two equations in the two unknowns u and v given by

1

u− v
= u

u+ 1

v
= u .

We can write these as

1 = u2 − uv

u+ 1 = uv .

If we put the second equation into the first we get

u2 − u− 2 = 0 .

Solving this we get u ∈ {−1, 2}. As we are told that x and y are positive we have that u = 2.

Problem 17

We can sum the digits of the number N and see if N is divisible by three or nine. Summing
the digits requires us to keep track of the “pattern” in how the the digits of the number are
produced. Note that there is a 19 followed by a “pattern” and then followed by the digits
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909192. Note that for the groupings in the middle there is a simplified way to express the
sum of the digits. For example when we put down the numbers

20 , 21 , 22 , · · · , 29 ,

the sum of the digits will be

2× 10 +

9∑

1=0

1 = 2× 10 +
9(10)

2
= 2× 10 + 45 .

This observation can help sum the digits in the “middle” groups.

Thus grouping the terms like suggested above the sum of the digits in N (called D) can be
written as

De = 1 + 9 +

8∑

d=2

(d× 10 + 45) + (9(3) + (0 + 1 + 2))

= 10 + 27 + 3 + 10

8∑

d=2

d+ 45× (8− 2 + 1)

= 40 + 315 + 10(35) = 705 .

The sum of the digits in this number is 12 indicating that our number N is divisible by three
(but not nine), thus k cannot be larger than two and so k = 1.

Problem 18

Working “backwards” we find that

a7 = 120 = a5 + a6

= 2a5 + a4 = 2(a4 + a3) + a4 = 3a4 + 2a3

= 3(a3 + a2) + 2a3 = 5a3 + 3a2

= 5(a2 + a1) + 3a2

= 8a2 + 5a1 .

Now a1 and a2 are positive integers with a2 > a1. Because of that let a2 = a1+A for A ≥ 1.
Then we have

120 = 8(a1 + A) + 5a1 = 13a1 + 8A . (526)

From the fact that a1 ≥ 1 and A ≥ 1 we have that

a1 ≤
120− 8

13
= 8.61538 ,

and

A ≤ 120− 13

8
= 13.375 .
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From the above if we take a1 ∈ {1, 2, 3, 4, 5, 6, 7, 8} we can solve for A using Equation 526 to
get

A =
120− 13a1

8
.

Doing this we can see how many solutions give A a positive integer. For the range of a1
above I find the corresponding A given by

[1] 13.375 11.750 10.125 8.500 6.875 5.250 3.625 2.000

Thus only a1 = 8 gives an integer for A of A = 2. This means that working “forward” we
have

a2 = a1 + A = 8 + 2 = 10

a3 = a2 + a1 = 10 + 8 = 18

a4 = 18 + 10 = 28

a5 = 28 + 18 = 46

a6 = 46 + 28 = 74

a7 = 74 + 46 = 120

a8 = 120 + 74 = 194 ,

for the value of a8 asked for.

Problem 19

Let the the original cube have an edge length of s and imagine cutting off a “corner” of
the cube at the midpoints of s. This corner is a tetrahedron with three equal faces and an
unequal “base”. In the tetrahedron that is cut off three of its “edge” lengths will equal s

2
.

The “base” triangle of this tetrahedron will be an equilateral triangle with lengths a given
by

a2 =
(s

2

)2

+
(s

2

)2

,

since the corners of each face of the square meet at right angles. This means that a = s√
2
.

Using the formula for the area of an equilateral triangle with edge length of a given by

√
3

4
a2 ,

we get that the “base” of one of the tetrahedron has an area A0 of

A0 =

√
3s2

8
.

To determine the volume of this tetrahedron we need to determine its height.
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To determine this tetrahedron’s height we drop a perpendicular from the corner cube vertex
to the equilateral base triangle. Then using symmetry, this height should intersect the equi-
lateral triangle at the common angle bisectors (the incenter) and the common perpendicular
bisectors (the circumcenter). This height h forms one leg of a triangle with hypotenuse of
length s

2
. The other leg of this right triangle involving the height h is the hypotenuse of the

right triangle in the base equilateral triangle with a corner angle of

60

2
= 30◦ ,

and a leg length of
1

2

(
s√
2

)

=
s

2
√
2
.

This means that the hypotenuse from the corner of the base to the circumcenter/incenter of
the base has a length of

s
2
√
2

cos(30◦)
=

s√
6
.

Using this we can determine the length of the height using the Pythagorean theorem as

h2 =
(s

2

)2

−
(
s√
6

)2

=
s2

12
.

The volume V of one tetrahedron is now given by

V =
1

3
A0h =

1

3

(√
3s2

8

)(
s√
12

)

=
s3

48
.

There are eight tetrahedron’s with this volume for a total volume of the cuboctahedron given
by

s3 − 8

(
s3

48

)

=
5s3

6
.

The fraction of the original volume (of s3) this represents from the original cube is then
5
6
= 0.833333.

Problem 20

Connect the “points” A1 to A2, A3 to A4, A4 to A5 and so on until you have connected the
“tops” of the spikes forming a regular n sided regular polygon. Recall that the sum of the
interior angles of any polygon is

180(n− 2) ,

this means that for a regular n sided polygon each interior angle has a measure of

180(n− 2)

n
.
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Treating the angle names as “points” note that in the triangle △A1B1A2 since B1A1 = B1A2

we have an isosceles triangle with a vertex angle B1 = ∠A1B1A2. Let α be the measure of
one of these base angles. Then

2α + A1 =
180(n− 2)

n
. (527)

Using the fact that the triangle △A1B1A2 is an isosceles triangle we have

2α+B1 = 180 .

so that

α =
180−B1

2
.

If we put this into Equation 527 we get

180− B1 + A1 =
180(n− 2)

n
. (528)

We are told that B1 − 10 = A1 so −B1 + A1 = −10. Putting this into Equation 528 gives

−10 + 180 =
180(n− 2)

n
= 180− 360

n
.

Solving this for n gives n = 36.

Problem 21

From the definition of the Cesàro sum of A we are told that

S1 + S2 + S3 + · · ·+ S98 + S99

99
= 1000 ,

or using the definition of the partial sums we have

99a1 + 98a2 + 97a3 + · · ·+ 2a98 + a99
99

= 1000 .

The sum we are asked to evaluate can be written as

100(1) + 99a1 + 98a2 + 97a3 + · · ·+ 2a98 + a99
1000

= 1 +
99

100

(
99a1 + 98a2 + 97a3 + · · ·+ 2a98 + a99

99

)

= 1 +
99

100
(1000) = 991 .

Problem 23

Consider the sets of elements from the given set that have a remainder of 0, 1, 2, 3, 4, 5, 6
when divided by seven Using the python code
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for remainder in range(0, 7):

print(f’remainder= {remainder}:’, end=’’)

elts_in_set = []

for elt in range(1, 51):

if elt % 7 == remainder:

elts_in_set.append(elt)

print(f’{len(elts_in_set):2d} elements= {elts_in_set}’)

we get

remainder= 0: 7 elements= [7, 14, 21, 28, 35, 42, 49]

remainder= 1: 8 elements= [1, 8, 15, 22, 29, 36, 43, 50]

remainder= 2: 7 elements= [2, 9, 16, 23, 30, 37, 44]

remainder= 3: 7 elements= [3, 10, 17, 24, 31, 38, 45]

remainder= 4: 7 elements= [4, 11, 18, 25, 32, 39, 46]

remainder= 5: 7 elements= [5, 12, 19, 26, 33, 40, 47]

remainder= 6: 7 elements= [6, 13, 20, 27, 34, 41, 48]

The benefit of this decomposition is that the sum of an element from the set (that has a
remainder of i when divided by seven) with an element in the set with remainder of j will
have a remainder of

(i+ 3) mod 7 .

This means that we can take all elements of the sets above such that the pairwise sum of the
remainders is not divisible by seven. As all but one of the sets above has seven elements to
get the maximal set we should take the set with a remainder of one (giving eight elements).
Then we cannot take any point in the set with a remainder of six. We can then take all
elements in the sets with remainders two and three giving a set of size

8 + 7 + 7 = 22 .

To this we can add a single element from the set with a remainder of zero to give a 23
element set.

Problem 24

To start, let the parallelogram ABCD be drawn in the x-y Cartesian coordinate system
with the “base” segment AD along the x-axis and the segment BC above AD and shifted
rightwards. Towards that end we can place A = (0, 0) and D = (5, 0). The coordinates of
the other points will be determined shortly.

From the given area of the parallelogram ABCD we have that the height h must be equal
to

h =
10

AD
=

10

5
= 2 .
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If we drop a perpendicular from B to the x-axis (and denote that intersection with the x-
axis as the point B′) it will be of length h and we can determine the length AB′ using the
Pythagorean theorem as

AB2 = AB′2 +B′B
2

or 32 = AB′2 + 22 ,

so that AB′ =
√
5. This means that B is located at B = (

√
5, 2). In addition

cos(∠BAB′) =

√
5

3

sin(∠BAB′) =
2

3
.

The point E is on the same line as AB but two units from A. Using the angle ∠BAB′ its
location is given by

E = (2 cos(∠BAB′), 2 sin(∠BAB′)) =

(

2
√
5

3
,
4

3

)

.

The point C is located five units to the right of B or at

C = B + (5, 0) = (
√
5 + 5, 2) .

The point F is located two units to the right of B or at

F = B + (2, 0) = (
√
5 + 2, 2) .

The point G is located two units to the right of A or at

G = A+ (2, 0) = (2, 0) .

Finally, the point H is located five units from E or

H =

(

5 +
2
√
5

3
,
4

3

)

.

Now in the x-y Cartesian coordinate plane the area of a triangle denoted by the three points
E, F , and G is given by

1

2

∣
∣
∣

∣
∣
∣
−−→
EG×−→

EF
∣
∣
∣

∣
∣
∣ ,

which is the norm of the vector cross product of the two vectors in the plane. Here I have
“constructed” the cross product so that its value will be positive (pointing out of the page).
The vectors needed for this computation are

−−→
EG = (2, 0)−

(

2
√
5

3
,
4

3

)

=

(

2− 2
√
5

3
,−4

3

)

−→
EF = (

√
5 + 2, 2)−

(

2
√
5

3
,
4

3

)

=

(

2 +

√
5

3
,
2

3

)

.
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Next we compute

−−→
EG×−→

EF =

∣
∣
∣
∣
∣
∣
∣

î ĵ k̂

2− 2
√
5

3
−4

3
0

2 +
√
5
3

2
3

0

∣
∣
∣
∣
∣
∣
∣

= k̂

(

2

3

(

2− 2
√
5

3

)

+
4

3

(

2 +

√
5

3

))

= 4k̂ .

when we simplify. This means that the area of the triangle △EGF is 4
2
= 2.

In the same way the area of the triangle △GHF is given by

1

2

∣
∣
∣

∣
∣
∣
−−→
GH ×−→

GF
∣
∣
∣

∣
∣
∣ ,

The vectors needed for this computation are

−−→
GH =

(

3 +
2
√
5

3
,
4

3

)

−→
GF = (

√
5 + 2, 2)− (2, 0) = (

√
5, 2) .

Next we compute

−−→
GH ×−→

GF =

∣
∣
∣
∣
∣
∣

î ĵ k̂

3 + 2
√
5

3
4
3

0√
5 2 0

∣
∣
∣
∣
∣
∣

= 6k̂ .

when we simplify. This means that the area of the triangle △GHF is 6
2
= 3.

The total area of the quadrilateral EFHG is the sum of the area of these two triangles or
2 + 3 = 5.

Problem 25

To start, let place the segments in an x-y Cartesian coordinate system with the “base”
segment BC on the x-axis. We can take B = (0, 0) and C = (4, 0). From the given angle
∠ABC the point A is located at

A = (3 cos(120◦), 3 sin(120◦)) =

(

−3

2
,
3
√
3

2

)

.

Now the slope of the segment AD will be − 1
m

where m is the slope of the segment AB. This
slope is given by

m =
3
√
3

2
− 0

−3
2
− 0

= −
√
3 .

This means that the slope of the segment AD will be 1√
3
and the line obtained by extending

AD takes the form

y =
1√
3

(

x+
3

2

)

+
3
√
3

2
.
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As the perpendicular to BC thought the point C will have x = 4 fixed the location of the
point D will be D = (4, y) with y given by the value of the line AD evaluated at x = 4. I

find that value of y to be y = 10
√
3

3
and the point D is thus

D =

(

4,
10
√
3

3

)

.

Using the distance formula we can then compute that the distance CD is

10
√
3

3
=

10√
3
.

Problem 26

The area of the “smile” (denoted S) is given by adding areas of various parts and subtracting
areas of parts we are not interested in. For example we have

S = Area of circular sector BEA− Area of circular sector BDA

+Area of circular sector AFB −Area of circular sector ADB

+Area of circular sector EDF .

We can compute these in tern. First note that

BE = AB = AF = 2 ,

and
AC = BC = CD = 1 .

Now as CD ⊥ AB using the Pythagorean theorem we have that

DB2 = BC2 +DC2 = 12 + 12 = 2 ,

thus DB =
√
2. This means that

DE = BE − BD = 2−
√
2 .

As CD = BC = AC we have S∠ABD = ∠BAD = 45◦ finally ∠ADB = 90◦. Using all of
this and with symmetry we have

Area of circular sector BEA = Area of circular sector AFB

=

(
45

360

)

π × 22 =
π

2
,

and

Area of circular sector BDA = Area of circular sector ADB

= Area of right triangle BCDS + Area of circular sector CDA

=
1

2
BC × CD +

1

4
πCD2

=
1

2
+
π

4
.
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Finally we have

Area of circular sector EDF =

(
90

360

)

πDE2

=
π

4
(2−

√
2)2 .

All of this together gives

S = 2
(π

2

)

− 2

(
1

2
+
π

4

)

+
π(2−

√
2)2

4
= 2π − π

√
2− 1 ,

when we simplify

Problem 27

Using the “Power of a Point Theorem (Case 1)” (see below for a proof) we have that

PA · PB = PD · PC ,

or using what we know this is
18 · 8 = (PC + 7)PC .

Solving this for PC we find the only positive solution is PC = 9. If we are lucky enough to
then note that PA = PB +BA = 18 = 2PC and ∠APC = 60◦ we have that ∠PCA = 90◦

so that triangle △PCA is a right triangle. This means that we can compute AC and find

AC = 18 sin(60◦) = 9
√
3 .

Now as ∠PCA = 90◦ we have ∠ACD = 90◦ so AD must be a diameter of the circle. Using
the fact that CD = 7 and the Pythagorean theorem we have

AD2 = AC2 + CD2 = (9
√
3)2 + 72 = 292 .

As AD = 2r we have AD2 = 4r2 so r2 = 292
4

= 73.

A Proof of the Power of a Point Theorem:

Here we prove this theorem. A small write up (with diagrams that match the descriptions
below) is given

https://artofproblemsolving.com/wiki/index.php/Power_of_a_Point_Theorem

Case 1: The interior intersection of two chords: Consider a circle with an interior
point at E. Through this point E draw two chords. Let the first chord run “North-East”
from points C to A. Let the second chord run “Eastwards” from points D to B. When these
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points are drawn moving clockwise around the circle we have the points ABCD with the
segments AC and BD intersecting at E. Draw the chords AD and BC. Then we have that

△DEA ∼ △CEB .

This is because angles ∠DEA = ∠CEB (opposite angles are equal) and ∠DAC = ∠DBC

as they both equal 1
2
D̃C. Because of this similarity we have

DE

AE
=
CE

EB
so DE · EB = AE ·EC ,

which is a second version of the power of a point theorem.

Case 2: The exterior intersection of a tangent and a secant: Consider a circle
with an external point at B (say “above” the circle). From this point B draw a tangent
and a secants making an inverted “V”. Let the left-most segment be the tangent segment
intersecting the circle at a point A and let the right-most secant intersect the circle at the
points C and then D so that moving from left to right we have the points ABCD. Draw
the chords AC and AD.

Note that we can relate the angles ∠BDA and ∠BAC though the arc ÃC as

∠BDA =
1

2
ÃC = ∠BAC . (529)

Using Equation 529 for one angle equivalence and the fact that ∠B is common in both
triangles we have that △CAB ∼ △ADB. Using this we have

BC

AB
=
AB

BD
or AB2 = BC · BD ,

as we were to show.

Case 3: The exterior intersection of two secants: Consider a circle with an external
point at C (say “above” the circle). From this point C draw two secants making an inverted
“V”. Let the left-most intersections with the circle be the points A and B and the right-most
intersections with the circle be the points D and E so that moving from left to right we have
the points ABCDE. Draw the chords AD and BE. Then we have that

△ACD ∼ △ECA .

This is because ∠C is common between the two triangles and ∠CAD = ∠CEB as they both

equal 1
2
B̃D. Because of this similarity we have

AC

CE
=
CD

CB
so AC · CB = CE · CD ,

which is one version of the power of a point theorem.
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Problem 28

We can write this quadratic as

z2 − z − (5− 5i) = 0 .

Using the quadratic formula gives roots of

z =
1±

√

1 + 4(5− 5i)

2
=

1±
√
21− 20i

2
.

We need to evaluate the square root of the complex number 21− 20i above. To do that we
will write it in polar as

21− 20i =
√
212 + 202e−iθ =

√
841e−iθ = 29e−iθ ,

where

tan(θ) =
20

21
. (530)

This means that

√
21− 201i =

√
29e−iθ/2 =

√
29(cos(θ/2)− i sin(θ/2)) .

Our two roots are thus

z =
1±

√
29(cos(θ/2)− i sin(θ/2))

2
.

The product of the two real parts of the roots is given by

1

4
(1 +

√
29 cos(θ/2))(1−

√
29 cos(θ/2)) =

1

4
(1− 29 cos2(θ/2)) . (531)

Now Equation 530 indicates that θ is an acute angle in a right triangle with legs 20, 21, and
a hypotenuse of

√
202 + 212 = 29 thus we have

cos(θ) =
21

29
.

Next using this in the identity

cos2(θ) =
1

2
(1 + cos(2θ)) ,

when written as

cos2(θ/2) =
1

2
(1 + cos(θ)) ,

we find

cos2(θ/2) =
50

58
.

Using this in Equation 531 we get the desired product given by

1

4

(

1− 29

(
50

58

))

= −6 .
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Problem 29

The probability we get h heads in 50 flips is given by

(
50
h

)(
2

3

)h(
1

3

)50−h

,

for 0 ≤ h ≤ 50. The probability we get an even number of flips is then the sum

e =
∑

h is even

(
50
h

)(
2

3

)h(
1

3

)50−h

.

The probability we get a odd number of flips would be the sum

o =
∑

h is odd

(
50
h

)(
2

3

)h(
1

3

)50−h

.

We must have e+ o = 1. Consider the value of e− o. We have

e− o =
∑

0 ≤ k ≤ 50 and even

(
50
k

)(
2

3

)k (
1

3

)50−k

−
∑

1 ≤ k ≤ 49 and odd

(
50
k

)(
2

3

)k (
1

3

)50−k

=
∑

0≤k≤50

(
50
k

)

(−1)k
(
2

3

)k (
1

3

)50−k

=
∑

0≤k≤50

(
50
k

)(

−2

3

)k (
1

3

)50−k

.

Using the binomial theorem we can write this as

(

−2

3
+

1

3

)50

=

(

−1

3

)50

=
1

30

50

.

Thus we have that

e+ o = 1

e− o =
1

3050
.

If we solve these for e by adding these two equations we get

e =
1

2

(

1 +
1

3050

)

.

Problem 30

Here I draw the segment AB along the x-axis of a Cartesian coordinate system with A =
(−46, 0) and B = (46, 0). The segment DC is “above” the segment AB with D = (−9.5, h)
and C = (9.5, h) where h is the isosceles trapezoids height (and is currently unknown).
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By symmetry, the center of the circle will need to be located at the center of the segment
AB which in the way I have drawn this figure is located at O = (0, 0).

From the center of this circle draw a segment to the side BC of the isosceles trapezoid that
is tangent to the side BC. Call that point of intersection P so that this segment is OP . The
slope of the segment BC is given by

mBC =
h− 0

9.5− 46
= −2h

73
.

As OP is tangent to BC at P the slope of the segment OP is

− 1

mBC
=

73

2h
.

This means that the “line” OP is given by the equation

y =
73

2h
x .

The “line” BC is given by the equation

y − 0 = −2h

73
(x− 46) .

Next we determine where this line intersects the segment CB i.e. what are the coordinates
of the point P . Thus we need to solve

73

2h
x = −2h

73
(x− 46) .

Solving for x I find

x =
184h2

4h2 + 732
, (532)

so that y is given by

y =
6716h

4h2 + 732
. (533)

Now in order that the length of AD (and BC) be as small as possible we need to have P = C
that is the point of tangent is the point C. Equating the y-coordinates of these two points
gives

6716h

4h2 + 732
= h .

Solving this for h2 gives

h =

√
1387

2
.

Putting this value of h back into Equations 532 and 533 gives x = 19
2
and y = h as it should.

The minimum distance (squared) of the length BC is then given by

(
19

2
− 46

)2

+

(√
1387

2
− 0

)2

= 1679 ,

when we simplify.
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The 1993 AHSME Examination (AHSME 44)

Problem 1

For this we compute

E = ab − bc + ca = 1−1 − (−1)2 + 21 = 1− 1 + 2 = 2 .

Problem 2

We compute
∠B = 180− 55− 75 = 50 .

Using the fact that DB = BE we have that △BDE is isosceles so that

∠BDE =
180− ∠B

2
=

130

2
= 65 .

Problem 3

Call this expression E then we have

E =
1530

4515
=

330 · 530
515 · 915 =

330 · 515
3030

= 515 .

Problem 4

If we evaluate
3 ◦ y = 4 · 3− 3y + 3y = 12 ,

so 3 ◦ y = 12 is satisfied for all y.

Problem 5

Last year the combined cost was

C0 = 160 + 40 = 200 .

This year the combined cost is

C1 = 1.05(160) + 1.1(40) = 212 .
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The percentage increase in cost is then

C1 − C0

C0

=
C1

C0

− 1 = 1.06− 1 = 0.06 ,

or 6%.

Problem 6

Call this expression E. Then we have

E =

√

810 + 410

84 + 411
=

√

230 + 220

212 + 222
=

√

220(210 + 1)

212(1 + 210)

=
√
28 = 24 = 16 .

Problem 7

Note that from how Rk is defined we have

R3 = 100 + 10 + 1

R4 = 103 + 102 + 10 + 1 ,

etc. Thus the expression we see to evaluate can be written as

Q =
R24

R4
=

∑23
k=0 10

k

∑3
k=0 10

k
.

We can write this as

23∑

k=0

10k = Q

3∑

k=0

10k = Q(103 + 102 + 10 + 1) .

Expanding the left-hand-side term-by-term we get

1023 + 1022 + 1021 + · · ·+ 103 + 102 + 10 + 1 = Q(103 + 102 + 10 + 1) .

In this form it is easier (I think) to determine the form of Q. We see that Q should look like

Q = 1020 + 1016 + 1012 + 108 + 104 + 1 .

Just to be complete we can “check” this by multiplying it by 103 + 102 + 10 + 1 to get

Q(103 + 102 + 10 + 1) = (1023 + · · ·+ 1020) + (1019 + · · ·+ 1016) + (1015 + · · ·+ 1012)

+ (1011 + · · ·+ 108) + (107 + · · ·+ 104) + (103 + · · ·+ 1) ,

which is the left-hand-side of the above.

From this expression for Q note that it is 21 digits long with six ones and so has 21−6 = 15
zeros.
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Problem 9

Let W be the wealth of “the world”. Then the wealth of A and B are

WA =

(
d

100

)

W

WB =

(
f

100

)

W .

Let N the the worlds population. Then the population of A and B are given by

NA =
( c

100

)

N

NB =
( e

100

)

N .

The wealth of a citizen of A and B are then given by

cA =
WA

NA

=
dW

cN

cB =
WB

NB

=
fW

eN
.

Then the ratio requested is given by

cA
cB

=
de

cf
.

Problem 10

We are told that r = (3a)3b and also that r = abxb. If we set these two equal to each other
we get

[(3a)3]b = [ax]b ,

or
33a3 = ax so x = 27a2 .

Problem 11

Taking the 2x of both sides gives

log2(log2(x)) = 22 = 4 .

Doing this again gives
log2(x) = 24 = 16 .

Doing this again gives
x = 216 .

Note that 210 = 1024 and 26 = 32 so 216 = 1024× 32 = 32768 which has five digits.
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Problem 12

If we take v = 2x in the expression we are given we have x = v
2
and we get

f(v) =
2

2 + v
2

=
4

4 + v
.

This means that

2f(x) =
8

4 + x
.

Problem 13

For this problem for the smaller square to be inscribed in the larger square I imagine the
larger square in the first quadrant of a Cartesian plane (so that its bottom left corner is at
the origin) and the smaller square then has to be “tilted” or “rotated” so that its corners
touch the edges of the larger square.

Now the larger square has a side of length S = 28
4
= 7 and the smaller one a side of length

s = 20
4

= 5. Let one of the corners of the smaller square be located at (x, 0) along the
bottom edge of the larger square. Then by symmetry the corners of the inner square will
divide the edges of the larger square (walking counter clockwise around the outer square)
into the lengths

x , 7− x , x , 7− x , x , 7− x , x , 7− x .

This means that we form a small right triangle in the corner of the coordinate axis with
vertices (0, 0), (x, 0) and (0, 7− x). Thus using the Pythagorean theorem we have that

x2 + (7− x)2 = s2 = 52 .

Expanding and simplifying this we get

(x− 3)(x− 4) = 0 so x ∈ {3, 4} .

Thus
7− x ∈ {4, 3} .

These two solutions are equivalent in the distances their vertices would be to the vertices of
the outer square. Thus without loss of generality lets take x = 3. If we draw that square,
the distance that would be the largest between two vertices would be either the distance
between the points (0, 4) and (7, 7) or

d1 =
√

(0− 7)2 + (4− 7)2 =
√
58 ,

or the distance between the points (0, 4) and (7, 0) or

d2 =
√

(0− 7)2 + (4− 0)2 =
√
65 .

This second number is the largest.
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Problem 14

To solve this problem we will compute the area of the quadrilateral EABC and then add it
to the area of the triangle DEC.

For the first part we start by drawing a line segment connecting E and C. Then drop
a vertical from E and C onto the line that connects A and B. Let the vertical from E
intersect the line connecting A and B at a point E ′ and the vertical from C intersect the
line connecting A and B at a point C ′.

As we know that ∠B = 120 the supplementary angle is 180− 60 = 120. This means that

E ′A = BC ′ = 2 cos(60) = 1

EE ′ = CC ′ = 2 sin(60) =
√
3 .

Using these the rectangle EE ′C ′C has an area of

CC ′ · EE ′ =
√
3(E ′A + AB +BC ′) =

√
3(1 + 2 + 1) = 4

√
3 .

From this we want to subtract the area of the two triangles △EE ′A and △CC ′B each of
which is

1

2
AE ′ ·EE ′ =

1

2
(1)(

√
3) =

√
3

2
.

Using this the area of the quadrilateral EABC is

4
√
3− 2

√
3

2
= 3

√
3 .

Next we need to compute the area of the triangle △ECD. In this triangle the base EC is
of length four and the sides are of length four. This is thus an equilateral triangle and has
an area of √

3

4
(42) = 4

√
3 .

The area of the total figure is then

3
√
3 + 4

√
3 = 7

√
3 .

Problem 15

The sum of all the interior angles in an n-sided polygon is

180(n− 2) .

For a regular n-sided polygon each angle will be

θ =
180(n− 2)

n
.
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We want to know for how many values of n will this be an integer. We can write the above
as

θ = 180− 360

n
.

For θ to be an integer means that 360
n

must be an integer. If we factor 360 we get

360 = 23 · 32 · 51 .
The integer values of n that we can divide 360 by and get an integer then take the form
n = 2p · 3q · 5r for 0 ≤ p ≤ 3, 0 ≤ q ≤ 2, and 0 ≤ r ≤ 1. This is

4× 3× 2 = 24 ,

different values for n. As we need n > 3 we can’t have n = 2 or n = 3 and thus find
24− 2 = 22 solutions.

Problem 16

Let sn be the location in the sequence where the first n is written. Then we have that

sn =
n−1∑

k=1

k + 1 =
1

2
(n− 1)n+ 1 =

1

2
(n2 − n+ 2) .

Lets evaluate this for some simple n. We have

s1 = 1

s2 = 2

s3 = 4

s4 = 7 ,

all of which are correct. We write the first n at the location sn and then write n−1 additional
n’s afterwards.

To find what the 1993rd term is we first find the largest n such that

sn ≤ 1993 ,

or
1

2
(n2 − n− 2) ≤ 1993 ,

or
n2 − n− 3984 ≤ 0 .

As
√
3984 = 63.1189 note that

s63 = 1954

s64 = 2017 .

Thus at the location 1954 we start writing the number 63 and then write it again 62 more
times. Thus the number at the position 1993 is 63. The number we seek is

63 mod 5 = 3 .
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Problem 17

Let the side of the square be denoted by s. Now the angle between any two consecutive
outgoing segments is

360

12
= 30 .

For the right triangle with its lower base along the segment from the center of the clock to
the “three” (and of length b = s

2
) and its vertical along the vertical face of the clock we have

the length of this vertical given by

h =
s

2
tan(30◦) =

s

2

(
1/2√
3/2

)

=
s

2
√
3
.

This means that the area of the triangles is given by

t =
1

2
bh =

1

2

(s

2

)( s

2
√
3

)

=
s2

8
√
3
.

Now we can compute q by taking the area of the full square and subtracting the areas of the
triangles and then dividing by the number of quadrilateral regions (four) as

q =
1

4

(
s2 − 8t

)
=

(
√
3− 1)

4
√
3

s2 ,

when we simplify. This means that

q

t
= 2(

√
3− 1) ,

when we simplify.

Problem 18

Note that Al follows a four day cycle and Barb follows a ten day cycle and that

Least Common Multiple(4, 10) = Least Common Multiple(22, 2 · 5)
= 2max(1,2) · 5max(1) = 20 .

Thus every 20 days the cycle of Al and Barbs work-rest days repeats. In the first 20 days Al
rests on days

4 , 8 , 12 , 16 , 20 ,

while Barb rests on the days
8 , 9 , 10 , 18 , 19 , 20 ,

during which there are two overlap days i.e eight and twenty. As there are 1000
20

= 50 cycles
of 20 days there are 50× 2 = 100 overlapping rest days.
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Problem 19

Multiply this equation by mn to get

4n+ 2m = mn . (534)

From this we have that
mn− 2m = 4n ,

or
m(n− 2) = 4n ,

or solving for m we have

m =
4n

n− 2
=

4(n− 2 + 2)

n− 2
= 4 +

8

n− 2
.

• Now in the above if n = 1 we would have m < 0 and so no positive integer solutions

• The right-hand-side is undefined if n = 2.

• If n = 3 we find m = 12.

• If n = 4 we find m = 4 + 8
2
= 8.

• If n = 5 then m is not an integer.

• If n ∈ {7, 8, 9} then m is not an integer.

• If n = 10 then m = 4 + 1 = 5.

• If n ≥ 11 then m is not an integer.

Thus from the above we see that the choices are (n,m) ∈ {(3, 12), (4, 8), (6, 6), (10, 5)} for a
total of four solutions of the desired type.

Problem 20

We are given
10z2 − 3iz − k = 0 .

This will have solutions given by

z =
3i±

√

(−3i)2 − 4(10)(−k)
2(10)

=
3i±

√

9(−1) + 40k

20

=
3i±

√
40k − 9

20
.
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• From this we see that if k = 9
40

there will only be one imaginary root so choice (A) is
not true.

• If k < 0 then both roots are pure imaginary and (B) is true.

• If k is pure imaginary then in general
√
40k − 9 will be complex so both roots will be

complex and (C) and (D) are not true.

• To show choice (E) is false we ask if we can I find a complex k such that 3i =
√
40k − 9.

If you square this we get −9 = 40k − 9 which has a solution k = 0. This means that
the trivial complex number k = 0 gives a root of zero so (E) is false.

Problem 21

We are told that

a4 + a7 + a10 = 17 (535)
14∑

k=4

ak = 77 . (536)

An arithmetic sequence takes the form ak = a1 + d(k − 1) for k ≥ 1. From Equation 535
this would give

3a1 + d(3) + d(6) + d(9) = 17 ,

or
3a1 + 18d = 17 .

From Equation 536 this would give

(14− 4 + 1)a1 +
14∑

k=4

d(k − 1) = 77 ,

which we can simplify to
11a1 + 88d = 77 .

Solving these two systems for a1 and d gives a1 = 5
3
and d = 2

3
. Now we want to know the

value of k when ak = 13. This means that

5

3
+

2

3
(k − 1) = 13 .

Solving for k we get k = 18.

Problem 22

Let v be value of the sum assigned to the top block. Let x1, x2, x3 be value of the sums
assigned to the three blocks one from the top when looking down they are in the “order”
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x1

x2 x3

This means that the top block is assigned a value

v = x1 + x2 + x3 .

Let y1, y2, y3, y4, y5, y6 be the values assigned to as the sums on the blocks two levels from
the top where looking from the top the “order” of these block is

y1

y2 y3

y4 y5 y6

This means that we have

x1 = y1 + y2 + y3

x2 = y2 + y4 + y5

x3 = y3 + y5 + y6 .

Finally, let z1, z2, · · · , z9, z10 be values assigned to block at the base where looking from the
top the “order” of these blocks is

z1

z2 z3

z4 z5 z6

z7 z8 z9 z10

This means that

y1 = z1 + z2 + z3

y2 = z2 + z4 + z5

y3 = z3 + z5 + z6

y4 = z4 + z7 + z8

y5 = z5 + z8 + z9

y6 = z6 + z9 + z10 .

We can now start with yi and compute xi as

x1 = z1 + 2z2 + 2z3 + z4 + 2z5 + z6

x2 = z2 + z4 + z5 + z4 + z7 + z8 + z5 + z8 + z4

= z2 + 2z4 + 2z5 + z7 + 2z8 + z9

x3 = z3 + z5 + z6 + z5 + z8 + z9 + z6 + z9 + z10

= z3 + 2z5 + 2z6 + z8 + 2z9 + z10 .
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Finally we can take these xi and derive an expression for v as

z = z1 + 2z2 + 2z3 + z4 + 2z5 + z6

+ z2 + 2z4 + 2z5 + z7 + 2z8 + z9

+ z3 + 2z3 + 2z6 + z8 + 2z9 + z10

= z1 + 3z2 + 3z3 + 3z4 + 6z5 + 3z6 + z7 + 3z8 + z9 + z10 .

For this expression to make v as small as possible we must take z5 = 1 and z1, z7, z10 drawn
from the set {10, 9, 8}. In that case we have

v = 6 + 27 + 3(z2 + z3 + z4 + z6 + z8 + z9) .

To minimize this we take z2, z3, z4, z6, z8, z9 from the set of {7, 6, 5, 4, 3, 2}. This means that

v = 33 + 3(13 + 9 + 5) = 33 + 3(27) = 114 .

Problem 23

Draw the segment BD. Then as AD is a diameter of the circle we have that ∠ABD = 90◦.
Thus using the right triangle △ABD we have

AB = AD cos∠DAB = 1 cos

(
1

2
∠BAC

)

.

= 1 cos

(
1

2
(12◦)

)

= cos(6◦) .

Now by symmetry

∠BXD =
1

2
∠BXC =

1

2
(36◦) = 18◦ .

This means that
∠AXB = 180◦ − ∠BED = 180◦ − 18◦ = 162◦ ,

and
∠ABX = 180◦ − ∠BAX − ∠AXB = 180◦ − 6◦ − 162◦ = 12◦ .

From these calculations we know all the angles in the triangle △ABX and the length of one
side. Using the law of sines we have

AB

sin(162)
=

AX

sin(12)
.

Recall that AB = cos(6) and that

sin(162) = sin(180− 18) = sin(180) cos(18)− sin(18) cos(180).

= − sin(18)(−1) = sin(18) ,

We get
cos(6)

sin(18)
=

AX

sin(12)
,

or
AX = cos(6) sin(12) csc(18) .
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Problem 24

Let D be a random variable that indicates the number of draws needed to get three shiny
pennies. Then we have 3 ≤ D ≤ 7. We have

P (D = 3) =
3

7
· 2
6
· 1
5
=

1

35
,

and by conditioning on when the single dull penny is drawn we have

P (D = 4) =
4

7

(
3

6
· 2
5
· 1
4

)

+
3

7

(
4

6

)(
2

5

)(
1

4

)

+
3

7

(
2

6

)(
4

5

)(
1

4

)

=
1

35
+

1

35
+

1

35
=

3

35
.

Using these results we see that

P (D ≥ 5) = 1− P (D = 3)− P (D = 4) = 1− 4

35
=

31

35
.

From this expression we see that a = 31 and b = 35. This means that a + b = 66.

Problem 26

Note that we can “complete the square” to write

8x− x2 = −(x2 − 8x+ 16− 16)

= 16− (x− 4)2 ,

and

14x− x2 − 48 = −(x2 − 14x)− 48

= −(x2 − 14x+ 49− 49)− 48

= −(x− 7)2 + 49− 48 = 1− (x− 7)2 .

This means that we can write f(x) as

f(x) =
√

16− (x− 4)2 −
√

1− (x− 7)2 .

In order to have f(x) not defined we would need to have one of the arguments of the square
roots negative. If this happens with the first square root then we have

16− (x− 4)2 < 0 ,

which is true if x > 8 or x < 0. If this happens with the second square root then we have

1− (x− 7)2 < 0 ,

which is true if x > 8 or x < 6.
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Taken together the only regions where both square roots are defined is when 6 ≤ x ≤ 8. By
plotting the above quadratics we see that for all x in this region

√

16− (x− 4)2 is decreasing

as we go from x = 6 to x = 8 and thus is the largest when x = 6. In this region
√

1− (x− 7)2

increasing from x = 6 to x = 7 and then decreases to when x = 8. Note that by symmetry
and the fact that the maximum of this square root is when x = 7 the smallest this can be is
when x = 6 (which is the same value as when x = 8). To make the first square root be as
large as possible we need to take x = 6. This means that the largest our function f(x) can
be is

f(6) =
√

16− (6− 4)2 −
√

1− (6− 7)2 =
√
12−

√
0 = 2

√
3 .

Problem 27

When we think about moving the circle from corner to corner as it rolls around inside the
given triangle we see that it will have to “change direction” at the points where it entirely
fills each corner. When the circle fills each corner its center will be offset by an amount from
the two edges forming the corner. The amount of offset will depend on which corner the
circle is occupying. We will determine these offset distances and then subtract them from
the lengths AB, BC, and CA to determine the length of the path the point P has traveled.

The easiest corner to evaluate is corner B. At that point when the “circle changes direction”
the center is exactly a unit distance from the segment AB and a unit distance from the
segment BC.

Next if we consider the corner A then when the circle “changes direction” the circle will be
tangent to the two sides AB and AC. This means if we drop a perpendicular from P to the
side AB (intersecting at a point P ′) and a perpendicular from P to the side AC (intersecting
at a point P ′′) we will form two congruent right triangles

△AP ′P ∼= △AP ′′P .

We now seek to determine the offset distances AP ′ and AP ′′ as these will need to be sub-
tracted from AB and AC in determining the length of the distance the center of the circle
traveled.

From the sides of the right triangle △ABC we have

tan(∠CAB) =
6

8
=

3

4
.

Now by symmetry we have

∠PAP ′ =
1

2
∠CAB .

As PP ′ = 1 if we knew the value of tan(∠PAP ′) we could use

tan(∠PAP ′) =
PP ′

AP ′ =
1

AP ′ ,
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to find AP ′. To find this tangent recall the tangent half-angle formula

tan(2θ) =
sin(2θ)

cos(2θ)
=

2 sin(θ) cos(θ)

cos2(θ)− sin2(θ)

=
2 tan(θ)

1− tan2(θ)
. (537)

Then if we take

2θ = ∠CAB so that θ =
1

2
∠CAB = ∠PAP ′ ,

the above is
3

4
=

2 tan(θ)

1− tan2(θ)
.

The above reduces to a quadratic equation for tan(θ). Solving it we find tan(θ) = 1
3
or

tan(θ) = −3. As we expect tan(θ) > 0 the first solution is the correct one and we have that

AP ′ =
1

tan(θ)
= 3 .

By symmetry we also have that AP ′′ = 3.

Next if we consider the corner C then when the circle “changes direction” the circle will be
tangent to the two sides AB and AC. This means if we drop a perpendicular from P to the
side BC (intersecting at a point Q′) and a perpendicular from P to the side AC (intersecting
at a point Q′′) we will form two congruent right triangles

△CQ′P ∼= △CQ′′P .

We now seek to determine the offset distances CQ′ and CQ′′ as these will need to be sub-
tracted from BC and AC in determining the length of the distance the center of the circle
traveled.

From the sides of the right triangle △ABC we have

tan(∠ACB) =
8

6
=

4

3
.

Now by symmetry we have

∠PCQ′ =
1

2
∠ACB .

As PQ′ = 1 if we knew the value of tan(∠PCQ′) we could use

tan(∠PCQ′) =
PP ′

CQ′ =
1

CQ′ ,

to find CQ′. To find this tangent we again use the half-angle formula where we take

2θ = ∠ACB so that θ =
1

2
∠ACB = ∠PCQ′ ,

the above is
4

3
=

2 tan(θ)

1− tan2(θ)
.
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The above reduces to a quadratic equation for tan(θ). Solving it we find tan(θ) = 1
2
or

tan(θ) = −2. As we expect tan(θ) > 0 the first solution is the correct one and we have that

CQ′ =
1

tan(θ)
= 2 .

By symmetry we also have that CQ′′ = 2.

Now with these lengths determined we can determine the length of the path point P travels.
Moving from A to B to C this length would be

(AB−AP ′−1)+(BC−1−CQ′)+(CA−CQ′′−AP ′′) = (8−3−1)+(6−1−2)+(10−2−3) = 12 .
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The 1994 AHSME Examination (AHSME 45)

Problem 1

Call this expression E. Then we have

E = 28 · 38 · 218 · 318 = 226 · 326 = (2 · 3)26

= 626 = (62)13 = 3613 .

Problem 2

From the given diagram if we let the two horizontal lengths be denoted as x1 and x2 and the
two vertical lengths be denoted as y1 and y2 then from the areas given we have

x2y1 = 35

x1y2 = 6

x2y2 = 14 .

We want to evaluate x1y1. From the above we have that x1 =
6
y2
, y1 =

35
x2
, and x2 =

14
y2
. This

means that

y1 =
35

14
y2 ,

so

x1x2 =

(
6

y2

)(
35y2
14

)

= 15 .

Problem 3

We can write this as 2xx which is only equal to one of the given expressions.

Problem 4

From the two points on the diameter of the circle we get that the diameter must have a
length of D = 25 − (−5) = 30 and thus a radius of R = D

2
= 15. Again from the points on

the diameter the center of the circle must be located at
(
1

2
(25− 5), 0

)

= (10, 0) .

This means that the equation for the circle is given by

(x− 10)2 + y2 = 152 .

Putting in the value (x, 15) gives

(x− 10)2 + 152 = 152 so x = 10 .
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Problem 5

If x is the unknown number then Pat performs

x

6
− 14 = 16 ,

so x = 180. Pat should have computed

6x+ 14 = 1094 .

Problem 6

From the rule given to generate the sequence by working “backwards” we must have

d+ 0 = 1 so d = 1 .

Next
c + d = 0 or c+ 1 = 0 so c = −1 .

Next
b+ c = 0 or b− 1 = 1 so b = 2 .

Finally
a+ b = c or a+ 2 = −1 so a = −3 .

Problem 7

Given that G is the center of the square ABCD we have that the triangle ABG has a base
of length AB = 10 and a height of length five. Thus the total area covered by these squares
T is

T = 2× Area of square ABCD − Area of △GAB

= 2× 102 − 1

2
(10)5 = 175 .

Problem 8

From the given value for the perimeter and the number of sides the length of each side is

56

28
= 2 .

Now there is one square in the left-most “column” in this figure, three squares in the adjacent
column to its right, five in the next adjacent column, and seven squares in the central
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column. From that point on-wards the number of squares in the remaining columns (moving
rightward) is given by

5 , 3 , 1 .

Thus there are a total of
2(1) + 2(3) + 2(5) + 7 = 25 ,

squares in the figure. As the area of one square is 22 = 4 we find the total area of the figure
to be 4× 25 = 100.

Problem 9

From the problem statement we are told that

∠A = 4∠B

90− ∠B = 4(90− ∠A) .

If we solve these two equations we find ∠B = 18.

Problem 10

From the ordering given we have that m(b, c) = b and m(a, e) = a so that the expression we
are asked to evaluate can be written as

M(M(a, b), m(d, a)) =M(b, a) = b .

Problem 11

For cubes with volumes V given we can compute the side length s and from that the surface
area A. We have

• If V = 27 then s = 3 so A = 6s2 = 54.

• If V = 8 then s = 2 so A = 24.

• If V = 1 then s = 1 so A = 6.

To minimize the surface area we want as many blocks to have faces that overlap. Placing
the s = 3 block first we will place the s = 2 block on top of the s = 3 block. This figure has
a surface area of

(54− 4) + (24− 4) = 70 .

To place the third s = 1 block we will place it next to the s = 2 block and on top of the s = 3
block. This will remove two s2 = 12 = 1 faces of area from the above two block configuration
and add four more for a total surface area of

70− 2 + 4 = 72 .
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Problem 12

We have

(i− i−1)−1 =
1

i− i−1
.

If we multiply this by i
i
we get

i

i2 − 1
=

i

−1 − 1
= − i

2
.

Problem 13

From the diagram as AB = AC we have ∠ABC = ∠ACB. Lets define that angle as θ. In
addition define ∠A = ∠BAC = φ. Next as BC = CP we have ∠ABC = ∠BPC = θ also.
Now as PA = PC we have

∠PAC = ∠PCA = φ ,

also. Using the exterior angle theorem we have that

∠BPC = θ = 2φ .

Using triangle △BPC we have
∠PCB = 180− 2θ .

Then using the fact that ∠ACB = ∠BCP + ∠PCA we have

θ = (180− 2θ) + φ ,

or 3θ − φ = 180. Using θ = 2φ we get

6φ− φ = 180 so φ = 36 .

Problem 14

The given series is the sum of the arithmetic sequence with terms a0 + ih for i = 0 to i = N
where a0 = 20 and h = 1

5
. The final value of this sequence must satisfy

40 = a0 +Nh ,

or

40 = 20 +
N

5
.

This gives N = 100. Now we want to evaluate

N∑

i=0

(a0 + hi) = a0(N + 1) + h

N∑

i=1

i

= a0(N + 1) +
hN(N + 1)

2
.

Using what we know this evaluates to 3030.
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Problem 16

Let R and B be the initial number of red and blue marbles. Then the first condition given
tells us that

1

7
(R− 1 +B) = R− 1 . (538)

The second condition tells us that

1

5
(R +B − 2) = R . (539)

These are two equations in the two unknowns R and B. Solving them gives R = 4 and
B = 18. Thus the total number of marbles initially is R +B = 22.

Problem 17

Let this rectangle be placed in a Cartesian coordinate plane with the vertices located at
(0, 0), (8, 0), (8, 2

√
2), and (0, 2

√
2). The center of this rectangle is located at (4,

√
2). The

circle with a radius of two with this center has an equation of

(x− 4)2 + (y −
√
2)2 = 22 .

When y = 0 this is
(x− 4)2 + 2 = 4 so x = 4±

√
2 .

These are the locations of the circles intersection on the x-axis. Lets draw segments from the
center of the circle to each of the two points (4−

√
2, 0) and (4+

√
2, 0) and a perpendicular

from the circle center to the point (4, 0). Notice that the triangle formed from the points
(4−

√
2, 0), (4, 0), and (4,

√
2) is a right triangle with two sides of length

√
2 and thus is an

isosceles right triangle with a vertex angle of 45◦. Thus the triangle formed by the points
(4−

√
2, 0), (4, 0), and (4,

√
2) is a right triangle with an area of

2

(
1

2
(
√
2)2
)

= 2 .

Note that there are two such triangles (above and below the mid-line). Now the area of the
circle that overlaps with the rectangle that is not in these two triangle is then

2
90

360
(π22) = 2π .

The “two” is because there are two angular sections (to the right and left of the medial line).
Thus the total overlapping area is

2× 2 + 2π = 4 + 2π .
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Problem 18

As
∠A+ ∠B + ∠C = 180 ,

using what we know about the angles we have

∠A+ 4∠A+ 4∠A = 180 ,

which gives ∠A = 20. As ∠A is on a circle the arc measure B̃C is then

B̃C = 2∠A = 40 .

As we are told that B and C are adjacent points of a regular polygon with n sides this is 1
n

of the full arc length of 360. Thus
360

n
= 40 ,

so n = 9.

Problem 19

To guarantee that we have at least 10 disks of the same number we can imagine selecting
disks and having the environment give us disks in an order in which it is impossible (or
as hard as possible) to have 10 of the same number. This means that we can have the
environment give us back

D =

9∑

i=1

i+

50∑

i=10

9 ,

disks before the next one will need to produce at least one grouping of the same 10 numbers.
In the above we have the environment give us as many disk with different numbers as possible
refusing to give us 10 disks all with the same number. Evaluating this sum we get

D =
9(10)

2
+ 9(50− 10 + 1) = 414 .

If we draw one more disk or 415 we will have at least one set with 10 of the same number.

Problem 20

We are told that
x , y , z , (540)

is a geometric sequence while
x , 2y , 3z , (541)

is an arithmetic sequence. From Equation 540 we have that

y

x
= r =

z

y
.
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and from Equation 541 we have that

2y − x = d = 3z − 2y . (542)

Lets divide Equation 542 by x to get

2y

x
− 1 =

3z

x
− 2y

x
.

In terms of the common ratio r this is

2r − 1 = 3r2 − 2r .

Solving this quadratic equation gives r = 1
3
or r = 1. As x 6= y we must have r = 1

3
.

Problem 21

To be odd means that our number must end with one of the digits

1 , 3 , 5 , 7 , 9 .

If the sum of the digits is four our number can only end in a one or a three. If our number
ends with a one then it takes the form

D1 ,

where the sum of the digits in the D part must be three. Thus the front of the number can
thus be (zero is excluded)

3 , 12 , 21 , 111 .

These are the numbers 31, 121, 211, and 1111. Now 31 is prime. Note 121 = 11× 11 and is
not prime. For the number 211 we can divide by smaller primes to eventually conclude that
it is prime. For 1111 note that 1111 = 11× 101 and so is not prime.

If our number ends with a three then the only form it can take 13 (which is prime). Thus
there are two counterexamples the numbers 121 and 1111.

Problem 23

We need to first decide if the line has a value of y(3) larger than three, a value between one
and three or a value less than one. To decide this, if we consider the line that goes though
the point (3, 3) (where m = 1) the area to the left of this line is

Al =
1

2
(32) =

9

2
,

while the area to the right of this line is

Ar =
9

2
+ 2 .
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As Al < Ar we need more area to the left to make the areas equal and thus our line needs
to be less step and we need to decrease the value of m.

If we consider the line that goes though the point (3, 1) (where m = 1
3
) the area to the left

of this line is

Al = 6 +
3

2
,

while the area to the right of this line is

Ar =
3

2
+ 2 .

As Al > Ar we need more area to the right to make the areas equal and thus our line needs
to be more step and we need to increase the value of m.

These arguments indicate that the line should have its y(3) = 3m value such that

1 < 3m < 3 .

If we denote the lines value at x = 3 as just y then the area to the left of this line is

Al = 3(3− y) +
1

2
(3y) ,

while the area to the right of this line is

Ar =
1

2
(3y) + 1(2) .

Setting these two equal and solving for y gives y = 7
3
. To go through the point (3, 7

3
) this

means that the line y = mx must satisfy

7

3
= 3m so m =

7

9
.

Problem 25

We are given

|x|+ y = 3 (543)

|x|y + x3 = 0 . (544)

If we assume that x > 0 then Equation 544 gives

y + x2 = 0 ,

so y = −x2. If we put this into Equation 543 we get

−x2 + x− 3 = 0 .
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Solving this quadratic equation gives x =
1±
√

1−4(3)

2
which is complex. Thus we cannot have

x > 0 and we must have x < 0. In that case Equation 544 gives

−xy + x3 = 0 ,

or dividing by x
−y + x2 = 0 ,

or y = x2. If we put this into Equation 543 we get

−x+ x2 = 3 .

Solving this quadratic equation gives x = 1±
√
13

2
. To have x < 0 we need to take the negative

sign so

x =
1−

√
13

2
,

and

y = x2 =
1 + 13− 2

√
13

4
=

7−
√
13

2
.

Using these two forms when I subtract I get

x− y = −3 .

Problem 26

The interior angle of a regular m polygon is given by

180

(
m− 2

m

)

. (545)

The exterior angle is then

360− 180(m− 2)

m
= 180

(
m+ 2

m

)

.

Now the regular polygon we place “outside” of this central polygon will have an interior
angle 1

2
of the exterior angle above. This is

90

(
m+ 2

m

)

. (546)

If m = 10 then this equals 108. To find the regular n polygon that has an interior angle
equal to this angle we set this equal to Equation 545 (with m replaced with n). This is

108 =
180(n− 2)

n
.

Solving for n gives n = 5.
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Problem 27

In the problem statement we are told that P (White) = 2
3
and P (Yellow) = 1

3
. Next whether

a kernel will pop depends on its color as

P (Pop|White) =
1

2

P (Pop|Yellow) = 2

3
.

We are asked to find P (White|Pop). Bayes’ rule gives

P (White|Pop) = P (Pop|White)P (White)

P (Pop)

=
P (Pop|White)P (White)

P (Pop|White)P (White) + P (Pop|Yellow)P (Yellow)

=
1
2
· 2
3

1
2
· 2
3
+ 2

3
· 1
3

=
3

5
,

when we simplify.

Problem 28

Let our line be given by y = mx+ b. We are told that when x = p we have y = 0 so

mp+ b = 0 so b = −mp .

This means our line takes the form

y = mx−mp = m(x− p) . (547)

To have the y intercept positive taking x = 0 in the above we have that −mp > 0 so that
mp < 0 so m < 0 (since p ≥ 2). To have the y intercept an integer means that mp is an
integer.

To pass though the point (x, y) = (4, 3) means that

m(4− p) = 3 or 4− p =
3

m
.

Now the left-hand-side 4 − p is an integer and the only way the right-hand-side can be an
integer (with m < 0) is if m is a factor of three so m ∈ {−1,−3}. If m = −1 we have

4− p = −3 so p = 7 ,

which is prime. If m = −3 we have

4− p = −1 so p = 5 ,

which is also prime. Thus there are two lines of this type.
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Problem 29

In the given figure draw the center of the circle as a point O. Then draw the segments OB,
OC, and OA each of which is of length r. We are told that the length of the minor arch BC
is r. Note that we can write that length as a fraction of the circle circumference as

2πr

(
∠BOC

2π

)

.

Setting this equal to r gives ∠BOC = 1 in radians. As AB = AC we have arcs AB and
AC equal. Thus by symmetry we have ∠AOB = ∠AOC. Using this and summing all three
angles centered at O gives

2∠AOB + ∠BOC = 2π ,

or

∠AOB = π − ∠BOC

2
= π − 1

2
.

Now using the law of cosigns twice we have

BC2 = 2r2 − 2r2 cos(∠BOC) = 2r2(1− cos(1))

AB2 = 2r2 − 2r2 cos

(

π − 1

2

)

= 2r2
(

1− cos

(

π − 1

2

))

.

As cos(π − θ) = − cos(θ) this means that

AB2 = 2r2
(

1 + cos

(
1

2

))

.

Thus we have
AB2

BC2 =
1 + cos

(
1
2

)

1− cos(1)
.

To simplify this recall that

cos2(θ) =
1 + cos(2θ)

2

sin2(θ) =
1− cos(2θ)

2
,

which mean that we can write

1 + cos(θ) = 2 cos2
(
θ

2

)

1− cos(θ) = 2 sin2

(
θ

2

)

.

Using this last expression we get

AB2

BC2 =
1 + cos

(
1
2

)

2 sin2
(
1
2

) =
1

2

(

1 + cos
(
1
2

)

1− cos2
(
1
2

)

)

=
1

2

(

1

1− cos
(
1
2

)

)

.
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Using the expression for 1− cos(θ) again this is

AB2

BC2 =
1

2

(

1

2 sin2
(
1
4

)

)

,

thus
AB

BC
=

1

2 sin
(
1
4

) =
1

2
csc

(
1

4

)

.
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The 1995 AHSME Examination (AHSME 46)

Problem 1

The average of the first three scores is

A3 =
87 + 83 + 88

3
=

170 + 88

3
=

258

3
= 86 .

The average of her four scores is

A4 =
258 + 90

4
=

348

4
= 87 .

This is an increase by one.

Problem 2

Squaring this we get
2 +

√
x = 9 ,

so
√
x = 7. Squaring this again we get x = 49.

Problem 3

The television advertiser price can be written as

TA = 3(29.98) + 9.98 = 3(30− 0.02) + 10− 0.02

= 90− 0.006 + 10− 0.02

= 100− 0.08 = 99.99− 0.07 .

Problem 4

In order we are told that M = 0.3Q, Q = 0.2P , and N = 0.5P . Thus

M

N
=

0.3(0.2P )

0.5P
=

0.06

0.5
=

6

50
=

3

25
.

Problem 5

Three ants per square inch is equivalent to

3 ants

inch2 × 122 inch2

1ft2
= 432

ants

ft2
.
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Our field area is
300× 400 ft2 = 120000 ft2 .

This means that the number of ants N should be given by

N = 12 · 104 · 432 = 5148 · 104 = 5.184 · 103 · 104

= 5.184 · 107 = 51.8 · 106 .

This is closest to 50 million.

Problem 6

To form the cube we will fold the x face “up” (i.e. out of the page towards the reader) the
face B “up”, the face C sideways (so that it shares a side with face A). This would put face
D on top of the cube and E on the front (bottom) face. From this x will be opposite the
face C.

Problem 7

We are told the earths radius Re is Re = 4000 miles. The distance traveled is then C = 2πRe

and the time traveled (in hours) would be given by

H =
C

500
=

2π(4000)

500
= 16π .

We can approximate this as

H ≈ 16× 3.145 ≈ 48 + 1.6 = 49.6 .

Problem 8

By the fact that DE is parallel to AC we have △BDE ∼ △BAC. This means that

DE

AC
=
BD

BA
=

BD√
AC2 +BC2

=
BD√
62 + 82

=
BD

10
.

We know that
DE

AC
=

4

6
,

so using this in the above we get

2

3
=
BD

10
⇒ BD =

20

3
.
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Problem 9

I count 8 “small” triangles, four isosceles triangles that are in the “North”, “East”, “South”,
and “West” positions, and four “corner” right triangles that are in the “North-East”, “South-
East”, “South-West”, and “North-West” corners. This gives a total of 8+4+4 = 16 triangles.

Problem 10

The lines y = x and y = −x cut an X in the Cartesian plane. The line y = 6 is horizontal
that cuts a triangle in the top 1/2 of the Cartesian plane. This triangle has a height of h = 6
and a base of 2h = 12 to give an area of

1

2
(6)(12) = 36 .

Problem 11

From the given conditions a can be either four or five and d can be either zero or five. For
the numbers b and c if b = 3 then c ∈ {4, 5, 6}. If b = 4 then c ∈ {5, 6} and if b = 5 then
c = 6. Thus we can pick that pair bc in

3 + 2 + 1 = 6 ,

ways. We can pick the a and c numbers in 2 × 2 = 4 ways. Thus in total we can pick the
number abcd in

4× 6 = 24 ,

ways.

Problem 12

We are told that f(x) is linear so
f(x) = ax+ b .

We are told that f(1) ≤ f(2) which means that

a+ b ≤ 2a+ b ⇒ a ≥ 0 .

We are told that f(3) ≥ f(4) which means that

3a+ b ≥ 4a+ b⇒ 0 ≥ a .

The only way these both can be true is if a = 0. Thus f(x) = b = f(5) = 5 and f(0) = 5
also.
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Problem 13

Starting in the ones column by changing the six will not change the addition result for larger
place holders there are no other sixes in the number. We can’t change the zero in the ones
column or the total with six will not be six. Similar logic indicates that we can’t change
the 1, 3, or 8 in the tens location. Similar logic indicates that we can’t change the 4 or 5
in the hundreds location and the 0 can not be changed from arguments made earlier. These
arguments mean that the only digits that could be changed are 2 or 9.

In the thousands position then we have the sum (with a one from a carry from the hundreds
position sum) of

1

2

+ 9

---

2

This sum as written will “stand” but if so then we have not replaced any digits and the total
sum is incorrect. Notice that we can change the 2 digit to any digit we like and the column
sum will be correct. Lets replace it with a where 1 ≤ a ≤ 9. Then replacing all 2’s with a’s
the addition problem looks like (with 1 for carry)

1 1 1

7 4 a 5 8 6

+ 8 a 9 4 3 0

----------------

1 a 1 a 0 1 6

From the 10 thousands place we see that we need

(1 + 4 + a) mod 10 = 1 .

If a = 6 this is will be true. In that case the problem looks like

1 1 1 1

7 4 a 5 8 6

+ 8 6 9 4 3 0

----------------

1 6 1 a 0 1 6

which is a true addition. Thus we change the digit d = 2 with the digit e = 6 to get a valid
problem. Thus d+ e = 8.
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Problem 14

We are told that f(x) = ax4 − bx2 + x+ 5 and that

f(−3) = a34 − b32 + (−3 + 5) = 2 . (548)

From the form of f(x) we have

f(3) = a34 − b32 + (3 + 5) = 8 .

From Equation 548 we see that
a34 − b32 = 0 .

Using this in f(3) we find
f(3) = 3 + 5 = 8 .

Problem 15

Lets follow the bugs steps. For a few steps he will be at the locations

5 → 1 → 2 → 4 → 1 → 2 → 4 → 1 → · · · .

Notice that the sequence 1 → 2 → 4 will repeat as long as needed. If we let c be the number
of these three jump “cycles” that the bug jumps we want to decompose 1995 as

1995 = 1 + 3c+ r or 1994 = 3c+ r .

The one above is for the first jump from five to one. The above gives c = 664 and r = 2.
Thus after the first jump and then c = 664 cycles the bug is at the position four. Two more
jumps places the bug at position two.

Problem 16

We are given two estimates of the attendance numbers at Atlanta Â and Boston B̂. We are
told that Â = 50000 and that the actual attendance A is within 10% of this number or

50000(0.9) < A < 50000(1.1) or 45000 < A < 55000 .

Next we are told from Bob’s estimate B̂ = 60000 that

0.9B < B̂ < 1.1B or 0.9B < 60000 < 1.1B .

From 0.9B < 60000 we get that B < 66666.67 and from 1.1B > 60000 we get that B >
54545.45 thus

54545.45 < B < 66666.67 .

We are asked for the largest possible value of B − A. This would be 66666.67 − 45000 =
21666.67 which is closest to (E).
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Problem 17

This pentagon ABCDE has n = 5 sides and so the sum of the internal angles using Equa-
tion 5 is 180(n− 2) = 540◦. Thus any internal angles of the regular pentagon ABCDE has
an angular measure of

180(n− 2)

n
=

540

5
= 108◦ .

In the given figure draw the center of the circle as the point O and connect O to the two
points A and D each of length r (the radius r of the circle). As the segments AB and DC
are tangent to the circle we have ∠OAB = ∠ODC = 90◦. As ∠AED is an internal angle of
the pentagon we have

∠EAO = 108− 90 = 18◦ .

The same argument can be used to show that ∠EDO = 18◦.

Using Equation 5 again the sum of the internal angles in four sided figure AEDO is

180(4− 2) = 360◦ ,

so the internal angle
∠AOD = 360− 108− 2(18) = 216◦ .

This means that the exterior angle ∠AOD is 360− 216 = 144◦ which is also the measure of

the minor arc ÃD.

Problem 18

Imagine our two rays OA and OB starting from the origin of a Cartesian coordinate systems
with O at (0, 0) with B on the x-axis “to the right” of O, and A “above” the segment OB
such that ∠AOB = 30◦. Then using the “law of sines” in the triangle △AOB we have

sin(30◦)

AB
=

sin(∠OBA)

OA
or

1

2
=

sin(∠OBA)

OB
,

when we recall that AB = 1. This means that

OB = 2 sin(∠OBA) .

The largest that OB can be is when ∠OBA = 90◦ and then OB = 2× 1 = 2.

Problem 19

Let the side of the smaller equilateral triangle have a length of s so that s = FD = DE = EF .
From the right angle at D as ∠BCA = 60◦ we have that △EDC is a 30 − 90 − 60 right
triangle with ED = s. In that triangle we have

sin(60◦) =
ED

EC
,
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or √
3

2
=

s

EC
so EC =

2s√
3
.

As ∠CED = 30◦ and ∠FED = 60◦ we have ∠FEA = 180 − 60 − 30 = 90◦ so triangle
△FEA is 30− 90− 60 right triangle. In that triangle we can write

tan(60◦) =
FE

AE
,

or √
3 =

s

AE
so AE =

s√
3
.

From these two results we have that AC = AE +EC = s√
3
+ 2s√

3
=

√
3s so the ratio of areas

of triangle △DEF to that of triangle △ABC is
√
3
4
s2

√
3
4
AC2

=
s2

AC2
=

s2

3s2
=

1

3
.

Problem 20

In Table 15 I enumerate all possible outcomes for the even/oddness of a, b, and c along
with the even/oddness of the product ab and finally of the expression ab + c. Thus we see
that only under certain conditions will ab + c be even. The probability we are in any given
row of the above table is the product of the probability that a, b, and c take on the given
even/oddness.

If X is one of the numbers a, b, or c then from the set from which these numbers are drawn
we see that the probability X is even/odd is given by

P (X even) =
2

5

P (X odd) =
3

5
.

Using this result and the table above we see that the event E that the expression ab + c is
even is given by

P (E) =

(
2

5

)3

+

(
2

5

)2(
3

5

)

+

(
2

5

)2(
2

5

)

+

(
3

5

)3

=
59

125
,

when we simplify.

Problem 21

The first diagonal connects the points given and is thus along the line

y − 3 =
3

4
(x− 4) or y =

3

4
x .
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a b c ab ab+ c
Even Even Even Even Even
Even Even Odd Even Odd
Even Odd Even Even Even
Odd Even Even Even Even
Even Odd Odd Even Odd
Odd Even Odd Even Odd
Odd Odd Even Odd Odd
Odd Odd Odd Odd Even

Table 15: Even or odd values for a, b, c and the even or oddness of ab+ c.

Notice that (0, 0) is the midpoint of the given segment/diagonal. The length of this diagonal
is d and is given by

d =
√
82 + 62 =

√
64 + 36 = 10 .

For a rectangle the other diagonal must, go though the same point (0, 0), and be of the same
length d. This means we need to consider opposite points on a circle of radius d

2
= 5 that

have integer (x, y) coordinates. Thus (x, y) must satisfy

x2 + y2 = 52 .

For x = 0 we get y = ±5 giving one rectangle. For x = ±3 we get y = ±4 giving one
rectangle with a “new” diagonal connecting (−3, 4) and (3,−4) and one rectangle with a
“new” diagonal connecting (−3,−4) and (3, 4). For x = ±4 we get y = ±3 giving one
rectangle with a “new” diagonal connecting (−4, 3) and (4,−3). Finally for x = ±5 we get
y = 0 for one more rectangle. This is a total of five rectangles.

Problem 22

The longest side of the original rectangle must be the largest length given or 31. Let w be
the rectangles width. Let the right triangle that is cut out of the corner of the rectangle
have legs of length 31− h and w− d so that the two sides of the pentagon will have lengths
h and d. The final remaining side of the pentagon will have a length given by c where

c2 = (w − d)2 + (31− h)2 . (549)

Thus from the given numbers {13, 19, 20, 25} we need to assign values to w, h, d, and c such
that w > d and Equation 549 for c is satisfied. We could do that “by hand” but I would
probably make a mistake. We can do this in the following python code

from itertools import permutations

for (w, h, d, c) in permutations([13, 19, 20, 25]):

if w < d: continue

if c**2 == ((w-d)**2 + (31-h)**2):

print(w, h, d, c)
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Running that code we get w = 25, h = 19, d = 20, and c = 13. The area of the pentagon is
the area of the rectangle minus the area of the right triangle cut out or

31w − 1

2
(31− h)(w − d) = 31(25)− 1

2
(31− 19)(5) = 745 .

Problem 23

This triangle must satisfy the triangle inequality applied to each of its sides or

11 + 15 > k or k < 26

k + 15 > 11 or k > −4

k + 11 > 15 or k > 4 .

Thus we have learned that 4 < k < 26. For k to be an integer means that we must have
5 ≤ k ≤ 25.

We now ask for which ks in that range will our triangle be obtuse? Note that obtuse triangles
will satisfy c2 > a2 + b2 where c is the larger of the three sides.

• If 5 ≤ k ≤ 11 then the largest side is the side of length 15 and our triangle will be
obtuse if

k2 + 112 < 152 or k2 < 104 .

For the range of ks above only when 5 ≤ k ≤ 10 will the above be true. These are six
numbers.

• If 12 ≤ k < 15 then the largest side is the side of length 15 and our triangle will be
again obtuse if

112 + k2 < 152 or k2 < 104 .

None of the ks in this range satisfy this.

• If 15 ≤ k ≤ 25 then the largest side is the side of length k and our triangle will be
obtuse if

112 + 152 < k2 or k2 > 346 .

For the range of ks above only when 19 ≤ k ≤ 25 will the above be true. These are
seven numbers.

Thus in the total number of triangles is 6 + 0 + 7 = 13.

Problem 24

We are told that
A log200 5 +B log200 2 = C .
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If we multiply by ln(200) this is equal to

A ln(5) +B ln(2) = C ln(200) .

Note that
200 = 23 · 52 ,

so that
ln(200) = 3 ln(2) + 2 ln(5) .

Using this in the above we get

A ln(5) +B ln(2) = 3C ln(2) + 2C ln(5)

As A, B, and C are integers we must have A = 2C and B = 3C. This would imply that C
is a common factor of A, B, and C unless C = 1. Thus

A+B + C = 2C + 3C + C = 6C = 6 .

Problem 26

Draw the segment CF . Then as CD is a diameter of the circle we have that ∠CFD = 90◦.
Let ∠CDF = θ. In the right triangle △DFC we have

DF = DC cos(θ) ,

or
6 + 2 = 2r cos(θ) so r cos(θ) = 4 . (550)

In the right triangle △DOE we have

cos(θ) =
DO

DE
=
r

6
.

Putting this into Equation 550 gives

r2

6
= 4 so r2 = 24 .

The area of the circle is then πr2 = 24π.

Problem 27

To start we will evaluate f(n) for several values of n. We find

f(1) = 0 = 2− 2

f(2) = 2 = 4− 2

f(3) = 2 · 2 + 2 = 6 = 8− 2

f(4) = 2 · 3 + 2 · 4 = 6 + 8 = 14 = 16− 2

f(5) = 2 · 4 + 2 · 7 + 8 = 8 + 14 + 8 = 30 = 32− 2

f(6) = 2 · 5 + 2 · 11 + 2 · 15 = 10 + 22 + 30 = 62 = 64− 2 .
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In each of the above calculations I evaluated f(n) and then wrote the value obtained f(n)
in the form

2n − 2 .

If this is true then we need to evaluate the remainder when dividing by 100 of

f(100) = 2100 − 2 .

To evaluate this remainder lets see if we can do it for simpler/smaller values of n. Note that

210 = 1024 = 10× 100 + 24 .

Thus 210 has a remainder of 24 when divided by 100. Next consider

220 = 10242 = 1048576 ,

has a remainder of 76 when divided by 100. Next consider

230 = 1073741824 ,

which has a remainder of 24 when divided by 100. Next

240 = 1099511627776 ,

which has a remainder of 76 when divided by 100. If we assume that this pattern continues
we have argued that

(210)n mod 100 = 24 ,

when n odd and
(210)n mod 100 = 76 ,

when n is even. Thus 2100 = (210)10 should have a remainder of 76 when divided by 100 so
2100 − 2 will have a remainder of 76− 2 = 74.

Problem 28

Let this circle have a radius of r. Next draw a line perpendicular to all of the three parallel
lines and going through the center of the circle. This segment will be on the perpendicular
bisector of each of the parallel segments. Assume that the center of the circle is between
the “top” and the “middle” horizontal segments (if it is not our equations should result in
a contradiction). Let hT , hM , and hB be the distances from the center of the circle to the
“top”, “middle”, and “bottom” horizontal lines respectively.

Then considering the right triangles (all with a hypotenuse of r) that result from connecting
the center of the circle to an endpoint of the horizontal segment we find for the “top” segment

h2T + 72 = r2 , (551)
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for the “middle” segment

h2M +

(√
a

2

)2

= r2 , (552)

and for the “bottom” segment
h2B + 52 = r2 . (553)

Also from the facts that total distance between the “top” and the “bottom” chords is six
and that the “middle” chord is midway between the “top” and the “bottom” we have

hT + hB = 6 (554)

hT + hM =
6

2
= 3 . (555)

This system represents five equations in five unknowns hT , hM , a, r, and hB that we can
hopefully solve. As we are only asked for the value of a we will work to get a single equation
with just that unknown.

Lets use Equation 554 and 555 to eliminate hM and hB in terms of hT . When we do that
the three equations earlier become

h2T + 49 = r2 (556)

(3− hT )
2 +

a

4
= r2 (557)

(6− hT )
2 + 25 = r2 . (558)

If we subtract Equation 556 from 558 we get a single equation in hT given by

12− 12hT = 0 so hT = 1 .

Using that in Equation 556 we find r2 = 50. Using both of these in Equation 557 gives
a = 184.

Problem 30

I was unable to work this problem the first time I saw it. Upon a second attempt (later in
life) I made a bit more progress and with a little peak at the solutions in the back was able
to solve it.

This is the solution I came up with. If we place the groups of subcubes (subcubes are
the smaller cubes inside the larger cube) in the “corner” (octant) of an x-y-z Cartesian
coordinate plane such that one corner of the larger cube is at (0, 0, 0) and the other corner
is at (3, 3, 3) then a vector N representing that one of the internal diagonal is given by

N = (1, 1, 1) ,

or normalized as

N̂ =
1√
3
(1, 1, 1) .
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A point on this plane is certainly the centroid of the larger cube which is the point r0 =
(
3
2
, 3
2
, 3
2

)
then the equation of the plane in question is given by

N̂ · (r− r0) = 0 or
1√
3
(1, 1, 1) ·

(

x− 3

2
, y − 3

2
, z − 3

2

)

= 0 .

We can simplify this to

x+ y + z =
9

2
.

One side of the plane is thus defined by points that satisfy

x+ y + z <
9

2
,

and the other side of the plane is defined by

x+ y + z >
9

2
.

Now for this problem we want to count the number of subcubes which have points on both
sides of this plane as that will be the number of subcubes that this plane intersects.

We can denote a unique “corner” of each of the 27 subcubes as (xc, yc, zc) where each variable
is drawn from {0, 1, 2}. Then we can get all other vertices of that subcube by adding to this
corner the eight “offsets”

(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) , (0, 1, 1) , (1, 0, 1) , (1, 1, 1) .

To solve this problem for each subcube “corner” we systematically test if all of the vertices of
that subcube are on the same side of the plane above and count up the number of subcubes
where this is not true. This is done in the python code 1995 AHSME prob 30.py. The use
of python can help in solving this problem for larger cubes. For example if the larger cube
has a side of length n (so n3 subcubes) the equation of the plane is

x+ y + z =
3n

2
,

and we can the same arguments as above to count the number of subcubes that the plane
intersects. This extension is done in the above python code where we find

large_cube_side_length= 3; number_split_cubes= 19 from total_sucubes= 27

large_cube_side_length= 4; number_split_cubes= 44 from total_sucubes= 64

large_cube_side_length= 5; number_split_cubes= 55 from total_sucubes= 125

The first row is the answer for this problem.
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The 1996 AHSME Examination (AHSME 47)

Problem 1

The addition of the numbers in the second column is not correct. The largest number in
that column is seven. If we change that seven to a six the total addition is correct.

Problem 2

Let n be the number of “normal” pay days and w the number of “exceptionally well” pay
days. Then we are told that

3n+ 5w = 36 .

In addition we know that n+w = 10 and we want to know the value of w. Putting n = 10−w
into the above and solving for w gives w = 3.

Problem 3

Call this expression E. Then using the fact that 3! = 3 · 2 · 1 = 6 we have

E =
(3!)!

3!
=

6!

6
= 5! = 120 .

Problem 4

The median is a measure of central tendency. If we want this to be as large as possible we
need to add three more integers that are as large as possible i.e. in this example greater
than nine. Adding these three numbers would give a sorted list of

3 , 5 , 5 , 7 , 8 , 9 , x , y , z .

The median is the fifth element in this list which is eight.

Problem 5

The sum c+ d is the largest two term sum and the sum a+ b is the smallest two term sum.
Thus the largest expression is c+d

a+b
.
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Problem 6

From the formula given we can compute

f(0) = 0

f(−1) = (−1)0(1)2 = 1

f(−2) = 0

f(−3) = (−3)−2(−1)0 =
1

9
.

Thus the sum we want to evaluate is given by 1 + 1
9
= 10

9
.

Problem 7

Let t be the age of the twins and y the age of the younger child (in integer years) so that
t > y. The father must pay

4.95 + 2(0.45)t+ 0.45y = 9.45 ,

or
0.9t+ 0.45y = 4.5 .

If we take t ∈ {1, 2, 3, 4, 5} we would find that y ∈ {8, 6, 4, 2, 0}. In order to have t > y we
can only have

(t, y) ∈ {(4, 2), (5, 0)} .
The second solution represents an “unborn” child. Thus the only possible choice is t = 4
where y = 2.

Problem 8

Since 15 = 3× 5 we have
15 = (k · 2r)× 5 = k · 4r

Dividing by k gives
2r · 5 = 22r or 2r = 5 .

This means that r = log2(5).

Problem 9

From the lengths of AB, BP , and PA we have that triangle △BPA must be a right triangle
since

AB2 = BP 2 + PA2 or 52 = 32 + 42 .
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Using this point P and its right angle as the center of a Cartesian coordinate system with
PA the x-axis and PB the y axis we have that B = (0, 4, 0) and A = (3, 0, 0). Then the
point D is located at D = (3, 0, 5). From these locations we have that

PD =
√
32 + 02 + 52 =

√
34 .

Problem 10

There are n = 8 corners in the cube. The number of “pairs” for this value of n is given by
(
n
2

)
= 8×7

2
= 28.

Problem 11

The points that are exactly one unit from the center of the segment (which is tangent to the
circle) will be at a distance of R where

12 + 22 = R2 so R =
√
5 .

All of these points are then in an annular ring between two circles of radius r = 2 and
R =

√
5. Thus the area of the points we are considering is given by

πR2 − π(22) = 5π − 4π = π .

Problem 12

As k is odd we know that f(k) = k + 3. This later number is then even so we have
f(f(k)) = k+3

2
. We don’t know if k+3

2
is even or odd. If we assume its odd then we have

f(f(f(k))) =
k + 3

2
+ 3 = 27 .

This gives k = 45. Notice that for this value of k we have

f(k) = 48

f(f(k)) = 24

f(f(f(k))) = 12 6= 27 .

On the other hand if k+3
2

is even then we have

f(f(f(k))) =
k + 3

4
= 27 .

834



This gives k = 105. For this value of k we have

f(k) = 108

f(f(k)) = 54

f(f(f(k))) = 27 .

The sum of the digits in k is six.

Problem 13

Let Sunny’s running rate be r. Then the position of Sunny after the head start is given by

xs(t) = h + rt .

The position of Moonbeam is given by

xm(t) = 0 +mrt .

Moonbeam will catch Sunny at the time t when xm(t) = xs(t). Solving this gives

t =
h

(m− 1)r
.

At this time Moonbeam will have run a distance of

mr

(
h

(m− 1)r

)

=
mh

m− 1
.

Problem 14

Note that we can compute some sums “easily”. We have

9∑

d=1

E(d) = 2 + 4 + 6 + 8 = 20 .

Let the sum we want to compute be denoted by S. Then we can write S as

S = E(100) +

9∑

i=1

9∑

d=0

E(id) +

9∑

d=1

E(d) .

Here id is the two digit number with i as the tens digit and d as the units digit. Now when
i is odd we have

9∑

d=0

E(id) = 2 + 4 + 6 + 8 = 20 ,
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and when i is even we have

9∑

d=0

E(id) = 10i+ (2 + 4 + 6 + 8) = 10i+ 20 .

This means that we can write S above as

S = 0 +
∑

i=1,3,5,7,9

20 +
∑

i=2,4,6,8

(10i+ 20) + 20

= 20(5) + 4(20) + 10
4∑

i=1

2i+ 20 = 400 ,

when we simplify.

Problem 15

Let the height of the rectangle be given by H and the width of the rectangle be given by W .
Then as the altitude of the A triangle is W

2
we have the area of the A triangle given by

1

2

(
H

n

)(
W

2

)

.

Then as the altitude of the B triangle is H
2
we have the area of the B triangle given by

1

2

(
W

m

)(
H

2

)

.

This means that the ratio of these two numbers is m
n
.

Problem 16

Let Xi be the face value seen on the ith die toss. We can compute the probability that
X1 + X2 = X3 by conditioning on the value of X3. Now each specific value of X3 will
occur with a probability of 1

6
. Given the value of X3 we can compute the probability that

X1 +X2 = X3 by summing up the individual cases. We have

• If X3 = 1 then X1 +X2 6= X3 for all possible X1 and X2.

• If X3 = 2 then we must have (X1, X2) ∈ {(1, 1)} to have X1 +X2 = X3.

• If X3 = 3 then we must have (X1, X2) ∈ {(1, 2), (2, 1)}.

• If X3 = 4 then we must have (X1, X2) ∈ {(1, 3), (2, 2), (3, 1)}.

• If X3 = 5 then we must have (X1, X2) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)}.
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• If X3 = 6 then we must have (X1, X2) ∈ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.

The probabilities of each of the the above six events are given by

0 ,
1

36
,
2

36
,
3

36
,
4

36
,
5

36
,

respectively. Using these we have that if we let E be the event that X1 +X2 = X3 we have
that

P (E) =
1

6
(0) +

1

6

(
1

36

)

+
1

6

(
2

36

)

+
1

6

(
3

36

)

+
1

6

(
4

36

)

+
1

6

(
5

36

)

=
5

72
,

when we simplify.

Next let F be the event that at least one of X1, X2, or X3 is a two. The probability we seek
to compute is P (F |E) or

P (F |E) = P (F ∩ E)
P (E)

=
0 + 1

6

(
1
36

)
+ 1

6

(
2
36

)
+ 1

6

(
1
36

)
+ 1

6

(
2
36

)
+ 1

6

(
2
36

)

P (E)
.

When we evaluate this and simplify we get P (F |E) = 8
15
.

Problem 17

As ∠DCF = ∠FCE = ∠ECB = 90
3
= 30. In the right triangle △CBE we have

tan(30) =
6

BC
so BC = 6

√
3 .

Now AD = BC = 6
√
3 so DF = AD − AF = 6

√
3 − 2. In the right triangle △CDF we

have

tan(30) =
1√
3
=
DF

CD
so CD =

√
3DF = 18− 2

√
3 .

This means that the area [ABCD] is given by

[ABCD] = BC · CD = 6
√
3(18− 2

√
3) = 36(3

√
3− 1) .

Taking
√
3 ≈ 1.7 we get [ABCD] ≈ 147.6.

Problem 18

Draw the circles with C(2,0) and C(5,0) the circles centered at (2, 0) and (5, 0) respectively.
Next draw the common external tangent to these two circles as described in the problem.
As the first circle has a larger radius than the second circle this line slants “downwards” and
eventually will intersect the x-axis. Denote the point of tangency of this line with the circle
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C(2,0) as A, the point of tangency of this line with the circle C(5,0) as B, this lines x-intercept
as the point C, and take D = (5, 0) and E = (2, 0).

Then as ∠EAC = ∠DBC = 90◦ we have the right triangles △EAC ∼ △DBC. This means
that

AE

BC
=
EC

DC
or

2

1
=

3 +DC

DC
.

Solving we get DC = 3. This means that the point C is located at C = (2+3+3, 0) = (8, 0).

Now in the right triangle △DBC we have

BC =
√

CD2 − BD2 =
√
9− 1 = 2

√
2 .

This means that tan(∠BDC) = 2
√
2. This is the slope of any segment that is perpendicular

to the segment ABC so the slope of ABC is

− 1

2
√
2
.

Then ABC considered as a line has the slope above and goes through the point C = (8, 0)
and thus has the equation

y = − 1

2
√
2
(x− 8) = − x

2
√
2
+ 2

√
2 .

This line has a y-intercept of 2
√
2.

Problem 19

Recall that the sum of the internal angles in a polygon is given by Equation 5. When n = 6
we get a angle sum of 720◦. As our polygon is a regular hexagon this means that each internal
angle has a measurement of θ = 720

6
= 120◦.

Let the length of the side of the larger outer hexagon be denoted by S. Then when we
connect the midpoints of two sides of this hexagon we form a isosceles triangle with a vertex
angle of θ and equal sides of length S

2
. Let the length of the base of this isosceles triangle be

s (which is also the length of the side of the internal hexagon). Using the law of cosigns we
have that

s2 =

(
S

2

)2

+

(
S

2

)2

− 2

(
S

2

)2

cos(θ) =
S2

2
− S2

2

(

−1

2

)

=
3S2

4
.

This means that the internal hexagon has a side of length

s =

√
3

2
S .
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We now ask what is the area of a regular hexagon with a side of length w. As a regular
hexagon is composed of six equilateral triangles with a side of length w its area is

6×
√
3

4
w2 =

3
√
3

2
w2 .

Thus the given ratio is given by

Ainner

Aouter

=
( s

S

)2

=

(√
3

2

)2

=
3

4
.

Problem 20

Let O = (0, 0) be the origin of a Cartesian coordinate system let O′ = (6, 8) be the origin of
the circle and let P be the point (12, 16). Note that the line from O to P is given by

y =
16

12
x =

4

3
x .

Notice that the point O′ = (6, 8) is on that line. This means that by symmetry, a path that
goes “above” the circle has a symmetric path that goes “below” the circle that is the same
arc length. Let the line y = 4

3
x intersect the circle at the two points A and B with A closer

to O than B. These would be points with x coordinates given by

(x− 6)2 +

(
4

3
x− 8

)2

= 25 .

Solving this for x I find x = 3 or x = 9 with y = 4 or y = 12. This means that the points A
and B are given by A = (3, 4) and B = (9, 12).

One might think that the shortest path from O to P would go from O to A in a straight line
then around the circle to B and then from B to P in a straight line. We will now compute
the length of that path. First we have that

|OA| =
√
32 + 42 = 5

|BP | =
√

(12− 9)2 + (16− 12)2 =
√
9 + 16 = 5 ,

and the length around the semicircle arc ÃB is

2π(5)

2
= 5π .

This gives a total length of 10 + 5π > 25.5.

Another path would go from O to the point of tangency (denoted C) such that OC is tangent
to the circle, then along an arc of the circle to a second point D such that the segment DP is
also tangent to the circle. Now for point C to be tangent to our circle means that OC ⊥ CO′.
This means that △OCO′ is a right triangle. One of the legs of that triangle has a length
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|O′C| = 5. Next as |OA| = 5 and |AO′| = 5 we have that the hypotenuse of this triangle
has a length of |OO′| = 10. This means that

|OC| =
√

OO′2 − O′C2 =
√
100− 25 = 5

√
3 .

From these lengths we have that in that triangle that

sin(∠O′OC) =
|O′C|
|OO′| =

5

10
=

1

2
,

thus ∠O′OC = 30◦ and so ∠OO′C = 90− 30 = 60◦.

Lets do the same calculation for the right triangle △O′CP . From before we had that |BP | =
5 and |O′B| = |O′D| = 5 so |O′P | = |O′B| + |BP | = 5 + 5 = 10. Using the Pythagorean
theorem in the right triangle △O′DP we have

|DP | =
√

O′P 2 − O′D2 =
√
100− 25 = 5

√
3 .

Like before we also have

sin(∠O′PD) =
|O′D|
|O′P | =

5

10
=

1

2
,

so ∠O′PD = 30◦ and so ∠DO′P = 90− 30 = 60◦.

This means that

∠CO′D = 180− ∠OO′C − ∠DO′P = 180− 60− 60 = 60 .

With this angle we can compute the arc length of C̃D. In fact using what we know we have

that the distance |OC|+ C̃D + |DP | is given by

|OC|+ C̃D + |DP | = 5
√
3 +

60

360
(2π(5)) + 5

√
3 = 10

√
3 +

5π

3
≈ 22.5565 ,

which is a smaller length than the first length we calculated.

Problem 21

Define the angles x = ∠ABD and y = ∠BAC. As the triangle △ABD is isosceles we have

∠D =
180◦ − x

2
.

As the triangle △BAC is isosceles we have

∠C =
180◦ − y

2
.

This means that

∠D + ∠C = 180◦ − 1

2
(x+ y) .

From the right triangle △BEA we have x+y = 90◦. This means that ∠D+∠C = 180−45 =
135◦.
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Problem 23

Let our rectangular box have dimensions h×w × l. Then from the sum of the edge lengths
we have that

4h + 4w + 4l = 140 or h + w + l =
70

2
= 35 . (559)

We are also told that
212 = w2 + l2 + h2 . (560)

The total surface area is given by 2hw + 2wl + 2hl. If we square Equation 559 we get

(h + w + l)2 = 352 ,

or
h2 + w2 + l2 + 2hw + 2hl + 2wl = 352 .

Using Equation 560 in this we get

2hw + 2wl + 2hl = 352 − 212 = 784 .

Problem 24

If there were no ones in the sequence of the first 1234 terms we would have a sum of

1234× 2 = 2468 .

We now need to count the number of ones in the first n terms of the sequence. Note that
from the sequence given they are located at the indexes

1 , 3 , 6 , 10 , 15 , 21 , . . . .

Let pn be the position (index location) in the sequence of the nth one. Then from the given
sequence we have p1 = 1 and

pn = pn−1 +

(
n−1∑

i=1

1

)

+ 1 = pn−1 + (n− 1) + 1 = pn−1 + n . (561)

Lets check that this formula is correct. Using it we find

p1 = 1

p2 = 1 + 2 = 3

p3 = 3 + 3 = 6

p4 = 6 + 4 = 10

p5 = 10 + 5 = 15

p6 = 21 ,
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all of which are correct. Lets see if we can find a general solution to Equation 561 which we
can write as

pn+1 = pn + n+ 1 for n ≥ 1 .

In terms of a forward difference this is

∆pn = n+ 1 .

Summing both sides from n = 1 to n = N − 1 gives

pN − p1 =
N−1∑

n=1

(n+ 1) =
N∑

n=2

n = −1 +
N∑

n=1

n = −1 +
N(N + 1)

2
.

This means that

pN =
N(N + 1)

2
.

We can check that this gives the correct values for pN for N ∈ {1, 2, 3, 4, 5, 6}. We would
now like to know the value of N such that pN ≤ 1234 or

N(N + 1)

2
≤ 1234 .

Lets start looking for N ’s that solve N2 = 2468 where we find N ≈ 50. We then find for
values around N = 50 we first have pN ≤ 1234. We find

p50 =
50(51)

2
= 1275

p49 = 1225 .

Thus there are 49 ones in the given sequence up to the 1234’s term. This means that the
sum of all of the terms is

2468− 49 = 2419 .

Problem 25

Write the “constraint” as
x2 − 14x+ y2 − 6y = 6 ,

or completing the square we have

(x− 7)2 − 49 + (y − 3)2 − 9 = 6 ,

or
(x− 7)2 + (y − 3)2 = 64 .

This is a circle centered at (7, 3) with a radius of
√
64 = 8.

Now if we consider the line 3x+4y = c for various values of c (say for example c = 12) we see
that it is a line running “South-West”. As we move this line in the “North-East” direction
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the value of the constant c will increase. This means that to maximize this linear function
we need to move this line in a perpendicular direction until it is just tangent to the circle.
This line could be written as

y = −3

4
x+

c

4
,

which means that the slope of the line perpendicular to this one (and in the direction we
need to move the line) is given by

− 1

−3
4

=
4

3
.

We now ask what is the line with the slope of the above and passing though the center of
the circle (7, 3). This line would take the form

y − 3 =
4

3
(x− 7) or y =

4

3
x− 19

3
.

We then ask where does this line intersect our circle. Replacing y−3 in the equation for the
circle with the expression above gives

(x− 7)2 +
16

9
(x− 7)2 = 64 .

Solving this for x we find

x =
59

5
.

Then y is given by

y =
4

3

(
59

5

)

− 19

3
=

47

5
.

This point (x, y) has a value for 3x+ 4y given by

3x+ 4y = 3

(
59

5

)

+ 4

(
47

5

)

= 73 .
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Problem 26

Let r, w, b, and g be the number of marbles of each “color”. Let n = r + w + b + g be the
total number of marbles. Then the probabilities of each event are given by

Pa =

(
r
4

)

(
n
4

) (562)

Pb =

(
w
1

)(
r
3

)

(
n
4

) (563)

Pc =

(
w
1

)(
b
1

)(
r
2

)

(
n
4

) (564)

Pd =

(
w
1

)(
b
1

)(
r
1

)(
g
1

)

(
n
4

) . (565)

Setting Equation 562 equal to Equation 563 we can conclude

r(r − 1)(r − 2)(r − 3)

4!
=
(w

1

)(r(r − 1)(r − 2)

3!

)

,

or
r − 3

4
= w or r = 3 + 4w . (566)

Setting Equation 562 equal to Equation 564 we can conclude

r(r − 1)(r − 2)(r − 3)

4!
=
(w

1

)( b

1

)(
r(r − 1)

2!

)

,

or
(r − 2)(r − 3)

4 · 3 = wb .

Using Equation 566 to replace w and by simplifying we can write this as

r − 2

3
= b or r = 2 + 3b . (567)

Setting Equation 562 equal to Equation 565 we can conclude

r(r − 1)(r − 2)(r − 3)

4!
=
(w

1

)( b

1

)(r

1

)(g

1

)

.
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Using Equation 566 and 567 to replace w and b we get

r − 1

2
= g or r = 1 + 2g . (568)

Each expression above is equal to r so

r = 3 + 4w = 2 + 3b = 1 + 2g .

We want to find the smallest w, b, and g such that the above is true. If we take w ∈
{1, 2, 3, 4, 5} we get that r would be

{7, 11, 15, 19, 23} .
If we take b ∈ {1, 2, 3, 4, 5} we get that r would be

{5, 8, 11, 14, 17} .
If we take g ∈ {1, 2, 3, 4, 5} we get that r would be

{3, 5, 7, 9, 11} .
The first place each of these are equal is when r = 11 where w = 2, b = 3, and g = 5. Thus
n = r + w + b+ g = 21.

Problem 27

If we draw the two spheres described in this problem and look at the highest location
“reached” for the bottom sphere (z = 5.5) and the lowest location “reached” for the upper
sphere (z = 4.5) we see that any points in the region of overlap between the two spheres will
need to have

4.5 ≤ z ≤ 5.5 .

As z must be an integer will we need to have z = 5. If we put this value of z into the two
equations that represent the “upper” and “lower” sphere respectively we get the region of
overlap must be the intersection of the points (x, y) such that

x2 + y2 + (5− 10.5)2 ≤ 62

x2 + y2 + 42 ≤ 4.52 ,

or if we expand and simplify these we get

x2 + y2 ≤ 5.75 (569)

x2 + y2 ≤ 4.25 . (570)

The intersection of these two conditions is just Equation 570. Now notice that
√
4.25 ≈

2.06155 so Equation 570 is
x2 + y2 ≤ 2.061552 .

The integer solutions to this can be enumerated and are for (x, y) in the set

{(2, 0) , (1, 1) , (1, 0) , (1,−1) , (0, 2) , (0, 1) , (0, 0) , (0,−1) , (0,−2) , (−1, 1) , (−1, 0) , (−1,−1) , (−2, 0)} .

There are thirteen points in this set.
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Problem 28

This is the problem of computing the distance from a plane and a point not on that plane.
We can solve this in the general case using vector algebra. Let the points be located in a three
dimensional Cartesian coordinate system where B = (0, 0, 0), C = (4, 4, 0), D = (0, 4, 0),
and A = (0, 4, 3). Then two vectors in the plane spanned by the three points B, C, and A
are

−−→
CB = (0, 0, 0)− (4, 4, 0) = −4i− 4j
−−→
CA = (0, 4, 3)− (4, 4, 0) = −4i+ 3k .

Then a normal to this plane N is given by

N =
−−→
CB×

−−→
CA =

∣
∣
∣
∣
∣
∣

i j k
−4 −4 0
−4 0 3

∣
∣
∣
∣
∣
∣

= i

∣
∣
∣
∣

−4 0
0 3

∣
∣
∣
∣
− j

∣
∣
∣
∣

−4 0
−4 3

∣
∣
∣
∣
+ k

∣
∣
∣
∣

−4 −4
−4 0

∣
∣
∣
∣

= i(−12)− j(−12) + k(16) = −12i+ 12j+ 16k .

A unit normal n is then given by

n =
N

||N|| =
1√
34

(−3i+ 3j+ 4k) .

A vector from the plane to the point D is given by

−−→
BD = (0, 4, 0)− (0, 0, 0) = 4j .

The distance we seek is then given by |−−→BD · n| or

12√
34

= 2.05798 ,

which is closest to answer (C).
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The 1997 AHSME Examination (AHSME 48)

Problem 1

To have 3a end in a nine we need a = 3. Then to have ab = 3b end in a two we need b = 4
thus a+ b = 7.

Problem 2

As the “left” side must move vertically up from the bottom to the top it must take 8+2 = 10
units to do so. As the “top” must move horizontally a distance of 12. Thus the perimeter is
2(10) + 2(12) = 44.

Problem 3

For this sum to be zero each term must be zero. Thus x = 3, y = 4, and z = 5. Thus we
have x+ y + z = 12.

Problem 4

We are told that a = 1.5c = 3
2
c and

b = 1.25c =

(

1 +
1

4

)

c =
5

4
c .

This last expression gives c = 4
5
b. Thus

a =
3

2
· 4
5
b =

6

5
b = 1.2b ,

which is 20% larger.

Problem 5

For each of the five congruent smaller rectangles let the shorter side of the rectangle have a
length w and the longer side of the rectangle have a length h. Then from the placement of
the five smaller rectangles in the larger rectangle it looks like the length of the “top” of the
larger rectangle can be written in terms of lengths in the smaller rectangle as

3w ,
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and the “bottom” of the larger rectangle can be written as

2h .

Setting these two expressions equal gives h = 3
2
w.

In a similar way the perimeter of the larger rectangle can be written as

5w + 4h = 5w + 6w = 11w .

Setting this equal to 176 we find w = 16. With that we have that h = 24. The perimeter of
a smaller rectangle is then given by

2w + 2h = 80 .

Problem 6

This sum of the first 200 numbers can be written

S =
200∑

n=1

(−1)n+1n

=
∑

n odd

(−1)n+1n +
∑

n even
(−1)n+1n

=

99∑

k=0

(−1)2k+1+1(2k + 1) +

100∑

k=1

(−1)2k+1(2k)

=

99∑

k=0

(2k + 1)−
100∑

k=1

(2k) = 1 +

99∑

k=1

(2k + 1− 2k)− 200

= 1 +

99∑

k=1

1− 200 = 1 + 99− 200 = −100 .

This means that the average of the first 200 numbers is

−100

200
= −1

2
.

Problem 7

We would have
a + b+ c+ d+ e+ f + g = −1 .

Now if all seven numbers were larger than 13 the sum would be also and could not equal
−1. If six of the numbers were larger than 13 the last one could be taken to be

g = −1− (a+ b+ c+ d+ e+ f) ,

and the sum would be −1. Thus we can have at most six numbers larger than 13.
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Problem 8

The only places where there could be a pair n and m such that n < m but C(n) > C(m)
would be if n and m were in different “regions” i.e. 1 ≤ n ≤ 24 with 25 ≤ m ≤ 48 etc. It
might just be easiest to compute C(n) for a number of values n and look for the required
condition. We find

C(21) = 252

C(22) = 264

C(23) = 276

C(24) = 288

...

C(25) = 275

C(26) = 286

C(27) = 297

C(28) = 308

...

C(44) = 484

C(45) = 495

C(46) = 506

C(47) = 517

C(48) = 528

...

C(49) = 490

C(50) = 500

C(51) = 510

C(52) = 520

C(53) = 530

From the above we see that for n ∈ {23, 24, 45, 46, 47, 48} there is at least one m where
m > n and C(n) > C(m). Thus there are six value of n.

Problem 9

The area we seek can be obtained from

[CDEF ] = [ABCD]− [CFB]− [BAE] = 22 − [CFB]− 1

2
(2)(1) = 3− [CFB] .

Thus we need to compute the area [CFB]. Note that

tan∠ABE =
1

2
and tan∠AEB =

2

1
= 2 .
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1 2 ✁3 4 4 5 6
1 2 3 5 5 6 7
2 3 4 6 6 7 8
3 4 5 7 7 8 9

✁4 3 4 5 7 7 8 9
5 6 7 9 9 10 11
6 7 8 10 10 11 12

Table 16: In the above table the rows represent possible values for the first die and columns
represent possible values for the second die. Note the two adjustments to the faces of the
two die as specified by the problem are show using the notation ✚x. The values in the grid
are the sum of the two faces.

As

∠ABE + ∠AEB = 90◦

∠ABE + ∠FBC = 90◦ ,

by subtracting these two we get ∠FBC = ∠AEB so tan∠FBC = tan∠AEB = 2. This
means that in the right triangle △BFC we have

FC

FB
= 2 so FC = 2FB .

The Pythagorean theorem in that right triangle is

BF 2 + FC2 = BC2 or BF 2 + 4BF 2 = 4 .

Thus BF = 2√
5
. This means that

[BFC] =
1

2
BF · FC =

1

2
BF (2FB) = BF 2 =

4

5
,

and

[CDEF ] = 3− [CFB] = 3− 4

5
=

11

5
.

Problem 10

In Table 16 we show the possible sums that can come from two die that are as specified in
the problem statement. Note that there are 6 × 6 = 36 possible outcomes of which 20 are
odd to give a probability of 20

36
= 5

9
.

Problem 11

Let the scores on each of the ten games be denoted si for 1 ≤ i ≤ 10. Then we are told that

1

9

9∑

i=1

si >
1

5

5∑

i=1

si ,
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or using the numbers given that

1

9

(
5∑

i=1

si + 23 + 14 + 11 + 20

)

>
1

5

5∑

i=1

si .

We can solve the above for S5 ≡
∑5

i=1 si to get

S5 < 85 . (571)

Next we are told that

1

10
(S5 + (23 + 14 + 11 + 20) + s10) > 18 .

Solving this for s10 we find
s10 > 112− S5 . (572)

For s10 to be as small as possible must have S5 as large as possible. From Equation 571 this
means that we need S5 = 84. From Equation 572 we get that s10 > 112 − 84 = 28. Thus
s10 = 29.

Problem 12

If mb > 0 then m and b must be of the same sign. The given line will have an x-intercept
when y = 0 at the point x = − b

m
. As m and b are the same sign this expression is always

negative. Notice that (E) has a positive x-intercept and thus is not possible.

Problem 13

Let our integer N be written as N = 10t + u with 1 ≤ t ≤ 9 and 0 ≤ u ≤ 9. Then the
reversed digits number N ′ is N ′ = 10u+ t. Then

N +N ′ = 10(t+ u) + t+ u = 11(t+ u) .

We want 11(t+ u) to be a perfect square. This means that it must equal 112n2 for n ≥ 1 so
that t + u = 11n2. If n = 2 then this is

t + u = 44 ,

which is not possible with the values for t and u. Thus n = 1 and we must have

t + u = 11 .

There are solutions to this when

(t, u) ∈ {(2, 9) , (3, 8) , (4, 7) , (5, 6)} ,

and solutions exchanging t and u. This gives a total of 4 + 4 = 8 solutions.
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Problem 14

If Pn is the population in year n then we are told that

Pn+2 − Pn = CPn+1 , (573)

for some constant C. If we take n = 1994 then Equation 573 is

P1996 − P1994 = CP1995 or P1996 − 39 = 60C . (574)

If we take n = 1995 then Equation 573 is

P1997 − P1995 = CP1996 or 123− 60 = 60P1996 . (575)

This last equation is equal to CP1996 = 63. If we multiply Equation 574 by P1996 we get

P 2
1996 − 39P1996 = 60CP1996 = 60 · 63 = 3780 .

This is a quadratic equation for P1996 with solutions {−45, 84}. We need a positive solution
so P1996 = 84.

Problem 15

Recall that medians of a triangle divide the triangle into two triangles with equal areas and
that the the point where the medians intersect divide those segments in the ratio of 2 : 1.
The statement about the are means that

[ABC] = 2[ADB] = 2[CEB] ,

and the statement about the lengths means that

BG =
2

3
BD =

2

3
(8) =

16

3
and GD =

1

3
BD =

1

3
(8) =

8

3
.

and

EG =
1

3
EC =

1

3
(12) = 4 and CG =

2

3
EC =

2

3
(12) = 8 .

Using these lengths we have that

[BEC] = [BEG] + [BGC] =
1

2
EG ·GB +

1

2
GB ·GC =

1

2
(4)

(
16

3

)

+
1

2

(
16

3

)

(8) =
12 · 16
2 · 3 .

Thus

[ABC] = 2[BEC] =
12 · 16

3
= 64 .
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Problem 17

When x = k the y values of these two graphs are log5(k) and log5(k + 4). Thus from what
we are told about the vertical distance between these two points we have

log5(k + 4)− log5(k) =
1

2
,

or

log5

(
k + 4

k

)

=
1

2
,

or

1 +
4

k
= 51/2 =

√
5 .

Thus
4

k
=

√
5− 1 ,

or
k

4
=

1√
5− 1

=
1√
5− 1

(√
5 + 1√
5 + 1

)

=

√
5 + 1

5− 1
.

Thus k = 1 +
√
5 so a = 1 and b = 5 and a + b = 6.

Problem 18

Assume that there are N numbers in our data set {xi}Ni=1 then from the fact about the mean
we have

1

N

N∑

i=1

xi = 22 .

From the information we are given 32 is the most common element so there must be at least
two of them in our dataset, and the number 10 is also in our dataset, and the number m is
in our dataset (this means that N is odd). Let the index of the median m be denoted as i∗.
If m is replaced by m+ 10 our new mean is 24 means that

1

N

(
N∑

i=1;i 6=i∗

xi + (m+ 10)

)

= 24 .

Using the above this means that

22N + 10

10
= 24 so N = 5 .

This means that i∗ = 3 and at this point our ordered list of numbers looks like

{10 , x2 , m , 32 , 32} . (576)
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As the median of the list when m is replaced by m+10 ism+10 that means thatm+10 ≤ 32
so m ≤ 22.

If m is replaced by m− 8 our ordered list of numbers would look like

{10 , m− 8 , x2 , 32 , 32} or {m− 8, 10 , x2 , 32 , 32} ,
depending on whether m − 8 is less than 10 or not. In either case the median is x2 which
we are told equals m− 4 and thus the original ordered set of numbers in Equation 576 looks
like

{10 , m− 4 , m , 32 , 32} .
The average of these numbers being 22 means that

1

5
(10 +m− 4 +m+ 32 + 32) = 22 so m = 20 .

Problem 19

Denote the center of the circle as O, then dropping a perpendicular from O to the x-axis
denote the intersection of that perpendicular with the x-axis as the point Ox. In the same
way denote the intersection of the horizontal line from O and perpendicular to the y-axis as
Oy. Finally denote the tangent point of the segment BC with the circle as T .

From the angles given in the triangle (and the length of the segment AB) we have

AB = BC cos(60◦) = BC

(
1

2

)

so BC = 2AB = 2

AC = BC cos(30◦) = BC

(√
3

2

)

=
√
3 .

Next note that
BOx = BT and COy = CT , (577)

as both segments (in each pair) are tangents to a circle from the same external point (and
are thus equal in length). Now OOy = OOx = OT = R the radius of the circle. Then from
the given figure and the above we have

R = AC + COy =
√
3 + CT

R = AB + COx = 1 +BT .

If we add these two equations we get

2R = 1 +
√
3 + (CT +BT ) . (578)

As CT +BT = BC = 2 the above is

2R = 1 +
√
3 + 2 so R =

3 +
√
3

2
.

To evaluate R note that
√
3 ≈ 1.73 so R ≈ 2.365 ≈ 2.37.
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Problem 20

Let the integer we sum start at x and thus the terms in the series can all be written as x+ i
for 0 ≤ i ≤ 99. This means that our sum S is given by

S =

99∑

i=0

(x+ i) = 100x+

99∑

i=0

i = 100x+
99(100)

2
= 100

(

x+
99

2

)

= 100x+ 4950 .

This means that any such sum must end with 50. Only choice (A) does that.

Problem 21

Note that

log8(n) =
log2(n)

log2(8)
=

1

3
log2(n) .

The later expression will be rational if and only if n is a power of two. Now we have

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256

29 = 512

210 = 1024

211 = 2048 > 1997 .

Thus the desired sum S is

S =
1997∑

n=1

f(n) =
10∑

p=1

f(2p) =
1

3

10∑

p=1

p =
1

3

(
10(11)

2

)

=
55

3
.

Problem 22

Let the first letter in each persons name represent the amount of dollars held when they
went shopping. Then we are told that

A+B + C +D + E = 56 ,
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and

|A−B| = 19 or A− B = 19s1

|B − C| = 7 or B − C = 7s2

|C −D| = 5 or C −D = 5s3

|D −E| = 4 or D −E = 4s4

|E −A| = 7 or E − A = 11s5 .

Here si ∈ {−1,+1} for 1 ≤ i ≤ 5 is the “sign” needed to “evaluate” the absolute value
expressions above. Now if we add all of these equations together we get

(A+B + C +D + E)− (B + C +D + E + A) = 19s1 + 7s2 + 5s3 + 4s4 + 11s5 ,

or
19s1 + 7s2 + 5s3 + 4s4 + 11s5 = 0 . (579)

We need to determine what settings of signs si above will make the above true. As the
right-hand-side is zero any positive/negative settings for si will have another solution where
we take the negative of each si i.e. if {si}5i=1 is a solution to the above equation then another
solution is {−si}5i=1.

Now by inspection if si is positive for all i we cannot have a solution. In the same way, taking
only one si negative and all of the others positive it is not possible to produce a solution. In
the case where two of si are negative, by trying various possible combinations for si we find
a solution with s1 = s4 = −1 and the other si = 1. By the symmetry argument above there
can be no solutions with three, four, or five negative si.

When s1 = s4 = −1 we need to solve the system

A+B + C +D + E = 56

A− B = −19

B − C = 7

C −D = 5

D − E = −4

E − A = 11 .

To solve this system we will write everything in terms of a single variable (say A). To do this
note that from these equations we have A = −19+B and B = 7+C so A = −19+7+C =
−12+C. Next C = 5+D so B = 12+D and A = −7+D. Next D = −4+E so C = 1+E,
B = 8 + E, and A = −11 + E. Next E = 11 + A so D = 7 + A, C = 12 + A, B = 19 + A.
Putting these expressions (with everything in terms of A) into the first equation gives

A+ (19 + A) + (12 + A) + (7 + A) + (11 + A) = 56 .

This has the solution A = 7
5
which is not an integer and cannot be a solution to our problem.
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As mentioned above another solution corresponds to the negation of the one we found above
namely s1 = s4 = +1 and the other si = −1. In that case we need to solve the system

A +B + C +D + E = 56

A− B = 19

B − C = −7

C −D = −5

D − E = 4

E − A = −11 .

To solve this system we will again write everything in terms of a single variable (say E). To
do this note that from these equations we have A = 19+B and B = −7+C so A = 12+C.
Next C = −5 + D so B = −12 + D and A = 7 + D. Next D = 4 + E so C = −1 + E,
B = −8 + E, and A = 11 + E. Putting these expressions (with everything in terms of E)
into the first equation gives

(11 + E) + (−8 + E) + (−1 + E) + (4 + E) + E = 56 .

This has the solution E = 10. Using that we find that

A = 21

B = 2

C = 9

D = 14 .

Problem 23

When we imagine this folded it looks to be a unit cube with a corner cut off. Thus if Vc
is the volume of this corner the volume we are asked to find is 13 − Vc. By symmetry, the
volume of the corner cut off is the same as the volume in the positive octant and below the
plane with points (1, 0, 0), (0, 1, 0), and (0, 0, 1). This is a pyramid with a “base” given by a
isosceles right triangle with legs of length one and a hypotenuse of length

√
2 and a height

of one. Thus this pyramid has a volume

Vc =
1

3

(
1

2
12
)

1 =
1

6
.

This means that the volume we seek is 1− 1
6
= 5

6
.

Problem 24

Let R····· be the number of rising numbers with unspecified digits in the five locations. Then
we are told that

R····· =

(
9
5

)

= 126 .
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We can compute

R1···· =

(
8
4

)

= 70

R2···· =

(
7
4

)

= 35

R3···· =

(
6
4

)

= 15

R4···· =

(
5
4

)

= 5

R5···· =

(
5
4

)

= 1 .

As 70+35 = 105 > 97 the 97th rising number starts with a two and does not have a one. All
rising numbers that start with a two will be made up of the digits {3, 4, 5, 6, 7, 8, 9}. Thus
we can compute that

R23··· =

(
6
3

)

= 20

R24··· =

(
5
3

)

= 10 .

As 70+20+10 = 100 > 97 the 97th rising number starts with 24 and does not contain a one
or a three. All rising numbers that start with 24 will be made up of the digits {5, 6, 7, 8, 9}.
Thus we can compute that

R245·· =

(
4
2

)

= 6

R246·· =

(
3
2

)

= 3 .

As 70 + 20 + 6 = 96 < 97 the 97th rising number starts with 246. These three numbers are

24678 , 24679 , 24689 .

Thus the 97th rising number is 24678 and does not have a one, three, or a five in it.

Problem 26

Define θ = ∠ACB = 1
2
∠APB. Then using the fact that AP = BP = 3 and the law of

cosigns we get

AB2 = AP 2 +BP 2 − 2AP · BP cos(2θ)

= 9 + 9− 2 · 9 cos(2θ) = 18− 18 cos(2θ) = 18(1− cos(2θ))

= 18(1− 2 cos2(θ) + 1) = 36(1− cos2(θ))

= 36 sin2(θ) .
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This means that AB = 6 sin(θ).

Now if we drop a perpendicular from P to the segment AB (intersecting at the point P ′) we
have ∠APP ′ = θ = ∠BPP ′ and

AP ′ = P ′B = PB sin(θ) = 3 sin(θ) and PP ′ = PB cos(θ) = 3 cos(θ) .

Let the segment PP ′ intersect the segment AD at the point E. Note that with that point
we have

△PED ∼ △CBD ,

so
PD

DC
=
ED

BD
or

2

DC
=
ED

1
or ED =

2

DC
.

Next using the angle bisector theorem in triangle △APD we have

AP

AE
=
PD

DE
or

2

AE
=

2

DE
or AE =

3

2
ED .

Now

AD = AE + ED +
3

2
ED + ED =

5

2
ED .

This means that

AD ·DC =

(
5

2
ED

)

DC =
5

2

(
2

DC

)

DC = 5 .

Problem 27

This expression is
f(x) = f(x+ 4) + f(x− 4) . (580)

If we add four to x we get

f(x+ 4) = f(x+ 8) + f(x) = f(x+ 8) + f(x+ 4) + f(x− 4) ,

where we have used Equation 580 to replace f(x). The above is equivalent to

f(x− 4) = −f(x+ 8) .

If we add four to x this is
f(x) = −f(x+ 12) . (581)

Now using the above expression twice we have

f(x+ 24) = f((x+ 12) + 12) = −f(x+ 12) = −(−f(x)) = f(x) .

Thus p = 24.
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Problem 28

We seek to find solutions to

|a+ b|+ c = 19 (582)

ab+ |c| = 97 . (583)

In complicated equations (like this one) it can be helpful to first look for symmetries which
might simplify the problem and guide solutions. In the above notice that if (a, b) is a solution
then so is (−a,−b). Another symmetry is to note that if (a, b) = (x, y) is a solution to the
above then so is (a, b) = (y, x).

Note that we can write the above as

|a+ b| = 19− c (584)

|c| = 97− ab . (585)

Now as |x| ≥ 0 for all x using the above we have that

19− c ≥ 0 so c ≤ 19 , (586)

and that
97− ab ≥ 0 so ab ≤ 97 .

As c ≤ 19 we have |c| ≤ 19 so from Equation 585 we have that

97− ab = |c| ≤ 19 so ab ≥ 78 .

Taken together we get
78 ≤ ab ≤ 97 . (587)

As ab must then be positive we have either a < 0 and b < 0 or a > 0 and b > 0 i.e. they
must be of the same sign and we have a + b < 0 or a + b > 0 depending. Without loss of
generality lets assume that a > 0 and b > 0. Now in this case if c > 0 then Equations 582
and 583 give

a + b+ (97− ab) = 19 ,

or
ab− a− b = 78 ,

or
ab− a− b+ 1 = 79 ,

or
(a− 1)(b− 1) = 79 .

Now as 79 is prime the only solutions to this are

a− 1 = 1 and b− 1 = 79 or a− 1 = 79 and b− 1 = 1 .

Solving these we get (a, b) = (2, 80) and (a, b) = (80, 2). Using these in Equation 582 we
find that c = −63 which is not positive as was assumed in the beginning. Thus there are no
solutions with c > 0.
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If we assume that c < 0 then Equations 582 and 583 give

a + b+ c = 19

ab− c = 97 .

Adding these we get
ab+ a + b = 116 ,

or
(a + 1)(b+ 1) = 117 .

Now as 117 = 32 · 13 the solutions to this are when

a+ 1 = 1

a+ 1 = 3

a+ 1 = 32

a+ 1 = 13

a+ 1 = 3 · 13
a+ 1 = 32 · 13 .

with b+ 1 = 117
a+1

in each case. Solving these we find

(a, b) = (0, 116)

(a, b) = (2, 38)

(a, b) = (8, 12)

(a, b) = (12, 8)

(a, b) = (38, 2)

(a, b) = (116, 0) .

For these solutions we find

a + b ∈ {116, 40, 20, 20, 40, 116} .

and thus
c ∈ {−97,−21,−1,−1,−21,−97} ,

all of which are negative as they must be under our assumptions. There are six solutions
found here. There are another six solutions if we consider −a and −b. This gives a total of
12 solutions.
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The 1998 AHSME Examination (AHSME 49)

Problem 1

In the grid the location II shares three sides with other rectangles. By trial and error this
could be the rectangle D since it has three sides it could “share” with other rectangles. Once
we have placed rectangle D, to its left we place E, to its right we place A, below it we place
C and in the South-West direction we place B. Thus the rectangles are placed

EDA

BC

The rectangle at position I is then E.

Problem 2

To make the fraction as large as possible we want A + B to be as large as possible while
C + D is a small as possible. To make C + D as small as possible we would sum the two
smallest digits so C +D = 0 + 1 = 1. Thus A+B

C+D
= A + B which will be an integer. This

will be largest when A+B is the sum the two largest digits or 8 + 9 = 17.

Problem 3

To subtract b from a 2 and get a 3 means that we must borrow from the a digit in the 10s
place to get

12− b = 3 so b = 9 .

To next subtract 8 from a−1 and get a 7 we will have to borrow from the 7 in the hundredths
place (making it a 6) and we have

1(a− 1)− 8 = 7 .

Here 1(a− 1) is the two digit number with its first digit a one and its second digit the value
a− 1. This will be true if 1(a− 1) = 15 so that a− 1 = 5 so a = 6.

Finally we have the subtraction of the hundreds digits to have 6 − 4 + 2 = c. This means
that

a + b+ c = 6 + 9 + 2 = 17 .
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a b |a− b|
32 = 9 2 · 3 · 37 = 222 213
33 = 27 2 · 37 = 74 47

2 · 33 = 54 37 17

Table 17: Choices of a and b where ab = 1998.

Problem 4

From the definition of [a, b, c] we see that

[60, 30, 90] =
90

90
= 1

[2, 1, 3] = 1

[10, 5, 15] = 1 .

Thus the expression we want to evaluate is equivalent to [1, 1, 1] = 1+1
1

= 2.

Problem 5

Call this expression E. The we can write E as

E = 21995(23 − 22 − 21 + 1) = (8− 4− 2 + 1)21995 = 3 · 21995 .

Problem 6

Write 1998 as 1998 = 2 · 33 · 37. Then for different integers a and b we have Table 17. From
that table we see the smallest difference is 17.

Problem 7

Call this expression E. We have

E =
3

√

N
3

√

N
3
√
N =

3

√

N
3
√
N4/3 =

3
√
NN4/9 =

3
√

N
13
9 = N

13
27 .

Problem 8

The area of each region must be 1
3
(12) = 1

3
. Setting that equal to the area of the North-East

trapezoid we get
1

3
=

1

2
· 1
2

(
1

2
+ x

)

.
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Solving for x gives x = 5
6
.

Problem 9

Let N be the number of members in the audience. Then 0.2N heard the entire talk and
0.1N heard none of the talk. Of the remaining

1N − 0.3N = 0.7N ,

audience members one-half heard 1
3
and the other one-half heard 2

3
. These are 0.5(0.7N) =

0.35N people each. Thus the average fraction of the talk heard is

0.2N(1) + 0.1N(0) + 0.35N
(
1
3

)
+ 0.35N

(
2
3

)

N
= 0.55 .

Multiplying this by the length of the talk (60 minutes) gives an average length of 33 minutes.

Problem 10

Let the outer square have a length denoted by S. Let the long side of the rectangle have a
length of H and the short side have a length of W . Then from how the rectangles are placed
in the square we have S = H +W . As we are told the perimeter of each rectangle we have

2H + 2W = 2(H +W ) = 14 so H +W = 7 .

Thus the area of the larger square is S2 = (H +W )2 = 72 = 49.

Problem 11

There are

(
4
2

)

= 6 pairs of points from the rectangle that could be diagonals of a circle.

Two of these pairs are the two diagonals of the rectangle. Recall that the circumscribing
circle of this rectangle has its diameter the diagonal (either one) of the rectangle. Thus there
are 6− 1 = 5 unique circles.

Problem 12

We can write this as
log3(log5(log7(N))) = 211 .

Define a = 211 then the above is equivalent to

log5(log7(N)) = 3a .
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Define b = 3a then the above is
log7(N) = 5b .

Define c = 5b then the above is
N = 7c .

Thus N has only seven in its prime factorization.

Problem 13

We are told that
X1X2X3X4 = 144 = 24 · 32 ,

for Xi the value shown on the upper face of the ith die. From this we see that we can have
at most two sixes and no fives.

If we have no sixes then we must have two threes and two fours to give a sum of

3 + 3 + 4 + 4 = 14 .

If we have one six then we must have one three, one four, and one two for a sum of

6 + 3 + 4 + 2 = 15 .

If we have two sixes we have reduced our product by 62 = 22 · 32 and thus have 22 left in our
product. This means that the two remaining die rolls can be a four or a one or two twos.
These gives sums of

6 + 6 + 4 + 1 = 17

6 + 6 + 2 + 2 = 16 .

Thus it looks like the possible values for the sum are given by {14, 15, 16, 17} thus 18 is not
possible.

Problem 14

For this y we have

y = ax2 + bx+ c = a

(

x2 +
b

a
x

)

+ c

= a

(

x2 +
b

a
x+

b2

4a2

)

− b2

4a
+ c

= a

(

x+
b

a

)2

− b2

4a
+ c . (588)
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As the vertex is at (4,−5) we know that b
a
= −4 and − b2

4a
+ c = −5. The first expression

gives
b = −4a . (589)

Putting that in the second expression we get

−(4a)2

4a
+ c = −5 so c = 4a− 5 . (590)

Both of these conditions in Equation 588 give

y = a(x− 4)− 5 .

To have two positive roots we must have a > 0. From Equation 589 we see that b < 0. From
Equation 590 we don’t have enough information to determine the sign of c.

Problem 15

To start we recall that the area of an equilateral triangle with a side length s is given by 198.
For this problem let the side of the equilateral triangle be given by t (with an area of T ) and
the side of the regular hexagon be given by h (with an area of H). Thus we have

T =

√
3

4
t2 .

As a regular hexagon is composed of six equilateral triangles (of side length h) we have

H = 6

(√
3

4
h2

)

.

As these are equal we have T = H . In that expression we can solve for t
h
and find t

h
=

√
6.

Problem 16

To get the area of the shaded region we can take one-half the area of the largest/outer circle
and add one-half of the area of the smallest/left-most circle and then subtract one-half of
the area of the medium/right-most circle. This would be the expression

As =
1

2
π(a+ b)2 +

1

2
πa2 − 1

2
πb2 = πa(a + b) ,

when we simplify. To get the area of the unshaded region we can take one-half the area of the
largest/outer circle and add one-half of the area of the medium/right-most circle and then
subtract one-half of the area of the smallest/left-most circle. This would be the expression

Au =
1

2
π(a+ b)2 +

1

2
πb2 − 1

2
πa2 = πb(a + b) ,

when we simplify. The ratio we seek is then

As

Au
=
πa(a + b)

πb(a + b)
=
a

b
.
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Problem 17

Let y = 0 to get f(x) = x + f(0). As f(0) = 2 if we take x = 0 we must have f(0) = 2.
Thus

f(x) = x+ 2 .

This means that f(1998) = 2000.

Problem 18

Let r be the common radius. Then if hA and hM are the heights of the right circular cone
and the right circular cylinder respectively then we have

A =
1

3
hA(πr

2)

M = hM(πr2)

C =
4

3
πr3 .

We are then told that hA = hM = 2r so the above become

A =
2

3
πr3

M = 2πr2

C =
4

3
πr3 .

From these notice that A−M = −4
3
πr3 = −C.

Problem 19

We let A = (−5, 0) and B = (+5, 0) and have the third point be denoted C. Then when
drawing this triangle in the x-y Cartesian coordinate plane (with θ > 0 for example) if we
associate the “base” with the segment from (−5, 0) to (+5, 0) and the height with the vertical
from the point C to the x-axis then we have the area of the triangle given by

A =
1

2
bh =

1

2
(10)(5 sin(θ)) = 25 sin(θ) .

Setting this equal to 10 gives

sin(θ) =
2

5
.

There will be four values of θ which have sin(θ) = ±2
5
(one in each quadrant).
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Problem 21

Let vs and vw be the velocity of Sunny and Windy when they run. On the first race in an
amount of time T Sunny ran a length h or

vsT = h ,

while Windy ran a length h− d or

vwT = h− d .

Dividing these two we get
vw
vs

=
h− d

h
.

Now in the second race Sunny will finish in a time T ′ given by

T ′ =
h + d

vs
.

At this time T ′ Windy will be at the location

vwT
′ =

vw
vs

(h+ d) =
h2 − d2

h
.

The distance between the two runners is then

h− vwT
′ = h− h2 − d2

h
=
d2

h
.

Problem 22

Recall that logb n = ln(n)
ln(b)

where ln is the natural log. Using this we can write our sum as

S =
100∑

k=1

ln(k)

ln(100!)
=

1

ln(100!)

100∑

k=1

ln(k) =
1

ln(100!)
ln

(
100∏

k=1

k

)

=
1

ln(100!)
ln(100!) = 1 .

Problem 23

Lets “complete-the-square” in each of these given expressions. For the first we have

x2 − 12x+ 36− 36 + y2 − 6y + 9− 9 = 4 so (x− 6)2 + (y − 3)2 = 49 . (591)

For the second we have

x2 − 4x+ 4 + y2 − 12y + 36 = 4 + 36 + k so (x− 2)2 + (y − 6)2 = 40 + k . (592)

868



The first is the equation of a circle with a center at (6, 3) and a radius
√
49 = 7. The second

is the equation of a circle with a center at (2, 6) and a radius
√
40 + k. Drawing both of

these circles in a Cartesian coordinate plane we note that if k is “small” this second circle
will be entirely “inside” the first circle. If k is “large” then this second circle will be entirely
outside the first one.

Note that from the left-hand-side of Equation 592 we know that 40 + k > 0 so k > −40.

If we subtract the two original expressions we get

0 = 4− k + 8x− 6y so 8x− 6y = k − 4 .

Which we can write as
8(x− 6)− 6(y − 3) = k − 34 . (593)

If we multiply Equation 591 by 82 we get

(8(x− 6))2 + 82(y − 3)2 = 72 · 82 . (594)

Solving Equation 593 for 8(x− 6) and squaring we get

(8(x− 6))2 = 62(y − 3)2 + 12(k − 34)(y − 3) + (k − 34)2 .

If we put this into Equation 594 and simplify we get

100(y − 3)2 + 12(k − 34)(y − 3) + [(k − 34)2 − 72 · 82] = 0 .

This will only have real solutions if the discriminant is nonnegative or if

122(k − 34)2 − 4(100)[(k − 34)2 − 72 · 82] ≥ 0 .

This simplifies to
−36 ≤ k ≤ 104 .

Then b− a = 104− (−36) = 140.

Problem 24

There are 10 × 10 × 10 = 1000 ways to choose the first three digits d1d2d3 of the phone
number. Once these three digits are specified we can make a memorable number by assigning
the digits d4d5d6 or the digits d5d6d7 to these (now specified) first three digits. If we assign
d4d5d6 to d1d2d3 we then have 10 choices for the digit d7. If we assign d5d6d7 to d1d2d3 we
have 10 choices for the digit d4. Thus we have 10×1000 = 10000 ways a memorable number
can be formed where the first three digits equals the digits d4d5d6 and another 1000 ways
a memorable number can be made where the first three digits equals the last three digits.
This seems to indicate that we have a total of 20000 total memorable numbers.

We will have less than 20000 memorable numbers because some of the numbers in the two
sets of numbers above will be the same. That means we need to determine how many
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numbers are in the overlap of the above two sets. If two numbers are in the overlap it means
that

d1d2d3 = d4d5d6 = d5d6d7 .

Setting the first digits equal we have that d1 = d4 = d5. Setting the second digits equal
means that d2 = d5 = d6. Setting the third digits equal means that d3 = d6 = d7. The
summary of these equations means that all digits are equal. Thus there are ten numbers of
this form and the total number of memorable numbers is 20000− 10 = 19990.

Problem 25

Denote the points in this problem as A = (0, 2), B = (4, 0), C = (7, 3) and D = (m,n).
The fold of the paper must be a perpendicular bisector of the segments AB and CD. The
midpoint of the segment AB is the point

1

2
((0, 2) + (4, 0)) = (2, 1) .

The slope of the segment AB is

mAB =
0− 2

4− 0
= −1

2
.

The fold then must have a slope of − 1
mAB

= 2. As the fold must also go through the midpoint
of AB we have its equation given by

y − 1 = 2(x− 2) or y = 2x− 3 . (595)

The slope of the segment CD must be the same as the slope of the segment AB or

mCD =
3− n

7−m
= −1

2
.

We can solve for m and write this as

m = 13− 2n . (596)

The midpoint of the segment CD is

1

2
((7, 3) + (m,n)) =

(
1

2
(m+ 7),

1

2
(n + 3)

)

,

and must be on the fold and so satisfies the line given by Equation 595.

1

2
(n+ 3) = (m+ 7)− 3 .

Using the above expression for m in terms of n we can solve for n to find n = 31
5
. Using

Equation 596 we find m = 3
5
. This means that m+ n = 34

5
= 35−1

5
= 7− 1

5
= 6.8.
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Problem 26

I drew this figure with point A at the origin of an x-y Cartesian coordinate plane. The point
D 46 units to the right of A. The point C perpendicularly above the point D, and finally
the point B at the angle of 120◦ from the AD segment and 13 units away from A.

Extend BC “backwards” to intersect the segment AD at a point B′. Then triangle △B′BA
is a right triangle with ∠BAB′ = 60◦ and AB = 13. From this we have that

B′A cos(60◦) = AB so B′A

(
1

2

)

= 13 so B′A = 26 ,

and
B′A sin(60◦) = B′B so B′B = 13

√
3 .

Now △ABC is a right triangle and so we have

132 +BC2 = AC2 . (597)

In the right triangle △B′DC we have

B′D
2
+DC2 = B′C

2
or (26 + 46)2 +DC2 = (13

√
3 +BC)2 ,

or
722 +DC2 = (13

√
3 +BC)2 . (598)

In the right triangle △ADC we have

AD2 +DC2 = AC2 or 462 +DC2 = AC2 . (599)

We will use Equations 598 and 599 to eliminate DC2 to get

722 + AC2 − 462 = (13
√
3 +BC)2 .

Expanding and simplifying this becomes

2561 + AC2 = 26
√
3BC +BC2 . (600)

Lets us Equations 600 and 597 to eliminate AC2 to get

2561 + 132 +BC2 = 26
√
3BC +BC2 so BC =

105√
3
.

Using that value in Equation 597 we find AC =
√
3844 = 62.
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Problem 28

I drew this figure with point A at the origin of an x-y Cartesian coordinate plane. The point
C is “to the right” of A. The point B is perpendicularly above the point C, and finally the
point D is on the segment BC. I let θ = ∠BAD so that from the problem statement we
have ∠DAC = 2θ.

To simplify notation we let AC = x. Then from what we are told in the problem statement
we have AD = 3

2
x. From the right triangle △ACD we have

DC2 = AD2 −AC2 =
9

4
x2 − x2 =

5

4
x2 so DC =

√
5x

2
.

This means that

tan(∠DAC) = tan(2θ) =
CD

AC
=

√
5

2
.

Lets now consider tan(∠BAC). Note that

tan(∠BAC) = tan(θ + 2θ) =
BC

AC
=
BD +

√
5x
2

x
=
BD

x
+

√
5

2
. (601)

Using Equation 346 to evaluate tan(θ + 2θ) we get

tan(θ + 2θ) =
tan(θ) + tan(2θ)

1− tan(θ) tan(2θ)
=
BD

x
+

√
5

2
. (602)

From the above we know the value of tan(2θ). Lets compute the value of tan(θ). To do that
in Equation 346 let x = y = θ to get

tan(2θ) =

√
5

2
=

2 tan(θ)

1− tan2(θ)
.

This is a quadratic equation in tan(θ). Solving we get

tan(θ) ∈
{

−
√
5 ,

1√
5

}

.

If we assume that tan(θ) = −
√
5 then Equation 602 would say that tan(3θ) < 0. Thus we

know that tan(θ) = 1√
5
and using Equation 602 we have that

tan(3θ) =
7

5

√
5 .

Using this value in the above we find BD given by

BD =
9
√
5

10
x .

Using that I find

CD

BD
=

√
5
2
x

9
√
5

10
x
=

5

9
.

This means that m = 5 and n = 9 so m+ n = 14.
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The 1999 AHSME Examination (AHSME 50)

Problem 1

Denote this sum as S. Then we can write S as

S =

99∑

i=1

i(−1)i+1 =
∑

i odd

i(−1)i+1 +
∑

i even

i(−1)i+1

=

49∑

k=0

(2k + 1)(−1)2k+1+1 +

49∑

k=1

(2k)(−1)2k+1

=

49∑

k=0

(2k + 1) + (−1)

49∑

k=1

(2k)

= 1 +

49∑

k=1

(2k + 1− 2k) = 1 +

49∑

k=1

1 = 1 + 49 = 50 .

Problem 2

Choice A is false. All equilateral triangles are similar to each other. If two equilateral
triangles have different lengths they are not congruent but similar.

Problem 3

This would be
1

2

(
1

8
+

1

10

)

=
9

80
,

when we simplify.

Problem 4

For this problem we will first form the numbers 4n + 1 for 1 ≤ n ≤ 25 and the numbers
5m−1 for 1 ≤ m ≤ 21 which will generate the proposed numbers that could be primes. The
primes we seek must be numbers in the intersection of these two sets of numbers. We find
these numbers to be

{9 , 29 , 49 , 69 , 89} .
The only actual primes in this list are 29 and 89. The sum of these two numbers is 118.
Note that the answer in the back of the book seems to be for a slightly different problem.
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Problem 5

Let R be the retail price, M the mark price, and A the price Alice paid. Then we are told
that M = 0.7R and A = 0.5M . Thus

A = 0.5(0.7R) = 0.35R .

This is 35% of the retail price.

Problem 6

Call this expression E. Then

E = 21999 · 52001 = (2 · 5)1999 · 52 = 25 · 101999 .

This is 25 with 1999 zeros. The sum of these digits is 7.

Problem 7

The sum of the interior angles of a hexagon (with the number of sides n = 6) is given by
S = 180(n − 2) = 720 and there are n = 6 interior angles. In addition, for the polygon to
be convex each interior angle must be less than 180◦. If we had four acute angles then the
sum of them must be less than 4(90) = 360 and the sum of the two other angles must then
be larger than

720− 360 = 360 ,

which means that one of them is larger than 180 and the hexagon would not be convex.
Thus we have “too many” acute angles.

If we have three acute angles their sum must be less than 3(90) = 270 and the other three
interior angles must sum to at least 720− 270 = 450. This means that at least one must be
larger than

450

3
= 150 ,

which is possible without violating convexity.

Problem 8

Let Walters age be W and his grandmothers age be G. From the problem statement at the
end of 1994 we have W = 1

2
G. Next note that 1994 −W is the year that Walter was born

and thus 1994−G is the year that his grandmother was born. We are told that

(1994−W ) + (1994−G) = 3838 .
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This simplifies to
W +G = 150 .

Using W = 1
2
G we find G = 100 and W = 50. Thus in 1999 (in five years) Walter will be

50 + 5 = 55.

Problem 9

Ashley could have driven a maximum of 75(2) = 150 miles. Let m3m2m1 be the digits in the
number representing the number of miles that Ashley drove. Then we need to know what
numbers

27972 +m3m2m1 ,

where 1 ≤ m3m2m1 ≤ 150 is also a palindrome and the individual digits are bounded as
0 ≤ m3 ≤ 1, 0 ≤ m2 ≤ 5, and 0 ≤ m1 ≤ 9.

Now let oi be the digit in the ith location in the “original” number i.e. 27972 = o5o4o3o2o1
so o5 = 2, o4 = 7, etc. In addition we let ri be the digit in the ith location of the “result” of
adding 27972 to m3m2m1. Because 27972+ 150 = 28122 we must have r5 = 2. Because this
result must also be a palindrome we must have r5 = 2 = r1 so m1 = 0.

As o2 = 7 if m2 ∈ {0, 1, 2} there will be no “carry” and we would have r2 ∈ {7, 8, 9} in
each case. We will have r2 = r4 = 8 if m3 = 1 and the number m3m2m1 = 110. To give
27972 + 110 = 28082 as the “other” palindrome.

If m2 ∈ {3, 4, 5} then r2 ∈ {0, 1, 2} in each case and our total number is not a palindrome.

This means that Ashley’s average speed is 110
2

= 55 miles-per-hour. Note that the answer in
the back of the book seems to be for a slightly different problem (does Ashley do a two or a
three hour drive?).

Problem 10

If three of these statements are true and one is false we can assume each statement in tern
is false and see if a consistent set of results is obtained. For example,

• If I is false, then II, III, and IV can all be true and have a consistent set of results.

• If II is false, then I, III, and IV would be inconsistent.

• If III is false, then I, II, and IV can all be true and have a consistent set of results.

• If IV is false, then I, II, and III can all be true and have a consistent set of results.

Taken together in all cases II must be true.
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Problem 11

Let n be the total number of lockers. Note that

• It will cost 0.02(9) = 0.18 to label the lockers 1, 2, . . . , 8, 9 leaving 137.94−0.18 = 137.76
yet to spend.

• It will cost 0.04(90) = 3.6 to label the lockers 10, 11, . . . , 98, 99 leaving 137.76− 3.6 =
134.16 yet to spend.

• It will cost 0.06(900) = 54 to label the lockers 100, 101, . . . , 998, 999 leaving 134.16 −
54 = 80.16 yet to spend.

• Each locker from that point onwards will cost 0.08 and there will be 80.16
0.08

= 1002 of
them.

This gives a total of
n = 9 + 90 + 900 + 1002 = 2001 .

Problem 12

The expression p(x) − q(x) will be a third degree polynomial and will have at most three
real roots.

Problem 13

We can write this as an+1 = 991/3an. By iterating we have that

an = (99(n−1)/3)a1 = 99(n−1)/3 ,

since a1 = 1. We thus have that a100 = 9999/3 = 9933.

Problem 14

Let N be the number of songs sung in trios i.e. the total number of songs sung. Let m, a,
t, and h be the number of songs sung by Mary, Alina, Tina, and Hanna respectively. Then
we are told that h = 7 and m = 4. If we add up m, a, t, and h then we get that

m+ a + t+ h = 3N ,

as the songs are sung in trios. Using what we know about h and m this is

3N = 11 + a+ t ,
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a t 11 + a + t Is 11 + a + t a multiple of three N
5 5 21 Yes 7
5 6 22 No -
6 5 22 No -
6 6 23 No -

Table 18: Possible values for a and t and whether or not 11 + a+ t is a multiple of three.

and we know that 5 ≤ a ≤ 6 and 5 ≤ t ≤ 6. The above means that the sum of 11 + a + t
must be a multiple of three. In Table 18 we tabulate the possible values of a and t and then
ask if the given sum is a multiple of three. If it is then we can compute a value for N . The
given table shows that N = 7 is the only consistent solution.

Problem 15

Lets square the given expression to get

sec2(x)− 2 sec(x) tan(x) + tan2(x) = 4 .

Use tan2(x) + 1 = sec2(x) to replace tan2(x) in the above to get

2 sec2(x)− 2 sec(x) tan(x) = 5 ,

or
2 sec(x)(sec(x)− tan(x)) = 5 .

Using the given expression in the problem this becomes

4 sec(x) = 5 .

This means that sec(x) = 5
4
. From the equation given this means that tan(x) = −3

4
. Thus

we have

sec(x) + tan(x) =
1

2
.

Problem 16

Recall that a rhombus is a parallelogram with four equal sides. The diagonal of a rhombus
are perpendicular and bisect each other. If we draw our rhombus (and its diagonals) we see
that it is made up of four congruent right triangles with legs of length 24

2
= 12 and 10

2
= 5.

Each of these right triangles has its hypotenuse as the sides of the rhombus and thus the
side of the rhombus is of length

h =
√

122 + 52 = 13 .

Now the inscribed circle will be tangent to each of the four sides of the rhombus. Thus
the radius of the inscribed circle will be the perpendicular distance from the center of the
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rhomboid to one of the sides of the rhomboid. This is also the length of the altitude a to
the hypothesis in any of the four internal right triangles. We can compute the length of
this altitude by computing the area of an internal right triangle in two ways. One uses the
product of the legs and the other using the length of the hypotenuse times its altitude or

A =
1

2
(5)(12) =

1

2
(13)a so a =

60

13
.

Problem 17

From what we are told we have that

P (x) = (x− 19)f(x) + 99 (603)

P (x) = (x− 99)g(x) + 19 , (604)

for polynomials f(x) and g(x). Now if I set x = 99 in Equation 603 I must have

P (99) = 80f(99) + 99 = 19 so f(99) = −1 .

This means that f(x) has a remainder of −1 when we divide it by x − 99 and thus we can
write f(x) as

f(x) = (x− 99)h(x)− 1 ,

for some h(x). Putting this into Equation 603 gives us that

P (x) = (x− 19)(x− 99)h(x)− (x− 19) + 99 = (x− 19)(x− 99)h(x)− x+ 118 .

This means that the remainder when we divide P (x) by (x− 19)(x− 99) is −x+ 118.

Problem 18

As log(x) ranges from −∞ < log(x) < 0 as x ranges from 0 < x < 1 the function cos(log(x))
will have an infinite number of zeros on this interval.

Problem 19

Using the Pythagorean theorem in triangle △ADB we have

BD2 +DA2 = AB2 or 57 +DA2 = AB2 .

We write this as

AB2 −DA2 = 57 or (AB −DA)(AB +DA) = 57 .
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As AB is an integer we must have AD an integer also. Thus we are looking for the factors
of 57. One factorization is 57 = 1× 57. As AB −DA < AB +DA this means that

AB −DA = 1

AB +DA = 57 .

Solving for AB gives AB = AC = 29.

Another factorization is 57 = 3× 19. This means that

AB −DA = 3

AB +DA = 19 .

Solving for AB gives AB = AC = 11.

This last value is the smallest possible value for AC.

Problem 20

We are told that

an =
1

n− 1

n−1∑

k=1

ak , (605)

for n ≥ 3. Given a1 and a2 using this formula we find that a3 would be given by

a3 =
1

2
(a1 + a2) .

The formula for a4 is then given by

a4 =
1

3
(a1 + a2 + a3) =

1

3

(

a1 + a2 +
1

2
(a1 + a2)

)

=
1

2
(a1 + a2) .

when we simplify. Based on this it looks like it might be that an = 1
2
(a1 + a2) for all n ≥ 3

i.e. it is the same value for all n. To prove this, we consider Equation 605 where we have

an =
1

n− 1

(
n−2∑

k=1

ak + an−1

)

=
1

n− 1
((n− 2)an−1 + an−1) = an−1 .

This means that

a9 = 99 =
1

2
(a1 + a2) =

1

2
(19 + a2) .

Solving for a2 we get a2 = 179.
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Problem 21

As
202 + 212 = 292 ,

the given triangle is a right triangle which means that the circumscribing circle will have the
triangle’s hypotenuse as its diameter. Thus the radius of the circumscribing circle is then
r = 29

2
. Let T be the area of the triangle then we have

T =
1

2
(21)(20) = 210 .

In addition, the largest external area C will be the area of the semicircle and thus equal to
the sum of the other three areas or

C = A+B + T = A+B + 210 .

Problem 22

If we draw these two curves the first is concave down and the second is concave up. The
points where they intersect will be when

• x < a and x < c or

• x > b and x > c.

The first condition is the intersection of the pair of lines

y = +(x− a) + b

y = −x+ c+ d .

Taking (x, y) = (2, 5) in the above and simplifying we get

a− b = −3 (606)

c+ d = 7 . (607)

The second condition is the intersection of the pair of lines

y = −(x− a) + b

y = x− c+ d .

Taking (x, y) = (8, 3) in the above and simplifying we get

a+ b = 11 (608)

c− d = 5 . (609)

If we add Equations 606 and 608 we get a = 4. If we add Equations 607 and 609 we get
c = 6. Together these give a+ c = 10.
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Problem 23

As this hexagon is equiangular each angle is given by

180◦(n− 2)

n
= 120◦ ,

when n = 6 as it is for a hexagon. We place A at the original of an x-y Cartesian plane such
that A = (0, 0) and B = (1, 0). Then as ∠ABC = 120◦ we have

C = (1 + 4 cos(60), 0 + 4 sin(60)) = (3, 2
√
3) .

If we draw a horizontal though C we can determine that the segment CD is 60◦ from this
horizontal and thus as CD = 2 we have

D = (3− 2 cos(60), 2
√
3 + 2 sin(60)) = (2, 3

√
3) .

Continuing by drawing E we find that DE is parallel to the x axis and so

E = (2− 4, 3
√
3) = (−2, 3

√
3) .

We now need to determine the location of the point F such that ∠FED = 120◦ = ∠BAF .
If AF = b (as its the bottom of the two segments AF and FE) then the point F can be
given by “walking” from A as

F = (−b cos(60), b sin(60)) =
(

− b
2
,
b
√
3

2

)

.

If EF = t (for top) then the point F can be given by “walking” from E as

F = (−2− t cos(60), 3
√
3− t sin(60)) =

(

−2− t

2
, 3
√
3− t

√
3

2

)

.

Setting these two expressions equal gives two equations for the unknowns b and t. Solving I
find t = 1 and b = 5. This means that the point F is given by

F =

(

−5

2
,
5
√
3

2

)

.

These points are labeled in Figure 16.

Now that we have all of the points labeled we can compute the area of the figure. The
simplest method seems to compute the area of the bounding rectangle and then subtract the
four “corner” triangles. The bounding rectangle has an area of (in terms of the components
of the points defined above)

R = (Cx − Fx)(Ey − 0) =

(

3 +
5

2

)

3
√
3 =

33
√
3

2
.
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Figure 16: The hexagonal region for Problem 23.

To denote the four “corner” triangles we will let C ′ and F ′ be the vertical projections of the
points C and F onto the x axis and C ′′ and F ′′ be the vertical projections of the points C
and F onto the horizontal line though DE. Then the four triangles have areas given by

[△BC ′C] =
1

2
(2)(2

√
3) = 2

√
3

[△DC ′′C] =
1

2
(1)(

√
3) =

√
3

2

[△EF ′′F ] =
1

2

(
1

2

)(√
3

2

)

=

√
3

8

[△FF ′A] =
1

2

(
5

2

)(

5
√
3

2

)

=
25
√
3

8
.

These four areas sum to 23
√
3

4
. Thus the area we seek is given by

33
√
3

2
− 23

√
3

4
=

43
√
3

4
.

Problem 24

The numbers used in the problem and in the solution seem different. Here I assume there
are p points on the circle and we are looking for a convex n-sided polygon with p > n. There

are

(
p
n

)

convex n-gon’s. This is because from the p points we need to select n of them

to select a n sided figure. Once these points are select the convex polygon is obtained by
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connecting the points with chords in a clockwise (or counterclockwise) manner. Thus there

are

(
p
n

)

positive examples.

The total number of chords we can select can be determined in the following way. There are(
p
2

)

total chords and from this number we must select n. This is the number





(
p
2

)

n



 .

Thus the probability P desired is the ratio of these two numbers or

P =

(
p
n

)





(
p
2

)

n





.

In the problem we have p = 5 and n = 4 to get

P =

(
5
4

)





(
5
2

)

4





=
5

(
10
4

) =
5

210
=

1

42
.

In the answer we have p = 6 and n = 4 to get

P =

(
6
4

)





(
6
2

)

4





=
15

(
15
4

) =
15

1365
=

1

91
.

Problem 25

Multiply both sides by 7! to get

5 · 6! = 7 · 6 · 5 · 4 · 3 · a2 + 7 · 6 · 5 · 4 · a3 + 7 · 6 · 5 · a4 + 7 · 6 · a5 + 7a6 + a7 ,

or
3600 = 2520a2 + 840a3 + 210a4 + 42a5 + 7a6 + a7 .

This means that
3600− a7 = 7(360a2 + 120a3 + 30a4 + 6a5 + a6) .
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This means that 3600 − a7 ≡ 0 (mod 7) (i.e. the number 3600 − a7 must be divisible by
seven). As 3600 ≡ 2 (mod 7) this means that a7 = 2. Using that value the above we get
that

3600− 2

7
= 514 = 360a2 + 120a3 + 30a4 + 6a5 + a6 ,

or
514− a6 = 6(60a2 + 20a3 + 5a4 + a5) .

By the same reasoning as above this means that 514−a6 ≡ 0 (mod 6). As 514 ≡ 4 (mod 6)
when a6 ∈ {0, 1, 2, 3, 4, 5} we must take a6 = 4 and we get

514− 4

6
= 85 = 60a2 + 20a3 + 5a4 + a5 ,

or
85− a5 = 5(12a2 + 4a3 + a4) .

This means that 85− a5 ≡ 0 (mod 5). As 85 ≡ 0 (mod 5) when a5 ∈ {0, 1, 2, 3, 4} we must
have a5 = 0. Using that we get

85

5
= 17 = 12a2 + 4a3 + a4 ,

or
17− a4 = 4(3a2 + a3) .

Thus 17− a4 ≡ 0 (mod 4). As 17 ≡ 1 (mod 4) when a4 ∈ {0, 1, 2, 3} we have a4 = 1. Using
that we get

16

4
= 3a2 + a3 ,

or
4− a3 = 3a2 .

Thus 4 − a3 ≡ 0 (mod 3). As 4 ≡ 1 (mod 3) when a3 ∈ {0, 1, 2} we have a3 = 1 and the
above gives 3 = 3a2 so a2 = 1 also. Given the numbers above we compute

a2 + a3 + a4 + a5 + a6 + a7 = 1 + 1 + 1 + 0 + 4 + 2 = 9 .

Problem 27

If we square each of these equations we get

9 sin2(A) + 24 sin(A) cos(B) + 16 cos2(B) = 36 (610)

16 sin2(B) + 24 sin(B) cos(A) + 9 cos2(A) = 1 . (611)

If we add these two equations we get

9(1) + 16(1) + 24(sin(A) cos(B) + sin(B) cos(A)) = 37 .

This simplifies to

sin(A+B) =
1

2
.
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This means that A+B = 30◦ or A+B = 150◦. If the first of these is true then certainly we
have A < 30◦ and thus

3 sin(A) + 4 cos(B) < 3

(
1

2

)

+ 4 =
11

2
< 6 ,

which is a contradiction. Thus we must have A+B = 150◦ and thus C = 180− 150 = 30◦.

Problem 28

It seems like the solution to this problem involves a technique that could be useful in other
places. Notice that if xi is restricted to be from a restricted set of numbers say {A,B,C}
then sums of the form

∑

i x
p
i are easy to evaluate in terms of the number of times each of

the xi takes values from the set above. For example we have

∑

i

xpi = NAA
p +NBB

p +NCC
p ,

where NA are the number of times that xi = A. The same for NB and NC .

Given this comment let a, b, and c be the number of times that xi are −1, +1 and +2
respectively. Then we seek to optimize

n∑

i=1

x3i = −a + b+ 8c , (612)

subject to the constraints that

n∑

i=1

xi = −a + b+ 2c = 19 (613)

n∑

i=1

x2i = a + b+ 4c = 99 . (614)

If we view these two equations as a system for a and b and solve the above we get solutions
for a and b in terms of c. We find

a = 40− c (615)

b = 59− 3c . (616)

If we put these two expressions into Equation 612 we seek to optimize

−(40 − c) + (59− 3c) + 8c = 19 + 6c ,

when we simplify.

Now to minimize
∑n

i=1 x
3
i we would take c as small as possible which would be c = 0 to give

m = 19.
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Now to maximize
∑n

i=1 x
3
i we would take c as large as possible subject to the constraints

that a ≥ 0, b ≥ 0, and c ≥ 0. From a ≥ 0 and Equation 615 we have that c ≤ 40. From
b ≥ 0 and Equation 616 we have that c ≤ 59

3
< 20. Thus the largest c can be is when c = 19.

This means that M = 19 + 6(19) = 7(19) = 133.

Thus we have M
m

= 7(19)
19

= 7.

The 1999 Sample AMC 10 Examination

Problem 1

This would be the number
1

2

(
1

6
+

1

4

)

=
5

24
.

Problem 2

Let R be the retail price, M the mark price, and A the price Alice paid. Then we are told
that M = 0.6R and A = 0.5M . Thus

A = 0.5(0.6R) = 0.3R .

This is 70% of the retail price.

Problem 3

Let the three numbers be a ≤ b ≤ c. Then we are told that

1

3
(a+ b+ c) = a+ 10 (617)

1

3
(a+ b+ c) = c− 15 , (618)

and the median (which is b) is five. Putting b = 5 in the above and solving for a and c we
get a = 0 and c = 25. Thus a + b+ c = 30.

Problem 4

The sum of the interior angles of a quadrilateral must equal S = 180(n − 2) = 360 when
n = 2. If we consider o = 3 obtuse angles then the sum of these o angles must be larger
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than 3(90) = 270 and thus the fourth interior angle in our quadrilateral will be smaller than
360− 270 = 90 and will be acute. Thus this number of obtuse angles is possible.

If we try for a larger number of obtuse angles say o = 4 then the sum of these interior angles
will be larger than 90(4) = 360 and is thus not possible.

Problem 5

Sum these numbers in pairs as

S = (1− 2) + (3− 4) + (5− 6) + · · ·+ (199− 200) =

50∑

i=1

(−1) = −100 .

Thus the average is S
200

= −1
2
.

Problem 6

Call this expression E. Then write E as

E = 21999 · 52000 = 5(2 · 5)1999 = 5 · 101999 .

This is the number “five” followed by 1999 zeros. The sum of these digits is five. Note that
the answer in the back of the book seems to be for a slightly different problem.

Problem 7

Numbers of the form 5n+ 1 will have a units digit of a six or a one. Note that any number
that has a units digit of a six is even and is not prime.

Numbers of the form 6m− 1 have a units digit of a five, a one, a seven, a three, or a nine.

The only common ending between these two sets of numbers are numbers that end in a one.
The possible numbers (less than 100) that end in a one are

11 , 21 , 31 , 41 , 51 , 61 , 71 , 81 , 91 .

For each of these numbers the value of m in the representation 6m− 1 will be an integer for
the subset

11 , 41 , 71 .

The sum of these numbers is 123. Note that the answer in the back of the book seems to be
for a slightly different problem.

887



Problem 8

The book’s solution is much simpler than the one given here.

I first draw the two rectangles. Lets denote the corner points of the “left-most” rectangle as
A = (−2, 0), B = (0, 0), C = (0, 4), and D = (−2, 4). Lets denote the corner points of the
“right-most” rectangle as E = (1, 0), F = (5, 0), G = (5, 12), and H = (1, 12). Lets take
our bisecting line to have an equation of y = mx+ b and let it intersect the verticals of our
rectangles at the points P = (−2,−2m+ b), Q = (0, b), R = (1, m+ b), and S = (5, 5m+ b).

Now by symmetry in order for this line to bisect each rectangle we must have AP = CQ or

−2m+ b = 4− b , (619)

and ER = GS or
m+ b = 12− (5m+ b) . (620)

These give two equation for the two unknowns m and b. Solving them we find m = 1 and
b = −3.

Problem 9

The two-inch cube has a volume of 23 = 8 cubic inches. Silver is thus valued at 200
8

= 25
dollars per cubic inch. The three inch cube has a volume of 33 = 27 cubic inches. The value
of this is then

27(25) = 675 ,

dollars.

Problem 10

The only blocks that will have one face painted will be the ones that are “interior” to each
face. As we need to remove one corner and one edge from each we would have that that
4× 6 face will be reduced to a (4− 2)× (6− 2) = 2× 4 region with 8 cubes that have paint
on one face. For the faces of the other dimensions, we have the 4× 8 face reduced to a 2× 6
region and thus get 12 more blocks. Finally, we have the 6×8 face reduced to a 4×6 region
and thus get 24 more blocks. As each region appears twice this is

2(8) + 2(12) + 2(24) = 88 ,

blocks.
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Problem 11

The vertical runs have a length given by

8 + 2 = 10 = 3 + 6 + 1 ,

While the horizontal runs must have a length of 12 (top and bottom). Thus the perimeter
is 2(10) + 2(12) = 44.

Problem 12

Call this number N . As 82 = 64 > 50 there cannot be any digit larger than an eight in this
number. If the largest digit is a seven then as

50− 72 = 1 ,

the only other digit can be a one and the number is N = 17.

If the largest digit is a six then as

50− 62 = 14 = 9 + 4 + 1 ,

this number is N = 1236.

If the largest digit is a five then as

50− 52 = 25 = 16 + 9 ,

and this number is N = 345.

If the largest digit is a four then as

50− 42 = 34 = 9 + 4 + 1 + 20 ,

which is inconsistent with the type of numbers we are looking for. The largest number above
is N = 1236 which has a digit product of 36.

Problem 13

Let Walters age be W and his grandmothers age be G. From the problem statement at the
end of 1994 we have W = 1

2
G. Next note that 1994 −W is the year that Walter was born

and thus 1994−G is the year that his grandmother was born. We are told that

(1994−W ) + (1994−G) = 3844 .

This simplifies to
W +G = 144 .

Using W = 1
2
G we find G = 96 and W = 48. Thus in 1999 (in five years) Walter will be

48 + 5 = 54.
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Problem 14

The units digit of a product depends on the product of the units digits of the factors. For
the number we are given we have

(2 · 4 · 6 · 8)(12 · 14 · 16 · 18)(22 · 24 · 26 · 28)(32 · 34 · 36 · 38) · · · (92 · 94 · 96 · 98) .

There are 10 “groups” that are products of numbers ending with a two, a four, a six, and
an eight. The product of these digits is

2 · 4 · 6 · 8 = 384 ,

and thus has a units digit of a four.

The product of 10 numbers that end if a four will have the same units digit as 410. Note
that

42 ≡ 6 (mod 10)

43 ≡ 4 (mod 10)

44 ≡ 6 (mod 10) .

Thus we have that
410 = 42 · 42 · 42 · 42 · 42 ≡ 6 (mod 10) ,

and the product ends in a six.

Problem 15

The sum of three elements will be even if all of the items are even or two are odd and one is
even. There are three even numbers and three odd numbers in the original set. Thus there
is only one subset that has three even numbers. We can draw a subset of two odd numbers

in

(
3
2

)

= 3 ways. We can draw a single even number in

(
3
1

)

= 3 ways. This gives

3× 3 = 9 ,

subsets with two odd numbers and one even number. The total number of sets is then
1 + 9 = 10.

Problem 16

Let the radius of the circle be r. The points that are closer to the center of the circle are
ones that are less than r

2
from the center i.e. “inside” the circle of radius r

2
. This smaller

circle has an area of

AI = π
(r

2

)2

=
πr2

4
.
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The area of the original circle is πr2 and so the area of the region where the points are closer
to the boundary is

πr2 − πr2

4
=

3πr2

4
.

This means that the probability a random point is closer to the center is then

AI

πr2
=

1

4
.

Problem 17

Pages 1− 9 require nine digits leaving 600− 9 = 591 digits remaining.

Pages 10−99 are 99−10+1 = 90 pages and require 2(90) = 180 digits leaving 591−180 = 411
remaining.

Pages 100 − 999 are 999 − 100 + 1 = 900 pages and require 3(900) = 2700 digits which is
more than we have remaining. This means that each of the 411 remaining digits will produce

411

3
= 137 ,

pages. Thus the total number of pages is

9 + 90 + 137 = 236 .

Note that the answer in the back of the book seems to be for a slightly different problem.

Problem 19

These two cubic polynomials can be represented as

y1(x) = x3 + Ax2 +Bx+ C

y2(x) = x3 + ax2 + bx+ c .

They will intersect if there exists an x such that y1(x) = y2(x) or y1(x) − y2(x) = 0. The
left-hand-side of this last expression is a quadratic expression in x and can thus have at most
two real values for x that satisfy it.

Problem 20

If we draw these two curves the first is concave down and the second is concave up. The
points where they intersect will be when
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• x < a and x < c or

• x > b and x > c.

The first condition is the intersection of the pair of lines

y = +(x− a) + b

y = −x+ c+ d .

Taking (x, y) = (2, 5) in the above and simplifying we get

a− b = −3 (621)

c+ d = 7 . (622)

The second condition is the intersection of the pair of lines

y = −(x− a) + b

y = x− c+ d .

Taking (x, y) = (8, 3) in the above and simplifying we get

a+ b = 11 (623)

c− d = 5 . (624)

If we add Equations 621 and 623 we get a = 4. If we add Equations 622 and 624 we get
c = 6. Together these give a+ c = 10.

Problem 21

Lets try to “pick” the false statement.

• If I is false, the three remaining statements are consistent.

• If II is false, the three remaining statements are consistent.

• If III is false, the three remaining statements are not consistent as I and II cannot both
be true.

• If IV is false, the three remaining statements are not consistent as I and II cannot both
be true.

Thus we see that III and IV must both be true. This is answer (E).
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Problem 22

As 32 + 42 = 52 this triangle is a right triangle. When we circumscribe a circle about this
right triangle the diameter of the circle must be the triangles hypotenuse and is thus the
diameter is of length five. This means that the radius of the circle is r = 5

2
. From the

problem statement then C is the area of 1
2
of the circle so

C =
1

2
π

(
5

2

)2

=
25π

16
.

Next notice that the other one-half of the circle is made up of areas of size A, B and the
area of the right triangle itself. This means that

C = A+B +
1

2
(3)(4) = A +B + 6 .

Problem 23

Lets write down the given requirements. We have

7 + a + b+ 1 = K or a + b+ 8 = K (625)

3 + e + f + 10 = K or e + f + 13 = K (626)

7 + c+ 3 = K or c+ 10 = K (627)

1 + d+ 10 = K or d+ 11 = K . (628)

As we know that each of a, b, c, d, e, and f are larger than or equal to two we know that
from Equation 627 that

K ≥ 10 + 2 = 12 .

Also as we know that each of a, b, c, d, e, and f are smaller than or equal to nine from
Equation 627 we have that

K ≤ 9 + 10 = 19 .

These only eliminate one choice. If we subtract Equation 628 from Equation 627 we get

c− d− 1 = 0 or c− d = 1 .

From the choices given we then must have

(c, d) ∈ {(9, 8) , (6, 5) , (5, 4)} . (629)

If we take (c, d) = (9, 8) then from the above we find K = 19 and Equations 625 and 626
become

a+ b = 11

e+ f = 6 .

This will hold true if (a, b, e, f) = (5, 6, 2, 4). Other choices for (c, d) found in Equation 629
don’t give consistent solutions.
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Problem 24

Let OA = OB = r the radius of the circle. The area of the triangle is

AT =
1

2
r2 .

Now by “right triangles” AB =
√
2r so that the radius of the circle with AB as its diameter

is then given by
√
2
2
r = r√

2
. The area of the lune is given by half the area of a circle with

radius r√
2
minus the area in the circle and in sector AOB but not in the right triangle△AOB

or

AL =
1

2

(

π
r2

2

)

−
(
1

4
πr2 − AT

)

=
r2

2
,

when we simplify. The ratio we seek is then

AL

AT
= 1 .

Problem 25

The sum of the interior angles of an n-sided figure is S = 180(n− 2). For a “regular” figure
(with n sides) each interior angle must then be

θ =
180(n− 2)

n
.

For n = 6 (hexagon) and n = 5 (pentagon) these are

θh = 120◦ = ∠CBG

θp = 108◦ = ∠ABG .

This means that
∠CBA = 360◦ − ∠CBG− ∠ABG = 132◦ .

Now as BC = BA from properties of isosceles triangles we have

∠BAC = ∠BCA =
180◦ − ∠CBA

2
= 24◦ .
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The 2000 AMC 12 Examination (AHSME 51)

Problem 1

If we factor 2001 into its factor we have 2001 = 3 · 667. Assigning this to I ·M ·O we would
then have

I +M +O = 1 + 3 + 667 = 671 .

Problem 2

This is
2000(2000)2000 = 20002001 .

Problem 3

If Ni is the number of jellybeans at the end of the ith day. Then we are told that

Ni = (1− 0.2)Ni−1 = 0.8Ni−1 =
4

5
Ni−1 ,

for i ≥ 1. This means that at the end of the second day we have

N2 =
4

5
N1 =

(
4

5

)2

N0 = 32 .

Here N0 is the number of jellybeans Jenny started with. Solving the above for N0 gives
N0 = 50.

Problem 4

From the given Fibonacci numbers in this small sample we see that in the units position we
have “observed” the digits

1 , 2 , 3 , 5 , 8 .

Computing some more Fibonacci numbers gives

34 , 55 , 89 , 144 , 233 , 377 , 610 .

Thus we now “observe” the new ones digits

4 , 9 , 7 , 0 .

At this point we have “seen” all digits but 6.
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Problem 5

As x < 2 we have that |x− 2| = −(x− 2) = 2− x. Thus we have that |x− 2| = p is

2− x = p so x = 2− p .

This means that x− p = 2− p− p = 2− 2p.

Problem 6

The primes between 4 and 18 are

{5 , 7 , 11 , 13 , 17} .

There are

(
5
2

)

= 10 pairs from this set. One way to proceed is to table all of these

numbers and compute the needed expressions and then see which one is a solution. We can
do this with the R programming language as

primes = c(5, 7, 11, 13, 17)

a_times_b = outer(primes, primes, "*")

a_plus_b = outer(primes, primes, "+")

res = a_times_b - a_plus_b

print(sort(res[upper.tri(res)]))

This gives

[1] 23 39 47 59 63 71 95 119 159 191

We see that 119 is a solution.

Problem 7

If we have that logb(729) = n then bn = 729. Factoring 729 we get that 729 = 36 so we are
looking for the number of integers n such that

bn = 36 .

From this we must have n be an integer factor of 6 and thus n ∈ {1, 2, 3, 6}. For these values
of n we have that b is given by

36 , 33 , 32 , 3 .

Thus there are four solutions.
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Problem 8

Looking at figure 3 we see that it has 2(3)+ 1 boxes in the central vertical column. We have
2(2) + 1 boxes in the column to the right of this central vertical column, 2(1) + 1 boxes in
the column to the right-right of this central vertical column and finally a single box to the
right-right-right of this central vertical column. There are also the same number of vertical
columns to the left as to the right. Thus it looks like the number of boxes the figure f has
is given by

Nf = (2f + 1) + 2

f−1
∑

k=0

(2k + 1) .

Here we have added the number of boxes in the central column and then the number of
boxes in the columns to the right/left of this central column. We can evaluate this sum to
get

Nf = 2f 2 + 2f + 1 .

This formula works for f ∈ {0, 1, 2, 3}. Taking f = 100 we get

N100 = 20201 .

Problem 9

From the problem statement the sum of these numbers (which is 400) must be divisible by
five (which it is). If we “remove” one of these numbers we must get a number that is divisible
by four. Thus we consider

400− 71 = 329

400− 76 = 324

400− 80 = 320

400− 82 = 318

400− 91 = 309 .

Only 324 and 320 are divisible by four. Thus the fifth number entered x5 must be either
x5 = 76 or x5 = 80.

Lets assume that x5 = 76. Then the sum of the first four numbers is 400 − 76 = 324. We
then have four choices for what the fourth number x4 could be. We find

324− 71 = 253

324− 80 = 244

324− 82 = 242

324− 91 = 233 .

These numbers would need to be divisible by three. Unfortunately none are. Thus it cannot
be true that x5 = 76 and we must conclude that x5 = 80.
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At this point we have answered the question asked but we can determine other things about
this problem. In the case when x5 = 80 the sum of the first four numbers is 400− 80 = 320.
We now have four choices for what the fourth number x4 could be. We find

320− 71 = 249

320− 76 = 244

320− 82 = 238

320− 91 = 229 .

Only 249 is divisible by three. This means that x4 = 71.

We can follow the logic above to find that x3 = 91 and x1 and x2 can then be taken from
{76, 82}.

Problem 10

If we follow the given transformations we have

Q = (1, 2,−3) ,

after reflection. Then
R = (1,−2, 3) ,

after reflection. Then
S = (1,−2 + 5, 3) = (1, 3, 3) ,

after translation.

Problem 11

From ab = a− b we will solve for b to get b = a
1+a

. If we put that into the second expression
we get

a
a

1+a

+
a

a(1 + a)
− a

(
a

1 + a

)

= 2 ,

when we simplify.

Problem 12

Call the expression we seek to maximize J i.e.

J(A,M,C) ≡ AMC + AM +MC + CA .
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Note that J is “equivalent” under permutations of (A,M,C). This means that if J takes an
value at (A∗,M∗, C∗) then

J(A∗,M∗, C∗) = J(M∗, C∗, A∗) = J(C∗, A∗,M∗) ,

i.e. J takes the same value at three different points. Now J will be largest if A, M , and C
are as large as possible and by the above we want them to increase “together”. Given the
constraint A +M + C = 12 this means that A =M = C = x or

3x = 12 so x = 4 .

The maximum is then
J(4, 4, 4) = 112 ,

when we evaluate.

Problem 13

Let ci and mi be the amount of coffee and milk (in ounces) respectively for each of the N
family members. Then we must have

ci +mi = 8 , (630)

for each i. Let i = 1 be Angela’s “index”. Then in the problem statement we are told that

c1
∑N

i=1 ci
=

1

6
, (631)

and
m1

∑N
i=1mi

=
1

4
. (632)

From Equation 631 we can solve for c1 to get

c1 =
1

5

N∑

i=2

ci .

From Equation 632 we can solve for m1 to get

m1 =
1

3

N∑

i=2

mi .

If I sum Equation 630 for i = 2, 3, . . . , N I get

N∑

i=2

ci +

N∑

i=2

mi = 8(N − 1) . (633)
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Also using the above expressions for c1 and m1 in c1 +m1 = 8 we get

1

5

N∑

i=2

ci +
1

3

N∑

i=2

mi = 8 . (634)

The above are two equations for the two unknowns
∑N

i=2 ci and
∑N

i=2mi. Solving for each
gives

N∑

i=2

ci = 20(N − 4)

N∑

i=2

mi = 15(6−N) .

As ci > 0 from the first of these we have that 20(N − 4) > 0 so N > 4. As mi > 0 from the
second of these we have that 15(6 − N) > 0 so N < 6. As N must be an integer we have
that N = 5 is the only valid choice.

Problem 14

If we order these numbers from least to greatest (with x at the “end”) we get

2, 2, 2, 4, 5, 10, x .

The mode of these numbers is two.

The mean of these numbers is

2 + 2 + 2 + 4 + 5 + 10 + x

7
=

25 + x

7
.

As there are seven numbers the median is the number in the fourth position. Depending on
the value of x the number in that position can be different things.

• If x ≥ 4 then the median is four.

• If 2 ≤ x < 4 then the median is x.

• If x < 2 then the median is two.

We will consider each case in tern.

Case 1: Lets assume that x ≥ 4 then the increasing order of the mean, median, and mode
is

2, 4,
25 + x

7
.
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If these are in arithmetic sequence then they have a common difference or

25 + x

7
− 4 = 2 so x = 17 .

Case 2: Next lets assume that 2 ≤ x < 4. Then the increasing order of the mean, median,
and mode is

2, x,
25 + x

7
.

Again if these are in arithmetic sequence then they have a common difference or

25 + x

7
− x = x− 2 so x = 3 .

Case 3: Next lets assume that x < 2. Then the increasing order of the mean, median, and
mode is

2, 2,
25 + x

7
.

This could not be a non-constant arithmetic progression since the first two terms are equal.

Thus the sum of the possible x’s is

17 + 3 = 20 .

Problem 15

If we take v = x
3
then x = 3v and what we are given becomes

f(v) = 9v2 + 3v + 1 .

From this we find that
f(3z) = 81z2 + 9z + 1 ,

so f(3z) = 7 is
81z2 + 9z − 6 = 0 .

Dividing by 81 gives

z2 +
1

9
z − 2

27
= 0 .

From Vieta’s formulas the sum of the roots is then −1
9
.

Problem 16

Assuming “matrix” indexing (i, j) where i counts the number of rows from top to bottom
(starting at one) and j counts the number of columns from left to right (starting at one)
then under the first checkerboard numbering we have each “cell” taking the value

17(i− 1) + j ,
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for the “slow index” 1 ≤ i ≤ 13 and the “fast index” 1 ≤ j ≤ 17.

Under the second checkerboard numbering we have each “cell” taking the value

13(j − 1) + i ,

for the “slow index” 1 ≤ j ≤ 17 and the “fast index” 1 ≤ i ≤ 13.

Notice that in each case i and j are constrained over the same domain.

The problem asks us which cells (under each numbering) have the same value. This means
that

17(i− 1) + j = 13(j − 1) + i .

We can simplify this as
4i = 1 + 3j ,

or

i =
1 + 3j

4
. (635)

As i must be an integer this means that 1 + 3j must be divisible by four or

(1 + 3j) ≡ 0 (mod 4) ,

or
3j ≡ −1 (mod 4) ,

or adding four to both sides
3j ≡ 3 (mod 4) ,

or
j ≡ 1 (mod 4) .

This means that j takes the values

j ∈ {1, 5, 9, 13, 17} .

Using Equation 635 we get that i is then given by

i ∈ {1, 4, 7, 10, 13} .

Using either of the formulas above the values in these cells are given by

{1, 56, 111, 166, 221} .

The sum of these numbers is 555.
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Problem 17

From the given right triangle △OAB we have

tan(θ) =
AB

AO
=
AB

1
= AB .

Using the angle bisector theorem on the angle ∠OBA we have

OB

OC
=
AB

AC
=

AB

1− OC
=

tan(θ)

1− OC
. (636)

Now we determine the length OB in terms of θ. We have

AO = BO cos(θ) ,

but AO = 1 so BO = 1
cos(θ)

. Using Equation 636 we get

1

OC cos(θ)
=

tan(θ)

1− OC
.

Solving this for OC gives

OC =
1

1 + sin(θ)
.

Problem 18

If day 300 in year N is a Tuesday then every day 300+ 7n (for n ∈ Z) is also a Tuesday. As

300 ≡ 6 mod 7 ,

This means that day six of year N is also a Tuesday. Working backwards this means that
in year N we have that

• Day five is a Monday

• Day four is a Sunday

• Day three is a Saturday

• Day two is a Friday

• Day one is a Thursday

Thus day 365 of year N − 1 is a Wednesday. We now need to shift “backwards” in multiples
of seven towards the day 100. As

365− 100 = 265 ≡ 6 mod 7 ,

we know that day 100 + 6 = 106 is also a Wednesday. This means that day 100− 7 = 99 is
also a Wednesday so that day 100 is a Thursday.
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Problem 19

As

152 = 225 and

132 + 142 = 365 > 152 ,

the angle opposite AC i.e ∠B is larger than 90◦ and the triangle is obtuse.

As D is the midpoint of BC we have that

CD = DB =
14

2
= 7 .

As E is on the angle bisector of ∠BAC by the angle bisector theorem we have

AC

CE
=
AB

BE
15CE =

13

CB − CE
=

13

14− CE
.

We can solve that for CE and find CE = 15
2
. Now using this ED then has the length

ED =
15

2
− 7 =

1

2
.

Now as all three sides of this triangle are given the semi perimeter is

s =
1

2
(13 + 14 + 15) = 21 ,

Thus Heron’s formula for the area of △ABC is

√

s(s− a)(s− b)(s− c) =
√

21(8)(7)(6) = 84 .

As D is the midpoint of one side of the triangle the area of the triangles △CDE and △BDA
are 1

2
of the area of △ABC or 84

2
= 42.

Drop a perpendicular from A and intersecting the extension of the side BC at a point A′.
Then we an write the area of △BDA as

[BDA] = 42 =
1

2
(DB)AA′ =

7

2
AA′ .

Solving for AA′ gives AA′ = 12. Using this we have that the area of the triangle of interest
△ADE given by

[ADE] =
1

2
(DE)AA′ =

1

2

(
1

2

)

12 = 3 .
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Problem 20

Method 1: If we sum these three equations we get

x+
1

y
+ y +

1

z
+ z +

1

x
= 5 +

7

3
=

22

3
,

or

x+ y + z +
1

x
+

1

y
+

1

z
=

22

3
. (637)

If we take the product of these three equations we get

(

x+
1

y

)(

y +
1

z

)(

z +
1

x

)

= 4(1)

(
7

3

)

=
28

3
.

On expanding the products on the left-hand-side and simplifying we get

xyz + x+ z +
1

y
+ y +

1

z
+

1

x
+

1

xyz
=

28

3
.

Using Equation 637 to simplify the left-hand-side of this we find

xyz +
22

3
+

1

xyz
=

28

3
,

or

xyz +
1

xyz
= 2 .

If we multiply by xyz we can write this as

(xyz)2 − 2(xyz) + 1 = 0 ,

or
(xyz − 1)2 = 0 ,

Thus xyz = 1.

Method 2: From the first and second equation we have that x = 4− 1
y
and y = 1− 1

z
= z−1

z
.

This means that

x = 4− z

z − 1
=

3z − 4

z − 1
.

From the third equation we have z = 7
3
− 1

x
= 7x−3

3x
so using this in the above we get

x =
3
(
7x−3
3x

)
− 4

7x−3
3x

− 1
=

9(x− 1)

4x− 3
.

We can solve the above for x and find x = 3
2
. From this we can determine y = 2

5
and z = 5

3
.

Thus

xyz =

(
3

2

)(
2

5

)(
5

3

)

= 1 .
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Problem 21

Lets draw a x-y Cartesian coordinate system with the square with side length s drawn in the
first quadrant. Then introduce the right triangle △BAC with A = (0, 0), B on the x-axis
and C on the y-axis. As the square has a side of length s the let point B be a distance x
from the vertical face of the square so B = (s + x, 0). In the same way let C be y from the
horizontal face of the square so C = (0, s+ y). Let the “top most” triangle be denoted I so
that according to the problem statement its area is

AI = ms2 .

Of course AI =
1
2
ys so that

m =
AI

s2
=

y

2s
. (638)

Let the “right most” triangle be denoted as III and we want to know the value of

AIII

s2
=

1
2
xs

s2
=

x

2s
. (639)

Evaluating the area of the right triangle △BAC in two different ways we have

1

2
(x+ s)(y + s) = s2 +

1

2
sy +

1

2
sx .

If we expand the left-hand-side and simplify we get

xy = s2 .

Dividing both sides of this by s2 we get

x

s
· y
s
= 1 so

y

s
=
s

x
.

Using this in Equation 638 we get

m =
s

2x
so

x

s
=

1

2m
.

Using this in Equation 639 we get
AIII

s2
=

1

4m
.

Problem 22

From the graph it looks like P (−1) ≈ 4 and the two real zeros are close to 12
3
= 5

3
and

32
3
= 11

3
. The product of all of the zeros of P (x) will be the value of d which is also the value

of P (0) ≈ 51
3
= 16

3
(using the graph). The product of the non-real zeros of P will be the

product of all zeros divided by the product of the real zeros or

16
3

5
3
· 11

3

=
48

55
< 1 .
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The sum of the coefficients of P will be P (1)− 14 = P (1)− 1 ≈ 4− 1 = 3. Finally, the sum
of the real zeros of P is given by

5

3
+

11

3
=

16

3
.

The smallest of these is the product of the non-real zeros.

Problem 23

Let pi be the ith number “picked” where 1 ≤ pi ≤ 46 for 1 ≤ i ≤ 6. Then we are told that
for both Professor Gamble and the winning ticket we have

6∑

i=1

log10(pi) = N ,

for N an integer. We can write this as

log10

(
6∏

i=1

pi

)

= N ,

or
6∏

i=1

pi = 10N = 2N · 5N . (640)

This means that the numbers pi must only have prime factors of two and five. Thus they
look like the numbers

pi = 2ni · 5mi .

With this expression Equation 640 becomes

2
∑6

i=1 ni · 5
∑6

i=1 mi = 2N · 5N ,

and thus we have
6∑

i=1

ni = N =

6∑

i=1

mi ,

or
6∑

i=1

(ni −mi) = 0 . (641)

Since we are told that 1 ≤ pi ≤ 46 these pi are “products” of numbers like

2ni ∈ {1, 2, 4, 8, 16, 32} and 5mi ∈ {1, 5, 25} .

Thus

ni ∈ {0, 1, 2, 3, 4, 5}
mi ∈ {0, 1, 2} .
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The actual products that satisfy 1 ≤ pi ≤ 46 are

pi ∈ {1, 2, 4, 8, 16, 32} ∪ {5, 10, 20, 40} ∪ {25}
∈ {1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40}
∈ {20 · 50, 21 · 50, 22 · 50, 20 · 51, 23 · 50, 21 · 51, 24 · 50, 22 · 51, 20 · 52, 25 · 50, 23 · 51} .

Now to have Equation 641 be satisfied when we draw six pi from the above set we need to
have the sum of ni −mi be zero. If we compute the value of ni −mi for each of the above
pi we get

ni −mi ∈ {0, 1, 2,−1, 3, 0, 4, 1,−2, 5, 2}
∈ {−2,−1, 0, 0, 1, 1, 2, 2, 3, 4, 5} .

We now ask how many ways are there to draw six numbers (without replacement) from the
above set such that the sum of the numbers is zero.

If we don’t draw any negative numbers the sum of ni −mi will not be zero. If we draw only
the single negative number of −1 then the smallest we can make the sum is

−1 + 0 + 0 + 1 + 1 + 2 = 3 6= 0 .

If we draw only the single negative number of −2 then the smallest we can make the sum is

−2 + 0 + 0 + 1 + 1 + 2 = 2 6= 0 .

Thus we must draw both the −1 and the −2. Notice that there are four sums that start with
{−2,−1, 0, 0} and then select a single one and a single two that will sum to zero. Thus there
are four total numbers of the given form and Professor Gamble has a 1

4
chance of winning.

Problem 24

By connecting the three points together we form the triangle △ABC which can be shown to
be an equilateral triangle. Drop a vertical from C intersecting the segment AB at the point
C ′. By symmetry we have ∠CC ′A = ∠CC ′B = 90◦. Also by symmetry the center of the
circle must be on the segment CC ′. Call the center of the circle the point O.

As we are told that B̃C = 12 if we let R be the length of AB we must have

60

360
(2πR) = 12 so R =

36

π
.

Let r be the radius of the internal circle we seek the circumference of. When we draw the
segment from A to O we introduce the right triangle △AC ′O that has sides of length

AC ′ =
R

2
=

18

π
C ′O = r

AO = R− r =
36

π
− r .
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Using the Pythagorean theorem we then have
(
36

π
− r

)2

= r2 +

(
36

2π

)2

If we expand and simplify we find that

r =
27

2π
.

Thus the circumference desired is 2πr = 27.

The 2000 AMC 10 Examination

Problem 1

This is the same as Problem 1 worked on Page 895.

Problem 2

This is the same as Problem 2 worked on Page 895.

Problem 3

This is the same as Problem 3 worked on Page 895.

Problem 4

Let the total fee be F . Then we are told that

F = f0 + hT ,

for a fixed cost f0, a cost per unit time h, and an amount of time T . In December we are
told that

12.48 = f0 + hT ,

while in January we have
17.54 = f0 + h(2T ) .

If we solve for hT in the first expression and put this in the second expression we get

17.54 = f0 + 2(12.48− f0) .

In the above if we solved for f0 we find f0 = 7.42.
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Problem 5

By the midpoint theorem in triangles, for the segment AB fixed as we move P since M and
N are midpoints the length of MN is equal to 1

2
AB and is thus fixed and MN is parallel to

AB.

As P is always the same distance from AB with a base on AB and a height from P to AB
(which does not change) the area of triangle △PAB does not change.

In the trapezoid ABNM as we have discussed that the length ofMN , AB, and the distance
between these two are fixed the area of this trapezoid is constant.

The only thing that changes as we move P is the perimeter of the triangle △PAB.

Problem 6

This is the same as Problem 4 worked on Page 895.

Problem 7

As the angle ∠ADC is trisected each angle there is 30◦. Thus ∠BDC = 30◦. Using this in
the right triangle △BCD we have

tan(30◦) =
BC

DC
so DC =

BC

tan(30◦)
=

1
1√
3

=
√
3 .

The Pythagorean theorem in that triangle gives

BD =
√
1 + 3 = 2 .

In a similar way using the right triangle △DAP we have

tan(30◦) =
AP

AD
so AP = AD tan(30◦) =

1√
3
.

This means that

PB = AB − AP =
√
3− 1√

3
.

The Pythagorean theorem in that right triangle △DAP gives

DP =

√

12 +
1

3
=

2√
3
.

Using these parts we find the perimeter of △BDP given by

BD +DP + PB = 2 +
2√
3
+
√
3− 1√

3
= 2 +

4
√
3

3
,

when we simplify.
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Problem 8

Let F be the number of freshmen and S the number of sophomores. From the problem
statement we are told that

2

5
F =

4

5
S or F = 2S ,

which is choice (D).

Problem 9

This is the same as Problem 5 worked on Page 896.

Problem 10

By the triangle inequality we must have

4 + 6 > x

4 + x > 6

6 + x > 4 .

These simplify to 2 < x < 10. The same expression must hold for y also so that

2 < y < 10 .

We can write the above as −10 < −y < −2 which if we add to the inequality in x gives

−8 < x− y < 8 or |x− y| < 8 .

Thus eight is not possible.

Problem 11

If we start with all numbers between 4 and 18 we have

4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 .

If we drop composite numbers we get

5 , 7 , 11 , 13 , 17 .

We can now draw two different prime numbers from this set we can compute p1p2−(p1+p2).
This can be done by hand but its also easily done in R
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ps = c(5, 7, 11, 13, 17)

p1_times_p2 = outer(ps, ps, FUN=’*’)

p1_plus_p2 = outer(ps, ps, FUN=’+’)

p1_times_p2 - p1_plus_p2

This gives

[,1] [,2] [,3] [,4] [,5]

[1,] 15 23 39 47 63

[2,] 23 35 59 71 95

[3,] 39 59 99 119 159

[4,] 47 71 119 143 191

[5,] 63 95 159 191 255

We see that 191 is a possibility.

Problem 12

This is the same as Problem 8 worked on Page 897.

Problem 13

As we have five yellow pegs (and there are five rows total) we must place one of them in
each row. This is the “pigeonhole principle” in action. Starting at the top and placing these
pegs we see that to avoid duplicating a color in a column we must place these pegs “on the
diagonal”. The same argument applied to the red pegs means they must be placed on the
“diagonal”. Following this logic for all colors gives that there is only one configuration of
the desired type.

Problem 14

This is the same as Problem 9 worked on Page 897.

Problem 15

This is the same as Problem 11 worked on Page 898.
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Problem 16

Method 1: One way to solve this problem is find the Cartesian x-y equation of the line that
goes through AB and the one that goes though CD. Then point E is then the intersection
of these two lines. The distance AE is then given by the distance between points formula.
For example, if we let a vertical line through A be the y-axis and a horizontal line though
DB be an x-axis of a Cartesian coordinate system then we can assign x-y coordinate to the
points

A = (0, 3)

B = (6, 0)

C = (4, 2)

D = (2, 0) .

The details of this solution method are left for the reader.

Method 2: Extend the segment DC to intersect the horizontal though A at a point F .
Then as AF and DB are parallel to each other the two triangles △AEF and △BED similar
and thus we have

AF

AE
=
DB

EB
or

5

AE
=

4

AB −AE
.

Now AB is the hypotenuse of a right triangle with legs of length three and six and thus
AB =

√
32 + 62 = 3

√
5. Putting this in the above and solving for AE gives AE = 5

√
5

3
.

Problem 17

Denote the “state” of systems as (p, n, q) which means that we have p pennies, n nickles,
and q quarters. Under the three transformations given we have

(p, n, q) → (p, n+ 5, q − 1)

(p, n, q) → (p+ 5, n− 1, q)

(p, n, q) → (p− 1, n, q + 5) .

Under a state of (p, n, q) the “value” (in pennies) is

V = p+ 5n+ 25q .

Now under the first two transformations the value does not change. Under the third trans-
formation the initial value and the “next” values are

V = p+ 5n+ 25q

V ′ = p− 1 + 5n+ 25(q + 5) .

This gives a value increase of

∆ = V ′ − V = −1 + 25(5) = 124 .
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As we start with a value of V0 = 1 the only possible values under these transformations are
given by

1 + 124n ,

for n ≥ 0. We can let n be integers and see what values we can get. In R we can do that
with

ns = seq(1, 10)

124 * ns + 1

which gives

[1] 125 249 373 497 621 745 869 993 1117 1241

Notice that $7.45 is one of these numbers (when n = 6). Another way to say the same
thing as above is that the possible values we can get must be a number x such that x ≡ 1
(mod 124). We can take the given numbers and see if any of them have this property. We
can do this in R with

choices = c(363, 513, 630, 745, 907)

choices %% 124

which gives

[1] 115 17 10 1 39

This gives the same amount of $7.45.

Problem 18

If we sketch the region that Charlyn “can see” we see that it is a “square” with a side
length of 5 + 2 = 7 but with rounded corners minus an internal square with a side length of
5− 2 = 3. Breaking the outer region into a rectangle “tall” rectangle, two “tall” rectangles
(of size 1 × 5) and four quarters of a circle with radius one. The outer region then has an
area of

5× 7 + 2(1× 5) + 4

(
1

4
π(12)

)

= 45 + π .

The internal region has an area of 32 = 9 so the region Charlyn can see is

(45 + π)− 9 = 36 + π ≈ 39 ,

to the nearest kilometer squared.
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Problem 19

This is the same as Problem 21 worked on Page 906.

Problem 20

This is similar to Problem 12 on Page 898.

Call the expression we seek to maximize J i.e.

J(A,M,C) ≡ AMC + AM +MC + CA .

Note that J is “equivalent” under permutations of (A,M,C). This means that if J takes an
value at (A∗,M∗, C∗) then

J(A∗,M∗, C∗) = J(M∗, C∗, A∗) = J(C∗, A∗,M∗) ,

i.e. J takes the same value at three different points. Now J will be largest if A, M , and C
are as large as possible and by the above we want them to increase “together”. Given the
constraint A +M + C = 10 this means that A =M = C = x or

3x = 10 so x =
10

3
= 3

1

3
.

This is not an integer solution and is thus not a valid solution for A, M , and C.

We expect the solutions for A, M and C to be “close” to 3 1
3
. If we take each to be equal to

three then A+M + C = 9 < 10. If we take two of them equal to three and the other equal
to four we get the correct sum/constraint. Notice that both the expressions

AMC and AM +MC + CA ,

are invariant under the transformation where we pick one of A, M , or C to be four and the
other two variables to be three.

The maximum we seek is then

32 · 4 + 3 · 4 + 3 · 4 + 32 = 69 .

Problem 21

From the statements in terms of Venn diagrams if we draw the set of ferocious creatures
(FC) then the set of alligators (A) must be inside of this set. The set of creepy crawlers
(CC) must then include some alligators and thus must overlap with ferocious creatures and
alligators. These alligators that are in the creepy crawlers set are also ferocious creatures
and thus there are some ferocious creatures are creepy crawlers. Depending on if the set of
alligators is a proper subset of the set of creepy crawlers (or not) I or III might or might not
be true.
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Problem 22

This is the same as Problem 13 worked on Page 899.

Problem 23

This is the same as Problem 14 worked on Page 900.

Problem 24

This is the same as Problem 15 worked on Page 901.

Problem 25

This is the same as Problem 18 worked on Page 903.

The 2000 AHSME Anniversary Examination

I worked these “review” problems to see if my problem solving ability had gotten better
between now and when I first worked them. In many cases I solved the problem in the
same way I had done earlier. Rather than present the “same” solution I’ll just link to the
earlier solution of the problem (there seemed no reason to just duplicate text). If my solution
method was different than before I include the new solution here.

Problem 1950-10

This is worked on Page 12.

Problem 1951-48

This is worked on Page 39.
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Problem 1952-44

This is worked on Page 61.

Problem 1953-50

This is worked on Page 82.

Problem 1954-38

This is worked on Page 95.

Problem 1955-33

This is worked on Page 114.

Problem 1956-39

This is worked on Page 136.

Problem 1957-26

This is worked on Page 148.

Problem 1958-45

This is worked on Page 177.

Problem 1959-22

This is a problem I worked slightly differently the second time than I did when I worked it
the first time. Using the points labeled in Figure 1 recall that as the segment MN is on a
midline of the trapezoid it passes though the midpoints E (of AD) and F (of BC).
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Now as EN is a a midline in the triangle △ADB we have that

EN =
1

2
AB =

97

2
.

As MF is a a midline in the triangle △CAB we have that

MF =
1

2
AB =

97

2
.

Subtracting the length MN from each we get

EM = NF =
97

2
− 3 =

91

2
.

Now as EM is a midline in the triangle △ADC we have that

1

2
DC = EM =

91

2
so DC = 91 .

Problem 1960-19

This is worked on Page 205.

Problem 1961-5

This is worked on Page 217.

Problem 1962-27

This is worked on Page 236.

Problem 1963-37

This is worked on Page 258.

Problem 1964-15

This is worked on Page 263.
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Problem 1965-29

So I had a few different insights on working this problem a second time. The first is that it
feels like a “set problem” and thus set notation/arguments are probably in order. Towards
that direction we can start with a Venn diagram where there is a “circle” for mathematics,
english, and history. I drew the mathematics circle in the second quadrant, the english circle
in the first quadrant, and the history circle below both of these others. I let x denote the
number of students that are taking mathematics only (which is also equal to the number
of students that are taking mathematics and english only). Thus in these specific regions
of overlap in the Venn diagram I would draw and x. The problem statement then gives us
numbers for every section of the Venn diagram. For example if z is the number of students
taking all three classes than the number of students taking english and history is 5z.

We can sum the count information in each region of the Venn diagram to get the total
number of students or

2x+ 6 + 6z = 28 or x+ 3z = 11 .

As we are told that z = 2n for n ≥ 1 we have

x+ 6n = 11 .

Only n = 1 works in the above and gives x = 5 which is the desired answer.

Problem 1966-39

This is worked on Page 300.

Problem 1967-31

This is worked on Page 313 but we can show that
√
D is always odd in an easier way. Using

the fact that
√
D = a2 + a+1 if a were even it would look like a = 2n for n ≥ 1 which gives

√
D = 4n2 + 2n + 1 ,

which is odd. If a were odd then a = 2n+ 1 for n ≥ 0 and for
√
D we find

√
D = (4n2 + 4n+ 1) + 2n+ 1 + 1 = (4n2 + 6n+ 2) + 1 ,

which is also an odd number.

Problem 1968-32

This is worked on Page 332.
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Problem 1969-29

This is worked on Page 346.

Problem 1970-25

This is worked on Page 358.

Problem 1971-31

One way to solve this problem is given on Page 378.

Here is a second method. We let the center of the circle be O = (0, 0) the center of an x-y
Cartesian coordinate system. Then A = (−2, 0), D = (+2, 0), and the equation of the circle
is

x2 + y2 = 4 . (642)

From the point A we want to find another point B such that the distance AB = 1. This
means that while B is on the equation of the larger circle it is also on the circle centered at
A with radius of one or

(x+ 2)2 + y2 = 1 . (643)

Solving these two equations and taking the solution where y > 0 we find the point B

B =

(

−7

4
,

√
15

4

)

.

Now the point C is one unit away from B and on the circle given by Equation 642. The fact
that it is one unit away means that the point C is on the equation

(

x+
7

4

)2

+

(

y −
√
15

4

)2

= 1 . (644)

The point C that is on the intersection of Equation 642 and 644 is

C =

(

−17

16
,
7
√
15

16

)

.

Now that we have the location of point C the distance desired is given by

CD2 =

(

2 +
17

16

)2

+
72 · 15
162

=
49 · 64
162

,

so CD = 7
2
.
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Problem 1972-35

This is worked on Page 398.

Problem 1973-31

This is worked on Page 417.

On my second working of this problem I did many of the same steps as on the first working
but with a couple of simplifications. One observation we will use below is that the units
digit of E2 must be the number T .

Now as discussed in the previous solution as TTT factors at T · 3 · 37 one of Y E or ME
must be 1× 37 = 37 or 2× 37 = 74 (other multiples of 37 are not two digit numbers). If we
assume that Y E = 74 we have that E = 4 so that E2 = 16 and we must have T = 6. This
means that TTT = 666 and ME must equal

ME =
666

74
= 9 ,

which is not a two digit number and thus is not correct. If instead we assume that Y E = 37
then E = 7 so that E2 = 49 and T = 9. This means that TTT = 999 and ME must be

ME =
999

37
= 27 .

Thus we have found that Y = 3, E = 7, T = 9, and M = 2 so that

E +M + T + Y = 21 .

This is more similar to the solution presented in the back of the book.

Problem 1974-20

This is worked on Page 429.

Problem 1976-30

This is worked on Page 458.
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a b c sign(abc) E
+ + + + 3+1 = 4
- + + - 1-1 = 0
+ - + - 0
+ + - - 0
+ - - + 0
- + - + 0
- - + + 0
- - - - -4

Table 19: The signs for the numbers a, b, c, the product abc, and the value of E.

Problem 1977-8

Now a
|a| will be ±1 if a is nonzero. Call the expression given in the problem E. In Table 19

we enumerate all possible signs for a, b, and c and then the corresponding value of E. From
that expression we see that the only choices for E are from the set {−4, 0,+4}.

Problem 1978-22

This is worked on Page 484.

Problem 1979-26

This is worked on Page 500. Many of the steps I took on the second solving of this problem
were similar to my first attempt. One difference was that rather than solving the resulting
difference equation one could hypothesis a solution to Equation 295 and then solve for any
unknown coefficients. For example after taking y = 1 we are left with Equation 295. We
might attempt to find a solution to this equation by assuming that f(x) takes the form

f(x) = Ax+B .

When this is put into Equation 295 one gets

Ax+B + 1 = Ax+ A +B − x− 1 ,

or
1 = A− x− 1 ,

which has no solution. As another attempt we might consider solutions to this equation that
take the form

f(x) = Ax2 +Bx+ C .

When this is put into Equation 295 one gets

A(x+ 1)2 +B(x+ 1) + C = Ax2 +Bx+ C + x+ 2 .
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This simplifies to
2Ax+ A+B = y + 2 ,

so 2A = 1 or A = 1
2
and A + B = 2 so B = 3

2
. This means that the solution must take the

form

f(x) =
1

2
x2 +

3

2
x+ C .

Using the fact that f(1) = 1 in the above we find C = −1 so that

f(x) =
1

2
x2 +

3

2
x− 1 .

The equation f(n) = n is then equivalent to

n2 + 3n− 2 = 2n ,

which has the solutions n = −2 and n = 1.

Problem 1980-22

This is worked on Page 513.

Problem 1981-24

This is worked on Page 526.

Problem 1982-16

This is worked on Page 535.

Problem 1983-26

We are asked to bound p = P (A ∩ B) above and below using P (A) and P (B). An upper
bound is given by

P (A ∩ B) ≤ min(P (A), P (B)) =
2

3
. (645)

We also have

P (A ∩B) = P (A) + P (B)− P (A ∪ B) =
3

4
+

2

3
− P (A ∪B) =

17

12
− P (A ∪B) .
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If we make P (A ∪ B) as large as possible we will make P (A ∩ B) as small as possible so
taking P (A ∪ B) = 1 we have

P (A ∩ B) ≥ 17

12
− 1 =

5

12
.

This means that the region for p in
[

5
12
, 2
3

]
.

Problem 1984-11

This is worked on Page 567.

Problem 1985-24

This is worked on Page 599.

Problem 1986-14

This is worked on Page 619.

Problem 1987-12

This is worked on Page 636.

Problem 1988-6

This is a rectangle.

Problem 1989-23

This is worked on Page 730.

As another way to solve this problem we can count the number of steps to get to various
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points on the x-axis. To get to various points I find

(1, 0) : 1

(2, 0) : 1 + 2 + 1 + 2× 2 = 8

(3, 0) : 8 + 1 = 9

(4, 0) : 9 + 2(3) + 1 + 2(4) = 24

(5, 0) : 24 + 1 = 25 ,

steps. From the few locations documented above it looks like to get to locations with odd x
values say the point (2n+ 1, 0) will require

(2n+ 1)2 ,

steps. We then might ask what is the largest n value such that

(2n+ 1)2 ≈ 1989 .

Using iteration we find that

432 = 1849

452 = 2025 .

The second value is closer to 1989 than the first we can imagine “starting” at the location
(45, 0) and stepping “backwards” 2025 − 1989 = 36 times. One step backwards brings us
to (44, 0) and we need to step backwards 35 more times. This involves moving upwards 35
units to place us as (44, 35).

Problem 1990-14

This is worked on Page 742.

Problem 1991-28

This is worked on Page 770.

Another slightly different way to solve this problem is the following. If b and w are the number
of black and white marbles in the urn at a given time each of the given transformations we

take the “state” of

[
b
w

]

and transform it into another state. For the first transformation

we have

T1

[
b
w

]

=

[
(b− 3) + 1

w

]

=

[
b− 2
w

]

,

and we must have at least three black marbles to apply this transformation. For the second
transformation we have

T2

[
b
w

]

=

[
(b− 2) + 1
(w − 1) + 1

]

=

[
b− 1
w

]

,
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and we must have at least two black marbles and one white marble to apply this transfor-
mation. For the third transformation we have

T3

[
b
w

]

=

[
b− 1

(w − 2) + 2

]

=

[
b− 1
w

]

,

and we must have at least one black marble and two white marbles to apply this transfor-
mation. Finally for the fourth transformation we have

T4

[
b
w

]

=

[
b+ 1

(w − 3) + 1

]

=

[
b+ 1
w − 2

]

,

and we must have at least three white marbles to apply this transformation.

If we look at the net result of each of the above we see that the number of white marbles
does not change or decreases by two. This means that the number of white marbles at any
time in this process must be even. This means that choices (D) and (E) cannot be true.

Now we can reduce the number of white marbles by two (leaving the number of black marbles
unchanged) by using the composition of T4 · T2 or T4 · T3. For example T4 · T2 gives

T4 · T2
[
b
w

]

= T4

[
b− 1
w

]

=

[
b

w − 2

]

.

To apply T2 we must have at least two black and one white marble and to apply T4 we must
have at least three white marbles. This means that we cannot apply the above on states
where w < 3 and as w must be even this means that we cannot reduce w below two and
thus w ≥ 2.

This means that choices (A) and (C) are not possible so the answer must be (B).

Problem 1992-14

This is worked on Page 777.

Problem 1993-22

This is worked on Page 800.

Problem 1994-6

This is worked on Page 808.

926



Problem 1995-30

This is worked on Page 830.

Problem 1996-27

This is worked on Page 845.

Problem 1998-22

This is worked on Page 868.

Problem 1999-18

This is worked on Page 878.

The Contest Problem Book VII: Additional Problems

Dinner Bill Splitting

We seek to find (s, t) such that

2(100t+ s)− (100s+ t) = ±1 .

Here the expression 100t + s is “1
2
the bill” and the expression 100s + t is “the bill” both

measured in cents. The above is equivalent to the expression

|199t− 98s| = 1 . (646)

Now as discussed in the text the solution to the problem: minimize g in

|199t− 98s| = g ,

is g = GCD(199, 98) and t and s can be found from the Euclidean algorithm. The steps of
this algorithm for the numbers given here are

199 = 2 · 98 + 3 (647)

98 = 32 · 3 + 2 (648)

3 = 1 · 2 + 1 . (649)
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q p+ r = 14− q Possible (p, r) with p odd and p 6= r
1 13 {(1, 12) , (11, 2) , (3, 10) , (9, 4) , (5, 8) , (7, 6)}
3 11 {(1, 10) , (9, 2) , (3, 8) , (7, 4) , (5, 6)}
5 9 {(1, 8) , (7, 2) , (3, 6) , (5, 4)}
7 7 {(1, 6) , (5, 2) , (3, 4)}
9 5 {(1, 4) , (3, 2)}
11 3 {(1, 2)}

Table 20: Values for q and possible (p, r) values. This table is constructed after Q learns
that p must be odd. Before that information, for each (p, r) in the right-hand column we
can have the pair (r, p). Its only when q ∈ {7, 9, 11} that Q can conclude that all p, q, and
r are different.

Now we start with Equation 649 written as

1 = 1 · 3− 1 · 2 .
Then we replace the two in that equation with the remainder from Equation 648 to get

1 = 1 · 3− 1 · (98− 32 · 3) = 33 · 3− 1 · 98 .
Then we replace the three in that equation with the remainder from Equation 647 to get

1 = 33 · (199− 2 · 98)− 1 · 98 = 33 · 199− 67 · 98 .
Comparing this to Equation 646 we see that t = 33 and s = 67. Thus 1

2
of the bill was

$33.67. The full original bill was $67.33. We can check that

2(33.67)− 67.33 = 0.01 .

Thirty Digits

Let our number be denoted N . Since there are a total of 30 digits in N in order that no

digit repeat at least four times would mean that each digit must appear exactly three times.
This means that the sum of the digits in N is given by

3(0 + 1 + 2 + · · · 8 + 9) = 3

(
9(10)

2

)

= 135 .

Note that this number is divisible by nine and thus our original number must be divisible by
nine. As this means that 32 needs to be a factor of N . From the given prime factorization
of N we see that this cannot be true and thus at least one digit of N must repeat four or
more times.

The Whispered Number Problem

Version A: After P ’s statement we note that if p were an odd number then q + r = 14− p
is odd and q and r cannot be equal or else they wouldn’t be integers. Thus we conclude that
p must be an odd number.
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p q r
1 7 6
5 7 2
3 7 4
1 9 4
3 9 2
1 11 2

Table 21: Values of p, q, and r for The Whispered Number Problem Version a.

From Q’s statement for P and R to have different numbers q must be odd. If we take
q ∈ {1, 3, 5, 7, 9, 11}, compute p+ r = 14− q, and consider the possible (p, r) pairs that sum
to 14− 1 we get Table 20. Note that for cases where q is small we can construct cases where
either p or r equals q and for those values Q could not make the statement that he did. This
is not true if q ∈ {7, 9, 11}. If we table these valid (p, q, r) numbers we get Table 21. The
only row in that table that gives a unique solution is (p, q, r) = (1, 7, 6) which has a product
of 42.

Version B: As before, the first statement tells us that p must be an odd number.

Now before information from P is given we could imagine Q making a table with his q value,
the value of 14 − q = p + r, and possible (p, r) that sum to 14 − q. Once Q realizes that p
must be odd many of the possible (p, r) are removed and Q can look at the possible (p, q, r)
tuples and concludes that all p, q, and r are different. Since we don’t know the value of q
we must do this for a range of q values. A table of this form is given in Table 22.

Note that if q is odd then 14 − q will be odd and only decompose into the sum of two odd
(and non equal) numbers. This means that for some odd q values Q would already (before P
statement) know that the three numbers p, q, and r were different. The values of q for which
this is true are q ∈ {7, 9, 11}. In the “Any problem” column of Table 22 I denote these rows
as “EB” for “excluded before” P makes his statement.

Thus in looking at Table 22 only some rows are possible. In the “Any problem” column
of that table I denote rows that would not be consistent with the statement that all three
variables are not equal. This only gives

q ∈ {2, 6, 10} ,

as possible valid choices. If we now consider the possible different r values (knowing that
r must be odd) and count the number of valid Q tuples in Table 22 we get Table 23.
Notice in that case that if (p, q, r) = (1, 2, 11) then R would have known that tuple (without
the statement from Q) after the statement from P . Thus (p, q, r) = (3, 2, 9) and we have
pqr = 54.

929



Possible q 14− q = p+ r Possible (p, r) with p odd Any problems
1 13 {(1, 12) , (3, 10) , (5, 8) , (7, 6) , (9, 4) , (11, 2)} p = q = 1
2 12 {(1, 11) , (3, 9) , (5, 7) , (7, 5) , (9, 3) , (11, 1)}
3 11 {(1, 10) , (3, 8) , (5, 6) , (7, 4) , (9, 2)} p = q = 3
4 10 {(1, 9) , (3, 7) , (5, 5) , (7, 3) , (9, 1)} p = r = 5
5 9 {(1, 8) , (3, 6) , (5, 4) , (7, 2)} q = p = 5
6 8 {(1, 7) , (3, 5) , (5, 3) , (7, 1)}
7 7 {(1, 6) , (3, 4) , (5, 2)} EB
8 6 {(1, 5) , (3, 3)} p = r = 3
9 5 {(1, 4) , (3, 2)} EB
10 4 {(1, 3) , (3, 1)}
11 3 {(1, 2)} EB
12 2 {(1, 1)} p = r = 1

Table 22: Values of p, q, and r for The Whispered Number Problem Version b.

Piles of Stones

As every initial pile has an odd number of stones for the first step there the only possible
moves are

• Add 5 + 49 = 54 to get two piles of stones with 51 and 54 stones respectively

• Add 5 + 51 = 56 to get two piles of stones with 49 and 56 stones respectively

• Add 49 + 51 = 100 to get two piles of stones with 5 and 100 stones respectively.

Now note that

• In the first case the two stone piles are multiples of three and thus any division (by
two) or addition will result in piles that are divisible by three and cannot result in piles
with a single stone.

• In the second case the two stone piles are multiples of seven and thus any division (by
two) or addition will result in piles that are divisible by seven and cannot result in
piles with a single stone.

• In the third case the two stone piles are multiples of five and thus any division (by
two) or addition will result in piles that are divisible by five and cannot result in piles
with a single stone.

Thus in all cases we cannot end up with piles of a single stones thus the final state is
impossible.
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Possible r value Number of valid Q tuples Only (p, q, r) Tuple
1 3 NA
3 3 NA
5 2 NA
7 2 NA
9 1 (3, 2, 9)
11 1 (1, 2, 11)

Table 23: For various r values how many valid Q tuples are there with this value of r.

Flipping Pennies

Let there be h heads showing and t tails showing on the table so that there are h + t total
coins and we are told the number h. From all h + t coins on the table select h of them
randomly. From this set of h coins some will show heads and some will show tails. Assume
there are k heads (with 0 ≤ k ≤ h) in the h selected coins and thus there are h − k tails
selected. We will now turn over the h selected coins.

When this happens the h original head up coins (because we ended up selecting k of them)
becomes two sets with

• h− k head up coins

• k tail up coins

while the original t coins (because we ended up selecting h − k of them) becomes two sets
with

• t− (h− k) = t+ (k − h) tail up coins

• h− k head up coins

Notice that there are now two sets of coins with h−k head up coins showing that the desired
outcome is possible.

Face Painting

Let the large wooden cube have dimensions n× n× n so that we can “imagine” the result
of cutting it up into n3 unit cubes (called cubits).

To start this problem lets imagine the larger cube painted all black with i red faces where
1 ≤ i ≤ 5. Let Nr be the number of cubits that have some red paint and Nb the number of
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cubits that have some black paint. Because from the problem statement we are told that

Nr = Nb + 200 , (650)

thus we must have Nr > Nb. This means that 4 ≤ i ≤ 5. Note that if i = 3 we would have
Nr ≡ Nb and if i = 6 we have a cube with no faces black (since all are red).

Now if we imagine removing the outer “layer” of cubits from the larger cube we start with
will result in a smaller cube of size

(n− 2)× (n− 2)× (n− 2) ,

with a total of (n− 2)3 cubits. This means that the number of unit cubes removed painted
some color red or black was

NS ≡ n3 − (n− 2)3 = n3 − (n3 − 6n2 + 12n− 8) = 6n2 − 12n+ 8 .

Here the “S” stands for “skin” and represents the outer cubits.

Now if i = 5 there is only one black face and we have

Nb = n2

Nr = NS − (n− 2)2 = 5n2 − 8n+ 4 .

In the above to compute Nr we subtract that number of cubits that are on the one black face
and do not touch any red edges (this is (n − 2)2 cubits). Next using these in Equation 650
we have a quadratic equation for n. Solving this we find non-integer solutions for n. Thus
we cannot have i = 5.

If i = 4 we have two black faces. If these faces are not adjacent (don’t have a common edge)
then we have

Nb = 2n2

Nr = NS − 2(n− 2)2 = 4n2 − 4n .

Using these in Equation 650 we again have a quadratic equation for n that does not have an
integer solution for n.

If the two black faces are adjacent (do have a common edge) then we have

Nb = n2 + n(n− 1) = 2n2 − n

Nr = NS − [2(n− 2)2 + (n− 2)] = 4n2 − 5n+ 2 .

Using these in Equation 650 we again have a quadratic equation for n with the positive
solution n = 11.

The number of cubes with no paint at all is then

n3 −NS = (n− 2)3 = 93 = 729 .
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Multiple Quotients

First note that if the list has n items in it then there will be (n − 1)! possible ways to
introduce parenthesis and evaluate the division.

I had trouble solving this problem analytically but could implement all (n − 1)! possible
quotients in python code. See the file 2000 multiple quotients.py where they are all
computed. Running that code (for the example in this problem) gives

len(lst)= 11; n_quotients= 3628800; res( 3628800)[:100]= [Fraction(1, 39916800), ...

min(res)= 1/39916800; max(res)= 9979200

ints in lst= {Fraction(1925, 1), Fraction(7700, 1), Fraction(155925, 1), ...

min(int_set)= 77; max(int_set)= 9979200

Chameleons

We are told that we start in the state (g, b, c) = (13, 15, 17) and that depending on which
pair of chameleons meet we can end with one of the following

(g − 1, b− 1, c+ 2) , (g − 1, b+ 2, c− 1) , (g + 2, b− 1, c− 1) .

If we imagine a total of u of the first type of transition, at total of v of the second type
of transition, and a total of w of the third type of transition the final state starting from
(g, b, c) would be

(g − u− v + 2w, b− u− w + 2v, c+ 2u− v − w) .

If we need to have an equal number of each type of chameleon then we must have this state
equal to (15, 15, 15). Given the state we started in this means that

13− u− v + 2w = 15

15− u− w + 2v = 15

17 + 2u− v − w = 15 ,

which can be manipulated into

u+ v − 2w = −2

u− 2v + w = 0

2u− v − w = −2 ,

i.e. a linear system with the unknowns (u, v, w). If this system has a solution then we can
achieve the desired number of chameleons. In the file 2000 chameleons.py we compute the
rank of this system and find it is two. As this is smaller than the dimension of the system
(three) there can be no solution and it is not possible to get this configuration of chameleons.
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Repeated Arithmetic

Note that before the transformation the sum of the squares of the two numbers is a2 + b2

while after the transformation it is
(

a +
b

2

)2

+

(

a− b

2

)2

=
5

4
(a2 + b2) > (a2 + b2) ,

and thus each time this transformation is applied the “norm” of the pair increases. Thus
there is no way to get back to the original set.

Double or Add Seven

From (a) and (b) we see that powers of two are in S. The ones less than 2004 are

{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} .

From (c) some odd numbers are in S. For various “starts” in the above set condition (c)
imply

n ≡ 2 (mod 7)

n ≡ 4 (mod 7)

n ≡ 1 (mod 7) ,

and the above pattern seems to repeat from that point onward. This means that the numbers

n ≡ 0 (mod 7)

n ≡ 3 (mod 7)

n ≡ 5 (mod 7)

n ≡ 6 (mod 7) ,

are not in S. These are numbers of the form

{7k , 7k + 3 , 7k + 5 , 7k + 6} ,

for some k. The first number of this form that is larger than 2004 are

[1] 2009 2005 2007 2008

These can be calculated with the following simple R code

7*(floor(c(2004/7, (2004-3)/7, (2004-5)/7, (2004-6)/7))+1) + c(0, 3, 5, 6)

The smallest of these is 2005. Note: this does not match the answer in the back of the book
which I think is in error. If anyone sees anything wrong with my arguments above please
contact me.
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The 2001 AMC 10 Examination

Problem 1

The numbers are written in increasing order and as there are nine of them the median is the
fifth element. Thus we are told that n + 6 = 10 so that n = 4.

The mean of these numbers is given by

9n+ (3 + 4 + 5 + 6 + 8 + 10 + 12 + 15)

9
= n+ 7 = 11 .

Problem 2

This is the given equation

x = 2 +
1

x
(−x) .

The right-hand-side simplifies and we get x = 1 which is in interval (C).

Problem 3

Let the two numbers be a and b. Then we are told that S = a + b. If we perform the given
transforms we want to evaluate

2(a+ 3) + 2(b+ 3) = 2(a+ b) + 6 + 6 = 2S + 12 .

Problem 4

A circle can be drawn “cutting” off all three corners of the triangle. This would give six
intersections.

Problem 5

I count six.
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Problem 6

Let the two digit number N be written as 10a+ b where 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9. Here b is
the units digit. Then we are told that

P (N) = ab

S(N) = a+ b .

Then as we were told P (N) + S(N) = N or

ab+ a + b = 10a+ b .

This simplifies to
a(b− 9) = 0 .

We can’t have a = 0 so we must have b = 9.

Problem 7

If x is the unknown number then the given relationship can be described as

x× 104 =
4

x
.

Solving this for x gives x = 2
102

= 2
100

= 0.02.

Problem 8

If we denote the days from today with the variable n (then n = 0 is today, n = 1 is tomorrow
etc) then from the problem statement we have that

• D works when n ≡ 0 (mod 3).

• W works when n ≡ 0 (mod 4).

• B works when n ≡ 0 (mod 6).

• C works when n ≡ 0 (mod 7).

The next day when all are working will be the least common multiple of these four numbers
{3, 4, 6, 7}. Factoring them we have

{3 , 22 , 2 · 3 , 7}

and so the least common multiple is 22 × 31 × 50 × 71 = 84. Thus they are all working
together again 84 days from today.
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Problem 9

Let I be Kristin’s annual income. Then the given relationship can be written as

28000
( p

100

)

+

(
p+ 2

100

)

(I − 28000) =

(
p + 0.25

100

)

I .

We can expand and simplify this. In doing so all terms with p “drop out” and we can solve
for I. We find I = 32000.

Problem 10

These equations are

xy = 24 (651)

xz = 48 (652)

yz = 72 . (653)

Using Equation 651 we have

x =
24

y
.

Solving for y in Equation 653 and putting that into the above we get

x =
24

72
z =

z

3
.

Solving for z in Equation 652 and putting that into the above we get

x =
1

3

(
48

x

)

=
16

x
.

Solving this for x gives x = ±4 where the only positive solution is x = 4. Using this in
Equation 651 we have y = 6. Using Equation 652 we have z = 12. With these we have

x+ y + z = 4 + 6 + 12 = 22 .

Problem 11

Using the diagram we can compute the number of squares in the rings r = 1 and r = 2 by
subtracting the area of a smaller square from a larger square as

N1 = 3× 3− 1× 1 = 9− 1 = 8

N2 = 5× 5− 3× 3 = 25− 9 = 16 .
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Let Sr be the squares side length of ring r + 1 for r ≥ 0. Then

S1 = 3

S2 = S1 + 2 = 5

...

Sr = Sr−1 + 2 .

Thus solving the above difference equation looks like Sr = 2r + 1. Then we have

Nr = S2
r − S2

r−1 = (2r + 1)2 − (2r − 1)2 = 8r ,

when we simplify. Lets check a few of these using this formula

N1 = 8

N2 = 16

...

N100 = 800 .

Problem 12

We are told that n ≡ (m− 1)m(m+ 1) for m ≥ 2. From this we see that

• If m is even then two is a factor of n.

• If m is odd then four is a factor of n.

• With three consecutive integers at least one of them has three as a factor.

We are also told that seven is a factor of n. These also mean that factors of n are

2 · 3 = 6 , 2 · 7 = 14 , 3 · 7 = 21 , 2 · 3 · 7 = 42 ,

are all factors of n. From the choices given n is not divisible by 2 · 2 · 7 = 28.

To find a number n such that n is not divisible by 28 lets try m = 6. Then n = 5 ·6 ·7 = 210
which is not divisible by 28.

Problem 13

From the given problem the D, E, F digits can be

(D,E, F ) = (8, 6, 4)

(D,E, F ) = (6, 4, 2)

(D,E, F ) = (4, 2, 0) .
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The G, H , I, and J digits can be

(G,H, I, J) = (9, 7, 5, 3)

(G,H, I, J) = (7, 5, 3, 1) .

If we build up the number ABC −DEF −GHIJ using the choices based on the above we
see that the digits (A,B,C) can be

ABC − 864− 9753 ⇒ (A,B,C) = (2, 1, 0)

ABC − 864− 7531 ⇒ (A,B,C) = (9, 2, 0)

ABC − 642− 9753 ⇒ (A,B,C) = (8, 1, 0)

ABC − 642− 7531 ⇒ (A,B,C) = (9, 8, 0)

ABC − 420− 9753 ⇒ (A,B,C) = (8, 6, 1)

ABC − 420− 7531 ⇒ (A,B,C) = (9, 8, 6) .

From these choices to have A +B + C = 9 we must have (A,B,C) = (8, 1, 0).

Problem 14

Let w be the number of whole price tickets, p the number of partial price tickets, and F the
full price ticket value. Then from the problem statement we have that

w + p = 140 (654)

wF + p

(
F

2

)

= 2001 . (655)

From Equation 654 we conclude that 0 ≤ w ≤ 140 and 0 ≤ p ≤ 140 and that p = 140 − w.
Putting this latter expression into Equation 655 to get

wF + (140− w)
F

2
= 2001 .

We can manipulate the above into

(w + 140)F = 4002 .

As everything is an integer this means that w+140 must be a factor of 4002. We can factor
4002 as 4002 = 2 · 3 · 23 · 29. Using 0 ≤ w ≤ 140 we have

140 ≤ w + 140 ≤ 280 .

Now

2 · 3 · 23 = 138 < 140

2 · 3 · 29 = 174 > 140 .

Using this second expression we have w + 140 = 174 so w = 34 and

F =
4002

w + 140
= 23 .

The money raised by the full price ticket sales is wF = 34(23) = 782.
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Problem 15

Lets draw two horizontal lines (representing the curbs) and place the “bottom” line on the
x-axis of an x-y Cartesian plane. Let the “top” horizontal line through H = (x, y) = (0, 40).

Let one side of the crosswalk go from A = (0, 0) “diagonally” from A to B = (b, 40) and
the other side of the crosswalk go from D = (15, 0) to C = (c, 40). We are told that the
distance from A to B is 50. Draw a perpendicular from D to the segment AB and denote
that intersection as the point E. We want to know the distance DE. From the length of
two sides of the right triangle △AHB we have HB = 30 (so b = 30). From the parallel lines
HBC and AD we have

∠HBA = ∠BAD .

Using this we know that △HBA ∼ △EAD so

AD

ED
=
AB

AH
or

15

ED
=

50

40
.

This means that ED = 4
5
(15) = 12.

Problem 16

Let these three numbers be x, y, and z such that x < y < z. Then we are told that

1

3
(x+ y + z)− 10 = x

1

3
(x+ y + z) + 15 = z

median(x, y, z) = y = 5 .

Lets put this value of y into the two equations above and we get

2x− z = −25

x− 2z = −50 .

Solving these two equations gives x = 0 and z = 25 and the three numbers are (x, y, z) =
(0, 5, 25). The sum of these is 30.

Problem 17

The circumference of the base circle in the cone would be cut from a length of

252

360
(2π(10)) = 14π .

This means that the radius of the base circle must be given by

2πr = 14π so r = 7 .

The arc length of the code is the same as the radius of the large circle. Thus the cone of
interest is (C).
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Problem 18

The total area of this figure is 9× 9 = 81. Each smaller pentagon is composed of one small
square and 1

4
of a square “above” the base square for an area of

1 +
1

4
=

5

4
.

If we count the number of pentagons I find 4×9 = 36 and thus the total area of the pentagons
is

36×
(
5

4

)

= 45 .

As a percentage of the total this is
45

92
=

5

9
.

As 1
9
= 0.111111 and so 5

9
= 0.555556 which is 55.5556%.

Problem 19

Let g, c, and p be the number of glazed, chocolate, and powdered donuts respectively then
we want to know the number of solutions to

g + c+ p = 4 ,

where g ≥ 0, c ≥ 0, and p ≥ 0. We are trying to count the number of nonnegative integer
solutions to this equation. In [4] this is discussed where it is found that this number is

(
4 + 3− 1
3− 1

)

=

(
6
2

)

= 15 .

Problem 20

We are told that square has a side length of s = 2000. In the isosceles right triangles cut
from the corners of the square I let the hypotenuse be denoted by h and the lengths of the
legs be denoted l. Then as the octagon is regular h is the length of each of the octagons
sides and since the side of the square is made up of two legs and one side we must have

2l + h = s = 2000 .

From the fact that the corner triangles are right isosceles triangles we have

2l2 = h2 so l =
h√
2
.

Putting that in the first of the above equations gives

2h√
2
+ h = 2000 so h = 2000(

√
2− 1) .
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Problem 21

Let the radius of the right circular cylinder be denoted r and the radius of the right circular
cone be denote R = 10

2
= 5. Draw an x-y Cartesian coordinate axis with the y-axis though

the axis of the cone. Then the vertex of the cone is located at (0, 12) and a point on the base
will be at (R, 0) = (5, 0). The slant height of the cone must be on a line that goes through
the two points (5, 0) and (0, 12). This line is given by

y = −12

5
(x− 5) .

Evaluating this line at the point x = r will produce a point on the right circular cylinder
which has a height of h = 2r (its height is equal to its diameter). Thus

−12

5
(r − 5) = 2r .

Solving this for r we find r = 30
11
.

Problem 22

If we let C be the common sum then from the variables given in this magic square we have

v + 24 + w = C

18 + x+ y = C

25 + z + 21 = C

v + 18 + 25 = C

24 + x+ z = C

w + y + 21 = C

v + x+ 21 = C

w + x+ 25 = C .

If we organize and simplify these some we can write them as

v + w + 24 = C (656)

x+ y + 18 = C (657)

z + 46 = C (658)

v + 43 = C (659)

x+ z + 24 = C (660)

w + y + 21 = C (661)

v + x+ 21 = C (662)

w + x+ 25 = C . (663)

Now from Equations 656 and 659 we get

v + w + 24 = v + 43 so v = 19 .
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Now from Equations 658 and 660 we get

z + 46 = x+ z + 24 so x = 22 .

Using the known values for v and z we can write the above set of equations as

v + 43 = C

40 + y = C

46 + z = C

v + 43 = C

46 + z = C

40 + y = C

v + 43 = C

25 + 22 + 19 = C .

Some of these equations are redundant (i.e. duplicated). This last equation tells us that
C = 66 and then allows us to use the previous equations to compute

v = 66− 43 = 23

y = 66− 40 = 26

z = 66− 46 = 20 .

From these we see that y + z = 46.

Problem 23

As this is a “small” probability problem a first attempt should always be made by enumera-
tion using an outcome tree. Specifically for this problem if we let (R,W ) be the number of
red/white chips and let the branches of an outcome tree denote the color of the chip drawn
we have the following
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Start_3_2/

|-- R_2_2

| |-- R_1_2

| | |-- W_0_2

| | --- W_1_1

| | |-- R_0_1

| | --- W_1_0

| --- W_2_1

| |-- R_1_1

| | |-- R_0_1

| | --- W_1_0

| --- W_2_0

--- W_3_1

|-- R_2_1

| |-- R_1_1

| | |-- R_0_1

| | --- R_1_0

| --- W_2_0

--- W_3_0

This diagram indicates we start at a state (R,W ) = (3, 2) and then can transition by drawing
either a red R or a white W chip. After each transition we have the number of red and white
chips shown as the two following numbers. As there are 10 outcomes (leaf nodes with a zero)
and there are six of these that have the last chip drawn as white we have a probability of

6

10
=

3

5
.

Problem 24

I drew this trapezoid with the base DC along the x-axis of an x-y Cartesian coordinate
system and the above base AD “above” DC. This would place D = (0, 0) and C = (d, 0)
where d is the distance DC. Since we are told that AB and CD are perpendicular to AD
and AD = 7 we have A = (0, 7) and I took B = (b, 7) where b is the distance AB.

Dropping a perpendicular from B to the segment DC (call that point B′) we have the right
triangle △BB′C. Let B′C = x and we have

x2 + 72 = BC2 = (b+ d)2 .

As CD = d = b+ x we have x = d− b. Putting that in the above gives

(d− b)2 + 72 = (b+ d)2 .

Expanding this and simplifying we can solve for bd (everything else cancels) and find

bd =
49

4
= 12.25 .
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The 2001 AMC 12 Examination

Problem 1

If our two numbers are a and b the first statement we are given is that

a + b = S .

We are then told to compute

2(a+ 3) + 2(b+ 3) = 2(a+ b) + 12 = 2S + 12 .

Problem 2

WWX: Working here.

Problem 3

WWX: Working here.

Problem 4

WWX: Working here.

Problem 5

WWX: Working here.

Problem 6

WWX: Working here.

Problem 6

WWX: Working here.
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Problem 7

WWX: Working here.

Problem 8

WWX: Working here.

Problem 9

WWX: Working here.

Problem 10

WWX: Working here.

Problem 11

WWX: Working here.

Problem 12

WWX: Working here.

Problem 13

WWX: Working here.

Problem 14

WWX: Working here.
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Problem 15

WWX: Working here.

Problem 16

WWX: Working here.

Problem 17

WWX: Working here.

Problem 18

WWX: Working here.

Problem 19

WWX: Working here.

Problem 20

WWX: Working here.

Problem 21

WWX: Working here.

Problem 22

WWX: Working here.
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Problem 23

WWX: Working here.

Problem 24

WWX: Working here.

Problem 25

WWX: Working here.
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The 2002 AMC 10A Examination

Problem 1

Call this ratio r. Then we have

r =
102000(1 + 102)

102001(1 + 1)
=

1 + 100

2 · 10 =
101

20

=
10.1

2
= 5 + 0.05 = 5.05 .

Problem 2

For this we find

(2, 12, 9) =
2

12
+

12

9
+

9

2
=

1

6
+

4

3
+

9

2
=

1

6
+

27

6
+

8

6
=

36

6
= 6 .

Problem 3

As there are three locations were we can evaluate the “power” from the given expression I
would get three expressions

42
2

, 24
2

, 22
4

.

From the first of these are there are two locations were we can evaluate the “power” for each
choice I get

162 = 256 , and 44 = 256 .

From the second of these are there are two locations were we can evaluate the “power” for
each choice I get

162 = 256 , and 216 = 65536 .

From the third of these are there are two locations were we can evaluate the “power” for
each choice I get

44 = 256 , and 216 = 65536 .

Thus I get two different numbers {256 , 65536} or one other value.

Problem 4

Consider m fixed and solve for n we have

mn− n ≤ m,
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or
n(m− 1) ≤ m.

Now if m = 1 then all integer n satisfy the above. If m 6= 1 we have

n ≤ m

m− 1
,

or

n ≤ m− 1 + 1

m− 1
= 1 +

1

m− 1
.

For all m > 1 this will be true for n = 1. Thus there are an infinitely many n.

Problem 5

Following the center of the larger circle outwards gives it a radius of R = 3. From the area
of the larger circle we subtract the area of the seven smaller circles to get an area of

πR2 − 7π12 = 9π − 7π = 2π .

Problem 6

Let x be Cindy’s number. Then what she did was

x− 9

3
= 43 so x = 138 .

What she should have done was

x− 3

9
=

135

9
= 15 .

Problem 7

If we have the two radii be denoted rA and rB then we are told that

45

360
(2πrA) =

30

360
(2πrB) ,

or rA = 2
3
rB. The desired ratio is then

πr2A
πr2B

=

(
2

3

)2

=
4

9
.

Problem 8

WWX: DP
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Problem 9

Write these equations as (there are other ways to “see” this)

(1000 + 1)C − (2000 + 2)A = 4000 + 4

(1000 + 1)B + (3000 + 3)A = 5000 + 5 .

Then divide both equations by 1000 + 1 to get

C − 2A = 4

B + 3A = 5 .

If we add these two equations together we get

A +B + C = 9 ,

so the average of these three numbers is 9
3
= 3.

Problem 10

Factor to write this as

(2x+ 3)(x− 4 + x− 6) = (2x+ 3)(2x− 10) = 0 .

The the roots solve 2x+3 = 0 or 2x− 10 = 0 so x = −3
2
and x = 5. The sum of these roots

is then 7
2
.

Problem 11

WWX: DP

Problem 12

Let the amount of time needed to travel and get to work “on time” be T (in hours). Let the
distance traveled be D (in miles). Then from what we are told we have

D

40
= T +

3

60
(664)

D

60
= T − 3

60
. (665)

We want to know V where V is such that D
V

= T i.e. we arrive at work “on time”. This
is V = D

T
. Solving Equation 664 for T and putting that into Equation 665 we get D = 12

(miles). Putting that value into Equation 665 we get T = 1
4
(an hour). This means that

V = D
T
= 12

1/4
= 48 (miles per hour).
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Problem 13

Notice that the given sides are all a multiple of five of a (3, 4, 5) right triangle. This means
that our triangle is right and two of the altitudes are the lengths of the legs or of length 15
and 20. The third altitude is the one to the hypotenuse. Lets denote that length as h. As
the full area of this triangle is given by

1

2
(15)(20) = 150 .

If we compute this area using the altitude h we get

150 =
1

2
h(25) so h = 12 .

Thus the smallest altitude is h = 12.

Problem 14

Let the two roots of this quadratic be p and q. Without loss of generality let p < q. Then
by Vieta’s formula

https://en.wikipedia.org/wiki/Vieta’s_formulas

we have pq = k and p + q = 63. If p and q are odd numbers then p + q will be even. Thus
the only possible choices for p and q to sum to an odd number is to have one of them p be
even. Thus p = 2 and q = 61. Thus there is one possible value for k of k = 2(61) = 122.

Problem 15

To form two digit prime numbers using these digits we cannot have the units digit be a two,
a four, or a six (else the number is even and not prime), or a five (else the number is disable
by five). Thus we have the four “template” prime numbers

2X , 4Y , 6Z , 5W ,

where X , Y , Z, and W are digits drawn from {1, 3, 7, 9}. We could now assign these
remaining digits into the spots for X , Y , Z, and W to form four prime numbers but we
don’t need to. As we are asked for the sum of the four primes. We would have

2X +4Y +6Z +5W = 20+ 40+ 60+ 50+ (X + Y +Z +W ) = 170+ (1+ 3+ 7+9) = 190 .
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Problem 16

Define S as S = a + b+ c+ d. Then if we solve for a, b, c, and d in the given equations we
have

a = S + 4

b = S + 3

c = S + 2

d = S + 1 .

If we add these together we get

S = 4S + 4 + 3 + 2 + 1 = 4S + 10 .

Solving for S we find S = −10
3
.

Problem 17

After the first pour occurs we have

• 2 ounces coffee and 0 ounces cream in the first cup and

• 2 ounces coffee and 4 ounces cream with in the second cup.

For the second cup this is 2
6
coffee and 4

6
cream. After the transfer of three ounces (4+2

2
= 3)

from the second cup to the first cup we will have

2 + 3

(
2

6

)

= 3 ounces coffee

0 + 3

(
4

6

)

= 2 ounces cream

The fraction of the liquid in the first cup that is now cream is

2

2 + 3
=

2

5
.

Problem 18

We want the “smallest” sides of the die to face outwards. This means that in the corners we
will place the one, two, and three dots outwards, on an edge we will place the one and two
dots forward and on a face we will place the one dot forward. If we start at a top corner and
place a die with a three “up” and a two “forward” we will leave a one on the blank face. We
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can position die in similar ways on each corner of the “top” face. We would then place a one
“upwards” in the center location. This gives a sum of 4(3) + 4(2) + 1 = 21. By symmetry
we can position die in the same way on the “bottom” of the cube. With these placed we
can place die such that two faces have all ones (by symmetry again) and one face has six
twos with vertical strip of ones (and another face the same by symmetry again). This gives
a total of

2(21) + 2(9) + 2(6(2) + 3(1)) = 90 .

Problem 19

Draw our regular hexagon with one corner at the origin of an x-y Cartesian coordinate
system. Denote that corner as O. Label the vertexes of the regular hexagon from O as A,
B, C, D, and E walking counterclockwise. From O with a rope of length two Spot can reach
the semicircle of radius two that is “to the left” of the segment OE. Call the area of that
region AI . He can also reach a section of a circle of radius two from O and “below” the
segment OA. Call the area of that region AII . He can also reach sections of a circle of radius
one that are

• “to the left of” the segment ED (call this area AIII)

• “above” the segment OA and “below” the segment AB (call this area AIV )

Note that AIII = AIV . We will now compute the different areas above. We find

AI =
1

2

(
π22
)
= 2π .

Now as the interior angle of a regular hexagon is given by 180(n−2)
n

= 120◦ when n = 6 we
have that the sector cut by AII has an area of

AII =

(
60

360

)

π22 =
2π

3
,

since in this sector the radius is r = 2.

In the same way the areas AIII and AIV are given by

AIII = AIV =

(
60

360

)

π12 =
π

6
,

since in these two sectors the radius is r = 2. The area we want is then given by

AI + AII + AIII + AIV = 3π ,

when we simplify.
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Problem 20

In the triangle △GAD the segment HC is parallel to AG and thus divides the triangle into
two similar triangles such that

GA

HC
=
AD

CD
= 3 . (666)

In a similar way we have △AFG ∼ △EFJ so that

GA

JE
=
AF

EF
=

5

1
= 5 . (667)

If we take Equation 667 and divide by Equation 666 we get

GA

JE
× HC

GA
=
HC

JE
=

5

3
.

Problem 22

Recalling that

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

102 = 100 .

We note that in the first pass we will drop 10 numbers and on renumbering will have the
numbers 1 − 90. We can answer this problem by performing these operations until we end
with a single tile. We have

• On iteration 2, we drop nine tiles and renumber to get tiles numbered 1− 81.

• On iteration 3, we drop nine tiles and renumber to get tiles numbered 1− 72.

• On iteration 4, we drop eight tiles and renumber to get tiles numbered 1− 64.

• On iteration 5, we drop eight tiles and renumber to get tiles numbered 1− 56.

• On iteration 6, we drop seven tiles and renumber to get tiles numbered 1− 49.

• On iteration 7, we drop seven tiles and renumber to get tiles numbered 1− 42.
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• On iteration 8, we drop six tiles and renumber to get tiles numbered 1− 36.

• On iteration 9, we drop six tiles and renumber to get tiles numbered 1− 30.

• On iteration 10, we drop five tiles and renumber to get tiles numbered 1− 25.

• On iteration 11, we drop five tiles and renumber to get tiles numbered 1− 20.

• On iteration 12, we drop four tiles and renumber to get tiles numbered 1− 16.

• On iteration 13, we drop four tiles and renumber to get tiles numbered 1− 12.

• On iteration 14, we drop three tiles and renumber to get tiles numbered 1− 9.

• On iteration 15, we drop three tiles and renumber to get tiles numbered 1− 6.

• On iteration 16, we drop two tiles and renumber to get tiles numbered 1− 4.

• On iteration 17, we drop two tiles and renumber to get tiles numbered 1− 2.

• On iteration 18, we drop one tile and renumber to get a single tile numbered 1.

Thus it will take 18 iterations.

Problem 23

The perimeter of triangle △BEC is

2(10) + 12 = 32 .

Now we are told the perimeter of triangle △AED is twice this or

AE + ED + 2AB + 12 = 2(32) = 64 .

As AE = ED this is

2AE + 2AB + 12 = 64 AE + AB = 26 . (668)

We would like to determine AE in terms of AB. Lets drop a perpendicular from E that
intersects the segment AD at a point denoted E ′. In the right triangle △EE ′B one leg has
a length of

BE ′ =
12

2
= 6 ,

and the hypotenuse has a length of 10. Notice that the right triangle △BE ′E is a “three-
four-five” right triangle and so the altitude has a length of 8.

Now in right triangle △EE ′A the Pythagorean theorem gives

AE2 = (AB + 6)2 + 82 ,
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T2 = 1 T2 = 2 T2 = 3 T2 = 4 T2 = 5
T1 = 1 X 3 4 5 6
T1 = 2 X 5 6 7
T1 = 3 X 7 8
T1 = 4 X 9
T1 = 5 X

Table 24: Possible sums for the two draws T1 and T2 from the set {1, 2, 3, 4, 5}.

which we can simplify to

AE =
√

AB2 + 12AB + 100 .

Lets put this into Equation 668 as AE = 26− AB or AE2 = (26− AB)2 to get

AB2 + 12AB + 100 = 262 − 52AB + AB2 .

Solving this for AB gives AB = 9.

Problem 24

Let the first of Tina’s two numbers be denoted by T1 and the second by T2. Let Sergio’s
number be denoted as S. Then by conditioning on S we can compute the probability of
what we want as

P (S > T1 + T2) = P (T1 + T2 < S) =
10∑

i=1

P (T1 + T2 < i)P (S = i) =
1

10

10∑

i=1

P (T1 + T2 < i) .

Lets compute P (T1+T2 < i) for each of the i possible values Sergio can draw. Using Table 24
we compute the sum of T1 and T2 for various possible values for T1 and T2.

Once we have this we can compute the probability of P (T1 + T1 < i) for various values for
i. This is done in Table 25.

Once we have this we see that the probability we are interested in is given by

P (S > T1 + T2) =
1

10

(

0 + 0 + 0 +
1

10
+

2

10
+

4

10
+

6

10
+

8

10
+

9

10
+

10

10

)

=
1

10

(
40

10

)

=
2

5
.

Problem 25

Drop a vertical from D towards the segment AB and intersecting AB at the point D′. Drop
a vertical from C towards the segment AB and intersecting AB at the point C ′. Then let
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i P (T1 + T2 < i)
1 0
2 0
3 0
4 1/10
5 2/10
6 4/10
7 6/10
8 8/10
9 9/10
10 10/10

Table 25: The value of P (T1 + T2 < i) for various values of i.

DD′ = CC ′ = h (the height of the trapezoid), let AD′ = a and BC ′ = b. Then from the
lengths of AB and CD we have that

a + b = 52− 39 = 13 . (669)

From the Pythagorean theorem in the right triangles △DD′A and △CC ′B we have

h2 = 52 − a2 = 122 − b2 .

Solving Equation 669 for a and putting it into the above gives one equation for b. Solving
this we get b = 144

13
. This means that

h2 = 122 − b2 =
(5 · 12)2
132

,

when we simplify and thus h = 5·12
13

. Using this the area of this trapezoid is given by

1

2

(
5 · 12
13

)

(39 + 52) = 210 ,

when we simplify.

The 2002 AMC 10B Examination

Problem 1

This would be
62001 · 32
62002

=
32

6
=

3

2
.
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Problem 2

We have

(2, 4, 6) =
2 · 4 · 6
2 + 4 + 6

=
2 · 4 · 6
12

= 4 .

Problem 3

To evaluate the average we first need to evaluate the sum

S = 9 + 99 + 999 + 9999 + 99999 + 999999 + 9999999 + 99999999 + 999999999 ,

or

S = 9(1 + 11 + 111 + 1111 + 11111 + 111111 + 1111111 + 11111111 + 111111111) .

To evaluate this sum lets start with the last two terms in parenthesis or

11111111 + 111111111 = 122222222 .

To this term we add the previous term to get

1111111 + 122222222 = 123333333 .

To this term we add the previous term to get

111111 + 123333333 = 123444444 .

The pattern we are building up looks clear. After adding all terms we would find

S = 9(123456789) .

The average is then this number divided by nine or 123456789. This has every digit but
zero.

Problem 4

We can write this expression as

(3x− 2)(1) + 1 = 3x− 1 .

When x = 4 this is eleven.

Problem 5

The diameter of the outer circle is given by 3+ 3+ 2+2 = 10 so has a radius of R = 5. The
area of the shaded region is then given by

π · 52 − π · 32 − π · 22 = 12π .
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Problem 6

Factoring this expression we have the given number equal to (n − 2)(n − 1). Thus for n
large enough this will not be a prime number (as it factors into two parts). If n ∈ {1, 2} this
number is zero (which is not prime). If n = 3 this number is two which is prime. If n = 4
this number is six which is not prime. Thus there is one prime of this form.

Problem 7

Let this expression equal N which we are told is an integer. Thus we have

1

2
+

1

3
+

1

7
+

1

n
= N .

As we are asked about n lets solve for it. Using the above we find

n =
42

42N − 41
, (670)

or
(42N − 41)n = 42 = 2 · 3 · 7 .

As n is also an integer and so is 42N − 41 the left-hand-side is an integer factorization of 42.
This means that 42N − 41 must be a member of the following set

{1, 2, 3, 7, 6, 14, 21, 42}

Setting 42N−41 equal to each of these and solving for N only when 42N−41 = 1 do we get
an integer solution for N of N = 1. Then using that in Equation 670 we find n = 42

1
= 42

which is not greater than 84.

Problem 8

Now four full weeks will be 4×7 = 28 days leaving 31−28 = 3 other (consecutive) days. As
we know that we have five Mondays in July one of these “extra” days must be a Monday.
We will also assume that a full week starts on a Monday and ends on a Sunday. As one of
the extra days is a Monday the sequence of extra weekdays that we might have includes

• Monday, Tuesday, Wednesday

• Sunday, Monday, Tuesday

• Saturday, Sunday, Monday

We will consider each case individually.
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• In the first case above the month of August would then have the additional weekdays
following of Thursday, Friday, Saturday, and Sunday. This means that August would
have 31 − 4 = 27 additional days or three full weeks and 27 − 21 = 6 additional days
of Monday, Tuesday, Wednesday, Thursday, Friday and Saturday. Thus in this case
there are five Thursday’s, Friday’s, and Saturday’s.

• In the second case above the month of August would have the additional weekdays
following of Wednesday, Thursday, Friday, Saturday, and Sunday. This means that
August would have 31 − 5 = 26 additional days or three full weeks and 26 − 21 = 5
additional days of Monday, Tuesday, Wednesday, Thursday, and Friday. Thus in this
case there are five Wednesday’s, Thursday’s and Friday’s.

• In the third case above the month of August would have the additional weekdays
following of Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday. This means
that August would have 31−6 = 25 additional days or three full weeks and 25−21 = 4
additional days of Monday, Tuesday, Wednesday, and Thursday. Thus in this case there
are five Tuesday’s, Wednesday’s, and Thursday’s.

The “common” fifth day in all three cases is Thursday and thus August must have five
Thursdays.

Problem 9

Note that

• There are 4! = 24 words that start with an A for a total of 24 words

• There are 4! = 24 words that start with an M for a total of 24 + 24 = 48 words

• There are 4! = 24 words that start with an O for a total of 48 + 24 = 72 words

• There are 4! = 24 words that start with an S for a total of 72 + 24 = 96 words

• There are 3! = 6 words that start with UA for a total of 96 + 6 = 102 words

• There are 3! = 6 words that start with UM for a total of 102 + 6 = 108 words

• There are 3! = 6 words that start with UO for a total of 108 + 6 = 114 words

The word USAMO will be the first word after all the words that start with UO and thus
will be at position 114 + 1 = 115.
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Problem 10

Let the two roots of this quadratic be p and q. Then by Vieta’s formula

https://en.wikipedia.org/wiki/Vieta’s_formulas

we would have

p+ q = −a
pq = b ,

or since p = a and q = b we have

a+ b = −a (671)

ab = b . (672)

Equation 672 gives us that b(a − 1) = 0 so b = 0 or a = 1. As we are told that b 6= 0 we
must have a = 1. Using this in Equation 671 gives 1 + b = −1 so b = −2 and we have
(a, b) = (1,−2).

Problem 11

Let the three integers be n, n+ 1, and n+ 2. Then we are told that

n(n+ 1)(n+ 2) = 8(n+ n + 1 + n+ 2) ,

or
n(n + 1)(n+ 2) = 24(n+ 1) ,

when we simplify a bit. As we are told that n > 0 we have n 6= −1 then we can write the
above as

n(n + 2) = 24 or n2 + 2n− 24 = 0 .

This later expression factors as (n + 6)(n− 4) = 0. The only valid solution is n = 4 where
we find

n2 + (n+ 1)2 + (n+ 2)2 = 42 + 52 + 62 = 77 .

Problem 12

From the form of this equation there might be “easy” values for k that we could check to
see if “anything special” happens in those cases. The “easy” values of k where “something
special” might happen would include k ∈ {1, 2, 6}. For k = 1 notice that this expression is

x− 1

x− 2
=
x− 1

x− 6
.
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This will have no solution. Taking k = 6 gives another expression that has no solution. If
we “cross multiply” we get

(x− 1)(x− 6) = (x− k)(x− 2) ,

or expanding and simplifying gives

(k − 5)x = 2(k − 3) .

This will have no solution if k = 5.

Problem 13

To have this be true for all values of y we want to “solve for x”. Writing this expression
with x “all on one side” gives

(8y + 2)x = 12y + 3 ,

or
2(4y + 1)x = 3(4y + 1) .

If 4y + 1 6= 0 we can divide by it to get 2x = 3 so x = 3
2
. If we set x = 3

2
in the original

expression we see that it simplifies to 0 = 0 (an identity) for any value of y.

Problem 14

Call this number n. Note that we can write n as

n = 52(64) · 82(25) = (564 · 825)2 = (564 · 275)2 = (1064 · 211)2 .

Now 211 = 2048 and multiplying this by 1064 adds 64 zero digits to the end of 2048. Thus
N is 2048 followed by 64 zeros and the sum of the digits in N is 14.

Problem 15

If A and B are both odd (which most primes are) then A−B and A+B will both be even
and not prime unless one of them is two. The smaller of these two numbers would be A−B
so we assume that A− B = 2 (so that A = B + 2) and our four numbers are then

B + 2 , B , 2 , 2B + 2 .

This cannot be correct as 2B + 2 has two as a factor and is not prime.

This means that one of A or B is the number two. If A = 2 then A − B = 2 − B will be
negative for B an odd prime. Thus B = 2 and our four numbers are

A , 2 , A− 2 , A+ 2 .
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Now A is a number between A− 2 and A+ 2 so the correct ordering of these numbers is

2 , A− 2 , A , A+ 2 .

For these to be consecutive primes (a stipulation given in the solution but not in the problem
statement) then we need A− 2 = 3 so A = 5 and our numbers are

2 , 3 , 5 , 7 .

Thus our sum is 17 which is prime.

Problem 16

If we are to have
n

20− n
= m2 ,

then as m2 ≥ 0 if n ≥ 0 we must have 20−n > 0 so n < 20 or n ≤ 19. If n < 0 then we must
have 20 − n < 0 or n > 20 which is a contradiction. Thus for our fraction to be positive it
looks like n must be in the set

n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} .

We can just compute our fraction for each of these n and look to see if the given expression
is a perfect square. Doing this we find that only for the four numbers n ∈ {0, 10, 16, 18} is
this true.

Problem 17

I drew this octagon with the point A on the negative x-axis, the point E on the positive
x-axis, the point G on the negative y-axis, and the point C on the positive y-axis. Then
when we place the other points D, F , H , and B they will be at 360

8
= 45◦ from the x (or y)

axis.

Call the distance from the origin to any two points on the octagon R. Note that two adjacent
“radii” and one side of the octagon will form an isosceles triangle with vertex angle 45◦, two
equal sides of length R, and a base of length two. Using the law of cosigns in that triangle
we have

22 = R2 +R2 − 2R2 cos(45◦) .

We can solve this for R2 and find R2 = 2
√
2√

2−1
.

Now the coordinates of the triangle △AGD we are interested in are given by

A = (−R, 0)
G = (0,−R)

D = (R cos(45), R sin(45)) =

(
R√
2
,
R√
2

)

.
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To evaluate the area of this triangle we will use the fact that it is equal to 1
2
||DA×DG||.

We have

DA =

(

−R − R√
2
, 0− R√

2

)

DG =

(

− R√
2
,−R − R√

2

)

,

and thus find

DA×DG =

∣
∣
∣
∣
∣
∣

i j k
−R − R√

2
− R√

2
0

− R√
2

−R − R√
2

0

∣
∣
∣
∣
∣
∣

= k

∣
∣
∣
∣
∣

−R − R√
2

− R√
2

− R√
2

−R− R√
2

∣
∣
∣
∣
∣

= k

((

R +
R√
2

)2

− R2

2

)

= kR2(1 +
√
2) .

Using what we know about R2 we find the area to be

1

2
||DA×DG|| = 1 +

√
2

2

(

2
√
2√

2− 1

)

= 4 + 3
√
2 ,

when we simplify.

Problem 18

If we draw two distinct circles we see that they can intersect in at most two points. Drawing
a third circle we can get four more intersections for a total of 2+4 = 6. With this drawing we
can imagine a third circle cutting and creating six more intersections for a total of 6+6 = 12
intersection points.

Problem 19

An arithmetic sequence takes the form an = a1 + b(n− 1) for n ≥ 1. Note that in this form
we have a2 − a1 = b. For this form of {an} we have

100∑

i=1

ai =

100∑

i=1

(a1 + b(i− 1)) = 100a1 + b

99∑

i=0

i

= 100a1 + b

(
100(99)

2

)

= 100a1 + 50(99)b = 100 . (673)
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In the same way we have

200∑

i=101

ai =

200∑

i=101

(a1 + b(i− 1)) = 100a1 + b

199∑

i=100

i

= 100a1 + b

99∑

i=0

(i+ 100) = 100a1 + b

(

1002 +

99∑

i=1

i

)

= 100a1 + b1002 +
99(100)

2
b = 200 . (674)

Using Equation 673 to replace 100a1+50(99)b as 100 in Equation 674 that equation becomes

100 + 1002b = 200 so b =
1

100
= 0.01 .

Problem 20

Write this system as

a− 7b = 4− 8c

8a+ 4b = 7 + c .

Solve this for a and b gives

a =
1

12
(13− 5c)

b =
1

12
(−5 + 13c) .

Note that a2 − b2 = (a+ b)(a− b) and from the above we have that

a + b =
8 + 8c

12
=

2

3
(1 + c)

a− b =
18− 18c

12
=

3

2
(1− c) .

This means that (a + b)(a − b) = 1 − c2. Thus the expression we want to evaluate is
a2 − b2 + c2 = 1.

Problem 21

Let the areas of Andy’s, Beth’s, and Carlos’ lawns be A, B, and C respectively. Then we
are told that

A = 2B = 3C .

Writing everything in terms of A we get

B =
A

2
and C =

A

3
.
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Let the “mowing capacity” of Andy’s, Beth’s, and Carlos’ “cutting machines” be a, b, and
c respectively. Then we are told that

c =
b

2
=
a

3
.

Writing everything in terms of a we get

b =
2

3
a and c =

a

3
.

We want to compare A
a
, B

b
, and C

c
. Expressing everything in terms of A and a these are A

a

and

B

b
=
A

2
× 3

2a
=

3

4

A

a
C

c
=
A

3
× 3

a
=
A

a
.

The smallest of these three numbers is 3
4
A
a
which is Beth.

Problem 22

Let O be the origin of an x-y Cartesian coordinate plane Then let the point X = (x, 0) be
on the x-axis and the point Y = (0, y) be on the y-axis. Then from what we are told the
points M and N are given by

M =
(x

2
, 0
)

N =
(

0 ,
y

2

)

.

Using the fact that XN = 19 in the right triangle △NOX we have

192 = x2 +
y2

4
. (675)

Using the fact that YM = 22 in the right triangle △Y OM we have

222 =
x2

4
+ y2 . (676)

If we solve this equation for y2 and put it into Equation 675 we get a single equation for x.
Solving this we get x = 16. Using this in any of the above gives y = 2

√
105.

As we desire to compute XY note that using the right triangle △XOY we have

XY 2 = x2 + y2 ,

thus it might be easier to solve for x2 and y2 (in the above equations) rather than x and y
(without the square roots). In either case we should find

XY 2 = 162 + 4(105) = 676 .

This means that XY = 26.
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Problem 23

Let m = 1 and we get
an+1 = a1 + an + n = n + 1 + an ,

or
an+1 − an = n + 1 .

If we sum both sides of this from n = 1 to n = N we get

aN+1 − a1 =

N∑

k=1

(k + 1) =
N(N + 1)

2
+N .

This means that aN is given by

aN = 1 +
(N − 1)N

2
+N − 1 =

N(N + 1)

2

From this if N = 12 we find a12 = 78.

Problem 24

Draw this wheel and let the center of the wheel be denoted as O. Next drop a perpendicular
from its center vertically downwards intersecting a horizontal line though the bottom of the
wheel at O′. Now position the rider at a point R on the wheel and 10 feet from the bottom
level of the wheel. From R draw a horizontal line intersecting this vertical segment OO′ at
a point P . Note that as PO′ = 10 and OO′ = 20 we have OP = 10. If we draw a line from
the rider to the center of the wheel we form a right triangle △OPR where OR = 20. If we
let θ = ∠O′OR note that

θ = cos−1

(
OP

OR

)

= cos−1

(
10

20

)

=
π

3
= 60◦ .

This is
60

360
=

1

6
,

of a rotation of the wheel. As it take one minute for a full rotation it should take 1
6
of a

minute to reach point R or
60

6
= 10 ,

seconds.

Problem 25

Let n be the number of elements in the original list, S their sum, and m the original mean.
Then we know that

m =
S

n
, (677)
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and we are told that

S + 15

n + 1
= m+ 2 (678)

S + 15 + 1

n+ 2
= m+ 1 . (679)

If we subtract Equation 679 from Equation 678 we get

S + 15

n+ 1
− S + 16

n + 2
= 1 .

If we multiply this by (n+ 1)(n+ 2) we get

(S + 15)(n+ 2)− (S + 16)(n+ 1) = (n+ 1)(n+ 2) ,

or
(n + 2)S − (n+ 1)S = (n+ 1)(n+ 2) + 16(n+ 1)− 15(n+ 2) ,

or
S = (n+ 1)(n+ 2) + n− 14 = n2 + 3n+ 2 + n− 14 = n2 + 4n− 12 . (680)

Now lets use Equation 678 and Equation 677 to solve for S in terms of n. We start with

S + 15

n+ 1
=
S

n
+ 2 ,

If we multiply by n(n+ 1) this is

n(S + 15) = S(n+ 1) + 2n(n+ 1) ,

or solving for S we get
S = −2n2 + 13n .

Setting this equal to Equation 680 and solving for n we get n ∈ {−1, 4}. As n > 0 we have
n = 4.

The 2002 AMC 12A Examination

Problem 1

WWX: Working here

Problem 14

We find

f(11) + f(13) + f(14) = log2002(11
2 · 132 · 142) = 2 log2002(11 · 13 · 14) = 2 log2002(2002) = 2 .
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The 2003 AMC 10A Examination

Problem 1

This would be
2003∑

k=1

(2k)−
2003∑

k=1

(2k + 1) =
2003∑

k=1

1 = 2003 .

Problem 2

Socks cost S = 4 and T-shirts cost T = 4+5 = 9. Each member needs 2(S+T ) = 2(13) = 26
dollars worth of stuff. If n are the number of members of the team we are told that 26n = 2366
so n = 91.

Problem 3

The volume of the original shape is V0 = 15×10×8 while the volume of one removed corner
is Vcorner = 33. As there are eight corners we have the fraction removed is

8× 33

15× 10× 8
= 0.18 ,

when we simplify. This is 18%.

Problem 4

The average velocity is total distance divided by total time so

2(1)
30+10
60

= 3 ,

in units of kilometers-per-hour.

Problem 5

Write this as 2x2 +3x− 5 = (2x+5)(x− 1) = 0. Thus the two roots are d = 1 and e = −5
2
.

From this we see that (d− 1)(e− 1) = 0.
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Problem 6

Answer (C) is not true as x♥0 = |x− 0| = |x| 6= x unless x ≥ 0.

Problem 7

Let the three integer sides be a, b, and c such that a ≥ b ≥ c and that

a+ b+ c = 7 . (681)

From this as we have

7 = a+ b+ c ≥ 3c so c ≤ 7

3
< 3 .

Thus we have found that c ≤ 2. We also know that by the triangle inequality that

a− b < c . (682)

To count the number of triangles with the desired conditions we will take c ∈ {1, 2} and see
how many triangles with that value of c exist.

If c = 1 then Equation 681 gives
a+ b = 6 ,

and Equation 682 gives
a− b < 1 .

The integer solutions to the above we are looking for are when a−b = 0 which give a = b = 3
and only one triangle with this value of c.

If c = 2 then Equation 681 gives
a+ b = 5 ,

and Equation 682 gives
a− b < 2 .

The integer solutions to the above we are looking for are when a − b ∈ {0, 1}. This gives
two systems of equations to solve. The only integer solutions are when a− b = 1 and we get
a = 3 and b = 2 and only one triangle with this value of c.

Adding up all of these there are 1 + 1 = 2 triangles of the given form.

Problem 8

When we factor 60 we have 60 = 22 · 3 · 5. Thus the factors of 60 are

2n2 · 3n3 · 5n5 ,
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for

0 ≤ n2 ≤ 2

0 ≤ n3 ≤ 1

0 ≤ n5 ≤ 1 .

This gives a total of 3 × 2× 2 = 12 factors. We can count the number of these factors that
are less than seven. These are the factors {1, 2, 3, 4, 5, 6} thus the probability we seek is

6

12
=

1

2
.

Problem 9

As
3

√

x
√
x =

3
√
x3/2 = x1/2 ,

we can apply this same procedure three times to get that the given expression is equal to
x1/2 =

√
x.

Problem 10

If we look at the given configuration it looks like numbers 4, 5, 6, 7, 8, and 9 can be folded
into a cube with one face missing. This is six choices.

Problem 11

We are told that

AMC10

+ AMC12

-------

123422

This means that C +C must end in a four. This means that C = 2 or C = 7. If C = 2 then
M +M would need to end in a three which is not possible. Thus C = 7 and our addition
(with a carry) looks like the following

1

AM710

+ AM712

-------

123422
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This now means that M +M + 1 must end in a three so M +M must end in a two. Thus
M = 1 or M = 6. If M = 1 then A + A would need to equal 12 so A = 6. If M = 6 then
A+ A + 1 = 12 which is not possible.

Thus we have found that
(A,M,C) = (6, 1, 7) .

The sum of these three numbers is 14.

Problem 12

To start we draw this rectangle in the x-y coordinate plane. This rectangle has an area of
four. Next the region with x < y forms a right triangle with vertices (0, 0), (1, 1) and (0, 1)
and has an area of 1

2
. The probability we seek is then

1/2

4
=

1

8
.

Problem 13

Let the three numbers be a, b, and c. Then we are told that

a+ b+ c = 20

a = 4(b+ c)

b = 7c .

From the second we have b+ c = a
4
. Putting that in the first we get

a +
a

4
= 20 so a = 16 .

This means that b+ c = 4. Putting b = 7c in that we see that 8c = 4 so c = 1
2
. Then b = 7

2
.

We then compute

abc = 16 · 7
2
· 1
2
= 28 .

Problem 14

Single digit primes are {2, 3, 5, 7}. To maximize our number n = de(10d + e) we want to
take d and e as large as possible. As de is symmetric in the variables (d, e) while 10d+ e is
not we will want to take d > e. Based on this we might try d = 7 and e = 5. In this case we
have 10d+ e = 75 which is not prime and thus (d, e) = (7, 5) is not a valid choice. Next we
try d = 7 and e = 3. In that case we have 10d+ e = 73 which is prime. In this case we have

n = 7 · 3 · 73 = 1533 ,

and the sum of these digits is 12.
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Problem 15

Let A be the event that our number is divisible by two. Thus P (A) = 50
100

= 1
2
. Let B be

the event that our number is divisible by three. Then as there are ⌊100
3
⌋ = 33 numbers of

this form we have P (B) = 33
100

so P (Bc) = 67
100

. We want to evaluate P (A ∩ Bc) which we
can write as

P (A ∩ Bc) = P (Bc|A)P (A) = (1− P (B|A))P (A) .
Now the probability P (B|A) is the probability a number is divisible by three given it is
divisible by two. From the 50 numbers that are divisible by two we expect ⌊50

3
⌋ = 16 of

them to be divisible by three. Thus

P (B|A) = 16

50
,

and the above becomes

P (A ∩Bc) =

(

1− 16

50

)
1

2
=

17

50
,

when we simplify.

Problem 16

Note that

132 = 169

133 = 2197

134 = 28561 .

This means that 134p ends in a one for all p ∈ N. As

2003 = 500(4) + 3 ,

the last digit of 132003 we have the same last digit as 133 which from the above is seven.

Problem 17

Let the triangle have a side length of s and the circle have a radius of r. Then by symmetry
from the center of the circle we can draw radii to each of the corners of the triangle that
create three isosceles triangles with a vertex angle of 360

3
= 120◦. Then in ones of these

isosceles triangles using the law of cosigns to “link” the base of the isosceles triangle to the
two radii that form its legs we have

s2 = r2 + r2 − 2r2 cos(120◦) = 2r2 − 2r2
(

−1

2

)

= 3r2 .

This means that s =
√
3r. As we are also told that

3s = πr2 ,

we can solve for s and r. We find s = 9
π
and r = 3

√
3

π
.
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Problem 18

Write this as
2003

2004
x2 + x+ 1 = 0 ,

or

x2 +
2004

2003
x+

2004

2003
= 0 .

Lets denote 2004
2003

by r. Now using Vieta’s formula

https://en.wikipedia.org/wiki/Vieta’s_formulas

if x1 and x2 are the two roots of the above quadratic then we have

x1x2 = r

x1 + x2 = −r ,
or

x1 + x2 = −x1x2 .
If we divide this by x1x2 we get

1

x1
+

1

x2
= −1 .

Problem 19

Let the “top” horizontal line shown in the figure intersect the larger circle of radius R = 2
2
= 1

at the point A (on the left) and B on the right. Let the center of the larger circle be denoted
O. The smaller circle has a radius of r = 1

2
.

Now the area of the lune is the area of the top semicircle minus the area of the “cap”. Here
the “cap” is the area in the top semicircle and also above the horizontal segment AB of
length one. This means that

Alune =
1

2
π

(
1

2

)2

−Acap =
π

8
−Acap .

Now if in the larger circle we draw two radii from the center of the circle O to the points A
and B then as R = 1 the triangle △OAB is an equilateral triangle with a side s of length
one. The area of the cap is the area of the sector of the larger circle from AB minus the
equilateral triangle △OAB. This means that

Acap =
60

360

(
π12
)
−

√
3

4
s2

∣
∣
∣
∣
∣
s=1

=
π

6
−

√
3

4
.

Using this we find the area of the lune to be given by

Alune =
π

8
− π

6
+

√
3

4
=

√
3

4
− π

24
.
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Problem 20

Recall that a three digit base nine number n takes the form

n = (A,B,C)9 = A× 92 +B × 9 + C ,

where

0 ≤ A ≤ 8

0 ≤ B ≤ 8

0 ≤ C ≤ 8 .

First we note that

• if n ∈ [0, 8] then n is a single digit base nine number n ∈ [(0)9, (8)9]

• if n ∈ [9, 92 − 1] = [9, 80] then n is a two digit base nine number n ∈ [(1, 0)9, (8, 8)9]

• if n ∈ [81, 93 − 1] = [81, 728] then n is a three digit base nine number n ∈ [(1, 0, 0)9 , (8, 8, 8)9 ]

In the same way for a base 11 number we note that

• if n ∈ [0, 10] then n is a single digit base 11 number n ∈ [(0)11, (10)11]

• if n ∈ [11, 112 − 1] = [11, 120] then n is a two digit base 11 number n ∈ [(1, 0)11, (10, 10)11 ]

• if n ∈ [121, 113−1] = [121, 1330] then n is a three digit base 11 number n ∈ [(1, 0, 0)11 , (10, 10, 10)11 ]

If we think of the numbers n that are three digits base nine numbers and three digit base 11
numbers they would be the numbers in the intersection

[81, 728] ∩ [121, 1330] = [121, 728] .

This is 728− 121 + 1 = 608 numbers.

Next we need to count the number of three digit base ten numbers which are the numbers
in the range [100, 999] or 999− 100 + 1 = 900.

This means that the probability we seek is given by

608

900
= 0.675556 .
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Problem 21

Let C, M , and P be the number of chocolate chip, oatmeal, and peanut butter cookies
selected. Then we must have

C +M + P = 6 ,

with

0 ≤ C ≤ 6

0 ≤M ≤ 6

0 ≤ P ≤ 6 .

Lets add one to each number and define

C̃ = C + 1

M̃ =M + 1

P̃ = P + 1 ,

to get
C̃ + M̃ + P̃ = 6 + 3 = 9 .

Now we need to count how many solutions to the above where

1 ≤ C̃ ≤ 7

1 ≤ M̃ ≤ 7

1 ≤ P̃ ≤ 7 .

We can determine this number if we think about having nine “X”s and the placing three
“dividers” in between the “X”s in such a way that there are at least one “X” in each “region”.
One such division would be

X X | X X X X X X | X

This would correspond to the solution

C̃ = 2

M̃ = 6

P̃ = 1 .

The number of such solutions would then be the number of ways we can place these two
“dividers” in the 9− 1 = 8 spaces between the “X”s which is

(
8
2

)

= 28 .
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Problem 22

Now from the diagram we have △GFE ∼ △CDE and so

GF

CD
=
FE

DE
or

GF

8
=
FD + 4

4
.

Next note that ∠FAG = ∠AHB and thus we have that △GFA ∼ △ABH . Thus

GF

AB
=
FA

BH
or

GF

8
=
FD + 4 + 5

6
.

If we set these two expression equal to each other we get

FD + 4

4
=
FD + 4 + 5

6
.

Solving for FD we have that FD = 6. This means that

GF = CD

(
FE

DE

)

= 8

(
FD + 4

4

)

= 20 .

Problem 23

Let Nr be the number of toothpicks used to create the figure shown when the number of
rows of triangles is r. Looking at how this figure is constructed we have

N1 = 3

N2 = N1 + 2(3) = 3 + 6 = 9 = 3(3)

N3 = N2 + 3(3) = 18 = 3(6)

N4 = N3 + 4(3) = 30 = 3(10) .

It looks like the pattern is
Nr = Nr−1 + 3r ,

with N0 = 0 and r ≥ 1. From the above values of N1, N2, N3, etc it looks like three may be
a factor of Nr and thus lets write

Sr =
Nr

3
,

then the above can be written as
Sr − Sr−1 = r ,

or
∆Sr = r ,

or summing both sides
R∑

r=1

∆Sr =
R∑

r=1

r =
R(R + 1)

2
,
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or

SR − S0 =
R(R + 1)

2
.

As S0 = 0 this gives

Nr = 3Sr =
3

2
r(r + 1) .

Now we need to determine how many rows r the large equilateral triangle has when the base
row has t triangles. From the diagram it looks like when if the number of triangles is t then
the number of rows is

r =
t+ 1

2
.

This means that if we want t = 2003 we have r = 1002 and thus the number of toothpicks
is N1002 =

3
2
(1002)(1003) = 1507509.

Problem 25

We want our number n to be such that

n = 100q + r = 99q + (q + r) .

Now if we desire to have 11 | (q + r) then as 11 | 99 we must have 11|n. Recall that

10000 ≤ n ≤ 999999 .

As such, the number of numbers n in that range that are divisible by 11 is
⌊
999999

11

⌋

−
⌊
100000

11

⌋

= 9090− 909 = 8181 .

The 2003 AMC 10B Examination

Problem 1

Call this fraction f . Then we have

f =
−2− 2− 2 + 14

−3− 3− 3 + 21
=

−6 + 14

−9 + 21
=

8

12
=

2

3
.

Problem 2

Let the cost of the green pill be g and the cost of the pink pill be p. Then the total cost C
after two weeks is given by

C = 14(g + p) .
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As we are told that g = p+ 1 this becomes

C = 14(2p+ 1) = 546 .

Solving this we get p = 19 so that g = p + 1 = 20.

Problem 3

The sum of the first eight odd numbers is given by

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 .

The condition about the sum of five consecutive even numbers starting with 2n is then

2n+ 2(n+ 1) + 2(n+ 2) + 2(n+ 3) + 2(n+ 4) + 4 = 64 ,

or
10n+ 24 = 64 .

Solving we find n = 4. This means that the first even number is 2n = 8.

Problem 4

Lets denote the regions by I, II, III, IV , and V . Based on the figure given I compute the
areas of each region to be

AI = 4× 5 = 20

AII = 7× 3 = 21

AIII = 3× 5 = 15

AIV = (5− 3)× (6− 4) = 4

AV = 1× 6 = 6 .

The to make the total cost of the planting as small as possible we put the largest costs on
the smallest areas to get a total cost C of

C = 1AII + 1.5AI + 2AIII + 2.5AV + 3AIV

= 21 + 1.5(20) + 30 + 2.5(6) + 3(4) = 108 .

Problem 5

To mow a single “long” row (one of length 150 feet) will take

Tr =
150

5000
=

3

100
,
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hours of time to mow. We now need to determine the number of times we need to “mow
a row”. When we mow the first row we will have reduced the amount we need to mow by
28 inches. On the second row because of the four inch overlap the total amount we need to
mow has now been reduced by

28 + 28− 4 = 28 + 24 .

After each of n rows mowed we will reduced the amount needed to be further mowed by 24
inches for a general expression of

28 + 24(n− 1) = 4 + 24n ,

for n ≥ 1. To have mown the entire 90 feet (1080 inches) we will need

4 + 24n ≥ 1080 or n ≥ 44.8333 .

As n must be an integer we need to perform n = 45 “row mowings”.

The total time this will take is then

45Tr =

(
3

100

)

45 = 1.35 ,

hours to mow the entire area.

Problem 6

We have
L2 +H2 = D2 ,

with D = 27 inches. We are also told that L
H

= 4
3
or that H = 3

4
L. If we put that expression

into the above we get

L2 +
9

16
L2 = 272 so L =

27× 4

5
= 21.6 ,

inches.

Problem 7

For the given sum we have

16∑

k=1

⌊
√
k⌋ =

3∑

k=1

⌊
√
k⌋ +

8∑

k=4

⌊
√
k⌋+

15∑

k=9

⌊
√
k⌋+

16∑

k=16

⌊
√
k⌋

= 3(1) + 5(2) + 7(3) + 1(4) = 38 .
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Problem 8

With a common ratio of r and what we are given in this problem we have

a2 = 2

a3 = 2r

a4 = 2r2 = 6 .

This last expression means that r = ±
√
3. Thus

a1 =
a2
r

=
2

r
= ± 2√

3
= ±2

√
3

3
.

Problem 9

Call the right-hand-side of this expression R then we have

R =
548/x

526/x · 2517/x
=

522/x

534/x
= 5−12/x .

As 25−2 = (52)−2 = 5−4 our equation is

5−4 = 5−12/x so − 4 = −12

x
.

This means that x = 3.

Problem 10

Since there are 26 possible letters and 10 possible digits the possible number of old and new
license plates are given by

No = 26 · 104
Nn = 263 · 103 ,

which has a ratio of
Nn

No
=

262

10
.

Problem 11

Our two lines can be written as

y = 3x+ a

y = 5x+ b ,
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for values of a and b. Both lines go through the point (10, 15) so putting that point in each
gives a = −15 and b = −35. Thus the two lines are

y = 3x− 15

y = 5x− 35 .

The x intercept of each can be found by solving for x when y = 0 in each line. Doing that
gives x = 5 and x = 7 which is a difference of two.

Problem 12

Let a, b, and c be the original dollar positions of Al, Betty, and Clare. Let a′, b′, and c′ be
the value of their positions one year later. We are told that

a + b+ c = 1000 (683)

a′ + b′ + c′ = 1500 , (684)

with b′ = 2b, c′ = 2c and a′ = a− 100. Using these in Equation 684 gives

a+ 2b+ 2c = 1600 . (685)

Using Equation 683 I get
b+ c = 1000− a ,

which if we put into Equation 685 I get

a+ 2(1000− a) = 1600 .

Solving for a gives a = 400.

Problem 13

Lets take x = ab where we have that 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9 so 1 ≤ a + b ≤ 18.

With this representation we have ♣(x) = a+b. Now if a+b is a single digit then ♣(a+b) = 3
only if a + b = 3. For the possible values of a we could have a = 1 (and then b = 2), a = 2
(and then b = 1), or a = 3 (and then b = 0). These are the numbers in the set S1 where

S1 = {12 , 21 , 30} .

If a+ b is a two digit number then ♣(a+ b) is the sum of the two digits in the representation
of a+ b. In order that ♣(a+ b) = 3 we must have a+ b be a two digit number whose digits
sum two three. From the above the only two digit numbers whose digits sum to three are
{12 , 21 , 30} but as a+ b ≤ 18 the only possible one is

a + b = 12 .
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For the possible values of a and b we could have

a = 3 so b = 9

a = 4 so b = 8

a = 5 so b = 7

a = 6 so b = 6

a = 7 so b = 5

a = 8 so b = 4

a = 9 so b = 3 .

These are the numbers in the set S2 given by

S2 = {39 , 48 , 57 , 66 , 75 , 84 , 93} .

The total number of elements in both S1 and S2 is 10.

Problem 14

From the fundamental theorem of algebra we have that a in the expression ab must have
three and five as prime factors and thus a = k(3 × 5) = 15k with k ≥ 1. To make a + b as
small as possible we can make both a and b as small as possible. Thus we might try k = 1
so a = 15 and we must seek b such that

15b = 3b · 5b = 38 · 52 .

This has no solution for b in the integers. From the above we see that the “problem” with
taking k = 1 or a = 15 was that there was not enough “threes” on in the left-hand-side of
the expression.

If we take k = 3p so that a = 3p · 15 then we see that

ab = 3p · 15b = 3bp3b5b = 3b(p+1)5b = 38 · 52 .

Here if b = 2 then p = 3 will work giving (a, b) = (33 · 15, 2) = (405, 2). Thus a+ b = 407.

Problem 15

After the first 72 players play (in 72
2

= 36 matches) half will be eliminated. With the 28
strongest players included this then gives 36 + 28 = 64 players competing for “best”.

Note that for n players in each round we play n
2
matches and n

2
players are eliminated leaving

n
2
players remaining. With 64 players we have 32, then 16, then 8, then 4, then 2, then 1

matches to play giving a total of

36 + 32 + 16 + 8 + 4 + 2 + 1 = 99 .

This is divisible by eleven.
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Problem 16

If the number of main courses is m then the number of appetizers is 2m. As there are three
desserts the total number of dinners is given by

D = m(2m)(3) = 6m2 .

To have a different dinner on each night of the year requires

6m2 ≥ 365 .

Solving this for m gives m ≥ 7.79957. As m must be an integer we have that m ≥ 8. The
smallest number in this set is eight.

Problem 17

From the problem statement the volume of the cone is 3
4
the volume of the sphere or

3

4

(
4

3
πr3
)

=
1

3
πr2h .

Simplifying this we get r = h
3
or h

r
= 3.

Problem 18

WWX: DP

Problem 19

WWX: DP

Problem 20

Breaking the area we want into the area of the “base” trapezoid and a top triangle we have

[AEB] = [AFGB]+[FEG] =
1

2
AD(AB+FG)+[FEG] =

1

2
(3)(5+2)+[FEG] =

21

2
+[FEG] .

We know the length of the base in △FEG from

FG = CD −DF − CG = 5− 1− 2 = 3 ,
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to determine [FEG] we need to determine its “height”. Drop a perpendicular from E to the
segment FG intersecting FG at a point E ′. Then

△FE ′E ∼ △FDA ,

so
EE ′

FE ′ =
3

1
. (686)

Next
△GE ′E ∼ △GCB ,

so
EE ′

E ′G
=

3

2
or

EE ′

2− FE ′ =
3

2
. (687)

If we divide Equation 686 by 687 we get

2− FE ′

FE ′ =
2

3
(3) = 2 ,

so FE ′ = 2
3
. Using that we have E ′G = FG− FE ′ = 2− 2

3
= 4

3
and using Equation 686 we

have EE ′ = 3
(
2
3

)
= 2. This means that [EFG] = 1

2
FG(EE ′) = 1

2
(2)(2) = 2 and thus

[AEB] =
21

2
+ 2 =

25

2
.

Problem 21

WWX: DP

Problem 22

WWX: DP

Problem 23

WWX: DP
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Problem 24

As this is an arithmetic sequence the difference of two consecutive terms must be d the
common difference (denoted here as d). This means that

x− y − (x+ y) = −2y = d (688)

xy − (x− y) = xy − x+ y = d (689)
x

y
− xy = d . (690)

This is a system of three equations in three unknowns x, y, and d. If we use Equation 688
into Equations 689 and 690 we get

xy − x+ y = −2y so xy − x = −3y , (691)

and
x

y
− xy = −2y so

x

y2
− x = −2 . (692)

From Equation 691 we have

x = − 3y

y − 1
=

3y

1− y
. (693)

If we put this into Equation 692 we have
(

1

y2
− 1

)(
3y

1− y

)

= −2 .

Solving this for y gives y = −3
5
. Using this in Equation 693 gives x = −9

8
. Then from

Equation 688 we get d = 6
5
. We can also compute the fourth term to be

x

y
=

15

8
.

The fifth term of this sequence would then be

x

y
+ d =

15

8
+

6

5
=

123

40
.

Problem 25

WWX: DP

The 2003 AMC 12A Examination

Problem 1

WWX: DPs
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The 2004 AMC 10A Examination

Problem 1

This would be 1500
6

= 250.

Problem 2

Note that we have

¶(1, 2, 3) =
1

2− 3
= −1

¶(2, 3, 1) =
2

3− 1
= 1

¶(3, 1, 2) =
3

1− 2
= −3 ,

thus we are looking for

¶(−1, 1,−3) =
−1

1− (−3)
= −1

4
.

Problem 3

Alicia’s $20 pay is 2000 cents and the taxes on this are

2000

(
1.45

100

)

= 2× 103
(
145

104

)

=
2(145)

10
= 29 .

Problem 4

Note that if x > 2 then both x− 1 and x− 2 are positive and this expression is then

x− 1 = x− 2 ,

which has no solutions. If 1 < x < 2 then this is

x− 1 = −(x− 2) ,

which has the solution x = 3
2
. If x < 1 then this is

−(x− 1) = −(x− 2) ,

which also has no solution. Thus the only solution is x = 3
2
.
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Problem 5

There are

(
9
3

)

= 84 possible combinations of three points. To line on the same straight

line there are three horizontal, three vertical, and two diagonal lines. This gives a probability
of

8

84
=

2

21
.

Problem 6

Let Ii be an indicator variable indicating whether or not the ith daughter of Bertha (for 1 ≤
i ≤ 6) has six daughters herself. Then as the total number of daughters and granddaughters
is 30 we have

30 = 6 +
6∑

i=1

6Ii .

Solving this for
∑

i=1 6Ii we get
6∑

i=1

Ii = 4 ,

meaning that Bertha has four daughters that have six daughters so 4×6 = 24 granddaughters
have no children as do 6− 4 = 2 of Bertha’s daughters. This gives a total of

24 + 2 = 26 .

Problem 7

We have

• In the first stack 5× 8 = 40 oranges

• In the second stack 4× 7 = 28 oranges

• In the third stack 3× 6 = 18 oranges

• In the fourth stack 2× 5 = 10 oranges

• In the fifth stack 1× 4 = 4 oranges

This gives
40 + 28 + 18 + 10 + 4 = 100 ,

total oranges.
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Problem 8

At the end of round zero (the start) we are in the “state”

(A,B,C) = (15, 14, 13) .

At the end of round one we are in the “state”

(A,B,C) = (12, 15, 14) .

At the end of round two we are in the “state”

(A,B,C) = (13, 12, 15) .

At the end of round three we are in the “state”

(A,B,C) = (14, 13, 12) .

Thus in three rounds every player has the number of tokens reduced by one. Notice that we
cannot just play 15 groups of three rounds however because some player will end up with
zero tokens before all the rounds are finished.

Now if we play 12 groups of three rounds we will end in the state of

(A,B,C) = (15− 12, 14− 12, 13− 12) = (3, 2, 1) .

One more round takes this state to

(A,B,C) = (0, 3, 2) ,

and the game ends for a total of 3(12) + 1 = 37 rounds.

Problem 9

Some areas we can compute directly. We have

[△EAB] =
1

2
(4)(8) = 16

[△ABC] = 1

2
(4)(6) = 12 .

From these we can compute the area of interest as

[△EAB]− [△ABC] = 16− 12 = 4 .
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Problem 10

Let HA and HB be the number of heads A and B obtain when they flip their coins. Then
we want to compute P{HA = HB}. To compute this we can condition on HA as

P{HA = HB} = P{HB = 0|HA = 0}P{HA = 0}+ P{HB = 1|HA = 1}P{HA = 1}
+ P{HB = 2|HA = 2}P{HA = 2}+ P{HB = 3|HA = 3}P{HA = 3}

=

(
3
0

)(
1

2

)0(
1

2

)3(
4
0

)(
1

2

)0(
1

2

)4

+

(
3
1

)(
1

2

)1(
1

2

)2(
4
1

)(
1

2

)1(
1

2

)3

+

(
3
2

)(
1

2

)2(
1

2

)1(
4
2

)(
1

2

)2(
1

2

)2

+

(
3
3

)(
1

2

)3(
1

2

)0 (
4
3

)(
1

2

)3(
1

2

)1

=

(
3
0

)(
4
0

)(
1

2

)7

+

(
3
1

)(
4
1

)(
1

2

)7

+

(
3
2

)(
4
2

)(
1

2

)7

+

(
3
3

)(
4
3

)(
1

2

)7

=
1 + 3(4) + 3

(
4·3
2

)
+ 4

27
=

35

128
.

Problem 11

The volume V of each jar is given by

V = πr2h = π

(
d

2

)2

h =
1

4
πd2h ,

where d is the diameter and h is the height. If the diameter changes to 1.25d = 5
4
d then the

new volume V ′ is

V ′ =
π

4

(
5

4
d

)2

h′ =
π

4
d2
(
25

16
h′
)

.

If we want V ′ = V then we need to have

25

16
h′ = h so h′ =

16

25
h =

(

1− 9

25

)

h = (1− 0.36)h .

This means that the height is reduced by 36%.

Problem 12

We must choose one of the three kinds of meat patties. For the number of choices available
for the condiments note that we could have any “subset” of condiments from the set of
condiments with eight elements. The number of subsets from a set with eight elements is
28. Thus the total number of possible hamburgers is

3 · 28 = 768 .

Problem 13

WWX: DP
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Problem 14

Let p, n, d, and q be the number of pennies, nickles, dimes, and quarters Paula holds. Then
we are told that

p+ 5n + 10d+ 25q

p+ n + d+ q
= 20 , (694)

and
p+ 5n+ 10d+ 25(q + 1)

p+ n+ d+ q + 1
= 21 . (695)

From Equation 694 we get

p+ 5n+ 10d+ 25q = 20(p+ n+ d+ q) . (696)

From Equation 695 we get

p+ 5n+ 10d+ 25q + 25 = 21(p+ n+ d+ q) + 21 . (697)

If we use the left-hand-side of Equation 696 into the left-hand-side of Equation 697 we get

20(p+ n+ d+ q) + 25 = 21(p+ n + d+ q) + 21 ,

or
p+ n+ d+ q = 4 . (698)

From this we conclude that each of the variables p, n, d, and q above must be less than or
equal to four. Using this result in Equation 696 we get

p+ 5n+ 10d+ 25q = 20(4) = 80 .

As 5n+10d+ 25q = 5(n+2d+ 5q) this expression ends in a five or a zero and as 0 ≤ p ≤ 4
we have that to have the above be true we must have p = 0 and thus we have shown that

n+ 2d+ 5q = 16 . (699)

The system we seek a solution to is then

n+ d+ q = 4

n+ 2d+ 5q = 16 .

or

n+ q = 4− d

n + 5q = 16− 2d .

I wrote the above in that form since we are asked about the value of d and in that form there
is (hopefully) only one value of d that will give integer solutions for n and q. Subtracting
the first equation from the second gives

5q − q = 4q = 12− d so q = 3− d

4
.
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Using this we have n = 4− d− q = 1− 3
4
d. The only value for 0 ≤ d ≤ 4 where n and q are

positive integers is d = 0 where we find q = 3 and n = 1. As a check using the values we
have found in Equation 694 we get

0 + 5 + 0 + 25(3)

0 + 1 + 0 + 3
=

80

4
= 20 ,

and using these values we have found in Equation 695 we get

0 + 5 + 0 + 25(4)

0 + 1 + 0 + 4
=

105

5
= 21 .

Problem 15

Write this as
x+ y

x
= 1 +

y

x
,

and lets seek to bound y
x
. Now as −4 ≤ x ≤ −2 we have

−1

2
≤ 1

x
≤ −1

4
.

As 2 ≤ y ≤ 4 we have that

−4

2
≤ y

x
≤ −2

4
or − 2 ≤ y

x
≤ −1

2
.

Adding one we see that

−1 ≤ 1 +
y

x
≤ 1

2
.

Thus the largest value of the expression is 1
2
.
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Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

In the given figure let O be the center of the circle on the segment AB so that AO = OB = 1.
In addition we will denote DE = l so AE = 2− l. Next in the given figure draw the segment
OC. Then in the right triangle △CBO we have

OC2 = OB2 +BC2 = 12 + 22 = 5 .

Let T be the point of tangency of the segment EC and the circle. Then in the right triangle
△OTC we have

OC2 = OT 2 + TC2 so 5 = 12 + TC2 so TC = 2 .

Now in the right triangle △OTE we have

OE2 = ET 2 +OT 2 ,

so
OE2 = ET 2 + 1 . (700)

In the right triangle △OAE we have

OA2 + AE2 = OE2 ,

so
12 + AE2 = OE2 . (701)

If we set these two equations for OE2 equal we get

ET = AE = 2− l .

Now in the right triangle △EDC we have

ED2 +DC2 = EC2 ,

or
l2 + 22 = (2− l + 2)2 .

Solving this for l gives l = 3
2
. Using this we find that

EC = 2− l + 2 = 4− l = 4− 3

2
=

5

2
.
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Problem 23

Let the centers of A, B, and D be denoted by the points E, H and F respectively. Let G be
the point of external tangency between the circles B and C. Consider the triangles △EGH
and △FGH .

By the symmetry of the figure the ∠EGH is 90◦ and the two triangles above are right
triangles. Let x = FG and the radius of the circle B be y. Then as the radius of circle A is
one we have

EH = 1 + y ,

and
EG = 1 + x .

In the right triangle △EGH using the Pythagorean theorem we have

(x+ 1)2 + y2 = (1 + y)2 ,

which simplifies to
x2 + 2x = 2y . (702)

As the radius of the larger circle D is two and the radius of circle B is y the radial segment
from F to H must be of length 2 − y. Then the Pythagorean theorem in the right triangle
△FGH gives

x2 + y2 = (2− y)2 ,

which simplifies to
x2 = 4− 4y . (703)

Solving these two equations gives y = 8
9
.

Problem 24

From the problem statement we will evaluate a few values for an. We have

a1 = 1

a2 = 1a1 = 1

a4 = 2a2 = 2

a8 = 4a4 = 8 .

Based on this we will take n = 2m in the relationship a2n = nan we get

a2m+1 = 2ma2m .

To simplify this lets take bm = a2m and find that

bm+1 = 2mbm .
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We want to know a2100 = b100. To evaluate this lets “work backwards”. We find

b100 = 299b99 = 299298b98 = 299298297b97 = 299298297 · · · 2221b1
= 2

∑99
k=0 kb1 = 2

99(100)
2 b1 = 24950b1 .

Now b1 = a2 = 1 and so a2
200

= 24950.

Problem 25

The three spheres will have centers that are on a horizontal plane that is parallel and elevated
one unit above the “base” plane they are resting on. Their centers are also the corners of
an equilateral triangle with a side of length 1 + 1 = 2. The center of the larger sphere with
radius of two will have its center above the “center of mass” of the three smaller spheres and
thus above the intersection of the medians of the equilateral triangle (i.e. its centroid). Let
this centroid have a point location of D.

Let one of the centers of one of the “base” spheres be denoted A, the center of the “top”
sphere be denoted E. First we note that the the distance from A to E must be 1 + 2 = 3.
Next we note that the distance AD can be given by

AD cos(30◦) = 1 so AD =
2√
3
.

Now the triangle △EDA is a right triangle and so we have

ED =
√

AE2 −AD2 =

√

9− 4

3
=

√

23

3
=

√
69

3
.

Taken together these mean that the distance from the plane to the top of the topmost sphere
is

1 +

√
69

3
+ 2 = 3 +

√
69

3
.

The 2004 AMC 10B Examination

Problem 1

Rows 12 through 22 are 22− 12 + 1 = 11 rows. Thus there are 11× 33 = 363 seats.

Problem 2

There are 10 numbers of the form 7? i.e. 70 , 71 , 72 . . .79. There are nine numbers of the
form ?7 i.e. 17 , 27 , 37 . . .97. The number 77 is common to both sets. Thus there are

10 + 9− 1 = 18 ,
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numbers of the given form.

Problem 3

Let J be the number of fee throws made by Jenny on the first practice. Then she made

J , 2J , 4J , 8J , 16J ,

at each of her practices. We are told that 16J = 48 or J = 3.

Problem 4

Let Pi be the product of the faces of the die when face i is “down”. Then we compute

P1 = 2 · 3 · 4 · 5 · 6 = 24 · 32 · 5
P2 = 1 · 3 · 4 · 5 · 6 = 23 · 32 · 5
P3 = 1 · 2 · 4 · 5 · 6 = 24 · 3 · 5
P4 = 1 · 2 · 3 · 5 · 6 = 22 · 32 · 5
P5 = 1 · 2 · 3 · 4 · 6 = 24 · 32
P6 = 1 · 2 · 3 · 4 · 5 = 23 · 3 · 5 .

We seek the greatest common denominator d of these six numbers. Thus we have

d = 2min(4,3,4,2,4,3) · 3min(2,2,1,2,2,1) · 5min(1,1,1,1,0,1) = 22 · 31 = 12 .

Problem 5

To make this expression as large as possible we would want to subtract nothing so d = 0 and
we want to maximize the expression c · ab. If we let c = 1 then we have the two numbers

23 = 8

32 = 9 .

If we let c = 2 then we have the two numbers

2 · 13 = 2

2 · 31 = 6 .

If we let c = 3 then we have the two numbers

3 · 12 = 3

3 · 21 = 6 .

The largest of all of these numbers is nine.

999



Problem 6

Notice that (C) gives
99! · 100! = (99!)2 · 100 = (99!)2 · 102 ,

which is a perfect square. All of the other numbers given don’t factor into perfect squares
in this way.

Problem 7

If we start with d US dollars then after exchanging we have 7
10
d Canadian dollars. Then

spending 60 Canadian dollars she had d Canadian dollars left. This means that

7

10
d− 60 = d .

Solving the above for d I find d = 140. The sum of the digits is five.

Problem 8

From the problem statement the “airport” is the right angle of a triangle with sides 10 and
8 representing the distance between the airport and Minneapolis and St Paul respectively.
The distance between Minneapolis and St Paul is then given by the Pythagorean theorem
where √

102 + 82 =
√
164 .

As 122 = 144, 132 = 169, and 142 = 196 the closest distance is 13 miles.

Problem 9

Draw a square with a side length of ten and a circle centered at its lower left vertex. Then
adding the area of the circle and the square “double counts” the area of the quarter of the
circle in the square. Thus the area we seek is

π(102) + 102 − 1

4
π(102) = 75π + 100 ,

when we simplify.

Problem 10

Let Cn be the number of can at level n. We are told that C1 = 1 and Cn+1 = Cn+2. Solving
this last difference equation we have Cn = 2n +D for a constant D. Then when n = 1 we
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
m = 1 N N N N N N N N
m = 2 N N Y Y Y Y Y Y
m = 3 N Y Y Y Y Y Y Y
m = 4 N Y Y Y Y Y Y Y
m = 5 N Y Y Y Y Y Y Y
m = 6 N Y Y Y Y Y Y Y
m = 7 N Y Y Y Y Y Y Y
m = 8 N Y Y Y Y Y Y Y

Table 26: Possible values for n and m when two eight sided die are rolled.

get
2 +D = 1 so D = −1 .

Thus we have that Cn = 2n − 1. Let Tn be the total number of cans in the entire stack.
Then we have

Tn =

n∑

k=1

Ck =

n∑

k=1

(2k − 1) = n2 ,

when we simplify. If we are told that Tn = 100 that means that n = 10.

Problem 11

Let m be the number on the first die and n the number on the second die. Then the event
we are interested is when

nm > n+m.

In Table 26 I explicitly enumerate all of the choices for m and n and denote whether the
above condition is true (with a Y) or false (with a N). From that table we see that this event
does not happen 16 times so the probability that it does happen is given by

1− 16

64
=

3

4
.

Problem 12

From the drawing given we see that the area of the annulus is given by

πb2 − πc2 .

Using the right triangle △OZX we can write this as

π(c2 + a2)− πc2 = πa2 .
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Problem 13

Let p, n, d, and q be the number of pennies, nickles, dimes, and quarters in the stack. Then
from the problem statement we are told that

1.55p+ 1.95n+ 1.35d+ 1.75q = 14 . (704)

Let N be the total number of coins in the stack so that

N = p + n+ d+ q .

As each coin height ends with 0.05 a stack of an odd number of coins must have a height
sum that ends with 0.05 which our 14 mm high stack does not. Thus the total number of
coins in the stack N must be an even number.

The sum the heights of any two coins i.e. two pennies, two nickles, two dimes, two quarters,
one penny and one nickle, one penny and one dime, etc will have an odd tenths digit which
our stack sum of 14 mm does not. Thus to have a zero in the tenth and hundredth place

N ≡ 0 (mod 4) .

Note that we can bound our number N above by using the smallest coin height (i.e. 1.35)
as

N ≤
⌊

14

1.35

⌋

= 10 .

We can also bound our number N below by using the largest coin height (i.e. 1.95) as

N ≥
⌈

14

1.95

⌉

= 8 .

The only multiple of four in this range is N = 8.

Note that if we multiply Equation 704 by 100 and then divide by five and prime factor each
coefficient we get

31p+ 3 · 13n+ 33d+ 5 · 7q = 23 · 5 · 7 .
Based on the numbers in this equation we see that if q = 23 = 8 and all others are zero we
have an equality.

Problem 14

Let R and B be the initial number of red and blue marbles (respectively) and we are told
that B > R. Let r be the number of red marbles that are first added to make 1

3
of the

marbles in the bag blue. This means that

1

3
(R + r +B) = B , (705)
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and we have R + r + B marbles in the bag. Let Y be the number of yellow marbles added
to make

1

5
(R + r +B + Y ) = B , (706)

and we have R+r+B+Y marbles in the bag. If we then double the number of blue marbles
the number of marbles in the bag is N = R + r + 2B + Y and we want to determine the
fraction 2B

N
.

Now from Equation 706 we have

R + r +B + Y = 5B .

If we add B to both sides we get

R + r + 2B + Y = 6B .

This means that
2B

N
=

2B

R + r + 2B + Y
=

2B

6B
=

1

3
.

Problem 15

Let n and d be the number of nickels and dimes that Patty has initially. Then we are told
that

20 = n+ d , (707)

and the value V0 of these coins is
5n+ 10d = V0 . (708)

If her nickels were dimes and her dimes were nickels then we are told that

5d+ 10n = V0 + 70 . (709)

If we put Equation 708 for V0 into the above (and simplify) we get

14 = −d + n .

Using Equation 707 we can solve for n and d and find d = 3 and n = 17. This means that

V0 = 5(17) + 10(3) = 115 ,

cents.

Problem 16

Joining the centers of the three circles will give an equilateral triangle with a side of length
1+ 1 = 2. Denoted these centers as the points A, B, and C. By symmetry the center of the
larger “outer” circle will be located at the centroid of this equilateral triangle. Denote this
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centroid point as E. Dropping a perpendicular from C to its base AB and though E. Let
this perpendicular intersect AB at a point C ′.

Then in the right triangle △AC ′C (as AC ′ = 1) the Pythagorean theorem gives

CC ′ =
√
22 − 12 =

√
3 .

Next in the right triangle △AC ′E as ∠EAC ′ = 60◦

2
= 30◦ we have

tan(30◦) =
EC ′

AC ′ =
EC ′

1
so EC ′ =

1√
3
.

Then using

EC = CC ′ − EC ′ =
√
3− 1√

3
=

2√
3
.

This means that the radius of the larger circle is given by

1 + EC = 1 +
2√
3
=

3 + 2
√
3

3
.

Problem 17

Let the two digits in Jack’s age be a and b so that 1 ≤ a ≤ 9 and 1 ≤ b ≤ 9 with his age J
given by

J = 10a+ b .

Then we are told that Bill’s age B is

B = 10b+ a .

In five years we are told that

J + 5 = 2(B + 5) or J = 2B + 5 .

In terms of a and b this is

10a+ b = 20b+ 2a+ 5 or a =
5 + 19b

8
.

Integer solutions to this can be found by taking b ∈ {1, 2, . . . , 8, 9} and computing a using
the above. Doing this in the following R code we have

bs = seq(1, 9)

as = (5 + 19*bs)/8

print(data.frame(a=as, b=bs))

This gives

1004



a b

1 3.000 1

2 5.375 2

3 7.750 3

4 10.125 4

5 12.500 5

6 14.875 6

7 17.250 7

8 19.625 8

9 22.000 9

The only “digit” integer solution is (a, b) = (3, 1). This means that J = 31 and B = 13 so
J − B = 18.

Problem 18

For this problem we are asked to compute the ratio

r ≡ [△BDF ]
[△ACE] .

Now from the fact that △ACE is a right triangle we have

[△ACE] = 1

2
AC · CE =

1

2
(12)(16) = 96 .

Now from the point F lets drop a vertical intersecting CE at a point Fx and draw a horizontal
intersecting AC at a point Fy. Then the area of the triangles “outside” of the triangle△BDF
can be computed as

[△DFE] = 1

2
DE · FFx =

1

2
(12)FFx = 6FFx

[△BFA] = 1

2
AB · FyF =

3

2
FyF

[△BCD] =
1

2
CD · BC =

1

2
(4)(9) = 18 .

Now since

sin(∠EAC) =
CE

AE
=

16

20
=

4

5
,

we have that

FyF = 15 sin(∠EAC) = 15

(
4

5

)

= 12 .

In the same way as

sin(∠AEC) =
AC

AE
=

12

20
=

3

5
,
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we have that

FFx = 5 sin(∠AEC) = 5

(
3

5

)

= 3 .

Using these we know the areas since

[△DFE] = 6FFx = 18

[△BFA] = 3

2
FyF = 18 .

We can then compute the area of the inner triangle by subtracting all of these “outer”
triangles from the

[△BDF ] = [△ACE]− [△DFE]− [△BFA]− [△BCD] = 96− 18− 18− 18 = 42 .

The ratio we seek is then

r =
42

96
=

7

16
.

Problem 19

We are told that

a1 = 2001

a2 = 2002

a3 = 2003 ,

and in general
an = (an−2 + an−3)− an−1 , (710)

for n ≥ 4. We want to know a2004. Let an = rn and put this into Equation 710 to get

rn = rn−2 + rn−3 − rn−1 .

Simplifying this we can write it as

r3 + r2 − r − 1 = 0 ,

which can be factored as
(r − 1)(r + 1)2 = 0 .

This means that the solution to this difference equation is given by

an = A1n +B(−1)n + Cn(−1)n .

Using the three initial conditions above we have

a1 = 2001 = A−B − C

a2 = 2002 = A +B + 2C

a3 = 2003 = A−B − 3C .

Solving these we get A = 2002, B = 2, and C = −1 and thus

an = 2002 + 2(−1)n − n(−1)n .

Using this we find that a2004 = 0.

1006



Problem 20

Draw a point F such that TF is parallel to the segment AEC and F is on BDC and between
D and C. Then in △BEC we have

BF

CF
=
BT

ET
= 4 , (711)

or
BD +DF

CF
= 4 . (712)

As TF is parallel to the segment AEC in △DAC we have

CF

DF
=
AT

DT
= 3 or CF = 3DF . (713)

We also have
CD = CF +DF . (714)

In the above we have three equations and four unknowns BD, DF , CF , and CD. We should
be able to eliminate two unknowns and get one equation in terms of BD and CD. If we put
Equation 713 into Equation 712 we get

BD +DF = 12DF or BD = 11DF .

If we put Equation 713 into Equation 714 we get

CD = 4DF .

These two expression tell us that
CD

BD
=

4

11
.

Problem 21

For the first sequence we have

an = 1 + 3(n− 1) = −2 + 3n ,

for n ≥ 1. For the second sequence we have

bm = 9 + 7(m− 1) = 2 + 7m,

for m ≥ 1. Let A be the set of the first 2004 numbers in the sequence an i.e. A = {an}2004n=1

numbers and B the set of the first 2004 numbers in the sequence bm i.e. B = {bm}2004m=1. Then
the size of the union set S where S = A ∪B is given by

|S| = |A|+ |B| − |A ∩B| = 2004 + 2004− |A ∩ B| = 4008− |A ∩B| . (715)
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We now need to determine value of |A ∩ B|.

If x ∈ A ∩ B then
x = −2 + 3n = 2 + 7m,

for some 1 ≤ n ≤ 2004 and 1 ≤ m ≤ 2004. The above is equivalent to

7m = 3n− 4 .

This means that 3n− 4 must be divisible by seven. We now ask for what values of n is this
expression divisible by seven. Can we find an integer n in 1 ≤ n ≤ 2004 such that 3n − 4
are the multiples of seven ie {7, 14, 21, 28, 35, . . .}.

The first one of these is

3n− 4 = 7 or n =
11

3
, (716)

which is not an integer so the answer to this question is no.

What about solving
3n− 4 = 14 or n = 6 , (717)

which is an integer so the answer to this question is yes.

What about solving

3n− 4 = 21 or n =
25

3
, (718)

which is not an integer.

What about solving

3n− 4 = 28 or n =
32

3
, (719)

which is not an integer.

What about solving
3n− 4 = 35 or n = 13 , (720)

which is an integer.

From the above it looks like in going from the first integer solution for n in Equation 717
to the second integer solution for n in Equation 720 we are adding 13 − 6 = 7. Thus we
hypothesis that the solutions for n take the form n = 6 + 7p for p ≥ 0.

The number of such solutions we have is given by finding the largest p such that

6 + 7p ≤ 2004 or p ≤ 285.429 .

As p must be an integer we have 0 ≤ p ≤ 285 for a total of 286 solutions. The first of these
(p = 0) correspond to n = 6 and m = 3n−4

7
= 1. The last of these (p = 285) correspond to

n = 2001 and m = 857. Thus we now know that |A ∩ B| = 286 and using Equation 715 we
have

|S| = 4008− 286 = 3722 .
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Problem 22

From the numbers given for the sides of the triangle as 132 = 52 + 122 we know this is a
right triangle. Let a = 5, b = 12 and c = 13 and position the triangle in an x-y coordinate
plane with A = (0, 0), B = (5, 0) and C = (0, 12).

Now the center of the circumscribing circle (denoted O) is at the location of the intersection
of the perpendicular bisectors of the sides of the triangle. This means that this center is at

O =

(
AB

2
,
AC

2

)

=

(
5

2
, 6

)

.

We now need to find the center of the inscribed circle denoted I. This is located at the
intersection of the angle bisectors of a triangle. As ∠CAB = 90◦ we have ∠IAB = 90

2
= 45◦.

If we drop a perpendicular form I to the segment AB (denoted as I⊥) then the triangle
△II⊥A is an isosceles right triangle and so

AI⊥ = I⊥I .

Denote the length as l. Then as AB = 5 we have I⊥B = 5− l.

Since I is on the angle bisector of ∠CBA we have that ∠IBA = 1
2
∠CBA. From the original

5–12–13 right triangle we have

tan(∠ABC) =
12

5

cos(∠ABC) =
5

13
.

Using these with the 1
2
angle formula for tangent we have that

tan(∠IBA) = tan

(
1

2
∠ABC

)

=
tan(∠ABC)

sec(∠ABC) + 1
=

2

3
.

This means that

II⊥ = I⊥B tan(∠IBA) =
2

3
I⊥B .

Since II⊥ = l and I⊥B = 5− l the above is

l =
2

3
(5− l) so l = 2 .

As I = (l, l) we have the location of the incenter.

The distance we seek is then

D =

√
(

2− 5

2

)2

+ (2− 6)2 =

√
65

2
.
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Problem 23

Let pr =
1
2
be the probability that a single one of the six faces of the cube is painted red and

pb = 1− pr =
1
2
the probability that a face of the cube is painted blue. For a given cube the

number of red (or blue) faces is given by a binomial probability distribution

P (k red faces) =

(
n
k

)

pkrp
n−k
b .

Under some cube types it is easy to see that we could orient it as desired by the problem
statement i.e. in such a way that the four vertical faces were all the same color. For example
if the cube was all red or all blue faces. This happens with probabilities

P (all red) =

(
6
6

)

p6rp
0
b

P (all blue) =

(
6
0

)

p0rp
6
b ,

representing draws of the cube that are all red or all blue.

If the cube had only one red or blue face than this could also be done. This happens with
probabilities

P (one face red) =

(
6
1

)

p1rp
5
b

P (one face blue) =

(
6
5

)

p5rp
1
b .

If the cube had three red or blue faces then we could not do this.

Some though tells us that if the cube had two red or blue faces then some configurations could
be oriented in the needed way. Faces with two red or blue faces happen with probabilities

P (two red faces) =

(
6
2

)

p2rp
4
b

P (two blue faces) =

(
6
4

)

p4rp
2
b .

Now in the case with two red faces if the two red faces are adjacent (share a common edge)
then we cannot orient the cube in the desired way. If they are opposite then we can. For a
fixed red face the other face will be adjacent in 4

5
of the time and opposite in 1

5
of the time.

Thus in obtaining cubes we can orient in this desired way from the probabilities above we
must reduce their magnitude by 1

5
.

Thus the total probability we can obtain a cube of the given type is

P =

(
6
6

)

p6rp
0
b +

(
6
0

)

p0rp
6
b +

(
6
1

)

p1rp
5
b +

(
6
5

)

p5rp
1
b +

1

5

((
6
2

)

p2rp
4
b +

(
6
4

)

p4rp
2
b

)
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As pkrp
6−k
b =

(
1
2

)6
the above is

P =

(
1

2

)6(

1 + 1 + 6 + 6 +
1

5
(15 + 15)

)

=
5

16
,

when we simplify.

Problem 24

Because of the fact that
AB2 + AC2 = 113 > BC2 = 81 ,

this is an acute triangle.

Using the drawing given in the back of the book we can start to reason about this problem.
As ∠ABC and ∠ADC cut off the same arc of the circumscribed circle we have that

∠ABC = ∠ADC .

From the equal angles given in the problem we then have that △ADC ∼ △ABE. This
means that

AD

CD
=
AB

BE
=

7

BE
. (721)

By the angle bisector theorem we have that

BE

AB
=
CE

AC
,

or
BE

7
=
CE

8
so BE =

7

8
CE =

7

8
(BC − BE) =

7

8
(9− BE) .

Solving this for BE we get BE = 21
5
. Putting this into Equation 721 gives AD

CD
= 5

3
.

Problem 25

Lets compute the area if the “eye” (the gray area with the unit circle included) and then we
will subtract the area of the unit circle to get the desired area.

From the point A draw two radii from A to the points of intersection of the two circles A
and B. Let the left point be denoted L and the right point denoted R. Let the center of
the unit circle be denoted O. Then the area of the eye can be computed by the area of the
“upper” sector of the A circle i.e. enclosing ∠LAR plus the two smaller segments that are
the area in the eye but “below” the segments LA and AR.

To compute the area of the sector enclosing ∠LAR we need to know its measure. By
symmetry the segment AB will be perpendicular LR and the length of LA = AR = 2 while
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AO = OB = 2
2
= 1. This means that △AOR is a right triangle. Using the Pythagorean

theorem we have that

AR2 = AO2 +OR2 or 22 = 12 +OR2 so OR =
√
3 .

Thus denoting ∠LAR = θ we have

tan

(
θ

2

)

=
√
3 so

θ

2
= 60◦ ,

thus θ = 120◦. The area of the sector AS is then

AS =
120

360
(π × 22) =

4

3
π .

Next we need to compute the area in the “eye” “below” the segments LA (and by symmetry
this is equal to the area below the segment AR). By symmetry these are equal to the area
of the “eye” above the segment BR. This in tern will be equal to the area of the sector of
the A circle with angle ∠BAR = θ

2
= 60◦ minus the area of the triangle △BAR. The area

of this sector is
60

360
(π × 22) =

2

3
π .

Now in the triangle △BAR we have AB = AR = BR = 2 or an equilateral triangle which
has an area of √

3

4
(22) =

√
3 .

Thus we have that the area of the regions below the segments LA and AR is

2

3
π −

√
3 .

The total area of the eye is then

4

3
π + 2

(
2

3
π −

√
3

)

=
8π

3
− 2

√
3 .

From this we will subtract the unit circle to get

5π

3
− 2

√
3 .

The 2004 AMC 12A Examination

Problem 1

WWX: Working here.
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The 2004 AMC 12B Examination

Problem 1

WWX: Working here.
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The 2005 AMC 10A Examination

Problem 1

Let m be Mike’s bill. Then 0.1m = 2 so m = 20. Let j be Joe’s bill. Then 0.2j = 2 so
j = 10. This means that

m− j = 10 .

Problem 2

We first compute 1 ⋆ 2 = 3
1−2

= −3. Then

(1 ⋆ 2) ⋆ 3 = (−3) ⋆ 3 =
0

−3 − 3
= 0 .

Problem 3

Solving 2x+7 = 3 gives x = −2. Putting that into the second equation gives −2b−10 = −2.
Solving that for b gives b = −4.

Problem 4

Let the width of our rectangle be w and the length l is then l = 2w. As the diagonal is of
length x we have

x2 = 4w2 + w2 so w =
x√
5
,

Thus the area is given by w(2w) = 2
5
x2.

Problem 5

Dave by himself can buy the windows he needs by buying four (getting one free) and then
buying two more to get a total of seven windows. This is a total cost of

CDave = 6(100) = 600 .

Doug by himself can buy the windows he needs by buying four (getting one free) and then
buying three more to get a total of eight windows. This is a total cost of

CDoug = 7(100) = 700 .
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The total cost in this way is 600 + 700 = 1300.

Dave and Doug together can buy the 7 + 8 = 15 windows they need if they

• buying four (getting one free) and

• buying four (getting one free) and

• buying four (getting one free)

The total cost under this method is then 12(100) = 1200. Thus the savings is 1300−1200 =
100.

Problem 6

From the mean of the first 20 numbers the sum of the first 20 numbers must be

20(30) = 600 .

From the mean of the second 30 numbers the sum of the second 30 numbers must be

30(20) = 600 .

The sum of all the 50 numbers is then 600 + 600 = 1200. The means of all 50 numbers is
then 1200

50
= 24.

Problem 7

Let Josh start at the location x = 0 (moving rightwards) and Mike start at x = 13 (moving
leftwards). Then as a function of time Josh’s position is given by

xJosh(t) = vJt ,

and Mike’s position is given by

xMike(t) = 13− vM(t− d) ,

where d is the “delay” in Mike’s start. Let the meet at a time t = T . Then we know that

xJosh(T ) = xMike(T ) ,

or with vJ = 4
5
vM this is

4

5
vMT = 13− vM(T − d) .
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We are also told that when they meet T = 2(T − d) so d = T
2
. Using this in the above we

get
4

5
vMT = 13− 1

2
vMT .

Solving this for vMT we get
vMT = 10 .

Now the number of miles that Mike rode when the meet is given by

13− xMike(T ) = 13−
(

13− 1

2
vMT

)

=
1

2
vMT = 5 .

Problem 8

For the inner square define s to be the side length so that HE = EF = FG = GH = s.
Now by symmetry of the diagram we have AH = BE = 1. Next by using the Pythagorean
theorem in the right triangle △AHB we have

AH2 +HB2 = AB2 or 12 + (s+ 1)2 = (
√
50)2 .

If we solve this for s we get s = 6. This means that the area of the inner square is s2 = 36.

Problem 9

If we assume that all tiles are distinguishable then there are 5! total orders of the five titles.
Recognizing that the X and O tiles are not distinguishable where are 3! ordering of the Xs
and 2! orderings of the Os. This means that there are

5!

3!× 2!
=

5× 4

2
= 10 ,

possible ordering of the five tiles. We are given one of these ordering and so the probability
that this happened is 1

10
.

Problem 10

This is the equation
4x2 + (a+ 8)x+ 9 = 0 .

To have only one root means that the discriminant is zero or

(a + 8)2 − 4(4)(9) = 0 or a + 8 = ±12 .

This means that a ∈ {−20, 4}. The sum of these is then -16.

1016



Problem 11

Note that there will be n3 total units cubes after the cut. Each cube has six faces so there
will be a total of 6n3 faces.

Now recall that there will be

• As there are eight corners of the original cube there will be eight cubes with three red
faces.

• As there are 12 edges of the original cube and each edge is composed of n − 2 unit
cubes there will be 12(n− 2) cubes with two faces red.

• As there are six faces of the original cube and each face edge is composed of (n− 2)2

unit cubes there will be 6(n− 2)2 cubes with one red face.

Thus the total number of red faces is

3(8) + 2(12(n− 2)) + 6(n− 2)2 ,

and we are told this equals
6n3

4
.

Setting these equal and solving for n gives n = 4.

Problem 12

Lets break this trefoil into four equilateral triangles (with a side length of one) and four
“arcs” which are the area of a sector of a circle of radius one minus the area of one of the
equilateral triangle.

Now the area of the sector with a central angle of π
3
= 60◦ is

(
π/3

2π

)

(π12) =
π

6
.

The area of an equilateral triangle with a side length of one is

At =

√
3

4
s2

∣
∣
∣
∣
∣
s=1

=

√
3

4
.

Thus each “arc” has an area of

Aa =
π

6
−

√
3

4
.

The area of the trefoil is then

4At + 4Aa =
2π

3
.

when we simplify.
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Problem 13

There are

(
3
2

)

= 3 inequalities we can form from the given statement. From

n100 > 2200 ,

we get
n > 22 = 4 .

From
(130n)50 > n100 ,

we get
130n > n2 or n(n− 130) < 0 or 0 < n < 130 .

Finally from
(130n)50 > 2200 ,

we get

130n > 24 = 16 so n >
8

65
.

This last inequality is satisfied if n > 4 (a condition above) is satisfied. Thus we have

4 < n < 130 or 5 ≤ n ≤ 129 .

This is 129− 5 + 1 = 125 numbers.

Problem 14

If our number is ABC with A, B, and C digits and A ≥ 1. Then we are told that B =
1
2
(A+ C) so A+ C = 2B. This means that A+ C must be an even number so

• if A is odd then C must be odd

• if A is even then C must be even

In the range 1 ≤ A ≤ 9 we have five odd numbers and four even numbers. If we pick an odd
or even number for A then in the range 0 ≤ C ≤ 9 we have five odd numbers and five even
numbers. This means that we have

5× 5 + 4× 5 = 45 ,

numbers of this form.
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Problem 15

Call this number N . We can write N as

N = (3 · 2 · 1)(5 · 4 · 3 · 2 · 1)(7 · 6 · 5 · 4 · 3 · 2 · 1) = 28 · 34 · 52 · 7 .

Cube divisors must take the form 23p33q53r73s. Thus from the above we can have 0 ≤ p ≤ 2,
0 ≤ q ≤ 1, r = 0 and s = 0. This gives a total of 3× 2 = 6 divisors of the requested form.

Problem 16

Let our two digit number be n = (ab) = 10a+ b with a and b digits such that 1 ≤ a ≤ 9 and
0 ≤ b ≤ 9. Then for n we have

10a+ b− (a + b) = 9a .

To have a units digit of six when 1 ≤ a ≤ 9 means that a = 4 so 9a = 36. Then our number
n = (4b) and there are ten such numbers.

Problem 17

These five numbers have

(
5
2

)

= 5·4
2

= 10 pairs. The sums of these pairs are

3 + 5 = 8

3 + 6 = 9

3 + 7 = 10

3 + 9 = 12

5 + 6 = 11

5 + 7 = 12

5 + 9 = 14

6 + 7 = 13

6 + 9 = 15

7 + 9 = 16 .

Looking at these numbers we ask what five element arithmetic sequences can we form from
them. It looks like we we might be able to have common differences h of

9− 8 = 1

10− 8 = 2

12− 8 = 4

12− 9 = 3 .
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The possible sequences with h = 1 are

S1 = {8, 9, 10, 11, 12}
S2 = {9, 10, 11, 12, 13}
S3 = {10, 11, 12, 13, 14}
S4 = {11, 12, 13, 14, 15}
S5 = {12, 13, 14, 15, 16} .

The possible sequences with h = 2 might be

S6 = {8, 10, 12, 14, 16}
S7 = {9, 11, 13, 15, 17} .

Note that S7 cannot exist as we can’t form the sum of 17 from our number pairs. Other
common differences h > 2 are thus not possible.

If we start with the sequence S1 we see that the only way to form an 8 we need to sum 3 and
5 and to form 9 we need to sum 3 and 6. To form a 10 we need to sum 3 and 7 and thus this
we have “used” the number 3 more than two times and this sequence is not possible given
the constraints of the problem.

If we consider with the sequence S2 we see that the only way to form an 9 we need to sum 3
and 6, to form 10 we need to sum 3 and 7, to form a 11 we need to sum 5 and 6. To form a
12 we must sum a 5 and 7, and for form a 13 we sum a 6 and 7. Thus 7 is used three times
and this sequence is not possible.

If we consider with the sequence S3 we see that the only way to form an 10 we need to sum
3 and 7, to form 11 we need to sum 5 and 6, to form a 12 we can sum either a 3 and 9 or a
5 and 7. To form a 13 we must sum a 6 and 7, and to form a 14 we must sum a 5 and 9. In
the second case we would have used the 5 three times. In the first case we have the solution

3

5 6

7 9

This satisfies the conditions of the problem and has a middle term of 12.

If we consider with the sequence S4 it will have three of one of the base numbers and thus
does not give a valid sequence for this problem.

If we consider with the sequence S5 it will have three 9s.

Finally if we consider the sequence S6 it will have three of one of the base numbers and thus
does not give a valid sequence for this problem.
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Problem 18

All probability problems should be first attempted by drawing a tree of possible outcomes.
From each outcome we can then draw two branches the top one indicating that A won that
game and the bottom one indicating that B won that game. We can do this until one of the
teams wins the series. Now for the first game either A or B wins each with a probability of
1
2
. For the second game we are told that B wins. All subsequent games have A or B winning

each with a probability of 1
2
.

If A wins the first game these are the games

ABAA ,ABABA ,ABABB ,ABBAA ,ABBAB ,ABBB

Given that we know that B wins the second game these have probabilities of 1
2i

for i the
number of games played (minus the second game where B always wins) and thus

1

8
,
1

16
,
1

16
,
1

16
,
1

16
,
1

8
.

Only the first, second, and fourth sequences in the above have A winning the series.

If B wins the first game these are the games

BBAAA ,BBAAB ,BBAB ,BBB .

Again given that we know that B wins the second game these have probabilities of 1
2i

for i
the number of games played (minus the second game where B always wins) and thus

1

16
,
1

16
,
1

8
,
1

4
.

Only the first of these has A winning the series.

From the above outcomes if we add up the probability that A wins the series we get

1

8
+

1

16
+

1

16
+

1

16
=

5

16
.

From the above outcomes the probability that B wins the first game (and A wins the series)
is 1

16
. Thus the probability of this event (given A wins the series) is

1
16
5
16

=
1

5
.

Problem 19

In the second diagram shown for this problem let the vertex of the gray cube opposite of B
be denoted by D, let the “left-most” vertex of this cube be denoted A and the “right-most”

1021



vertex of the cube be denoted C. Next let the point of contact of the edge CD and the
corner of the right white cube be denoted P . From the vertex D draw a horizontal line
intersecting the vertical dropped through P at E. Finally let this vertical line through P
and E intersect the original line on which the bases of the original squares were placed be
denoted as F .

Now B will be located at a distance from the original line of

EF + d .

Where d is the length diagonal of a square with side s = 1 which is
√
2 using the Pythagorean

theorem.

Thus we need to determine the length EF . Then by symmetry we have DE = 1
2
. As this

square is rotated 45◦ the triangle △PED is a isosceles right triangle and so PE = DE = 1
2
.

This means that

EF = PF − PE = 1− 1

2
=

1

2
.

The distance we seek is then
1

2
+
√
2 .

Problem 20

To start note that the sum of the interior angles of a polygon with n sides is 180(n− 2) thus
if each angle is of equal size each angle has a degree measurement of

180(n− 2)

n
= 135◦ ,

when n = 8.

Next we draw this octagon and enumerate its eight vertices with the letters A, B, C, D, E,
F , G, and H . We imagine drawing it such that the segments AB (and FE) are horizontal.
Introduce two vertical lines from A to F and from B to E and two horizontal lines from H
to C and from G to D. Let the intersection of HC and BE be denoted as B′.

Now from the problem we have side lengths given by

AB = CD = EF = GH =

√
2

2
=

1√
2
,

and
BC = DE = FG = HA = 1 .

Note that the triangle △BB′C is a right triangle with

∠BB′C = ∠ABC − ∠ABB′ = 135◦ − 90◦ = 45◦ .
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This means that the right triangle △BB′C is isosceles with a hypotenuse of BC = 1. Using
the Pythagorean theorem we have

2BB′2 = 12 so BB′ =
1√
2
.

Now the area we want to calculate is given by the area of the large center rectangle ABEF ,
the area of the two smaller rectangles located to the left and right of the center rectangle
ABEF , and the area of four right triangles all congruent to △BB′C. We will compute the
area of each of these parts and add them up to get the total area of the octagon.

We find

[ABFE] = AB · BE =
1√
2
·
(

2BB′ +
1√
2

)

=
1√
2
·
(

2
1√
2
+

1√
2

)

=
3

2
.

The area of each of the two smaller rectangles located to the left and right of the center
rectangle ABEF is given by

CD ×B′C =
1√
2
× 1√

2
=

1

2
.

Next the area of the right triangle △BB′C is given by

1

2
bh =

1

2
× 1√

2
× 1√

2
=

1

4
.

Now the total octagons area is then

3

2
+ 2

(
1

2

)

+ 4

(
1

4

)

=
7

2
.

Problem 21

Call this sum Sn then we know that Sn = n(n+1)
2

. We are told we want Sn | 6n. This means
that

6n

Sn
=

12

n+ 1
,

is a natural number. This means that n+1 must be a factor of 12. As 12 = 22 · 3 the factors
of 12 are 2n2 · 3n3 where 0 ≤ n2 ≤ 2 and 0 ≤ n3 ≤ 1. This means that there are 3× 2 = 6 of
them and they are

{1 , 2 , 3 , 4 , 6 , 12} .
Now if n + 1 = 1 then n = 0 which is not allowed so there are 6 − 1 = 5 values of n where
this statement is true.
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Problem 22

Numbers in S are of the form sm = 4m for 1 ≤ m ≤ 2005 and numbers in T are of the form
tn = 6n for 1 ≤ n ≤ 2005 and we want to know the size of the set S ∩ T .

An element x will be in both S and T if we can write it in the form

x = 4m = 6n ,

or
2m = 3n ,

or

m =
3

2
n .

If we imagine n ranging from 1 ≤ n ≤ 2005 only some of these n will give integer m. These
n will be of the form n = 2n′ for 1 ≤ n′ ≤ 2005

2
= 1002.5. This means that we will have

m = 3n′. Now m will be larger than 2005 unless

3n′ ≤ 2005 so n′ ≤ 2005

3
= 668.333 .

Thus it looks like the valid range of n′ is 1 ≤ n′ ≤ 668. Thus the size of S ∩ T is 668.

Problem 23

For this problem we want to compute the ratio f defined as

f =
[DCE]

[ABD]
.

To compute the denominator [ABD] we will break that triangle up into the two right triangles
△DCA and △DCB and sum their two areas. We compute

[ABD] =
1

2
AC · CD +

1

2
CD · BC =

1

2
CD(AC +BC) .

As AC = 1
2
BC we can write this as

[ABD] =
1

2
CD

(
3

2
BC

)

=
3

4
CD · BC .

Let O be the point representing the center of the circle. Then note that

OA = OD = OE = OB = r ,

where r is the radius of the circle. From the diagram given we have

2r = AB = AC +BC =
1

2
BC +BC =

3

2
BC .
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This means that

r =
3

4
BC =

3

4
(2AC) =

3

2
AC .

Using this to replace AC in the formula above for [ABD] we have that

[ABD] =
3

4
CD

(
4

3
r

)

= CD · r .

Again from the diagram we have

r = AO = AC + CO =
2

3
r + CO so CO =

1

3
r .

We next need to compute [DCE]. To compute this area we will drop an altitude from point
C onto the segment DE and calling that point of intersection C ′. Then we have

[DCE] =
1

2
base× height =

1

2
DE · CC ′ =

1

2
(2r)CC ′ = rCC ′ ,

where we have used the fact that DE is a diameter and thus is of length 2r.

At this point we have

f =
[DCE]

[ABD]
=
rCC ′

rCD
=
CC ′

CD
.

From the “altitude to the hypotenuse in a right triangle” since △DCO is a right triangle
and CC ′ is an altitude to the hypotenuse DO we have that

△DC ′C ∼ △DCO ,

and thus
CC ′

CD
=
CO

DO
=

(1/3)r

r
=

1

3
,

the answer we seek.

Problem 24

The statement P (n) =
√
n means that n = p2 for some prime p. In the same way P (n+48) =√

n+ 48 means that
n + 48 = q2 ,

for some other prime q > p. Taken together we have that p and q must satisfy

48 = q2 − p2 = (q − p)(q + p) .

This statement means that q − p and q + p are integer factors of 48. As q + p > q − p we
must have

q − p ∈ 〈1, 2, 3, 4, 6〉
q + p ∈ 〈48, 24, 16, 12, 8〉 .
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Each of these is a linear system for p and q. For example the first one is
[
−1 1
1 1

] [
p
q

]

=

[
1
48

]

.

Solving each of these systems in turn with the simple R code

A = matrix(c(-1, 1, 1, 1), nrow=2, ncol=2, byrow=T)

B = matrix(c(1, 2, 3, 4, 6, 48, 24, 16, 12, 8), nrow=2, ncol=5, byrow=T)

solve(A, B)

gives

[,1] [,2] [,3] [,4] [,5]

[1,] 23.5 11 6.5 4 1

[2,] 24.5 13 9.5 8 7

As one is not a prime number only one of these give integer solutions with prime values for

p and q. That solution is

[
11
13

]

.

Problem 25

As an initial investigation lets take a = 25, b = 39, and c = 42. From these we compute that
c2 < a2 + b2 and thus this triangle is acute.

This knowledge will help us draw this triangle and to do so lets denote the vertices as A, B,
and C. We will take the segment AC along a horizontal x-axis with the point B “above” AC.
From the problem statement we will take AB = 25, BC = 39, and AC = 42. Introducing
the points D and E we have AD = 19 and AE = 14.

For this problem we want to compute

f =
[ADC]

[BCED]
.

Now the area of △ADE is given by 1
2
base × height and if we compute the “height” using

AD sin(∠A) we compute

[ADE] =
1

2
(14)(19 sin(∠A)) = 7 · 19 sin(∠A) .

In the same way for the area of the larger triangle we have

[ABC] =
1

2
(42)(25 sin(∠A)) = 21 · 25 sin(∠A) .
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Now using the fact that the area of the larger triangle is the sum of the area of the smaller
triangle plus the quadrilateral BCED we have

[ABC] = [ADE] + [BCED] ,

and thus
[BDED] = [ABC]− [ADE] .

Using this we see that

f =
[ADE]

[ABC]− [ADE]
=

1
[ABC]
[ADE]

− 1
=

1
21·25 sin(∠A)
7·19 sin(∠A)

− 1
=

19

56
,

when we simplify.

The 2005 AMC 10B Examination

Problem 1

The cost C the troop had to pay to purchase the candy bars is

C =

(
1000

5

)

× 2 = 400 .

The amount of revenue R brought in from the sales is given by

R =

(
1000

2

)

× 1 = 500 .

Thus the profit is given by P = R− C = 100.

Problem 2

This would be the expression
( x

100

)

x = 4 so x = 20 .

Problem 3

Let G be the amount of paint we start with (one gallon). Then at the end of day one we
have

D1 = G− 1

3
G =

2

3
G .

At the end of day two we have

D2 = D1 −
1

3
D1 =

2

3
D1 =

4

9
G .

On the third day we have 4
9
of the original.
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Problem 4

We compute

5 ⋄ 12 = (−12) ⋄ (−5) =
√

52 + 122 = 13 ,

and
13 ⋄ 13 =

√

132 + 132 = 13
√
2 .

Problem 5

Let M be the total amount of Brianna’s money, D is the price of one CD, and n is the
number of CD’s desired to buy. Then from the problem we are told that

1

5
M =

1

3
Dn .

To buy all CD’s will cost Dn or

Dn =
3

5
M .

The remaining money after she buys all CD’s is then

M −Dn =M − 3

5
M =

2

5
M .

Problem 6

Lisa’s target was to get at least 0.8 × 50 = 40 A’s on her 50 quizzes. She in fact got 22
A’s on her first 30 quizzes (leaving 8 quizzes with grades less than an A). We know that she
maintained her goal which meant that the number of A’s (call this a) in her remaining 20
quizzes must satisfy

22 + a ≥ 40 or a ≥ 18 .

This means that she can earn lower than an A on at most 20− 18 = 2 quizzes.

Problem 7

Let the area of the outer square be denoted S1, the area of the circle inscribed in that square
be C1, the area of the square inscribed in that circle be S2, and the area of the circle inscribed
in that square be C2. We are asked to compute

C2

S1

=
C2

S2

· S2

C1

· C1

S1

.
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To evaluate this lets, compute the individual ratios. If we have a circle inscribed in a square
of side s then the radius of the circle is s

2
and the ratio of areas is

C

S
=
π(s/2)2

s2
=
π

4
.

If we have a square with side s inscribed in a circle with a radius of r then as that radius is
the hypotenuse of an isosceles right triangle with legs of length s/2 we have

r2 =
s2

4
+
s2

4
so s =

√
2r .

This means that the ratio of the area of the inner square to that of the outer circle is

S

C
=

(
√
2r)2

πr2
=

2

π
.

Using these “parts” we can compute

C2

S1

=
(π

4

)( 2

π

)(π

4

)

=
π

8
.
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Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Take the logarithm (base e) of each equation to solve for each variable. We have

a =
ln(5)

ln(4)

b =
ln(6)

ln(5)

c =
ln(7)

ln(6)

d =
ln(8)

ln(7)
.

Then the product is given by

abcd =
ln(8)

ln(4)
.

Using the “change of base” formula

logb(a) =
logc(a)

logc(b)
, (722)

in the numerator and denominator of the expression for abcd (with a new base c = 2) we
can write the product above as

abcd =

log2(8)
log2(e)

log2(4)
log2(e)

=
3

2
.
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Problem 18

WWX: DP

Problem 19

WWX: DP

Problem 20

We will write each five digit number as abcde where each of a, b, c, d, and e will be one of
the digits specified.

Now when we are summing numbers of the form

abcde = a104 + b103 + c102 + d10 + e ,

we will get the value

V ≡
(
∑

a∈S
a

)

104 +

(
∑

b∈S
b

)

103 +

(
∑

c∈S
c

)

102 +

(
∑

d∈S
d

)

101 +

(
∑

e∈S
e

)

,

and each of the factors
∑

a∈S a are equal.

Now to evaluate the sum of all numbers of the given form notice that if we fix a single digit
(say a) then all other digits in the number abcde can be permuted in 4! ways. This means
that ∑

a∈S
a = 1(4!) + 3(4!) + 5(4!) + 7(4!) + 8(4!) = 4!× 24 .

Thus we have

V = 4!× 24(104 + 103 + 102 + 10 + 1) = 4!× 24× 11111 .

The total number of integers of the form abcde is N ≡ 5! and thus the mean of these numbers
is then

V

N
=

4!× 24× 11111

5!
= 53332.8 .

Problem 21

WWX: DP
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Problem 22

WWX: This is wrong!!!

We are asking for how many n where 1 ≤ n ≤ 24 do we have n! divisible by

S = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

For this to be true means that
n!

n(n+1)
2

= m,

for some positive integer m. This is equivalent to having a m such that

2(n− 1)!

n + 1
= m. (723)

Lets try some n and see if we can find integer solutions for m.

If n = 1 in the above we get m = 1 and we have one solution.

If n = 2 in the above the left-hand-side is

2(1)

3
=

2

3
,

which is not an integer.

If n = 3 in the above the left-hand-side is

2(2!)

4
= 1 ,

which is an integer and a solution.

If n = 4 in the above the left-hand-side is

2(3!)

5
,

which is not an integer.

If n = 5 in the above the left-hand-side is

2(4!)

6
= 8 ,

which is an integer and a solution.

It looks like we have solutions if n is odd and don’t have solutions if n is even. To test this
let n = 2k (for 1 ≤ k ≤ 12) then the left-hand-side of Equation 723 is given by

2(2k − 1)!

2k + 1
,
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which is not an integer as the largest odd number in the numerator is 2k − 1 and the
denominator is 2k + 1 > 2k − 1.

Next let n = 2k − 1 (for 1 ≤ k ≤ 12) then the left-hand-side of Equation 723 is given by

2(2k − 2)!

2k
,

which is an integer if 2k−2 ≥ k since in that case 2(2k−2)! will have a factor of 2k to cancel
with the 2k in the denominator. Inspecting the above we also see that k = 1 is a solution.
Thus as 1 ≤ k ≤ 12 we have 12− 1 + 1 = 12 numbers of the desired form.

Problem 23

WWX: DP

Problem 24

Lets consider

x = ab = a10 + b

y = ba = b10 + a .

Here a and b are such that both x and y have two digits i.e. 1 ≤ a ≤ 9 and 1 ≤ b ≤ 9. Now
we are told that

x2 − y2 = m2 ,

or
(x+ y)(x− y) = m2 ,

or
((a+ b)10 + (a+ b))((a− b)10 + (b− a)) = m2 ,

or
(a+ b)(a− b) · 11 · 9 = m2 . (724)

Because 1 ≤ a ≤ 9 and 1 ≤ b ≤ 9 we have that

2 ≤ a+ b ≤ 18 and − 8 ≤ a− b ≤ 8 and a− b < a+ b .

For Equation 724 to be true one of a + b or a − b must be a multiple of 11. Given the
range of the number above this means that a+ b = 11 since all other multiples of 11 violate
a+ b ≤ 18. Thus we have

(a− b) · 112 · 9 = m2 .

As the right-hand-side of the above is positive we have a− b ≥ 0 and we have a ≥ b. To be
true a− b must be a perfect square less than eight and thus

a− b ∈ {0, 1, 4} .
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Thus we have three systems of equations to solve

a+ b = 11

a− b = v ,

where v ∈ {0, 1, 4}. Solving each of these gives only one solution that has a and b in the
positive integers Z+ which is (a, b) = (6, 5). From this we find

x = 65 , y = 56 , m2 = 9 · 112 = 1089 , m = 33 .

Thus
x+ y +m = 154 .

Problem 25

WWX: DP

The 2005 AMC 12A Examination

Problem 1

WWX: Working from here down.

The 2005 AMC 12B Examination

Problem 1
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The 2006 AMC 10A Examination

Problem 1

Let s be the number of sandwiches and t the number of sodas then this purchase will cost

3s+ 2t ,

when (s, t) = (5, 8). We find this number to be 31.

Problem 2

Note that h⊗ h = h3 − h so that

h⊗ (h⊗ h) = h3 − (h3 − h) = h .

Problem 3

Let m be Mary’s age and a be Alice’s age. Then we are told that m
a
= 3

5
so

m =
3

5
a .

If a = 30 then m = 18.

Problem 4

The largest sum we can get from the digits in the minutes is 5 + 9 = 14. To this we would
need to add the largest digit sum from the numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 .

Which is nine. Thus the largest total digit sum is 14 + 9 = 23.

Problem 5

An $8 dollar pizza cut into 8 pieces has a cost per slice of 8
8
= 1 dollar. As Dave ate 1

2
of

the pizza plus one slice of cheese he ate 4 + 1 = 5 pieces. Since only Dave wants anchovy’s
he should have to pay the extra $2 and thus Dave should pay 5 + 2 = 7 dollars. Doug ate
8− 5 = 3 slices and thus should pay $3. The difference between these two is $4.
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Problem 6

We are told that x 6= 0 so we can divide by x7 to get

714x7 = 147 or x7 =
147

(72)7
=

(
14

72

)7

Thus we have that

x =
14

72
=

2

7
.

Problem 7

To help determine lengths of the segments involved let the point of intersection between the
vertical line and the segment CD be E and the point of intersection between the vertical
line and AB be F .

Now let DE = FB = h be the length of one of the horizontal segments in AB and CD.
Let the vertical distance from either AB or CD to get to the horizontal segment of length
y be denoted v. Then starting at A and “walking” counter clockwise around the left-most
hexagon we have the lengths

18− h , v , y , v , h , 8 .

In the same way starting at F and ‘walking” counter clockwise around the right-most hexagon
we have the lengths

h , 8 , 18− h , v , y , v .

Now to form the square suggested we will take the right-most hexagon and shift it “up” and
“leftwards” to place it on top of the left-most hexagon.

Then the vertical edge length in this square is 8+ v and the horizontal edge length is 18−h.
Walking across the square “in the middle” we see that y = h and that the side length can
be represented as 2h. Setting this equal to 18 − h we can solve for h to get h = 6. We can
also determine that v = 4.

Problem 8

Putting these two points into the equation of the curve gives

3 = 4 + 2b+ c

3 = 16 + 4b+ c ,
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or

2b+ c = −1

4b+ c = −13 .

From the first equation we have 2b = −1 − c. If we put that into the second equation we
can solve for c to find c = 11.

Problem 9

Consider starting the sum at k and summing a total of n terms to get 15. This sum is

S ≡
k+(n−1)
∑

i=k

i =
n−1∑

i=0

(i+ k) =
n−1∑

i=0

i+
n−1∑

i=0

k =
(n− 1)n

2
+ kn =

n(n + 2k − 1)

2
.

Lets see for which positive integer k and n ≥ 2 we can get S = 15.

If n = 2 then the above is
2k + 1 = 15 so k = 7 ,

and the terms are 7 , 8.

If n = 3 then the above is

3

2
(3 + 2k − 1) = 15 so k = 4 ,

and the terms are 4 , 5 , 6.

It seems like given n we are finding k. Solving the above for k gives

2k − 1 =
30

n
− n .

Then for k to be an integer means that n is a factor of 30. Thus we can skip to n = 5 and
find that k = 1 and the terms are 1 , 2 , 3 , 4 , 5.

Thus there are three such sequences of the given form.

Problem 10

Write this requirement as
√

120−
√
x = n ,

with n an integer. As the function f(v) =
√
v ≥ 0 for all v ≥ 0 we have that n ≥ 0 as a

lower bound for n. If we square this and solve for
√
x we get

120− n2 =
√
x . (725)
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Again using the fact that
√
v ≥ 0 we have that

120− n2 ≥ 0 so n2 ≤ 120 so n ≤ 10 ,

for an upper bound on n. Finally note that for each value of n in the domain 0 ≤ n ≤ 10
we can solve Equation 725 for x (by squaring). Thus there are 11 integer solutions for x.

Problem 11

If we expand the left-hand-side and cancel the x2 + y2 terms from both sides we get

2xy = 0 .

This is solved by x = 0 or y = 0 which are the equations for two lines.

Problem 12

The area of the left-most region would be that of a semicircle of radius eight or 1
2
π(82) = 32π.

The area of the second region would be that of a semicircle of radius eight plus 1
4
the area

of a circle of radius four or
1

4
(π(42)) = 4π .

The second figure has a larger area by 4π.

Problem 13

Let W be the amount won. Then the expected win W can be computed as

E(W ) = E(W |odd)P (odd) + E(W |even)P (even) = 1

2
E(W |even) .

Now let M be the event that the second roll matches the number on the first roll (and M ′

that it does not) then we compute

E(W |even) = E(W |even,M)P (M) + E(W |even,M ′)P (M ′)

= E(W |even,M)P (M) =
W

6
.

Thus we have shown that

E(W ) =
W

12
.

If we have to pay $5 to play this game it will be fair when E(W )− 5 = 0 or W = 60.
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Problem 14

We are told that the outside diameter of the rings are given by

di = 20− (i− 1) = 21− i for 1 ≤ i ≤ I ,

where I is the last ring. We are also told that dI = 3. Using the above we find that I = 18.

Now starting at the topmost ring the total distance D to the bottom most ring can be
computed from

D = (d1 − 2) + (d2 − 2) + (d3 − 2) + · · · .
In the above we start at the top of ring i then move to the bottom of ring i (for a distance of
di) and then back upwards two centimeters corresponding to the thicknesses of rings i and
i + 1. The only time we don’t have to subtract this two is on the last ring I. Thus the full
sum representing the total distance is

D = (d1 − 2) + (d2 − 2) + (d3 − 2) + · · ·+ (d17 − 2) + d18 .

We can write this as

D =

18∑

i=1

(di − 2) + 2 .

Evaluating this as

D =
18∑

i=1

(21− i− 2) + 2 =
18∑

i=1

(19− i) + 2 =
18∑

j=1

j + 2 =
18(19)

2
+ 2 = 173 .

Problem 15

From the problem statement we are told that the velocities of the two runners are given by
vO = 250 and vK = 300 (in meters per minute) for Odell and Kershaw respectively. The
radii of the track these two runners run on is also given by rO = 50 and rK = 60 (in meters).
We are told that both runners run for a total of thirty minutes. Now the angular location if
each runs for t minutes is given by

θO = − vOt

2πrO
(2π) = −vOt

rO

θK = +
vKt

2πrK
(2π) =

vKt

rK
.

Here we have taken the linear distance that each has run vt and divided it by the circum-
ference of the track 2πr to determine the number of rotations. We then multiply this by 2π
to get the angular location of Odell and Kershaw for each time t. They will pass each other
when

θK − θO = 2πn ,
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for integers n. This is equivalent to

vKt

rK
+
vOt

rO
= 2πn .

Solving for t we get

t =
2πn

vK
rK

+ vO
rO

.

For the numbers given we have vK
rK

+ vO
rO

= 300
60

+ 250
50

= 10. Thus the above is

t =
2πn

10
=
πn

5
.

We are told that 0 ≤ t ≤ 30 so that

0 ≤ πn

5
≤ 30 or 0 ≤ n ≤ 150

π
.

Now 150
π

= 47.74648 so the two runners cross 47 times.

Problem 16

Drop a perpendicular from A to the segment BC. Let that point of intersection be denoted a
O. Make the point O the origin of an x−y Cartesian coordinate system such that O = (0, 0)
and with the segment OA lies along the y-axis. Next denote the center of the larger “bottom”
circle as OB = (0, 2) and the center of the smaller “top” circle as OT = (0, 5). From OT ,
OB, and O draw lines that will perpendicularly intersect the segment AC at the points P ,
Q, and R respectively. Thus segments OTP and OBQ are drawn to their circles tangents.

To start solving this problem we note that we have three similar right triangles namely

△APOT ∼ △AQOB ∼ △ARO . (726)

From these similar triangles we have that ∠AOTP = ∠AOBQ = ∠AOR. Denote this
common angle as θ. As

∠AOC = 90◦ = ∠AOR+ ∠ROC = θ + ∠ROC ,

we have ∠ROC = 90◦ − θ. Looking at the value of 90◦ − θ in the right triangle △APOT we
see that

∠ROC = ∠OTAP .

This means that we have another similar right triangle relationship

△ARO ∼ △ORC . (727)

Using △APOT ∼ △AQOB from Equation 726 we have

AOT

OTP
=
AOB

OBQ
or

AOT

1
=
AOT + 3

2
.
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Solving this for AOT we find AOT = 3. Thus we now know that

AO = 3 + 1 + 2 + 2 = 8 ,

for the height of the triangle △ABC.

Using △APOT ∼ △ARO from Equation 726 we have

OR

AO
=
OTP

AOT
or

OR

8
=

1

3
.

Solving this for OR gives OR = 8
3
.

Now using Equation 727 we have

OC

OR
=
AO

AR
or

OC
8
3

=
8

√

82 −OR2
,

but we know OR = 8
3
so we can solve the above for OC and find OC = 2

√
2. This is one-half

the base of the triangle △ABC.

Thus the area of triangle △ABC is given by “one-half of the base times the height” which
in this case is given by

1

2
bh =

1

2
(4
√
2)8 = 16

√
2 .

Problem 17

As AC = 2 and B and C trisect the segment AD we have AB = BC = CD = 1.

Lets next place this rectangle in an x-y Cartesian coordinate system where A = (0, 0),
D = (3, 0), E = (3, 2), and H = (0, 2). From the dimensions given and deduced we have
that B = (1, 0), C = (2, 0), G = (1, 2), and F = (2, 2).

We now ask what are the x-y locations of the points X , Y , Z, and W . To find these we will
look for intersections of various lines. We have

• Line AF is given by

y =

(
2− 0

2− 0

)

x = x .

• Line BE is given by

y − 0 =

(
2− 0

3− 1

)

(x− 1) = x− 1 .

• Line HC is given by

y − 2 =

(
0− 2

2− 0

)

(x− 0) = −x ,

or y = 2− x.
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• Line GD is given by

y − 2 =

(
0− 2

3− 1

)

(x− 1) = −(x− 1) ,

or y = 3− x.

To find the location of the points above we look for the intersection of two specific lines. The
point X is given by the intersection of lines AF and HC which gives X = (1, 1). The point
Z is given by the intersection of lines BE and GD which gives Z = (2, 1). The point Y is
given by the intersection of lines BE and HC which gives Y =

(
3
2
, 1
2

)
. Finally, by symmetry

(or line intersections) we can conclude that W =
(
3
2
, 2− 1

2

)
=
(
3
2
, 3
2

)
.

We can now compute the area we seek from

[XY ZW ] = [ADW ]− [ACX ]− [BDZ] + [BCY ] .

Computing each of these gives

[XY ZW ] =
1

2
(3)

(
3

2

)

− 1

2
(2)(1)− 1

2
(2)(1) +

1

2
(1)

(
1

2

)

=
1

2
,

when we simplify.

Problem 18

Consider the two letters as “one unit”. Then this unit has 26× 26 = 262 possible values for
its value. If we place four digits down we can do this in 104 ways. We can then place the
two letter unit in one of the five locations “around” the four digits i.e. before the first digit,
after the first digit, after the second digit, etc. This gives

104 × 262 × 5 ,

license plates.

Problem 19

Let the three angles be θ0 − h, θ0, and θ0 + h. Then the sum of these angles must be 180 so

3θ0 = 180 so θ0 = 60 .

This means that the three angles are

60− h , 60 , 60 + h .

Now we must have 60− h > 0 so h < 60. We cannot have h = 0 or else all three angles are
equal and not distinct. We can’t have h = 60 for then one angle is zero. Thus the smallest
we can have for h is h = 1 and the largest is h = 59 for 59 triangles.
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Problem 20

Now a number when divided by five will have a remainder that is one of

0 , 1 , 2 , 3 , 4 .

Note that if I draw two numbers that have the same remainder (when divided by five) the
difference between these two numbers will have remainder of zero and will thus be divisible
by five. If I draw six numbers I must draw two numbers that have the same remainder (this
is the “Pigeonhole Principle”) and thus six numbers will always have a pair with a difference
that is divisible by five. Thus the probability of this happening is one.

Problem 21

There are 9 × 10 × 10 × 10 = 9000 four digit numbers. Numbers without the digits two or
three will have the first digit drawn from

{1 , 4 , 5 , 6 , 7 , 8 , 9} ,
or 9− 2 = 7 and the other three digits drawn from the above set plus {0} or eight numbers.
Thus there are

7 · 83 = 3584 ,

four digit numbers without a two or a three. The number of numbers with at least one two
or three is then

9000− 3584 = 5416 .

Problem 22

Let p = 300 and g = 210 then we are asked to find

minx,y|xp− yg| ,
over integer x and y since that would be the smallest amount we could “transfer” between
the two farmers when they exchange pigs and goats. It can be shown that the solution to
this problem is given by the greatest common divisor of p and g often denoted as GCD(p, g).
One way to find this value is using the Euclidean algorithm which involves repeated integer
divisions. The steps of this algorithm for the numbers given here are

300 = 1 · 210 + 90 (728)

210 = 2 · 90 + 30 . (729)

Now we start with Equation 729 written as

30 = 1 · 210− 2 · 90 .
Then we replace the 90 in that equation with the remainder from Equation 728 to get

30 = 1 · 210− 2 · (300− 1 · 210) = 3 · 210− 2 · 300 .
This means that 30 can be obtained by giving three goats and receiving two pigs.
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Problem 23

Draw the segments AC and DB. Then because of the similarity between the right triangles
△ACE ∼ △BDE we have

AC

AE
=
BD

BE
,

or using given lengths
3

5
=

8

BE
.

Thus BE = 40
3
. In the right triangle △CAE we have

CE =
√
52 − 32 = 4 .

In the right triangle △EDB we have

ED =

√
(
40

3

)2

− 82 =
25

3
.

This means that

CD = CE + ED = 4 +
25

3
=

44

3
.

Problem 24

Imagine the cube sitting on the top of a table. Note that four of the vertices of the octahedron
are located on the vertical faces of the cube and two vertices are located on the top and
bottom of the cube. Notice that the four corners on the vertical faces are themselves corners
of a square. Lets call this square B for the “base” of the octahedron (its a “base” in the
fact that the full octahedron is completed by placing pyramids on the top and bottom of
the “base”). If the original cube has a side length of s then these four corners are located s

2

from the vertical edges of the cube. This means that the side of B is given by

√
(s

2

)2

+
(s

2

)2

=
s√
2
.

Notice that the “height” of each pyramid on top of this base B is s
2
.

Now recall that the volume of a pyramid is 1
3
ABh where AB is the area of the “base” B and

h is the height. Thus in this case this is

1

3

(
s√
2

)2
s

2
=
s3

12
.

The total volume of the octahedron is twice this or s3

6
. If s = 1 then this is 1

6
.
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Problem 25

Consider a cube with side length s placed in an x-y-z Cartesian coordinate axis where we
specify the eight vertices as the points A = (0, 0, 0), B = (0, s, 0), C = (s, s, 0), D = (s, 0, 0),
E = (0, 0, s), F = (0, s, s), G = (s, s, s), and H = (s, 0, s). By symmetry we can assume
the bug starts at the vertex H and on the first step goes to vertex E. At vertex E there
is a 2

3
chance we will select a vertex that we have not already visited. Again by symmetry

(meaning we could rotate whatever path was actually taken on the cube by the bug onto
the described path) we can assume that from E the bug steps to vertex F .

At this point to avoid vertices already visited the bug must either step to G or B. Each
happens with a 1

3
probability. Stepping to G would mean that the bug has visited all vertices

on the plane z = s and thus must step “downwards” to start visiting vertexes on the plane
z = 0. Stepping to B means that the bug must then walk in a “circle” on z = 0 such that
it can finally step upwards into vertex G to finish its visit of all vertices. From F → G or
F → B are then two different paths each with probabilities of success. We will compute the
probability the bug successfully visits each vertex under each choice.

In stepping from F to G the bug must then step “downwards” and then sequentially step
through all vertices on the plane z = 0. This would happen with probability

1

3
× 2

3
× 1

3
× 1

3
=

2

34
.

In stepping from F to B the bug first steps “downwards” and then sequentially step through
all vertices on the plane z = 0 ending at C and then step back upwards to visit G. This
would happen with probability

1

3
× 1

3
× 1

3
× 1

3
=

1

34
.

Remembering the original probability of 2
3
in stepping from E to F and the probability of 1

3

in stepping from F to either G or B, the total probability that the bug visits every vertex is
then

2

3
× 1

3

(
2

34
+

1

34

)

=
2

35
=

2

243
.

The 2006 AMC 10B Examination

Problem 1

Call this expression E. Then we can write E as

E =
1002∑

k=0

(−1)2k+1 +
1003∑

k=1

(−1)2k =
1002∑

k=0

(−1) +
1003∑

k=1

1 = −1(1003) + 1003 = 0 .
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Problem 2

We have 4♠ 5 = 9 · (−1) = −9 and thus

3♠ (4♠ 5) = 3♠ (−9) = (3− 9) · (3 + 9) = −72 .

Problem 3

Let c and p be the points scored by the Cougars and Panthers respectively. Then we are
told that

c+ p = 34 (730)

c− p = 14 . (731)

If we sum these two equations we get 2c = 48 or c = 24. If we put this value into Equation 731
we get p = 10.

Problem 4

This would be
π
(
3
2

)2 − π
(
1
2

)2

π
(
1
2

)2 = 9− 1 = 8 .

Problem 5

Note that the area of the bounding square must be larger than the sum of the areas of the
two rectangles or

2(3) + 3(4) = 18 .

I start by laying the 3× 4 rectangle (R1) at the corner of a Cartesian coordinate plane with
the side of length four along the x-axis and the side of length three along the y-axis.

First I could place the 2 × 3 rectangle (R2) “to the right” of R1 and sharing the common
side of length three. This would take up 4 + 2 = 6 units along the x-axis and the bounding
square would have area 6× 6 = 36.

Second I could place the 2 × 3 rectangle (R2) “above” of R1 with the side of length three
adjacent to the side of length four in R1. Then this takes up 3 + 2 = 5 vertical units along
the y-axis and the bounding square would have area 5× 5 = 25.

The smaller of these two is 25.
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Problem 6

The radius of each circle must be 1
2

(
2
π

)
= 1

π
. Then the perimeter we seek is the sum of the

perimeters of four semicircles or two circles (with this radius) or

2

(

2π

(
1

π

))

= 4 .

Problem 7

Call this expression E. Then we have

E =

√
x

x−(x−1)
x

=

√
x
1
x

=
√
x2 = −x .

Problem 8

The side of the square s has a length of s =
√
40 = 2

√
10.

As the radius r of the circle is formed from a right triangle with leg lengths s
2
and s the

Pythagorean theorem gives

r2 = s2 +
s2

4
= 50 .

Then the area of the semicircle is given by

1

2
πr2 = 25π .

Problem 9

In a “gram” of the mixture the fraction of lemon juice, sugar, and water are given by

fl =
100

600
=

1

6

fs =
100

600
=

1

6

fw =
400

600
=

2

3
.

Thus in 200 grams of the mixture we will have 200fl, 200fs, and 200fw grams of lemon juice,
sugar, and water respectively. The number of calories we have is then given by

200fl ×
(

25

100

)

+ 200fs ×
(
386

100

)

+ 200fw × (0) = 137 ,

when we evaluate.
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Problem 10

The geometric interpretation of the triangle inequality for the side lengths given is that

s ≤ 3s+ 15 or 0 ≤ 2s+ 15

3s ≤ s+ 15 or 2s ≤ 15

15 ≤ 3s+ s or 15 ≤ 4s .

The first of these is satisfied for s ≥ 1. The third of these requires

s ≥
⌈
15

4

⌉

= 4 ,

and the second of these requires

s ≤
⌊
15

2

⌋

= 7 .

Thus 4 ≤ s ≤ 7 and the largest perimeter will be when s = 7 with a value of 3s+s+15 = 43.

Problem 11

Note that

10! = 10× (9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1)
= 10× 5× 2× (9 · 8 · 7 · 6 · 4 · 3)
= 102 × (9 · 8 · 7 · 6 · 4 · 3) .

Thus this number ends with two zeros and has zero for its tens digits. Note that all n! for
n ≥ 10 will have this same property (have a zero tens digit).

Because of that the tens digit of the given expression will be the tens digit of the expression

E ′ = 7! + 8! + 9! .

Now each of these can have a 10 factored out to get

E ′ = 10(7 · 6 · 4 · 3 + 8 · 7 · 6 · 4 · 3 + 9 · 8 · 7 · 6 · 4 · 3) .
Thus the tens digit of E ′ is the ones digit of the expression in parenthesis above. We can
compute the ones digit of the above using “ones arithmetic”. Lets call this operation OD
for “ones digit”. We have

OD(4 · 3) = 2

OD(6 · 4 · 3) = 2

OD(7 · 6 · 4 · 3) = 4

OD(8 · 7 · 6 · 4 · 3) = 2

OD(9 · 8 · 7 · 6 · 4 · 3) = 8 .

Using these we have

OD(7 · 6 · 4 · 3 + 8 · 7 · 6 · 4 · 3 + 9 · 8 · 7 · 6 · 4 · 3) = OD(4 + 2 + 8) = 4 ,

which is also the tens digit of the original expression.
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Problem 12

If we add these two equations we get

x+ y =
1

4
(x+ y) + a + b ,

or solving for a+ b we get

a + b =
3

4
(x+ y) .

Now (x, y) = (1, 2) satisfies this so

a+ b =
3

4
(1 + 2) =

9

4
.

Problem 13

After drinking two ounces Joe has ten ounces of coffee and two ounces of cream.

After JoAnn adds two ounces of cream (and mixes) she has a mixture that is the fraction 2
14

cream. When she removes two ounces of this liquid she is left with

2− 2

14
(2) =

12

7
,

ounces of cream in her cup. Thus the ratio asked for is

2

(12/7)
=

7

6
.

Problem 14

Using Vieta’s formula

https://en.wikipedia.org/wiki/Vieta’s_formulas

on the first quadratic we have that m = a + b and 2 = ab.

In the same way we know that in the second quadratic p is the sum of the roots and q is the
product of the roots. For q this means

q =

(

a+
1

b

)(

b+
1

a

)

= ab+ 1 + 1 +
1

ab
.

As we know ab = 2 this simplifies to give q = 4 + 1
2
= 9

2
.
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Problem 15

A rhombus has sides that are all of equal length. For the larger rhombus let this length be
denoted as a. As the smaller rhombus is similar to the larger rhombus we have

∠EBF = ∠BAD = 60◦ .

By symmetry we have
∠ABE = ∠FBC ≡ θ ,

where we have defined the angle θ. Using the fact that the sum of the interior angles of
quadrilateral is 360◦ we have that

∠DAB + θ + ∠EBF + θ + ∠BCD + θ + ∠FDE + θ = 360 ,

or
4× 60 + 4θ = 360 ,

or θ = 30◦. Given this we have that

∠ABD = ∠ABE +
1

2
∠EBF = θ +

1

2
(60) = 30 + 30 = 60◦ .

This means that the triangle △ABD is an equilateral triangle and we have BD = AB = a.
Using the law of cosigns we can compute the distance AC as

AC2 = AB2 +BC2 − 2ABBC cos(∠ABC)

= a2 + a2 − 2a2 cos(θ + ∠EBF + θ)

= 2a2 − 2a2 cos(120◦)

= 2a2 − 2a2
(

−1

2

)

= 3a2 .

This means that AC =
√
3a.

Note that the segment BD is the long side of the smaller rhombus and the long side of the
larger rhombus has a length of AC =

√
3a thus the contraction fraction (from large to small)

is

f =
BD

AC
=

a√
3a

=
1√
3
.

Now the area of the smaller rhombus is given by

1

2
(fAC)× (fBD) = f 2 ×

(
1

2
AC × BD

)

= f 2 × (24) = 8 ,

using the known area of the larger rhombus.

While not needed to solve this problem we can also evaluate the value of a. From the formula
for the area of the larger rhombus we have

1

2
AC ×BD =

1

2
(
√
3a)a =

√
3a2

2
.

Setting this equal to 24 we get a2 = 48√
3
.
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Problem 16

The next leap day will happen in

3× 365 + 366 = 1461 ,

days from now. As
1461 = 208× 7 + 5 ,

after 208 × 7 days we will be back on a Sunday. This means that each “cycle” of one leap
day will add five more days. To get to 2020 we will need for leap cycles thus we will add
4×5 = 20 extra days. As 20 = 2×7+6 this last leap year will be on the day before Sunday
or Saturday.

Problem 17

Alice will select a fixed color from her back with a probability of 1
5
. What ever color she

selects when she places it in Bob’s bag Bob will have two balls of some color. For the two
bags to be the same Bob must select one of the duplicated balls with a probability of

2

6
=

1

3
.

Problem 18

WWX: DP

Problem 19

WWX: DP

Problem 20

WWX: DP

Problem 21

WWX: DP
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Problem 22

WWX: DP

Problem 23

WWX: DP

Problem 24

WWX: DP

Problem 25

WWX: DP

The 2006 AMC 12A Examination

Problem 1

The 2006 AMC 12B Examination

Problem 1
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The 2007 AMC 10A Examination

Problem 1

Full price for Susan would be 4×20 = 80 dollars. At 25% discount this is a cost of 80−20 = 60
dollars. Full price for Pam would be 5× 20 = 100 dollars. At 30% discount this is a cost of
100− 30 = 70 dollars. The difference is 10 dollars.

Problem 2

From the definitions given we have

6@2

6#2
=

6(2)− 4

8− 6(4)
= − 8

16
= −1

2
.

Problem 3

The volume of the water displaced once the brick is placed in the water would be the bricks
volume or

VB = 40× 20× 10 = 8000 ,

centimeters cubed.

This volume will raise the water level in the tank by h so that

100× 40× h = 8000 .

Solving this we get h = 2 centimeters.

Problem 4

Two consecutive odd numbers can be written as 2n+1 and 2n+3. For the given relationship
we must have

2n+ 3 = 3(2n+ 1) .

Solving this for n gives n = 0 so the two numbers are one and three. Their sum is then four.

1053



Problem 5

If p is the pencil price and n is the notebook price then from what we are told we have

7p+ 8n = 4.15

5p+ 3n = 1.77 .

If we multiply the first equation by five and the second equation by seven we get

35p+ 40n = 20.75

35p+ 21n = 12.39 .

Subtracting the second equation from the first gives

19n = 8.36 ,

or n = 0.44. Putting this into the first equation above gives p = 0.09. Using these values for
n and p we compute

16p+ 10n = 5.84 .

Problem 6

For this we would need to compute

66− 60

60
,
70− 66

66
,
76− 70

70
,
78− 76

76
,
85− 78

78
,

and select the largest. We find these numbers to be

[1] 0.10000000 0.06060606 0.08571429 0.02631579 0.08974359

and the largest increase is from 2002 to 2003 of 10%.

Problem 7

WWX: Working here.

Problem 8

WWX: Working here.
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Problem 9

Write the first equation as

3a = 81b+2 = (92)b+2 = (34)b+2 = 34b+8 ,

thus we must have a = 4b+ 8. Write the second equation as

5a−3 = 125b = 53b ,

thus we must have a− 3 = 3b. Using what we know about a from before we get

(4b+ 8)− 3 = 3b .

Solving we get b = −5 and a = −12. Thus ab = 60.

Problem 10

WWX: From here down.

Problem 23

As the circles are symmetric the points E and F are directly above the points A and B
respectively. This means that AE ⊥ EF and EF ⊥ BF . As the triangle △ACO is a right
triangle we have

OC =
√

AO2 −AC2 =

√

(2
√
2)2 − 22 = 2 .

Now the area of the desired region is the area of rectangle AEFB minus the area of the two
right triangles △ACO and △ODB and minus the area of the “sectors” AEC and BFD.
From the known side lengths we have the area of the two triangles given by

[ACO] = [ODB] =
1

2
(2)(2) = 2 .

We now seek to determine the area of the two sectors. Note that

tan(∠CAO) =
OC

AC
=

2

2
= 1 ,

thus ∠CAO = π
4
. Then

∠EAC = ∠EAO − ∠CAO =
π

2
− π

4
=
π

4
.

The area of each sector is then
π
4

2π
(π(22)) =

π

2
.

Using the above “subtraction formula” the area of the desired region is given by

2(2(2
√
2))− 2(2)− 2

(π

2

)

= 8
√
2− 4− π .
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Problem 24

If we square the given expression we get

42 = a2 + 2 + a−2 so a2 + a−2 = 16− 2 = 14 .

Squaring again gives

142 = a4 + 2 + a−4 so a4 + a−4 = 142 − 2 = 194 .

Problem 25

Consider n3 a value of “n” that has three digits. Now if n3 has three digits then at most
each can be nine so we have

S(n3) ≤ 9 + 9 + 9 = 3(9) = 27 .

This means that S(n3) has at most two digits and from the above result by looking at all
numbers less than 27 we can conclude that S(S(n3)) ≤ S(19) = 10. This means that

n3 + S(n3) + S(S(n3)) ≤ 999 + 27 + 10 = 1036 < 2007 ,

Thus there are no three digit numbers that solve this equation.

Clearly S(n) and S(S(n)) are both greater than zero. Thus if n ≥ 2007 the left-hand-side
is larger than the right-hand-side and there can be no solution. Thus n < 2007 to have a
solution.

If n < 2007 we have that
S(n) ≤ S(1999) = 28 ,

and if n ≤ 28 then S(n) ≤ 10. Then using

n = 2007− S(n)− S(S(n)) ≥ 2007− 28− 10 = 1969 ,

and the range of n where solutions must lie is 1969 ≤ n ≤ 2006. We could check each of
these values of n one at a time (there are only 38 of them). This can be done with the simple
R code (or by hand)

S = function(n){

digit_sum = 0

while ( n!=0 ) {

digit_sum = digit_sum + (n %% 10)

n = ( n - (n %% 10) )/10

}

digit_sum

}
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ns = seq(1969, 2006)

S_n = sapply(ns, S)

S_S_n = sapply(S_n, S)

ns + S_n + S_S_n

Running the above gives

[1] 2001 1995 1998 2001 1995 1998 2001 2004 2007 2010 2013 2007 2010 2004 2007

[16] 2010 2013 2016 2019 2022 2025 2019 2013 2016 2019 2022 2025 2028 2031 2034

[31] 2037 2004 2007 2010 2013 2016 2019 2022

Counting the number of these that equal 2007 we find four.

The 2007 AMC 10B Examination

Problem 1

Each bedroom has two walls with areas 12× 8 = 96 and 10× 8 = 80 square-feet. This gives
an area of

2(96 + 80) = 352 .

Removing the area of the doorways and windows gives 352 − 60 = 292. As we have three
bedrooms the total area that must be painted is 3(292) = 876.

Problem 2

From the definition we have

3 ⋆ 5 = 8(5) = 40

5 ⋆ 3 = 8(3) = 24 ,

so (3 ⋆ 5)− (5 ⋆ 3) = 40− 24 = 16.

Problem 3

The average gas mileage would be

2(120)
120
30

+ 120
20

= 24 ,

miles-per-gallon.
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Problem 4

We have ∠AOC = 360− 140− 120 = 100. The arch length ÃC = ∠AOC = 100 and

∠ABC =
1

2
ÃC = 50 .

Problem 5

Denoting this information as “set membership” we have

A ⊂ B

C ⊂ B

D ⊂ A

C ⊂ D .

Putting the third of these into the first gives

D ⊂ A ⊂ B

C ⊂ B

C ⊂ D .

Putting the third of these into the first gives

C ⊂ D ⊂ A ⊂ B

C ⊂ B .

Now the second condition is a consequence of the first condition. Reading the answers with
this information we see that D is correct.

Problem 6

If c, i, and b are the number of questions correct, incorrect, and blank respectively then we
are told that the score is given by

6c+ 0i+ 1.5b = 6c+ 1.5b .

We know that Sarah will leave the last three unanswered so b = 3 so her score is

6c+ 4.5 .

To have this larger than 100 means that

c ≥ 100− 4.5

6
= 15.9167 .

Thus Sarah must answer at least 16 problems correctly.
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Problem 7

From Equation 5 the sum of the interior angles of this pentagon must be 180◦(n− 2) = 540◦

when n = 5.

Assume the common side length is l. Now if we draw this pentagon in an x-y Cartesian
coordinate plane then from the given angles at A and B we can place A = (0, l), B = (0, 0),
C = (l, 0), and E = (l, l). Now to have ED = CD = l the point D will need to be on the
perpendicular bisector of AB which means that its y coordinate is located at l

2
. Dropping a

perpendicular from D to the x-axis (called D′) we form the right triangle △CD′D and note
that

sin(∠DCD′) =
l/2

l
=

1

2
so ∠DCD′ = 30◦ .

This means that ∠DCB = 180◦ − ∠DCD′ = 150◦. By symmetry this is the same as the
angle ∠E.

Problem 8

From the constrains that 0 ≤ a < b < c ≤ 9 and that b must be a natural number we have
that if

• a = 0 then c must be even so c ∈ {2, 4, 6, 8}.

• a = 1 then c must be odd so c ∈ {3, 5, 7, 9}.

• a = 2 then c must be c ∈ {4, 6, 8}.

• a = 3 then c must be c ∈ {5, 7, 9}.

• a = 4 then c must be c ∈ {6, 8}.

• a = 5 then c must be c ∈ {7, 9}.

• a = 6 then c must be c ∈ {8}.

• a = 7 then c must be c ∈ {9}.

Counting these up we have

4 + 4 + 3 + 3 + 2 + 2 + 1 + 1 = 20 ,

numbers of this form.
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Problem 9

If we count the number of letter “s” we find in the string we find twelve. Then we would
move

• Replace the first “s” with the letter 1 to its right

• Replace the second “s” with the letter 1 + 2 = 3 to its right

• Replace the third “s” with the letter 1 + 2 + 3 = 6 to its right

Then we replace the kth “s” with the letter

k∑

i=1

i =
k(k + 1)

2
,

to its right. For the 12th “s” this number is 12(13)
2

= 78. As 78 ≡ 0 (mod 26) the replacement
letter has “wrapped around” and is back at “s”. Thus this “s” is replaced with another one.

Problem 10

If we draw the segment BC and imagine the point A “above” (or “below”) the segment then
to have an area of one means that this triangles height must satisfy

1

2
(BC)h = 1 so h =

2

BC
.

If we draw two parallel lines “above” and “below” the segment BC by an amount h than
any point A on these two parallel lines will form a triangle with height h and thus an area
of one.

Problem 11

Draw the triangle △ABC in its circle with the segment BC “horizontal” and A “above”
BC. Then by symmetry the segment from A “towards” BC will pass though the origin of
the circle O and be a perpendicular bisector of BC. Call its intersection with BC the point
A′. Then

BA′ = A′C =
BC

2
=

2

2
= 1 .

Let the distance OA′ be h and draw the radii (of length r) from O to A and C. Then in the
right triangle △OA′C the Pythagorean theorem gives

h2 + 12 = r2 . (732)
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Next in the right triangle △AA′C the Pythagorean theorem gives

(r + h)2 + 12 = 32 ,

or simplifying and square rooting
r + h = 2

√
2 . (733)

Solving this for h and putting it into Equation 732 we can solve for r. We find r = 9
4
√
2
.

Thus the area of this circle is

πr2 =
81π

32
.

Problem 12

Let Ci be the age of Tom’s children and let T be Tom’s age. Then we are told that

T = C1 + C2 + C3 , (734)

and
T −N = 2(C1 −N + C2 −N + C3 −N) .

This second equation can be written as

T −N = 2(C1 + C2 + C3)− 2(3N) .

Using Equation 734 to replace C1 + C2 + C3 this becomes

T −N = 2T − 6N ,

or 5N = T so that T
N

= 5.

Problem 13

Draw this region in the x-y Cartesian coordinate plane. By inspection the two circle intersect
at (0, 0) and (2, 2). The region of overlap is a inside a square with a length of two. This
square has an area of Asquare = 22 = 4. Viewed from each circle this square is composed
of and area that is 1

4
the area of a circle (with radius two) and an area that is outside this

circle. The area of the sector is then

Asector =
1

4
(π(22)) = π .

Now the area of the square can be written as

Asquare = 2Asector − Aintersection .

As we are looking for Aintersection and we know the other two expressions we can solve for it
to find

Aintersection = 2π − 4 .
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Problem 14

Let N be the total number of students (boys plus girls). Then we are told that

0.4N = G ,

where G is the number of girls. After two girls leave and two boys arrive the total number
of students N is the same and we are told that

0.3N = G− 2 .

Solving the first equation for N in terms of G and putting that into the above gives a single
equation for G. Solving that we find G = 8.

Problem 15

Writing each angle in terms of ∠A and then summing all angles gives that

A+
A

2
+
A

3
+
A

4
= 360 .

This means that A = 864
5

= 860
5

+ 4
5
= 172.8. To the nearest whole number this is 173.

Problem 16

Let N be the number of students in the junior/senior class. Let NJ and NS be the number
of juniors and seniors respectively. Then we are told that

NJ = 0.1N

NS = 0.9N .

Let ji be the ith junior score and si be the ith seniors score on the test. Then from the
average of all students we have that

84 =
1

N

(
NJ∑

i=1

ji +

NS∑

i=1

si

)

.

Since all of the juniors got the same score ji ≡ j for all i and the average score of the seniors
was 83 we have that

83 =
1

NS

NS∑

i=1

si .

Using these two in the expression for the total class average gives

84 =
1

N
(NJj + 83NS) .

Writing NJ and NS in terms of N we can solve the above for j to find j = 93.

1062



N1 N2 N1mod4 N2mod5 Color in Grid
3 7 3 2 White
6 2 2 2 Gray
1 9 1 4 White
7 3 3 3 Gray
2 6 2 1 White
9 1 1 1 Gray

Table 27: Possible values for the first (N1) and second (N2) numbers on one spin of the dial
along with the color of the square in the checkerboard.

Problem 17

Let the side of this triangle be denoted by s. Consider the perpendicular from P to the side
AB (intersecting at Q) and assume this has a length of h. If this perpendicular splits the
side into lengths x and s− x note that the area of the triangle △PAB can be computed by
summing the two right triangles △AQP and △BQP as

1

2
hx+

1

2
h(s− x) =

1

2
hs ,

and thus x does not need to be known. Thus we can evaluate the total area of this equilateral
triangle by summing the area of the three triangles △APB, △BPC, and △APC as

1

2
(1)s+

1

2
(2)s+

1

2
(3)s = 3s .

The area of an equilateral triangle is given by
√
3
4
s2. Setting this equal to the above and

solving for s we get s = 4
√
3.

Problem 18

Connect the centers of the larger “outside” circles together. Then from all of the tangents
involved these segments form a square with side lengths of 2r. Call the center of the upper
right circle O and the center of the smaller center circle o. Draw the segment Oo which will
be of length 1 + r. That segment forms the hypotenuse of a right triangle with one leg of
length r. The other leg goes though the center of the square and must have a length

√

(1 + r)2 − r2 =
√
1 + 2r .

Two of these will be equal to the side length of the square or

2
√
1 + 2r = 2r .

Squaring and solving for r gives r = 1 +
√
2 (taking the positive root).
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Problem 19

Lets construct a table of all possible outcomes. This is done in Table 27. As each outcome
is equally likely we see that the probability of a gray square is

3

6
=

1

2
.

Problem 20

There are 5 × 5 = 25 choices for the first block. Then there are 16 choices for the second
block and nine choices for the third. As the blocks are identical the number 25 × 16 × 9
over-counts the desired number and we need to divide it by the number of ways to select
three distinct blocks or 3!. This gives

25× 16× 9

3!
= 600 .

Problem 21

Let the square have a side of length s so s = XY = Y Z = ZW = WX . Then from the
given lengths of the larger right triangle △ABC we have

AW +WB = 3 (735)

BZ + ZC = 4

AX + s+ Y C = 5 .

Next notice that in this diagram many angles are equal. We have

∠BAC = ∠BWZ = ∠CZY ,

and
∠AWX = ∠BZW = ∠ZCY .

This means that many right triangles are similar. For example we see that△AXW ∼ △ABC
so we can conclude that

AW

s
=

5

4
.

We also have △WBZ ∼ △ABC so we can conclude that

WB

s
=

3

5
.

We also have △CY Z ∼ △CBA but we won’t use that relationship. Using the above two
expressions (for AW and WB) in Equation 735 we have

5

4
s+

3

5
s = 3 .

Solving we get s = 60
37
.
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Problem 22

Each roll of a four sided die is a Bernoulli trial with a probability that the bottom number
matches the players number of p = 1

4
. The number of success in two Bernoulli trials is given

by a binomial distribution and thus the probability that the player gets zero, one, or two
“matches” is

P (M = 0) =

(
3

4

)2

=
9

16

P (M = 1) =

(
2
1

)(
1

4

)(
3

4

)

=
3

8

P (M = 2) =

(
1

4

)2

=
1

16
.

This means that the expectation for this game is

(−1)

(
9

16

)

+ 1

(
3

8

)

+ 2

(
1

16

)

= − 1

16
.

Problem 23

Let the square at the base of the pyramid have a side length of s and let l be the slant height
of a single triangle making up the face of the pyramid. Then dropping a vertical from the
apex to the center of the base (of length h) and using the Pythagorean theorem we have

h2 +
(s

2

)2

= l2 .

As the area of the face of each triangle in the pyramid is given by

1

2
sl ,

and we have four of them in our pyramid the surface area of the entire pyramid is given by

A = 4

(
1

2
sl

)

+ s2 = 2sl + s2 = 2s

√

h2 +
s2

4
+ s2 .

Now if we consider a smaller “top” pyramid with a height h′ and a square side base length
of s′ then by similar triangles we have

h′

s′/2
=

h

s/2
so s′ = s

(
h′

h

)

.

Using above formula the surface area of this smaller pyramid is

A′ = 2s′
√

h′2 +
s′2

4
+ s′

2
.
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Using the relationship of s′ to s above we can write this as

A′ =
2sh′

h

√

h′2 +
s2h′2

4h2
+
s2h′2

h2

=
h′2

h2

(

2s

√

h2 +
s2

4
+ s2

)

=
h′2

h2
A .

We are told that when h′ = h− 2 that

A′ =
1

2
A ,

or using the above we have
h′2

h2
=

1

2
.

Taking h′ = h− 2 we get

(h− 2)2 =
h2

2
.

This can be solved for h to give
h = 4± 2

√
2 .

Of course h′ = h− 2 = 2± 2
√
2 must be positive which means that the negative sign cannot

be the correct solution and we have

h = 4 + 2
√
2 .

Problem 24

The sum of the digits of a number that has a fours and b nines is

4a+ 9b ,

with a ≥ 1 and b ≥ 1. To be divisible by nine this sum must be of the form 9k for some
k ≥ 1. Thus we have

4a+ 9b = 9k or 4a+ 9(b− k) = 0 .

For our number be divisible by four its last two digits must be divisible by four. This means
that the last two digits of our number n must be 44 and a ≥ 2.

Now note that we can write the above as

4a = 9(k − b) ,

and for n to be as small as possible we want the smallest natural number solutions to the
above which would be

a = 9

k − b = 4 .

Thus k = 4 + b and the smallest k can be is if b = 1 to get k = 5. Thus we have nine fours
and one nine and n ends in two fours so the smallest our numbers can be is

n = 4444444944 .
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Problem 25

Let u ≡ a
b
then we need to find a rational u such that

u+
14

9u
= k ,

where k is an integer. We can write the above as

9u2 + 14 = 9ku or 9u2 − 9ku+ 14 = 0 .

Solving this for u we get

u =
9k ±

√

81k2 − 4(9)(14)

2(9)
=

9k ± 3
√
9k2 − 56

18
.

This will give a rational value for u if 9k2 − 56 is a perfect square say m2. This means that

9k2 −m2 = 56 ,

or
(3k −m)(3k +m) = 56 .

The paired factors of 56 are

(1, 56) , (2, 28) , (4, 14) , (7, 8) .

As 3k −m < 3k +m we can assign factors from the above to 3k −m and 3k +m and then
solve for k and m. For example, the first system of equations to solve would be

3k −m = 1

3k +m = 56 .

The others are formed in the same way. We can automate this process with the R code

A = matrix(c(3, 3, -1, 1), nrow=2, ncol=2)

B = matrix(c(1, 56, 2, 28, 4, 14, 7, 8), nrow=2, ncol=4)

solve(A, B)

Running this I find solutions to (k,m) given by

[,1] [,2] [,3] [,4]

[1,] 9.5 5 3 2.5

[2,] 27.5 13 5 0.5

Note that only two of these result in integer solutions for (k,m) and thus would give rational
solutions for u. The first of these is (k,m) = (5, 13) and gives u ∈ {1

3
, 14

3
}. The second is

(k,m) = (3, 5) and gives u ∈ {2
3
, 7
3
}. Thus we have a total of four solutions for u and thus

four solutions for (a, b).
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The 2007 AMC 12A Examination

WWX: Working here.

Problem 1

Problem 2

The 2007 AMC 12B Examination

Problem 1
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The 2010 AMC 8 Examination

Problem 1

WWX: Working here.

The 2010 AMC 10A Examination

Problem 1

WWX: Working here.

The 2010 AMC 10B Examination

Problem 1

We have
100(100− 3)− (1002 − 3) = 1002 − 300− 1002 + 3 = −297 .

Problem 2

WWX: Here

The 2010 AMC 12A Examination

Problem 1

Write this expression as

(20− 2010 + 201) + (2010− 201 + 20) = 40 .
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Problem 2

From the problem statement the number of passengers taken on trip i or Ni is given by

N1 = 100

N2 = 100− 1 = 100− (2− 1)

N3 = 100− 2 = 100− (3− 1)

...

Ni = 100− (i− 1) .

There are a total of six trips. The total number of passengers P taken is then

P =

6∑

i=1

Ni =

6∑

i=1

(100− (i− 1)) =

6∑

i=1

(100− (i− 1)) =

6∑

i=1

(101− i)

= 101(6)−
6∑

i=1

i = 606− 6(7)

2
= 585 .

Problem 3

The first statement means that the shaded region is 1
2
the total of [ABCD] or

HG =
1

2
AB .

The second statement means that

AD ·HG
EH ·HG = 0.2 =

1

5
,

or AD
EH

= 1
5
. We want to evaluate

AB

AD
=

2HG

AD
=

2HG
EH
5

= 10
HG

EH
= 10 ,

as EFGH is a square and so HG = EH .

Problem 4

This would be the function −x−1.
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Problem 5

After 50 shorts let Chelsea’s score be C50. After 50 more shots where n of them are bulleyes
Chelsea’s will add at least the additional

10n+ 4(50− n) ,

points to her score. Thus her score at the end will be

C100 ≥ C50 + 10n+ 4(50− n) .

At shot 50 the “next highest” competitor had a score H50 where C50 − H50 = 50. With
n bulleyes to be guaranteed victor means that even if the next highest opponent gets all
bulleyes so that H100 = H50 + 50(10) the value of C100 will still be larger or

C100 > H50 + 500 .

The smallest value of n where this will happen is the smallest value of n where

C50 + 10n+ 4(50− n) ≥ H50 + 500 ,

or subtracting H50 from both sides gives

50 + 10n+ 4(50− n) ≥ 500 .

Solving this for n we get n ≥ 125
3

= 41.6667. As n is an integer we need to take n ≥ 42 so
the smallest number is 42.

Problem 6

Let our x be given by pmp where p and m are digits such that 1 ≤ p ≤ 9 and 0 ≤ m ≤ 9.
We are also told that x + 32 is a four digit palindrome so x + 32 ≥ 1001 or x ≥ 969. This
means that p = 9 and 6 ≤ m ≤ 9. If we consider each of these four numbers we see that
when

m = 6 so x = 969 and x+ 32 = 1001

m = 7 so x = 979 and x+ 32 = 1011

m = 8 so x = 989 and x+ 32 = 1021

m = 9 so x = 999 and x+ 32 = 1031 ,

only the first is a palindrome. Thus x = 969 and so the sum of the digits is 9 + 6 + 9 = 24.

Problem 7

The “full” height H and volume V are given by

H = 40

V =
4

3
πR3 = 100000 ,
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while the “model” volume v is given by

v = 0.1 =
4

3
πr3 .

Taking the ratio of the two volume expressions we have

V

v
=

(
R

r

)3

= 106 so
r

R
= 10−2 .

This means that the model height h is given by

h = H
( r

R

)

= 40× 10−2 = 0.4 .

Problem 8

The volume of the original cube is V0 = 33 = 27. Removing one “column” will take 22 ·3 = 12
units of volume. Removing all three “columns” will over remove the center cube of side length
2 two additional times. Thus the volume remaining is

27− 3(12) + 2(23) = 7 .

Problem 9

WWX: DP

Problem 10

For the arithmetic sequence of numbers p, 9, 3p−q, and 3p+ q we have a common difference
d given by several differences

d = 9− p (736)

= 3p− q − 9 (737)

= 3p+ q − (3p− q) = 2q . (738)

If we set equal Equations 737 and 738 we get

3p− q − 9 = 2q or q = p− 3 .

If we put that expression into Equation 738 and set this equal to Equation 736 we get

2p = 6 = 9− p or p = 5 .

This means that q = 5 − 3 = 2 and the common difference is d = 9 − p = 4. The general
term of this sequence is then given by

an = 5 + 4(n− 1) for n ≥ 1 .

We find
a2010 = 5 + 4(2009) = 8041 .
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Problem 11

We want to solve
7x+7 = 8x ,

or
77 · 7x = 8x ,

or

77 =

(
8

7

)x

.

Then “taking” the log 8
7
(x) of both sides gives

x = log 8
7
(77) .

From this we see that b = 8
7
.

Problem 12

WWX: DP

Problem 13

Write the second expression as y = k
x
and put this into the first equation to get

x2 +
k2

x2
= k2 .

We can write this as
x4 − k2x2 + k2 = 0 .

Solving for x2 using the quadratic equation gives

x2 =
k2 ±

√
k4 − 4k2

2
=
k2 ± |k|

√
k2 − 4

2
.

Now to have no intersections means that there are no real solutions and we must have
k2− 4 < 0. If k = 0 this inequality is true but the equations are degenerate in that case and
we have (x, y) = (0, 0) (only) so the two curves do intersect. If k = ±1 the inequality is true
and if |k| ≥ 2 it is not. Thus there are k ∈ {−1,+1} or two values of k.
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Problem 14

Let the “base” of the triangle be AC with the vertex B “above” AC. Then from B draw
the angle bisector to AC intersecting AC at D. Using the “angle bisector theorem” we have
that

AB

AD
=
BC

DC
or

AB

3
=
BC

8
,

using the information from the problem.

The triangles perimeter P is given by

P = AB +BC + CA = AB +BC + 11 .

Using the above relationship we have

P =
3

8
BC +BC + 11 =

11

8
BC + 11 .

The smallest value for P would be if BC = 0 but in that case the triangle is degenerate. We
need to determine a lower bound on BC. From the triangle inequality we have that

AB +BC > AC = 11 .

In the above we can replace AB with 3
8
BC to get

11

8
BC > 11 or BC > 8 .

To have the side AB integer we need to take BC = 2× 8 = 16 (so that AB = 6) and then
find that P = 11(2) + 11 = 33.

The 2010 AMC 12B Examination

Problem 1

Let M be the number of minutes Makayla spends in meetings. Then we are told that

M = 45 + 2(45) = 135 .

Her work day is 9(60) = 360 minutes. The percent she spends in meetings is then

135

360
=

1

4
,

which is 25%.
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Problem 2

Breaking this up into two rectangles I find its area to be

A = 2(6) + 2(5) = 22 .

Problem 3

WWX: DP

Problem 4

WWX: DP

Problem 5

WWX: DP

Problem 6

WWX: DP

Problem 7

WWX: DP

Problem 8

WWX: DP

Problem 9

WWX: DP
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Problem 10

From the problem statement we are told that

1 + 2 + 3 + · · ·+ 98 + 99 + x

100
= 100x ,

or
98∑

k=1

k + x = 1002x .

Using Equation 22 the above is

99(98)

2
= (1002 − 1)x = (100− 1)(100 + 1)x = 101(99)x ,

or solving for x we get

x =
50

101
.

Problem 11

WWX: DP

Problem 12

Using Equation 722 with c = 2 for each term the given expression becomes

1

2

(
log2(x)

log2(
√
2)

)

+
log2(x)

log2(2)
+ 2

(
log2(x)

log2(4)

)

+ 3

(
log2(x)

log2(8)

)

+ 4

(
log2(x)

log2(16)

)

= 40 .

Using the fact that log2(2
p) = p the above becomes

5 log2(x) = 40 or log2(x) = 8 so x = 28 = 256 .

Problem 13

WWX: DP

Problem 14

WWX: DP
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Problem 15

WWX: DP

Problem 16

WWX: DP

Problem 17

WWX: DP

Problem 18

WWX: DP

Problem 19

WWX: DP

Problem 20

As we are told this is a geometric sequence we have that its common ratio must satisfy

r =
a2
a1

=
cos(x)

sin(x)
=
a3
a2

=
tan(x)

cos(x)
=

sin(x)

cos2(x)
,

or
cos(x)

sin(x)
=

sin(x)

cos2(x)
or cos3(x) = sin2(x) . (739)

We can write this as
cos(x)(1− sin2(x)) = sin2(x) ,

or
cos(x) = sin2(x)(1 + cos(x)) ,

or
cos(x)

sin2(x)
= 1 + cos(x) . (740)
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Now a4 is given by

a4 = ra3 =
sin(x)

cos(x)
· cos(x)
sin(x)

= 1 .

Now a5 is given by

a5 = ra4 =
cos(x)

sin(x)
.

Now a6 is given by

a6 =
cos2(x)

sin2(x)
.

Now a7 is given by

a7 =
cos3(x)

sin3(x)
.

Now a8 is given by

a6 =
cos3(x)

sin2(x)
· cos(x)
sin2(x)

.

Now using Equation 739 we have cos3(x) = sin2(x) so

a8 =
cos(x)

sin2(x)
.

Now using Equation 740 this is 1 + cos(x).

Problem 21

WWX: DP
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The 2013 AMC 8 Examination

Problem 1

As 4× 6 = 24 and 5× 6 = 30 she needs one more car.

Problem 2

Let x be the regular price of a 1/2 pound of fish. Then 0.5x = 3 so x = 6. The regular price
of a full pound is then 2x = 12.

Problem 3

In this sum there are 1000
2

= 500 “pairs” each of which adds together to give one. Thus

S = 4((−1 + 2) + (−3 + 4) + (−5 + 6) + · · ·+ (−999 + 1000))

= 4

500∑

k=1

1 = 4(500) = 2000 .

Problem 4

Let B be the cost of the total bill. Then the per person cost is B
8
. From what we are told

about paying the bill without Judi we have that

7

(
B

8
+ 2.5

)

= B .

Solving this gives B = 140.

Problem 5

The average weight is

A =
1

5
(5 + 5 + 6 + 8 + 106) = 26 .

The median is M = 6. Thus the average is larger by 20.
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Problem 6

The unknown box in the row above the bottom must have a value 600
30

= 20. The unknown
box in the first row must have a value of 20

5
= 4.

Problem 7

The rate of cars-per-second is given by

6

10
=

3

5
.

The train too 120 + 45 = 165 seconds to pass so the number of cars should be

165

(
3

5

)

= 99 ,

cars. This is closest to 100 cars.

Problem 8

If we enumerate all possible three toss outcomes we find we will be given one of

{HHH , THH ,HTH ,HHT ,HTT , THT , TTH , TTT} .

Each element in this event set has a probability of
(
1
2

)3
= 1

8
and three of them have at least

two consecutive heads giving a total probability of 3
8
.

Problem 9

Let Jk be the jump amount on the kth jump. Then from the problem statement we are told
that

J1 = 1

J2 = 2

J3 = 22 = 4

J4 = 23 = 8

...

Jn = 2n−1 .

We want to know when Jn > 1000. As 29 = 512 and 210 = 1024 we see that when n−1 = 10
or n = 11 is when we jump more than one kilometer.
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Problem 10

If we have the prime factorization of a and b as

a = pa11 p
a2
2 p

a3
3 · · · pann

b = pb11 p
b2
2 p

b3
3 · · · pbnn ,

then the least common multiple and the greatest common factor can be computed as

LCM(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 p

max(a3,b3)
3 · · · pmax(an,bn)

n

GCF(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 p

min(a3,b3)
3 · · · pmin(an,bn)

n .

For the numbers given we have

a = 180 = 22 · 32 · 5
b = 594 = 2 · 33 · 11 .

Thus we have

LCM(a, b) = 22 · 33 · 51 · 11
GCF(a, b) = 21 · 32 .

Then the ratio we seek is given by

22 · 33 · 51 · 11
21 · 32 = 2 · 3 · 5 · 11 = 330 .

Problem 11

The time using the treadmill on each day is given by

TMonday =
2

5

TWednesday =
2

3

TFriday =
2

4
,

in units of hours. The total of all of this time is to be compared to 6
4
. We find

2

5
+

2

3
+

2

4
− 6

4
=

1

15
,

hours or 60
15

= 4 minutes.
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Problem 12

Let F the the price of the “fair special”. Let S be the price of one pair of sandals (we are
told that S = 50). Then we are told that

F = S + 0.6S + 0.5S = 2.1S .

The normal cost of three pairs of sandals would be 3S. The savings is then 3S−2.1S = 0.9S.
The percentage this is of 3S is then

0.9S

3S
= 0.3 ,

or 30%.

Problem 13

Clara’s total should have been

C = s1 + s2 + · · ·+ sk + · · ·+ sn ,

where her correct kth score has a decimal representation of sk = 10tk + uk. If instead she
added 10uk + tk she would have found the total

I = s1 + s2 + · · ·+ (10uk + tk) + · · ·+ sn ,

thus

C − I = (10tk + uk)− (10uk + tk) = 10(tk − uk) + uk − tk = (tk − uk(10− 1) = 9(tk − uk) .

Thus the difference must be divisible by nine. Only the number in (A) has that property.

Problem 14

Let E be the event that the two beans agree. Then we have

P (E) = P (Abe shows green and Bea shows green) + P (Abe shows red and Bea shows red)

= P (Abe shows green)P (Bea shows green) + P (Abe shows red)P (Bea shows red)

=
1

2

(
1

4

)

+
1

2

(
2

4

)

=
3

8
.

Problem 15

These equations are

3p = 90− 81 = 9 so p = 2

2r = 32 so r = 5

6s = 1421− 125 = 1296 = 64 so s = 4 .
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These mean that prs = 2× 5× 4 = 40.

Problem 16

Let xi be the number of students in grade i ∈ {6, 7, 8}. Then we are told that

x8
x6

=
5

3
and

x8
x7

=
8

5
.

This means that

x6 =
3

5
x8 and x7 =

5

8
x8 .

The total number of students N is

N = x6 + x7 + x8 =
3

5
x8 +

5

8
x8 + x8 =

89

40
x8 .

To have N be as small as possible and an integer means that x8 = 40 (so that N = 89).
This means that x6 = 3(8) = 24 and x7 = 25.

Problem 17

Let n be the smallest integer. We are told that

n+ (n + 1) + (n + 2) + (n+ 3) + (n+ 4) + (n+ 5) = 2013 ,

or
6n+ 15 = 2013 .

Solving for n we find n = 333. The largest integer is then n+ 5 = 338.

Problem 18

For this problem we need the volume of this structure. For the “front” faces we see that
each is 10× 5× 1 = 50 (and there are two faces this size). Each side face is then of volume
(12 − 1 − 1) × 5 × 1 = 50 (again there are two). Adding all of these we get 4(50) = 200.
We now need to add the volume of the floor. Note that the volume of the floor would be
12 × 10 = 120 is it were “attached” to the bottom of the “frame”. As I think the frame is
to be considered “inside” the “frame” (not not just below it) its volume is given by

(12− 2)× (10− 2)× 1 = 10× 8 = 80 .

Adding that gives 200 + 80 = 280.
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Problem 19

Let the letters B, C, and H stand for the scores of the given girls. From the problem
statement we have that Cassie knows the values of C and H , Bridget knows the values of B
and H , and Hannah knows the value of H . From Cassie’s statement we can conclude that
H < C. From Bridget’s statement we can conclude that B < H . Thus combining these two
gives B < H < C.

Problem 20

The center of the circle will be at the center of the longer side of the rectangle (and of length
2
2
= 1). Thus the radius of the semicircle is then the hypotenuse of a isosceles right triangle

with legs of length one or r =
√
2. Thus the area of the semicircle is then

1

2
πr2 = π .

Problem 21

In going from home to the northeast corner of the park in three ways (Samantha must pick
one of the three vertical paths). She can then go from the northeast corner of the park to her
school in six ways. You can verify that by starting at the school and counting “backwards”
and adding up the number of ways one can go along each leg. The total paths are then
3× 6 = 18 ways.

Problem 22

All rows have (32 + 1)(60) = 1980 toothpicks. All columns have (60 + 1)(32) = 1952
toothpicks. The total number of toothpicks are then 1980 + 1952 = 3932.

Problem 23

From the information about the area of the semicircle on AB we have that

1

2
π

(
AB

2

)2

= 8π .

Solving for AB gives AB = 8. From the information about the arc of the semicircle on AC
we have that

1

2

(

2π

(
AC

2

))

=
17

2
π .
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Solving for AC gives AC = 17. Then the Pythagorean theorem gives

AC2 − AB2 = BC2 or 172 − 82 = BC2 .

This gives BC = 15. Thus the radius of the semicircle on BC is BC
2

= 7.5.

Problem 24

Let the side of each square be denoted by s. Let the intersection of the segment AJ with
the segment DC at a point x units to the left of the point C at a point we will denote P so
CP = x. Finally let then angle ∠BAD = ∠IJG = θ. Then as we move from A to J along
AJ we move down 2s units and horizontally AB + CI = s+ s

2
= 3s

4
units. Thus

tan(θ) =
2s
3s
2

=
4

3
.

This means that if we move from point J vertically by s units we will move horizontally by
∆x units where

tan(θ) =
4

3
=

s

∆x
so ∆x =

3

4
s .

This means that the point P is 3
4
s to the left of J so that

x = CP = PI − CI =
3

4
s− s

2
=
s

4
.

This means that the area of the shaded region (denoted by R) is

R =
1

2
s(s+ x) +

1

2
s
(

x+
s

2

)

=
s

2

(

s+ 2x+
s

2

)

.

with x = s
4
this becomes R = s2. Thus the desired ratio is

s2

3s2
=

1

3
.

Problem 25

Note that traveling 1
2
of a circumference of a circle of radius R one would travel

2πR

2
= πR .

To measure how much the center of the ball traveled during the first arc we recognize that
the center will travel on a smaller radius of

R1 −
4

2
= R1 − 2 = 98 .
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For the second semicircular path the center of the ball travels on a radius of

R2 + 2 = 62 .

For the third semicircular path the center of the ball travels on a radius of

R3 − 2 = 78 .

These mean that the total path traveled by the center of the ball will be

π(98) + π(62) + π(78) = 238π .
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The 2014 AMC 8 Examination

Problem 1

For Harry and Terry’s calculations we find

H = 8− (2 + 5) = 8− 7 = 1

T = 8− 2 + 5 = 11 .

Thus H − T = 1− 11 = −10.

Problem 2

The largest number of coins would be seven five cent coins. The smallest number of coins
would consist of one 25 cent coin and one 10 cent coin for a total of two coins. This difference
is 7− 2 = 5.

Problem 3

The number of pages in the book must be

P = 36× 3 + 44× 3 + 10 = 250 .

Problem 4

Let these two prime numbers be p and q. Then we know that p + q = 85. Now all primes
larger than two are odd and the sum of two odd numbers is even. Thus one of p or q must
be two and the other prime must be 85− 2 = 83. Their product is 2× 83 = 166.

Problem 5

With $20 dollars Margie can buy five gallons of gas and can thus drive 5× 32 = 160 miles.

Problem 6

Let the total area be S. Then we have

S = 2× (1 + 4 + 9 + 16 + 25 + 36) = 2× (10 + 20 + 61) = 182 .
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Problem 7

Let G be the number of girls and B be the number of boys. Then we are told that

G− B = 4

G +B = 28 .

Solving this system we get B = 12 and G = 16 so G : B = 16 : 12 = 4 : 3.

Problem 8

Let d be the amount each member payed. Then we know that

11d = 1A2 ,

for some digit A. As the right-hand-side is even the number d must also be even and so ends
in a two. Let the number d have two digits say as d = B2 with B a “digit” i.e. 1 ≤ B ≤ 9.
Lets compute the product of the numbers B2 and 11. We have

B2× 11 = B2× (10 + 1) = B20 +B2 .

Note that this will end in a two as it must. Setting this equal to 1A2 from the first digit we
see that B = 1 so the number d = B2 = 12 and 11× d = 132 so that A = 3.

Problem 9

As BD = DC we have ∠DCB = ∠DBC = 70. Using this we have that

∠BDC = 180− 2(70) = 40 ,

and
∠ADB = 180− ∠BDC = 180− 40 = 140 .

Problem 10

The first AMC was given in 1985, the second in 1986, etc. The seventh AMC would be held
on year

1985 + (7− 1) = 1991 .

This means that Samantha was born in 1991− 12 = 1979.
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Problem 11

Drawing a Cartesian coordinate grid we can place Jack at (0, 0) and Jill at (3, 2). The
intersection to avoid is located at (1, 2). Starting at Jack’s location we can count the number
of ways to get to each location in this grid. For example there is only one way to get to each
of the locations (i, 0) for i ∈ {1, 2, 3} and one way to get to each of the locations (0, j) for
j ∈ {1, 2}. Then at any internal location the number of ways to get to a given location is
the sum of the number of ways to get to the location below and left of the given location.

Following this rule the number Ni,j of ways to get to the following location are computed to
be

N0,0 = 0

N1,0 = 1

N2,0 = 1

N3,0 = 1

N0,1 = 1

N0,2 = 1

N1,2 = 1

N2,0 = 1

N2,1 = 1

N2,2 = N2,1 +N1,2 = 2

N3,1 = N3,0 +N2,1 = 2

N3,2 = N3,1 +N2,2 = 4 .

The value of N3,2 is the desired answer.

Problem 12

There is a 1
3
chance of matching the first celebrity correctly randomly. Then if that is done

there is a 1
2
chance of matching the second celebrity correctly. This gives a total probability

of 1
3
× 1

2
= 1

6
.

Problem 13

Note (A) and (B) are possible with the examples (n,m) = (2, 2) and (n,m) = (1, 1). Note (C)
is possible if we take (n,m) = (1, 3) so that n+m = 4 is even and n2 +m2 = 1 + 9 = 10 is
even. We have that (D) is impossible since if n+m is odd then one of n or m must be odd
and the other even. Without loss of generality lets have n odd and m even. Then n2 will be
odd and m2 will be even so n2 +m2 will then be odd.
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Problem 14

The two equivalent areas we have [ABCD] = 30 = 1
2
DC · CE = 1

2
(5)CE. Thus CE = 12.

Then we have that

DE =
√

CD2 + CE2 =
√
25 + 144 =

√
169 = 13 .

Problem 15

Each arc is 360
12

= 30. Based on the total arcs cut off by x and y we have

∠x =
1

2
(2(30)) = 30

∠y =
1

2
(4(30)) = 60 .

This means that x+ y = 90.

Problem 16

Let n be the number of “Middle School Eight” teams (we know n = 8). Then the number
of games played is

2

(
n

2

)

+ 4n = n2 − n + 4n = n2 + 3n .

Taking n = 8 and evaluating the above gives 88.

Problem 17

George normally takes T = 1
3
hours to get to school. On this day, the time it took him to

talk the first 1
2
hour is

1/2

2
=

1

4
,

of an hour. This means that to reach school on time he has to travel the other 1
2
of a mile in

1

3
− 1

4
=

1

12
,

hours. His velocity must then be
1
2
1
12

= 6 ,

miles-per-hour.
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Problem 18

If we let p = 1
2
the probability that a couple has a boy then each of the given probabilities

can be computed using the binomial distribution. We have (once we simplify)

PA = PB = p4 =
1

16

PC =

(
4
2

)

p2(1− p)4−2 =
3

8

PD =

(
4
3

)

p3(1− p)4−3 +

(
4
1

)

p1(1− p)4−1 =
1

2
.

From these we see that (D) is the most likely.

Problem 19

Counting the location and number of small cubes needed to create the larger “outer” cube
we see that there are 26 cubes on the “faces” of the large cube with a single remaining small
cube located at the center of the large cube. To minimize the surface area colored white
means that we want to place one white cube at the center and then the remaining five white
cubes at the center location of each larger face (where only one white face of the small cube
will be showing). There are six total faces of the large cube but we have only five white
cubes to distribute. This means that the displayed area of white will be five while the total
surface area is 6(32) = 54. The fraction of surface area that is white is then 5

54
.

Problem 20

The three circles cut out areas equal to 1
4
of their total area. Thus the area asked for can be

computed as

3(5)− 1

4
(π(32))− 1

4
(π(22))− 1

4
(π(12)) = 15− 7

2
π ≈ 15− 7

2

(
22

7

)

= 15− 11 = 4 .

Problem 21

As our number is divisible by three the sum of its digits must be divisible by three. For the
first number this means that

7 + 4 + A + 5 + 2 +B + 1 ≡ 0 (mod 3) ,

or
19 + A+B ≡ 0 (mod 3) .
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As 19 ≡ 1 (mod 3) the above is equivalent to

A+B ≡ 2 (mod 3) . (741)

For the second number, this same reasoning means that

3 + 2 + 6 + A +B + 4 + C ≡ 0 (mod 3) ,

or
15 + A+B + C ≡ 0 (mod 3) .

As 15 ≡ 0 (mod 3) this means that

A +B + C ≡ 0 (mod 3) .

Using Equation 741 in the above we see that C ≡ 1 (mod 3). Thus C ∈ {1, 4, 7}. The only
valid choice given is C = 1.

Problem 22

Let n and m be the two digits of our number such that our number N can be written as
N = 10n+m. Then we are told that

nm+ n+m = 10n+m,

or
n(m− 9) = 0 .

If n = 0 we don’t have a two digit number thus m = 9.

Problem 23

Let A, B, and C stand for the numbers on Ashley’s, Bethany’s, and Caitlin’s uniforms
respectfully. Then from the statements given we have that A+ C is “earlier” in the month,
A+B is “later” in the month, and B + C is “today”. This means that

A + C < B + C < A+B ≤ 31 .

The first inequality gives that A < B. The second inequality gives that C < A and thus the
ordering of the uniform numbers is

C < A < B , (742)

and each is a two digit prime. This means that they come from the set

{11, 13, 17, 19, 23, 27, 29, 31} .

Each number cannot be too large or else the sums A + C, A + B, or B + C will be larger
than 31 and not represent a day of the month. Since C is one numbers above we know
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that C ≥ 11. Since we must have A + C < 31 (equivalently A + C ≤ 30) this means that
A ≤ (30− 11) = 19. In the same way to have B + C < 31 means that B ≤ 19. This means
that A, B, and C must come from the set

{11, 13, 17, 19} .

Using the ordering from Equation 742 we might have B = 19. If that were true then
A ∈ {13, 17} but either of those two choices violates the condition that A + B ≤ 31. Thus
B 6= 19. This means that B = 17, A = 13, and C = 11.

Problem 25

The radius of each circle is r = 40
2
= 20 feet. Robert needs to ride along the circumference

of NC circles where

NC =
5280

2r
=

5280

40
= 132 ,

to move one mile horizontally. The distance traveled along each semi-circular path is

1

2
π(2r) = 20π ,

feet. Thus the total distance he covers along the semi-circles is 20πNC = 2640π feet. This is

2640π

5280
=
π

2
,

miles.
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The 2022 AMC 10A Examination

Problem 1

WWX: DP

Problem 2

WWX: DP

Problem 3

WWX: DP

Problem 4

WWX: DP

Problem 5

WWX: DP

Problem 6

Call this expression E. Now note that if a < 0 we have that a − 1 < −1 so that 1 − a > 1
and we have √

(a− 1)2 =
√

(1− a)2 = 1− a .

This means that we can write our total expression E as

E = |a− 2− (1− a)| = |a− 2− 1 + a| = |2a− 3| .

Now 2a < 0 so that 2a− 3 < −3 and so that we can write E as

E = |2a− 3| = 3− 2a .
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Problem 7

WWX: DP

Problem 8

We compute the average A as

A =
1 + 7 + 5 + 2 + 5 +X

6
=

20 +X

6
.

We are told that the average is one of the numbers in the data set. If that number is one
then we would need

20 +X

6
= 1 so X = −14 ,

which is not positive and thus not possible. Setting A equal to each of the numbers in the
data set we find that the only valid values for X are X ∈ {10, 22, 4} which sum to 36.
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The 2024 AMC 10A Examination

Problem 1

WWX: DP

Problem 2

From the problem statement we have

69 = 1.5a+ 800b

69 = 1.2a+ 1100b .

If we subtract the second from the first we get

0 = 0.3a− 300b ,

which means that a = 300
0.3
b = 1000b. Using that in the first equation gives

69 = 1500b+ 800b so b =
69

2300
= 0.03 .

This means that a = 30. Using these two we find the time it takes to be

a× 4.2 + b× 4000 = 246 ,

minutes when we evaluate.

Problem 3

Lets first list the primes less than 100. I find

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} .
The smallest sum of five primes might include the number two (the first prime). If it did
then the other four odd prime numbers would sum to an even number and adding two we
would have another even number. This cannot be a prime number and thus two cannot be
a prime in the sum. The smallest sum of odd primes is

3 + 5 + 7 + 11 + 13 = 39 ,

which is not a prime number.

We will get the next largest sum if we replace the largest number in this set 13 with with
the next largest prime of 17. This gives the sum

3 + 5 + 7 + 11 + 17 = 43 ,

which is a prime number. The sum of the digits of this prime is seven.
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Problem 4

To use the smallest number of two digit numbers to sum to 2024 we would want them to be
as large as possible. The largest possible two digit number is 99. We need ⌊2024

99
⌋ = 20 of

them and then
2024− 99(20) = 44 ,

or one more two digit number for a total of 20 + 1 = 21 two digit numbers.

Problem 5

WWX: DP

Problem 6

WWX: DP

Problem 7

WWX: DP

Problem 8

WWX: DP

Problem 9

WWX: DP

Problem 10

WWX: DP
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Lecture Notes on

Mathematical Olympiad Courses: Vol. 1

Lecture 1: Operations on Rational Numbers

Example 2 Notes

Part (iv): To show this we use

75

13
<

78

13
= 6

37

13
<

39

13
= 3 .

Part (v): To show this we use

(

1−
(
6

7

)7
)(

9 +
246

247
− 0.666

)

< 1(9 + 1) = 10 .

Example 5 Notes

To show this we use

100× (832 − 83 · 17 + 172)

83 · 66 + 172)
=

100× (83(83− 17) + 172)

83 · 66 + 172)
= 100 .

Example 7 Notes

Note that this expression is

x2

(x− 1)2 + (x+ 1)2 − 2
=

x2

x2 − 2x+ 1 + x2 + 2x+ 1− 2
=

x2

2x2
=

1

2
,

when x = 20092008.

Example 10 Notes

Comparing (a− b)2 = a2 − 2ab+ b2 and (a+ b)2 = a2 + 2ab+ b2 are the same as comparing
−ab and ab. As ab < 0 the first is positive and the second is negative.
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Example 11 Notes

I will work this problem in parts. Note that when −1 < a < 0 we have a < a3 < 0 and
−a3 > 0 so that we have

a < a3 < 0 < −a3 .
Now a4 > 0 and a4 < −a3 so we have

a < a3 < 0 < a4 < −a3 .

Now −a4 < 0 and |a4| < |a3| so we have

a < a3 < −a4 < 0 < a4 < −a3 .

Now 1
a
< 0 and

∣
∣ 1
a

∣
∣ > |a| so we have

1

a
< a < a3 < −a4 < 0 < a4 < −a3 < −1

a
,

as the final ordering.

Testing Question A.1

We can write this sum S as

S = −1 + (−1)2 + (−1)3 + (−1)4 + · · ·+ (−1)100 + (−1)101 =
101∑

k=1

(−1)k .

This sum has 50 terms with even powers 51 terms with odd powers to give a sum of S =
50 + 51(−1) = −1.

Testing Question A.2

To evaluate this expression we have

E = 2008× 20092009− 2009× 20082008

= 2008× 2009(1 + 104)− (2008 + 1)× 2008(1 + 104)

= 2008(1 + 104) [2009− (2008 + 1)] = 0 .

Testing Question A.3

We start with x0 = 2009 and then following the steps outlined in the problem our next
number is given by

x1 = 2009− 1

2
(2009) = 2009

(

1− 1

2

)

= x0

(

1− 1

2

)

.
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Next we would have

x2 = x1 −
1

3
x1 = x1

(

1− 1

3

)

= 2009

(

1− 1

2

)(

1− 1

3

)

.

Next we would have

x3 = x2 −
1

4
x2 == 2009

(

1− 1

2

)(

1− 1

3

)(

1− 1

4

)

.

In general the pattern is

x2008 = 2009

2009∏

k=2

(

1− 1

k

)

= 2009

2009∏

k=2

k − 1

k
= 2009

[
1

2
· 2
3
· 3
4
· · · 2007

2008
· 2008
2009

]

= 1 .

Testing Question A.4

This sum can be written using partial fractions as

6∑

k=2

1

(2k + 1)(2(k + 1) + 1)
=

6∑

k=2

1

(2k + 1)(2k + 3)

=
6∑

k=2

[
1

2(2k + 1)
− 1

2(2k + 3)

]

=
1

2

6∑

k=2

1

2k + 1
− 1

2

6∑

k=2

1

2k + 3

=
1

2

6∑

k=2

1

2k + 1
− 1

2

7∑

k=3

1

2k + 1
=

1

2

[
1

5
− 1

15

]

.

Testing Question A.5

After experimenting with a couple different ways of writing the fractions in this sum S it
looks like the best method is to write it as

S =
1

2 · 5 +
1

5 · 8 +
1

8 · 11 +
1

11 · 14 +
1

14 · 17 .

This shows that we can write our sum S as

S =
∑

n∈{2,5,8,11,14}

1

n(n+ 3)
=

5∑

k=1

1

(3k − 1)(3k + 2)
.

Next using partial fractions we can write

1

(3k − 1)(3k + 2)
=

1

3(3k − 1)
− 1

3(3k + 2)
=

1

3(3k − 1)
− 1

3(3(k + 1)− 1)
.

1100



This means that our sum can be evaluated as

5∑

k=1

1

(3k − 1)(3k + 2)
=

5∑

k=1

1

3(3k − 1)
−

5∑

k=1

1

3(3(k + 1)− 1)

=

5∑

k=1

1

3(3k − 1)
−

6∑

k=2

1

3(3k − 1)

=
1

3(3− 1)
− 1

3(18− 1)
=

1

6
− 1

51
.

Testing Question A.6

Let x =
∑2009

k=3
1
k
and y =

∑2008
k=2

1
k
then the expression we want to evaluate is given by

E = x(1 + y)− (1 + x)y = x+ xy − y − xy = x− y

=

2009∑

k=3

1

k
−

2008∑

k=3

1

k
=

1

2009
− 1

2
.

Testing Question A.7

Recalling that

1 + 2 + 3 + · · ·+ (n− 1) + n =
n

2
(n + 1) ,

then this sum can be written

51∑

k=2

1
k
2
(k + 1)

=
51∑

k=2

2

k(k + 1)
= 2

51∑

k=2

(
1

k
− 1

k + 1

)

= 2
51∑

k=2

1

k
− 2

52∑

k=3

1

k
= 2

[
1

2
− 1

52

]

.

Testing Question A.8

We should write this sum S as

S ≡ 1 +

(
1

2
+

2

2
+

1

2

)

+

(
1

3
+

2

3
+

3

3
+

2

3
+

1

3

)

+ · · · ,

where we see that inside each grouped expression the denominator stays the same but the
numerator increases and then decreases. Given that pattern we can write and evaluate this
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sum as

S =

n∑

m=1

(
m−1∑

k=1

k

m
+ 1 +

1∑

k=m−1

k

m

)

=

n∑

m=1

(

1 + 2

m−1∑

k=1

k

m

)

= n+ 2
n∑

m=1

1

m

m−1∑

k=1

k = n + 2
n∑

m=1

1

m

(
m(m− 1)

2

)

= n+
n∑

m=1

(m− 1) = n+

(
n∑

m=1

m

)

− n

=
n(n+ 1)

2
.

We can check this for n ∈ {1, 2, 3} and verify that it is correct.

Testing Question A.9

We can write and evaluate this sum S as

S ≡
2009∑

n=1

n2(−1)n+1 =

2009∑

n=1,3,5,···
n2(−1)n+1 +

2008∑

n=2,4,6···
n2(−1)n+1

=

1004∑

k=0

(2k + 1)2 +

1004∑

k=1

(2k)2 = 1 +

1004∑

k=1

[(2k + 1)2 − (2k)2]

= 1 +
1004∑

k=1

(2k + 1− 2k)(2k + 1 + 2k) = 1 +
1004∑

k=1

(4k + 1)

= 1 + 1004 + 4
1004∑

k=1

k = 1005 + 4

(
1004(1005)

2

)

= 2019045 .

Testing Question A.10

Note that we can write this sum as

(20− 9) + (200− 8) + (2000− 7) + (20000− 6) + · · · .

The general term of the above sum looks to be

2 · 10n − (10− n) ,

for 1 ≤ n ≤ 9. Thus we want to evaluate

S =
9∑

n=1

[2 · 10n − (10− n)] .
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Note that
9∑

n=1

(10− n) =
9∑

n=1

n =
1

2
9(10) = 45 .

Thus the sum above becomes

S = 2
9∑

n=1

10n − 45 = 2

(
1− 1010

1− 10
− 1

)

− 45 = 2222222175 .

Testing Question B.1

We can evaluate this sum as follows

∑

k=3,5,7...

k2 + 1

k2 − 1
=

49∑

n=1

(2n+ 1)2 + 1

(2n+ 1)2 − 1
=

49∑

n=1

4n2 + 4n+ 2

(2n+ 1− 1)(2n+ 1 + 1)

=
49∑

n=1

4n2 + 4n+ 2

2n(2n+ 2)
=

49∑

n=1

4n2 + 4n+ 2

4n2 + 4n

=
49∑

n=1

1 +
49∑

n=1

1

2n2 + 2n
= 49 +

1

2

49∑

n=1

1

n(n + 1)

= 49 +
1

2

49∑

n=1

(
1

n
− 1

n+ 1
) = 49 +

1

2

[
49∑

n=1

1

n
−

50∑

n=2

1

n

]

= 49 +
1

2

[

1− 1

50

]

.

Testing Question B.2

We can write this sum S as

S = 1−
100∑

n=2

n

(1 + 2 + 3 + · · ·+ (n− 2) + (n− 1))(1 + 2 + 3 + · · ·+ (n− 1) + n)

= 1−
100∑

n=2

n
(

(n−1)n
2

)(
n(n+1)

2

)

= 1− 4

100∑

n=2

1

(n− 1)n(n+ 1)
.

Now to continue to evaluate it we need the partial fraction expansion of 1
(n−1)n(n+1)

which is
given by

1

(n− 1)n(n+ 1)
= −1

n
+

1

2(n+ 1)
+

1

2(n− 1)
=

1

2(n− 1)
− 1

2n
− 1

2n
+

1

2(n+ 1)
. (743)
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Which is an expression is in a form that we can sum easily. Using this the sum we need to
evaluate is

100∑

n=2

1

(n− 1)n(n + 1)
=

1

2

100∑

n=2

(
1

n− 1
− 1

n

)

− 1

2

100∑

n=2

(
1

n
− 1

n + 1

)

=
1

2

99∑

n=1

(
1

n
− 1

n+ 1

)

− 1

2

100∑

n=2

(
1

n
− 1

n+ 1

)

=
1

2

(

1− 1

2

)

− 1

2

(
1

100
− 1

101

)

.

Using this our total sum is given by

S =
1

5050
.

Testing Question B.3

This is the sum

S =

101∑

n=2

1

(n− 1)n(n+ 1)
.

Now using partial fraction expansion given by Equation 743 we can evaluate this. This is
exactly the same sum evaluated in the previous question but with an upper limit of 101
(instead of 100) and thus increased from the previous expression by 1

100(101)(102)
. Using the

previous result and adding this one more term we find this sum to be

2575

10302
.

Testing Question B.4

This is the sum

S =
50∑

n=1

n

1 + n2 + n4
.

Note that we can write the denominator as

1 + n2 + n4 = (n2 + 1)2 − n2 = (n2 + 1− n)(n2 + 1 + n) = (n2 − n + 1)(n2 + n+ 1) .

Note that if we take n→ n+ 1 in the first factor of the above we get

n2 − n + 1 → n2 + n + 1 .

Based on this we will use partial fractions to write

n

1 + n2 + n4
=

An +B

n2 − n+ 1
+

Cn+D

n2 + n+ 1
.

1104



Solving we get

A = 0

B =
1

2
C = 0

D = −1

2
.

Thus we have
n

1 + n2 + n4
=

1

2

(
1

n2 − n+ 1

)

− 1

2

(
1

n2 + n+ 1

)

.

Using this we have

S =
1

2

50∑

n=1

1

n2 − n+ 1
− 1

2

50∑

n=1

1

n2 + n+ 1

=
1

2

49∑

n=0

1

(n+ 1)2 − (n + 1) + 1
− 1

2

50∑

n=1

1

n2 + n+ 1

=
1

2

49∑

n=0

1

n2 + n+ 1
− 1

2

50∑

n=1

1

n2 + n + 1

=
1

2

[

1− 1

502 + 50 + 1

]

=
1275

2551
,

when we simplify.

Testing Question B.5

I think there is a typo in this question. I think that the terms of the sum should be

n2

n2 − 10n+ 50
,

for 1 ≤ n ≤ 8. To solve this problem we would first notice that

n2

n2 − 10n+ 50
+

(10− n)2

(10− n)2 − 10(10− n) + 50
= 2 .

Truthfully I’m not sure how one would would come to this conclusion and if anyone has any
idea please contact me. Once we have noted this however the solution is straightforward.
Summing both sides from n = 1 to n = 8 gives

8∑

n=1

n2

n2 − 10n+ 50
+

8∑

n=1

(10− n)2

(10− n)2 − 10(10− n) + 50
= 2(8) = 16 .

In the second sum above let m = 10− n and it can then be written as

2∑

m=9

m2

m2 − 10m+ 50
,
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which is the same as the first sum but starting at n = 2 and ending at n = 9. Using this
result we can write the above as

1

1− 10 + 50
+ 2

8∑

n=2

n2

n2 − 10n+ 50
+

92

92 − 90 + 50
= 16 .

Solving for the sum above we get

8∑

n=2

n2

n2 − 10n+ 50
= 7 ,

when we simplify. Thus the sum we want

8∑

n=1

n2

n2 − 10n+ 50
= 7 +

1

1− 10 + 50
=

288

41
.

If we add one more term (corresponding to n = 9) to this we would get

8∑

n=1

n2

n2 − 10n+ 50
= 9 .
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Lecture 2: Monomials and Polynomials

Testing Question A.1

B is not monomial.

Testing Question A.2

It cannot be greater than four. It could be less than four if the highest power terms cancel
each other.

Testing Question A.3

Let P (x) be the polynomial that Adam started with. Then we are told that

P (x)− (2x2 + x+ 1) = 5x2 − 2x+ 4 .

Solving for P (x) we find
P (x) = 7x2 − x+ 5 .

Then the correct expression should be

P (x) + (2x2 + x+ 1) = 9x2 + 6 .

Testing Question A.4

From what we are told we have

0.75xbyc − 0.5xm−1y2n−1 = 1.25axnym .

From the exponent of x, the exponent of y, and the leading coefficient this means that

b = m− 1 = n (744)

c = 2n− 1 = m (745)

0.25 = 1.25a . (746)

From the last equation we have a = 0.2 and Equations 744 and 745 are two equations for
the two variables m and n. Solving them we find m = 3 and n = 2. Thus we have shown
that

a = 0.2 , b = n = 2 , c = m = 3 ,

so
abc = 1.2 .
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Testing Question A.5

Note this product would be

x5
(

x+
1

x

)(

1 +
2

x
+

3

x2

)

= x2(x2 + 1)(x2 + 2x+ 3) ,

and has a degree of six.

Testing Question A.6

For this question try to find the simplest thing that might work. To do that note that

28 + 210 + 2n = (24)2 + 2(24)(25) + (25)2 − 210 + 2n = (24 + 25)2 − 210 + 2n .

Thus if we take n = 10 the above is a perfect square.

Testing Question A.7

From the given expression we note that

3x2 = 1− x ,

Thus using the above we have replaced higher powers of x with lower powers of x. Putting
that into the expression we want to evaluate E gives

E = 2x(1− x)− x2 − 3x+ 2010 = −3x2 − x+ 2010 .

Using what we know for 3x2 again in the above we get

E = −(1− x)− x+ 2010 = 2009 .

Testing Question A.8

If we subtract two forms of x that are known to be equal we have

a

b+ c
− b

a+ c
=

(a− b)(a + b+ c)

(a+ c)(b+ c)
= 0 .

This means that a = b or a + b+ c = 0. Doing the same thing for two additional forms for
x we have

b

a+ c
− c

a+ b
=

(b− c)(a+ b+ c)

(a+ c)(a+ b)
= 0 .
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Thus we have b = c or a+ b+ c = 0. Doing the same thing for the final two additional forms
for x we have

a

b+ c
− c

a+ b
=

(a− c)(a+ b+ c)

(b+ c)(a+ b)
= 0 .

Thus we have a = c or a+ b+ c = 0.

Now if a = b then we see that x is given by

x =
a

a + c
=

c

2a
.

We can write the above as
c2 + ac− 2a2 = 0 ,

so using the quadratic equation solving for c in terms of a gives c = −2a or c = a.

If c = a then we have a = b = c and x = 1
2
. If c = −2a then we have a + b + c = 0 and

x = a
a−2a

= −1. These give two solutions for x.

Testing Question A.9

Write the given expression we want to evaluate as

2(x+ 2xy − y)

x− y − 2x
.

Multiply by 1
xy

on the “top and bottom” to write this as

2
(

1
y
+ 2− 1

x

)

(
1
y
− 1

x
− 2
) .

Then from the expression we are given the above is

2(2− 4)

(−4− 2)
=

2

3
.

Testing Question B.1

We will denote the length of the side of each square by its “name” in lower case. Thus
the length of the side of the square D will be denoted as d. Next if we pick a spot on the
vertical edge of the rectangle and walk rightward we see that the horizontal edge length of
this rectangle can be written as the sum of a number of different square edges. I find

d+ i = c+ e + i = c+ f + h = b+ 1 + f + h = b+ g + h . (747)
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We will call the above the “horizontal equations”. In the same way if we select a location
on the horizontal edge and walking upward we see that the vertical edge can be written as
the sum of a number of different square edges. I find

d+ c + b = d+ c+ 1 + g = d+ e+ f + g = i+ h = i+ f + g . (748)

We will call the above the “vertical equations”. To solve this problem We will then select
certain simple equations from the above two groups and replace all of one variable with
another eventually working to a single equation we can solve. Examples of this will make it
clear.

One of the equations in Equations 747 is

b+ 1 + f + h = b+ g + h so g = f + 1 .

Thus in Equations 747 and 748 we will replace all g → f + 1. Doing this gives

d+ i = c+ e+ i = c+ f + h = b+ 1 + f + h , (749)

and
d+ c+ b = d+ c+ f + 2 = d+ e + 2f + 1 = i+ h = i+ 2f + 1 . (750)

In Equation 750 we have that d + c + b = d + c + 2f so we see that f = b − 2. Thus in
Equations 749 and 750 we will replace all f → b− 2. Doing this gives

d+ i = c + e+ i = c + b+ h− 2 = 2b+ h− 1 , (751)

and
d+ c+ b = d+ e + 2b− 3 = i+ h = i+ 2b− 3 . (752)

In Equation 752 we have that i + 2b − 3 = i + h so we see that h = 2b − 3. Thus in
Equations 751 and 752 we will replace all h→ 2b− 3. Doing this gives

d+ i = c+ e + i = c+ 3b− 5 = 4b− 4 , (753)

and
d+ c+ b = d+ e+ 2b− 3 = i+ 2b− 3 . (754)

In Equation 753 we have that c + 3b − 5 = 4b − 4 so we see that c = b + 1. Thus in
Equations 753 and 754 we will replace all c→ b+ 1. Doing this gives

d+ i = b+ e+ i+ 1 = 4b− 4 , (755)

and
d+ 2b+ 1 = d+ e + 2b− 3 = i+ 2b− 3 . (756)

In Equation 756 we have that d + 2b+ 1 = d + e + 2b− 3 so we see that e = 4. Using that
in Equations 755 and 756 gives

d+ i = b+ i+ 5 = 4b− 4 , (757)
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and
d+ 2b+ 1 = i+ 2b− 3 . (758)

In Equation 757 we have that d+ i = b+ i+5 so we see that d = b+5. Replacing d→ b+5
in Equations 757 and 758 gives

b+ 5 + i = 4b− 4 , (759)

and
i− 3 = b+ 6 . (760)

Based on Equation 760 we will replace all i with i → b + 9 in all other equations. In this
case that is only Equation 759 which then means that b = 9. Working backwards with what
we have above we can determine the value of all variables. We see that

b = 9

i = 18

d = 14

c = 10

h = 15

f = 7

g = 8

e = 4 .

Using these, one side of the large rectangle is d + i = 14 + 18 = 32 and another side has a
length of d+ c+ b = 14 + 10 + 9 = 33. Thus the area of the rectangle is then 32× 33.

Testing Question B.2

We have

P (7) = a77 + b73 + c7− 5

= −a(−7)7 − b(−7)3 − c(−7)− 5

= −(a(−7)7 + b(−7)3 + c(−7)− 5 + 5)− 5

= −(P (−7) + 5)− 5 = −(7 + 5)− 5 = −17 .

Testing Question B.3

Multiply both sides by a+ b+ c to get

a+ b+ c

a
+
a+ b+ c

b
+
a+ b+ c

c
= 1 ,

or

1 +
b

a
+
c

a
+
a

b
+ 1 +

c

b
+
a

c
+
b

c
+ 1 = 1 ,
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or (
b

a
+

1
a
b

)

+

(
c

a
+

1
c
a

)

+

(
c

b
+

1
c
b

)

= −2 .

Now the left-hand-side of the above can be written as

f

(
b

a

)

+ f
( c

a

)

+ f
(c

b

)

,

for f(x) defined as

f(x) ≡ x+
1

x
.

By plotting, we can see that its domain is all x except x 6= 0. Now when x > 0 we have

x+
1

x
≥ 2 ,

with the minimum value of f = 2 when x = 1. Now when x < 0 we have

x+
1

x
≤ −2 .

with the maximum value of f = −2 when x = −1.

With this information we are ready to solve our problem. We know that f
(
b
a

)
, f
(
c
a

)
, f
(
c
b

)

can’t all be of the same sign for if they were all positive then they would all be larger than
or equal to two and the left-hand-side would be larger than six. The same argument means
that they can’t all be negative. Thus at least one of these expressions is positive and one is
negative. With out loss of generality lets assume that

f

(
b

a

)

< 0 .

Then from the definition of f this means that

b

a
+
a

b
< 0 or

a

b
< − b

a
.

Now if a and b are both positive the above inequality cannot be made true. If a and b are
both negative the above inequality cannot be made true. It is only if a and b are of different
sign (one positive and one negative) that it can be true (say for a = −1 and b = 2).

Testing Question B.4

From the given equations by replacing the variables y and z in tern we can write x as

x =
a

y
=
az

c
=
ab

cx
so x2 =

ab

c
.

By replacing the variables x and z in tern we can write y as

y =
a

x
=
az

b
=
ac

by
so y2 =

ac

b
.
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By replacing the variables y and x in tern we can write z as

z =
c

y
=
cx

a
=
cb

az
so z2 =

cb

a
.

Using these three expressions we find that

x2 + y2 + z2 =
ab

c
+
ac

b
+
cb

a
=
a2b2 + a2c2 + c2b2

abc
.

Testing Question B.5

Using the fact that
4∑

k=0

ak =
1− a5

1− a
,

when we set this equal to zero we see that a5 = 1. From that we have that

a2000 = (a5)400 = 1 ,

and
a2010 = (a5)402 = 1 .

Thus the expression we want to evaluate is then 1 + 1 + 1 = 3.

Testing Question B.6

Note that the expansion in ak is a polynomial expansion of the expression (x2 − x − 1)n

but that the thing we wan to evaluate is the sum of only the even terms of this expansion.
Towards that end let the polynomial expansion be written as

(x2 − x− 1)n =

2n∑

k=0

akx
k .

Then replacing x→ −x in that we have

(x2 + x− 1)n =

2n∑

k=0

ak(−1)kxk .

Note that if we add these two expressions we get

(x2 − x− 1)n + (x2 + x− 1)n =
2n∑

k=0

ak[1 + (−1)k]xk = 2
n∑

k=0

a2kx
2k .

Taking x = 1 in the above then gives

n∑

k=0

a2k =
1

2
((1− 1− 1)n + (1 + 1− 1)n) =

{
1 n even
0 n odd

.
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Lecture 3: Linear Equations of a Single Variable

Testing Question A.1

Putting these two values of x into the given expressions only D gives the value of zero.

Testing Question A.2

If k = 0 there are no solutions so we must have k 6= 0. In that case we have

x =
12

k
,

which for x to be an integer means that k must be a divisor of 12. Thus k could be one of
{1, 2, 3, 4, 6, 12}.

Testing Question A.3

If x = 1 the left-hand-side is

1

1
+

1

2
+

1

3
= 1 +

5

6
=

11

6
>

13

12
.

If x = 2 the left-hand-side is

1

2
+

1

3
+

1

4
=

5

6
+

1

4
=

13

12
,

so we have one integer solution. As the left-hand-side is a decreasing function of x for x ≥ 3
the left-hand-side will be smaller than its value when x = 2 and thus not equal to 13

12
. Thus

there is only one solution.

Testing Question A.4

Put x = 4 into the given expression to get

3a− 4 = 2 + 3 or a = 3 .

Then (−a)2 − 2a = 9− 2(3) = 3.

Testing Question A.5

Lets multiply the given expression by mn 6= 0 to get

n(x− n)−m(x−m) = m2 ,
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or
(n−m)x = n2 +m2 −m2 = n2 .

If n−m = 0 there are no solutions unless n = 0 then there are an infinite number of solutions.
As in this problem we are told that n 6= 0 (since nm 6= 0) we conclude that if n − m = 0
there are no solutions. If n−m 6= 0 then the solution is

x =
n2

n−m
.

Testing Question A.6

If a + b = 0 then all x are solutions (this condition is equivalent to if a = −b). If a + b 6= 0
we can divide by it to get 4ax = a + b. If a = 0 there are no solutions (unless b = 0). If
a 6= 0 the solution is x = a+b

4a
.

Testing Question A.7

If we put x = −2 into the given expression we get

−2

3
m = −10 + 4 = −6 so m = 9 .

In that case m2 − 11m+ 17 = −1 so this raised to the power of 2007 is -1.

Testing Question A.8

Write this equation as (m2 − m)x = m − 1 or m(m − 1)x = m − 1. If m = 1 then all x
are solutions. If m 6= 1 then we get mx = 1. From this we see that if m = 0 there are no
solutions and otherwise the single solution is x = 1

m
.

Testing Question A.9

Write this equation as
k(k − 2)x = k(k − 5) .

If k = 0 than any x value is a solution. If k 6= 0 then we have

(k − 2)x = k − 5 .

Now if k = 2 then there are no solutions so if k 6= 2 we have

x =
k − 5

k − 2
.
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As x is positive so
k − 5

k − 2
> 0 .

The left-hand-side of this expression changes sign at the points as k crosses k = 2 and k = 5.
Over the range of possible k values we find that when 0 < k < 2 the ratio is positive, when
2 < k < 5 the ratio is negative and when k > 5 the ratio is positive again.

Testing Question A.10

Write this equation as
(2a− 3)x = a− 3 .

If a = 3
2
then the left-hand-side is always zero but the right-hand-side is not. In that case

there is no solution to this equation.

Testing Question B.1

If we simplify the first equation we get

x = −2

5
a .

If we simplify the second equation we get

2x+ 2a = 1 .

If we put this first expression into the second expression we get a = 5
6
which then means

that x = −1
3
.

Testing Question B.2

Write the given equation as

a

ab+ a+ 1
+

b

bc+ b+ 1
+

c

ca+ c+ 1
=

1

2x
.

Then using the fact that c = 1
ab

to write everything in terms of a and b we have

a

ab+ a+ 1
+

b
1
a
+ b+ 1

+
1
ab

1
b
+ 1

ab
+ 1

=
1

2x
.

In the third fraction on the left-hand-side multiply by b “on the top and bottom” to get

a

ab+ a+ 1
+

b
1
a
+ b+ 1

+
1
a

1 + b+ 1
a

=
1

2x
.
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Adding the last two fractions on the left-hand-side together we get

a

ab+ a+ 1
+

b+ 1
a

1
a
+ b+ 1

=
1

2x
.

In the first fraction on the left-hand-side multiply by 1
a
“on the top and bottom” to get

1

b+ 1 + 1
a

+
b+ 1

a
1
a
+ b+ 1

=
1

2x
.

Adding the first two fractions we get

1 + b+ 1
a

b+ 1 + 1
a

=
1

2x
,

or

1 =
1

2x
so x =

1

2
.

Testing Question B.3

If we solve the given equation for x we find

x =
12

5
(m+ 123) . (761)

For x to be a positive integer we must have x ≥ 1 so using the above this means that

m ≥ 5

12
− 123 = −122.5833 .

For m to be a positive integer the smallest value that satisfies the above is m = 1 but in
Equation 761 we see that x will not be an integer. For x to be an integer we need m+ 123
to be divisible by five so the number m+ 123 needs to end in a zero or a five. We can make
that number end in a five if we take m = 2. Then we find x = 300.

Testing Question B.4

Starting with the given equation simplify it and solve for x to find x = 2. Then we want an
equation of the form

ax− 1

2
= 0 ,

that has x = 2 as a solution. Putting that value of x into this and solving for a we find
a = 1

4
and the full equation is

1

4
x− 1

2
= 0 .
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Testing Question B.5

By starting with a1 = 1 we see that

a2 =
1

2

a3 =
1

3

a4 =
1

4
,

and it looks like the pattern is

an =
1

n
.

We can prove this by induction for if the above holds then from the formula for an+1 we have

an+1 =
1

1 + 1
1
n

=
1

n + 1
.

This means that the desired sum S is given by

S =
2008∑

i=1

1

i(i+ 1)
.

Using partial fractions we have that

1

i(i+ 1)
=

1

i
− 1

i+ 1
,

and thus the sum we want to evaluate is given by

S =

2008∑

i=1

1

i
−

2008∑

i=1

1

i+ 1
=

2008∑

i=1

1

i
−

2009∑

i=2

1

i
= 1− 1

2009
=

2008

2009
.
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Lecture 4: Systems of Simultaneous Linear Equations

Testing Question A.1

Putting these values of x and y into the equations given we get

2a+ b = 7

2b+ c = 5 .

Solving for b in the first equation and putting that into the second equation gives

4a− c = 9 ,

when we simplify.

Testing Question A.2

Using

3x− y = 5

2x+ 3y = −4 ,

from the first and second sets respectively gives x = 1 and y = −2. Using these two values
in 2x+ y − z = 0 gives z = 0. Using these three values in both sets of given equations gives

4a− 10b = −22

a + 2b = 8

1− 2 + 5 = c .

Solving these we find (a, b, c) = (2, 3, 4).

Testing Question A.3

From the first equation we have

kx− y = −1

3
or y = kx+

1

3
.

If we put that into the second equation we get

3kx+ 1 = 1− 6x ,

or
(3k + 6)x = 0 ⇒ (k + 2)x = 0 .

Now if k = −2 there are an infinite number of solutions for x (and y), if k 6= −2 there is one
solution x = 0 and y = 1

3
.
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Testing Question A.4

Starting with the first equation we can write it as

(b− 2)a = 2b .

Now if b 6= 2 then we get

a =
2b

b− 2
.

If we put this into the second of the given equations we get
(

2b
b−2

)
c

(
2b
b−2

)
+ c

= 5 .

This can be manipulated into
−3bc = 10(b− c) . (762)

Now if we take the third of the given equations written in the form bc = 4(b+ c) by taking
the ratio of these two we get

−3 =
10(b− c)

4(b+ c)
.

We can manipulate this into 11b2 = 40b. From this we see that b = 0 or b = 40
11
. If b = 0 then

c = 0 and a = 0. That set of numbers cannot be a solution as it will not satisfy the original
equations. If b = 40

11
then using Equation 762 we get c = −40. Finally using ac = 5(a + c)

we get a = 40
9
. Thus the solution is

(a, b, c) =

(
40

9
,
40

11
,−40

)

.

Testing Question A.5

If we add these equations together we get

−x− y − z = −9 or x+ y + z = 9 .

From the first of the equations given in the question we have x = y + z + 5. If we put that
in the equation just derived we get

(y + z) = 2 .

If we put the expression y + z in the first equation given in the question we have

x− 2 = 5 or x = 7 .

Taking x = 7 in the three equations given in the question we have

−y − z = −2 (763)

y − z = 8 (764)

z − y = −15 + 7 = −8 . (765)

Adding Equations 763 and 764 we derive z = −3. Putting this value of z into Equation 763
we derive y = 5.
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Testing Question A.6

Add all equations together we get

x+ y + z + u+ v = 15 . (766)

Next if we add sequential pairs of the given equations we get

x+ u = 3 (767)

y + v = 5 (768)

z + x = 7 (769)

u+ y = 9 (770)

v + z = 6 . (771)

Now using Equation 766 with Equations 767 and 768 we get

3 + 5 + z = 15 or z = 7 .

Using that in Equation 769 gives x = 0. Then Equation 767 gives u = 3, Equation 770 gives
y = 6, and Equation 771 gives v = −1. Thus we have found the solution

(x, y, z, u, v) = (0, 6, 7, 3,−1) .

Testing Question A.7

Write the first equation as
1

x
= −2

y
− 3

z
, (772)

and the second equation as
1

x
=

6

y
+

5

z
.

If we set these two expressions for 1
x
equal we get

−2

y
− 3

z
=

6

y
+

5

z
.

We can write that expression as

−8

y
− 8

z
= 0 ⇒ −1

y
=

1

z
⇒ y = −z .

If we put that into Equation 772 we get

1

x
= −2

y
+

3

y
=

1

y
.

so we see that x = y. Thus we have learned that x = y = −z and so

x

y
+
y

z
+
z

x
= 1− 1− 1 = −1 .
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Testing Question A.8

The system we want to solve is

mx+ 2y = 10

3x− 2y = 0 .

If we add these two equations together we get (3 +m)x = 10 and thus

x =
10

3 +m
.

Using the second equation above this means that

2y = 3x =
30

3 +m
⇒ y =

15

3 +m
.

For x and y to be integers the number 3 +m must divide by ten and fifteen. The numbers
that divide ten are {1, 2, 5, 10} and the numbers that divide fifteen are {1, 3, 5, 15}. Only
the numbers one and five divide both ten and fifteen. This means we have two potential
solutions.

One solution is if 3 +m = 1 so that m = −2 so that x = 10 and y = 15 and the original
system then takes the form

−2x+ 2y = 10

3x− 2y = 0 .

This means that m2 = 4.

Another solution is if 3 +m = 5 so that m = 2 so that x = 2 and y = 3 and the original
system in this case takes the form

2x+ 2y = 10

3x− 2y = 0 .

In this case m2 = 4 also.
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Testing Question A.9

Let t be the sum of any of the rows, any of the columns, or any diagonal of the given grid.
Then from the given letters in the grid we have

a+ b+ 6 = t (773)

c+ d+ e = t (774)

f + 7 + 2 = t or f + 9 = t (775)

a+ c+ f = t (776)

b+ d+ 7 = t (777)

6 + e+ 2 = t or e+ 8 = t (778)

a+ d+ 2 = t (779)

f + d+ 6 = t . (780)

If we equate Equation 775 to Equation 778 we get

f + 9 = e+ 8 or e = f + 1 .

Using this we will replace all e’s with f ’s in Equation 774 to get

c+ d+ f + 1 = t ,

for a full system given by

a+ b = t− 6 (781)

c+ d+ f = t− 1 (782)

f = t− 9 (783)

a + c+ f = t (784)

b+ d = t− 7 (785)

a + d = t− 2 (786)

f + d = t− 6 . (787)

In this system we next replace all t’s with f ’s using Equation 783 or t = f + 9 to get

a+ b = f + 3 ⇒ a+ b− f = 3 (788)

c+ d+ f = f + 8 ⇒ c+ d = 8 (789)

a + c+ f = f + 9 ⇒ a+ c = 9 (790)

b+ d = f + 2 ⇒ b+ d− f = 2 (791)

a+ d = f + 7 ⇒ a+ d− f = 7 (792)

f + d = f + 3 ⇒ d = 3 . (793)

Using the last equation we can put d = 3 into everything. In Equation 789 we will get
c = 5. In equation 790 we get a = 4. As we now know a and d using Equation 786 we find
t = 4 + 3 + 2 = 9. Then using this value in Equation 778 we get e = 1. Using this value in
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Equation 775 we get f = 0. Using what we know in Equation 773 we get b = 9−6−4 = −1.
With all of this our square looks like

∣
∣
∣
∣
∣
∣

4 −1 6
5 3 1
0 7 2

∣
∣
∣
∣
∣
∣

.

Note the book gets different numbers than what I get here but the numbers quoted here
satisfy the required sums in the square.

Testing Question A.10

Our equations are

x+ y + z + u = 10 (794)

2x+ y + 4z + 3u = 29 (795)

3x+ 2y + z + 4u = 27 (796)

4x+ 3y + z + 2u = 22 . (797)

If we add all of these together we get

10x+ 7y + 7z + 10u = 88 ,

or
10(x+ u) + 7(y + z) = 88 .

Now from Equation 794 we have

1(x+ u) + 1(y + z) = 10 .

Motivated by these two expressions let a ≡ x+ u and b ≡ y+ z and we end with the system

a+ b = 10

10a+ 7b = 88 .

Solving this we get a = 6 and b = 4. Then from the definitions of a and b this means that

x+ u = 6 ⇒ u = 6− x ,

and
y + z = 4 ⇒ z = 4− y .

Putting these into Equation 795 and simplifying we get

−x− 3y = −5 . (798)

Putting these into Equation 796 and simplifying we get

−x+ y = −1 . (799)

These give two equations in terms of x and y. Solving we get x = 2 and y = 1. From these
we then have

u = 4 and z = 3 .
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Testing Question B.1

To start we write the two given equations as

x+
m

3
y =

7

3

x+
n

2
y = 2 .

Next put x from the first equation into second equation to get

−m
3
y − 7

3
+
n

2
y = 2 ,

which we can eventually write as

(3n− 2m)y = 28 .

This will not have any solutions if 3n− 2m = 0 or 3n = 2m. This last equation means that
m is divisible by three and n is divisible by two. As we are told that m and n are integers
in the domain [−10,+10] this means that the possible choices for m are from the set

m ∈ {−9,−6,−3, 0, 3, 6, 9} ,
and the possible choices for n are from the set

n ∈ {−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10} .
These results then tell us that

2m ∈ {−18,−12,−6, 0, 6, 12, 18} ,
and

3n ∈ {−30,−24,−18,−12,−6, 0, 6, 12, 18, 24, 30} .
If we match pairs of (m,n) where 3n = 2m we see that for m taken from the set

m ∈ {−9,−6,−3, 0, 3, 6, 9} ,
and then paired with n taken from the set

n ∈ {−6,−4,−2, 0, 2, 4, 6} ,
we will have the needed solutions to this problem.

Testing Question B.2

We start by writing these three equations as

x+ y + z

x(y + z)
=

1

2
x+ y + z

y(x+ z)
=

1

3
x+ y + z

z(x+ y)
=

1

4
,
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or

x+ y + z =
1

2
x(y + z) =

1

3
y(x+ z) =

1

4
z(x+ y) .

Lets call the common left-hand-side of each expression t. Then we can write the above as

2t = xy + xz (800)

3t = yz + xy (801)

4t = xz + yz . (802)

If we add these three equations together we get

xy + xz + yz =
9

2
t . (803)

As Equations 800, 801, and 802 have left-hand-sides that are multiples of t lets “subtract”
these to get other expressions for t. If we take Equation 801 minus Equation 800 we get

t = yz − xz . (804)

If we take Equation 802 minus Equation 801 we get

t = xz − xy . (805)

Finally, if we take Equation 802 minus Equation 800 we get

2t = yz − xy . (806)

Now using Equation 804 and 805 we get

yz − xz = xz − xy or xy + yz = 2xz .

If we put that into Equation 803 we get

3xz =
9

2
t or xz =

3

2
t .

Using this value for xz in Equation 805 and 804 we get xy = t
2
and yz = 5

2
t. At this point

to summarize then we have shown that

xy =
1

2
t (807)

xz =
3

2
t (808)

yz =
5

2
t . (809)

Taking the ratio of Equation 807 to 807 I get

y

z
=

1/2

3/2
=

1

3
or y =

z

3
.

Taking the ratio of Equation 807 to 809 I get

x

z
=

1/2

5/2
=

1

5
or x =

z

5
.

Putting these two expressions into Equation 807 we have

2
(z

3

)(z

5

)

= x+ y + z =
z

5
+
z

3
+ z ,

which is a single equation in z. Simplifying this we get z = 0 or z = 23
2
. If z = 0 then

x = y = 0. If z = 23
2
then x = z

5
= 23

10
and y = z

3
= 23

6
.

1126



Testing Question B.3

To start we bring the terms 2x2, 2y2 and 2z2 over to the left-hand-side to get

x(y + z + x) = 60 (810)

y(z + x+ y) = 75 (811)

z(x+ y + z) = 90 (812)

If we take Equation 810 divide it by Equation 811 we get

x

y
=

60

75
=

4

5
. (813)

If we take Equation 810 divide it by Equation 812 we get

x

z
=

60

90
=

2

3
. (814)

Finally if we take Equation 811 and divide it by Equation 812 we get

y

z
=

25

90
=

5

6
. (815)

Thus from these we conclude that

x =
4

5
y

x =
2

3
z

y =
5

6
z .

This means that y = 5
4
x and z = 3

2
x. If we put these into Equation 810 we get one equation

in terms of x of

x

(
5

4
x+

3

2
x+ x

)

= 60 ,

or

x2
(
5

4
+

6

4
+

4

4

)

= 60 .

Solving for x gives x2 = 16 so x = ±4. Thus y = ±5 and z = ±6. We can check that
(x, y, z) = ±(4, 5, 6) are solutions to the original equations.

Testing Question B.4

We are given the system

x+ 2y = a+ 6 (816)

2x− y = 25− 2a . (817)
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If we multiply Equation 817 by two and add that to Equation 816 we get

5x = 56− 3a so x =
56− 3a

5
. (818)

Putting this into Equation 817 and solving for y we get

y =
−13 + 4a

5
. (819)

Now for x to be a positive we must have

56− 3a > 0 or a <
56

3
,

and for y to be positive we must have

−13 + 4a > 0 or a >
13

4
= 3 .

This means that a is bounded as
13

4
< a <

56

3
. (820)

Next for x and y to be integers means that 56− 3a and −13 + 4a must both be divisible by
five. This means that

56− 3a = 5n

−13 + 4a = 5m,

for integers n > 0 and m > 0. From these two expressions we can solve for a in each to get

a =
56− 5n

3
(821)

a =
5m+ 13

4
. (822)

To have a given by Equation 821 satisfy Equation 820 we need

13

4
<

56− 5n

3
<

56

3
.

In terms of n this is
0 < n < 9.25 .

Thus the possible integer values for n are n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. To have a given by
Equation 822 satisfy Equation 820 we need to have

13

4
<

5m+ 13

4
<

56

3
.

In terms of m this is
0 < m < 12.33 .

Thus the possible integer values for m are m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Setting the two expressions for a given by Equation 821 and 822 equal to each other we can
get one expression relating n and m given by

m =
37− 4n

3
.

If we put the possible values for n into this expressions we get
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[1] 11.00 9.67 8.33 7.00 5.67 4.33 3.00 1.67 0.33

The values above that are permissible for m are three, seven, and eleven and correspond to
the pairs

(n,m) ∈ {(7, 3), (4, 7), (1, 11)} ,
and correspond to the values of a given by 7, 12, and 17. From these a values we can compute
x and y and find

x ∈ {7, 4, 1} with y ∈ {3, 7, 11} .
Note: I solved this question under the constraints that x > 0 and y > 0 and not x ≥ 1 and
y ≥ 1 thus I obtained a few more solutions than the book did.

Testing Question B.5

If we add all five equations together we get

6(x+ y + z + u+ v) = 96 ,

so that x+ y + z + u+ v = 16. Next write the first equation as

x+ (x+ y + z + u+ v) = 16 ,

and put in what we know for the sum above. This gives x = 0. Next write the second
equation as

y + (x+ y + z + u+ v) = 17 so y = 1 .

The other equations can be solved in the same way. Doing this we find z = 19 − 16 = 3,
u = 5, and v = 7.
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Lecture 5: Multiplication Formula

Testing Question A.1

Write the given expression like

(a2 + 8a) + (b2 − 14b) + 65 = 0 .

Complete the square of the two quadratic terms as

(a2 + 8a+ 16− 16) + (b2 − 14b+ 49− 49) + 65 = 0 ,

which becomes
(a+ 4)2 + (b− 7)2 = 0 .

This means that a = −4 and b = 7. Using these we have that

a2 + ab+ b2 = 16− 28 + 49 = 37 .

Testing Question A.2

One way to work this problem is write all variables in terms of a single other and simplify.
To do this we note that from what we are given we have a = 2 + b and c = b− 4. If we call
the given expression we seek E we have

E = a2 + b2 + c2 − ab− bc− ca

= (2 + b)2 + b2 + (b− 4)2 − (2 + b)b− b(b− 4)− (2 + b)(b− 4)

= 4 + 4b+ b2 + b2 + b2 − 8b+ 16− 2b− b2 − b2 + 4b− (2b− 8 + b2 − 4b)

= 20− 2b+ b2 − (b2 − 2b− 8) = 20− 2b+ 2b+ 8 = 28 .

Another way to work this problem is to first note that by adding a− b = 2 and b− c = 4 by
together we get a− c = b. Next we note that

a2 + b2 − ab = (a− b)2 + ab

b2 + c2 − bc = (b− c)2 + bc

a2 + c2 − ac = (a− c)2 + ac .

If we add these together we get

2a2 + 2b2 + 2c2 − ab− bc− ac = (a− b)2 + (b− c)2 + (a− c)2 + ab+ bc + ac ,

or
2a2 + 2b2 + 2c2 − 2ab− 2bc− 2ac = (a− b)2 + (b− c)2 + (a− c)2 .

The left-hand-side is 2E so we have

E = a2 + b2 + c2 − ab− bc− ac =
1

2

[
(a− b)2 + (b− c)2 + (a− c)2

]

=
1

2
[4 + 16 + 36] = 28 .
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Testing Question A.3

Call this expression E. Then we have

E = (a2 + b2)(c2 + d2)

= a2c2 + a2d2 + b2c2 + b2d2

= (ac)2 + (bd)2 + (ad)2 + (bc)2

= (ac+ bd)2 − 2abcd + (ad− bc)2 + 2abcd

= (ac+ bd)2 + (ad− bc)2 ,

which is the form we want.

Testing Question A.4

Expand the right-hand-side to get

14a2 + 14b2 + 14c2 = a2 + 4b2 + 9c2 + 4ab+ 6ac + 12bc ,

or
13a2 + 10b2 + 5c2 − 4ab− 6ac− 12bc = 0 .

Now we will try to “complete the square” in the left-hand-side and see what information
that might provide. Note that in doing this as we have terms −4ab and −6ac we might
have to split the term 13a2 into a “part” for b2 and a “part” for c2. While that may seem
complicated observing what we do might make things clearer. Towards that end we will
write the above as

(A1a
2 − 4ab+B1b

2) + (A2a
2 − 6ac+ C1c

2) + (B2b
2 − 12bc+ C2c

2) = 0 . (823)

The splitting of a2, b2, and c2 mean that

A1 + A2 = 13

B1 +B2 = 10

C1 + C2 = 5 .

Now we expect (hope) that each of the term groupings above will factor. This means that
each of the numbers above should actually be a perfect square. This means that

A1 = a21
A2 = a22 ,

and so on. Thus we have

a21 + a22 = 13 (824)

b21 + b22 = 10 (825)

c21 + c22 = 5 . (826)
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Assuming all of the above are integers then from Equation 824 we have that

(a1, a2) = (2, 3) or (a1, a2) = (3, 2) .

From Equation 825 we have that

(b1, b2) = (1, 3) or (b1, b2) = (3, 1) .

From Equation 826 we have that

(c1, c2) = (1, 2) or (c1, c2) = (2, 1) .

If we then look at the first term we would factor in Equation 823 we see that to get the
middle term of −4ab we must have

−2a1b1 = −4 or a1b1 = 2 .

The only choices that do this are

(a1, a2) = (2, 3) and (b1, b2) = (1, 3) .

If we then look at the third term we would factor in Equation 823 we see that to get the
middle term of −12bc we must have

−2b2c2 = −12 or b2c2 = 6 .

The only choice that do this (given b2 = 3) is

(c1, c2) = (1, 2) .

With these choices, we can write Equation 823 as

(4a2 − 4ab+ b2) + (9a2 − 6ac + c2) + (9b2 − 12bc + 4c2) = 0 .

This we can factor! We find

(2a− b)2 + (3a− c)2 + (3b− 2c)2 = 0 .

This means that we have

2a = b

3a = c ,

Thus
a : b : c = a : 2a : 3a = 1 : 2 : 3 .
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Testing Question A.5

Note that we can write

x2 + 3x+ 1 = x2 + 2x+ 1 + x = (x+ 1)2 + x .

Using this our expression is
x

(x+ 1)2 + x
= a ,

or
1

(x+1)2

x
+ 1

= a .

If we “flip” this we get

(x+ 1)2

x
+ 1 =

1

a
or

x2 + 2x+ 1

x
=

1

a
− 1 or

x+ 2 +
1

x
=

1

a
− 1 ,

or

x+
1

x
=

1

a
− 3 . (827)

Next using the same factoring the expression we want can be written as

x2

x4 + 3x2 + 1
=

x2

(x2 + 1)2 + x2
=

1
1
x2 (x2 + 1)2 + 1

=
1

x4+2x2+1
x2 + 1

=
1

x2 + 2 + 1
x2 + 1

=
1

(
x+ 1

x

)2
+ 1

.

But we know how to expression x+ 1
x
in terms of a from Equation 827. Using that we get

1
(
1
a
− 3
)2

+ 1
,

for the value of the desired expression.

Testing Question A.6

Note that if we can get an expression for

x3 +
1

x3
,
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in terms of a then we can square this to get the desired expression. If we recall that

X3 + Y 3 = (X + Y )(X2 −XY + Y 2) .

Thus if we let X = x and Y = 1
x
we get

x3 +
1

x3
= a

(

x2 − 1 +
1

x2

)

.

This means that we need to be able to evaluate x2 + 1
x2 . If we square the given expression

we get

x2 + 2 +
1

x2
= a2 so x2 +

1

x2
= a2 − 2 .

If we use this in the above we have

x3 +
1

x3
= a(a2 − 3) .

If we then square this we get

x6 + 2 +
1

x6
= a2(a2 − 3)2 ,

thus

x6 +
1

x6
= a2(a2 − 3)2 − 2 = a6 − 6a4 + 9a2 − 2 .

Testing Question A.7

Starting with
a4 + b4 + c4 + d4 = 4abcd ,

we will write the given expression as

(a2 − b2)2 + 2a2b2 + (c2 − d2)2 + 2c2d2 = 4abcd ,

or
(a2 − b2)2 + (c2 − d2)2 + 2(a2b2 − 2abcd+ c2d2) = 0 ,

or
(a2 − b2)2 + (c2 − d2)2 + 2(ab− cd)2 = 0 .

This means that a2 = b2, c2 = d2, and ab = cd. If we square this last expression we get

a2b2 = c2d2 .

Using the fact that a2 = b2 and c2 = d2 this means that

b4 = c4 = d4 .

If we take square roots of the above (assuming everything is real so that b2 > 0) we get

b2 = c2 = d2 .

Thus we have shown that
a2 = b2 = c2 = d2 .
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Testing Question A.8

From what we are given we have

a+ b = −(c + d) .

If we cube each side we get

a3 + 3a2b+ 3ab2 + b3 = −(c3 + 3c2d+ 3cd2 + d3) ,

or

a3 + b3 + c3 + d3 = −3a2b− 3ab2 − 3c2d− 3cd2

= −3(a2b+ ab2 + c2d+ cd2)

= −3(ab(a + b) + cd(c+ d)) .

Using the fact a+ b = −(c+ d) and c+ d = −(a + b) we get can write the above as

a3 + b3 + c3 + d3 = +3(ab(c+ d) + cd(a+ b)) = 3(abc + abd+ acd+ bcd) .

Testing Question A.9

Warning: I think there is a typo in this problem. To get the solution that the book presents
at the end of the book we need to have the third expression be

a+ b+ c = 6 ,

rather than
a+ b+ c = 2 .

We will assume the first of these two in what follows.

To start this problem lets define

u = a− 2

v = b− 2

w = c− 2 .

Then we can write
a+ b+ c = 6 ⇒ u+ v + w = 0 .

The first expression we are given can be written in terms of u, v, and w as

u3 + v3 + w3 = 0 .

Then using the identity

u3 + v3 + w3 − 3uvw = (u+ v + w)(u2 + v2 + w2 − uv − vw − wu) ,

we have
−3uvw = 0 .

Thus we must have one of u = 0, v = 0, and w = 0.
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Testing Question A.10

Lets consider the expression E defined as

E = (a+ b+ c)3 − a3 − b3 − c3 .

We can manipulate this as

E = ((a+ b+ c)3 − a3)− (b3 + c3)

= ((a+ b+ c)− a)[(a + b+ c)2 + (a+ b+ c)a+ a2]− (b+ c)(b2 − bc+ c2)

= (b+ c)[(a + b+ c)2 − b2 + (a + b+ c)a + bc+ a2 − c2]

= (b+ c)(3a2 + 3ab+ 3ac+ 3bc)

= 3(b+ c)(a2 + ab+ ac + bc)

= 3(b+ c)(a(a+ b) + c(a+ b))

= 3(b+ c)(a+ b)(a + c) .

As E = 0 from the above we see that one of b = −c, a = −b, a = −c must be true.

Under each of these conditions we see that

a2n+1 + b2n+1 + c2n+1 = (a + b+ c)2n+1 .

For example if b = −c then the above is

a2n+1 − c2n+1 + c2n+1 = (a− c+ c)2n+1 ,

which is true.

Testing Question B.1

We write M in a “special” way to try and separate out various parts to factor. We have

M = 3x2 − 8xy + 9y2 − 4x+ 6y + 13

=
(
X1x

2 − 8xy + Y1y
2
)
+
(
X2x

2 − 4x+N1

)
+
(
Y2y

2 + 6y +N2

)
.

For this “expansion” to be valid we need to enforce that

X1 +X2 = 3

Y1 + Y2 = 9

N1 +N2 = 13 .

Now one way for the right-hand-side to factor into “squares” we would need to have X1, X2,
Y1, Y2, N1, and N2 be perfect squares. We might start by trying Y2 = 1. Then in that case
to factor the last expression above or Y2y

2 + 6y +N2 = y2 + 6y +N2 we could take N2 = 9
and get

(y + 3)2 .
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If we do that then N1 = 13−N2 = 4 and Y1 = 9− Y2 = 8.

Next to factor the second to last expression above or

X2x
2 − 4x+N1 = X2x

2 − 4x+ 4 ,

we could take X2 = 1 and get
(x− 2)2 .

This means that X1 = 3−X2 = 3− 1 = 2 and the left-most expression above looks like

X1x
2 − 8xy + Y1y

2 = 2x2 − 8xy + 8y2

= 2
(
x2 − 4xy + 4y2

)

= 2 (x− 2y)2 .

Thus using all of the above we have shown that

M = 2(x− 2y)2 + (x− 2)2 + (y + 3)2 .

So M ≥ 0. Now M 6= 0 for if it was zero we would need x = 2, y = −3 and x − 2y = 0
which is an inconsistent set of equations. Thus we conclude that M > 0.

Testing Question B.2

Method 1 (incomplete): We start with the given expressions

a+ b = c+ d (828)

a2 + b2 = c2 + d2 . (829)

Then using the identities

a2 + b2 = (a + b)2 − 2ab

c2 + d2 = (c+ d)2 − 2cd ,

in Equation 829 we get
(a+ b)2 − 2ab = (c+ d)2 − 2cd .

But from Equation 828 we know that a+ b = c+ d so the above becomes

−2ab = −2cd so ab = cd .

Thus we have shown that the products are equal. Now consider a3 + b3. We find

a3 + b3 = (a + b)(a2 − ab+ b2)

= (c + d)(a2 + b2 − ab)

= (c + d)(c2 + d2 − cd)

= c3 + d3 .
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Next consider a4 + b4. We find

a4 + b4 = (a2 + b2)2 − 2a2b2

= (c2 + d2)2 − 2c2d2

= c4 + d4 .

Finally consider a5 + b5. We find

a5 + b5 = (a + b)(a4 − a3b+ a2b2 − ab3 + b4)

= (c+ d)(c4 + d4 − a3b+ a2b2 − ab3)

= (c+ d)
[
c4 + d4 + ab(−a2 + ab− b2)

]

= (c+ d)
[
c4 + d4 + cd(−c2 − d2 + cd)

]

= c5 + d5 .

Thus we have shown that an + bn = cn + dn for n ≤ 5 and using similar steps as above these
calculations could be continued up to a specified (but fixed) n. This setup looks like it is
primed for a induction proof but I was unable to develop one. If anyone sees how to do this
please contact me.

Method 2: From the given expression we have that

a− c = d− b

a2 − c2 = d2 − b2 .

By factoring the second expression we get (a + c)(a − c) = (d + b)(d − b). Using the first
equation above in this to replace a− c we get

(a+ c)(d− b) = (d+ b)(d− b) .

One way the above can be true is if d−b = 0. In that case then d = b and from Equation 828
we have that a = c. These together give that

an + bn = cn + dn . (830)

for all n. If d− b 6= 0 then we can divide by it on both sides to get

a+ c = d+ b .

If we subtract this from Equation 828 we get

b− c = c− b = −(b− c) ,

or
b = c .

Using that in Equation 828 gives a = d and we again get Equation 830.
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Testing Question B.3

Lets define E as the difference between these two expressions. Then we have

E = (a2 + b2 + c2)2 − 2(a4 + b4 + c4)

= a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2 − 2a4 − 2b4 − 2c4

= −a4 − b4 − c4 + 2a2b2 + 2a2c2 + 2b2c2 .

Lets write this as
E = a2(−a2 + 2b2 + 2c2) + b2(−b2 + 2c2)− c4 .

Then as a = −b− c we have

a2 = b2 + 2bc+ c2 = (b+ c)2 .

Thus we can write E as

E = a2(−b2 − 2bc− c2 + 2b2 + 2c2) + b2(−b2 + 2c2)− c4

= a2(b2 + c2 − 2bc) + b2(−b2 + 2c2)− c4

= a2(b− c)2 − b4 + 2b2c2 − c4

= (b+ c)2(b− c)2 − (b2 − c2)2 = 0 ,

as we wanted to show.

Testing Question B.4

We start with a+ b = 1. Then using

a2 + b2 = (a+ b)2 − 2ab .

we get

2 = 1− 2ab⇒ 1 = −2ab⇒ ab = −1

2
.

Thus we now know the product of ab. Next we have

a3 + b3 = (a+ b)(a2 − ab+ b2)

= 1

(

2−
(

−1

2

))

= 2 +
1

2
=

5

2
.

Next we have

a4 + b4 = (a2 + b2)2 − 2a2b2

= 22 − 2(ab)2 = 4− 2

(

−1

2

)2

= 4− 1

2
=

7

2
.
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Next we have

a5 + b5 = (a + b)(a4 − a3b+ a2b2 − ab3 + b4)

= 1

(
7

2
+ ab(−a2 + ab− b2)

)

=

(
7

2
− 1

2

(

−2− 1

2

))

=
7

2
+

1

2

(
5

2

)

=
19

4
.

Next we have

a6 + b6 = (a3 + b3)2 − 2a3b3

=

(
5

2

)2

− 2

(

−1

2

)3

=
25

4
+

2

8
=

25

4
+

1

4
=

26

4
=

13

2
.

Finally we have

a7 + b7 = (a+ b)
(
a6 − a5b+ a4b2 − a3b3 + a2b4 − ab5 + b6

)

= 1

(
13

2
+ ab(−a4 + a3b− a2b2 + ab3 − b4)

)

=
13

2
+

(

−1

2

)(

−7

2
+ ab(a2 − ab+ b2)

)

=
13

2
+

(

−1

2

)(

−7

2
− 1

2

(

2 +
1

2

))

=
13

2
+

(

−1

2

)(

−19

4

)

=
13 · 4
8

+
19

8
=

71

8
.

Testing Question B.5

Note that

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

= a3 + b3 + 3ab(a + b) .

If we let v ≡ a+ b then the above can be written as

v3 = a3 + b3 + 3ab− 3ab+ 3abv

= 1 + 3ab(v − 1) .

Note that v = 1 is a solution to the above equation. We can write this expression as

v3 − 3abv + 3ab− 1 = 0 .

We would like to solve this for v. As v = 1 is a root we should be able to “factor” v − 1
“out” of the polynomial above. Performing polynomial long division we find

v3 − 3abv + 3ab− 1 = (v − 1)(v2 + v + 1− 3ab) = 0 .
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One solution to the above is v = 1 or a + b = 1.

Another solution is given by v2 + v + 1− 3ab = 0. This means that

a2 + 2ab+ b2 + a + b+ 1− 3ab = 0 ,

or
a2 − ab+ b2 + a + b+ 1 = 0 .

Let’s try to factor this. Based on the “middle” terms we might look for a representation like

(A1a
2 − ab+B1b

2) + (A2a
2 + a+N1) + (B2b

2 + b+N2) = 0 .

In order for this to be true we need to have

A1 + A2 = 1 (831)

B1 +B2 = 1 (832)

N1 +N2 = 1 . (833)

In addition, if we are lucky enough to be able to factor this as

(
√

A1a−
√

B1b)
2 + (

√

A2a +
√

N1)
2 + (

√

B2b+
√

N2)
2 = 0 .

Then we must also have

2
√

A1B1 = 1 (834)

2
√

A2N1 = 1 (835)

2
√

B2N2 = 1 . (836)

To satisfy these lets take

A1 =
1

2
, B1 =

1

2
, N1 =

1

2
.

Then we must also have A2 =
1
2
, B2 =

1
2
and N2 =

1
2
. Thus the above becomes

(
1

2
a2 − ab+

1

2
b2
)

+

(
1

2
a2 + a+

1

2

)

+

(
1

2
b2 + b+

1

2

)

= 0 .

We can factor this then as

(
a√
2
− b√

2

)2

+

(
1√
2
a+

1√
2

)2

+

(
1√
2
b+

1√
2

)2

= 0 ,

or
1√
2
(a− b)2 +

1√
2
(a + 1)2 +

1√
2
(b+ 1)2 = 0 .

This means that a = b, a = −1, and b = −1 so that a+ b = −2.
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Lecture 6: Some Methods of Factorization

Testing Question A.1

Part (i): Call this expression E. Then we have

E = x9 + 7x6y3 + 7x3y6 + y9

= x6(x3 + 7y3) + y6(7x3 + y3)

= x6(7x3 + 7y3 − 6x3) + y6(7x3 − 7y3 − 6y3)

= (7x3 + 7y3)(x6 + y6)− 6x9 − 6y9

= 7(x3 + y3)(x6 + y6)− 6(x9 + y9) .

Next use the identity
a3 + b3 = (a + b)(a2 − ab+ b2) ,

on the factor x9 + y9 as

x9 + y9 = (x3 + y3)(x6 − x3y3 + y6) .

Then we can write E as

E = (x3 + y3)
[
7(x6 + y6)− 6(x6 − x3y3 + y6)

]

= (x3 + y3)(x6 + y6 + 6x3y3) .

Part (ii): To start with we note that

(2x+ y + 3z)2 = 4x2 + y2 + 9z2 + 4xy + 12xz + 6yz .

Thus using this, if we call the given expression E we can write E as

E = (2x+ y + 3z)2 − 4xy − 12xz − 6yz − 6yz + 12xz − 4xy

= (2x+ y + 3z)2 − 8xy − 12yz

= (2x+ 3z + y)2 − 4y(2x+ 3z)

= (2x+ 3z)2 + 2y(2x+ 3z) + y2 − 4y(2x+ 3z)

= (2x+ 3z)2 − 2y(2x+ 3z) + y2

= (2x+ 3z − y)2 .

Part (iii): Call this expression E. Then we can write E as

E = (x+ 1)(x+ 3)(x− 1)(x+ 5) + 16

= (x2 + 4x+ 3)(x2 + 4x− 5) + 16

= (x2 + 4x)2 − 2(x2 + 4x)− 15 + 16

= (x2 + 4x)2 − 2(x2 + 4x) + 1

= (x2 + 4x− 1)2 .

Part (iv): Call this expression E. Then we have

E = (2x2 − 4x+ 1)2 − 7(2x2 − 4x) + 3

= (2x2 − 4x+ 1)2 − 7(2x2 − 4x+ 1) + 7 + 3

= (2x2 − 4x+ 1)2 − 7(2x2 − 4x+ 1) + 10 .
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Now let v = 2x2 − 4x+ 1 then the above is

E = v2 − 7v + 10 = (v − 2)(v − 5) ,

so
E = (2x2 − 4x− 1)(2x2 − 4x− 4) .

Part (v): Note that in this expression if x = 2 we have

8− 12 + 2a+ 4− 2a = 0 .

This means that x−2 is a factor of this expression. To find this factor let b and c be unknown
(for now) and write our expression E as

E = (x− 2)(x2 + bx+ c)

= x3 + bx2 + cx− 2x2 − 2bx− 2c

= x3 + (b− 2)x2 + (c− 2b)x− 2c .

We then set this equal to what we were originally given or

x3 − 3x2 + (a+ 2)x− 2a .

This gives
b− 2 = −3 ⇒ b = −1 ,

and
c− 2b = a + 2 ⇒ c = 2b+ a− 2 = a .

Thus the factoring we have found is

E = (x− 2)(x2 − x+ a) .

Part (vi): Call this expression E. Then we have

E = x10(x+ 1) + x8(x+ 1) + x6(x+ 1) + x4(x+ 1) + x2(x+ 1) + (x+ 1)

= (x+ 1)(x10 + x8 + x6 + x4 + x2 + 1)

= (x+ 1)(x8(x2 + 1) + x4(x2 + 1) + x2 + 1)

= (x+ 1)(x2 + 1)(x8 + x4 + 1) .

As another way to factor this note that from the expression for E we have

(x− 1)E = x12 − 1 .

This means that we have

E =
x12 − 1

x− 1
.

The numerator of this we can factor to get

E =
(x6 − 1)(x6 + 1)

x− 1

=
(x3 − 1)(x3 + 1)x6 + 1)

x− 1

=
(x− 1)(x2 + x+ 1)(x3 + 1)(x6 + 1)

x− 1

= (x2 + x+ 1)(x3 + 1)(x6 + 1)

= (x2 + x+ 1)(x+ 1)(x2 − x+ 1)(x6 + 1) .
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Testing Question A.2

Part (i): Call this expression E. Then we have

E = (x2 − (a2 + b2))2 − (a2 + b2)2 + (a2 − b2)2

= (x2 − (a2 + b2))2 + (a2 − b2)2 − (a2 + b2)2

= (x2 − (a2 + b2))2 + [a2 − b2 − (a2 + b2)][a2 − b2 + (a2 + b2)]

= (x2 − (a2 + b2))2 − 4a2b2

= [x2 − (a2 + b2)− 2ab][x2 − (a2 + b2) + 2ab]

= [x2 − a2 − 2ab− b2][x2 − (a2 − 2ab+ b2)]

= [x2 − (a+ b)2][x2 − (a− b)2] .

Part (ii): Call this expression E. Then we have

E = (ab+ 1)(ab+ a+ b+ 1) + ab

= (ab+ 1)(ab+ 1 + a+ b) + ab

= (ab+ 1)(ab+ b+ 1) + a(ab+ 1) + ab

= (ab+ 1)(ab+ b+ 1) + a[ab+ b+ 1]

= (ab+ b+ 1)(ab+ a+ 1) .

Testing Question A.3

Note that

81 = (32)2 = 34

27 = 3 · 9 = 33 ,

thus we can write our expression E as

E = (34)6 − 32 · (33)7 − (32)11

= 324 − 323 − 322

= 322(32 − 3− 1)

= 322(9− 3− 1)

= 322 · (5) .

Next note that 45 = 32 · 5 which is a factor of E.
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Testing Question A.4

Call this expression E. Then we have

E = 3 (11 · · ·11)
︸ ︷︷ ︸

2n digits

−6 (11 · · ·11)
︸ ︷︷ ︸

n digits

= 3[11 · · ·11
︸ ︷︷ ︸

2n digits

−2 (11 · · ·11)
︸ ︷︷ ︸

n digits

] .

Now if n = 1 this is
11− 2(1) = 9 .

If n = 2 this is
1111− 2(11) = 1089 .

If n = 3 this is
E3 = 111111− 2(111) = 110889 .

These observations motivate us to write E3 as

E3 = 111111− 111− 111 = 111000− 111 = 111 · 103 − 111 .

This then motivates what to do in the general case. In the general case we have

E = 11 · · ·11
︸ ︷︷ ︸

2n digits

−2 · 11 · · ·11
︸ ︷︷ ︸

n digits

= 11 · · ·11
︸ ︷︷ ︸

2n digits

− 11 · · ·11
︸ ︷︷ ︸

n digits

− 11 · · ·11
︸ ︷︷ ︸

n digits

= 11 · · ·11
︸ ︷︷ ︸

n digits

00 · · ·00
︸ ︷︷ ︸

n digits

− 11 · · · 11
︸ ︷︷ ︸

n digits

= 11 · · ·11
︸ ︷︷ ︸

n digits

·10n − 11 · · ·11
︸ ︷︷ ︸

n digits

= 11 · · ·11
︸ ︷︷ ︸

n digits

(10n − 1) .

Based on this for we next note that

10n − 1 = 99 · · ·99
︸ ︷︷ ︸

n digits

= 9 · 11 · · ·11
︸ ︷︷ ︸

n digits

.

Using this for E we can write

E = 9 · (11 · · ·11
︸ ︷︷ ︸

n digits

)2 = 32 · (11 · · ·11
︸ ︷︷ ︸

n digits

)2 ,

which is a perfect square. If we take n = 1, n = 2, and n = 3 in the above we see that the
derived formula matches the special cases above. Note that there seems to be a typo in the
solution to this problem in the back of the book (it does not match the above for n = 1).
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Testing Question A.5

Part (i): Call this expression E. Then we have

E = (x2 + x− 1)2 + (x2 + x− 1)− 2 .

If we let v = x2 + x− 1 then we see that

E = v2 + v − 2 ,

which we can factor as
(v + 2)(v − 1) .

This means that our expression E factors as

E = (x2 + x− 1 + 2)(x2 + x− 1− 1)

= (x2 + x+ 1)(x2 + x− 2) .

Part (ii): Call this expression E. Then we have

E = (x− y)3 + (y − x− 2)3 + 8

= (x− y)3 + (y − x− 2)3 + 23 .

From this form it is helpful to recall that

a3 + b3 + c3 = 3abc + (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc) .

We can use this with our problem by

a = x− y

b = y − x− 2

c = 2 .

In the case we have here we have a+ b+ c = 0 so the above becomes

a3 + b3 + c3 = 3abc .

Thus E takes the form
E = 6(x− y)(y − x− 2) .

Part (iii): Call this expression E and let v ≡ 6x+ 5. Then we have

E = v2
(
v

2
− 1

2

)(
v + 1

6

)

− 6 =
v2(v − 1)(v + 1)

2 · 6 − 6

=
1

12
(v2(v − 1)(v + 1)− 72) =

1

12
(v2(v2 − 1)− 72)

=
1

12
(v4 − v2 − 72) =

1

12
(v2 − 9)(v2 + 8) .
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Using the definition of v this is

E =
1

12
((6x+ 5)2 − 9)((6x+ 5)2 + 8)

=
1

12
(6x+ 5− 3)(6x+ 5 + 3)(36x2 + 60x+ 25 + 8)

=
1

12
(6x+ 2)(6x+ 8)(36x2 + 60x+ 33)

=
22 · 3
12

(3x+ 1)(3x+ 4)(12x2 + 20x+ 11)

= (3x+ 1)(3x+ 4)(12x2 + 20x+ 11) .

Part (iv): Call this expression E and let

v ≡ x2 + 5x+ 6 = (x+ 2)(x+ 3) .

Then we have

E = v(v + x)− 2x2 = v2 + xv − 2x2 = (v + 2x)(v − x)

= (x2 + 5x+ 6 + 2x)(x2 + 5x+ 6− x)

= (x2 + 7x+ 6)(x2 + 4x+ 6)

= (x+ 6)(x+ 1)(x2 + 4x+ 6) .

Part (v): Based on the form of this expression lets define

a = x2 − 2x

b = x2 − 4x+ 2

c = −2(x2 − 3x+ 1)

Then our expression E is the sum a3 + b3 + c3. To factor this recall that we can also write
this sum as

a3 + b3 + c3 = 3abc + (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc) ,

in the case considered here we have

a + b+ c = −6x+ 2 + 6x− 2 = 0 ,

thus we have

E = a3 + b3 + c3 = 3abc = 3(x2 − 2x)(x2 − 4x+ 2)(−2(x3 − 3x+ 1))

= −6x(x− 2)(x2 − 4x+ 2)(x2 − 3x+ 1) .

Part (vi): Call this expression E, then by expanding and then grouping terms we have

E = a3 + b3 + c3 + (a + b)(b+ c)(c+ a)− 2abc

= a3 + b3 + c3 + (a + b)(bc+ ab+ c2 + ac)− 2abc

= a3 + b3 + c3 + abc + a2b+ ac2 + a2c+ b2c+ ab2 + bc2 + abc− 2abc

= a3 + b3 + c3 + a2b+ ac2 + a2c+ b2c+ ab2 + bc2

= a3 + b3 + c3 + a2(b+ c) + b2(a + c) + c2(a + b)

= a3 + a2(b+ c) + b3 + b2(a+ c) + c3 + c2(a + b)

= a2(a + b+ c) + b2(a + b+ c) + c2(a+ b+ c)

= (a+ b+ c)(a2 + b2 + c2) .
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Testing Question A.6

Part (i): I believe there is a typo in the book’s solution to this problem in that the coefficient
of the xy term in the expression they start with is the negative of what it seems to be in
the problem statement. What follows is the solution to the expression given in the problem
statement.

We are starting with
E ≡ x2 + xy − 2y2 + 8x+ ay − 9 . (837)

Given that we can write
x2 + xy − 2y2 = (x+ 2y)(x− y) ,

lets assume/hope that we can write E as

E = (x+ 2y + A)(x− y +B) .

If we “expand” this we find

E = (x+ 2y)(x− y) +B(x+ 2y) + A(x− y) + AB .

Setting this equal to the right-hand-side of Equation 837 and canceling the common terms
from (x+ 2y)(x− y) we get

Bx+ 2By + Ax− Ay + AB = 8x+ ay − 9 .

Grouping terms by x and y on the left-hand-side of this expression we get

(A+B)x+ (2B −A)y + AB = 8x+ ay − 9 .

Equating the coefficients of x and y in the above we get

A+B = 8 (838)

2B −A = a (839)

AB = −9 . (840)

Using Equations 838 and 840 we have

A− 9

A
= 8 ,

or
A2 − 8A− 9 = 0 ,

or
(A− 9)(A+ 1) = 0 .

This means that A = 9 or A = −1. Using these in Equation 840 we get B = −1 or B = 9.

Using Equation 839 on these pairs for a(A,B) we find

a(9,−1) = 2(−1)− 9 = −11 ,

1148



and
a(−1, 9) = 2(9)− (−1) = 19 .

Part (ii): When they say “linear polynomials” I think they mean an expression of the form

(x2 + Ax+B)(x2 + Cx+D) .

Lets call this expression E and set it equal to the form above. We would have

E ≡ x4 − x3 + 4x2 + 3x+ 5

= (x2 + Ax+B)(x2 + Cx+D)

= x4 + Cx3 +Dx2 + Ax3 + ACx2 + ADx+Bx2 +BCx+BD

= x4 + (C + A)x3 + (D + AC +B)x2 + (AD +BC)x+BD .

If we equate coefficients of powers of x this means that

A + C = −1

D + AC +B = 4

AD +BC = 3

BD = 5 .

We could try to solve these in general but lets instead look if we can just find one (integer)
solution. If we consider the last equation one solution is to take B = 1 and then D = 5.
With these the other equations are

A+ C = −1

5 + AC + 1 = 4 ⇒ AC = −2

5A+ C = 3 .

Solving the first and the last equations we see that A = 1 and C = −2. The second equation
then gives C = −2. All together the solution we found is given by

A = 1 , B = 1 , C = −2 , and D = 5 .

Using these in the expression for E above we have

E = (x2 + x+ 1)(x2 − 2x+ 5) .

Testing Question A.7

We are told that

y4 − 6y3 +my2 + ny + 36 = (y2 + 3y + 6)(y2 + Ay +B) ,

for some A and B. If we expand the right-hand-side of the above we get

RHS = y4 + Ay3 +By2 + 3y3 + 3Ay2 + 3By + 6y2 + 6Ay + 6B

= y4 + (A+ 3)y3 + (B + 3A+ 6)y2 + (3B + 6A)y + 6B .
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Equating the coefficient of y3 this means that

A+ 3 = −6 ⇒ A = −9 .

Equating the constant term we have that

6B = 36 ⇒ B = 6 .

Equating the coefficients of y2 and y we have that

m = B + 3A+ 6 = 6− 27 + 6 = 12− 27 = −15

n = 3B + 6A = 3 · 6 + 6 · (−9) = 18− 54 = −36 .

Testing Question B.1

Lets call this expression E and let v = x2 + 6x+ 1 then we have

E = 2v2 + 5(x2 + 1)v + 2(x2 + 1)2

= (2v + (x2 + 1))(v + 2(x2 + 1))

= (2(x2 + 6x+ 1) + x2 + 1)(x2 + 6x+ 1 + 2x2 + 2)

= (2x2 + 12x+ 2 + x2 + 1)(3x2 + 6x+ 3)

= 3(x2 + 2x+ 1)(3x2 + 12x+ 3)

= 9(x+ 1)2(x2 + 4x+ 1) .

Testing Question B.2

From the problem statement We must have

x4 + ax2 + b = (x2 + 2x+ 5)(x2 + Ax+B) .

If we expand the right-hand-side we get

x4 + ax2 + b = x4 + Ax3 +Bx2 + 2x3 + 2Ax2 + 2Bx+ 5x2 + 5Ax+ 5B

= x4 + (A+ 2)x3 + (B + 2A+ 5)x2 + (2B + 5A)x+ 5B .

Now the coefficients of x3 and x must vanish so

A+ 2 = 0 so A = −2 ,

and
2B + 5A = 0 so 2B = 10 so B = 5 .

From the coefficient for x2 and the constant term we have

a = B + 2A+ 5 = 5− 4 + 5 = 6

b = 5B = 25 .

This means that a+ b = 31.
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Testing Question B.3

Lets call this expression E. Then by expanding to simplify we have

E = (ab+ cd)(a2 − b2 + c2 − d2) + (ac+ bd)(a2 − d2 + b2 − c2)

= a3b− ab3 + abc2 − abd2 + a2cd− b2cd+ c3d− cd3

+ a3c− acd2 + ab2c− ac3 + a2bd− bd3 + b3d− bc2d

= a3(b+ c) + b3(−a+ d) + c3(d− a) + d3(−c− b)

+ a2(cd+ bd) + b2(−cd+ ac) + c2(ab− bd) + d2(−ab− ac)

= a3(b+ c) + b3(−a+ d) + c3(d− a) + d3(−c− b)

+ da2(c+ b) + b2c(−d+ a) + bc2(a− d) + ad2(−b− c)

= a2(c+ b)(a+ d) + b2(a− d)(c − b) + c2(b− c)(a − d) + d2(a+ d)(−b− c)

= [a2(c+ b)− d2(c+ b)](a+ d) + [b2(a− d)− c2(a− d)](c − b)

= (a2 − d2)(b+ c)(a+ d) + (b2 − c2)(a− d)(c − b)

= (a− d)(a+ d)(b+ c)(a+ d) + (b− c)(b + c)(a− d)(c− b)

= (a− d)(b+ c)[(a+ d)2 − (c− b)2]

= (a− d)(b+ c)[a+ d− (c− b)][a+ d+ c− b]

= (a− d)(b+ c)(a+ b− c+ d)(a− b+ c+ d) .

Testing Question B.4

Recall that we have
a3 + b3 = (a + b)(a2 − ab+ b2) .

Thus we can write the expression E ≡ (ay + bx)3 + (ax+ by)3 as

E = (ay + bx+ ax+ by)[(ay + bx)2 − (ay + bx)(ax+ by) + (ax+ by)2]

= (a(x+ y) + b(x+ y))[a2y2 + 2abxy + b2x2 − a2xy − aby2 − abx2 − b2xy + a2x2 + 2abxy + b2y2]

= (a+ b)(x+ y)[(a2 − ab+ b2)y2 + (2ab− a2 − b2 + 2ab)xy + (b2 − ab+ a2)x2]

= (x+ y)[(a3 + b3)y2 + (a3 + b3)x2 + (a+ b)(4ab− a2 − b2)xy]

= (a3 + b3)(x+ y)(x2 + y2) + (a+ b)(x+ y)xy(4ab− a2b2) .

From this we next add the term −(a3 + b3)(x3 + y3) to get

(x3 + b3)[(x+ y)(x2 + y2)− (x3 + y3)] + (a+ b)(x+ y)xy(4ab− a2 − b2) .

Expanding the second factor in the first term we have this equal to

(x3 + b3)[x3 + xy2 + yx2 + y3 − x3 − y3] + (a+ b)(x+ y)xy(4ab− a2 − b2) ,

or
(a3 + b3)xy(y + x) + (a + b)(x+ y)xy(4ab− a2 − b2) ,

or factoring common factors

xy(x+ y)(a+ b)[a2 − ab+ b2 + 4ab− a2 − b2] = 3abxy(a+ b)(x+ y) .
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Testing Question B.5

By factoring, we can write these three numbers as

ab(a− b)(a + b)(a2 + b2) ,

bc(b− c)(b+ c)(b2 + c2) ,

and
ac(c− a)(c + a)(c2 + a2) .

Note that each of these is the product of five integers.

To solve this question we will argue that for any configuration of a, b, and c that are even/odd
one of the numbers above will have the product of three even numbers and thus be divisible
by eight.

For example, if a, b, and c are all odd numbers than the numbers (a−b), (a+b), and (a2+b2)
are even numbers so first number has three even factors and is thus divisible by eight.

If we have two odd numbers say a and b then a− b, a+ b, and a2 + b2 are even and the first
number has three even factors and is thus divisible by eight.

If we have one odd number and two even numbers let a be the odd number. Then the second
number above is the product of at least three even numbers and is divisible eight.

If we have no odd numbers then many of the product above are divisible by eight.
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Lecture 7: Absolute Value and Its Applications

Testing Question A.1

If x > 0 then x+ |x| = 2x so
|x+ |x||

x
=

|2x|
x

= 2 .

If x < 0 then x+ |x| = 0 so the expression given is zero. If x = 0 the expression is undefined.

Testing Question A.2

The given condition on x simplifies to the statement that x ≤ 7
11
. To determine the extremes

of the function f(x) = |x− 1| − |x+ 3| we consider the locations where the absolute values
change their definitions. We have

• If x < −3 then f(x) = −(x− 1) + (x+ 3) = 4.

• If −3 < x < 1 then f(x) = −(x− 1)− (x+ 3) = −2x− 2.

• If x > 1 then f(x) = x− 1− (x+ 3) = −4.

This is a slanted line between two constant values (positive four and negative four). When
x ≤ 7

11
the largest value of this function is the value of four and the smallest value of this

function is the expression −2x− 2 evaluated at 7
11
.

Testing Question A.3

In the expression
|1− x| = 1 + |x| ,

the absolute values “change” across the points x = 0 and x = 1. If x ≤ 0 this expression is

1− x = 1− x ,

which is an identity and is thus true for all x. If 0 < x < 1 this expression is

1− x = 1 + x ,

which is satisfied for x = 0 only. If x ≥ 1 this expression is

−(1− x) = 1 + x ,

which has no solution. Thus there are only solutions to the given expression when x ≤ 0.
Then from the expression given we see that |1− x| is the left-hand-side and must equal the
right-hand-side which is 1 + |x|. When x ≤ 0 this is 1− x.
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Testing Question A.4

Note that the “sign” of the absolute values in this expression will change at the points
x = −1, x = 2, x = 3. Using that we can evaluate it. For example, if x < −1 then it is

−(x+ 1)− (x− 2)− (x− 3) = −3x+ 4 .

At x = −1 this takes the value seven. If −1 < x < 2 then this expression is

x+ 1− (x− 2)− (x− 3) = 6− x .

At x = 2 this takes the value four. If 2 < x < 3 then this expression is

x+ 1 + x− 2− (x− 3) = x+ 2 .

At x = 3 this is the value five. As our expression is piecewise linear for all x the minimum
must occur at x ∈ {−1, 2, 3}. The smallest value of this expression is when x = 2 where it
takes the value of four.

Testing Question A.5

If x < 0 then |x| = −x and our expression is

| − x− 2x|
3

=
| − 3x|

3
= |x| = −x .

Testing Question A.6

As x → ±∞ this expression tends to infinity and is piecewise linear in between. At the
points x ∈ {a, b, c, d} one line segment ends and another one begins. Thus the minimum
value of this expression will be at one of these points. For any value of x call this expression
v(x).

Now if x = a this expression is

v(a) = |a− b|+ |a− c|+ |a− d| = b− a+ c− a+ d− a = b+ c+ d− 3a .

Now if x = b this expression is

v(b) = |b− a|+ |b− c|+ |b− d| = b− a+ c− b+ d− b = d+ c− a− b .

Now if x = c this expression is

v(c) = |c− a|+ |c− b| + |c− d| = c− a + c− b+ d− c = c+ d− a− b .

Now if x = d this expression is

v(d) = |d− a|+ |d− b|+ |d− c| = 3d− a− b− c .
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Note that v(b) = v(c). The smallest of these three numbers is the minimum of the entire
expression over all x. We ask ourselves is v(a) < v(b) or

b+ c+ d− 3a < d+ c− a− b .

We can simplify the above to
b < a ,

which is not true. Thus we have learned that instead we must have v(b) > v(a).

Next we ask ourselves is v(b) < v(d) or

d+ c− a− b < 3d− a− b− c .

We can simplify the above to
c < d ,

which is true. Thus we have learned that instead we must have v(b) < v(d). In all cases
when a < b < c < d the smaller of the three numbers above is d+ c− a− b

Testing Question A.7

If a+ b > 0 then this expression is

a+ b = a− b or b = −b or b = 0 .

In this case our expression is |a| = a so a > 0. In this case we have ab = 0.

If a+ b < 0 then this expression is

−(a + b) = a− b or − a = a or a = 0 .

In this case our expression is |b| = −b so b < 0. In this case we have ab = 0.

Testing Question A.8

If a and b are integers then |a− b| ∈ {0, 1, 2, . . . } and for any x and y |x − y|19 ≥ 0. Thus
for the sum of these two terms to be equal to one can only happen if

|a− b|19 = 1 and |c− a|19 = 0 or (841)

|a− b|19 = 0 and |c− a|19 = 1 . (842)

If Equation 841 is true then a = c and a− b = ±1 so a = b± 1 and in summary we have

a = c = b± 1 .

This means that the value we want to evaluate is given by

|c− a|+ |a− b|+ |b− c| = 0 + 1 + 1 = 2 .
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If Equation 842 is true then a = b and c− a = ±1 so a = c± 1 and in summary we have

a = b = c± 1 .

This means that the value we want to evaluate is given by

|c− a|+ |a− b|+ |b− c| = 1 + 0 + 1 = 2 .

Testing Question A.9

Note that the first expression in absolute values can be written as

2a3 − 3a2 − 2a+ 1 = a(2a2 − 3a− 2) + 1

= a(2a+ 1)(a− 2) + 1 .

For a = 2009 everything in the above is positive so the expression given by the left-hand-side
is positive and we have

|2a3 − 3a2 − 2a+ 1| = 2a3 − 3a2 − 2a+ 1 .

The second expression in absolute values can be written as

2a3 − 3a2 − 3a− 2009 = a(2a2 − 3a− 3)− 2009

= a(2a2 − 3a− 2− 1)− 2009

= a(2a + 1)(a− 2)− a− 2009

= a(2a + 1)(a+ 2)− (a+ 2009) .

Now a + 2009 = 2a for the given value of a we are considering so

a(2a+ 1)(a+ 2)− (a + 2009) = a(2a+ 1)(a+ 2)− 2a = a[(2a+ 1)(a+ 2)− 2] > 0 .

Thus we have
|2a3 − 3a2 − 3a− 2009| = 2a3 − 3a2 − 3a− 2009 .

The expression we want to evaluate is given by

2a3 − 3a2 − 2a + 1− (2a3 − 3a2 − 3a− 2009) = a + 2010 = 4019 .

Testing Question A.10

From the given expression we know that

|x− a| − b = ±3 so |x− a| = b± 3 .

If we consider the positive term on the “three” we have

x− a = ±(b+ 3) so x = a± (b+ 3) .
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This has two solutions for x given by

{a+ b+ 3, a− b− 3} . (843)

If we consider the negative term on the “three” we have

x− a = ±(b− 3) so x = a± (b− 3) .

This has two solutions for x given by

{a+ b− 3, a− b+ 3} . (844)

From these it looks like there are four distinct solutions which would be the numbers

{b+ 3 ,−b− 3 , b− 3 ,−b+ 3} ,
with a added to each. As we are told that there are only three solutions to this expression
then two of these numbers must be the same. Now if |b| > 3 or |b| < 3 then these are four
distinct numbers and the hypothesis of the question are not satisfied. The only way we get
three distinct numbers from the above is if |b| = 3. If b = ±3 then the above set becomes

{6 ,−6 , 0} .
Thus b = ±3.

Testing Question B.1

As |xi| < 1 we have that
n∑

i=1

|xi| < n .

Thus from the expression given we have

49 +

∣
∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
∣
=

n∑

i=1

|xi| < n .

As |
∑n

i=1 xi| ≥ 0 and the above we see that

n > 49 +

∣
∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
∣
≥ 49 .

From the above we know that n > 49 so we might try and see if we can find n = 50 values
of xi that satisfy the given expression.

As n = 50 is an even number if we make the xi each have different signs (and the same
magnitude) then we can make

∑n
i=1 xi = 0. If we make them all have the same magnitude

(say x where x > 0) then we need to have
n∑

i=1

|xi| = xn = 49 ,

so x = 49
n
= 0.98 when n = 50. Thus we can satisfy the given equation if we take

xi =

{
±0.98 i even
∓0.98 i odd

.
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Testing Question B.2

As this expression tends to infinity as x → ±∞ the minimum must be in the interior of
the domain. Also note that this expression is piecewise linear on the interior of the domain
thus the minimum value must be at a point where one linear segment stops and another one
begins i.e. at one of the points {a1, a2, . . . , an}. Lets denote this expression as

E(x) =
n∑

k=1

|x− ak| ,

and use the notation Ek ≡ E(xk). To study this problem lets evaluate expression in the
question at the value ap for 1 ≤ p ≤ n. Based on the ordering of the aks this can be written
as

Ep =

p
∑

k=1

|ap − ak|+
n∑

k=p+1

|ap − ak|

=

p
∑

k=1

(ap − ak) +

n∑

k=p+1

(ak − ap) . (845)

Lets compare this to Ep+1 which is

Ep+1 =

p+1
∑

k=1

(ap+1 − ak) +

n∑

k=p+2

(ak − ap+1) .

Using these we compute the difference between them or

Ep+1 − Ep =

p+1
∑

k=1

(ap+1 − ak)−
p
∑

k=1

(ap − ak) +

n∑

k=p+2

(ak − ap+1)−
n∑

k=p+1

(ak − ap)

=

p
∑

k=1

(ap+1 − ak)−
p−1
∑

k=1

(ap − ak) +

n∑

k=p+2

(ak − ap+1)−
n∑

k=p+2

(ak − ap)− (ap+1 − ap)

= (ap+1 − ap) +

p−1
∑

k=1

(ap+1 − ap) +

n∑

k=p+2

(ap − ap+1)− (ap+1 − ap)

=

p
∑

k=1

(ap+1 − ap)−
n∑

k=p+1

(ap+1 − ap)

= p(ap+1 − ap)− (n− p− 1 + 1)(ap+1 − ap)

= (ap+1 − ap)(2p− n) . (846)

Now as ap+1 − ap > 0 for all p we see that the sign of the above difference only depends on
the sign of 2p − n. If p < n

2
then Ep+1 − Ep < 0 and if p > n

2
then Ep+1 − Ep > 0. This

means that when p < n
2
we have Ep+1 < Ep so Ep is decreasing in that range and then once

p > n
2
that Ep+1 > Ep so that Ep is then increasing in that range. The smallest value of Ep

is then when p is as close as it can be to n
2
.
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If n is even then the smallest value will be at En
2
. If n is odd then we need to find the smaller

of
E⌊n

2
⌋ or E⌈n

2
⌉ .

Using Equation 846 we see that if p = ⌊n
2
⌋ then

Ep+1 − Ep = (ap+1 − ap)
(

2⌊n
2
⌋ − n

)

< (ap+1 − ap)
(

2
(n

2

)

− n
)

= 0 .

Thus
E⌊n

2
⌋+1 > E⌊n

2
⌋ .

As
⌈n
2
⌉ = ⌊n

2
⌋+ 1 ,

we have just shown that
E⌈n

2
⌉ > E⌊n

2
⌋ .

Thus when n is odd the smallest value of E(x) is

E⌊n
2
⌋ .

Testing Question B.3

The sign of the absolute values “change” when x = 4
5
and x = 1

3
. Thus if x < 1

3
this

expression is
2x+ 4− 5x+ (1− 3x) + 4 = −6x+ 8 ,

which is not a constant. If 1
3
< x < 4

5
this expression is

2x+ 4− 5x− (1− 3x) + 4 = 7 ,

which is a constant.

Testing Question B.4

Using a + b + c = 0 we have that b + c = −a, a + c = −b, and a + b = −c. Thus x can be
written

x =
|a|
−a +

|b|
−b −

|c|
−c = −|a|

a
− |b|

b
+

|c|
c
. (847)

From the definition of |v| note that

|v| =
{

v v > 0
−v v < 0

,

so
|v|
v

=

{
1 v > 0
−1 v < 0

= sign(v) .
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Thus we can write x as
x = −sign(a)− sign(b) + sign(c) . (848)

In order for a + b + c = 0 we cannot have all of the be of the same sign. Thus at least one
of the numbers must be of a different sign than the other three. Enumerating the possible
signs that a, b, and c and take (and then computing the value of x based on Equation 847)
we have

a > 0 , b > 0 , c < 0 so x = −1− 1− 1 = −3

a > 0 , b < 0 , c > 0 so x = −1 + 1 + 1 = +1

a < 0 , b > 0 , c > 0 so x = +1− 1 + 1 = +1

a < 0 , b < 0 , c > 0 so x = +1 + 1 + 1 = +3

a < 0 , b > 0 , c < 0 so x = +1− 1− 1 = −1

a > 0 , b < 0 , c < 0 so x = −1 + 1− 1 = −1 .

Given these values for x we could then evaluate the given expression.

Testing Question B.5

By running the code LNOMOC Vol 1 Lecture 7 B 5.py for several values of n that it looks
like this value should be equal to n2. Here n = 100 so this value would be 1002.
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Lecture 8: Linear Equations with Absolute Values

Testing Question A.1

This is equivalent to

5x− 4 = 3 + 2x or 5x− 4 = −(3 + 2x) .

Solving each we get

x =
7

3
and x =

1

7
.

Testing Question A.2

Notice that the absolute values on the left-hand-side change their sign when a = −7
2
or

a = 1
2
.

Now if a < −7
2
our expression is

−(2a+ 7)− (2a− 1) = 8 .

Solving this we get a = −7
2
which is not an integer.

Now if −7
2
< a < 1

2
then our expression is

2a+ 7− (2a− 1) = 8 .

This simplifies to an identity. The integer values of a in the domain above are a ∈ {−3,−2,−1, 0}.

Now if a > 1
2
then our expression is

2a + 7 + (2a− 1) = 8 .

This simplifies to a = 1
2
which is not an integer.

Testing Question A.3

From the given expression we have that

x− |2x+ 1| = ±3 .

Now if 2x+ 1 ≥ 0 (or x ≥ −1
2
) then the above expression is

x− (2x+ 1) = ±3 .

This has two solutions x = −4 and x = 2. Only the solution x = 2 is larger than −1
2
.
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If 2x+ 1 < 0 (or x < −1
2
) then the above expression is

x+ (2x+ 1) = ±3 .

This has two solutions x = −4
3
and x = 2

3
. Only the solution x = −4

3
is less than −1

2
.

Thus this expression has two solutions.

Testing Question A.4

In the case where x < 0 our equation is

−x = ax+ 1 ,

which has a solution (a 6= −1) given by

x = − 1

1 + a
.

This will be negative (and give a single solution) if

− 1

1 + a
< 0 or a > −1 .

In the case when x ≥ 0 our equation is

x = ax+ 1 .

If a 6= 1 then a solution is given by

x =
1

1− a
.

This will be a positive solution if a < 1. To not have a positive solution we must take a ≥ 1.

Combining these two conditions (a > −1 and a ≥ 1) we must have a ≥ 1.

Testing Question A.5

As the right-hand-side is equal to an absolute value we know that a ≥ 0. We can write our
given expression as

|x− 2| − 1 = ±a ,
or

|x− 2| = 1± a .

We must have 1 ± a ≥ 0 so 1 − a ≥ 0 so we have learned that a ≤ 1. From the above we
have that

x = 2± (1± a) .
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For general a the above would give four solutions (two for the first ± and for each of these
we get two from the second ±). If a = 1 we see that

|x− 2| ∈ {0, 2} .

If |x − 2| = 0 then x = 2. If |x − 2| = 2 then x − 2 = ±2 so x ∈ {0, 4} and we have three
total solutions for x.

Testing Question A.6

When x < 0 our equation is

− ax

2008
− x− 2008 = 0 .

Solving for x we get

x = − 20082

a+ 2008
.

This will be negative solution if a > −2008.

When x > 0 our equation is
ax

2008
− x− 2008 = 0 .

Solving for x we get

x =
20082

a− 2008
.

This will be positive solution if a > 2008.

To only have one negative solution (and no positive solutions) we must have a > −2008 and
a ≤ 2008. Thus the valid range for a is

−2008 < a ≤ 2008 .

Testing Question A.7

For (ii) to have only one solution means that

|4x− 5| = −3n = 0 ,

so that n = 0.

For (i) to have no solutions means that

|3x− 4| = −2m < 0 ,

so that m > 0.
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For (iii) to have two solutions means that

|5x− 6| = −4k > 0 ,

so that k < 0.

Taking these together we get that k < n < m.

Testing Question A.8

From the first equation if x ≥ y then we get

x− y = x+ y − 2 or y = 1 .

Thus we have that x ≥ 1 and putting y = 1 in the second equation gives

|x+ 1| = x+ 2 ,

or
x+ 1 = x+ 2 or x+ 1 = −(x+ 2) .

The first of these has no solution and the second has the solution x = −3
2
which violates the

condition that x ≥ 1. Thus there is no solution when x ≥ y.

If x < y then the first equation is

−x+ y = x+ y − 2 or x = 1 .

Then to have x < y means that 1 < y and the second equation gives

|1 + y| = 3 ,

or
1 + y = −3 or 1 + y = 3 .

The first of these has the solution y = −4 and the second has the solution y = 2. Only the
second solution satisfies 1 < y so the only solution is (x, y) = (1, 2).

Testing Question A.9

Let v = |x| then
v2 + v − 6 = 0 or (v + 3)(v − 2) = 0 .

This means that v = −3 or v = 2. We know that v ≥ 0 so the only solution is v = |x| = 2.
Thus x = ±2 and the sum is zero.
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Testing Question A.10

From the second equation we have y = 6− 2x. Putting this in the first equation we get

x+ 3(6− 2x) + |3x− 6 + 2x| = 19 ,

or
−5x+ |5x− 6| = 1 .

If 5x− 6 ≥ 0 (or x ≥ 6
5
) this is −6 = 1 which means there is no solution for this range of x.

If 5x− 6 < 0 (or x < 6
5
) this is

−10x = −5 or x =
1

2
.

For this value of x we have y = 6− 1 = 5. Thus the only solution is (x, y) =
(
1
2
, 5
)
.

Testing Question B.1

The sign of the expression in the absolute value in the first equation changes when

x− 2y = 0 .

It is positive when

x− 2y ≥ 0 or y ≤ 1

2
x .

The expression y = 1
2
x is a line above and below which |x − 2y| has different expressions.

Thus we will break the x-y plane up into regions where x, y, and x−2y are of known signs. If
you draw the line y = 1

2
x in the x-y plane I’ve numbered these regions I , II , III , IV , V , V I

counterclockwise.

Now region I is

x ≥ 0 , y ≥ , y ≥ 1

2
x ,

and the equations become

−(x− 2y) = 1

x+ y = 2 .

This has the solution (x, y) = (1, 1). This solution falls in this region and so is a valid
solution to the absolute value system.

Next, region II is

x < 0 , y ≥ , y ≥ 1

2
x ,
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and the equations become

−(x− 2y) = 1

−x+ y = 2 .

This has the solution (x, y) = (−3,−1). This solution is outside of this region and is not a
solution to the absolute value system.

Next, region III is

x < 0 , y < 0 , y ≥ 1

2
x ,

and the equations become

−(x− 2y) = 1

−x− y = 2 .

This has the solution (x, y) =
(
−5

3
,−1

3

)
. This solution is in the given region and is a solution

to the absolute value system.

Next, region IV is

x < 0 , y < 0 , y <
1

2
x ,

and the equations become

x− 2y = 1

−x− y = 2 .

This has the solution (x, y) = (−1,−1). This solution is in the given region and is a solution
to the absolute value system.

Next, region V is

x ≥ 0 , y < 0 , y <
1

2
x ,

and the equations become

x− 2y = 1

x− y = 2 .

This has the solution (x, y) = (3, 1). This solution is not in the given region and is not a
solution to the absolute value system.

Finally, region V I is

x ≥ 0 , y ≥ 0 , y <
1

2
x ,

and the equations become

x− 2y = 1

x+ y = 2 .
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This has the solution (x, y) =
(
5
3
, 1
3

)
. This solution is in the given region and is thus a

solution to the absolute value system.

In summary then the solutions to the absolute value system are

(1, 1) ,

(

−5

3
,−1

3

)

, (−1,−1) ,

(
5

3
,
1

3

)

.

Testing Question B.2

The first absolute value is easy to remove and we must have

|||x− 1| − 1| − 1| = 1 .

Removing one more gives
||x− 1| − 1| − 1 = ±1 ,

or
||x− 1| − 1| = 1± 1 .

The two possible values for the right-hand-side are {0, 2} and we have two equations

||x− 1| − 1| = 0 (849)

||x− 1| − 1| = 2 . (850)

Equation 849 is easier to solve and we have

|x− 1| = 1 .

This means that
x− 1 = ±1 or x ∈ {0, 2} .

Equation 850 becomes
|x− 1| − 1 = ±2 .

This would mean that
|x− 1| ∈ {−1, 3} .

As the left-hand-side must be positive we have |x− 1| = 3 only so that

x− 1 = ±3 .

This has the two solutions x ∈ {−2, 4}. Thus the full set of solutions is

x ∈ {−2, 0, 2, 4} .

We can verify that these solutions are valid with the simple R code
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eval_fn = function(x){

v = x

for( ii in 1:4 ){

v = abs(v-1)

}

v

}

print(sapply(c(-2, 0, 2, 4), eval_fn))

which gives a vector of four zeros.

Testing Question B.3

We square both sides of this expression to get

a2 − 2(a+ b)|a|+ (a + b)2 < a2 − 2a|a+ b|+ (a + b)2 .

If we cancel common terms we get

−(a+ b)|a| < −a|a+ b| ,

or
(a+ b)|a| > a|a+ b| .

From this we see that a 6= 0 and a+ b 6= 0 or else the above inequality would be an equality.
Dividing by |a| we get

a+ b >
a

|a| |a+ b| .

If a > 0 then this would be
a+ b > |a+ b| ,

which is not possible for any sign (positive or negative) for a+ b. Thus we must have a < 0
and the above becomes

a + b > −|a + b| .
If a+ b > 0 then this is true while if a+ b < 0 it is not. Thus a+ b > 0 so b > −a. As a < 0
this means that b > 0. In summary then, the conditions are a < 0 and b > 0.

Testing Question B.4

Part (i): If we assume that 2 < 52a we can look for solutions x where x might be x < 2,
2 < x < 52a, or x > 52a. In the first case where we assume that x < 2 we get every x is
a solution if and only if 52a = 2 which is a contradiction to the assumption that 2 < 52a.
In a similar way we also have no solutions if we assume that x > 52a. If we assume that
2 < x < 52a the given equation is

1

x− 2
= − 1

x− 52a
,
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or
x− 52a = −x+ 2 .

Solving for x we get

x =
1

2
(52a+ 2) = 26a+ 1 .

Notice that this is the midpoint between the two locations x = 2 and x = 52a. This is the
only solution to this equation.

Part (ii): If a is the square of an odd prime then a = p2 where p is an odd prime. This
means that

x = 26p2 + 1 .

If p = 3 this is 235 which is composite (as it is divisible by five). I’m not sure how to show
this in the general odd prime case where p = 2k + 1 for k ≥ 1. Using that expansion gives

x = 26(2k + 1)2 + 1 = 104k2 + 104k + 27 ,

which I can’t prove factors. If anyone sees anything I’ve missed please contact me.
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Lecture 9: Sides and Angles of a Triangle

Example 5 Notes

From the given diagram and the property that isosceles triangles have equal angles from
their base to their legs we have that

∠BCD = 180− 2(2β) = 180− 4β .

Next note that as ∠ACB = β we have

∠DCE = 180− ∠ACB − ∠BCD

= 180− β − (180− 4β) = 3β .

This process can be continued in each triangle until we get to the angle α.

Example 6 Notes

Now in △BGC we have

∠BGC + ∠GBC + ∠GCB = 180 .

Next we will break the angles ∠GBC and ∠GCB into parts as

∠GBC = ∠GBD + ∠DBC

∠GCB = ∠GCD + ∠DCB ,

to get
∠BGC + ∠GBD + ∠DBC + ∠GCD + ∠DCB = 180 .

To use this note that
∠DBC + ∠DCB = 180− 150 = 30 , (851)

and that
∠BGC = 100 ,

which means that
100 + ∠GBD + ∠GCD + 30 = 180 ,

or
∠GBD + ∠GCD = 50 .

From the fact that the problem gives us angle bisectors have that

∠ABD + ∠ACD = 2∠GBD + 2∠GCD = 2(50) = 100 .

Thus for ∠A we have

∠A = 180− ∠ABC − ∠ACB

= 180− (∠ABD + ∠DBC)− (∠ACD + ∠DCB)

= 180− (∠ABD + ∠ACD)− (∠DBC + ∠DCB)

= 180− 100− 30 = 50 .

In the above we have used Equation 851 to evaluate ∠DBC + ∠DCB.
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Example 7 Notes

Introduce the angles as suggested in the problem. Now note that β = 2γ from the fact that
opposite angles are congruent and BE bisects the external angle at B. Next we have that

β = α + δ ,

from the exterior angle theorem in the triangle △ABC at vertex B. Next

δ = α + γ ,

from the exterior angle theorem in the triangle △BCE at vertex C. Finally from triangle
△AEB as the external angle at B is β − γ we have that

β − γ = ∠BEA+ ∠BAC

= α + α = 2α .

This means that
β = γ + 2α .

As we know that β = 2γ when we use this in the above we get

γ = 2α .

Next summing all of the angles in the triangle △ADB we get

∠DAB + 2β = 180 ,

or
1

2
(180− α) + 2β = 180 .

This is equivalent to

−α
2
+ 2β = 90 .

Let now write this expression in terms of the variable γ by using the facts that α = γ
2
and

β = 2γ to get

−γ
4
+ 4γ = 90 .

Solving this we get γ = 24. Using this we have that

∠A = α =
γ

2
= 12 .

Testing Question A.1

The sum of all the interior angles in a convex n-sided polygon is 180(n− 2). Thus we need
to have

180(n− 2) < 2007 ,
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so

n− 2 <
2007

180
= 11.15 .

If n is an integer n− 2 will also be one and so we must have

n− 2 ≤ 11 ,

so n ≤ 13. The maximum value for n is n = 13.

Testing Question A.2

We draw triangle △ABC with AC on the x-axis and B “above” the segment AC. Introduce
the “base” angles of several isosceles triangles as

α = ∠QAP

β = ∠B

γ = ∠C .

Then because the various equal segments produce a number of isosceles triangles we have

∠BPQ = β

∠AQP = α

∠CPA = γ .

From the fact that supplemental angles sum to 180 degrees we have that

∠BQP = 180− α ,

From the fact that the sum of the angles in a triangle sum to 180 degrees we have that

∠QPA = 180− 2α

∠PAC = 180− 2γ .

Now as AB = BC we have
∠BAC = ∠BCA ,

or
α + (180− 2γ) = γ ,

or
α+ 180 = 3γ . (852)

To get a second relationship relating α, β, and γ note that ∠BQP = 180 − 2β. We can
also evaluate ∠BQP by recognizing that it is the external angle of the vertex Q in triangle
△QPA and thus we can also write it as

∠BQP = α + ∠QPA = α + (180− β − γ) .

Using both of these expressions we have

∠BQP = 180− 2β = α + 180− β − γ ,
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which is equivalent to
γ = α + β . (853)

We would like to get one more equation involving the three unknowns α, β, and γ. To do
that we will use the fact that the sum of the angles in △BQP is 180 degrees so

2β + (180− α) = 180 ,

so
α = 2β . (854)

From Equation 853 this means that γ = 3β. Using these two expressions in Equation 852
we get

2β + 180 = 9β .

Solving this we get β = 180
7

= 25 5
7
.

Testing Question A.3

We draw this triangle with the right angle C at the origin of an x-y Cartesian coordinate
system, the segment AC along the y-axis, the segment CB along the x-axis, and finally the
points E and F on the hypotenuse AB in the order A, F , E, and B. Note that in placing
the points E and F we know that there is not a “gap” between E and F because if you draw
the triangle that way (with points in the order A, E, F , and then B) and using the equal
lengths given in this question we would have

AB = AE + EF + FB = AC + CB + EF ,

so that as EF > 0 we see that
AB > AC + CB ,

which violates the triangle inequality.

Lets draw segments to introduce angles that are the base angles for isosceles triangles. If we
draw the segments CF and CE then as AC = AE we introduce α as

∠ACE = ∠AEC = α .

As BC = BF we introduce β as

∠BCF = ∠BFC = β .

Now in triangle △FCE we have

∠FCE = 180− α− β .

As ∠ACB = 90◦ we get

90 = α + β − ∠FCE = α + β − (180− α− β) .

This simplifies to
α+ β = 135 . (855)

This means that
∠FCE = 180− (α + β) = 180− 135 = 45 .
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Testing Question A.4

Let the three integer sides be a, b, and c such that a ≥ b ≥ c and that

a + b+ c = 17 . (856)

From this as we have

17 = a+ b+ c ≥ 3c so c ≤ 17

3
< 6 .

Thus we have found that c ≤ 5. We also know that by the triangle inequality that

a− b < c . (857)

To count the number of triangles with the desired conditions we will take c ∈ {1, 2, 3, 4, 5}
and see how many triangles with that value of c exist.

If c = 1 then Equation 856 gives
a + b = 16 ,

and Equation 857 gives
a− b < 1 .

The integer solutions to the above we are looking for are when a−b = 0 which give a = b = 8
and only one triangle with this value of c.

If c = 2 then Equation 856 gives
a + b = 15 ,

and Equation 857 gives
a− b < 2 .

The integer solutions to the above we are looking for are when a − b ∈ {0, 1}. This gives
two systems of equations to solve. The only integer solutions are when a− b = 1 and we get
a = 8 and b = 7 and only one triangle with this value of c.

If c = 3 then Equation 856 gives
a + b = 14 ,

and Equation 857 gives
a− b < 3 .

The integer solutions to the above we are looking for are when a− b ∈ {0, 1, 2}. This gives
three systems of equations to solve. The only integer solutions are when a − b = 0 (where
a = b = 7) and when a− b = 2 (where a = 8 and b = 6). Thus there are two valid triangle
when c = 3.

If c = 4 then Equation 856 gives
a + b = 13 ,

and Equation 857 gives
a− b < 4 .
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The integer solutions to the above we are looking for are when a− b ∈ {0, 1, 2, 3}. This gives
four systems of equations to solve. The only integer solutions are when a − b = 1 (where
a = 7 and b = 6) and when a − b = 3 (where a = 8 and b = 5). Thus there are two valid
triangle when c = 4.

If c = 5 then Equation 856 gives
a + b = 12 ,

and Equation 857 gives
a− b < 5 .

The integer solutions to the above we are looking for are when a − b ∈ {0, 1, 2, 3, 4}. This
gives five systems of equations to solve. One can show that the only integer solutions are
when a − b =∈ {0, 2, 4} with roots (a, b) = (6, 6), (a, b) = (7, 5), and (a, b) = (8, 4). Thus
there are three valid triangle when c = 5.

Adding up all of these there are

1 + 1 + 2 + 2 + 3 = 9 ,

triangles of the given form.

Testing Question A.5

We are told that a < b < c with b = 2 so that

a < 2 < c .

For a to be a positive integer means that a = 1 is the only solution to the above inequality
and we have

1 < 2 < c .

By the triangle inequality we must have

c < 1 + 2 = 3 .

To be an integer this means that c ∈ {1, 2} but neither of these will satisfy 1 < 2 < c and
thus there are no integer solutions of this requested form.

Testing Question A.6

Let m be the length of the hypotenuse and n the length of the unknown side. Then we must
have

m2 = n2 + 212 ,

or
m2 − n2 = 32 · 72 ,
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or
(m− n)(m+ n) = 32 · 72 .

Lets see for which values of m and n will this be satisfied.

• If m− n = 1 then m+ n = 32 · 72 = 441.

• If m− n = 3 then m+ n = 3 · 72 = 147.

• If m− n = 32 = 9 then m+ n = 72 = 49.

• If m− n = 32 = 3 · 7 = 21 then m+ n = 3 · 7 = 21.

We can stop there since valid solutions must have m− n < m+ n (not all of the ones listed
above will be valid). We can solve all of these systems for the value of m and n and then look
at the solution that gives the smallest perimeter. Another way is note that the perimeter
can be written as

21 +m+ n ,

and thus the smallest value for this will have m+n the smallest. From the above the smallest
happens when m+ n = 49 which gives a minimum perimeter of 21 + 49 = 70.

Testing Question A.7

We draw this figure with the segment AD on the x-axis with points from left-to-right in the
order A, B, then D. The point E is above D and to the right of it so that ∠ADE = 140◦.
Let

α = ∠EAD .

Then as AB = BC we have ∠ACB = α and ∠ABC = 180− 2α. Next note that

∠CBD = 180− ∠ABC = 180− (180− 2α) = 2α .

Then as BC = CD we have ∠BDC = ∠CBD = 2α and

∠BCD = 180− 2(2α) = 180− 4α .

Next as
∠ACB + ∠BCD + ∠DCE = 180 ,

we have
∠DCE = 180− α− (180− 4α) = 3α .

Then as CD = DE we have
∠DEC = ∠DCE = 3α ,

and
∠CDE = 180− 2(3α) = 180− 6α .

Now are are told the angle measure of

∠ADE = ∠ADC + ∠CDE = 2α + (180− 6α) = 180− 4α .

Setting this equal to 140◦ we solve for α and find α = 10◦.
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Testing Question A.8

Draw this triangle with its base BC along the x-axis and the point A above the segment
BC. Lets draw the segments FD, FE, and DE. As AB = AC we have

∠ABC = ∠ACB =
180− ∠BAC

2
=

180− 80

2
= 50 .

As BD = BF we get

∠BDF = ∠BFD =
180− ∠FBD

2
=

180− 50

2
= 65 .

In the same way
∠EDC = ∠DEC = 65 .

Thus we have

∠EDF = 180− ∠FDB − ∠EDC = 180− 2(65) = 50 .

Testing Question A.9

Let the sides of the triangle be b− 1, b, and b+ 1 for some integer b. Then we are told that

3b ≤ 100 ,

so

b ≤ 33
1

3
.

As b is a positive integer we have learned that b ≤ 33. The triangle inequality used as

(b− 1) + b > b+ 1 so b > 2 .

Thus we have learned that b ≥ 3. As the triangle must be acute means that the angle
opposite the largest side is less than π

2
. If θ is this angle this means that

cos(θ) < 1 .

Using the law of cosigns we have that

(b+ 1)2 = b2 + (b− 1)2 − 2b(b− 1) cos(θ) ,

so as cos(θ) < 1 this means that

(b+ 1)2 < b2 + (b− 1)2 .

Expanding and simplifying this can be written as

b(b− 4) > 0 .

This means that b > 4. Thus we have learned that b ≥ 5.

Combining what we know we have that 5 ≤ b ≤ 33 which is 33− 5 + 1 = 29 triangles.
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Testing Question A.10

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

To start we will define the angles θ ≡ ∠ACB and φ ≡ ∠BDA. Then as AB = AC we know
that ∠ABC = ∠ACB = θ. As AB = BD we know that ∠BAD = ∠BDA = φ.

Using the right triangle △AED we have ∠EAD = π
2
− φ. Then using triangle △ABC we

have
∠BAC = π − 2∠BCA = π − 2θ .

Next we can write
∠BAC + ∠CAD = ∠BAD = ∠BDA = φ ,

as
π − 2θ +

π

2
− φ = φ ,

or
3π

2
= 2φ+ 2θ .

This means that

∠C + ∠D = θ + φ =
3π

4
= 135◦ .

Testing Question B.1

Draw the triangle with the AC side along an x-axis and the vertex B above. Draw the angle
bisector of ∠A as the segment AE. Draw the segment BD intersecting AE at H .

To solve this problem draw the segment CH . Then let the areas of the following triangles
be denoted as

S0 ≡ Area(△BHE)
S1 ≡ Area(△BHA)
S2 ≡ Area(△AHD)

S3 ≡ Area(△DHC)
S4 ≡ Area(△CHE) .

Lets assume that S0 = 1. Then from

AH

HE
=

3

1
so S1 = 3S0 = 3 .

From
BH

HD
=

5

3
,
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we have

HD =
3

5
BH ,

so

S2 =
3

5
S1 =

9

5
.

We now want to compute S3 and S4. From △AEC we have

S2 + S3

S4

=
AH

HE
= 3 .

From △BDC we have
S3

S0 + S4
=
HD

BH
=

3

5
.

Using what we know about S0 = 1 and S2 =
9
5
we get

9

5
+ S3 = 3S4 , (858)

and

S3 =
3

5
(1 + S4) . (859)

Solving these two we find S3 =
6
5
and S4 = 1. These then mean that

S1 + S0 = 4

S2 + S3 + S4 =
9

5
+

6

5
+ 1 = 4 .

Since this means that the areas of the triangles △AEB and △AEC are equal and since they
share a common side we must have CE = BE and AB = AC. The later expression means
that the triangle △BAC is isosceles. This means that

∠C = ∠B =
1

2
(180− ∠A) =

1

2
(180− 70) = 55 .

Testing Question B.2

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with.

From the diagram let ∠B = β and ∠ACD = γ. As the sums of the angles in a triangle must
equal 180 degrees we have

∠ACB = 180− β − 96 = 84− β .

Next from the exterior angle theorem we have

γ = β + 96 .

1179



Using the three angles in △BA1C we have

∠A1 = 180− β

2
−
(

84− β +
γ

2

)

= 96 +
1

2
(β − γ) = 96 +

1

2
(−96) =

96

2
= 48 .

Using the three angles in △BA2C we have

∠A2 = 180− β

22
−
(

84− β +

(

1− 1

22

)

γ

)

.

From the above it looks like the general pattern is

∠An = 180− β

2n
−
(

84− β +

(

1− 1

2n

)

γ

)

= 96− β

2n
+ β −

(

1− 1

2n

)

γ

= 96 +

(

1− 1

2n

)

β +

(

1− 1

2n

)

γ

= 96 +

(

1− 1

2n

)

(β − γ)

= 96 +

(

1− 1

2n

)

(−96) =
96

2n
.

Using this we find that ∠A5 =
96
25

= 3.

Testing Question B.3

Draw this figure with BC on the x-axis and the vertex A “above” this segment. Draw the
smaller triangle △DEF inside this larger one. Then as the triangle △DEF has all equal
sides each angle is 60◦. Define

∠ADF = α

∠CEF = β

∠DEB = γ .

Then using supplementary angles we have

∠BDE = π − π

3
− α

∠FEC = π − π

3
− γ

∠AFD = π − π

3
− β .
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As all three angles in a triangle must sum to 180 degrees we have

∠A = π − ∠ADF − ∠AFD = π − α−
(

π − π

3
− β

)

= −α + β +
π

3

∠B = π − ∠BDE − ∠DEB = π −
(

π − π

3
− α

)

− γ = α− γ +
π

3

∠C = π − ∠FEC − ∠EFC = π −
(

π − π

3
− γ
)

− β = γ − β +
π

3
.

As AB = AC we know that ∠B = ∠C or

π

3
+ α− γ =

π

3
+ γ − β ,

or

γ =
1

2
(α + β) ,

which is the expression we wanted to derive.

Testing Question B.4

For this diagram we will draw the triangle △ACB with vertex C at the origin of the x-y
plane, vertex A on the y-axis above C, and vertex B on the x-axis. Then vertex E is between
C and B and vertex D is on the hypotenuse connecting A and B.

Using similar triangles we have that △ACB ∼ △DEB so that

AC

DE
=
CB

EB
=
AB

DB
.

As there are a lot of variables in the above equations lets try to simplify the above by writing
it using only variables in the larger triangle. As DB = 1

2
we have AB

DB
= 2AB. Next as we

are told that DE = 1− BC and EB = AC the above can be written as

AC

1− BC
=
BC

AC
= 2AB . (860)

Using the Pythagorean theorem in the right triangle △ACB we have

AC2 +BC2 = AB2 . (861)

From Equation 860 we get
AC2 = BC(1− BC) ,

which if we put this into Equation 861 we get

BC(1− BC) +BC2 = AB2 ,

or
AB2 = BC .
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Using this in Equation 860 (specifically BC
AC

= 2AB) we get

AB2

AC
= 2AB ,

or
AB = 2AC ,

so that
AC

AB
=

1

2
= sin(∠B) .

This means that ∠B = 30◦.
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Lecture 10: Pythagoras’ Theorem and Its Applications

Example 5 Notes

Drop AD perpendicular to BC as shown in the diagram in the text. Then using the
Pythagorean theorem in the “left” right triangle we have

AB2 = (BM +MD)2 + AD2 = BM2 + 2BM ·MD +MD2 + AD2 . (862)

Using the Pythagorean theorem in the triangle △MDA gives

MD2 + AD2 = AM2 . (863)

Using this we have
AB2 = BM2 + AM2 + 2BM ·MD .

Also another application of the Pythagorean theorem (this time in the “right” right triangle)
gives

AC2 = CD2 + AD2 = (CM −DM)2 + AD2 = CM2 − 2CM ·DM +DM2 + AD2 .

Using Equation 863 this becomes

AC2 = CM2 + AM2 − 2CM ·DM (864)

If we add Equations 862 and Equations 864 then we get

AB2 + AC2 = 2BM2 + 2AM2 ,

as BM = CM .

Testing Question A.1

Method 1: Let BC be along the x-axis with B to the left of C and A above BC. Connect
A to D with a segment and also drop a vertical from A to BC to a point E. Then we have

BD2 + CD2 = (BE −DE)2 + (DE + CE)2

= BE2 − 2BE ·DE +DE2 +DE2 + 2DE · CE + CE2 .

Now
DE2 = AD2 − AE2 ,

so the above is

BD2 + CD2 = 2(AD2 − AE2) +BE2 − 2BE ·DE + 2DE · CE + CE2 .

Now as AE is perpendicular to BC and ∠ABC = ∠ACB = 45◦. This means that ∠BAE =
∠CAE = 45◦. This means that △ABE and △ACE are isosceles right triangles. This means
that

BE = AE = EC .
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Using this we have
−2BE ·DE + 2DE · CE = 0 .

So back to the above expression we have

BD2 + CD2 = 2AD2 − 2AE2 +BE2 + CE2 = 2AD2 ,

as we were to show.

Method 2: Draw the right triangle △CAB with the right angle at A in the x-y Cartesian
coordinate plane with the point A = (0, 0), B = (L, 0), and C = (0, L). A point (x, y) on
the line between the points BC is given by the equation

y = L+

(
0− L

L− 0

)

(x− 0) = L− x .

Let the point D be on this line so that D = (x, L−x). Then the Euclidean distance formula
gives

AD2 = x2 + (L− x)2

BD2 = (x− L)2 + (L− x)2 = 2(L− x)2

CD2 = (0− x)2 + (L− L+ x)2 = 2x2 .

Thus from these we see that
BD2 + CD2 = 2AD2 ,

as we were to show.

Testing Question A.2

Let a be a leg length along the x-axis and b a leg length along the y-axis in a right triangle.
Then we are told that

a+ b+
√
a2 + b2 = 30 , (865)

and
1

2
ab = 30 ⇒ ab = 60 . (866)

If we square the first equation we get

(a + b)2 + 2(a+ b)
√
a2 + b2 + (a2 + b2) = 900 ,

or
2a2 + 2b2 + 2(a+ b)

√
a2 + b2 = 900− 2ab ,

or using what we know about ab this is

2a2 + 2b2 + 2(a+ b)
√
a2 + b2 = 900− 120 = 780 .

Dividing this by two we get

a2 + b2 + (a+ b)
√
a2 + b2 = 390 .

1184



If we write this in terms of c =
√
a2 + b2 we have

c2 + (30− c)c = 390 .

We can solve this for c where we find c = 13. Then using that in Equation 865 we have
a+ b = 17. Next using Equation 866 as b = 60

a
into that gives

a +
60

a
= 17 ,

or
a2 − 17a+ 60 = 0 ,

or
(a− 5)(a− 12) = 0 .

This means that the solutions for a are a ∈ {5, 12}. Using this in a + b = 17 means that
b ∈ {12, 5}. This means that the sides of the triangle are 5, 12, and 13.

Testing Question A.3

Let the the segment AB be along the x-axis and C “above” the segment AB. As △ACB is
a right triangle we have

BC2 = AB2 − AC2 = 225− 81 = 144 so BC = 12 .

As BD : DC = 5 : 3 we have

BD =
5

8
(12) =

15

2

DC =
3

8
(12) =

9

2
.

Now using the right triangle △ACD we have

AD2 = AC2 + CD2 = 81 +
81

4
=

405

4
so AD =

9

2

√
5 .

From the point D drop a vertical to the segment AB intersecting at E. Then as ∠CAD =
∠DAB we have

△ACD ∼ △AED .

This means that
ED

DC
=
AD

AD
= 1 ⇒ ED = DC =

9

2
.

Note in solving this problem we didn’t actually need the length AD.
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Testing Question A.4

Let the the segment AB be along the x-axis and C “above” the segment AB. From the
problem statement D is on AB and E is on CB. As D is on the perpendicular bisector of
AB we have

AD = DB =
1

2
AB = 3

√
5 .

As ∠ACB = 90◦ we have

AB =
√
BC2 + AC2 =

√
144 + 36 =

√
180 = 6

√
5 .

As △BDE ∼ △BCA we have
BE

DB
=
AB

CB
,

or
BE

3
√
5
=

6
√
5

12
so BE =

15

2
.

Using that length we have that

CE = BC − BE = 12− 15

2
=

9

2
.

Testing Question A.5

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with.

The Pythagorean theorem applied to the diagonal of the rectangle ABCD gives

AC2 = AB2 +BC2 = BD2 .

Using the Pythagorean theorem again in the right triangles △DEC and △CEB gives

DE2 + 25 =
9

16
BD2 + 25 = CD2 ,

and

EB2 + 25 =
1

16
BD2 + 25 = BC2 .

If we next add these two equations together we get

10

16
BD2 + 50 = CD2 +BC2 .

In this note that the right-hand-side is BD2 again thus

50 =
6

16
BD2 ⇒ BD =

20√
3
,

which is also the length AC.
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Testing Question A.6

Draw the right triangle △ACB with AC on the y-axis and CB on the x-axis and D the
midpoint of AC. Then the Pythagorean theorem in the triangle △ACB is

AB2 = AC2 +BC2

= (AD +DC)2 +BC2 ,

but since AD = DC we can let AD +DC = 2DC to get

AB2 = 4DC2 +BC2

= 4(DC2 +BC2)− 3BC2 .

Now the Pythagorean theorem in triangle △DCB is

DC2 +BC2 = BD2 .

Using this in the above we get

AB2 + 3BC2 = 4BD2 ,

as we were to show.

Testing Question A.7

Draw the right triangle △ACB with AC on the y-axis and CB on the x-axis. The points
D and E are placed on BC and AC respectively.

Now consider the left-hand-side of the given expression. We have

AD2 +BE2 = AC2 + CD2 + EC2 + CB2

But in △ACB we have
AC2 + CB2 = AB2 ,

and in △ECD we have
CD2 + EC2 = BDDE2 .

Using these in the above we get

AD2 +BE2 = AB2 +DE2 .

Testing Question A.8

Let the triangle △ABC have BC along the x-axis with A “above” that segment. From A
drop a vertical to BC intersecting at D.
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Recall that mi is defined as
mi = AP 2

i +BPiPiC .

Now we can write BPi and PiC as

BPi = BD −DPi ,

and
PiC = DC +DPi .

As triangle △ABC is isosceles we know that BD = DC thus we can write mi as

mi = AP 2
i + (BD −DPi)(BD +DPi)

= AP 2
i +BD2 +BD ·DPi − BD ·DPi −DP 2

i

= BD2 + AP 2
i −DP 2

i

But by the Pythagorean theorem in △ADPi we have

AP 2
i = DP 2

i + AD2 ,

so using this mi becomes
mi = BD2 + AD2 ,

which is independent of i. The Pythagorean theorem in △ADB gives that BD2 + AD2 =
AB2 = 4 thus we have

100∑

i=1

mi = 400 .

Testing Question A.9

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with.

By symmetry we have FD = DG, AD = DB, and AG = BF . As ED is perpendicular to
FG and equidistant between F and G we have that EF = EG. This means that

EF 2 = EG2

= AE2 + AG2 ,

using the right triangle △EAG. As AG = BF we get

EF 2 = AE2 +BF 2 ,

as we were to show.
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Testing Question A.10

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with.

Rotate △BPA in a counterclockwise direction around the point B by 60◦. Let M be the
image of P after this rotation. Then ∠MBP = 60, MB = BP , and MC = PA = 2.

Draw the segment MP . With that segment drawn the triangle △MBP is isosceles with a
vertex angle ∠MBP = 60 so

∠BMP = ∠BPM = 60 ,

also. This means that △MBP is an equilateral triangle and MP = BP = 2
√
3. As we are

told the length PC = 4 we know all of the sides of the triangle △PMC. We know that

MP 2 = 12

MC2 = 4

CP 2 = 16 .

Note that CP 2 = MP 2 +MC2 and thus △PMC is a right triangle with ∠PMC = 90◦.
Note also that one of the sides of this triangle is 1

2
the length of the hypotenuse so

sin(∠CPM) =
CM

CP
=

1

2
so ∠CPM = 30◦ .

Now
∠BPC = ∠BPM + ∠MPC = 60 + 30 = 90 .

This means that in the right triangle △BPC we have

BC2 = BP 2 + PC2 = 12 + 42 = 12 + 16 = 28 ,

so BC =
√
28 = 2

√
7.

Testing Question B.1

From the center of the circle draw a perpendicular towards the chord AB intersecting AB
at O′. As OA = OB this point O′ is on the perpendicular bisector of AB so that

AO′ = O′B =
63 + 33

2
= 48 .

Then using the right triangle △AO′O we have that

OO′ =
√

AO2 −AO′2 =
√
522 − 482 = 20 .

Next we have that O′M = AM −AO′ = 63− 48 = 15. Using the right triangle △MO′O we
have

OM2 = O′O
2
+O′M

2
= 202 + 152 so OM = 25 .
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Testing Question B.2

I drew my rectangle ABCD with AB along the x-axis and AD along the y-axis so that
walking counterclockwise around the rectangle starting at A = (0, 0) we have the points B,
C, and then D. Let the point P be inside the rectangle such that P is x units to the right
of A and y units to the left of B. P is also p units above the horizontal x-axis and q units
below the point C.

Now given that we know the distances AP , BP , and CP using right triangles formed by
dropping vertical and horizontal perpendiculars to AB and BC we have that

x2 + p2 = 32 (867)

y2 + p2 = 42 (868)

y2 + q2 = 52 . (869)

To answer this question we want to know the value of
√

x2 + q2. Lets use these three
equations to evaluate

x2 + q2 = (9− p2) + q2 using Equation 867

= 9− (16− y2) + q2 using Equation 868

= −5 + y2 + q2

= −5 + 25 using Equation 869

= 18 .

Thus PD =
√
18 = 3

√
2.

Testing Question B.3

Draw our right triangle with one leg along the positive x axis of length m and another leg
along the positive y axis of length n = km with k a natural number. The length of the
hypotenuse is then given by

√
k2m2 +m2 = m

√
k2 + 1 .

Now asm is an integer in the above expression for the hypotenuse we see that to have integer
sides we need

√
k2 + 1 to be an integer. This means that we must have

√
k2 + 1 = p or k2 + 1 = p2 ,

for some integer p. This then means that

p2 − k2 = (p− k)(p+ k) = 1 . (870)

Now if p and k are integers then p−k and p+k are also and thus we are looking for a integer
factorization of one. One way that can happen is if

p+ k = 1

p− k = 1 .
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If we solve the above system we get p = 1 and k = 0. The fact that k = 0 means that there
is no triangles of the required form.

Another way that can happen is if

p+ k = −1

p− k = −1 .

If we solve the above system we get p = −1
2
and k = 3

2
. As these are not integers we again

have a contradiction to the assumptions and again conclude that no triangles of the required
form exist.

Testing Question B.4

I drew my rectangle ABCD with AB along the x-axis and AD along the y-axis so that
walking counterclockwise around the rectangle starting at A = (0, 0) we have the points B,
C, and then D. Let the point E be on AB and F on AD with the segments CF and CE
trisecting the right angle ∠DCB. Let θ be the angles

θ = ∠DCF = ∠FCE = ∠ECB =
1

3

(π

2

)

=
π

6
.

Now in the right triangle △CBE we have

tan(θ) =
EB

CB
,

or since we know the value of θ and the length BE we have

1√
3
=

6

CB
⇒ CB = 6

√
3 .

Using this we have
DF = AD − AF = CB − AF = 6

√
3− 2 .

Now in the right triangle △CDF we have

tan(θ) =
1√
3
=
DF

DC
.

This means that
DC = DF

√
3 = 6 · 3− 2

√
3 = 18− 2

√
3 .

We now know the length of all sides of the rectangle so its area is given by

CB ·DC = 6
√
3 · (18− 2

√
3) = 6 · 2

√
3(9−

√
3)

= 12(9
√
3− 3) = 36(3

√
3− 1) .

Lets try to approximate this we have

3
√
3 ' 3 · 1.7 = 3 + 2.1 = 5.1 .

This means that the area is approximately 36 · (4.1) = 147.6.
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Testing Question B.5

I was only able to prove one direction of the given statement. If we draw the given quadri-
lateral and then the diagonals AC and BD and assume that they are perpendicular at their
intersection (denoted O) then using the Pythagorean theorem several times (by including
the point O) we have

AB2 + CD2 = (AO2 +OB2) + (CO2 +OD2)

= (AO2 +OD2) + (OB2 + CO2)

= AD2 +BC2 .

I was not sure how to show the other direction.
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Lecture 11: Congruence of Triangles

Testing Question A.1

Draw CB on the x-axis and A “above” that segment. As we are told two of the angles in
our triangle the third is given by

∠ABC = 180− 60− 75 = 45 .

In the right triangle △ADC we have

∠CAD = 90− ∠ACD = 90− 60 = 30 .

Then as ∠CAB = 75 we have

∠DAB = 75− ∠CAD = 75− 30 = 45 .

Lets draw the segment CF which will pass through H and be perpendicular to AB. Then
using the right triangle AFH as ∠HAF = 45 we have

∠AHF = 90− ∠HAF = 90− 45 = 45 .

Thus we have
∠CHD = ∠AHF = 45 .

Testing Question A.2

Draw the line AB along the x-axis of a Cartesian x-y plane and the point C “above” the
segment AB. Place the point D on the “inside” of the triangle △ABC and the point P such
that the given conditions in the problem are true. In doing this I drew the point P “below”
the segment AB.

To solve this problem we first draw the segment PD. Note that △DBP ∼= △DBC by
“Side-Angle-Side”. This means that

∠BPD = ∠BCD .

Note that △BDC ∼= △ADC by “Side-Side-Side”. This means that ∠BCD = ∠ACD.

Now ∠BCD + ∠ACD = 60◦ and from the above those two angles are equal. Thus each is
30◦ so ∠BPD = 30◦.
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Testing Question A.3

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with.

In the problem we are told that AB = 1 and

AP + PQ+QA = 2 . (871)

Let a ≡ AP and b ≡ AQ and extend AD to a point P ′ such that DP ′ is of length 1 − a.
Note that by “Side-Angle-Side” the right triangle △P ′DC ∼= △PBC.

Now
QP ′ = QD +DP ′ = 1− b+ 1− a = 2− (a+ b) ,

But by using Equation 871 a+ b = 2− PQ so that we have

QP ′ = PQ .

Using the above arguments note that in the triangles △CPQ and △CQP ′ we have

• CP = CP ′ by using the right triangles △PBC and △P ′DC (discussed above).

• PQ = QP ′ (proved above).

• QC = QC (reflexivity).

Thus by “Side-Side-Side” △CPQ ∼= △CP ′Q. Because of this we have ∠PCQ = ∠QCP ′.

Now define the three angles in ∠BCD as

∠BCP = α

∠PCQ = β

∠QCD = γ .

Thus as ∠BCD is a right angle we have

α + β + γ = 90◦ . (872)

But using what we proved above

∠QCP ′ = β = ∠QCD + ∠DCP

= γ + α .

If we put this into Equation 872 we get

α + γ + (α + γ) = 90◦ ⇒ α + γ = 45◦.

If we put this into Equation 872 we get β = ∠PCQ = 45◦ also.
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Testing Question A.4

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with.

Extend from AD leftwards until it would intersect with the extension of EC to a point
denoted N . Now NAD and BC are parallel so ∠ANE = ∠ECB.

Note that ∠NAE = ∠EBC = 90◦ and AE = EB (due to the fact that E is the midpoint
of the side AB).

Taken together this means that the right triangles △NAE ∼= △CBE and we have that

NA = BC = AD .

Now if ∠NMD = 90◦ then the segment AM is the median of the hypotenuse DN in the
right triangle △NMD and so by the theorem that “the median to the hypotenuse of a right
triangle is half the hypotenuse” we would have

AM =
1

2
DN = AD .

This would prove what we are interested in if we can argue that ∠NMD = 90. To show this
note that

∠ANE = ∠ECB = ∠MDC = tan−1

(
1

2

)

.

Thus
∠NDM = 90− ∠MDC = 90− ∠ANE .

Thus in triangle △DNM we have

∠NMD = 180− (∠NDM + ∠ANE) = 180− 90 = 90 .

Testing Question A.5

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Extend AE to intersect the extension of BC at F . Then DE = EC, ∠DEA = ∠CEF ,
and ∠ADC = ∠ECF so that we have △EDA ∼= △ECF . Using that we can conclude that
AE = EF .

Now note that BE is the median to the hypotenuse in the right triangle △ABF so

BE = AE = EF .

1195



Let α = ∠CEB. Then in △BEC as we are told that BC = CE so we have ∠EBC = α.

Now in triangle △BEF as BE = EF we have ∠EBC = ∠BFE = α.

As AD||BF so ∠DAF = ∠BFA = α.

As AE = BE in △AEB we have ∠EAB = ∠EBA. Let that angle be β. Then as we know
∠ABC = 90 we have

∠ABC = ∠ABE + ∠EBC = 90 ,

which is the statement that β + α = 90.

Using the isosceles triangle △AEB (where AE = BE) we get

∠AEB = 180− 2∠EAB = 180− 2β = 180− 2(90− α) = 2α .

Thus
∠AEC = ∠AEB + ∠BEC = 2α+ α = 3α = 3∠DAE ,

as we were to show.

Testing Question A.7

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Extend the segments AE and BC until they intersect at a point denoted as F . In the triangle
△AED

∠FAC = 90− ∠ADE = 90− ∠CDB = ∠DBC .

As we have shown the three angles to be equal we have △FAC ∼ △DBC or

AC

BC
=
AF

BD
.

As AC = BC in the above we get AF = BD. We are told that BD = 2AE so we have that
AF = 2AE. Now as AF = AE + EF we have we see that EF = AE.

Now considering the two right triangles △AEB and △FEB as FE = EA and EB = EB
(reflexivity) we have that △AEB ∼= △FEB, so ∠EBA = ∠EBF (which is what we wanted
to prove).

Testing Question A.8

The book has one solution to this problem. Another very simple solution seems to be the
following. We draw the square with A = (0, 8), B = (0, 0), C = (8, 0) and D = (8, 8). Then
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in the right triangle △ADP using the Pythagorean theorem we have

DP =
√

AP 2 −AD2 =
√
102 − 82 = 6 .

This means that PC = DC −DP = 8− 6 = 2.

Testing Question A.9

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Draw the segments AC and AD introducing the right triangles △ABC and △AED. Extend
the segment CB to a points P such that BP = DE so that once drawn we have

CP = CB +BP = CB +DE = 1 ,

using the assumptions in the problem.

Now since the segments AB = AE and BP = ED by using “Side-Angle-Side” (since the
angle in-between is 90◦) we have that △ABP ∼= △AED. This means that AP = AD.

Now in the triangles △APC and △ADC we have that CP = 1 = CD, AP = AD, and
AC = AC (by reflexivity) so that by “Side-Side-Side” we have that △APC ∼= △ADC.

We will now decompose the area we want into two areas we can calculate. We have

[ABCDE] = [ABC] + [ACD] + [ADE] = [APC] + [APC] = 2[APC] .

Now we can compute this last area as

[APC] =
1

2
(AB)(PB +BC) =

1

2
(1)(1) =

1

2
.

Therefore we find

[ABCDE] = 2

(
1

2

)

= 1 .

Testing Question A.10

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Rotate △ADC counterclockwise around the point A. Then the “new” AC will lie along
the “old” AB and the point D is mapped to the point D′ which is “outside” of the triangle
△ACB.
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Now △AD′B ∼= △ADC since all we did was rotate the triangle △ACD. This means that
AD′ = AD and D′B = DC. Note that ∠D′AD = 60◦ since that’s the amount by which we
rotated the segment AC.

If we draw the segment DD′ then as ∠DAD = 60◦ and AD′ = AD we see that the triangle
△D′AD is isosceles with a vertex angle of 60◦. This means that it is an equilateral triangle
and all angles are 60◦.

Now as ∠AD′B = ∠ADC = 150◦ and ∠AD′D = 60◦ we have that ∠DD′B = 150−60 = 90◦

thus the triangle △BD′D is a right triangle made of the segments BD′ = DC (from the
rotation), D′D = AD (by the equilateral triangle △D′AD), and DB = DB (by reflexivity).

Testing Question B.1

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Drop perpendiculars from A, C and E onto the line l connecting B and D. Call the points
where these perpendiculars intersect this line the points A1, C1, and E1 respectively.

From the right triangles introduced we see that △AA1B ∼= △CC1B and △CC1D ∼= △DE1E
and thus we have

A1B = CC1 = DE1 .

Now the perpendicular dropped from M (the midpoint of AE) to the line l will go through
the midpoint of A1E1.

But as A1B = DE1 the midpoint of the segment A1E1 is the midpoint of the segment BD.
Thus the location ofM is on the perpendicular bisector of BD. Thus the pointM is located
on the perpendicular bisector of BD and as such its horizontal location within the segment
BD is independent from C.

Note that the distance of M from the line l is given by

1

2
(AA1 + EE1) =

1

2
(BC1 + C1D) =

1

2
BD ,

which is a length that is also independent of C. Thus M is independent of C.

Testing Question B.2

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.
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Drop a perpendicular from F and call the intersection with the segment AB the point H .
Then by using the common side AF and the angles on either end of it we have

△ACF ∼= △AHF ,

from “Angle-Side-Angle”. Thus we have that CF = FH .

Note that
∠ACD = 90− ∠A = ∠B .

Using that we have that

∠FEC = 180− ∠AEC = 180−
(

180− 1

2
∠A− ∠ACD

)

= ∠ACD +
1

2
∠A = ∠B +

1

2
∠A = ∠CFE .

This means that the triangle △FCE has two equal angles and is thus isosceles so we now
have that

CF = CE = FH .

Now as CED ‖ FH we have ∠BFH = ∠BCD and since CE = FH using “Angle-Side-
Angle” we have

△ECG ∼= △HFB ,
and thus conclude that CG = FB. Using that as FG is common to both of these segments
CG and FB we can conclude that CF = GB (as we were to show).

Testing Question B.3

I drew the segment AC along an Cartesian coordinate axes with A at the origin and C “to
the right” of A. The point B was “above” AC.

We are told for this question that AC = 2AB and ∠A = 2∠C. Let D be the intersection
of the angle bisector of ∠BAC with D the point where this angle bisector intersects BC.
From D drop a perpendicular to AC and denote its intersection with AC as the point E.

Now as △DCA and △DEC are right triangles with a common side DE and ∠DAE =
∠DCE by “Angle-Side-Angle” we have

△ADE ∼= △CDE ,

thus AE = EC and we see that AB = 1
2
AC = AE.

Now as AB = AE, ∠BAD = ∠DAE, and the segment AD is common between the two
triangles we have △ADE ∼= △ADB. Using this we can conclude that ∠ABD = ∠AED =
90◦.
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Testing Question B.4

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Draw the segment BD. Then as ∠A = 60◦ and AB = AD the triangle △ABD is equilateral
so ∠ABD = ∠ADB = 60◦ and all sides have the same length.

Extend the segment BC to a point E such that CE = CD and draw the segment DE. Then
as

∠ECD = 180− ∠DCB = 180− 120 = 60 ,

and CE = CD we have another equilateral triangle △CDE.

Now BD = AD and CD = ED and that the angle “between” these segments

∠ADC = 60 + ∠BDC = ∠BDE ,

is equal so from “Side-Angle-Side” we have that

△ADC ∼= △BDE ,

so BE = AC. Using that and from how BE is constructed we have

AC = BE = BC + CE = BC + CD .

Testing Question B.5

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

As ∠B = ∠C = 80 we have that AB = AC.

As ∠BPC = 30 we have that ∠CPA = 180− 30 = 150.

Draw the segment BQ such that ∠CBQ = 20 and BQ = AB. Draw the segment AQ. Then
as ∠ABQ = 80− 20 = 60 and AB = BQ we have that △ABQ is equilateral.

Draw the segment CQ then

∠CAQ = ∠BAQ− ∠PAC = 60− ∠PAC ,

and since
∠PAC = 180− ∠ABC − ∠BCA = 180− 80− 80 = 20 ,
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we have that ∠CAQ = 60− 20 = 40.

In triangle △APC we have

∠PCA = 180− ∠CPA− ∠CAP = 180− 150− 20 = 10 .

In triangle △ABC we have

∠ACB = 80 = ∠BCP + ∠PCA so ∠BCP = 80− 10 = 70 .

Since AQ = AB = AC in the △ACQ is isosceles and we get

∠ACQ = ∠AQC =
1

2
(180− ∠CAQ) =

1

2
(180− 40) = 70 .

As ∠AQB = 60 and we must have ∠ACQ = ∠AQC we get ∠BQC = 10.

From all of the smaller angles we have computed we have

∠BCQ = ∠BCP + ∠PCA+ ∠ACQ = 70 + 10 + 70 = 150 .

Then from all of these angles and the fact that AC = BQ we have that

△QBC ∼= △CAP ,

by “Angle-Side-Angle” (since the two triangles have equal angles and AC = BQ). Thus we
can conclude that BC = PA by the fact that corresponding sides of congruent triangles are
congruent.
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Lecture 12: Applications of Midpoint Theorems

Testing Question A.1

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Draw the diagonal BD and let P be the midpoint of that segment. Draw the segments EP
and PF . Then in triangle △ADB the midpoint theorem gives

EP =
1

2
AB .

In triangle △DBC the midpoint theorem gives

PF =
1

2
CD .

The triangle inequality in the triangle △EPF gives

EF < EP + PF .

Using the above two expressions this becomes

EF <
1

2
(AB +DC) .

Testing Question A.2

If we extend AD and BC until the meet at a point E. Then as CD ‖ AB and CD = 1
2
AB

by the midpoint theorem we would then have DE = AD and CE = BC.

In the triangle △EDB as C and N are the midpoints of EB and DB respectively we have
CN = 1

2
ED = 1

2
AD and CN ‖ DE.

In the triangle △ECA as D and M are the midpoints of EA and CA respectively we have
DM = 1

2
CE = 1

2
CB and DM ‖ EC.

Let F be the midpoint of the segment AB. Then as M and F are the midpoints of AC
and AB respectively by the midpoint theorem in triangle △CAB we have MF ‖ CB and
MF = 1

2
CB. This means the full segments DMF ‖ ECB. In the same way as as N and F

are the midpoints of BD and AB respectively by the midpoint theorem in triangle △DBA
we have NF ‖ DA and NF = 1

2
AD. This means the full segments CNF ‖ EDA.

Notice that CN = 1
2
AD = NF and DM = 1

2
CB =MF . ThusM and N bisect the segments

DF and CF respectively. Then by the midpoint theorem in the triangle △DFC we have
that MN ‖ CD and MN = 1

2
CD.
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Using what we know from the above we have

l2 = DM +MN +NC + CD =
1

2
CB +

1

2
CD +

1

2
AD +

1

2
AB

=
1

2
(CB + CD + AD + AB) =

1

2
l1 .

Thus l1 = 2l2 and n = 2.

Testing Question A.3

Method 1: We can solve this with the angle bisector theorem. Let the square have a side
of length s. Then the diagonal has a length of

√
2s and the distance AO = OC is half of

this length. In triangle △ACB the angle bisector theorem states

AC

CF
=
AB

BF
,

or √
2s

CF
=

s

s− CF
.

Solving this for CF gives

CF =

( √
2√

2 + 1

)

s .

In triangle △AOB the angle bisector theorem states

AO

OF
=
AB

EB
,

or √
2
2
s

OF
=

s
√
2
2
s− OE

.

Solving this for OE gives

OE =

( √
2√

2 + 1

)

s

2
,

which is 1
2
of the expression for CF given above.

Method 2: Extend from the point C and parallel to DB a segment. Let that segment
intersect the extension of AF at the point G. Then by the midpoint theorem we have
OE = 1

2
CG.

Now by construction we have

∠BAF = ∠FAC =
1

2
(45) = 22.5◦ .
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As ∠ABC = 90◦ we have ∠AFB = 90− 22.5 = 67.5 = ∠CFG.

Note that ∠ACB = 45◦ and since CG ‖ OB and OB ⊥ AC we have ∠ACG = 90◦. This
means that

∠FCG = ∠ACG− ∠ACB = 90− 45 = 45◦ .

Finally we can compute the last angle in the triangle △FCG. We have

∠FGC = 180− ∠CFG− ∠FCG = 180− 67.5− 45 = 67.5 = ∠CFG .

This means that the triangle △FCG is isosceles and CF = CG = 2OE.

Testing Question A.4

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Let F be the midpoint of AC. Draw the segment EF . By the midpoint theorem we have
EF ‖ AB and EF = 1

2
AB = DE.

Draw the segment DF . As DE = EF we have ∠FDE = ∠DFE. As triangle △ADC is a
right triangle and DF connects the right angle D to the midpoint of the hypothesis we have
that DF = AF = FC. This means that

∠FDC = ∠FCD = ∠DFE .

As EF ‖ AB we have ∠B = ∠FEC but ∠FEC is an exterior angle in the triangle △DEF
so

∠B = ∠FEC = ∠EDF + ∠EFD = 2∠C .

Testing Question A.6

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Let the intersection of AD and BE be denoted O. Draw from D downwards and parallel to
BE a segment that intersects AC at a point F . Then in triangle △BEC by the midpoint
theorem we have EF = FC and DF = 1

2
BE = 2.

Note that △BOD ∼= △BOA (by Angle-Side-Angle with the common side BO). This means
that AB = BD and AO = OD. Thus BE bisects the segment AD and so AO = OD =
1
2
AD = 2.

Now in triangle △ADF the segment OE is parallel to DF and passes though a midpoint.
This means that OE = 1

2
DF = 1

2
(2) = 1 and AE = EF . From the length of OE we have

BO = BE − OE = 4− 1 = 3.
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Now using the right triangle △AOB we have

AB =
√

AO2 +OB2 =
√
4 + 9 =

√
13 .

As BC = BD +DC = 2AB = 2
√
13.

Now using the right triangle △AOE we have

AE =
√

AO2 +OE2 =
√
4 + 1 =

√
5 .

As AC = AE + EF + FC = 3AE = 3
√
5.

Testing Question B.1

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Draw the segment AC and denote its midpoint at the point P . Draw the segments PE and
PF . By the midpoint theorem we have PE ‖ CG and PF ‖ DH .

As PF ‖ DH we have ∠AHE = ∠PFE. As PE ‖ CG we have ∠EGB = ∠PEF .

Again using the midpoint theorem on the segments PF and PE we have

PF =
1

2
AD >

1

2
BC = PE .

But these are two sides of the triangle △PFE so we have

∠PEF > ∠PFE .

From the equivalence of the angles derived above this leads to ∠EGB > ∠AHE which is
what we desired to show.

Testing Question B.4

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

From the point E draw a line “vertical” and parallel to both BC and AD. Then we have
∠FEA = ∠EAD = θ and ∠FEB = ∠EBC = φ where I have defined both θ and φ. From
all of the angles in the triangle △ABE we have

2φ+ 2θ = 180 so φ+ θ = 90 .
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This means that ∠BEA = θ+φ = 90◦ i.e. a right angle. As ∠FBE = ∠FEB we have that
△BFE is an isosceles triangle and so BF = FE. As ∠FAE = ∠AEF we have that △EFA
is also an isosceles triangle and so EF = FA. Thus

BF = FE = FA ,

and F is the midpoint of AB. Because of this and the fact that FE is parallel to AD and
BC it bisects the segment CD at the point E. This means that EF is the midline of the
trapezium ABCD and we have

EF =
1

2
(BC + AD) .

Using the fact that EF = 1
2
AB in the above gives

1

2
AB =

1

2
(BC + AD) ,

which is equivalent to what we desired to show.
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Lecture 13: Similarity of Triangles

Testing Question A.1

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

As EF is parallel to AB we have that △EFC ∼ △ABC. Thus EF
AB

= CF
BC

or using the given
lengths

EF

20
=
CF

100
. (873)

As EF is parallel to CD we have that △EFB ∼ △DCB. Thus EF
CD

= BF
BC

or using the given
lengths

EF

80
=
BF

100
. (874)

Now BF = BC − CF = 100− CF . Using that in Equation 874 gives

EF

80
=

100− CF

100
= 1− CF

100
. (875)

Equation 873 gives CF
100

in terms of EF or

EF

80
= 1− EF

20
.

Solving this we find EF = 16.

Testing Question A.2

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

From the statement that △PAB ∼ △PCA we have

BP

AP
=
AP

CP
=
AB

AC
,

or
CP +BC

AP
=
AP

CP
=

8

6
,

or
CP + 7

AP
=
AP

CP
=

4

3
.

1207



From the second of these relations we have AP = 4
3
CP . If we put this into the first of these

relationships we get
CP + 7

4
3
CP

=
4

3
.

Solving this for CP gives CP = 9.

Testing Question A.3

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Let the segment BE intersect AD at a point denoted O. Now D is a median of BC so
BD = CD = a

2
. As △ABC is an isosceles right triangle we have AC =

√
2a. Using the

right triangle △ABD we have

AD =
√

AB2 +BD2 =

√

a2 +
a2

4
=

√
5

2
a .

Let ∠ABE = x and ∠EBC = y then x+ y = 90. Also

∠ADB = x

∠BAD = y

∠DAC = 45− ∠BAD = 45− y

∠AEB = 90− ∠DAC = 45 + y .

As ∠BCA = 45 and EF is perpendicular to BC we have ∠FEC = 45 also. Then

∠BEF = 180− ∠AEB − ∠FEC = 180− (45 + y)− 45 = 90− y = x .

Using all of these angles we have several similar triangles. We have

△AOB ∼ △BOD , (876)

and
△AOB ∼ △BFE . (877)

Now from Equation 876 we get
AB

BD
=
BO

DO
=
AO

BO
,

or as AB
BD

= a
a/2

= 2 this is

2 =
BO

DO
=
AO

BO
, (878)

Now as △AOB is a right triangle we have that AB2 = BO2 + AO2 or AO =
√

a2 − BO2.
Putting that into Equation 878 gives

2 =

√

a2 −BO2

BO
so BO =

a√
5
,
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and then

AO =
√

a2 − BO2 =
2a√
5
.

From Equation 878 we also get

DO =
BO

2
=

a

2
√
5
.

Using Equation 877 we get
AB

BE
=
BO

EF
=
AO

BF
,

or using what we know this can be written as

a

BE
=

a√
5

EF
=

2a√
5

BF
. (879)

Now △EFC is an isosceles right triangle so EF = CF .

The segment BC can be written in two parts

BC = a = BF + CF = BF + EF . (880)

From Equation 879 we get

BF =
2a√
5
·
√
5

a
· EF = 2EF .

Putting that into Equation 880 gives

a = BF + EF = 3EF so EF =
a

3
.

Testing Question A.4

Let AC = BC = a. Then as both ∠CAB = ∠CBA = ∠MCN = 45◦ we have

△CMN ∼ △ANC , (881)

and
△CMN ∼ △BMC . (882)

From Equation 881 we have
x

CN
=

CN

m+ x
=
CM

a
,

thus CN2 = m+x
x

so CN = m+x
a
CM . These give

CN =

√
m+ x√
x

and CM =
a

√

x(m+ x)
. (883)
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From Equation 882 we have
x

CM
=
CN

a
=

CM

n+ x
,

thus CM2 = n+x
x

so CN = ax
CM

. These give

CM =

√
n + x√
x

and CN =
a

√

x(n+ x)
. (884)

Setting the two expressions for CN in Equations 883 and 884 equal to each other we have
√
m+ x√
x

=
a

√

x(n + x)

or √

(m+ x)(n + x) = a ,

so
a2 = (m+ x)(n + x) . (885)

Now as m+ x+ n is the length of the hypotenuse of the right triangle △ACB we have

2a2 = (m+ x+ n)2 .

Using this in Equation 885 we get

2(m+ x)(n+ x) = (m+ x+ n)2 .

Expanding we get

2(mn +mxnx+ x2) = m2 + x2 + n2 + 2mx+ 2mn+ 2xn ,

or canceling common terms we get

x2 = m2 + n2 .

Thus the triangle formed is a right triangle.

Testing Question A.5

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

As AC = 3EC we have that AE = 2EC.

Now draw a segment from D and parallel to the segment BGE such that it intersects the
segment AC ad the point F . Now △AGE ∼ △ADF so

AG

AD
=
GE

DF
=
AE

AF
. (886)
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Now AD = AG+GD and AF = 2EC + EF so using the above we get

AG

AG+GD
=

2EC

2EC + EF
. (887)

We now ask what fraction of EC is EF . Note that in triangle △BEC the segment DF is
parallel the segment BGE and passes though the midpoint D of BC. Thus by the midpoint
theorem we have EF = FC so EF = FC = 1

2
EC. Thus Equation 887 becomes

AG

AG+GD
=

2EC

2EC + 1
2
EC

=
4

4 + 1
=

4

5
.

This means that 5AG = 4AG+ 4GD so AG
GD

= 4
1
so AG : GD = 4 : 1.

Testing Question A.6

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

As AE = 1
3
AD we have

ED = 2AE . (888)

Now draw from D and parallel to FEC a segment that will intersect AB at a point D′.
Then

△AD′D ∼ △AFE ,
which means that

AF

AD′ =
FE

D′D
=
AE

AD
. (889)

From Equation 888 we know that AE
AD

= 1
3
. In the triangle △BFC the segment DD′ is

parallel to CF and intersects the midpoint of BC at the point D. Thus by the midpoint
theorem we have

FD′ = BD′ =
1

2
BF .

Then using AE
AD

= 1
3
in Equation 889 we have AF

AD′
= 1

3
so AD′ = 3AF . Also AD′ =

AF + FD′ = AF + 1
2
BF . Thus

3AF = AF +
1

2
BF so BF = 4AF = 4(1.2) = 4.8 ,

centimeters. Next
AB = AF +BF = 5AF = 6.0 ,

centimeters.
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Testing Question A.7

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

From the statement that AP : PB = 2 : 1 we have AP
PB

= 2
1
or AP = 2PB. Then since

AB = AP + PB = 3PB = 4 ,

we have PB = 4
3
and AP = 8

3
.

Now let ∠ADP = x and ∠PDC = y so x + y = 90◦. Then from the diagram we have
∠DPA = y and ∠CDE = x so that △DAP ∼ △CED so

AD

CE
=
AP

DE
=
DP

DC
,

or

2

CE
=

8/3

DE
=

√

22 +
(
8
3

)2

4
.

This gives

CE =
8

√

22 +
(
8
3

)2
=

12

5
,

when we simplify.

Testing Question A.10

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Let ∠CBA = β and draw the angle bisector from A to the segment BC intersecting at
the point D. Then as this segment is the angle bisector and we are told that ∠CAB =
2∠CBA = 2β we have

∠CDA = ∠DAB = β .

As the angles in a triangle must sum to 180◦ in △ADB we have ∠ADB = 180◦ −∠DAB −
∠DBA = 180◦ − β − β = 180◦ − 2β. Then by supplementary angles we have

∠CDA = 180◦ − ∠ADB = 180◦ − (180◦ − 2β) = 2β .

Then from the sum of the angles in the triangle △ACD we have

∠ACD = 180◦ − ∠CAD − ∠CDA = 180◦ − β − 2β = 180◦ − 3β .

We now have all of the angles denoted in terms of β.
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If we note that ∠DAB = ∠DBA = β we see that the triangle △ADB is isosceles and so

AD = BD . (890)

From the angles given note that we can conclude that △DAC ∼ △ABC and so

AD

AB
=
CD

AC
=
AC

BC
. (891)

We also have
BC = CD +DB . (892)

We will now use Equation 890 and 892 into Equation 891 to write everything in terms of
the original triangle sides and the segment BD. Then Equation 891 becomes

BD

AB
=
BC − BD

AC
=
AC

BC
.

By equating the second and third expression above we get

AC2 = BC2 − BC · BD . (893)

By equating the first and third expression above we get

BC · BD = AC · AB ,

which if we use in Equation 893 gives

AC2 = BC2 − AC · AB ,

the desired expression.
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Lecture 14: Areas of Triangles and Applications of Area

Testing Question A.1

Draw the triangle △ABC with AB on the x-axis of an x-y coordinate plane and the point
C “above” the segment AB. Then extend the segment AB to a point B′, the segment BC
to a point C ′, and the segment CA to a point A′ in the given proportions. Lets decompose
the desired area into triangular regions as

[A′B′C ′] = [ABC] + [BB′C ′] + [C ′A′C] + [AA′B′] .

Next we will relate the three triangles that are not △ABC to the area of △ABC.

As AB′ = 2AB we see that △BB′C ′ has base BB′ equal to that of ABC’s base AB. Next
as CC ′ = 2BC the triangle △BB′C ′ has a “height” three times as large since BC ′ = 3BC.
This means that [BB′C ′] = 3[ABC] = 3.

Next as CC ′ = 2BC we see that △C ′A′C has a base (the segment CC ′) two times as long as
BC (the base of the triangle △ABC). Also as AA′ = 3AC (so that A′C = 4AC) a “height”
four times as long as that in △ABC. This means that [C ′A′C] = 2 · 4[ABC] = 8.

Finally, as triangle △AA′B′ has a base AA′ = 3AC and a “height” (the segment AB′) that
is two times as large as “height” of AB in the triangle △ABC as AB′ = 2AB. This means
that [AA′B] = 6[ABC] = 6.

All of these together mean that

[A′B′C ′] = 1 + 3 + 8 + 6 = 18 .

Testing Question A.2

I found this figure hard to draw just from the text description. Quickly looking at the
solutions in the back gave a diagram that I could reason with. Refer to that diagram in
what follows.

Let O be the intersection of the diagonals. As AO = OD we have

(PE + PF )AO = PE · AO + PF · AO
= PE · OD + PF · AO
= 2[POD] + 2[APO] = 2 ([POD] + [APO])

= 2[AOD]

= 2

(
1

4
[ABCD]

)

=
1

2
[ABCD] =

1

2
(5 · 12) = 30 .
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Now AO is one-half the length of the diagonal or

AO =
1

2

√
52 + 122 =

13

2
.

This means that

PE + PF =
30

AO
=

30
13
2

=
60

13
> 4 .

Testing Question A.3

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Lets connect the point P to the points A, B, and C forming the segments PA, PB, and
PC. Then with s as the length of the side of the equilateral triangle △ABC we have that

Area(△ABC) = Area(△ABP ) + Area(△APC)−Area(△CBP )

=
1

2
(AB)h3 +

1

2
(AC)h1 −

1

2
(CB)h2 .

Using the fact that AB = AC = CB = s we have

Area(△ABC) = 1

2
s(h3 + h1 − h2) = 3s .

Now all equilateral triangles with a side of s have an area equal to
√
3
4
s2. Setting this equal

to 3s and solving for s gives
s = 4

√
3 .

Using this the area of the equilateral triangle is

Area(△ABC) = 3s = 12
√
3 .

Testing Question A.4

The area of triangle △ABC (denoted A) can be written in three ways

A =
1

2
haa =

1

2
hbb =

1

2
hcc . (894)

Using the above we have

a =
2A

ha

b =
2A

hb

c =
2A

hc
.
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If we put these into 2b = a+ c we get

4A

hb
=

2A

ha
+

2A

hc
.

If we multiply this by 1
2A

we get the desired relationship.

Testing Question A.5

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Now as BD = 2CD and [GCD] = 4 the triangle △GBD will have the same height as
triangle △GCD but a base twice as large as triangle △GCD. Thus

[GBD] = 2[GCD] = 8 .

Now in △BEC the subtriangles △BGC and △EGC have their “bases” on BE and have
the same height say h. Thus we have

Area △EGC = EG× h

Area △BGC = BG× h .

Dividing these two expressions gives

EG

BG
=

Area △EGC
Area △BGC =

S1

S3 + S4
=

3

12
=

1

4
. (895)

This has allowed us to get an expression relating EG and BG. Let

S4 = Area of △BGF
S5 = Area of △AGF
S6 = Area of △AGE .

Then using the same logic for the subtriangles △BGA and △EGA as above we have

EG

BG
=

S6

S4 + S5
. (896)

We can use the same logic as above along the segments AD and CF i.e. equating parts of
each segment’s lengths to sums of component areas. For example, for the triangles “to the
left” of AD we have

AG

GD
=
S4 + S5

S3
=
S4 + S5

8
. (897)

For the triangles “to the right” of AD we have

AG

GD
=
S6 + S1

S2
=
S6 + 3

4
. (898)
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Along the segment FC for the triangles “above” FC we have

FG

GC
=

S5

S6 + S1
=

S5

S6 + 3
. (899)

For the triangles “below” of FC we have

FG

GC
=

S4

S3 + S2

=
S4

12
. (900)

Now equating EG
GD

in Equations 895 and 896 gives

S6

S4 + S5
=

1

4
. (901)

Equating AG
GD

in Equations 897 and 898 gives

S4 + S5

8
=
S6 + 3

4
. (902)

Equating FG
GC

in Equations 899 and 900 gives

S5

S6 + 3
=
S4

12
. (903)

These give three equations for the three unknowns S4, S5, and S6. The first two equations
are

S4 + S5 − 4S6 = 0

S4 + S5 − 2S6 = 6 .

Using the first of these in the second gives 2S6 = 6 or S6 = 3. Using that value in Equa-
tions 901 and 903 gives

S4 + S5 = 12

2S5 = S4 .

Together these give S4 = 8 and S5 = 4.

Using all of this we have that the total area of the triangle △ABC is given by

S1 + S2 + S3 + S4 + S5 + S6 = 3 + 4 + 8 + 8 + 4 + 3 = 30 .

Testing Question A.6

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

We will start by using the angle bisector theorem three times (for the angles A, B, and C).
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For the angle A the angle bisector theorem gives

BD

AB
=
CD

AC
,

or
BD

c
=
CD

b
,

or as CD = BC − BD = a− BD this is

BD

c
=
a−BD

b
.

We can solve fore BD in the above to get

BD =
ac

b+ c
. (904)

Then using this we have

CD = a− BD =
ab

b+ c
. (905)

These two equations given expressions for the “parts” of BC that depend on the length of
the sides of the full triangle.

For the angle B the angle bisector theorem gives

CE

a
=
AE

c
,

or
CE

a
=
b− CE

c
.

Solving this for CE and then AE = AC − CE = b− CE gives

CE =
ab

a+ c
(906)

AE = b− CE =
cb

a + c
. (907)

For the angle C the angle bisector theorem gives

AF

b
=
BF

a
,

or
AF

b
=
c− AF

a
.

Solving this for AF and then BF = AB − AF = c−AF gives

AF =
bc

a+ b
(908)

BF = c− AF =
ac

a+ b
. (909)
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Now we will evaluate the ratio of the three “corner” triangles to the area of the full triangle.
We find

[AEF ]

[ABC]
=
AF × AE

AB × AC
=

(
bc
a+b

) (
cb
a+c

)

cb
=

bc

(a+ b)(a + c)

[BFD]

[ABC]
=
BF ×BD

AB × BC
=

(
ac
a+b

) (
ac
b+c

)

ca
=

ac

(a+ b)(b+ c)

[CED]

[ABC]
=
CE × CD

CA× CB
=

(
ab
a+c

) (
ab
b+c

)

ba
=

ab

(a+ c)(b+ c)
.

As
[ABC] = [EDF ] + [AEF ] + [BFD] + [CED] ,

and using the above we have

[EDF ]

[ABC]
= 1− [AEF ]

[ABC]
− [BFD]

[ABC]
− [CED]

[ABC]

= 1− bc

(a+ b)(a + c)
− ac

(a+ b)(b+ c)
− ab

(a+ c)(b+ c)

=
2abc

(a+ b)(a + c)(b+ c)
,

when we simplify.

Testing Question A.8

Consider a general triangle △ABC with the side opposite the angle A having length BC,
the side opposite the angle B having length AC, and the side opposite the angle C having
length AB. Let P be a point in the interior of this triangle.

Let tA, tB, and tC be the perpendicular distance from P to the sides BC, AC, and AB
respectively. Now the total area of the triangle can be written using these variables as

Area =
1

2
tCAB +

1

2
tABC +

1

2
tBAC . (910)

Let hA, hB, and hC be the heights from A, B, and C to the sides opposite the given vertex.
Then the area A can be written using these variables as

Area =
1

2
hCAB =

1

2
hABC =

1

2
hBAC . (911)

Solving the above for AB, BC, and AC in terms of A and putting those expressions into
Equation 910 we get

1 =
tC
hC

+
tA
hA

+
tB
hB

. (912)
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For the given triangle and notation here we note that the perpendicular bisector and the
height to the side opposite the angle A

tA
hA

=
[CPF ]

[CAF ]
=

d

a+ d
,

in the same way we have
tB
hB

=
d

d+ b
,

and
tC
hC

=
d

d+ c
.

Using these in Equation 912 gives

1 =
d

d+ a
+

d

d+ b
+

d

d+ c
.

If we multiply this by (d+a)(d+b)(d+c)
d

we get

(d+ a)(d+ b)(d + c)

d
= (d+ b)(d+ c) + (d+ a)(d+ c) + (d+ a)(d+ b)

= d2 + (b+ c)d+ bc + d2 + (a + c)d+ ac + d2 + (a+ b)d+ ab

= 3d2 + 2(a+ b+ c)d+ ab+ ac+ bc .

Multiplying by d on both sides and expanding the left-hand-side gives

d3 + (a+ b+ c)d2 + (ab+ ac+ bc)d+ abc = 3d3 + 2(a+ b+ c)d2 + (ab+ ac+ bc)d ,

or simplifying we get
abc = 2d3 + (a+ b+ c)d2 .

Using what we are told we have that abc = 2(33) + 43(32) = 441.

Testing Question A.9

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Using the Pythagorean theorem we have that

BE =
√

AB2 + AE2 =

√

1 +
1

4
=

√
5

2

Introduce a point D drawn from C and perpendicular to AC. Then as ∠BED = 90 we have
that

∠BEA + ∠DEC = 90 .

1220



From this we can conclude that

∠DEC = ∠ABE

∠EDC = ∠AEB .

This means that the two right triangle △BAE and △ECD are similar. This means that

CE

CD
=
AB

AE
=

1
1
2

= 2 .

But CE = 1
2
so we have that CD = 1

4
. In addition, we have

AB

BE
=

1
√
5
2

=
EC

ED
=

1/2

ED
,

so

ED =
1√
5
. (913)

As we have an isosceles right triangle in △BAC we have

∠ECF = ∠ACB = 45 ,

and since ∠ACD = 90 this means that ∠ACB = 45 = ∠BCD and the segment FC is
the angle bisector of ∠ECD in the triangle △ECD. By the angle bisector theorem in that
triangle we have that

CD

FD
=
EC

EF
,

or since we know CD = 1
4
and EC = 1

2
this is

(1/4)

FD
=

(1/2)

EF
so FD =

1

2
EF .

Using this in Equation 913 written as

ED =
1√
5
= EF + FD ,

we have
1√
5
= EF +

EF

2
.

This gives EF = 2
3
√
5
and so

FD = ED −EF =
1

3
√
5
.

Now that we know the lengths of EF and FD since these two triangles share a common
base we can write

[EFC]

[ECD]
=
EF

ED
=

2
3
√
5

1√
5

=
2

3
.

We can evaluate [ECD] using the formula for the area of a right triangle

[ECD] =
1

2

(
1

4

)(
1

2

)

=
1

16
.

Using this in the above we find

[EFC] =
1

16
× 2

3
=

1

24
.
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Testing Question B.1

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows. In addition, I labeled the intersection of the segments BF
and AE as Q and the intersection of the segments CF with DE as P . I also denoted the
areas of the internal polygons (six triangles and a single quadrilateral) as Si for 1 ≤ i ≤ 7
so that

S1 = [ECP ]

S2 = [CPD]

S3 = [PFD]

S4 = [PFQE]

S5 = [BQE]

S6 = [BQA]

S7 = [AQF ] .

We can evaluate some of the areas in this question terms of the above notation. We have

[EDA] + [FBC] = S7 + S4 + S3 + S5 + S4 + S1 ,

and
[ABCD] = S1 + S2 + S3 + S4 + S5 + S6 + S7 .

If we subtract these two we find

[ABCD]− ([EDA] + [FBC]) = S2 + S6 − S4 .

Thus we will have [ABCD] = [EDA] + [FBC] if S4 = S2 + S6. Let h1, h2, and h3 be the
heights of the triangles △ABE, △BFC, and △EDC respectively. From the fact that E
and F are midpoints we have that

h2 =
1

2
(h1 + h3) .

We will use this in evaluating [BFC] we have

[BFC] =
1

2
h2BC

=
1

4
(h1 + h3)BC =

1

4
h1BC +

1

4
h3BC .

Now BC = 2BE = 2EC so the above equals

1

2
h1BE +

1

2
h3EC = (S6 + S5) + (S1 + S2) .

Noting that [BFC] = S5 + S4 + S1 when we set these two expressions equal we get

S4 = S2 + S6 ,

as we desired to show.
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Testing Question B.2

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Extend AG to a point P such that AG = GP . Let AP intersect BC at a point D. Now
D is the midpoint of BC (as it is a median of the triangle) and GD = 1

3
AG (due to the

medians of a triangle splitting the segments in ratios of 2 : 1). Thus DP = GD. Now the
quadrilateral BPCG have diagonals that are bisected. This means that this quadrilateral is
a parallelogram so we know that BP = GC = 2 and PC = BG =

√
2.

Now note that

BP 2 +BG2 = 4 + 4 · 2 = 12

GP 2 = 4 · 3 = 12 ,

which means that the triangle △GBP is a right triangle and ∠GBP = 90◦ and in fact this
parallelogram is actually a rectangle. This means that

[GBPC] = 2
√
2× 2 = 4

√
2 .

Thus

[GBC] =
1

2
[GBPC] = 2

√
2 ,

and
[ABC] = 3[GBC] = 6

√
2 .

Testing Question B.3 (Ceva’s Theorem)

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

Consider the ratio r ≡ BD
DC

. Then as the numerator and denominator are “bases” of the
triangles △ABD and △ACD we have

r =
[ABD]

[ACD]
.

The segments BD and DC are also “bases” of the triangles △PBD and △PCD respectively
so we also have

r =
[PBD]

[PCD]
.

Recognizing that each of these triangles is a part of the two larger triangles △ABD and
△ACD we also have

r =
[ABD]− [APB]

[ACD]− [APC]
.

1223



We can write the above as

([ACD]− [APC])r = [ABD]− [APB] .

If we divide both sides by [ACD] we get

(

1− [APC]

[ACD]

)

r = r − [APB]

[ACD]
.

This simplifies to give

r =
BD

DC
=

[APB]

[APC]
. (914)

This expresses BD
DC

as the ratio of the triangles “above” but not adjacent to the segments
BD and DC. In the same way as above we could derive

AE

EC
=

[BPA]

[BPC]

AF

FB
=

[APC]

[BPC]
.

Using these expression we can write

BD

DC
· CE
EA

· AF
FB

=
[APB]

[APC]
· [BPC]
[BPA]

· [APC]
[BPC]

= 1 ,

when we simplify.

Testing Question B.4

Quickly looking at the solutions in the back gave a diagram that I could reason with. Refer
to that diagram in what follows.

If we consider AO and OA′ “bases” of two triangles that have a vertex at point C then as
the height to C from AA′ is the same for both triangles the ratio of them is equal to the
ratio of the two triangles areas or

AO

OA′ =
[COA]

[COA′]
.

If we consider AO and OA′ “bases” of two triangles that have a vertex at point B then as
the height to B from AA′ is the same for both triangles the ratio of them is equal to the
ratio of the two triangles areas or

AO

OA′ =
[BOA]

[BOA′]
.

Thus we have shown that
AO

OA′ =
[COA]

[COA′]
=

[BOA]

[BOA′]
. (915)
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We can do the same thing for the ratio BO
OB′

where with a “vertex” at point A we get

BO

OB′ =
[AOB]

[AOB′]
,

and with a vertex at the point C we get

BO

OB′ =
[COB]

[COB′]
.

Thus we have shown that
BO

OB′ =
[AOB]

[AOB′]
=

[COB]

[COB′]
. (916)

We can do the same thing for the ratio CO
OC′

where with a “vertex” at point A we get

CO

OC ′ =
[AOC]

[AOC ′]
,

and with a vertex at the point C we get

CO

OC ′ =
[COC]

[COC ′]
.

Thus we have shown that
CO

OC ′ =
[AOC]

[AOC ′]
=

[COC]

[COC ′]
. (917)

We will now prove the following lemma. If

a

b
=
c

d
, (918)

then
a± c

b± d
=
a

b
=
c

d
. (919)

We can prove this by “cross-multiplying” and using Equation 918. Applying this lemma to
Equation 915 we get

AO

OA′ =
[AOC] + [AOB]

[A′OC] + [A′OB]
=

[AOC] + [AOB]

[BOC]
,

when we recognize the simpler form for the sum [A′OC] + [A′OB]. Applying this lemma to
Equation 916 we get

BO

OB′ =
[AOB] + [COB]

[AOB′] + [COB′]
=

[AOB] + [COB]

[AOC]
.

Applying this lemma to Equation 917 we get

CO

OC ′ =
[AOC] + [BOC]

[AOC ′] + [BOC ′]
=

[AOC] + [BOC]

[AOB]
.
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If we introduce x = [BOC], y = [COA], and z = [AOB] then using the above what we want
to compute is given by

AO

OA′ ·
BO

OB′ ·
CO

OC ′ =

(
y + z

x

)(
z + x

y

)(
y + x

z

)

= 2 +
y + z

x
+
x+ y

z
+
z + x

y

= 2 +
AO

OA′ +
CO

OC ′ +
BO

OB′ = 2 + 92 = 94 ,

where we have used the information given in the problem.

Testing Question B.5

Warning: I was able to make progress on this problem but was unable to full finish it. If
anyone sees anyways to continue from where I left off please contact me.

Note: Please refer to the diagram given in the problem in what follows.

From D draw a line parallel to AC that will intersect the segment PB at a point L. Then
as ∠CAP = ∠ADL and ∠EPA = ∠DPL we have that △APE ∼ △DPL. As AP = PD
these two triangles are actually congruent so △APE ∼= △DPL and PL = PE = 3. This
means that

BL = 9− PL = 9− 3 = 6 .

Note that EL = 3 + PL = 3 + 3 = 6 = LB and LD is parallel to AEC = EC thus D must
be the midpoint of CB (in triangle △BEC the segment LD is parallel to the segment EC
and passes through the midpoint of one side EB).

In the same way, parallel to AB from D draw a segment. Let this segment intersect CF at
the point K. As DK is parallel to the base of triangle △CFB and goes through a midpoint
of the side BC we have that K is a midpoint of the side CF . This means that

KF = CK =
1

2
CF = 10 .

Since ∠KPD = ∠FPA, AP = PD = 6, and ∠KDP = ∠FAP by angle-side-angle we have
△KPD ∼= △FPA. Thus PK = PF and as PK + PF = KF = 10 we have that

PK = PF = 5 .

In △PCB the segment KD connects two midpoints and thus its length is one-half of the
base PB or

KD =
1

2
PB =

1

2
(3 + 6) =

9

2
.

In △FCB the segment KD also connects two midpoints and thus its length is one-half of
the base FB in this case so

FB = 2KD = 9 .
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Finally as △KPD ∼= △FPA we have AF = KD = 9
2
.

We have now derived the distances from P to all of the points A,B,C,D,E, F and the two
distances AF and FB. Lets denote the areas of the six internal triangles as

S1 = [FPB]

S2 = [PBD]

S3 = [PDC]

S4 = [PCE]

S5 = [EPA]

S6 = [AFP ] .

Then using the ratios of the segments “out” of P as bases of triangles (as in the previous
question) we have

AP

PD
=

6

6
= 1 =

S4 + S5

S3
=
S6 + S1

S2

EP

PB
=

3

9
=

S4

S3 + S2
=

S5

S1 + S6

CP

PF
=

15

5
= 3 =

S4 + S5

S6
=
S2 + S3

S1
.

The same thing for the ratio AF : FB gives

AF

FB
=

1

2
=
S4 + S5 + S6

S1 + S2 + S3
. (920)

These give a linear system of equations for Si for 1 ≤ i ≤ 6. If we could solve this we could
sum Si to get the answer we seek. Unfortunately this system seems to be indeterminate and
I was unable to solve for Si.

As a final comment, to solve this problem we really don’t need to know Si for each i only
∑6

i=1 Si. Using Equation 920 we see that

3∑

i=1

Si = 2
6∑

i=4

Si ,

so
6∑

i=1

Si = 3

6∑

i=4

Si .

From the above we have S4 + S5 = 3S6 so we get

6∑

i=1

Si = 3(3S6 + S6) = 12S6 .

Thus if we could evaluate S6 we would be done.

If anyone sees a better approach or a place where the above can be extended (or an error)
please contact me.

1227



Lecture 15: Division of Polynomials

Testing Question A.1

Using long division we have

3x2 + 6x + 7

x− 2
)

3x3 − 5x + 6
− 3x3 + 6x2

6x2 − 5x
− 6x2 + 12x

7x + 6
− 7x+ 14

20

This means that the quotient is q(x) = 3x2 + 6x+ 7 and the remainder is r(x) = 20.

Using synthetic division produces a table like the following

3 0 − 5 6

2 6 12 14

3 6 7 20

This means that we can write

3x3 − 5x+ 6 = (3x2 + 6x+ 7)(x− 2) + 20 .

Testing Question A.2

Motivated by the simple fact that 2x − 1 = 2
(
x− 1

2

)
we will use synthetic division with

respect to 1
2
to get

− 6 0 − 7 8 9
1
2

− 3 − 3
2

− 17
4

15
8

− 6 − 3 − 17
2

15
4

87
8

This means that we have shown that

−6x4 − 7x2 + 8x+ 9 =

(

x− 1

2

)(

−6x3 − 3x2 − 17

2
x+

15

4

)

+
87

8
.

If we “pull a factor of two from the second factor” we get

−6x4 − 7x2 + 8x+ 9 = (2x− 1)

(

−3x3 − 3

2
x2 − 17

4
x+

15

8

)

+
87

8
.

The quotient q(x) is the second factor above (the one after the 2x− 1) and the remainder r
is r = 87

8
.
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Testing Question A.3

For this question we will use synthetic division with respect to −3. As a partial result for
this we get

1 3 8 − k 11

− 3 − 3 0 − 24

1 0 8 (−24 +−1k)

At this point the algebraic result from polyhornerscheme was wrong and I decided to
complete this part of the question “by hand”. To finish this synthetic division we next
multiply −24− k by −3 to get

72 + 3k .

We then add this to 11 to get
83 + 3k .

As we are told that x+3 must be a factor of the original polynomial we know that this final
expression must be zero so that k = −83

3
.

Testing Question A.4

Method 1: Synthetic division of f(x) with respect to −1 gives

−1 1 0 −a −b 2
−1 1 −1 + a 1− a + b

1 −1 1− a −1 + a− b 3− a + b

Synthetic division of f(x) with respect to −2 gives

−2 1 0 −a −b 2
2 4 8− 2a 16− 4a+ 2b

1 −2 4− a −8 + 2a− b 18− 4a+ 2b

As we are told that both x+ 1 and x+ 2 are factors of f(x) we must have

3− a + b = 0

18− 4a+ 2b = 0 .

Solving these we get a = 6 and b = 3.

Method 2: From what we are told we know that f(−1) = f(−2) = 0. These are the
expressions

f(−1) = 1− a + b+ 2 = 0

f(−2) = 16− 4a+ 2b+ 2 = 0 .

These are equivalent to the equations above and have the same solution.
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Testing Question A.5

From what we are told we know we can write

f(x) = (x− 1)q1(x) + 1 . (921)

Now lets divide q1(x) by x− 2 to write it as

q1(x) = (x− 2)q2(x) + k ,

for some k. If we put that expression into Equation 921 we get

f(x) = (x− 1)(x− 2)q2(x) + k(x− 1) + 1 .

We also know that f(2) = 2 so this means that

k(2− 1) + 1 = 2 so k = 1 ,

and we have shown that

f(x) = (x− 1)(x− 2)q2(x) + (x− 1) + 1 = (x− 1)(x− 2)q2(x) + x .

Now lets divide q2(x) by x− 3 to write it as

q2(x) = (x− 3)q3(x) + k ,

for some other k. This means that we would have

f(x) = (x− 1)(x− 2)(x− 3)q3(x) + k(x− 1)(x− 2) + x .

We know that f(3) = 3 so in the above that means that k(3 − 1)(3 − 2) + 3 = 3 so k = 0.
This means that we have shown we can write f(x) as

f(x) = (x− 1)(x− 2)(x− 3)q3(x) + x .

This means that the remainder is x when we divide f(x) by (x− 1)(x− 2)(x− 3).

Testing Question A.6

We are told that
f(x) = x5 − 5qx+ 4r = (x− 2)2Q(x) .

This means that
f(2) = 32− 10q + 4r = 0 , (922)

and that because
f ′(x) = 2(x− 2)Q(x) + (x− 2)2Q(x) ,

we would have f ′(2) = 0 also. Because we can write f ′(x) = 5x4 − 5q this means that

f ′(2) = 5 · 24 − 5q = 0 . (923)

We can solve the above for q and find q = 24 = 16. Using that in Equation 922 gives

32− 10(16) + 4r = 0 so r = 32 .
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Testing Question A.7

From the fact that f(x) is a polynomial of degree three and the information about the
remainder when we divide by x2 − 1 we have that

f(x) = (2x− 5) + (Ax+B)(x2 − 1) . (924)

If we expand this and group we can write f(x) as

f(x) = Ax3 +Bx2 + (2−A)x+ (−B − 5) .

We now divide this form by x2 − 4. I’ll skip the long division steps (as they are hard to
typeset) and only note that when we do this we find

f(x) = [(2 + 3A)x+ (3B − 5)] + (Ax+B)(x2 − 4) .

The question tells us the remainder when we divide f(x) by x2 − 4 is −3x+ 4 which means
that

2 + 3A = −3 so A = −5

3
,

and
3B − 5 = 4 so B = 3 .

From these and Equation 924 we have that

f(x) = (2x− 5) +

(

−5

3
x+ 3

)

(x2 − 1) = −5

3
x3 + 3x2 +

11

3
x− 8 .

when we expand and simplify.

Testing Question A.8

From the fact that this polynomial has integer coefficients lets start by look for rational
roots. All rational roots of this polynomial will be of the form q

p
where q is a factor of the

constant term i.e. eight and p is a factor of the coefficient of x3 i.e. one. Possible values for
q include

q ∈ {±1,±2,±4,±8} .
If we start with x = −1 we see that

−1 + 7− 14 + 8 = 0 ,

Thus x+ 1 is a factor. Synthetic division by −1 gives

1 7 14 8

− 1 − 1 − 6 − 8

1 6 8 0

This means that
x3 + 7x2 + 14x+ 8 = (x+ 1)(x2 + 6x+ 8) .

The second factor is simple to factor and we have

x3 + 7x2 + 14x+ 8 = (x+ 1)(x+ 2)(x+ 4) .
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Testing Question A.9

Note that this expression is symmetric in x and y. This means that we expect to be able to
write it in terms of the “components” x+ y and xy. Motivated by this fact we might write

f(x) = x4 + y4 + (x+ y)4

= (x2 + y2)2 − 2x2y2 + (x+ y)4

= [(x+ y)2 − 2xy]2 − 2x2y2 + (x+ y)4

= (x+ y)4 − 4xy(x+ y)2 + 4x2y2 − 2x2y2 + (x+ y)4

= 2(x+ y)4 − 4xy(x+ y)2 + 2x2y2 = 2[(x+ y)4 − 2xy(x+ y)2 + x2y2]

= 2[(x+ y)2 − xy]2

= 2[x2 + 2xy + y2 − xy]2 = 2[x2 + xy + y2]2 .

Testing Question A.10

Lets call this expression E(x, y, z). Then notice that

E(y, z, x) = yz(y2 − z2) + zx(z2 − x2) + xy(x2 − y2) ,

which is the same as E(x, y, z). Next notice that

E(z, x, y) = zx(z2 − x2) + xy(x2 − y2) + yz(y2 − z2) ,

which is also the same as E(x, y, z). This means that E(x, y, z) is a cyclical polynomial.
Now for cyclical polynomials if we can find one cyclical factor we can get all other factors
by “cycling the variables”. Consider taking x = y in E(x, y, z). We would have

E(y, y, z) = y2(0) + yz(y2 − z2) + yz(z2 − y2) = 0 ,

Thus x − y is a factor of E(x, y, z). By “cycling the variables” this means that y − z and
z− x are also factors of E. To prove/verify this lets write E as a polynomial in the variable
x as

E = yx3 − y3x+ z3x− zx3 + yz(y2 − z2)

= (y − z)x3 + (−y3 + z3)x+ yz(y2 − z2) .

From this by using

z3 − y3 = (z − y)(z2 + zy + y2) and z2 − y2 = (z − y)(z + y) ,

we immediately see that z−y is a factor of E which we could take out and use to simplify E
further. If we didn’t see that, we could use synthetic division to evaluate the x polynomial
form of E at x = y as

y y − z 0 −y3 + z3 yz(y2 − z2)
y2 − yz y3 − y2z yz3 − y3z

y − z y2 − yz z3 − y2z 0
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This means that we can write E as

E = (x− y)[(y − z)x2 + y(y − z)x + z(z2 − y2)] .

We still must have the two other factors listed above. Again we see the factor z− y is there.
But assuming we didn’t want to use that factor right now we also know that E(x, y, z) must
also vanish when x = z so we can do synthetic division on the second factor (the factor in
brackets) in E above as

z y − z y(y − z) z(z2 − y2)
yz − z2 y2z − z3

y − z y2 − z2 0

This means that we can write E as

E = (x− y)(x− z)[(y − z)x + (y2 − z2)] .

We sill need to “remove” the third factor y − z but that is easy to do given the above form
and we have

E = (x− y)(x− z)(y − z)[x + y + z] .

Testing Question B.1

If f(x) is a common factor of g(x) and h(x) then it is a common factor of

h(x)− 3g(x) = 3x4 − 9x3 + 2x2 + 3x− 1− 3x4 + 9x3 − 6x2 + 9x− 3

= −4x2 + 12x− 4 = −4(x2 − 3x+ 1) .

The only way f(x) = x2 + ax+ b is a factor of the above is if a = −3 and b = 1.

Testing Question B.2

Consider the function f(y) = ym − 1. Note that y − 1 must be a factor of f(y) as f(1) =
1m − 1 = 0. This means that we can write f(y) = (y − 1)g(y) for some g(y). If we take
y = x3 this means that

x3m − 1 = (x3 − 1)q(x3) = (x− 1)(x2 + x+ 1)q(x3) . (925)

This means that x2 + x+ 1 is a factor of x3m − 1.

Next consider
x3n+1 − x = x(x3n − 1) = x(x− 1)(x2 + x+ 1)q̃(x3) .

This means that x2 + x+ 1 is a factor of x3n+1 − x.

Next consider

x3p+2 − x2 = x2(x3p − 1) = x2(x− 1)(x2 + x+ 1)q̂(x3) .
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This means that x2 + x+ 1 is a factor of x3p+2 − x2.

If we take the expression given we can write it as

x3m + x3n+1 + x3p+2 = (x3m − 1) + (x3n+1 − x) + (x3p+2 − x2) + (1 + x+ x2) .

Using the three facts above we see that the right-hand-side is divisible by x2 + x + 1 and
thus the left-hand-side must also be dividable by x2 + x+ 1.

Testing Question B.3

We are told that we can write

f(x) = (x− a)m(x) + a .

Lets now divide m(x) by x− b to write it as

m(x) = (x− b)n(x) + C1 ,

for some constant C1. With these formulas we see that f(b) (which must equal b) is given
by

f(b) = (b− a)m(b) + a = (b− a)C1 + a .

For this to equal b means that C1 = 1. This means that we have shown that f(x) takes the
form

f(x) = (x− a)(x− b)n(x) + (x− a) + a = (x− a)(x− b)n(x) + x .

Lets divide n(x) by x− c as
n(x) = (x− c)q(x) + C2 ,

for some constant C2. With these formulas we see that f(c) (which must equal c) is given
by

f(c) = (c− a)(c− b)C2 + c .

For this to equal c means that C2 = 0. This means that we have shown that f(x) takes the
form

f(x) = (x− a)(x− b)(x− c)q(x) + x .

From this form the remainder when we divide f(x) by (x− a)(x− b)(x− c) is x.

Testing Question B.4

Call this expression E(x, y, z). Then I claim that E is cyclical. This means that

E(y, z, x) = E(z, x, y) = E(x, y, z) .

This means that if I can find a single factor of E I can find others by cyclically permuting
its variables. Lets evaluate x = z in E. We have

E(z, y, z) = (y2 − z2)(1 + zy)(1 + z2) + 0 + (z2 − y2)(1 + z2)(1 + zy) = 0 .
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This means that x − z is a factor of E. Another then must be y − x and another must be
z−y. Using this information we will first factor out x−z and see what expression that gives
us. Note that as the second term in E i.e.

(z2 − x2)(1 + yz)(1 + yx) ,

already has x− z as a factor the other two terms in E must have x− z as a factor (but one
that is harder to “see” directly). Call this part E13 for the first and third terms of E. Then
we will write E13 as a polynomial in x as

E13 = (y2 − z2)(1 + (y + z)x+ yzx2) + (x2 − y2)(1 + zx)(1 + zy)

= (y2 − z2)(yzx2 + (y + z)x+ 1) + (x2 + zx3 − y2 − y2zx)(1 + zy)

= (y2 − z2)(yzx2 + (y + z)x+ 1) + (zx3 + x2 − y2zx− y2)(1 + zy)

= (1 + zy)zx3 + [(y2 − z2)yz + (1 + zy)]x2 + [(y2 − z2)(y + z)− y2z(1 + zy)]x− z2 − zy3 .

Lets use synthetic division with respect to z on the above. We have

z (1 + zy)z y3z − yz3 + 1 + zy y3 − yz2 + zy2 − z3 − y2z − z2y3 −z2 − zy3

z2 + z3y y3z2 + z3 + z2y + z zy3 + z2

z + z2y y3z + z2 + zy + 1 y3 + zy2 − y2z + z 0

This means that we can write E as

E = (x− z)[(z + z2y)x2 + (y3z + z2 + zy + 1)x+ y3 + z − (z + x)(1 + yz)(1 + yx)] .

Lets simplify the second factor (called F ) above. I find (with perhaps too many details)

F = (z + z2y)x2 + (y3z + z2 + zy + 1)x+ y3 + z − (1 + yz)[z + yzx+ x+ yx2]

= (z + z2y)x2 + (y3z + z2 + zy + 1)x+ y3 + z − (1 + yz)[yx2 + (1 + yz)x+ z]

= [z + z2y − y − y2z]x2 + [y3z + z2 + zy + 1− (1 + yz)2]x+ y3 + z − z − yz2

= [(z − y) + zy(z − y)]x2 + [y3z + z2 + zy − 2yz − y2z2]x+ y(y2 − z2)

= (z − y)(1 + zy)x2 + [y3z + z2 − yz − y2z2]x+ y(y2 − z2)

= (z − y)(1 + zy)x2 + [y2z(y − z) + z(z − y)]x+ y(y2 − z2)

= (z − y)(1 + zy)x2 + (z − y)[z − zy2]x+ y(y2 − z2) .

From this we see the factor z − y and we can write E as

E = (x− z)(z − y)[(1 + zy)x2 + z(1− y2)x− y(y + z)] .

We still expect a factor y−x of E. When we view the term in braces above as a polynomial
in x we can find this factor by performing synthetic division with respect to y on the above.
We have

y 1 + zy z(1 − y2) −y2 − yz
y + zy2 y2 + zy

1 + zy y + z 0

This means that we have

(1 + zy)x2 + z(1− y2)x− y(y + z) = (x− y)[(1 + zy)x+ y + z] ,

and finally for E the factorization

E = −(x− z)(z − y)(y − x)(xyz + x+ y + z) .
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Testing Question B.5

In general, polynomial division of f(x) by g(x) gives

f(x) = g(x)q(x) + r(x) ,

for a polynomial quotient q(x) and remainder r(x). The degree of r(x) is one less than the
degree of g(x). For this question we are told that

q(x) = r(x) = h(x) ,

so

f(x) = x3 + 2x2 + 3x+ 2 = g(x)h(x) + h(x)

= (g(x) + 1)h(x) . (926)

If h(x) is not constant then by comparing the highest polynomial powers on the left and
right hand sides we could have

• g(x) could be quadratic with h(x) linear or

• g(x) could be linear with h(x) quadratic

To have the degree of r(x) = h(x) be one less than the degree of g(x) we need to take the
first of the two choices above. This means that

g(x) = x2 + Ax+B

h(x) = x+ C ,

for constants A, B, and C. If we put these in the above we see that we need to have

x3 + 2x2 + 3x+ 2 = (x2 + Ax+B + 1)(x+ C)

= x3(A + C)x2 + (B + 1 + AC)x+ (B + 1)C .

Equating coefficients this means that

A+ C = 2

B + 1 + AC = 3

(B + 1)C = 2 .

From the last equation we have B + 1 = 2
C
which if we put in the above we get

A + C = 2

2

C
+ AC = 3 .

From the first equation we have A = 2− C when in the second equation gives

2

C
+ (2− C)C = 3 .
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We can write this as
C3 − 2C2 + 3C − 2 = 0 .

Looking for integer solutions we would need to have C ∈ {±1,±2}. Testing each of these
in the left-hand-side of the above we find that only C = 1 is a solution. In that case
A = 2− C = 1 and

B + 1 =
2

C
= 2 so B = 1 .

This means that we have shown that

x3 + 2x2 + 3x+ 2 = (x2 + x+ 1)(x+ 1) + (x+ 1) .
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Lecture Notes on

Mathematical Olympiad Courses: Vol. 2

Lecture 16: Quadratic Surd Expressions and Their Operations

Notes on Example 3

In this example we first note that 74 = 2401 ends in a one. Now recall that if a number ends
in an one then all integer powers of that number will also end in a one. Thus

(74)500 ,

has a ones digit of one. This means that units digit of the full product

(74)500 · 73 ,

can be determined from the units digit of the second factor i.e. 73 = 343. Thus the units
digit of the full product will be three.

Testing Question A.1

Call this expression E. Now if x < 2 then x− 2 < 0 and −x > −2 so 3 − x > 1 > 0. Using
these we can “take the square roots of the squares” as

E =
∣
∣
∣

√

(x− 2)2 +
√

(3− x)2
∣
∣
∣ =

∣
∣
∣

√

(2− x)2 +
√

(3− x)2
∣
∣
∣

= |(2− x) + (3− x)| = |5− 2x| .

Now 2x < 4 so −2x > −4 so 5 − 2x > 1 and the argument of the absolute value above is
positive. This means that and we have

E = 5− 2x .
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Testing Question A.2

Call this expression E. Now we have the given expression equal to

E =
1 +

√
2 +

√
3

1−
√
2 +

√
3

(

1−
√
2−

√
3

1−
√
2−

√
3

)

=
(1 +

√
2 +

√
3)(1−

√
2−

√
3)

(1−
√
2)2 − 3

=
1− (

√
2 +

√
3)2

1− 2
√
2 + 2− 3

=
1− (

√
2 +

√
3)2

−2
√
2

= −
(

1− (2 + 2
√
6 + 3)

2
√
2

)

= −
(

−4− 2
√
6

2
√
2

)

=
2 +

√
6√

2

=
2
√
2 +

√
12

2
=

√
2 +

√
3 .

Testing Question A.3

Lets call this expression E. We start by factoring and then pulling out “common factors” as

E =
(x− 3)(x− 1) + (x+ 1)

√
x2 − 9

(x+ 3)(x+ 1) + (x− 1)
√
x2 − 9

=

√

(x− 3)2(x− 1) + (x+ 1)
√

(x− 3)(x+ 3)
√

(x+ 3)2(x+ 1) + (x− 1)
√

(x− 3)(x+ 3)

=

√
x− 3√
x+ 3

[√
x− 3(x− 1) + (x+ 1)

√
x+ 3√

x+ 3(x+ 1) + (x− 1)
√
x− 3

]

.

Note that this second factor in brackets is one so the above is equal to

E =

√
x− 3√
x+ 3

=

√
x2 − 9

x+ 3
.

Testing Question A.4

Lets call this expression E then we can write E as

E =
2 + 3

√
3 +

√
5

(2 +
√
3)(2

√
3 +

√
5)

=
2 +

√
3 + 2

√
3 +

√
5

(2 +
√
3)(2

√
3
√
5)

=
1

2
√
3 +

√
5
+

1

2 +
√
3

=
2
√
3−

√
5

4 · 3− 5
+

2−
√
3

4− 3
=

1

7
(2
√
3−

√
5) + 2−

√
3 .
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Testing Question A.5

Lets call this expression E then we can write E as

E =
(√

5 +
√
6 +

√
7
)(√

5 +
√
6−

√
7
)(√

5−
√
6 +

√
7
)(

−
√
5 +

√
6 +

√
7
)

=
(√

5 +
√
6 +

√
7
)(√

5 +
√
6−

√
7
)(√

7 +
√
5−

√
6
)(√

7−
√
5 +

√
6
)

=

((√
5 +

√
6
)2

− 7

)(

7−
(√

5−
√
6
)2
)

=
(

5 + 2
√
30 + 6− 7

)(

7−
(

5− 2
√
30 + 6

))

=
(

4 + 2
√
30
)(

−4 + 2
√
30
)

= 4 · 30− 16 = 104 .

Testing Question A.6

Write a as
a =

√
6− 2 =

√
6−

√
2 ·

√
2 =

√
2
(√

3−
√
2
)

.

Write b as
b = 2

√
2−

√
6 = −

√
6 + 2

√
2 =

√
2
(

−
√
3 + 2

)

.

With these expressions we have that

a

b
=

√
3−

√
2

2−
√
3
.

If we “remove” the square root in the denominator we can write this as

a

b
=

√
3−

√
2

2−
√
3

(

2 +
√
3

2 +
√
3

)

=
2
√
3− 2

√
2 + 3−

√
6

4− 3

= 3 + 2
√
3− 2

√
2−

√
6

=
√
3 ·

√
3 + 2

√
3− 2

√
2−

√
2 · 3

=
√
3
(√

3 + 2
)

−
√
2
(

2 +
√
3
)

=
(√

3 + 2
)(√

3− 2
)

= 3− 4 = −1 .

This means that a = −b. If we note that a > 0 so the above means that b < 0. Thus we the
order is a > b.

Testing Question A.7

We have

a =
√
27−

√
26

b =
√
28−

√
27

c =
√
29−

√
28 .
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To help see what we should do we note that

(√
27−

√
26
)(√

27 +
√
26
)

= 26− 26 = 1 .

The same pattern holds for b and c. This means that we have

a =
1√

27 +
√
26

b =
1√

28 +
√
27

c =
1√

29 +
√
28
.

Since we know that √
26 +

√
27 <

√
27 +

√
28 <

√
28 +

√
29 ,

we have that
1√

28 +
√
29

<
1√

27 +
√
28

<
1√

26 +
√
27
,

which means that c < b < a.

Testing Question A.8

We start with
3

1 +
√
3
< x <

3√
5−

√
3
. (927)

Now using the fact that
1 +

√
3 > 1 + 2 = 3 ,

thus we see that
3

1 +
√
3
>

3

1 + 2
= 1 .

Thus the left-hand-side of the above is larger than one and thus the smallest x can be is
x = 2. This means that x ≥ 2. We now need to evaluate a bound on the right-hand-side to
see how large x can become. Note that we can write the right-hand-side above as

3
(√

5 +
√
3
)

5− 3
=

3

2

(√
5 +

√
3
)

.

We can bound the right-hand-side above using the Bernoulli inequality 1000 as follows

√
5 +

√
3 =

√
4 + 1 +

√
4− 1

= 2

(√

1 +
1

4
+

√

1− 1

4

)

< 2

(

1 +
1

8
+ 1− 1

8

)

= 4 .
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This means that

x <
3

2
(4) = 6 .

Thus it looks like the we can have

x ∈ {2, 3, 4, 5} .

Another way to work the second half of this problem is to realize that when we ask for which
x values do we have

x <
3

2
(
√
5 +

√
3) .

We can answer that problem by “squaring until there are no more square roots”. Thus the
above is equal to

4x2

9
< 5 + 3 + 2

√
15 ,

or
4x2

9
< 8 + 2

√
15 ,

or
2x2

9
< 4 +

√
15 ,

or
2x2 < 36 + 9

√
15 ,

or
(2x2 − 36)2 < 81 · 15 = 1215 .

We can then evaluate the above for various integer x values and stop when we get the first
x value that does not satisfy this inequality. This method gives the same x values as before.

Testing Question A.9

Lets call this expression E so that

E =
1

1− 4
√
5
+

1

1 + 4
√
5
+

2

1 +
√
5
.

If we rationalize the denominator of the first two fractions by multiplying by “forms of one”
with denominators 1 + 4

√
5 and 1− 4

√
5 respectively we can write E as

E =
1 + 4

√
5

1−
√
5
+

1− 4
√
5

1 −
√
5
+

2

1 +
√
5
=

2

1−
√
5
+

2

1 +
√
5
.

If we rationalize the denominators of these two fractions by multiplying by “forms of one”
with denominators 1 +

√
5 and 1−

√
5 respectively we can write E as

E =
2
(
1 +

√
5
)
+ 2

(
1 +

√
5
)

(1− 5)
=

4

−4
= −1 .
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Testing Question A.10

We are told that c > b > c > d > 0 and that

U =
√
ab+

√
cd

V =
√
ac+

√
bd

W =
√
ad+

√
bc .

From definition of U replace b is the first square root with c. Then since b > c this means
that

U >
√
ac+

√
cd .

From the definition of V we can replace
√
ac in the above to get

U > (V −
√
bd) +

√
cd .

This means that
U − V >

√
cd−

√
bd =

√
d
(√

c−
√
d
)

> 0 .

Thus we have shown that U > V .

Next consider the difference V −W . We find

V −W =
√
a
(√

c−
√
d
)

+
√
b
(√

d−
√
c
)

=
√
a
(√

c−
√
d
)

−
√
b
(√

c−
√
d
)

=
(√

a−
√
b
)(√

c−
√
d
)

> 0 .

This then means that V > W .

Combining these two results we have that U > V > W .

Testing Question B.1

To have both of the square roots have positive arguments means that

|a| − 3 ≥ 0 ⇒ |a| ≥ 3 ,

and
3− |a| ≥ 0 ⇒ 3 ≥ |a| .

Taken together this means that |a| = 3 or a = ±3. If a = 3 the denominator of second
fraction is zero thus a = −3. This means that x is given by

x =

(

−2(−3)

4− 3

)1993

= 61993 .

To determine the units digit of this product note that 61 = 6, 62 = 36, and 63 = 216. Thus
all powers of six will end in a six. Thus the last digit of x is six.
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Testing Question B.2

Lets call this expression E then we have

E =
3
√
3

(

3

√

4

9
− 3

√

2

9
+

3

√

1

9

)−1

=
3
√
3

(
3
√
4− 3

√
2 + 3

√
1

3
√
9

)−1

=
3
√
3

(
3
√
9

3
√
4− 3

√
2 + 3

√
1

)

=
3

3
√
4− 3

√
2 + 1

.

We would like to multiply by a “form of one” that will rationalize the denominator. Towards
that end lets multiply it by something like 3

√
2 +A where we will seek to determine what A

is that will make the results the simplest. We have
(

3
√
4− 3

√
2 + 1

)(
3
√
2 + A

)

=
3
√
8− 3

√
4 +

3
√
2 + A

3
√
4− A

3
√
2 + A .

If we take A = 1 in the above we get

3
√
8− 3

√
4 +

3
√
2 +

3
√
4− 3

√
2 + 1 =

3
√
8 + 1 = 2 + 1 = 3 .

Thus lets multiply the numerator and denominator of E by

3
√
2 + 1

3
√
2 + 1

,

to get

E =
3
(

2
√
3 + 1

)

3
= 1 +

3
√
2 .

Testing Question B.3

Lets call this expression E then we can write E as

E =

√

n(n+ 1)(n+ 2)(n+ 3) + 1

4
,

with n = 1998. Now take the products of the factors n with n+ 3 and also n+ 1 with n+2
to write the above as

E =

√

(n2 + 3n)(n2 + 3n+ 2) + 1

4

=

√

(n2 + 3n)2 + 2(n2 + 3n) + 1

2
=

√

(n2 + 3n + 1)2

2

=
n2 + 3n + 1

2
.

Now when n = 1988 this is 1999000.
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Testing Question B.4

In this question we take a = 3
√
4 + 3

√
2 + 1 where we note that from Question B2 we might

consider the product

(
3
√
4 +

3
√
2 + 1)(

3
√
2− 1) =

3
√
8 +

3
√
4 +

3
√
2− 3

√
4− 3

√
2− 1

=
3
√
8− 1 = 2− 1 = 1 .

Thus we have that

a =
1

3
√
2− 1

.

From this we find

a2 =
1

3
√
4− 2 3

√
2 + 1

=
1

2
2
3 − 2 · 2 1

3 + 1
=

1

2
2
3 − 2

4
3 + 1

,

and

a3 =
1

(2
2
3 − 2

4
3 + 1)

1

(2
1
3 − 1)

=
1

2− 2
5
3 + 2

1
3 − 2

2
3 + 2

4
3 − 1

=
1

1− 2 · 2 2
3 + 2

1
3 − 2

2
3 + 2 · 2 1

3

=
1

1− 3 · 2 2
3 + 3 · 2 1

3

.

Call the expression we want to evaluate E. Using the above E is then given by

E =
3

a
+

3

a2
+

1

a3

= (2
1
3 − 1) + 3(2

2
3 − 2 · 2 1

3 + 1) + 1− 3 · 2 2
3 + 3 · 2 1

3

= (3− 6 + 3)2
1
3 − 3 + 3 + 1 + (3− 3)2

2
3 = 1 .

Testing Question B.5

Define A and B as A =
√
13 +

√
11 and B =

√
13 +

√
11. Then notice that

M = A6

A+B = 2
√
13

A · B = 13− 11 = 2 .

We can get even powers of A (or B) using the above expressions. In that direction note that

A2 +B2 = (A+B)2 − 2AB =
(

2
√
13
)2

− 2 · 2 = 4− 13− 4 = 48 .
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As M = A6 we need higher powers. To get that we consider

A6 +B6 = (A2)3 + (B2)3 = (A2 +B2)(A4 − A2B2 +B4)

= (A2 +B2)
(
(A2)2 + (B2)2 − (AB)2

)

= (A2 +B2)
(
(A2 +B2)2 − 2A2B2 − (AB)2

)

= (A2 +B2)
(
(A2 +B2)2 − 3(AB)2

)
.

Notice that we know all of the factors in the above and we can evaluate this as

A6 +B6 = 48 · (482 − 3 · 22) = 110016 ,

an integer. Now given this, one of the things we want can be written as

A6 =
[
A6 +B6

]
− B6 = 110016− B6 .

Now we can bound B as
0 < B <

√
16−

√
9 = 4− 3 = 1 ,

thus
B6 < 1 .

As M = A6 is an integer minus a number less than one (i.e. B6) the decimal part of M is
P = 1 − B6. This is because in computing M we are subtracting a number less than one
from an integer. Given this we have

M(1− P ) =
([
A6 +B6

]
−B6

)
B6 = (AB)6 = 26 = 64 .
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Lecture 17: Compound Quadratic Surd Form
√

a±
√
b

Testing Question A.1

For this we have
√

12− 4
√
5 =

√

2(6− 2
√
5) =

√

2(
√
5−

√
1)2 =

√
2(
√
5− 1) .

Testing Question A.2

Lets call this expression E. Then we have

E =

√

2 +
√
3 +

√

2−
√
3

=

√

1

2
(4 + 2

√
3) +

√

1

2
(4− 2

√
3)

=
1√
2

√

(
√
3 +

√
1)2 +

1√
2

√

(
√
3−

√
1)2

=
1√
2
(
√
3 + 1) +

1√
2
(
√
3− 1) =

2
√
3√
2

=
√
6 .

Testing Question A.3

Lets call this expression E. Then we have

E =

√

14 + 6
√
5−

√

14− 6
√
5 .

Now in order for the argument of the first square root to be of the form (a +
√
5b)2 would

mean that a and b would have to satisfy

a2 + 5b2 = 14 .

One way this can be true is if a = 3 and b = 1. This means that

E =

√

(3 +
√
5)2 −

√

(3−
√
5)2

= 3 +
√
5− 3 +

√
5 = 2

√
5 .
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Testing Question A.4

Lets call this expression E. Then we have

E =

√

8 +
√
63−

√

8−
√
63

=

√

8 + 3
√
7−

√

8− 3
√
7 .

Method 1: If we square E we get

E2 = 8 + 3
√
7 + 8− 3

√
3− 2

√

(8 + 3
√
3)(8− 3

√
7)

= 16− 2
√
64− 9 · 7 = 16− 2 = 14 .

Thus E =
√
14.

Method 2: Another way to work this is to write E as

E =

√

8 +
√
63−

√

8−
√
63

=

√

1

2
(16 + 2

√
63)−

√

1

2
(16− 2

√
63)

=

√

1

2
(
√
9 +

√
7)2 −

√

1

2
(
√
9−

√
7)2

=

√
9 +

√
7√

2
−

√
9−

√
7√

2
=

2
√
7√
2

=
√
14 .

Testing Question A.5

Lets call this expression E. Then we have

E =

√

4 +
√
7 +

√

4−
√
17 .

We can write E as

E =

√

1

2
(8 + 2

√
7) +

√

1

2
(8− 2

√
7)

=

√

1

2
(
√
7 + 1)2 +

√

1

2
(
√
7− 1)2

=
1√
2
(
√
7 + 1) +

1√
2
(
√
7− 1)

=
2
√
7√
2

=
√
2
√
7 =

√
14 .
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Testing Question A.6

Lets call this expression E. Then we have

E =

√

7−
√
15−

√

16− 2
√
15 .

Now in order for the argument of the last square root to be of the form (a +
√
15b)2 would

mean that a and b would have to satisfy

a2 + 15b2 = 16 .

One way this can be true is if a = 1 and b = 1. This means that we can write E as

E =

√

7−
√
15−

√

(
√
15− 1)2

=

√

7−
√
15− (

√
15− 1) =

√

8− 2
√
15

=

√

(
√
5−

√
3)2 =

√
5−

√
3 .

Testing Question A.7

Let a =
√

3
√
5−

√
2 and b =

√

3
√
2−

√
5 then our system is

x+ y = a

x− y = b .

If we add and then subtract these two equations we get the solutions

x =
a + b

2

y =
a− b

2
.

This would mean that xy = a2−b2

4
.

Now from the definition of a and b we have that

a2 − b2 = 3
√
5−

√
2− (3

√
2−

√
5)

= 4
√
5− 4

√
2 = 4(

√
5−

√
2) .

Thus xy =
√
5−

√
2.
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Testing Question A.8

Lets call this expression E then we can write E as

E =

√

8 + 2(4 + 2
√
7 + 2

√
5 +

√
35)

=

√

16 + 4
√
5 + 4

√
7 + 2

√
35 .

Based on this form we might hope that we can write E in the following form

E = a+ b
√
5 + c

√
7 .

From the expression for E given in this question and the form we hope it takes we have

E2 = 16 + 4
√
5 + 4

√
7 + 2

√
35

= a2 + 5b2 + 7c2 + 2ab
√
5 + 2ac

√
7 + 2cb

√
35 .

This will be true if

a2 + 5b2 + 7c2 = 16 (928)

2ab = 4 (929)

2ac = 4 (930)

2cb = 2 . (931)

Based on Equation 928 lets “try” a = 2, b = 1, and c = 1. From these we see that the other
three equations are also true. This means that

E = 2 +
√
5 +

√
7 .

Testing Question A.9

Denote this expression by E. Then we have

E =

√

a+ 3 + 4
√
a− 1 +

√

a+ 3− 4
√
a− 1

=

√

(
√
a− 1 + 2)2 +

√

(
√
a− 1− 2)2

=
√
a− 1 + 2 +

√

(
√
a− 1− 2)2 .

We can perform the last step above because
√
a− 1 + 2 ≥ 2 > 0 for all a ≥ 1. Now if

√
a− 1− 2 > 0 or a ≥ 5 ,

then E is equal to
E =

√
a− 1 + 2 +

√
a− 1− 2 = 2

√
a− 1 .

If √
a− 1− 2 < 0 ,
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or
√
a− 1 < 2 or as this expression must be positive we have

0 ≤
√
a− 1 < 2 ,

or 1 ≤ a < 5 then E is equal to

E =
√
a− 1 + 2 + 2−

√
a− 1 = 4 .

Testing Question A.10

We can write A as

A =

√√
3 + 1−

√√
3− 1

√√
3 + 1 +

√√
3− 1

×
√√

3 + 1−
√√

3− 1
√√

3 + 1−
√√

3− 1

=
(
√
3 + 1)− 2

√

(
√
3 + 1)(

√
3− 1) + (

√
3− 1)

√
3 + 1− (

√
3− 1)

=
2
√
3− 2

√
3− 1

2
=

√
3−

√
2 .

Now from the expression given we have

x =

√
6−

√
30√

2−
√
10

− 2 =

√
3(
√
2−

√
10)√

2−
√
10

− 2

=
√
3− 2 ,

which is not equal to A.

Testing Question B.1

Lets denote this expression E. Now for
√
ab to be defined in the real numbers we must have

ab ≥ 0. Thus a and b are the same sign (both positive or both negative). If a > 0 (then
b > 0) so that both of

√
a and

√
b are defined and

(
√
a)2 = a

(
√
b)2 = b .

Now for E to be real means the argument of the square root must be positive or

√
ab ≥ a+ b

2
.

This is the opposite of the arithmetic-mean geometric-mean (AM-GM) inequality and would
only be true if a = b giving a contradiction. Thus a cannot be a > 0 and thus we conclude
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that a < 0 (so that b < 0 also). This means that
√
−a and

√
−b are defined. Using that

information we can write E as

E =

√

2
√
ab+ (−a) + (−b) =

√

2
√
ab+ (

√
−a)2 + (

√
−b)2

=

√

(
√
−a +

√
−b)2 =

√
−a +

√
−b .

Testing Question B.2

Call this expression E. For E to be a real number we must have a ≥ 1. We can simplify the
argument of the first cube root as

(
√
a− 1−√

a)5√
a− 1 +

√
a

×
√
a− 1−√

a√
a− 1−√

a
=

(
√
a− 1−√

a)6

a− 1− a

= −(
√
a− 1−

√
a)6 .

In the same way, the argument of the second cube root can be simplified to get

(
√
a− 1 +

√
a)6 .

Taking the needed cube roots of these we get

E = −(
√
a− 1−

√
a)2 + (

√
a− 1 +

√
a)2

= −((a− 1)− 2
√

a(a− 1) + a) + ((a− 1)− 2
√

a(a− 1) + a)

= 4
√

a(a− 1) .

Testing Question B.3

Let Ei (i for “inner”) be defined as

Ei = 1 + a2 +
√
1 + a2 + a4 .

Next note that
1 + a2 + a4 = 1 + 2a2 + a4 − a2 = (1 + a2)2 − a2 .

Thus we have shown that we can write Ei as

Ei = 1 + a2 +
√

(a2 − a+ 1)(a2 + a+ 1)

=
1

2
(2 + 2a2 + 2

√

(a2 − a+ 1)(a2 + a+ 1))

=
1

2

(

(a2 − a + 1) + 2
√

(a2 − a + 1)(a2 + a+ 1) + (a2 + a+ 1)
)

=
1

2

(√
a2 − a + 1 +

√
a2 + a + 1

)2

.

This means that the total expression we want to evaluate is given by

E =
√

Ei =
1√
2
(
√
a2 − a+ 1 +

√
a2 + a+ 1) .
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Testing Question B.4

Lets call this expression E. To solve this question we first try to factor (a multiple) of the
argument of the second square root. That is, we ask if we can write

2x− 4 + 2
√
2x− 5 = (a+ b

√
2x− 5)2 ,

for some a and b. If we expand the right-hand-side of the above we get

a2 + (2x− 5)b2 + 2ab
√
2x− 5 .

If we take ab = 1 to make the above equal we need to have

a2 + (2x− 5)b2 = 2x− 4 .

This will be satisfied if we take b = 1 and a = 1. This means that

√

x− 2 +
√
2x− 5 =

√

1

2
(2x− 4 + 2

√
2x− 5)

=
1√
2

√

(1 +
√
2x− 5)2 =

1 +
√
2x− 5√
2

.

Next we try to factor (another multiple) of the argument of the first square root. That is,
we ask if we can write

2x+ 4 + 6
√
2x− 5 = (a+ b

√
2x− 5)2 ,

for some (perhaps different) a and b. If we expand the right-hand-side of the above we get

a2 + (2x− 5)b2 + 2ab
√
2x− 5 .

If we take 2ab = 6 or ab = 3 to make the above equal we need to have

a2 + (2x− 5)b2 = 2x+ 4 .

This will be satisfied if we take b = 1 and a = 3. This means that

√

x+ 2 + 3
√
2x− 5 =

√

1

2
(2x+ 4 + 6

√
2x− 5)

=
1√
2

√

(3 +
√
2x− 5)2 =

3 +
√
2x− 5√
2

.

These two things taken together mean that we have

E =
3 +

√
2x− 5√
2

− 1 +
√
2x− 5√
2

=
2√
2
=

√
2 .
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Testing Question B.5

We start with √
x =

√
a− 1√

a
. (932)

If we square both sides of this we get

x = a− 2 +
1

a
,

or

x+ 2 = a+
1

a
.

If we square this again we get

(x+ 2)2 = x2 + 4x+ 4 = a2 + 2 +
1

a2
,

or

x2 + 4x = a2 − 2 +
1

a2
=

(

a− 1

a

)2

.

This means that √
x2 + 4x =

∣
∣
∣
∣
a− 1

a

∣
∣
∣
∣
. (933)

Now from Equation 932 as
√
x ≥ 0 we know that

√
a− 1√

a
≥ 0 ,

which means that √
a ≥ 1√

a
,

or
(
√
a)2 ≥ 1 ,

or
a ≥ 1 .

This means that 1
a
< 1 so that a > 1

a
and Equation 933 becomes

√
x2 + 4x = a− 1

a
.

This means that
x+ 2 +

√
x2 + 4x

x+ 2−
√
x2 + 4x

=
a+ 1

a
+ a− 1

a

a + 1
a
−
(
a− 1

a

) =
2a
2
a

= a2 .
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Testing Question B.6

Lets call this expression E. Next we ask if we can write the argument of the square root as
a square as

17− 12
√
2 = (a− b

√
2)2 = a2 + 2b2 − 2ab

√
2 .

This is true if

a2 + 2b2 = 17

2ab = 12 or ab = 6 .

Both of these can be made true if we take a = 3 and b = 2. Thus we have

17− 12
√
2 = (3− 2

√
2)2 ,

so that √

17− 12
√
2 = 3− 2

√
2 .

This means that we have shown that

E =
1

3− 2
√
2
=

3 + 2
√
2

9− 4 · 2 = 3 + 2
√
2 . (934)

We now need to find the closest integer to the above expression.

Method 1: Lets evaluate
√
2 to an accuracy such that when we compute E above we can

determine the closest integer. One way to compute square roots “by hand” is to use Newton’s
method on an appropriate function. For this problem we consider

f(x) = x2 − 2 .

Then f(x) = 0 has solutions ±
√
2. For this problem Newton’s iterations take the form

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

(x2n − 2)

2xn
=
xn
2

+
1

xn
.

This is simple enough we can iterate by hand. Using R and starting at x0 = 1 as

my_g = function(x){

x - 0.5 * x + 1/x

}

print(c(my_g(1), my_g(my_g(1)), my_g(my_g(my_g(1)))))

we find

[1] 1.500000 1.416667 1.414216
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for the first three iterates. Thus we conclude that

1.4 <
√
2 < 1.41 ,

so that
2.8 < 2

√
2 < 2.82 ,

and
5.8 < 3 + 2

√
2 < 5.82 .

Thus the closest integer to E is six.

Method 2: From Equation 934 we have

E = 3 +
√
8 .

Thus
5 = 3 +

√
4 < E < 3 +

√
9 = 6 ,

so we now know that 5 < E < 6. The midpoint of this range is the value 5.5. Write 5.5 as

5.5 = 3 + 2.5 = 3 +
√
2.52 = 3 +

√
6.25 < 3 +

√
8 = E .

Thus using this, we have the improved bound that

5.5 < E < 6 .

Again we see that the nearest integer to E is six.
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Lecture 18: Congruence of Integers

Notes on Example 8

Using the comments/results from Example 5 we have that

an + bn = (a+ b)(an−1 − an−2b+ an−3b2 − · · ·+ bn−1) ,

thus we see that
an + bn ≡ 0 (mod a+ b) .

If we write the given expression as suggested we see that the pairs of terms will all be divisible
by n+2 except the first (unit term). This proves that the remainder when divided by n+2
is one.

Testing Question A.1

We are looking to find the number of values for n such that

2007 = qn + 7 ,

for some quotient q. This is equivalent to

2000 = qn .

The prime factorization of 2000 gives

24 · 53 = qn .

This means that n is a number of the form n = 2p ·5q for 0 ≤ p ≤ 4 and 0 ≤ q ≤ 3. There are
(4 + 1)× (3 + 1) = 20 numbers of this form. Some of these values would produce values for
n that were less than seven and would thus not have seven as a remainder when we divide
by n. These numbers happen when

• If p = 0 and q ∈ {0, 1}

• If p = 1 and q = 1.

• If p = 2 and q = 0.

or four numbers. This means that 20− 4 = 16 number of the required type exist.
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Testing Question A.2

We will use the idea that since this number 123456789 is to the fourth power if I can evaluate
123456789 ≡ b (mod m) where b is small then I can raise everything to the fourth power to
get

1234567894 ≡ b4 (mod m) ,

and hopefully I can evaluate b4 (mod m). Note that if we define N ≡ 123456789 we can
write

N = 1 · 108 + 2 · 107 + 3 · 106 + 4 · 105 + 5 · 104 + 6 · 103 + 7 · 102 + 8 · 10 + 9 .

Now note that
10 ≡ 2 (mod 8) ,

so squaring this we get
102 ≡ 22 ≡ 4 (mod 8) ,

while cubing it we get
103 ≡ 23 ≡ 8 ≡ 0 (mod 8) .

This means that
10p ≡ 2p ≡ 0 (mod 8) when p ≥ 3 .

Using these facts we can work on the number N above. We have

N ≡ 1 · 0 + 2 · 0 + 3 · 0 + 4 · 0 + 5 · 0 + 6 · 0 + 7 · 4 + 0 + 9 (mod 8)

≡ 28 + 9 ≡ 4 + 1 ≡ 5 (mod 8) .

Thus we will have
1234567894 ≡ 54 (mod 8) .

One way to evaluate the right-hand-side of the above is to note that

5 ≡ (−3) (mod 8) ,

so
54 ≡ (−3)4 ≡ 81 ≡ 1 (mod 8) .

Another way is to note that 54 = (52)2 = 252 and 25 ≡ 1 (mod 8) so

252 ≡ 12 ≡ 1 (mod 8) ,

the same result we got earlier. Thus as 1234567894 ≡ 1 (mod 8) this number has a remainder
of one when divided by eight.
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Testing Question A.3

Note that 2222 = 2× 1111 and 5555 = 5× 1111 and that

1111 = 1000 + 100 + 10 + 1 . (935)

Then using

10 ≡ 3 (mod 7) so

102 ≡ 32 ≡ 2 (mod 7) and

103 ≡ 33 ≡ 27 ≡ 6 (mod 7) ,

we have

1111 ≡ 6 + 2 + 3 + 1 (mod 7)

≡ 12 (mod 7)

≡ 5 (mod 7) .

Of course 2 ≡ 2 (mod 7) and 5 ≡ 5 (mod 7) so multiplying the above result for the number
1111 we get

2222 ≡ 10 ≡ 3 (mod 7)

5555 ≡ 25 ≡ 4 (mod 7) .

Using the above we can now think about the remainders of powers of 2222. With the above
we have

22222 ≡ 32 ≡ 2 (mod 7)

22223 ≡ 33 ≡ 6 (mod 7)

22224 ≡ 34 ≡ 81 ≡ 4 (mod 7)

22225 ≡ 35 ≡ 3 · 4 ≡ 12 ≡ 5 (mod 7)

22226 ≡ 36 ≡ 3 · 5 ≡ 15 ≡ 1 (mod 7) ,

and the pattern will repeat cyclically from this point onward. To compute 22225555 we now
need to ask how many sixes can we pull out of 5555. That is we need to know what is the
remainder of 5555 when we divide by six. For six note that the remainder of powers of ten
look like

10 ≡ 4 (mod 6) so

102 ≡ 16 ≡ 4 (mod 6) and

103 ≡ 43 ≡ 64 ≡ 4 (mod 6) ,

which mans that using Equation 935 we have

1111 ≡ 4 + 4 + 4 + 1 ≡ 13 ≡ 1 (mod 6) .

Thus
5555 ≡ 5 · 1 ≡ 5 (mod 6) .
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This means that we can write 5555 = 6q + 5 for some q and thus since

22225555 = 22226q · 22225 ,

Thus
22225555 ≡ 1 · 5 ≡ 5 (mod 7) . (936)

We can now think about the remainders of powers of 5555. Using the above we have

5555 ≡ 4 mod 7 .

so that

55552 ≡ 16 ≡ 2 mod 7

55553 ≡ 64 ≡ 1 mod 7 .

and the pattern will repeat cyclically from this point onward. To compute 55552222 we now
need to ask how many threes can we pull out of 2222. That is we need to know what is the
remainder of 2222 when we divide by three. For three note that the remainder of powers of
ten look like

10 ≡ 1 (mod 3) so that

10p ≡ 1 (mod 3) ,

for all p ≥ 1. Thus using Equation 935 we have

1111 ≡ 1 · 1 + 1 · 1 + 1 · 1 + 1 ≡ 4 ≡ 1 (mod 3) .

Thus
2222 ≡ 2 · 1 ≡ 2 (mod 3) .

Thus we have shown that 2222 = 3q + 2 so that

55552222 = 55553q · 55552 .

As

55553q ≡ 1 (mod 7) and

55552 ≡ 2 (mod 7) ,

we have by taking their product that

55552222 ≡ 2 (mod 7) . (937)

Using Equation 936 and 937 we see that

22225555 + 55552222 ≡ 5 + 2 ≡ 7 ≡ 0 (mod 7) ,

this shows that the requested number is divisible by seven.
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Testing Question A.4

To start we notice that

47 ≡ 3 (mod 11)

472 ≡ 32 ≡ 9 (mod 11)

473 ≡ 27 ≡ 5 (mod 11)

474 ≡ 81 ≡ 4 (mod 11)

475 ≡ 243 ≡ 1 (mod 11) as 11 · 22 = 242 .

Thus additional powers of 475 will all have (475)d ≡ 1 (mod 11). We now need to know
what is the remainder of 3727 when divided by five. To determine this we consider

37 ≡ 2 (mod 5)

372 ≡ 22 ≡ 4 (mod 5)

373 ≡ 8 ≡ 3 (mod 5)

374 ≡ 16 ≡ 1 (mod 5) .

Thus additional powers of 374 will all have (374)d ≡ 1 (mod 5). We now need to know what
is the remainder of 27 when divided by four. As 27 = 4 · 6 + 3 we have that

3727 = (374)6 · 373 .

Then using the facts that

(374)6 ≡ 1 (mod 5) and

373 ≡ 3 (mod 5) ,

the product of the two equations above gives

3727 ≡ 373 ≡ 3 (mod 5) ,

thus 3727 = 5d+ 3 for some d.

Taking N to be the number given in the problem we have shown that

N = 475d+3 = (475)d · (473) .

As (475)d ≡ 1 (mod 11) we have that

N ≡ 473 ≡ 5 (mod 11) ,

using results found above. Note that I think there is an error in the solution found in the
back of the book where they claim 3727 ≡ 2 (mod 5) when in fact 3727 ≡ 3 (mod 5).
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Testing Question A.5

To start we notice that

9 ≡ 9 (mod 11)

92 ≡ 81 ≡ 4 (mod 11) .

If we multiply this expression by three we get

3 · 92 ≡ 3 · 4 ≡ 12 ≡ 1 (mod 11) . (938)

But 3 · 92 = 3 · (32)2 = 35. Now we are asked to consider

91990 = 32(1990) = 33980 = (35)796 .

Now Equation 938 gives 35 ≡ 1 (mod 11) and so from the above we have 91990 ≡ 1 (mod 11).

Testing Question A.6

Let x be the three digit remainder when dividing n by 1000 i.e. n ≡ x (mod 1000).

To start we note that n is the product of odd integers and will thus will itself be an odd
number. Now if we write out some of the factors of n we see that it is

n = 3× 7× 11× 15× 19× 23× 27× 31× 35× 39× 43× 47× 51× 55× · · · × 1999× 2003 .

Thus n has a factor of 15× 35× 55 which is proportional to 53 = 125. Multiples of 125 take
the form

1 · 125 = 125

2 · 125 = 250

3 · 125 = 375

4 · 125 = 500

5 · 125 = 625

6 · 125 = 750

7 · 125 = 875

8 · 125 = 1000 ,

and larger multiples will have repeating last three digits. Thus the only possible three final
digits for n (taken from the odd ones above) are

x ∈ {125 , 375 , 625 , 875} .

As n ≡ x (mod 1000) we have 1000 | (n− x) or as 1000 = 23 · 53 we have that 23 | (n− x)
i.e. 8 | (n− x). Thus n ≡ x (mod 8). This means that the remainder of n (when divided by
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eight) and the remainder of the three digit number x (when divided by eight) must be the
same.

From the form of n we can actually compute the remainder of n by eight. To do that note
that we can write n as

n =

500∏

k=0

(4k + 3) =

500∏

k=0;k even

(4k + 3)

499∏

k=1;k odd

(4k + 3)

=

250∏

j=0

(4(2j) + 3)

249∏

j=0

(4(2j + 1) + 3) =

250∏

j=0

(8j + 3)

249∏

j=0

(8j + 7) .

Each factor in the first product has a remainder three (when divided by eight) and each
factor in the second product has a remainder of seven (when divided by eight). Thus

n ≡ 3351 × 7250 (mod 8) .

Thus
n ≡ (21)250 · 3 (mod 8) . (939)

Now 21 ≡ 5 (mod 8) so 212 ≡ 52 ≡ 25 ≡ 1 (mod 8) thus

21250 ≡ (212)125 ≡ 1125 ≡ 1 (mod 8) .

Using this in Equation 939 we have n ≡ 1 · 3 ≡ 3 (mod 8). From this result, and the above
we need to have x ≡ 3 (mod 8). From the choices of x above only x = 875 has this property.

Testing Question A.7

From the statement n ≡ 1 (mod 5) we have that n = 5k + 1 for some k. If we evaluate the
remainder of both sides with respect to seven and since we are told that n ≡ 2 (mod 7) we
must have that 5k ≡ 1 (mod 7). Thus 5k = 7l + 1 for some l. The smallest l (and thus
k) that satisfies this is l = 2 (with k = 3) so that the smallest n satisfying the first two
conditions is

n2 = 5k + 1 = 7l + 2 = 16 .

To satisfy the second two conditions our n must be larger thus

n = n2 + (5× 7)m = 16 + 35m,

for some m. To have n ≡ 3 (mod 9) based on the above (since 16 ≡ 7 (mod 9)) we need

7 + 35m ≡ 3 (mod 9) or 35m ≡ −4 (mod 9) or 35m = −4 + 9p ,

for some p. Starting with integer values of m ∈ {1, 2, 3, . . . } and solving for p the smallest
integer p is one where p = 16 so that m = 4 thus our n takes the form

n = 16 + 35(4 + 9p′) = 156 + 315p′ ,
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for some p′. Finally to have n ≡ 4 (mod 11) since 156 ≡ 2 (mod 11) we need to have
315p′ ≡ 2 (mod 11) thus

315p′ = 11q + 2 ,

for some q. Starting with integer values of p′ ∈ {1, 2, 3, . . .} and solving for q the smallest
integer q is one where q = 143 so that p′ = 5 thus our n takes the form

n = 156 = 315(5) = 1731 .

Testing Question A.8

Part (a): To start we notice that

2 ≡ 2 (mod 7)

22 ≡ 22 ≡ 4 (mod 7)

23 ≡ 8 ≡ 1 (mod 7) thus

23p ≡ 1p ≡ 1 (mod 7) .

Multiplying the last equation above by 2 and 22 we get

23p+1 ≡ 2 (mod 7)

23p+2 ≡ 22 ≡ 4 (mod 7) .

As all positive integers n can be written as 3p, 3p+ 1, or 3p+ 2 from the above we see that
the only form where 2n − 1 ≡ 0 (mod 7) is when n = 3p for p ≥ 1.

Part (b): Using the results from the above we have

23p + 1 ≡ (1 + 1) ≡ 2 (mod 7)

23p+1 + 1 ≡ (2 + 1) ≡ 3 (mod 7)

23p+2 + 1 ≡ (4 + 1) ≡ 5 (mod 7) .

None of these are zero indicating that there are no n where 2n + 1 is divisible by seven.

Testing Question A.9

Let N be the number given. Then note that we can write N as

N = (3 · 7 · 17)1999 · 7 · 172 = (357)1999 · 7 · 172 . (940)

The units digit is the value of x where N ≡ x (mod 10). Note that

357 ≡ 7 (mod 10)

3572 ≡ 72 ≡ 9 (mod 10)

3573 ≡ 73 ≡ 7 · 9 ≡ 3 (mod 10) ,
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which is true as seven and ten are relatively prime. Using this same “trick” we see that

3574 ≡ 7 · 3 ≡ 21 ≡ 1 (mod 10) .

Based on Equation 940 we need to know the remainder of 1999 when divided by four

1999 = 2000− 1 = 4(500)− 1 = 4(499) + 4− 1 = 4(499) + 3 so 1999 ≡ 3 (mod 4) .

Then from this 3571999 = (3574)499 · 3573 we have

3571999 ≡ 1 · 3 ≡ 3 (mod 10) .

This gives “part” of N . To get all the remaining pieces needed for N note that

7 ≡ 7 (mod 10)

17 ≡ 7 (mod 10)

172 ≡ 72 ≡ 49 ≡ 9 (mod 10) .

Thus with these results we have all we need to compute N ≡ x (mod 10). We find

N ≡ 3 · 7 · 9 ≡ 189 ≡ 9 (mod 10) .

Testing Question A.10

Note that
210 ≡ 1024 ≡ 24 (mod 100) .

Thus
(210)2 ≡ 242 ≡ 576 ≡ 76 (mod 100) ,

and
(210)4 ≡ 762 ≡ 5776 ≡ 76 (mod 100) .

The pattern continues so if we continued squaring we would see that

(210)2p = 76 (mod 100) ,

or
220p ≡ 76 (mod 100) .

For the N = 2999 we start with since 999 = 1000− 1 = 50(20)− 1 = 49(20)+ 19 we see that

N = 220(29) × 210 × 29 ≡ 76× 24× 29 (mod 100), .

Now
76× 24 ≡ 1824 ≡ 24 (mod 100) ,

and
29 ≡ 2−1 × 210 ≡ 2−1 × 1024 ≡ 512 ≡ 12 (mod 100) .

Thus
N ≡ 24× 12 ≡ 288 ≡ 88 (mod 100) .
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Testing Question B.1

Let N = 1414
14
. Then I compute

14 ≡ 14 (mod 100)

142 ≡ 196 ≡ 96 (mod 100)

143 ≡ 14(96) ≡ 1344 ≡ 44 (mod 100)

144 ≡ 14(44) ≡ 616 ≡ 16 (mod 100)

145 ≡ 14(16) ≡ 224 ≡ 24 (mod 100)

146 ≡ 14(24) ≡ 336 ≡ 36 (mod 100)

147 ≡ 14(36) ≡ 504 ≡ 4 (mod 100)

148 ≡ 14(4) ≡ 56 (mod 100)

149 ≡ 14(56) ≡ 784 ≡ 84 (mod 100)

1410 ≡ 14(84) ≡ 1176 ≡ 76 (mod 100)

1411 ≡ 14(76) ≡ 1064 ≡ 64 (mod 100)

1412 ≡ 14(64) ≡ 896 ≡ 96 (mod 100) ,

and the sequence repeats from this point forwards. What this means is that every twelfth
power of 14 will give us a remainder of 96 (when divided by 100). Thus if we can write

1414 = 12q + r ,

we can simplify the remainder of N (when divided by 100) greatly. Note that

14 ≡ 2 (mod 12) (941)

142 ≡ 22 ≡ 4 (mod 12) (942)

143 ≡ 23 ≡ 8 (mod 12) (943)

144 ≡ 24 ≡ 16 ≡ 4 (mod 12) , (944)

and the pattern repeats. Now these equations mean that

142p ≡ 4p ≡ 4 (mod 12) .

If we take p = 7 we get 1414 ≡ 4 (mod 12) so that we have

1414 = 12q + 4 .

This means that
N = 1412q+4 = 1412q · 144 .

Now from the above we have

(1412)9 ≡ 96 (mod 100)

144 ≡ 16 (mod 100) ,

so their product is then

N ≡ 96 · 16 ≡ 1536 ≡ 36 (mod 100) .
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Testing Question B.2

For the numbers given note that

257 ≡ 7 (mod 50)

2572 ≡ 72 ≡ 49 (mod 50)

2573 ≡ 73 ≡ 7(49) ≡ 343 ≡ 43 (mod 50)

2574 ≡ 74 ≡ 7(43) ≡ 301 ≡ 1 (mod 50) .

From this we have that 2574p ≡ 1p ≡ 1 (mod 50). Now as 33 = 4 · 8 + 1 we have

25733 ≡ (2574)8 · 2571 ≡ 18 · 2571 ≡ 7 (mod 50) .

This means that
25733 + 46 ≡ 7 + 46 ≡ 53 ≡ 3 (mod 50) .

Using this we have that

(25733 + 46)2 ≡ 32 ≡ 9 (mod 50)

(25733 + 46)3 ≡ 3(9) ≡ 27 (mod 50)

(25733 + 46)4 ≡ 3(27) ≡ 81 ≡ 31 (mod 50)

(25733 + 46)5 ≡ 3(31) ≡ 93 ≡ 43 (mod 50)

(25733 + 46)6 ≡ 3(43) ≡ 129 ≡ 29 (mod 50)

(25733 + 46)7 ≡ 3(29) ≡ 87 ≡ 37 (mod 50)

(25733 + 46)8 ≡ 3(37) ≡ 111 ≡ 11 (mod 50)

(25733 + 46)9 ≡ 3(11) ≡ 33 (mod 50)

(25733 + 46)10 ≡ 3(33) ≡ 99 ≡ −1 (mod 50) .

This means that

(25733 + 46)20 ≡ ((25733 + 46)10)2 ≡ (−1)2 ≡ 1 (mod 50) ,

and thus

((25733 + 46)10)26 ≡ ((25733 + 46)10)20((25733 + 46)10)6 ≡ 1 · 29 ≡ 29 (mod 50) .
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Lecture 19: Decimal Representation of Integers

Notes on Example 5

There is a typo in this example in that the number 11 · · ·1122 · · ·22 is the number 11 · · ·11
times 10n (so that it is followed by n zeros) plus the number 22 · · ·22. Then using the decimal
representation of a number with repeating digits our number is

1

9
(10n − 1)× 10n +

2

9
(10n − 1) ,

which factors as
1

9
(10n − 1)(10n + 2) .

The rest of the example seems correct.

Testing Question A.1

We are told that
abc = a102 + b10 + c = 37n , (945)

for some n. As 100 ≤ abc < 1000 we have
⌈
100

37

⌉

≤ n ≤
⌊
1000

37

⌋

,

or
3 ≤ n ≤ 27 .

There are 27− 3 + 1 = 25 three digit numbers of this type.

One computational way to solve this problem is then to compute all 25 three digit numbers
of the form 37n for n ∈ {3, 4, . . . , 26, 27}. For each number computed we can determine a, b,
and c by “digit assignment”. Then we can form the three digit number bca and verify that
it is also divisible by 37. For example the second number of this form is 4 × 37 = 148 so
a = 1, b = 4, and c = 8. Thus bca = 481 which is 13× 37 and is thus divisible by 37.

Another way to solve this is to use Equation 945 in the form

10b = 37n− 100a− c .

If we put this into bca = 100b+ 10c+ a we get

bca = 100b+ 10c+ a = 10(37n− 100a− c) + 10c+ a

= 370n− 103a− 10c+ 10c+ a = 37 · 10 · n− 999a

= 2 · 5 · 37n− 33 · 37a = 37(10n− 27a) ,

which is obviously divisible by 37.
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Testing Question A.2

Let our number be a n+ 1 digit number so that it can be written as 6 · 10n + x where x is a
n digit numbers. Then we are told that

6 · 10n + x = 5x .

Solving for x we get

x =
10n

4
.

Now n ≥ 2 for x to be an integer. Based on that let n = m+2 where m ≥ 0. Then we have

x =
100 · 10m

4
= 25 · 10m .

This means that our number is

6 · 10m+2 + 25 · 10m = 625 · 10m .

This is the number 625 with m zeros following it.

Testing Question A.3

Let x = abc and x̃ = cba with
a + b+ c = 21 . (946)

Then we are told that
x̃− x = 495 .

Using the expressions for x and x̃ in terms of a, b, and c the above is

(100c+ 10b+ a)− (100a+ 10b+ c) = 99(c− a) = 495 .

This means that c− a = 5. Solving this for c and putting it into Equation 946 we get

b = 16− 2a .

As 0 ≤ b ≤ 9 and using the above we have

0 ≤ 16− 2a ≤ 9 so
7

2
≤ a ≤ 8 .

In addition as 0 ≤ c ≤ 9 we have

0 ≤ a+ 5 ≤ 9 so − 5 ≤ a ≤ 4 .

The only common value for a in these ranges is a = 4. In that case a = 4, b = 8, and c = 9
so our number is 489.
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Testing Question A.4

Call numbers of this type Nn where Nn has 2n+1 digits for n ≥ 1. From the given examples
we see that these numbers Nn are of the form

Nn = 7 · 102n + 1 ·
n−1∑

k=1

10k+n + 2 · 10n + 8 ·
n−1∑

k=1

10k + 9 .

We can evaluate the above sums using
∑n

k=1 r
k = rn+1−r

r−1
where we get

Nn = 7 · 102n + 10n
(
10n − 10

9

)

+ 2 · 10n + 8

(
10n − 10

9

)

+ 9

= 7 · 102n + 1

9
102n − 1

9
10n+1 + 2 · 10n + 8

9
10n − 8

9
10 + 9

=
1

9

(
64 · 102n + 16 · 10n + 1

)
=

1

9
(8 · 10n + 1)2

=

(
8 · 10n + 1

3

)2

.

This will be a perfect square if 8 · 10n + 1 is divisible by three.

One way to show that is to note that 8 · 10n + 1 is an eight followed by n zeros plus one
which has digits that sum to 8 + 1 = 9 which is divisible by three so the original number is.

Another way to see this is to write this number as

8(10n − 1) + 8 + 1

3
=

24(10n − 1)

9
+ 3 = 24

(
10n − 1

9

)

+ 3 .

The number 10n−1
9

is the sequence of n − 1 ones. Thus the full number above is a natural
number.

Testing Question A.5

Let the number n have N digits with a last digit of d such that 0 ≤ d ≤ 9. From what we
are told about n we have that

(
n− d

10

)

+ d · 10N−1 = 5n .

If we multiply this by ten we get

n− d+ d · 10N = 50n .

Solving for n we have

n =
d

49
(10N − 1) .
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To make n be as small as possible means to take d and N as small as possible. For n to be
a natural number means that d(10N − 1) must have 49 as a factor. If we take d = 7 then we
want the smallest N that has 10N − 1 as a factor. This is N = 6 so that

n =
7(106 − 1)

49
= 142857 .

Note the answer in the back of the book is wrong (its solution does not satisfy the conditions
of the question) and the correct statement (to use their logic) is to have

5n = d · 10m+1 + x ,

where the exponent on the 10 is m+ 1 and not m.

Testing Question A.6

Let n = abcd and we are told that

n+ a + b+ c+ d = 2001 , (947)

with 1 ≤ a ≤ 9. Expanding n we have

1000a+ 100b+ 10c+ d+ a+ b+ c+ d = 2001 ,

or
1001a+ 101b+ 11c+ 2d = 2001 . (948)

We must have
a+ b+ c+ d ≤ 4 · 9 = 36 ,

so using a+ b+ c+ d = 2001− n we get that

2001− n ≤ 36 so n ≥ 1965 .

Also as we have a + b+ c+ d ≥ 1 + 0 + 0 + 0 = 1 we have

2001− n ≥ 1 so n ≤ 2000 .

The number n = 2000 does not satisfy the conditions of the problem and thus a = 1. As
n ≥ 1965 we know that b = 9. Using these Equation 947 becomes

n + c+ d = 1991 , (949)

and Equation 948 becomes
11c+ 2d = 91 . (950)

As n ≥ 1965 we know that c ≥ 6. If we table c for 6 ≤ c ≤ 9 we can compute d using the
above and see which values of d are consistent with the above equations. This is done in
Table 28. The only consistent choice is c = 7 which gives d = 7 for a number n = 1977.
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c d = (91− 11c)/2
6 12.5
7 7
8 1.5
9 -4

Table 28: Values of c and then d computed using Equation 950.

Testing Question A.8

Our original number n is n = abcd and our “adjusted” number is n′ = cdab. We are told
that

n′ − n = 5940 . (951)

Expanding n and n′ in terms of their digits we get Equation 951 equivalent to

1000c+ 100d+ 10a+ b− (1000a+ 100b+ 10c+ d) = 5940 ,

which can be simplified to
10(c− a) + (d− b) = 60 . (952)

As a, b, c, and d are digits and thus bounded we can use that fact to bound the expressions
c− a and d− b. For example we know that 0 ≤ c ≤ 9 and that 1 ≤ a ≤ 9. The later means
that −9 ≤ −a ≤ −1 so adding to the inequality for c we have

−9 ≤ c− a ≤ 8 . (953)

The same type of considerations for d and b give us

−8 ≤ d− b ≤ 9 . (954)

Solving Equation 952 for d− b and putting that expression into Equation 954 gives

−8 ≤ 60− 10(c− a) ≤ 9 ,

or simplifying we get bounds for c− a of

5.1 ≤ c− a ≤ 6.8 .

As c− a must be an integer we have learned that c− a = 6. Using that in Equation 952 we
learn that d = b.

This means that n takes the form adcd where c is the digit a+ 6. For c to be c ≤ 9 we have
that a ∈ {1, 2, 3}. To find the smallest number n we start with a = 1. In that case then c = 7
and our number is 1d7d. As n must be odd we know that d ∈ {1, 3, 5, 7, 9} and we will want
this number to have a remainder of eight when divided by nine. Taking d ∈ {1, 3, 5, 7, 9} we
find that d = 9 has this property and thus n = 1979.
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d 2d+ 1 (mod 10) 2d (mod 10)
0 1 0
1 3 2
2 5 4
3 7 6
4 9 8
5 1 0
6 3 2
7 5 4
8 7 6
9 9 8

Table 29: Values of d, the ones digit of 2d + 1, and the number 2d + 1 (mod 10) and the
ones digit of 2d.

Testing Question A.9

Let our original number be denoted x = abcde with the “adjusted” number y = ABCDE.
Here the digit in y is equal to the same digit in x if that digit is not a five or a two and the
replacement as suggested in the problem is done if it is.

We are told that x is odd so that y = 2(x + 1) will be an even number. This means that
the last digit of y i.e. E will have to be E ∈ {2, 4, 6, 8}. If E was any of these numbers (but
two) then e would be the same number and x would not be an odd number. Thus we know
that E = 2 and thus e = 5. Thus our numbers look like

x = abcd5

y = ABCD2 .

Now the last digit of x + 1 will be a six which when multiplied by two will be 12 and thus
has a carry of one. This means that the tens digit of y (i.e. D) will be the ones digit of the
number 2d+ 1. Based on different values for d the digit D will take on different values. See
the second column in Table 29 where we compute these. Because of how D is obtained from
d (it is copied if d /∈ {2, 5}) only two choices in that table give possible values. They are
d = 2 (where D = 5) and d = 9 (where D = 9).

Case 1: Consider the case where we assume that d = 2 (so that D = 5). Then our numbers
look like

x = abc25

y = ABC52 .

Adding one to x and multiplying by two we see that C is the units digit of 2c (because there
is no carry in this case). Looking at the third column in Table 29 we see that c = 0 so that
C = 0. Continuing to build the number y in this way we see that we would need to have
A = B = 0 and thus y does not have five digits and we have not found a solution.
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Case 2: Consider the case where we assume that d = 9 (so that D = 9). Then our numbers
look like

x = abc95

y = ABC92 .

Adding one to x and multiplying by two we see that C is the units digit of 2c+ 1. Looking
at the second column in Table 29 we see that c ∈ {2, 9}. From the arguments made before
if c = 2 then A = B = 0 and the number will not be five digits. This means that c = 9 so
that C = 9 and our numbers look like

x = ab995

y = AB992 .

These arguments continue one more time to get

x = a9995

y = A9992 .

At this point we still have a ∈ {2, 9} but if a = 9 then we need a carry and the number y
has six digits. Thus a = 2 (so A = 5) and our two numbers are

x = 29995

y = 59992 .

Testing Question A.10

We want to maximize

E ≡ abc

a+ b+ c
=

100a+ 10b+ c

a + b+ c
.

Let

a′ =
a

a+ b+ c

b′ =
b

a+ b+ c

c′ =
c

a+ b+ c
,

then our expression E becomes

E = 100a′ + 10b′ + c′ .

This is linear in a′, b′, and c′ and will have its optimums at the “corners” of the convex
polytope defined by

0 ≤ a′ ≤ 1

0 ≤ b′ ≤ 1

0 ≤ c′ ≤ 1 .

If we form a table of the value of E at each of the four “corners” of the convex polytope we
get Table 30. From that table we see that the maximum is the value 100. Note that this
can be achieved with abc = 100.
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a′ b′ c′ 100a′ + 10b′ + c′

0 0 0 0
1 0 0 100
0 1 0 10
0 0 1 1

Table 30: Values of a′, b′, and c′ and the objective function 100a′ + 10b′ + c′.

Testing Question B.1

We want to find n = abc such that

abc = (a+ b+ c)3 .

To have n three digits we need

100 ≤ n ≤ 999 or 100 ≤ (a+ b+ c)3 ≤ 999 .

Taking the cube root this means that

1001/3 ≤ a+ b+ c ≤ 9991/3 4.641589 ≤ a+ b+ c ≤ 9.996666 .

As a, b, and c are integers we can conclude that

5 ≤ a+ b+ c ≤ 9 .

Specifically a + b+ c ∈ {5, 6, 7, 8, 9}. If we cube each of these numbers we get the numbers

{125, 216, 343, 512, 729} .

Summing the digits in each of these numbers gives

{8, 9, 10, 8, 18} .

The only choice that is consistent is when a + b+ c = 8 so n = (a+ b+ c)3 = 512.

Testing Question B.3

Consider the two numbers n = ab = 10a+ b and n′ = ba = 10b+ a and their ratio

n

n′ =
10a+ b

10b+ a
.

As we have a quotient and a remainder we know that n > n′ so 10a+ b > 10b+ a or

10(a− b) > a− b so a > b .

As the quotient and remainder are the same (call them both q) we have

10a+ b = q(10b+ a) + q .
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Solving this for b we find

b =
(10− q)a− q

10q − 1
. (955)

Now as both 10 ≤ n ≤ 99 and 10 ≤ n′ ≤ 99 we have that

10

99
≤ n

n′ ≤
99

10
so 0.1010101 ≤ n

n′ ≤ 9.9 .

As the quotient q must be an integer we know from the above that 1 ≤ q ≤ 9.

We can find our numbers n and n′ if we take q ∈ {1, 2, . . . , 8, 9} and then a ∈ {1, 2, . . . , 8, 9}
and use Equation 955 to compute b. If b is an integer then we have found our numbers. We
can do this in the simple R code

for( q in 1:9 ){

for( a in 1:9 ){

b = ((10 - q)*a - q)/(10*q-1)

if( b!=0 && abs(round(b)-b)<1.e-6 ){

print(sprintf(’q= %d; a= %d; b= %d’, q, a, b))

}

}

}

Which gives

[1] "q= 2; a= 5; b= 2"

This corresponds to n = 52 and n′ = 25.
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Lecture 20: Perfect Square Numbers

Notes on Basic Properties of Perfect Square Numbers

Recall from earlier in this chapter that if n is a perfect square then

• When dividing n2 by two, three, or four the remainder is zero or one.

• When dividing n2 by eight the remainder is zero, one, or four.

Part (IV): These are proved as follows. Now to determine the possible values of n2 (mod 2)
and n2 (mod 4) consider that n2 = (2m)2 or n2 = (2m+ 1)2 for some m. This means that

n2 = (2m)2 = 4m2

n2 = (2m+ 1)2 = 4m2 + 4m+ 1 .

From this we see that

n2 ≡ 0 (mod 2) or

n2 ≡ 1 (mod 2) and

n2 ≡ 0 (mod 4) or

n2 ≡ 1 (mod 4).

Next to determine the possible values of n2 (mod 3) consider

n2 = (3m)2 = 9m2

n2 = (3m− 1)2 = 9m2 − 6m+ 1

n2 = (3m+ 1)2 = 9m2 + 6m+ 1 .

In the first case we have that n2 ≡ 0 (mod 3) or in the second case that n2 ≡ 1 (mod 3).

Part (V): To determine the possible values of n2 (mod 8) consider the forms that n can
take. We have n ∈ {4m, 4m± 1 , 4m± 2} and thus

n2 = (4m)2 = 16m2

n2 = (4m± 1)2 = 16m2 ± 8m+ 1

n2 = (4m± 2)2 = 16m2 ± 16m+ 4 .

From this we see that n2 ≡ 0 (mod 8), n2 ≡ 1 (mod 8), or n2 ≡ 4 (mod 8).

Part (VI): When m = 10a+ b for m2 we have

m2 = 100a2 + 20ab+ b2 .

Now because
100a2 + 20ab = 10(10a2 + 2ab) ,
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this number must have a zero ones digit and because

100a2 + 20ab

10
= 2(5a2 + ab) ,

and is thus even and thus ends with an even digit. Thus the number 100a2+20ab has an even
tens digit. In order for m2 to be odd the units digit from b2 must be odd so b ∈ {1, 3, 5, 7, 9}.
For each of these b values b2 has an even tens digit and thus when b2 is added to 100a2+20ab
we will have a number with an even tens digit.

Part (VII): Now b cannot be an odd digit or else from the above we have an odd perfect
square with an even tens digit. If b is even then b ∈ {2, 4, 6, 8} only if b ∈ {4, 6} will the tens
digit of b2 be odd and thus have the tens digit of m2 be odd. Note that in either case where
b ∈ {4, 6} the units digit of b2 is six.

Notes on Example 1

Now in this example note that the number 5k+2 has units digit of two or seven but a perfect
square number m2 can only have units digits of 0, 1, 4, 5, 6, or 9 and thus 5k + 2 cannot be
a perfect square number.

The number 5k + 3 has units digit of three or eight but m2 can only have units digits of 0,
1, 4, 5, 6, or 9 and thus 5k + 3 cannot be a perfect square.

Notes on Example 4

We ask if the number
1 + n(n+ 1)(n+ 2)(n+ 3) ,

is a perfect square. Expanding we can write this as

n4 + 6n3 + 11n2 + 6n+ 1 .

If this is a perfect square for all n it will factor into expressions like

(n2 + An + 1)2 ,

for some integer A. Expanding this we get

n4 + 2An3 + (2 + A2)n2 + 2An+ 1 .

This will equal the above if 2A = 6 and then 2 + A2 = 11 which is true and we have the
given expression a perfect square.

Next expressing the given number “symmetrically” we consider

(m− 2)2 + (m− 1)2 +m2 + (m+ 1)2 + (m+ 2)2 ,
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which we can expand and simplify to

5m2 + 10 = 5(m2 + 2) .

For this to be a perfect square m2 + 2 must be divisible by five. This means that the units
digit of m2 would have to be a three or an eight. As the ones digit of a perfect square can
only be the digits 0, 1, 4, 5, 6, or 9 this is impossible.

Notes on Example 5

Part (A): To have
3n2 − 3n+ 3 = 3(n2 − n + 1) ,

be a perfect square means that we must have n2 − n+1 = 3m2 for some natural number m.
We might see if this can be made true for m = 1 which means that

n2 − n+ 1 = 1 so n ∈ {0, 1} ,

and thus there exists numbers of this form that are perfect squares.

Testing Question A.1

This sum is
3k2 + 3k − 4 + 7k2 − 3k + 1 = 10k2 − 3 .

The number 10k2 must end in a zero so the number 10k2 − 3 must have a units digit of
seven. As perfect squares must have units digit drawn from {0, 1, 4, 5, 6, 9} and thus seven
is not possible. Thus this sum cannot be a perfect square number.

Testing Question A.2

Expanding this expression we get

x4 − 10x3 + 5x2 + 100x− 96 +m.

If this is a perfect square for all x it must equal an expression of the form

(x2 + Ax+B)2 ,

for some A and B. Expanding the above gives

x4 + 2Ax3 + (A2 + 2B)x2 + 2ABx+B2 .

This will equal to the above if 2A = −10 (or A = −5) and A2 + 2B = 5 or B = −10. This
also means that we must have

−96 +m = B2 = 100 so m = 196 .
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Testing Question A.3

If both of these numbers are perfect squares then we can write

n+ 20 = b2

n− 21 = a2 .

Note that b > a. Subtracting these two we get

41 = b2 − a2 = (b− a)(b+ a) .

Now as 41 is a prime number and that b− a < b+ a we have that

b− a = 1

b+ a = 41 .

Solving this system we get b = 21 and a = 20. This means that

n + 20 = b2 = 441

n− 21 = a2 = 400 .

Both of which give n = 421.

Testing Question A.4

I think there is a typo in the solution to this question. In that the book gives the 2009
consecutive integers to be

x− 1004 , x− 1003 , · · ·x− 1 , x , x+ 1 , · · · , x+ 1003 , x+ 1004 ,

and then claims that x = 41. The problem is that this gives the first number x − 1004 =
−963 < 0 in contrast to the fact that all the integers summed should be positive.

My solution is given here. If our consecutive positive integers are given by n + i for i ≥ 1
and n ≥ 0 then we are told that

2009∑

i=1

(n + i) = m2 ,

for some m. We can evaluate the left-hand-side of the above to first get

2009n+
2009∑

i=1

i = m2 ,

or

2009n+
2009(2010)

2
= m2 ,

or
2009(n+ 1005) = m2 .
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Now as 2009 = 72 · 41 we have

72 · 41 · (n + 1005) = m2 .

We will have m be as small as possible if n+ 1005 has a factor of 41 and some other perfect
square (say l2) such that

n + 1005 = 41l2 and n = 41l2 − 1005 > 0 .

If we try l ∈ {1, 2, 3, 4, 5} the first value of l where the above is true is l = 5 and we have

n = 41(52)− 1005 = 20 .

This means that the smallest number we sum is 20+ 1 = 21 and the largest number we sum
is 20 + 2009 = 2029.

Testing Question A.5

I think there is a typo in the solution to this question. In the problem statement one of the
exponents seems to be 10000 while in the solutions it looks to be 1000.

Call this expression E. We have

E = 427 + 41000 + 4x

= 254 + 22000 + 22x

= 254(1 + 21946 + 22x−54)

= 254(1 + 2 · 21945 + 22x−54) .

This will be a perfect square if 2x − 54 = 2(1945) which means that x = 1972. I was not
able to reason as to why no larger x exists.

Testing Question A.6

Let E be the given expression. Lets see if we can write E in the form

(n2 + An + 1)2 .

Expanding this we get
n4 + 2An3 + (A2 + 2)n2 + 2An+ 1 .

If we take A = 1 this is
n4 + 2n3 + 3n2 + 2n+ 1 ,

which is larger than E. Thus we have shown that

E < (n2 + n + 1)2 .
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Based on the above the next smaller perfect square than (n2+n+1)2 is (n2+n)2. Expanding
this later expression we get

(n2 + n)2 = n4 + 2n3 + n2 ,

which is less than E. Thus we have shown that

(n2 + n)2 < E < (n2 + n+ 1)2 ,

showing that E cannot be a perfect square.

Testing Question A.8

We first evaluate the given sum (denoted N). We have

N = a102 + b10 + c+ b102 + c10 + a + c102 + a10 + b

= (a+ b+ c)(102 + 10 + 1) = 111(a+ b+ c) = 3 · 37 · (a+ b+ c) .

In order for this to be a perfect square we must have a + b+ c ≥ 3 · 37 = 111 but

0 < a+ b+ c ≤ 9 + 9 + 9 = 27 ,

and the above is not possible and no such perfect square exists.

Testing Question A.9

As we must have

n2 ≡ 0 (mod 8) or

n2 ≡ 1 (mod 8) or

n2 ≡ 4 (mod 8) ,

if we take the “mod” eight of both sides of this expression we get

[a2 mod 8] + [b2 mod 8] + 0 = 6 ,

which is impossible.
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Lecture 21: Pigeonhole Principle

Testing Question A.1

WWX: Working here.
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Lecture 22: ⌊x⌋ and {x}

Testing Question A.1

Let k be such that for our given n we have that

k2 ≤ 4n+ 2 < (k + 1)2 . (956)

Here we have n ≥ 1 and so k ≥ 2.

The above then means that ⌊√
4n+ 2

⌋

= k .

Starting with Equation 956 we can derive

k2 − 2

4
≤ n <

(k + 1)2 − 2

4
, (957)

so that √
k2 − 2

2
≤

√
n <

√

(k + 1)2 − 2

2
, (958)

are bounds on
√
n. In the same way using Equation 957 we can get bounds on n + 1 and√

n+ 1 as
k2 + 2

4
≤ n+ 1 <

(k + 1)2 + 2

4
, (959)

and √
k2 + 2

2
≤

√
n + 1 <

√

(k + 1)2 + 2

2
, (960)

From these we have that
√
k2 − 2 +

√
k2 + 2

2
≤

√
n+

√
n+ 1 <

√

(k + 1)2 − 2 +
√

(k + 1)2 + 2

2
. (961)

We now seek to show that ⌊√
n+

√
n + 1

⌋

= k ,

showing that the two expressions are equal. To do that we need to show that

k ≤
√
n+

√
n+ 1 < k + 1 .

From Equation 961 bounds above this will be true if we can show

• First that √
k2 − 2 +

√
k2 + 2

2
≥ k .

We can manipulate the above to show it is true when k ≥
√
2 which is true.
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• Second if we can show
√

(k + 1)2 − 2 +
√

(k + 1)2 + 2

2
< k + 1 .

We can manipulate the above to show it is true when −4 < 0 which is always true.

Thus as both expressions equal k we are done.

Testing Question A.2

We seek solutions to
⌊
x3
⌋
+
⌊
x2
⌋
+ ⌊x⌋ = {x} − 1 . (962)

Recall that
0 ≤ {x} < 1 , (963)

and thus by subtracting one from this number we have that

−1 ≤ {x} − 1 < 0 . (964)

As the left-hand-side of Equation 962 must an integer and the only integer that the right-
hand-side can be is −1 we have learned that

⌊
x3
⌋
+
⌊
x2
⌋
+ ⌊x⌋ = −1 . (965)

When {x} − 1 = −1 we have that {x} = 0 and x is an integer. Thus Equation 962 becomes

x3 + x2 + x = −1 .

This polynomial has solutions x ∈ {−1,±i} and thus the only integer solution is x = −1.

Testing Question A.3

We want to solve
⌊x⌋2 = {x}x . (966)

Notice that as {x} ≥ 0 and that ⌊x⌋2 ≥ 0 we have that x ≥ 0. In fact x = 0 is one solution.
Going forward we will look for solutions where x > 0.

Recall that
x− ⌊x⌋ = {x} (967)

Thus using this on the right-hand-side of Equation 966 we have

⌊x⌋2 = x2 − ⌊x⌋ x = x(x− ⌊x⌋) . (968)
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Now if 0 ≤ x < 1 then ⌊x⌋ = 0 and Equation 968 becomes 0 = x2 which gives x = 0 as the
only solution.

Now if 1 ≤ x < 2 then ⌊x⌋ = 1 and Equation 968 becomes 1 = x(x− 1) which has solutions

1±
√
5

2
.

The “plus” solution is in the domain 1 ≤ x < 2.

In general if we let m ≤ x < m+ 1 then Equation 968 becomes

m2 = x(x−m) ,

or
x2 −mx−m2 = 0 ,

which has solutions

x =
m±

√
m2 + 4m2

2
=

(

1±
√
5

2

)

m.

The “negative” solution will not have x in the range m ≤ x < m+1. The “positive” solution
will have x in that range for the m where

m

(

1 +
√
5

2

)

< m+ 1 .

If we solve for m we get

m <
2√
5− 1

= 1.61803 .

Thus the only integer m are m = 0 and m = 1 where x = 0 and x = 1+
√
5

2
.

Testing Question A.4

We want to find x that solves
x2 − 8 ⌊x⌋ + 7 = 0 . (969)

To do this note that

x2 − 8 ⌊x⌋ + 7 ≥ x2 − 8x+ 7 = (x− 7)(x− 1) .

Thus for x2 − 8 ⌊x⌋+7 = 0 we need x to be in a region where (x− 7)(x− 1) is negative and
thus we must have 1 ≤ x ≤ 7 (the region of x where that is true).

We now consider the various cases one by one. We have

• If 1 ≤ x < 2 then ⌊x⌋ = 1 so Equation 969 is

x2 = 1 ,

so x = 1 and we have found one solution.
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• If 2 ≤ x < 3 then ⌊x⌋ = 2 so Equation 969 is

x2 = 9 ,

so x = 3 and this is not in the required range.

• If 3 ≤ x < 4 then ⌊x⌋ = 3 so Equation 969 is

x2 = 17 ,

so x =
√
17 = 4.12311 and this is not in the required range.

• If 4 ≤ x < 5 then ⌊x⌋ = 4 so Equation 969 is

x2 = 25 ,

so x =
√
25 = 5 and this is not in the required range.

• If 5 ≤ x < 6 then ⌊x⌋ = 5 so Equation 969 is

x2 = 33 ,

so x =
√
33 = 5.74456 and we have found another solution.

• If 6 ≤ x < 7 then ⌊x⌋ = 6 so Equation 969 is

x2 = 41 ,

so x =
√
41 = 6.40312 and we have found another solution.

• Finally, if x = 7 Equation 969 is

49− 56 + 7 = 0 ,

which is true. Thus x = 7 is another solution.

The solutions to this problem are thus

x ∈ {1 ,
√
33 ,

√
41 , 7} .

Testing Question A.6

We want to find x that solves

⌊3x+ 1⌋ = 2x− 1

2
. (970)

Recall that for all n ∈ Z we have that

⌊x+ n⌋ = ⌊x⌋ + n , (971)
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and thus Equation 970 can be written

⌊3x⌋+ 1 = 2x− 1

2
,

or

⌊3x⌋ = 2x− 3

2
. (972)

Now we have ⌊3x⌋ ≤ 3x and so using Equation 972 we have

2x− 3

2
≤ 3x or x ≥ −3

2
.

Also ⌊3x⌋ > 3x− 1 and so using Equation 972 we have

2x− 3

2
> 3x− 1 or x < −1

2
.

Thus we have concluded that x is bounded as

−3

2
≤ x < −1

2
.

From this we see that
−3 ≤ 2x < −1 ,

and thus we can bound 2x− 1
2
as

−7

2
≤ 2x− 1

2
< −3

2
.

Now in Equation 970 the left-hand-side of this expression is an integer and thus the right-
hand-side must be also but in the above range for 2x − 1

2
there are only a few integers we

can have. The possible values for the left-hand-side 2x− 1
2
are

{−3,−2} . (973)

Setting each number equal to 2x− 1
2
and solving for x we get

[1] -1.25 -0.75

Evaluating 3x+ 1 for these values of x we get

[1] -2.75 -1.25

Taking the floor of these expressions we get

{−3,−2} . (974)

As each entry of Equation 973 is equation to each entry of Equation 974 we have found two
solutions

x ∈ {−5

4
,−3

4
} .

The sum of these roots is −8
4
= −2.
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Testing Question A.7

From the bounds on the floor function we have

10n

x
− 1 <

⌊
10n

x

⌋

≤ 10n

x
.

This means that x must be such that

10n

x
− 1 < 1989 ≤ 10n

x
. (975)

The first inequality in Equation 975 can be written as

10n

x
− 1 < 1989 ,

and can be manipulated into

x >
10n

1990
.

The second inequality in Equation 975 can be written as

1989 ≤ 10n

x
,

and can be manipulated into

x ≤ 10n

1989
.

This means that we have shown

10n

1990
< x ≤ 10n

1989
.

We can start with n ≥ 4 and evaluate the two bounds on x above stopping when the
difference is larger than one and the interval contains an integer. We do this in the R code
LNOMOC Vol 2 Lecture 22 A 7.R. Running that code we get

left right diff

4 5.025126e+00 5.027652e+00 2.526458e-03

5 5.025126e+01 5.027652e+01 2.526458e-02

6 5.025126e+02 5.027652e+02 2.526458e-01

7 5.025126e+03 5.027652e+03 2.526458e+00

8 5.025126e+04 5.027652e+04 2.526458e+01

9 5.025126e+05 5.027652e+05 2.526458e+02

10 5.025126e+06 5.027652e+06 2.526458e+03

Here when the row number n = 7 we get r − l = 2.526458 and have

5025.1 < x ≤ 5027.6 ,

so x ∈ {5026, 5027} both are solutions.
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Testing Question B.3

Let x = ⌊x⌋ + {x} in the given equation to get

⌊x⌋ {x}+ ⌊x⌋ + {x} = 2{x}+ 10 ,

or
⌊x⌋ {x}+ ⌊x⌋ − {x} = 10 = 9 + 1 ,

or
⌊x⌋ {x}+ ⌊x⌋ − {x} − 1 = 9 ,

or
(⌊x⌋ − 1)({x}+ 1) = 9 .

Now as ⌊x⌋ − 1 is an integer we have that

{x} =
9

⌊x⌋ − 1
− 1 ,

is a rational number. Because of that let {x} = m
n

where n > m ≥ 0 with n and m both
natural numbers. In that case we get that

⌊x⌋ = 1 +
9

{x} + 1
= 1 +

9n

m+ n
. (976)

As ⌊x⌋ is an integer we have that 9n must be divisible by m+ n. This means that

9n = k(m+ n) ,

for k ≥ 1 a natural number. Solving this for {x} = m
n
we have

{x} =
9− k

k
=

9

k
− 1 . (977)

In order to have 0 ≤ {x} < 1 we must have

0 ≤ 9

k
− 1 < 1 ,

which can be manipulated into
9

2
< k ≤ 9 .

The natural numbers where this is true are

k ∈ {5, 6, 7, 9} .

This means that using Equation 977 we have that {x} is given by

{x} ∈
{
4

5
,
1

2
,
2

7
,
1

8
, 0

}

.

This means that using Equation 976 we have that ⌊x⌋ is given by

⌊x⌋ ∈ {6 , 7 , 8 , 9 , 10} .

Finally we have x = ⌊x⌋ + {x}.
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Testing Question B.4

Let t = 1031 and notice that we can write the expression in the “floor” function ⌊x⌋ as

t3 + 33 − 33

t+ 3
=
t3 + 33

t + 3
− 33

t+ 3
.

Now as t3 + 33 = (t+ 3)(t2 − 3t+ 32) the first fraction above equals t2 − 3t+ 32 which is an
integer. Thus we have

⌊
t3

t+ 3

⌋

= t2 − 3t+ 32 +

⌊

− 33

t + 3

⌋

= t2 − 3t+ 32 − 1 ,

as −1 < − 33

t+3
< 0. This means that we have

⌊
t3

t + 3

⌋

= t2 − 3t+ 8 = 1062 − 31031 + 8 .

This number has a tens digit of 0 and a units digit of 8.

Testing Question B.5

From the given expression note that x 6= 0 and ⌊x⌋ 6= 0 and thus we know that no solutions
exist in the domain range 0 ≤ x < 1. Lets write this equation as

x− ⌊x⌋ = 92

⌊x⌋ − 92

x
,

or

x− ⌊x⌋ = 92(x− ⌊x⌋)
x ⌊x⌋ .

If x−⌊x⌋ = 0 we have found solutions. The values of x where that is true are when x = ⌊x⌋
i.e. x ∈ Z.

If we assume that x /∈ Z then we can divide by x− ⌊x⌋ to get

92 = x ⌊x⌋ or x =
92

⌊x⌋ . (978)

Lets start by assuming that x > 0 then from the above we know that x ≥ 1. Lets then
assume that m ≤ x < m + 1 where m an integer with m ≥ 1. Then in that case we have
⌊x⌋ = m and using Equation 978 we must have

m ≤ 92

m
< m+ 1 ,

or
m2 ≤ 92 < m(m+ 1) .
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We can compute the above for m integer and 1 ≤ m ≤
√
92 to find no values of m that make

the above true.

Next lets assume that x < 0 and that m ≤ x < m+ 1 but now with m an integer less than
or equal to minus one. Then we also have ⌊x⌋ = m and Equation 978 tells us that

m ≤ 92

m
< m+ 1 ,

or since m < 0
m(m+ 1) < 92 ≤ m2 .

In the same way as above we can find the negative integer values of m that satisfy the above.
We find the only value of m is m = −10. This means that the only non-integer solution is
x = −92

10
= 9.2.
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Lecture 23: Diophantine Equations (I)

Testing Question A.1

Solving for x we have

x = 3 +
12

k
.

For x to be an integer we must have 12
k
an integer. As we are told that k ≥ 1 we have that

k ∈ {1, 2, 3, 4, 6, 12} for a total of six solutions.

Testing Question A.2

We can compute that the gcd(1990, 1989) = 1. This means that there is at least one integer
solution to this integer equation. A very simple solution is given by (x, y) = (2, 1). From
the discussion in the book this means that a family of solutions is given by

x = 2− 1989t

y = 1− 1990t ,

for t ∈ Z. Setting each of the given x values equal to the expression for x above and solving
for t only (C) has an integer t = −6. With this t we find y = 11941.

Testing Question A.3

There is a typo in this problem in that the right-hand-side should be 17
33
.

If we clear all denominator we can write the given expression as

3A+ 11B = 17 ,

or
3A+ 11(B − 1) = 6 ,

or
3(A− 2) + 11(B − 1) = 0 .

Now a particular solution is easy to find we have A0 = 2 and B0 = 1 with a general solution
given by

A = 2 + 11t

B = 1− 3t ,

for t ∈ Z. As A and B are both positive integers we must have A ≥ 1 and B ≥ 1. The
condition A ≥ 1 in terms of t is

2 + 11t ≥ 1 or t ≥ − 1

11
.
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As t is an integer this becomes t ≥ 0. The condition B ≥ 1 in terms of t is

1− 3t ≥ 0 or t ≤ 0 .

Thus the only combined solution is t = 0 where A = 2 and B = 1 to give A2 +B2 = 5.

Testing Question A.4

If our number x has four digits then 1000 ≤ x ≤ 9999. Next we are told that

x = 16m+ 13

x = 125n+ 122 .

Using the bounds on x we can get bounds on m and n. We find

1000 ≤ 16m+ 13 ≤ 9999 or 62 ≤ m ≤ 625

1000 ≤ 125n+ 122 ≤ 9999 or 8 ≤ n ≤ 79 .

Equating the two expressions for x we get

16m+ 13 = 125n+ 122 ,

or
125n− 16m = −109 ,

or adding 125 to both sides gives

125(n+ 1)− 16m = 16 ,

or
125(n+ 1)− 16(m+ 1) = 0 .

Now a particular solution is easy to find and we have n0 = −1 and m0 = −1 with a general
solution given by

n = −1− 16t

m = −1− 125t ,

for t ∈ Z. From the above bounds on n but written in terms of t we have

8 ≤ −1 − 16t ≤ 79 ,

or
−5 ≤ t ≤ −1 .

Not that the above bounds on m but written in terms of t gives the same range of t values
and thus no new information. From the above form for x to find the smallest value we want
n and m to be as small as possible. This in tern means that we want t to be as large as
possible. From the range of t above this means that t = −1. For that value of t we find

n = −1 + 16 = 15

m = −1 + 125 = 124 ,

and thus
x = 16× 124 + 13 = 125× 15 + 122 = 1997 .
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Testing Question A.5

Let d be the number of dragonflys and s the number of spiders. Then we are told that

6d+ 8s = 46 ,

or
3d+ 4s = 23 ,

or
3d+ 4(s− 5) = 3 ,

or
3(d− 1) + 4(s− 5) = 0 .

Now a particular solution is easy to find we have d0 = 1 and s0 = 5 with a general solution
given by

d = 1 + 4t

s = 5− 3t ,

for t ∈ Z. To have d ≥ 0 means that 1 + 4t ≥ 0 or t ≥ −1
4
. As t is an integer this means

that t ≥ 0. To have s ≥ 0 means that 5− 3t ≥ 0 or t ≤ 5
3
. As t is an integer this means that

t ≤ 1.

Thus there are only two solutions for t = 0 and t = 1. For t = 0 this is (d, s) = (1, 5) and
for t = 1 this is (d, s) = (5, 2).

Testing Question A.6

There is a typo in the solution this question as 10 dollars is 10 · 100 = 1000 cents and not
100 cents. The number of solutions is smaller if the total is 100 cents and the method to
work the solution is the same thus I’ll work the problem with a total of 100 cents.

Given the values of each coin we are told that

x+ 2y + 5z = 100 , (979)

where x ≥ 0, y ≥ 0, and z ≥ 0. Let v ≡ x+ 2y then the expression above is given by

v + 5z = 100 .

This means that 5z ≤ 100 so that z ≤ 20 and we have concluded that 0 ≤ z ≤ 20. Lets
write the above as

v + 5(z − 20) = 0 ,

and a particular solution to the above is v0 = 0 and z0 = 20. A general solution to the above
is

v = 5t

z = 20− t ,
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for t ∈ Z. As v ≥ 0 we get that t ≥ 0. As z ≥ 0 we get that t ≤ 20. Thus we have concluded
that 0 ≤ t ≤ 20.

Next for each t above we need to count the number of solutions to

x+ 2y = 5t ,

or
x+ 2(y − 2t) = t ,

or
(x− t) + 2(y − 2t) = 0 .

This has a particular solution x0 = t and y0 = 2t and thus a general solution of

x = t+ 2s

y = 2t− s .

When t is a fixed value in 0 ≤ t ≤ 20 by using the above expressions to have x ≥ 0 we must
have s ≥ − t

2
. In the same way to have y ≥ 0 (in terms of s) will require s ≤ 2t. Thus we

have shown that

− t

2
≤ s ≤ 2t .

This means that the general solution to our problem is

x = t + 2s

y = 2t− s

z = 20− t ,

with 0 ≤ t ≤ 20 and − t
2
≤ s ≤ 2t.

If we desire to enumerate these solutions there are 11 even numbers for t in the above range
where t = 2t′ and 0 ≤ t′ ≤ 10. In that case we have

−t′ ≤ s ≤ 4t′ ,

For a fixed t′ there are 4t′ − (−t′) + 1 = 5t′ +1 integer values for s in that range. Thus for t
even we have

10∑

t′=0

(5t′ + 1) = 5

10∑

t′=0

t′ +

10∑

t′=0

1 = 5

10∑

t′=1

t′ + 11 = 5
10(11)

2
+ 11 = 286 ,

In addition there are 10 odd numbers for t in the above range where t = 2t′+1 and 0 ≤ t′ ≤ 9.
In that case we have

−
(
2t′ + 1

2

)

≤ s ≤ 2(2t′ + 1) ,

or

−t′ − 1

2
≤ s ≤ 4t′ + 2 ,
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or since s must be an integer this can be simplified to

−t′ ≤ s ≤ 4t′ + 2 .

For a fixed t′ there are 4t′ + 2− (−t′) + 1 = 5t′ + 3 integer values for s in that range. Thus
for t odd we have

9∑

t′=0

(5t′ + 3) = 5

9∑

t′=0

t′ +

9∑

t′=0

3 = 5
9(10)

2
+ 30 = 255 .

Adding the even and odd solutions for t together we get total of

286 + 255 = 541 ,

solutions or ways to make 100 cents.

Testing Question A.7

If we let x = abcd we must have

1 ≤ a ≤ 9

0 ≤ b ≤ 9

0 ≤ c ≤ 9

0 ≤ d ≤ 9 .

The condition we are given is

x+ a+ b+ c+ d = 2006 ,

or
103a + 102b+ 10c+ d+ a+ b+ c+ d = 2006 ,

or
1001a+ 101b+ 11c+ 2d = 2006 .

If we define e ≡ 1001a+ 101b+ 11c then the above is

1001a+ e = 2006 ,

or
1001(a− 2) + e = 4 ,

or
1001(a− 2) + (e− 4) = 0 .

This has the particular solution given by a0 = 2 and e0 = 4 with a general solution of

a = 2 + t

e = 4− 1001t ,
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for t ∈ Z. For 1 ≤ a ≤ 9 we must have −1 ≤ t ≤ 7. As we know that e ≥ 0 we must have

4− 1001t ≥ 0 so t ≤ 4

1001
= 0.003996 .

Thus we have concluded that the new range for t is −1 ≤ t ≤ 0 from which there are only
two integer values t ∈ {−1, 0}.

If t = −1 then a = 1 and e = 1005 and we need to find solutions to

e = 101b+ 11c+ 2d = 1005 .

Let f ≡ 11c+ 2d and write the above as

101b+ f = 1005 ,

or
101(b− 9) + f = 96 ,

or
101(b− 9) + (f − 96) = 0 ,

Thus the solutions for b and f take the form

b = 9 + s

f = 96− 101s ,

for s ∈ Z. To have 0 ≤ b ≤ 9 means that −9 ≤ s ≤ 0. To have f ≥ 0 means that
s ≤ 96

101
< 1. Thus the only solution that works is s = 0 which means that b = 9 and f = 96.

This equation for f means that
11c+ 2d = 96 ,

or
11(c− 8) + 2d = 8 ,

or
11(c− 8) + 2(d− 4) = 0 ,

for solutions

c = 8 + 2u

d = 4− 11u ,

for u ∈ Z. To have 0 ≤ c ≤ 9 means that −4 ≤ u ≤ 0 To have 0 ≤ d ≤ 9 means that
− 5

11
≤ u ≤ 4

11
which has only one integer solution u = 0. This would mean that x = 1984.

If t = 0 then a = 2 and e = −997 and we need to find solutions to

e = 101b+ 11c+ 2d = −997 .

Let f ≡ 11c+ 2d and write the above as

101b+ f = −997 ,
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or adding 10× 101 to both sides we get

101(b+ 10) + f = 13 ,

or
101(b+ 10) + (f − 13) = 0 ,

Thus the solutions for b and f take the form

b = −10 + s

f = 13− 101s ,

for s ∈ Z. To have 0 ≤ b ≤ 9 means that 10 ≤ s ≤ 19. To have f ≥ 0 means that
s ≤ 13

101
< 1. As these two ranges do not intersect there are no solutions of this form.

Testing Question A.8

We are told that
30 < 3m+ 2 < 40 ,

or
28 < 3m < 38 ,

or if m must be an integer
10 ≤ m ≤ 12 .

This means that m ∈ {10, 11, 12}. We are also told that

3m+ 2 = 5n+ 3 ,

or

n =
3m− 1

5
.

If we take each of the three m above and compute n using this expression only m = 12 gives
n an integer with n = 7 and thus mn = 12 · 7 = 84.

Testing Question A.9

The cost condition is given by

5x+ 3y +
1

3
z = 100 , (980)

while the total coin condition is given by

x+ y + z = 100 . (981)

If we subtract these two expressions from each other we get

4x+ 2y − 2

3
z = 0 ,
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or
6x+ 3y − z = 0 .

Let u ≡ 3y − z and then the above is 6x+ u = 0 which has solutions

x = 0 + t = t

u = 0− 6t = −6t ,

for t ∈ Z. To have x ≥ 0 means that t ≥ 0. We next need to solve

3y − z = −6t ,

or
3(y + 2t)− z = 0 ,

which has solutions

y = −2t− s

z = 0− 3s = −3s .

To have y ≥ 0 we must have s ≤ −2t. Thus our solutions are given by

x = t

y = −2t− s

z = −3s .

for t ≥ 0 and s ≤ −2t.

Using these expressions in Equation 981 gives

t− 2t− s− 3s = 100 and t+ 4s = −100 .

Using these expressions in Equation 980 gives the same condition as above. Adding 100 to
both sides of the t-s linear relationship gives

t + 4(s+ 25) = 0 ,

which has solutions

t = 0 + 4v = 4v

s = −25− v ,

for v ∈ Z. To have t ≥ 0 means that v ≥ 0. To have s satisfy s ≤ −2t we must have

−25− v ≤ −2(4v) ,

which simplifies to

v ≤ 25

7
< 3.57143 .

As v must be an integer our range is 0 ≤ v ≤ 3.
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Converting x, y, and z into expressions in terms of v we get

x = 4v

y = −2(4v)− (−25− v) = 25− 7v

z = −3(−25− v) = 75 + 3v .

Which are valid for 0 ≤ v ≤ 3. One can check that under these conditions Equations 980
and 981 both hold true.

In the following R code we compute these solutions. We have

vs = seq(0, 3)

xs = 4*vs

ys = 25 - 7*vs

zs = 75 + 3*vs

print(data.frame(v=vs, x=xs, y=ys, z=zs))

which gives

v x y z

1 0 0 25 75

2 1 4 18 78

3 2 8 11 81

4 3 12 4 84

Testing Question A.10

Given the two equations

x+ y + z = 1998 (982)

2x+ 3y + 4z = 5992 , (983)

if we solve the first equation for y we get y = 1998 − x − z and put this into Equation 983
after simplifying a bit we get

−x+ z = −2 ,

or
−x+ (z + 2) = 0 .

This has integer solutions given by

x = 0 + 1t = t

z = −2 − (−1)t = −2 + t ,
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for t ∈ Z. Note that the above equations satisfies x > z. Using the expression for y in terms
of x and z we find that

y = 1998− x− z = 1998− t+ 2− t = 2000− 2t .

To have y < x means that t > 2000
3

= 666.667. As t must be an integer we have t ≥ 667. To
have z < y means that

−2 + t < 200− 2t or t <
2002

3
= 667.333 .

Again as t must be an integer we have that t ≤ 667. Thus there is only one solution for t
that is t = 667. With that value of t we find

x = 667

y = 2000− 2(667) = 666

z = −2 + t = 665 .

Note that this solution satisfies 663 < z < y < x as it should.

Testing Question B.1

The total weight condition is given by

1x+ 10y + 50z = 500 , (984)

while the total number of weights condition is given by

x+ y + z = 100 . (985)

Solving Equation 985 for x and putting that into Equation 984 and simplifying will give

9y + 49z = 400 ,

or
9y + 49(z − 10) = −90 ,

or
9(y + 10) + 49(z − 10) = 0 .

This means that we have solutions

y = −10 + 49t

z = 10− 9t ,

for t ∈ Z. To have z ≥ 0 and t an integer means that t ≤ 1. To have y ≥ 0 and t an
integer means that t ≥ 1. Thus the only solution that works is t = 1. In that case we have
(y, z) = (39, 1). Using either of Equations 984 or 985 gives x = 60.
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Testing Question B.3

We start with
ax+ by = ab− a− b ,

or
a(x+ 1) + b(y + 1) = ab ,

or
a(x+ 1− b) + b(y + 1) = 0 .

This means for integer solutions for x and y are given by

x = −1 + b(t + 1)

y = −1 − at ,

for t ∈ Z.

Now to prove that no nonnegative solutions exist we will assume that is true and reach a
contradiction.

Now if y ≥ 0 then from the expression above we can conclude that t ≤ − 1
a
or since t is an

integer that t ≤ −1. When t ≤ −1 we can manipulate that inequality to show that x ≤ 0.

Now if x ≥ 0 then from the expression for x we can determine that t+ 1 ≥ 1
b
but since t+1

is an integer and b ≥ 1 we have that t + 1 ≥ 1 so that t ≥ 0. That would then mean that
y ≤ 0.

In both cases solutions where x ≥ 0 and y ≥ 0 are not possible.

Testing Question B.5

Consider n0 a natural number with n0 ≥ 1 and build the sequence of numbers suggested in
this problem using

nk = 2nk−1 + 1 ,

for k ≥ 1. If we compute a few of these, we can guess the form of the solution and verify
that it works with induction to conclude that

nk = 2kn0 + 2k − 1 ,

for k ≥ 0. In this formula n100 is the number after applying this procedure 100 times.

Part (i): We would like to know for what value of n0 is 1980 | n100. If that was true then
we would have

n100 = 1980k ,
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for some k. Using the above formula for n100 the above is equivalent to

2100(n0 + 1)− 1980k = 1 .

From this section of the book this equation will have an integer solution for n0 + 1 and k if
and only if

gcd(2100, 1980) = 1 .

Now as
gcd(2100, 1980) = gcd(2100, 22 · 33 · 5 · 11) = 22 6= 1 ,

this equation has no integer solutions.

Part (ii): If we want 1981 | n100 then the same manipulations above would give the equation

2100(n0 + 1)− 1981k = 1 .

As before, this will have an integer solution for n0 + 1 and k if and only if

gcd(2100, 1981) = 1 .

Now as
gcd(2100, 1981) = gcd(2100, 7 · 283) = 1 ,

we conclude that this equation does have and integer solutions.
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Lecture 24: Roots and Discriminant of Quadratic Equation

Notes on Example 9

From the product expression

(a2 − (b+ c)2)(a2 − (b− c)2) < 0 ,

we must have either

a2 − (b+ c)2 < 0 and a2 − (b− c)2 > 0 , (986)

or
a2 − (b+ c)2 > 0 and a2 − (b− c)2 < 0 . (987)

Now as
a2 − (b+ c)2 < a2 − (b− c)2 ,

we see that Equation 987 is not possible. From Equation 986 and with a, b, c positive we
have

a < b+ c and a > |b− c| .
This last expression means that

a > b− c and a > −b+ c ,

or
b < a+ c and c < a + b .

Thus we have derived the triangle inequalities of a < b+ c, b < a+ c, and c < a+ b.

Testing Question A.1

Write the first expression as

(2003x)2 − (2003 + 1)(2003− 1)x− 1 = 0 ,

or
20032x2 − (20032 − 1)x− 1 = 0 .

In this form its easier to see how it factors and we have

(20032x+ 1)(x− 1) = 0 .

Thus the two roots are

− 1

20032
and m = 1 .

For the second expression we can factor it as

(x− 1)(x+ 2003) = 0 ,

Thus the two roots are
n = −2003 and 1 .

Thus we see that
m− n = 1− (−2003) = 2004 .
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Testing Question A.2

This expression “changes” when x crosses the points −3 and +3. If x < −3 then this
expression is

x2 − (x+ 3)− (x− 3)− 24 = 0 or x2 − 2x− 24 = 0 or (x− 6)(x+ 4) = 0 .

Thus the two roots are x = −4 and x = 6. Only the value x = −4 is less than −3.

If −3 < x < 3 then this expression is

x2 + (x+ 3)− (x− 3)− 24 = 0 or x2 − 15 = 0 .

Thus the two roots are x = ±
√
15 = ±3.87298. Neither of these two values are in the domain

−3 < x < +3 and thus there are no solutions for x in this domain.

If x > 3 then this expression is

x2 + (x+ 3) + (x− 3)− 24 = 0 or x2 + 2x− 24 = 0 or (x+ 6)(x− 4) = 0 .

Thus the two roots are x = −6 and x = 4. Only the value x = 4 is greater than 3.

Testing Question A.3

If m = 2 this expression is linear and has a solution x = −1.

Looking to factor this expression we find we can write it as

((m− 2)x− (2m+ 1))(x+ 1) = 0 .

This means that the roots are x = −1 and x = 2m+1
m−2

.

Testing Question A.4

Write this expression as x2 = 3x− 1. Then taking x = a and multiplying by a we get

a3 = 3a2 − a = 3(3a− 1)− a = 8a− 3 .

Using these the expression given (called here E) can be written

E =
a2(2(8a− 3)− 5(3a− 1) + 2a− 8)

3a− 1 + 1

=
a(3a− 9)

3
= a(a− 3) = a2 − 3a = 3a− 1− 3a = −1 .
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Testing Question A.5

Our two equations are

1988x2 + bx+ 8891 = 0 (988)

8891x2 + bx+ 1988 = 0 . (989)

If x is a common root lets subtract these two equations to get

−6903x2 + 6903 = 0 so x2 = 1 .

Thus x = ±1. In Equation 988 if we place x = 1 we get

1988 + b+ 8891 = 0 so b = −10879 .

In Equation 989 if we place x = 1 we also get b = −10879.

In Equation 988 if we place x = −1 we get

1988− b+ 8891 = 0 so b = 10879 .

In Equation 989 if we place x = +1 we also get b = 10879.

Thus for b we have b = ±10879.

Testing Question A.6

If m2 − 1 = 0 then we have a linear equation which will have one real root. These values for
m are m = ±1.

If this equation has at least one real root then we know that ∆ ≥ 0 or

(2(m+ 2))2 − 4(m2 − 1) ≥ 0 .

Expanding and simplifying this give m ≥ −5
4
.

As m = ±1 are in the domain of m ≥ −5
4
the later is the domain where we have at least one

real root for this quadratic equation.

Testing Question A.7

If these two quadratics have a common root and we subtract them we get

−kx− 7 + 6x+ k + 1 = 0 or (k − 6)x = k − 6 .

1307



From this we see that if k 6= 6 then we have x = 1 for the common root. Note that if k = 6
these two equations are the same and are

x2 − 6x− 7 = (x− 7)(x+ 1) = 0 .

This has the two “common” roots of x = −1 and x = 7.

If k 6= 6 then we know a common root is x = 1. If we put x = 1 in the first expression we
get

1− k − 7 = 0 so k = −6 .

Using that value of k into the two equations gives

x2 + 6x− 7 = (x+ 7)(x− 1) = 0

x2 − 6x+ 5 = (x− 5)(x− 1) = 0 .

These have the roots {−7, 1} and {1, 5} respectively.

Testing Question A.8

To have two real roots we must have ∆ = 0 or

4b2 − 4(c+ a)(c− a) = 0 ,

which can be written as
a2 + b2 = c2 .

Thus a, b, and c would form the lengths of a right triangle.

Testing Question A.9

To have real roots we must have ∆ ≥ 0 or

4(1 + a)2 − 4(3a2 + 4ab+ 4b2 + 2) ≥ 0 .

We can write this as
4b2 + 4ab+ 2a2 − 2a+ 1 ≤ 0 ,

or
4(b2 + ab) + 2a2 − 2a+ 1 ≤ 0 ,

or

4

(

b2 + ab+
(a

2

)2

− a2

4

)

+ 2a2 − 2a + 1 ≤ 0 ,

or

4

(

b2 + ab+
a2

4

)

− a2 + 2a2 − 2a+ 1 ≤ 0 ,
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or

4
(

b+
a

2

)2

+ a2 − 2a + 1 ≤ 0 ,

or

4
(

b+
a

2

)2

+ (a− 1)2 ≤ 0 .

This means that a = 1 and b = −a
2
= −1

2
.

Testing Question A.10

Computing the discriminant of this quadratic equation we find

∆ = (a+ b+ c)2 − 4(a2 + b2 + c2)

= (a+ b+ c− 2
√
a2 + b2 + c2)(a+ b+ c+ 2

√
a2 + b2 + c2) .

Now in the Cauchy-Schwarz inequality |xTy| ≤ ||x||||y|| if we take x = (a, b, c) and y =
(1, 1, 1) we get

|a+ b+ c| ≤
√
3
√
a2 + b2 + c2 < 2

√
a2 + b2 + c2 .

This means that

(a + b+ c)− 2
√
a2 + b2 + c2 < 0

(a+ b+ c) + 2
√
a2 + b2 + c2 > 0 .

This means that ∆ which is the product of the two numbers above is negative and there are
no real roots to this quadratic.

Testing Question B.1

Fat will win if no matter how Taf assigns the three numbers from Fat to the variables a, b,
and c we will have ∆ > 0 or

b2 > 4ac . (990)

I claim that Fat should pick one negative number and two positive numbers. In that case if
Taf assigns the negative number to the variable a or c in Equation 990 the inequality will be
true and he will loose. Thus Taf must assign the negative number to b. Thus if one of Fat’s
numbers is −1 he will win if

1 > 4ac . (991)

By the symmetry of a and c if we take them equal and less than 1
2
the above will hold true

and Fat will win. Thus one (of an infinite many) winning combinations Fat could send is
−1, 1

3
, and 1

3
.
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Testing Question B.2

If each quadratic equation were to have two equal roots then we need ∆ = 0 for each one.
That means that we would have

4b2 − 4ac = 0 or b2 = ac

4c2 − 4ab = 0 or c2 = ab

4a2 − 4bc = 0 or a2 = bc .

If we divide the first equation by the second equation we get

b2

c2
=
c

b
or

(
b

c

)3

= 1 .

This means that b
c
= 1 or b = c. If this is true then using the above we have that a = b = c.

This is in contradiction to the initial assumption that a, b, and c are distinct.

Testing Question B.3

We first note that the common root cannot be x = 1 or else a = 1 and b = 1 for if we take
x = 1 in the first equation we get

a− 1− a2 − 2 + a2 + 2a = a− 3 + 2a = 3a− 3 = 0 .

If we multiply the first equation by b− 1 and the second equation by a− 1 we get

(a− 1)(b− 1)x2 − (a2 + 2)(b− 1)x+ (a2 + 2a)(b− 1) = 0

(a− 1)(b− 1)x2 − (a− 1)(b2 + 2)x+ (a− 1)(b2 + 2b) = 0 .

If we subtract these two equations we get

[
−(a2 + 2)(b− 1) + (a− 1)(b2 + 2)

]
x+

[
(a2 + 2a)(b− 1)− (a− 1)(b2 + 2b)

]
= 0 .

If we expand the expressions inside the brackets, factor, and simplify we can write the above
as

(a− b) [ab− (a+ b)− 2] (−x+ 1) = 0 .

We are told that a − b 6= 0 and from the above have concluded that −x + 1 6= 0. Thus we
must have

ab = 2 + a+ b . (992)

Note that by the symmetry in this equation if (a, b) = (x, y) is a solution then so is (a, b) =
(y, x).

For a given value for a by solving Equation 992 for b we have

b =
a + 2

a− 1
. (993)
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Now as a and b are positive integers from Equation 993 we see that not all integer value for a
will give an integer value for b. Now if a = 2 then the above gives b = 4. Using Equation 993
we see that if a is even then the expression a+2 will be even while a−1 will be odd and the
fractional expression for b will not be an integer. Also if a is odd then the expression a + 2
will be odd but a− 1 will be even and the fractional expression for b will not be an integer.
Thus the only integer solutions to the above are (a, b) ∈ {(2, 4) , (4, 2)}.

Note that the expression we are asked to evaluate is symmetric in a and b and thus will give
the same value for both the points above. For (a, b) = (2, 4) I find

24 + 42

2−4 + 4−2
=

16 + 16
1
16

+ 1
16

= 162 = 256 .

Testing Question B.4

Note that as the left-hand-side of this expression is positive for all x we must have mx > 0
so m 6= 0. Otherwise for a solution we must have either

m > 0 and x > 0 , (994)

or
m < 0 and x < 0 , (995)

As the left-hand-side of the original quadratic “changes” at the points x ∈ {−2,−1,+1,+2}
we will start by assuming that Equation 994 is true and hypothesize that 0 < x < 1. In this
case the original quadratic becomes

−(x2 − 1)− (x2 − 4) = −2x2 + 5 .

Setting this equal to mx we get
2x2 +mx− 5 = 0 .

Solving this for x we get

x =
−m±

√

m2 − 4(2)(−5)

2(2)
=

−m±
√
m2 + 40

4
.

The negative sign above will give a value for x that is x < 0. To have this x in the supposed
range 0 < x < 1 we would need to have

−m+
√
m2 + 40

4
< 1 ,

or √
m2 + 40 < m+ 4 ,

or squaring
m2 + 40 < (m+ 4)2 = m2 + 8m+ 16 ,
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which simplifies to m > 3. As this is a positive value for m we have found a solution that
satisfies Equation 994.

Next we will assume that Equation 994 is true and hypothesize that 1 < x < 2. In this case
the original quadratic becomes

(x2 − 1)− (x2 − 4) = 3 .

Setting this equal to mx we get x = 3
m
. To have this x in the supposed range 1 < x < 2 we

would need to have

1 <
3

m
< 2 or

1

2
<
m

3
< 1 or

3

2
< m < 3 .

As this is a positive value for m we have found another solution that satisfies Equation 994.

Finally we will assume that Equation 994 is true and hypothesize that x > 2. In this case
the original quadratic becomes

(x2 − 1) + (x2 − 4) = 2x2 − 5 .

Setting this equal to mx we get
2x2 −mx− 5 = 0 .

Solving this for x we get

x =
m±

√

m2 − 4(2)(−5)

2(2)
=
m±

√
m2 + 40

4
.

The negative sign above will give a value for x that is x < 0. To have this x in the supposed
range x > 2 we would need to have

m+
√
m2 + 40

4
> 2 .

Following the same steps as before simplifies to m > 3
2
. Again as this is a positive value for

m we have found a third that satisfies Equation 994.

In summary then for m > 0 we have

• If m > 3
2
then x = m+

√
m2+40
4

is a positive solution with x > 2.

• If 3
2
< m < 3 then x = 3

m
is a positive solution with 1 < x < 2.

• If m > 3 then x = −m+
√
m2+40
4

is a positive solution with 0 < x < 1.

As before as the left-hand-side of the original quadratic “changes” at the points x ∈ {−2,−1,+1,+2}
we would now need to start by assuming that Equation 995 is true and hypothesize that for
example −1 < x < 0. Following all of the same logic as above will gives solutions similar to
the ones above. An easier way to get these solutions is to recognize that the original equation
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is unchanged by the substation m→ −m and x→ −x. Thus we can convert the “summary”
above for m > 0 into a “summary” for m < 0 by making the replacement m → −m and
x→ −x. In (maybe too much detail) this gives

In summary then for −m > 0 we have

• If −m > 3
2
then −x = −m+

√
m2+40
4

is a negative solution with −x > 2.

• If 3
2
< −m < 3 then −x = 3

−m
is a negative solution with 1 < −x < 2.

• If −m > 3 then −x = m+
√
m2+40
4

is a negative solution with 0 < −x < 1.

or simplifying then

For m > 0 we have

• If m < −3
2
then x = m−

√
m2+40
4

is a negative solution with x < −2.

• If −3 < m < −3
2
then x = 3

m
is a negative solution with −2 < x < −1.

• If m < −3 then x = −m−
√
m2+40
4

is a negative solution with −1 < x < 0.

Testing Question B.5

For each equation to have two roots means that ∆1 > 0 and ∆2 > 0 or

12 − 4q1 > 0

p2 − 4q2 > 0 .

These are equivalent to the expressions

q1 <
1

4
(996)

p2 > 4q2 . (997)

If both inequalities above are true the both equations have two distinct roots.

Lets assume that Equation 996 is not true i.e. q1 >
1
4
. This means that the first equation

does not have two real roots. Using the constraint given in the problem we have that

q1 = p− q2 − 1 ,

so q1 >
1
4
means that

p− q2 − 1 >
1

4
or p > q2 +

5

4
.
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Squaring this we get that

p2 > q22 +
5

2
q2 +

25

16
.

Subtracting 4q2 from this we get

p2 − 4q2 > q22 −
3

2
q2 +

25

16

= q22 −
3

2
q2 +

9

25
− 9

25
+

25

16

=

(

q2 −
3

2

)2

+ 1 > 0 .

This means that Equation 997 is true and thus the second equation has two real roots.

Lets now assume that Equation 997 is not true. This means that the second equation does
not have two real roots. Using the constraint given in the problem we have that

q2 = p− q1 − 1 >
p2

4
.

This means that
4q1 < −p2 + 4p− 4 .

The right-hand-side of the above can be written as

−p2 + 4p− 4 = −(p2 − 4p)− 4 = −(p2 − 4p+ 4) + 4− 4 = −(p− 2)2 < 0 < 1 .

This means that Equation 996 is true and the first equation has two real roots.

Finally if both Equation 996 and 997 are false then q1 >
1
4
and q2 >

p2

4
so that

q1 + q2 + 1 >
1

4
+
p2

4
+ 1 =

p2 + 5

4
.

I claim this can’t equal p (as would be required by the constraint) for if it did then p would
solve

p2 − 4p+ 5 = 0 ,

which it can’t as the above quadratic has no real roots. Thus this case cannot happen with
the given constraint.
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Lecture 25: Relation between Roots and Coefficients of Quadratic
Equations

Testing Question A.1

WWX: DP
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Lecture 26: Diophantine Equations (II)

Testing Question A.1

WWX: DP
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Lecture 27: Linear Inequality and Systems of Linear Inequalities

Testing Question A.1

WWX: DP

1317



Lecture 28: Quadratic Inequalities and Fractional Inequalities

Testing Question A.1

WWX: DP
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Lecture 29: Inequalities with Absolute Values

Testing Question A.1

WWX: DP
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Lecture 30: Geometric Inequalities

Testing Question A.1

WWX: DP
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Inequalities: A Mathematical Olympiad Approach

Numerical Inequalities

Exercise 1.5

Part (ii): Write a as a = b+ (a− b) and then use the triangle inequality to get

|a| ≤ |b|+ |a− b| ,

or
|a− b| ≥ |a| − |b| .

In the same way we can write b as b = a + (b− a) then with the triangle inequality we get

|b| ≤ |a|+ |b− a| ,

or
|b| − |a| ≤ |b− a| .

Thus we have shown that

|a− b| ≥ |a| − |b| and

|a− b| ≥ −(|a| − |b|) .

Combining these two we see that

|a− b| ≥ ||a| − |b|| .

Part (iii): We want to prove that

x2 + xy + y2 ≥ 0 .

To start note that if x > 0 and y > 0 then xy > 0 and every term in the left-hand-side is
greater than or equal to zero and the inequality holds. If x < 0 and y < 0 then the same
argument made when both x and y are positive holds in this case. Assume that x and y are
not of the same sign, thus xy < 0. Then consider

(x+ y)2 ≥ 0 or x2 + xy + y2 ≥ −xy .

but −xy ≥ 0 so the left-hand-side is again positive as we were to show.

As a second method to demonstrate this inequality note that we have the identity

(x2 + xy + y2)(x− y) = x3 − y3 ,

when we expand and simplify. Now if x < y the right-hand-side is negative and so is the
factor x−y which means that x2+xy+y2 must be positive. If x > y then the right-hand-side
is positive and so is the factor x−y. This means that the x2+xy+y2 must again be positive.
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Part (iv): Note that (x− y)2 ≥ 0 so x2 − 2xy + y2 ≥ 0 and

x2 − xy + y2 ≥ xy .

If both x > 0 and y > 0 then we have xy > 0 so

x2 − xy + y2 > 0 .

Exercise 1.6

Note that
a+ b+ c− (a+ b)− (a+ c)− (b+ c) + (a+ b+ c) = 0 ,

or
a+ b+ c+ (a+ b+ c) = (a+ b) + (a+ c) + (b+ c) .

Then using the triangle equality on the left-hand-side we see that

|a+ b+ c+ (a+ b+ c)| ≤ |a|+ |b|+ |c|+ |a+ b+ c| .

The triangle law on the expression on the right-hand-side gives

|(a+ b) + (a+ c) + (b+ c)| ≤ |a+ b|+ |a+ c|+ |b+ c| .

If we subtract these two expressions (which we know are equal) we get

0 ≤ |a|+ |b|+ |c| − |a+ b| − |a+ c| − |b+ c|+ |a+ b+ c| .

Exercise 1.7

Part (i): Note b ≤ 1 and a > 0 so ab ≤ a, thus −a ≤ −ab. Since b ≤ 1 we can add this
inequality to the last one to get

b− a ≤ 1− ab .

If we divide this by 1− ab (assuming its positive for the moment) we get

b− a

1− ab
≤ 1 .

We now show that 1− ab > 0. This is equivalent to 1 > ab which we know is true since we
assume that a ≤ b ≤ 1.

Part (ii): We assume that 0 ≤ a ≤ b ≤ 1 and we want to prove

0 ≤ a

1 + b
+

b

1 + a
≤ 1 .
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As a and b are both positive both a
1+b

and b
1+a

are both positive so their sum must be
positive. This shows the left-side of our inequality. We now try to show that

a

1 + b
+

b

1 + a
≤ 1 .

Note that the left-hand-side of the above is equivalent to

1
1
a
+ b

a

+
1

1
b
+ a

b

.

Now let x ≡ a
b
(which by our assumptions in this problem we know that x ≤ 1) and the

above becomes
1

1
a
+ 1

x

+
1

1
b
+ x

. (998)

Since a < 1 we have 1
a
> 1 and the individual terms above can be bounded as

1

a
+

1

x
> 1 +

1

x
or

1
1
a
+ 1

x

<
1

1 + 1
x

1

b
+ x > 1 + x or

1
1
b
+ x

<
1

1 + x
.

Thus with these Equation 998 becomes

1
1
a
+ 1

x

+
1

1
b
+ x

<
1

1 + 1
x

+
1

1 + x
=

x

x+ 1
+

1

x+ 1
= 1 ,

showing the desired result.

Part (iii): One inequality we want to show is

0 ≤ ab2 − ba2 .

Divide this by ab > 0 to get
0 ≤ b− a ,

which is true by assumption.

For this part using b < 1 we have

ab2 − ba2 < ab2 − b2a2 = b2(a− a2) ≤ a− a2 =
1

4
−
(
1

2
− a

)2

≤ 1

4
.

Where in the second to the last step on the expression a−a2 we have “completed the square”.

Exercise 1.8

From the inequality √
2 <

m+ 2n

m+ n
,
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we have √
2(m+ n) < m+ 2n ,

or
0 < (1−

√
2)m+ (2−

√
2)n = (1−

√
2)(m−

√
2n) .

As 1−
√
2 < 0 so if we divide by this number we get

m−
√
2n < 0 or

m

n
<

√
2 .

As each of these steps is reversible we have shown both directions.

Exercise 1.9

We want to show that when a ≥ b and x ≥ y that

ax+ by ≥ ay + bx . (999)

We start with that inequalities and move everything to the left-hand-side where we get

a(x− y) + b(y − x) ≥ 0 ,

or
(a− b)(x− y) ≥ 0 .

This later expression is true by assumption.

Exercise 1.10

Write the expression we want to prove is true as

√
x3√
xy

+

√

y3
√
xy

≥
√
x+

√
y ,

or √
x3 +

√

y3√
xy

≥
√
x+

√
y ,

or √
x3 +

√

y3 ≥
√

x2y +
√

xy2 ,

or √
x3 −

√

x2y −
√

xy2 +
√

y3 ≥ 0 .

While the powers on x and y make it somewhat confusing it can be made more clear if we
write the above as

(x1/2)3 − (x1/2)2y1/2 − (x1/2)(y1/2)2 + (y1/2)3 ≥ 0 ,
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or
(x1/2 − y1/2)((x1/2)2 − (y1/2)2) ≥ 0 .

This expression is true for if
√
x >

√
y then by squaring we have that x > y and both

differences above are positive so the product is positive. If on the other hand we have that√
x <

√
y then also by squaring we have that x < y and both differences above are now

negative but the product is still positive. In all cases all steps are reversible and we have
shown the desired inequality.

Exercise 1.11

We want to prove E ≥ 0 where we have defined E as

E ≡ (a− b)(c− d) + (a− c)(b− d) + (d− a)(b− c) .

Now since a + d = b+ c we have a− c = b− d. Lets define x and y such that

x = a− b = c− d

y = a− c = b− d .

With these we see that x+ y = a− d and x− y = a− b − a + c = −b + c. From these two
expressions we see that we can write (d− a)(b− c) in terms of x and y as

(d− a)(b− c) = (−(x+ y))(−(x− y)) = (x+ y)(x− y) .

Thus the given expression in terms of x and y is

x2 + y2 + (x+ y)(x− y) = x2 + y2 + x2 − y2 = 2x2 ≥ 0 ,

showing the given expression.

Another perhaps simpler way to work this problem is to expand each term and simplify

E = ac− ad− bc+ bd+ ab− ad− cb+ cd+ bd− dc− ab+ ac

= 2ac− 2ad− 2bc+ 2bd = 2a(c− d)− 2b(c− d)

= 2(a− b)(c− d) > 0 .

This last expression we know is positive because from the given constraint we have that
a− b = c− d so that

(a− b)(c− d) = (a− b)2 ≥ 0 .

Exercise 1.12

Given that a < b < c < d and the function definition

f(a, b, c, d) = (a− b)2 + (b− c)2 + (c− d)2 + (d− a)2 .
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We want to show
f(a, c, b, d) > f(a, b, c, d) > f(a, b, d, c) .

Consider the first inequality. We would like to show or f(a, c, b, d) > f(a, b, c, d). The above
expression is equivalent to

(a− c)2 + (c− b)2 + (b− d)2 + (a− d)2 > (a− b)2 + (b− c)2 + (c− d)2 + (a− d)2 ,

or when we cancel common terms on both sides

(a− c)2 + (b− d)2 > (a− b)2 + (c− d)2 .

If we expand each quadratic we get

a2 − 2ac+ c2 + b2 − 2bd+ d2 > a2 − 2ab+ b2 + c2 − 2cd+ d2 .

Again canceling common terms this is

−2(ac+ bd) > −2(ab+ cd) ,

or
a(c− b) + d(b− c) < 0 ,

or
(a− d)(c− b) < 0 .

which is true by the assumptions on a, b, c, and d.

Next we try to prove f(a, b, c, d) > f(a, b, d, c) or

(a− b)2 + (b− c)2 + (c− d)2 + (a− d)2 > (a− b)2 + (b− d)2 + (d− c)2 + (a− c)2 .

If we cancel common terms and expand the above is equivalent to

b2 − 2bc + c2 + a2 − 2ad+ d2 > b2 − 2bd + d2 + a2 − 2ac+ c2 .

Again canceling common terms we get

−2(bc + ad) > −2(bd+ ac) ,

or
bc + ac < bd + ac ,

or
b(c− d) + a(d− c) < 0 ,

or
(d− c)(a− b) < 0 .

This last inequality is known to be true from the assumptions of the problem.
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Exercise 1.13

This is a “quadratic surd” expression and we will write the left-hand-side as

(
2x

1−
√
1 + 2x

)2

.

Considering the fraction we are squaring we find

2x

1−
√
1 + 2x

(
1 +

√
1 + 2x

1 +
√
1 + 2x

)

=
2x(1 +

√
1 + 2x)

1− (1 + 2x)
= −(1 +

√
1 + 2x) .

Thus the inequality becomes

(1 +
√
1 + 2x)2 < 2x+ 9 .

Expanding this we get
1 + 1 + 2x+ 2

√
1 + 2x < 2x+ 9 ,

or
2
√
1 + 2x < 7 ,

or

0 < 1 + 2x <
49

4
or − 1

2
< x <

45

8
.

Exercise 1.14

Write this expression as

√
4n2 + n =

√

4n2

(

1− 1

4n2

)

= 2n

√

1− 1

4n2
.

Now we use one form of Bernoulli’s inequality where if 0 ≤ r ≤ 1 and x ≥ −1 then

(1 + x)r ≤ 1 + rx . (1000)

We can write √

1− 1

4n2
< 1− 1

8n2
,

so that we have √
4n2 − n < 2n

(

1− 1

8n2

)

= 2n− 1

4n
,

Thus the “error” between
√
4n2 − n and 2n is smaller than 1

4n
. For n ≥ 1 this fractional

part is less than 1
4
.
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Exercise 1.15

If a > b then a3 > b3 and a2 > b2 so

(a3 − b3)(a2 − b2) > 0 ,

since both terms in the product are positive. If a < b the taking the cube and the square
of this as we just did the above product is the product of two negative numbers and is also
positive. Thus the above product is positive in all cases. Expanding the above product gives

a5 + b5 − a3b2 − a2b3 > 0 ,

or
a5 + b5 > a3b2 + a2b3 = a2b2(a + b) .

This means that the first fraction we are considering can be bounded above as

ab

a5 + b5 + ab
<

ab

a2b2(a + b) + ab
=

1

ab(a + b) + 1
.

Doing this same “thing” in each of the other fractions we find the sum we are considering is
bounded above by

1

ab(a + b) + 1
+

1

bc(b+ c) + 1
+

1

ac(a+ c) + 1
.

Using the fact that ab = 1
c
, bc = 1

a
, and ac = 1

b
in each of the above fractions we get

c

a+ b+ c
+

a

b+ c+ a
+

b

a+ c+ b
= 1 .

The quadratic function ax2 + bx+ c

Exercise 1.16

From the quadratic formula a quadratic will have real roots if its discriminant is positive i.e.
∆ = b2 − 4ac ≥ 0. Notice that from the given expressions if we let f(x) = ax2 + bx+ c then

f(1) = a+ b+ c ≥ 0

f(−1) = a− b+ c ≥ 0 .

This means that the function f(x) is above the x-axis at the points x = ±1. If we complete
the square in the quadratic f(x) (as is done in the book) we can write it as

f(x) = a

(

x+
b

2a

)2

+ c− b2

4a2
.
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As a > 0 the smallest value of f(x) happens when xmin = − b
2a

where it takes the value

fmin = c− b2

4a2
.

From the fact that ∆ ≥ 0 we can show that fmin < 0. Note that xmin must be inside the
domain [−1, 1] for if not as f(±∞) = ∞ the function f would cross the x-axis too many
times and have more than two roots. Thus we conclude that −1 < xmin < 1.

Finally, as our function f(x) is continuous with f(−1) > 0 and f(xmin) < 0 there must
be a root between these two values. In addition, as our function f(x) is continuous with
f(xmin) < 0 and f(+1) > 0 there must be a root between these two values.

Exercise 1.17

Given that the number “one” is in the left-hand-side of each of these inequalities lets see
where a, b, and c fall relative to this number. Thus we start by assuming that all three
inequalities are true and ask if a > 1. If that is the case then from the inequality

c(1− a) >
1

4
,

the left-hand-side would be negative which is a violation of the inequality. Thus we must
have a < 1. By symmetry of these equations with respect to a, b, and c we know that all of
these numbers must be less than one. In the same way we cannot have a < 0 and thus the
domain of each of these variables is (0, 1).

Again assuming that all three inequalities hold lets take the product of the three of them
which we can write as

[a(1− a)][b(1− b)][c(1− c)] >
1

43
.

Now on the domain 0 < x < 1 the quadratic x(1 − x) ≤ 1
4
so the above cannot hold since

the left-hand-side must be the product of three numbers smaller than 1
4
.

A fundamental inequality: arithmetic mean-geometric mean

Exercise 1.18

An equivalent expression is to show that 1
2
(1 + x) ≥ √

x. Note that the AM-GM inequality
with a = 1 and b = x is √

x ≤ 1 + x

2
,

and is what we wanted to show.
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Exercise 1.19

Note that the AM-GM inequality with a = x and b = 1
x
is

1 ≤ 1

2

(

x+
1

x

)

,

which is equivalent to what we wanted to show.

Exercise 1.20

Note that
(x− y)2 ≥ 0 ,

so expanding we get
x2 + y2 ≥ 2xy .

Another way to prove this is to use AM-GM inequality with a = x2 and b = y2 (with x ≥ 0
and y ≥ 0) to get

xy ≤ 1

2
(x2 + y2) ,

which is equivalent to what we wanted to show.

Exercise 1.21

Expanding the right-hand-side we get

2(x2 + y2) ≥ x2 + 2xy + y2 ,

Subtracting x2 + y2 from both sides we get

x2 + y2 ≥ 2xy ,

which is true as this is the AM-GM inequality with a = x2 and b = y2.

Exercise 1.22

Multiply by x+ y on both sides to get

1 +
y

x
+
x

y
+ 1 ≥ 4 ,

or
y

x
+
x

y
≥ 2 .

This last expression is the AM-GM inequality with a = y
x
and b = x

y
.
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Exercise 1.23

Use the AM-GM inequality with a = Ax and b = B
x
to get

Ax+
B

x
≥ 2

√

Ax

(
B

x

)

= 2
√
AB .

Exercise 1.24

Use the AM-GM inequality with a = A
B
and b = B

A
to get

A

B
+
B

A
≥ 2

√

A

B
· B
A

= 2 .

Exercise 1.25

Lets introduce E defined as

E =
a+ b

2
−
√
ab .

Note that we can write E as

E =
1

2
(a− 2

√
ab+ b) =

1

2
(
√
a−

√
b)2 .

As we know that b ≤ a we know that
√
b ≤ √

a so
√
a−

√
b ≥ 0. Next we write

a− b = (
√
a−

√
b)(

√
a+

√
b) .

This means that √
a−

√
b =

a− b
√
a+

√
b
.

This means that

E =
1

2

(a− b)2

(
√
a+

√
b)2

.

Now using b ≤ a we can bound
√
a+

√
b as

2
√
b ≤

√
a+

√
b ≤ 2

√
a .

This means that
1

2

(a− b)2

(2
√
a)2

≤ E ≤ 1

2

(a− b)2

(2
√
b)2

,

or
(a− b)2

8a
≤ E ≤ (a− b)2

8b
.
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Exercise 1.26

If we use x+ y ≥ 2
√
xy three times we have

(x+ y)(y + z)(z + x) ≥ (2
√
xy)(2

√
yz)(2

√
zx) = 8xyz .

Exercise 1.27

If we use xy ≤ 1
2
(x2 + y2) three times we get

xy + yz + zx ≤ 1

2
(x2 + y2) +

1

2
(y2 + z2) +

1

2
(z2 + x2) = x2 + y2 + z2 . (1001)

Exercise 1.28

If we use
√
xy ≤ 1

2
(x+ y) three times we get

x
√
yz + y

√
zx + z

√
xy ≤ x

(
y + z

2

)

+ y

(
z + x

2

)

+ z

(
x+ y

2

)

=
xy

2
+
xz

2
+
yz

2
+
xy

2
+
xz

2
+
zy

2
= xy + xz + yz .

Exercise 1.29

Use the result above in Equation 1001 with z = 1 to get

x2 + y2 + 1 ≥ xy + y + x .

Exercise 1.30

Recall the harmonic-geometric mean inequality (HM-GM)

2
1
x
+ 1

y

≤ √
xy , (1002)

but written as
1√
xy

≤ 1

2

(
1

x
+

1

y

)

. (1003)
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If we use this result three times we get

1√
xy

+
1√
xz

+
1√
yz

≤ 1

2

(
1

x
+

1

y

)

+
1

2

(
1

x
+

1

z

)

+
1

2

(
1

y
+

1

z

)

=
1

x
+

1

y
+

1

z
. (1004)

Exercise 1.31

If we consider Equation 1004 with x→ x2, y → y2, and z → z2 we get

1

x2
+

1

y2
+

1

z2
≥ 1

xy
+

1

yz
+

1

zx
.

If we multiply both sides by xyz we get

yz

x
+
xz

y
+
xy

z
≥ z + x+ y .

Exercise 1.32

Using the AM-GM inequality written as

√
x2
√

y2 + z2 ≤ x2 + y2 + z2

2
√

y2
√
x2 + z2 ≤ x2 + y2 + z2

2
,

if we add these we get the desired result.

Exercise 1.33

Use the AM-GM by writing this expression as

x4 + y4 + 4 + 4 = (x4 + 4) + (y4 + 4)

≥ 2
√
4x4 + 2

√

4y4 = 4(x2 + y2)

≥ 4(2
√

x2y2) = 8xy .
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Exercise 1.34

Use the AM-GM inequality as

(a + b+ c + d)

(
1

a
+

1

b
+

1

c
+

1

d

)

≥ (2
√
ab+ 2

√
cd)

(

2

√

1

ab
+ 2

√

1

cd

)

= 4(
√
ab+

√
cd)

(√

1

ab
+

√

1

cd

)

≥ 4

(

2

√√
ab
√
cd

)


2

√
√

1

ab

√

1

cd





= 16(abcd)1/4
(

1

(abcd)1/4

)

= 16 .

Exercise 1.35

Use the AM-GM inequality as

a

b
+
b

c
+
c

d
+
d

a
≥ 2

√

a

b
· b
c
+ 2

√

c

d
· d
a

= 2

(√
a

c
+

√
c

a

)

≥ 4

√
√
a

c
·
√
c

a
= 4 .

Exercise 1.36

The AM-GM inequality gives us

x1 + x2 + · · ·+ xn ≥ n(x1x2 · · ·xn)
1
n ,

and
1

x1
+

1

x2
+ · · ·+ 1

xn
≥
(

1

x1
· 1

x2
· · · 1

xn

) 1
n

=
n

(x1x2 · · ·xn)
1
n

.

Taking the product of these two expressions we get

(x1 + x2 + · · ·+ xn)

(
1

x1
+

1

x2
+ · · ·+ 1

xn

)

≥ n2 .

1334



Exercise 1.37

The AM-GM inequality directly gives us

a1
b1

+
a2
b2

+ · · ·+ an
bn

≥
(
a1
b1

· a2
b2

· · · an
bn

) 1
n

= n ,

since the product on the right-hand-side simplifies to one as ai and bi are permutations of
each other.

Exercise 1.38

Note that
an − 1 =

(
an−1 + an−2 + an−3 + · · ·+ a+ 1

)
(a− 1) .

Using the AM-GM inequality we have then that

an − 1 ≥ n
(
an−1an−2an−3 · · · a2a1

) 1
n (a− 1) .

Now recalling that

1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) =
n(n− 1)

2
,

we have
an − 1 ≥ n

(

a
n−1
2

)

(a− 1) = n
(

a
n+1
2 − a

n−1
2

)

.

Exercise 1.39

We are told that
(1 + a)(1 + b)(1 + c) = 8 ,

which is equivalent to (
1 + a

2

)(
1 + b

2

)(
1 + c

2

)

= 1 .

Now the AM-GM inequality tells us that

1 + a

2
≥

√
a

1 + b

2
≥

√
b

1 + c

2
≥

√
c ,

Therefore 1 =
(
1+a
2

) (
1+b
2

) (
1+c
2

)
≥

√
abc. The relationship 1 ≥

√
abc implies

abc ≤ 12 = 1 .
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Exercise 1.40

The AM-GM inequality tells us that

a3

b
+
b3

c
+X ≥ 3

(
a3

b
· b

3

c
·X
) 1

3

= 3

(
a3b2

c
X

) 1
3

.

If we take X = cb in the above we get

a3

b
+
b3

c
+ cb ≥ 3

(
a3b3

) 1
3 = 3ab . (1005)

Now by the same method we can show that

b3

c
+
c3

a
+ ca ≥ 3bc , (1006)

and
c3

a
+
a3

b
+ ab ≥ 3ca . (1007)

If we add these three equations we get

a3

b
+
b3

c
+
b3

c
+
c3

a
+
c3

a
+
a3

b
+ cb+ ca+ ab ≥ 3(ab+ bc + ca) ,

or

2

(
a3

b
+
b3

c
+
c3

a

)

≥ 2(ab+ bc+ ca) .

If we divide this by two we get the desired result.

Exercise 1.41

Divide both sides by abc and the given inequality is equivalent to

ab

c
+
bc

a
+
ca

b
≥ a+ b+ c .

To prove that this inequality is true note that the AM-GM inequality applied on the first
two terms would be

ab

c
+
bc

a
≥ 2b .

The AM-GM on the last two terms would give a lower bound of 2c. Finally the AM-GM
inequality applied to the first and third terms give a lower bound of 2a. This motivates us
to write the left-hand-side as

1

2

(
ab

c
+
ca

b

)

+
1

2

(
ab

c
+
bc

a

)

+
1

2

(
bc

a
+
ca

b

)

≥ a+ b+ c ,

as we desired to show.
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Exercise 1.42

Use the AM-GM inequality on first factor as

a2b+ b2c+ c2a ≥ 3
3
√
a2b · b2c · c2a = 3

3
√
a3b3c3 = 3abc .

Use the AM-GM inequality on second factor in the same way as

ab2 + bc2 + ca2 ≥ 3abc .

Taken together (by multiplying) we get that the left-hand-side is bounded below by

9(abc)2 .

Exercise 1.43

Using the AM-GM inequality for the expression on the left-hand-side LHS we get

LHS ≥ 3 3

√
(
1 + ab

1 + a

)(
1 + bc

1 + b

)(
1 + ac

1 + c

)

.

Multiplying the first two factors in the argument of the cube root gives

(1 + bc + ab+ ab2c)(1 + ac)

(1 + b+ a+ ab)(1 + c)
.

Multiplying the third factor “in” gives

1 + ac+ bc + abc2 + a2b+ a2bc + ab2c+ a2b2c2

1 + c+ b+ bc+ a + ac+ ab+ abc
.

Using the fact that abc = 1 this simplifies to

2 + ac + bc+ c+ ab+ a + b

2 + ac + bc+ c+ ab+ a + b
= 1 ,

giving LHS ≥ 3.

Exercise 1.44

Recall that for a, b > 0 we have

1

a
+

1

b
≥ 4

a+ b+ c
,

which we can prove by multiplying by a+ b simplifying and recognizing it as an application
of the AM-GM to the sum a

b
+ b

a
. To show the first inequality write the left-hand-side as

1

a
+

1

b
+

1

c
=

1

2

(
1

a
+

1

b

)

+
1

2

(
1

b
+

1

c

)

+
1

2

(
1

a
+

1

c

)

,
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and use the above to get

LHS ≥ 2

a+ b
+

2

b+ c
+

2

a + c
.

The second inequality will be true if

(
1

a + b
+

1

b+ c
+

1

c+ a

)

(2a+ 2b+ 2c) ≥ 9 ,

or (
1

a + b
+

1

b+ c
+

1

c+ a

)

((a+ b) + (b+ c) + (c+ a)) ≥ 9 .

This is true if we make the association that

x1 = a+ b

x2 = b+ c

x3 = c+ a ,

and use Exercise 1.36.

Exercise 1.45

Note that

Hn + n

n
=

(1 + 1) +
(
1 + 1

2

)
+
(
1 + 1

3

)
+ · · ·+

(
1 + 1

n−1

)
+
(
1 + 1

n

)

n
.

Using the AM-GM inequality we have

Hn + n

n
≥ n

√
√
√
√

n∏

k=1

(

1 +
1

k

)

= n

√
√
√
√

n∏

k=1

(
k + 1

k

)

= n

√
∏n

k=1(k + 1)
∏n

k=1 k
=

n

√
∏n+1

k=2 k

n!

=
n

√

(n+ 1)!

n!
= n

√
n+ 1 .

This means that
n+Hn ≥ n(n+ 1)

1
n .

Exercise 1.46

Let

yi =
1

1 + xi
so that 1 + xi =

1

yi
or xi =

1

yi
− 1 =

1− yi
yi

.

1338



So we are told that
n∑

i=1

yi = 1 ,

or

yi +

n∑

j=1;j 6=i

yj = 1 ,

or

1− yi =

n∑

j=1;j 6=i

yj .

Using the AM-GM inequality on the right-hand-side we have

1− yi =

n∑

j=1;j 6=i

yj ≥ (n− 1)

(
n∏

j=1;j 6=i

yi

) 1
n−1

.

Now consider

∏

i

xi =
∏

i

(
1− yi

yi

)

=

∏

i(1− yi)
∏

i yi
=

∏

i

(
∑n

j=1;j 6=i yj

)

∏

i yi

≥
∏

i(n− 1)
(
∏n

j=1;j 6=i yi

) 1
n−1

∏

i yi

=
(n− 1)n

[
∏

i

(
∏n

j=1;j 6=i yi

)] 1
n−1

∏

i yi

=
(n− 1)n [(y2 · · · yn)(y1y3 · · · yn)(y1y2y4 · · · yn) · · · (y1y2 · · · yn−1)]

1
n−1

∏

i yi

=
(n− 1)n

(
yn−1
1 yn−1

2 · · · yn−1
n

) 1
n−1

∏

i yi
= (n− 1)n .

Thus we have shown that ∏

i

xi ≥ (n− 1)n .

Exercise 1.47

Let an+1 ≡ 1− a1 − a2 − · · · − an so that

a1 + a2 + · · ·+ an + an+1 = 1 . (1008)

Then let

ai =
1

1 + bi
,

so that

1 + bi =
1

ai
,
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or

bi =
1

ai
− 1 =

1− ai
ai

.

Putting this into Equation 1008 we get

n+1∑

i=1

1

1 + bi
= 1 .

Now use Exercise 1.46 above to conclude that

b1 · b2 · · · bn · bn+1 ≥ nn+1 .

In terms of ai this is

1− a1
a1

· 1− a2
a2

· · · 1− an
an

· 1− an+1

an+1
≥ nn+1 ,

or
1

nn+1
≥ a1 · a2 · · · an · an+1

(1− a1)(1− a2) · · · (1− an)(1− an+1)
,

which is equivalent to what we are trying to prove.

Exercise 1.48

Note that if
n∑

i=1

1

1 + ai
= 1 ,

then we have
n∑

i=1

1 + ai − ai
1 + ai

= 1 ,

or
n∑

i=1

(

1− ai
1 + ai

)

= 1 .

or

n−
n∑

i=1

ai
1 + ai

= 1 ,

and finally
n∑

i=1

ai
1 + ai

= n− 1 .
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We will use this (and the original expression that sums to one) to evaluate

E ≡
n∑

i=1

√
ai − (n− 1)

n∑

i=1

1√
ai

=

(
n∑

j=1

1

1 + aj

)
n∑

i=1

√
ai −

(
n∑

j=1

aj
1 + aj

)
n∑

i=1

1√
ai

=
n∑

i,j=1

√
ai

1 + aj
−

n∑

i,j=1

aj
(1 + aj)

√
ai

=
n∑

i,j=1

( √
ai

1 + aj
− aj

(1 + aj)
√
ai

)

=

n∑

i,j=1

(
1

1 + aj

)(
ai√
ai

− aj√
ai

)

=

n∑

i,j=1

ai − aj
(1 + aj)

√
ai

=
n∑

i,j=1;i>j

ai − aj
(1 + aj)

√
ai

+
n∑

i,j=1;i<j

ai − aj
(1 + aj)

√
ai

=

n∑

i,j=1;i>j

(
ai − aj

(1 + aj)
√
ai

+
aj − ai

(1 + ai)
√
aj

)

=
n∑

i,j=1;i>j

(ai − aj)(1 + ai)
√
aj + (aj − ai)(1 + aj)

√
ai

(1 + ai)(1 + aj)
√
aiaj

.

The numerator (denoted by N) in the above fraction is

N ≡ (ai − aj)((1 + ai)
√
aj − (1 + aj)

√
ai)

= (ai − aj)(
√
aj −

√
ai + ai

√
aj − aj

√
ai) .

This should factor more but I had a hard time seeing what it factored into. To help with
that I let x ≡ √

ai and y ≡ √
aj to write N as

N

x2 − y2
= y − x+ x2y − y2x = y − x+ xy(x− y) = (xy − 1)(x− y) .

In terms of the original variables this is

N = (ai − aj)(
√
aiaj − 1)(

√
ai −

√
aj) ,

so that

E =

n∑

i=1

√
ai − (n− 1)

n∑

i=1

1√
ai

=
n∑

i,j=1;i>j

(ai − aj)(
√
ai −√

aj)(
√
aiaj − 1)

(1 + ai)(1 + aj)
√
aiaj

=

n∑

i,j=1;i>j

(
√
ai +

√
aj)(

√
ai −√

aj)
2(
√
aiaj − 1)

(1 + ai)(1 + aj)
√
aiaj

.

Now if
√
aiaj − 1 > 0 then we have shown the desired inequality E > 0. We can show this

in the following way.
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From the sum constraint
∑n

i=1
1

1+ai
= 1 we have

1 ≥ 1

1 + ai
+

1

1 + aj
=

2 + ai + aj
1 + ai + aj + aiaj

=
1 + ai + aj + aiaj + 1− aiaj

1 + ai + aj + aiaj
= 1 +

1− aiaj
1 + ai + aj + aiaj

.

This means that

0 ≥ 1− aiaj
1 + ai + aj + aiaj

or 1− aiaj ≤ 0 ,

or aiaj ≥ 1.

Exercise 1.49

Let Sa ≡
∑

i
a2i

ai+bi
and Sb ≡

∑

i
b2i

ai+bi
. Then we have

Sa − Sb =
∑

i

a2i − b2i
ai + bi

=
∑

i

(ai − bi) = 0 .

This means that Sa = Sb and we can write

Sa =
1

2
(Sa + Sb) =

1

2

∑

i

a2i + b2i
ai + bi

.

Note that

a2i + b2i ≥
1

2
(ai + bi)

2 ,

which can be show true by expanding the right-hand-side and simplifying. This means that

Sa ≥
1

4

∑

i

(ai + bi) =
1

4

(
∑

i

ai +
∑

i

bi

)

=
1

4

(
∑

i

ai +
∑

i

ai

)

=
1

2

∑

i

ai .

Exercise 1.50

We start with (a2 − b2)(a− b) ≥ 0 or

a3 − ab2 − a2b+ b3 ≥ 0 ,

or
a3 + b3 ≥ ab(a + b) .

This means that
1

a3 + b3 + abc
≤ 1

ab(a + b+ c)
.
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In the same way we have for the other terms in the sum on the left-hand-side of the given
expression

1

b3 + c3 + abc
≤ 1

cb(a + b+ c)
1

c3 + a3 + abc
≤ 1

ca(a + b+ c)
.

If we add these three inequalities together we get

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

a+ b+ c

(
1

ab
+

1

cb
+

1

ca

)

.

Simplifying the right-hand-side gives

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

a+ b+ c

(
c + a+ b

abc

)

=
1

abc
,

the desired expression.

Exercise 1.51

The AM-GM inequality gives

abc ≤
(
a+ b+ c

3

)3

=
1

33
=

1

27
.

If we consider the expression on the left-hand-side (denoted E) we have

E =

(
1

a
+ 1

)(
1

b
+

1

c
+ 1 +

1

bc

)

=
1

b
+

1

c
+ 1 +

1

bc
+

1

ac
+

1

a
+

1

abc

= 1 +

(
1

a
+

1

b
+

1

c

)

+

(
1

ab
+

1

bc
+

1

ac

)

+
1

abc

≥ 1 + 3

(
1

abc

)1/3

+ 3

(
1

ab · bc · ac

)1/3

+ 27

≥ 28 + 3 · 3 + 3

(
1

a2b2c2

)1/3

= 37 + 3

(
1

abc

)2/3

≥ 37 + 3(27)2/3 = 37 + 27 = 64 .

Exercise 1.52

Write the left-hand-side (LHS) of this as

LHS =

(
1− a

a

)(
1− b

b

)(
1− c

c

)

=

(
b+ c

a

)(
a+ c

b

)(
a + b

c

)

.
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Now use the AM-GM inequality in each factor as

LHS ≥
(

2
√
bc

a

)(
2
√
ac

b

)(

2
√
ab

c

)

= 8
abc

abc
= 8 .

Exercise 1.53

Write the left-hand-side (LHS) of this as

LHS =
a(c+ 1) + b(a + 1) + c(b+ 1)

(a + 1)(b+ 1)(c+ 1)
=
ac+ a + ab+ b+ bc + c

(a+ 1)(b+ 1)(c+ 1)
.

Next we note that

(a+ 1)(b+ 1)(c+ 1) = (a+ 1)(b+ 1 + bc+ c) = 1 + b+ c+ bc+ ab+ a+ abc + ac

= 1 + a+ b+ c+ ab+ ac+ bc + abc .

This means that

LHS =
1 + a + b+ c+ ab+ ac + bc+ abc− 1− abc

(a+ 1)(b+ 1)(c+ 1)

=
1 + a + b+ c+ ab+ ac + bc+ abc− 2

(a + 1)(b+ 1)(c+ 1)

= 1− 2

(a+ 1)(b+ 1)(c+ 1)
.

This means that the left-hand-side is larger than 3
4
if and only if

1− 2

(a+ 1)(b+ 1)(c+ 1)
≥ 3

4
,

or (in perhaps too many steps)

1

4
≥ 2

(a + 1)(b+ 1)(c+ 1)
,

or
1

8
≥ 1

(a + 1)(b+ 1)(c+ 1)
,

or finally
(a+ 1)(b+ 1)(c+ 1) ≥ 8 .

We can show that the above is true by using AM-GM three times in the expression on the
left-hand-side as

(a+ 1)(b+ 1)(c+ 1) ≥
(
2
√
a
) (

2
√
b
) (

2
√
c
)
= 8 .
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Exercise 1.54

We are told that
1

1 + a
+

1

1 + b
+

1

1 + c
= 1 ,

or combining terms on the left-hand-side we get

(1 + b)(1 + c) + (1 + a)(1 + c) + (1 + a)(1 + b)

(1 + a)(1 + b)(1 + c)
= 1 ,

or
1 + c+ b+ bc+ 1 + c+ a + ac+ 1 + b+ a + ab

(1 + a)(1 + b)(1 + c)
= 1 ,

or
3 + 2a+ 2b+ 2c+ ab+ ac + bc

(1 + a)(1 + b)(1 + c)
= 1 .

If we multiply both sides by (1 + a)(1 + b)(1 + c) we get

3 + 2a+ 2b+ 2c+ ab+ ac+ bc = (1 + a)(1 + b+ c+ bc)

= 1 + b+ c + bc+ a + ab+ ac + abc

= 1 + a+ b+ c+ ab+ ac+ bc + abc .

If we cancel common terms this becomes

2 + a + b+ c = abc .

Now the AM-GM inequality on the left-hand-side states that

2 + a + b+ c ≥ 4(2abc)
1
4 .

As 2 + a+ b+ c = abc this means that

abc ≥ 4 · 2 1
4 (abc)

1
4 .

As abc > 0 we can write the above as

(abc)
3
4 ≥ 22+

1
4 ,

or
abc ≥ 2

4
3(

8
4
+ 1

4) = 2
4
3(

9
4) = 23 = 8 ,

as we were to show.

Exercise 1.55

Notice that we can write the first term of the left-hand-side as

2ab

a+ b
=

2
1
a
+ 1

b

,
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which we recognize as the harmonic mean HM. As the harmonic mean is less than the
arithmetic mean or

2ab

a+ b
=

2
1
a
+ 1

b

≤ a + b

2
,

we can bound the left-hand-side (LHS) of our given expression as

LHS ≤ a+ b

2
+
b+ c

2
+
c+ a

2
= a+ b+ c .

Exercise 1.56

Lets use the AM-GM inequality for both sums as

(
n∑

i=1

1

aibi

)(
n∑

i=1

(ai + bi)
2

)

≥ n

(
n∏

i=1

1

aibi

) 1
n

n

(
n∏

i=1

(ai + bi)
n

) 1
n

= n2

(
n∏

i=1

(ai + bi)
2

aibi

) 1
n

.

We will have proven the given inequality if we can show that

(ai + bi)
2 ≥ 4aibi ,

which can be seen to be true by expanding the left-hand-side and simplifying. Thus we have
that

LHS ≥ n2

(
n∏

i=1

4

) 1
n

= 4n2 .

Exercise 1.57

Notice that
(x+ y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz .

There are two “groups” in the right-hand-side of the above. The first three terms is the first
group and the second three terms is the second group. Notice that we can write the first
“group” as

x2 + y2 + z2 =
1

2
(x2 + y2) +

1

2
(x2 + z2) +

1

2
(y2 + z2) ≥ xy + xz + yz .

This means that we have folded the first group in the second group and now have

(x+ y + z)2 ≥ 3(xy + xz + yz) .
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Using the same trick as above we can write

xy + xz + yz =
1

2
(xy + xz) +

1

2
(xz + yz) +

1

2
(xy + yz)

≥
√

x2yz +
√

xyz2 +
√

xy2z

= x
√
yz + y

√
xz + z

√
xy .

Using this in the above we have

(x+ y + z)2 ≥ 3(x
√
yz + y

√
xz + z

√
xy) .

Exercise 1.58

Use the AM-GM inequality on the first two terms on the left-hand-side as

x4 + y4 + z2 ≥ 2
(

2
√

x4y4
)

+ z2 = 2x2y2 + z2 .

Use the AM-GM inequality on the two terms on the right-hand-side of the above to get

x4 + y4 + z2 ≥ 2(2x2y2z2)
1
2 = 2

√
2(xyz) =

√
8(xyz) .

Exercise 1.59

To start use the AM-GM inequality as

x2

y − 1
+

y2

x− 1
≥ 2

√

x2

y − 1
· y2

x− 1
=

2xy
√

xy − (x+ y) + 1
.

In the denominator of the above fraction

xy − (x+ y) + 1 ,

if we use x+ y ≥ 2
√
xy we get

xy − (x+ y) + 1 ≤ xy − 2
√
xy + 1 = (

√
xy − 1)2 .

This means that √

xy − (x+ y) + 1 ≤ √
xy − 1 ,

so that
1

√

xy − (x+ y) + 1
≥ 1√

xy − 1
.

Using this in the above we get that

x2

y − 1
+

y2

x− 1
≥ 2

(√
xy
)2

√
xy − 1

.
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Based on the form of the above we define v ≡ √
xy which has a domain of v ≥ 1 (from the

domain of x and y). In terms of v the right-hand-side of the above is

f(v) ≡ v2

v − 1
.

Lets minimize this function as a function of v ≥ 1. The extreme values of this function are
where the derivative vanishes or where

d

dv

(
v2

v − 1

)

=
2v

v − 1
− v2

(v − 1)2

=
2v(v − 1)− v2

(v − 1)2
=
v2 − 2v

(v − 1)2
= 0 .

This will be zero when v = 0 or v = 2. As v ≥ 1 the minimum (based on a simple sketch
of this function and the observation that limv→1+ f(v) = ∞ and limv→∞ f(v) = ∞) of this
function is given by

v2

v − 1

∣
∣
∣
∣
v=2

=
4

1
= 4 .

This means that f(v) ≥ 4 and thus

x2

y − 1
+

y2

x− 1
≥ 8 .

A wonderful inequality: The rearrangement inequality

Exercise 1.60

Order our numbers as a < b < c then we also have a2 < b2 < c2. The rearrangement
inequality gives when we take our “base” vector to be (a2, b2, c2) and our permutation vector
to be (b, c, a) we get

a3 + b3 + c3 ≥ a2(b) + b2(c) + c2(a) ,

which is the given inequality.

Exercise 1.61

Order our numbers as a < b < c then we also have a2 < b2 < c2. The rearrangement
inequality gives when we take our “base” vector to be (a2, b2, c2) and our permutation vector
to be (b, c, a)

a3 + b3 + c3 ≥ a2(b) + b2(c) + c2(a) = a2b+ b2c+ c2a . (1009)

This gives “one-half” of the desired inequality.

Now note that

(ab)3 + (bc)3 + (ca)3 =
1

c3
+

1

a3
+

1

b3
, (1010)
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when abc = 1. Since a < b < c we have

1

c
<

1

b
<

1

a
and

1

c2
<

1

b2
<

1

a2
.

Using the rearrangement inequality with our “permutation” vector a =
(

1
c2
, 1
b2
, 1
a2

)
and our

“base” vector b =
(
1
c
, 1
b
, 1
a

)
then the rearrangement inequality gives

1

c3
+

1

b3
+

1

a3
≥ 1

c
a′1 +

1

b
a′2 +

1

c
a′3 ,

where a′ is any permutation of the vector a.

Now note that when abc = 1 we have

a2b =
1

(bc)2
1

ac
=

1

ab2c3
=

1

bc2

b2c =
1

(ac)2
1

ba
=

1

a3bc2
=

1

a2c

c2a =
1

(ba)2
1

bc
=

1

a2b3c
=

1

ab2
.

Based on this we let the permutation vector a′ be

(
1

a2
,
1

c2
,
1

b2

)

,

then using the rearrangement inequality (and the above) we have

1

c3
+

1

b3
+

1

a3
≥ 1

c
· 1

a2
+

1

b
· 1

c2
+

1

c
· 1

b2
= b2c+ a2b+ c2a . (1011)

When we add Equations 1009 with Equations 1010 and 1011 we get the desired inequality.

Exercise 1.63

Let a < b < c so that 1
c
< 1

b
< 1

a
. If we take our vectors to be b = a =

(
1
c
, 1
b
, 1
a

)
then the

rearrangement inequality gives with our permutation vector to be
(
1
b
, 1
a
, 1
c

)

1

c2
+

1

b2
+

1

a2
≥ 1

cb
+

1

ab
+

1

ac
=
a+ c+ b

abc
.

Exercise 1.64

Warning: I didn’t not get the same result as the problem statement even after looking
at the “solution” in the back. I’m wondering if there is typo in the problem statement. If
anyone sees anything I’ve done wrong please contact me.
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Let our three sides of the triangle be such that a ≤ b ≤ c. Then the triangle inequality gives

a < b+ c so b+ c− a > 0

b < a + c so a + c− b > 0

c < a + b so a+ b− c > 0 .

From which we see that the denominators in the expression given are all positive numbers.

Next lets add a, b, and c to a ≤ b ≤ c to get

2a ≤ a+ b ≤ a+ c (1012)

a+ b ≤ 2b ≤ b+ c (1013)

a+ c ≤ b+ c ≤ 2c . (1014)

Using Equation 1012 and 1014 we get

a + b ≤ a+ c ≤ b+ c . (1015)

From the original ordering of a, b, and c we have

−c < −b < −a ,
If we add this to Equation 1015 we get

0 < a+ b− c < a+ c− b < b+ c− a ,

and thus
1

b+ c− a
<

1

a+ c− b
<

1

a+ b− c
.

Now to use the rearrangement inequality we can let our “base” vector be

b =

(
1

b+ c− a
,

1

a + c− b
,

1

a+ b− c

)

,

and a = (a, b, c). Then if our permutation vector is a′ = (b, c, a) the rearrangement inequality
gives

LHS =
a

b+ c− a
+

b

a + c− b
+

c

a+ b− c
≥ b

b+ c− a
+

c

a+ c− b
+

a

a+ b− c
.

If our permutation vector is a′ = (c, a, b) the rearrangement inequality gives

LHS ≥ c

b+ c− a
+

a

a + c− b
+

b

a+ b− c
.

Of course LHS ≥ 0 so we have

LHS ≥ − a

b+ c− a
− b

a + c− b
− c

a + b− c
.

If we add these three inequalities together we get

3LHS ≥ b+ c− a

b+ c− a
+
a+ c− b

a+ c− b
+
a+ b− c

a+ b− c
= 1 + 1 + 1 = 3 .

This means that
LHS ≥ 1 .
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Exercise 1.65

Without loss of generality we can take a1 < a2 < · · · < an−1 < an. Then with s defined as
the sum of all these numbers we have

s− an < s− an−1 < · · · < s− a2 < s− a1 , (1016)

so
1

s− a1
<

1

s− a2
< · · · < 1

s− an−1

<
1

s− an
. (1017)

If we take these fractions as (b1, b2, . . . , bn) with (a1, a2, . . . , an) the rearrangement inequality
gives

LHS ≡ a1

s− a1
+

a2

s− a2
+ · · ·+ an−1

s− an−1

+
an

s− an
≥ a′

1

s− a1
+

a′
2

s− a2
+ · · ·+ a′n−1

s− an−1

+
a′n

s− an
, (1018)

for any permutation (a′1, a
′
2, . . . , a

′
n) of (a1, a2, . . . , an). Lets consider the n− 1 permutations

(a′1, a
′
2, . . . , a

′
n) = (a2, a3, . . . , a1)

(a′1, a
′
2, . . . , a

′
n) = (a3, a4, . . . , a2)

(a′1, a
′
2, . . . , a

′
n) = (a4, a5, . . . , a3)

...

(a′1, a
′
2, . . . , a

′
n) = (an, a1, . . . , an−1) .

In Equation 1018 and then add them together to get

(n− 1)LHS ≥ s− a1
s− a1

+
s− a2
s− a2

+ · · ·+ s− an−1

s− an−1

+
s− an
s− an

= n .

Solving for LHS we get

LHS ≥ n

n− 1
.

Exercise 1.66

Using the notation from the previous Exercise if we take (b1, b2, · · · , bn) from Equation 1017
and (a1, a2, · · · , an) from Equation 1016 then the rearrangement inequality gives

s− an
s− a1

+
s− an−1

s− a2
+ · · ·+ s− a2

s− an−1
+
s− a1
s− an

≥ n ,

where we have taken (a′1, a
′
2, . . . , a

′
n) = (s− a1, s− a2, · · · , s− an). We can solve the above

for the expression we seek and find

LHS ≡ s

s− a1
+

s

s− a2
+· · ·+ s

s− an−1
+

s

s− an
≥ n+

an
s− a1

+
an−1

s− a2
+· · ·+ a2

s− an−1
+

a1
s− an

.

From the ordering of the ai’s we have

an
s− a1

+
an−1

s− a2
+ · · ·+ a2

s− an−1
+

a1
s− an

≥ a1
s− a1

+
a2

s− a2
+ · · ·+ an−1

s− an−1
+

an
s− an

≥ n

n− 1
,
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using the result from the previous exercise. This means that

LHS ≥ n+
n

n− 1
= n

(

1 +
1

n− 1

)

=
n2

n− 1
,

as we were to show.

Exercise 1.67

Lets “link” the sequence of a’s “together” as

a1 , a1 , a2 , a2 , . . . , an , an .

Then lets use the result of Exercise 1.65 so here s = 2 and that result is

2
a1

s− a1
+ 2

a2
s− a2

+ · · ·+ 2
an

s− an
≥ 2n

2n− 1
,

which is equivalent to the desired expression.

Exercise 1.68

Use Tchebyshev’s inequality with a = b = x to get

x21 + x22 + x23 + · · ·+ x2n
n

≥
(
x1 + x2 + x3 + · · ·+ xn

n

)2

.

Exercise 1.69

Squaring a + b+ c = 1 we get

a2 + b2 + c2 + 2(ab+ ac + bc) = 1 . (1019)

Now from Exercise 1.68 we have
√

a2 + b2 + c2

3
≥ a+ b+ c

3
=

1

3
,

or

a2 + b2 + c2 ≥ 1

3
.

Using this in Equation 1019 we get

2(ab+ ac+ bc) ≤ 1− 1

3
=

2

3
,

which is equivalent to the desired expression.
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Exercise 1.70

Note: I had to look at the solutions in the back to get definitions for a and the hint to use
Corollary 1.4.2. Once I had those the rest of the problem was easier to solve.

We first define G as
G ≡ n

√
x1x2x3 · · ·xn ,

and then let the vector a be

a =
(x1
G
,
x1x2
G2

,
x1x2x3
G3

, · · · , x1x2x3 · · ·xn
Gn

)

.

Note that x1x2x3···xn

Gn = 1. Then with a′ being a “circular left shift” of a i.e. such that

a′ = (a2 , a3 , · · · , an , a1) =
(x1x2
G2

,
x1x2x3
G3

, · · · , x1x2x3 · · ·xn
Gn

,
x1
G

)

,

we can use Corollary 1.4.2 to get

a2
a1

+
a3
a2

+
a4
a3

+ · · ·+ an
an−1

+
a1
an

=
x2
G

+
x3
G

+
x4
G

+ · · ·+ xn
G

+
x1
G

(
Gn

x1x2 · · ·xn

)

≥ n .

This simplifies to

G ≤ 1

n
(x1 + x2 + x3 + · · ·+ xn) ,

which is one-half of the desired inequality.

Another arrangement of a would be a “circular right shift” of a i.e. such that

a′ = (an , a1 , · · · , an−2 , an−1) =
(x1x2x3 · · ·xn

Gn
,
x1
G
, · · · , x1x2x3 · · ·xn−2

Gn−2
,
x1x2x3 · · ·xn−1

Gn−1

)

.

With this we can again use Corollary 1.4.2 to get

an
a1

+
a1
a2

+
a2
a3

+ · · ·+ an−2

an−1
+
an−1

an
≥ n ,

or
G

x1
+
G

x2
+
G

x3
+ · · ·+ G

xn−1
+
G

xn
≥ n ,

or
G ≥ n

1
x1

+ 1
x2

+ 1
x3

+ · · ·+ 1
xn

,

which is the second inequality.

Exercise 1.72

Note that we can write

∑

i

ai√
1− ai

= −
∑

i

− ai√
1− ai

= −
∑

i

1− ai − 1√
1− ai

= −
∑

i

√
1− ai +

∑

i

1√
1− ai

.
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Lets write this as averages as

1

n

∑

i

ai√
1− ai

= −1

n

∑

i

√
1− ai +

1

n

∑

i

1√
1− ai

. (1020)

The Cauchy-Schwarz inequality on the first term gives

1

n

∑

i

√
1− ai ≤

1

n

√
∑

i

(1− ai)

√
∑

i

1 =
1

n

√
n− 1

√
n =

√
n− 1√
n

.

Using the AM-GM inequality on the second term we get

1

n

∑

i

1√
1− ai

≥ n

√
√
√
√

n∏

i=1

1√
1− ai

,

Simplifying the right-hand-side of the above we see that we can write

RHS =
n∏

i=1

1
√

n
√
1− ai

=

√
√
√
√

n∏

i=1

1
n
√
1− ai

=

√

1
∏n

i=1
n
√
1− ai

=

√

1
n
√∏n

i=1(1− ai)
.

Now the AM-GM inequality gives

n

√
√
√
√

n∏

i=1

(1− ai) ≤
1

n

n∑

i=1

(1− ai) = 1− 1

n

n∑

i=1

ai = 1− 1

n
=
n− 1

n
.

Using this we can form a lower bound on RHS as

RHS ≥
√

1
n−1
n

=

√
n

n− 1
.

This means that we have shown that

1

n

∑

i

ai√
1− ai

≥
√

n

n− 1
−

√
n− 1√
n

=

√
n√

n− 1

(

1− n− 1

n

)

=
1√

n
√
n− 1

.

This means that
∑

i

ai√
1− ai

≥
√
n√

n− 1
. (1021)

Using the Cauchy-Schwarz inequality on
∑

i

√
ai gives

∑

i

√
ai ≤

√
∑

i

ai

√
∑

i

1 =
√
1
√
n =

√
n .
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Using this in Equation 1021 gives

∑

i

ai√
1− ai

≥ 1√
n− 1

∑

i

√
ai ,

as we were to show.

Exercise 1.73

Part (i): Using the AM-GM inequality we have

√
4a+ 1 ≤ 1

2
(4a+ 1 + 1) = 2a+ 1 .

Doing this three times gives

√
4a+ 1 +

√
4b+ 1 +

√
4c+ 1 ≤ (2a+ 1) + (2b+ 1) + (2c+ 1) = 2(1) + 3 = 5 .

Part (ii): Using the Cauchy-Schwarz inequality on the vectors

a = (
√
4a+ 1 ,

√
4b+ 1 ,

√
4c+ 1)

b = (1 , 1 , 1) ,

gives

√
4a+ 1 +

√
4b+ 1 +

√
4c+ 1 ≤

√

(4a+ 1) + (4b+ 1) + (4c+ 1)×
√
3

=
√

4(1) + 3×
√
3 =

√
21 .

Convex functions

Exercise 1.77

Part (i): Consider f(x) ≡
(
x+ 1

x

)2
for x ∈ R+. Note that

f ′(x) = 2

(

x+
1

x

)(

1− 1

x2

)

= 2

(

x− 1

x3

)

,

and

f ′′(x) = 2

(

1 +
3

x4

)

> 0 ,

for all x ∈ R+. This means that f(x) is convex on R+. Next recall that if f(x) is convex we
have

f

(
x+ y

2

)

≤ 1

2
(f(x) + f(y)) .
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In words this means that sums of convex functions are bounded below as

f(x) + f(y) ≥ 2f

(
x+ y

2

)

.

If x = a and y = b and for the f(x) given above this becomes
(

a+
1

a

)2

+

(

b+
1

b

)2

≥ 2f

(
a+ b

2

)

= 2f

(
1

2

)

= 2

(
1

2
+ 2

)2

=
25

2
.

Part (ii): As f(x) is convex by Jensen’s inequality with ti =
1
n
= 1

3
we have

f

(
x1 + x2 + x3

3

)

≤ 1

3
(f(x1) + f(x2) + f(x3)) .

With x1 = a, x2 = b, and x3 = c and for the f(x) given above this is
(

a+
1

a

)2

+

(

b+
1

b

)2

+

(

c+
1

c

)2

≥ 3f

(
a+ b+ c

3

)

= 3f

(
1

3

)

= 3

(
1

3
+ 3

)2

=
100

3
.

Exercise 1.78

Define f(a, b, c) as the left-hand-side of the given expression and notice that f(a, b, c) is
equivalent under all permutations of (a, b, c). Computing the first two derivatives of f with
respect to a we find

∂f

∂a
=

1

b+ c + 1
− b

(c+ a+ 1)2
− c

(a + b+ 1)2
− (1− b)(1− c)

∂2f

∂a2
=

2b

(c+ a+ 1)3
+

2c

(a + b+ 1)3
≥ 0 ,

for all 0 ≤ a ≤ 1. With the above this means that f is convex in each of its arguments
and thus f takes its maximum at the endpoints i.e. (a, b, c) = (0, 0, 0) or (a, b, c) = (1, 1, 1).
Thus

f(a, b, c) ≤ min(f(0, 0, 0), f(1, 1, 1)) = min(1, 1) = 1 .

Exercise 1.79

Note that this expression is symmetric in x and y. Now if x = 0 this inequality is

1 +
1

√

1 + y2
≤ 2 ,

which is true for 0 ≤ y ≤ 1. Now based on the idea of “turning products into sums” (here
we have the product xy) we will make the substitutions

x = e−u (1022)

y = e−v . (1023)
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Now to have 0 ≤ x ≤ 1 we need to have u such that

0 ≤ e−u ≤ 1 .

The inequality 0 ≤ e−u is satisfied for all real u. For e−u ≤ 1 to be true we need to have

−u ≤ log(1) = 0 so u ≥ 0 ,

and a similar condition on v.

These two transform the given expression in x and y into one in terms of u and v as

1√
1 + e−2u

+
1√

1 + e−2v
≤ 2√

1 + e−(u+v)
,

or
1√

1 + e−(u+v)
≥ 1

2

(
1√

1 + e−2u
+

1√
1 + e−2v

)

, (1024)

Based on this if we define

f(ξ) =
1√

1 + e−2ξ
.

then Equation 1024 is

f

(
u+ v

2

)

≥ 1

2
(f(u) + f(v)) ,

which will be true (and the proof complete) if f(ξ) is concave. For this f(ξ) note that

f ′(ξ) = −1

2
(1 + e−2ξ)−3/2(−2e−2ξ) =

e−2ξ

(1 + e−2ξ)3/2
,

and

f ′′(ξ) =
e−2ξ(−2)

(1 + e−2ξ)3/2
− 3

2

e−2ξ(−2e−2ξ)

(1 + e−2ξ)5/2

= − 2e−2ξ

(1 + e−2ξ)3/2
+

3e−4ξ

(1 + e−2ξ)5/2

=
−2 + e−2ξ

e2ξ(1 + e−2ξ)5/2
< 0 ,

for all ξ ≥ 0. Thus f(ξ) is concave as we needed to show.

Exercise 1.80

To show that f(x) is concave we can show that f ′′(x) ≤ 0 on x ∈ [0, π]. We have

f(x) = sin(x)

f ′(x) = cos(x)

f ′′(x) = − sin(x) ,
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which is less than or equal to zero when x ∈ [0, π] showing f(x) is concave. As f(x) is
concave we have that

1

3
(f(A) + f(B) + f(C)) ≤ f

(
A+B + C

3

)

,

for A, B, C in [0, π]. If these are three angles in a triangle then A+ B + C = π and

f

(
A+B + C

3

)

= f
(π

3

)

= sin
(π

3

)

=

√
3

2
,

and the above becomes

sin(A) + sin(B) + sin(C) ≤ 3
√
3

2
.

Exercise 1.81

Part (i): Following the idea of “turning products into sums” if we take the natural logarithm
of both sides this inequality is equivalent to

1

2
(ln(sin(A)) + ln(sin(B))) ≤ ln

(

sin

(
A +B

2

))

,

which will be true if f(x) = ln(sin(x)) is concave on [0, π]. For this f(x) we have

f(x) = ln(sin(x))

f ′(x) =
cos(x)

sin(x)

f ′′(x) =
− sin(x)

sin(x)
− cos2(x)

sin2(x)
= −1− 1− sin2(x)

sin2(x)

= −1− 1

sin2(x)
+ 1 = − 1

sin2(x)
< 0 ,

thus f(x) is concave on [0, π]. This means that

f

(
A+B

2

)

≥ 1

2
f(A) +

1

2
f(B) ,

and the initial inequality in this section is true.

Part (ii-iii): These are additional expressions of the concavity of f(x) = ln(sin(x)) for
x ∈ [0, π] and are proved as in Part (i) above.

Part (iv): For this we use Part (iii) above with A+B + C = π to get

sin(A) sin(B) sin(C) ≤ sin3
(π

3

)

=

(√
3

2

)2

=
3
√
3

8
.
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Part (v): For this we use Part (iii) above with A
2
+ B

2
+ C

2
= π

2
to get

sin

(
A

2

)

sin

(
B

2

)

sin

(
C

2

)

≤ sin3
(π

6

)

=
1

8
.

Part (vi): For this we start with

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) ,

as

cos

(
A

2

)

cos

(
B

2

)

=
1

2

(

cos

(
A

2
+
B

2

)

+ cos

(
A

2
− B

2

))

.

Lets multiply this by cos
(
C
2

)
and apply the above product to sum cosign relationship again

as

cos

(
A

2

)

cos

(
B

2

)

cos

(
C

2

)

=
1

4
cos

(
A

2
+
B

2
+
C

2

)

+
1

4
cos

(
A

2
− B

2
+
C

2

)

− 1

4
cos

(
A

2
+
B

2
− C

2

)

+
1

4
cos

(
A

2
− B

2
− C

2

)

.

Using A + B + C = π to write each “sum” in terms of the other variable. For example in
each of the four above we will use

A+B + C = π

A+ C = π −B

A+B = π − C

B + C = π −A ,

to get

cos

(
A

2

)

cos

(
B

2

)

cos

(
C

2

)

=
1

4
cos
(π

2

)

+
1

4
cos

(
π − 2B

2

)

− 1

4
cos

(
π − 2C

2

)

+
1

4
cos

(
A− (π −A)

2

)

=
1

4
cos
(π

2
−B

)

− 1

4
cos
(π

2
− C

)

+
1

4
cos
(

A− π

2

)

.

Now using cos
(
π
2
− x
)
= sin(x) we get

cos

(
A

2

)

cos

(
B

2

)

cos

(
C

2

)

=
1

4
(sin(A) + sin(B) + sin(C)) .

Exercise 1.82 (Bernoulli’s inequality)

Part (i): This is “easy” to prove using the Taylor’s series expansion of f(x) = (1+x)n. For
this function we have

f ′(x) = n(1 + x)n−1

f ′′(x) = n(n− 1)(1 + x)n−2 .
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Notice that when n ≥ 1 and x ≥ −1 we have f ′′(x) ≥ 0. Using these the Taylor series of
f(x) about the point x = 0 is given by

f(x) = (1 + x)n = f(0) + f ′(0)x+
f ′′(ξ)

2!
x2 for ξ between 0 and x

= 1 + nx+
f ′′(ξ)

2
x2 ≥ 1 + nx .

Another way to prove this is to use the GM ≤ AM inequality of a set of n specially chosen
numbers. Our n numbers are with n− 1 “ones” and a single 1 + nx. The GM of these is

(1 + nx)1/n ,

while the AM of these is
n− 1 + 1 + nx

n
= (1 + x) .

The GM ≤ AM is then

(1 + nx)1/n ≤ 1 + x or 1 + nx ≤ (1 + x)n .

Part (ii): Given (1 + x)n ≥ 1 + nx we want to prove the GM ≤ AM inequality. Let a be a
sequence of positive numbers ai and define

σj =
1

j

j
∑

i=1

ai .

Then lets use the Bernoulli inequality with x =
σj

σj−1
− 1 and n = j to get

(
σj
σj−1

)j

≥ 1 + j

(
σj
σj−1

− 1

)

= j

(
σj
σj−1

)

− (j − 1) ,

or if we multiply by σj
j−1 on both sides we get

σj
j ≥ jσjσ

j−1
j−1 − (j − 1)σj

j−1 = σj−1
j−1(jσj − (j − 1)σj−1) = ajσ

j−1
j−1 .

Lets evaluate this at j = n to get

σn
n ≥ anσ

n−1
n−1 ≥ anan−1σ

n−2
n−2 ≥ · · · ≥ anan−1 · · · a2σ1

1 =

n∏

i=1

ai .

Taking the n-th root of both sides we get

σn =
1

n

n∑

i=1

ai ≥
(

n∏

i=1

ai

)1/n

,

which is the GM ≤ AM inequality.
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Exercise 1.85

If we define s ≡ a+ b+ c we can write the first fraction as

a

(a+ b+ c− a)2
=

a

(s− a)2
=

a

s2
(
1− a

s

)2 =
a/s

s
(
1− a

s

)2 .

As each of the fractions on the left-hand-side is of the same “form” as this one we can write
our desired inequality as

a/s

s
(
1− a

s

)2 +
b/s

s
(
1− b

s

)2 +
c/s

s
(
1− c

s

)2 ≥ 9

4s
.

Multiply both sides by s and define a′ = a
s
, b′ = b

s
, c′ = c

s
to get

a′

(1− a′)2
+

b′

(1− b′)2
+

c′

(1− c′)2
≥ 9

4
,

with a′ + b′ + c′ = 1. Now based on the functional form of the above we consider

f(x) =
x

(1− x)2

f ′(x) =
1

(1− x)2
+

2x

(1− x)3
=

1 + x

(1− x)3

f ′′(x) =
1

(1− x)3
+

3(1 + x)

(1− x)4
=

4 + 2x

(1− x)4
≥ 0 ,

when x ≥ −4
2
= −2. Thus f(x) is convex for x ≥ 0. This means that

1

3
(f(a′) + f(b′) + f(c′)) ≥ f

(
a′ + b′ + c′

3

)

= f

(
1

3

)

=
(1/3)

(2/3)2
=

3

4
,

or

f(a′) + f(b′) + f(c′) ≥ 9

4
,

the expression above.

Exercise 1.86

Part (ii): If we have abc = 1 then the inequality we are given is

1 +
3

1
bc
+ 1

ac
+ 1

ab

≥ 6
1
a
+ 1

b
+ 1

c

,

which is the first inequality in this problem with a→ 1
a
, b→ 1

b
, and c→ 1

c
.
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Exercise 1.88

Part (i): Recall Hölder’s inequality which states that when 1
a
+ 1

b
= 1 that

n∑

i=1

xiyi ≤
(

n∑

i=1

xai

)1/a( n∑

i=1

xbi

)1/b

. (1025)

Now if
1

a
+

1

b
=

1

c
,

and we divide by 1
c
we get

1
a
c

+
1
b
c

= 1 ,

Then lets write Hölder’s inequality with a→ a
c
and b → b

c
to get

n∑

i=1

xiyi ≤
(

n∑

i=1

x
a/c
i

)c/a( n∑

i=1

x
b/c
i

)c/b

.

If we take xi → xci and yi → yci and take the 1
c
“root” of both sides this is

(
n∑

i=1

xciy
c
i

)1/c

≤
(

n∑

i=1

xai

)1/a( n∑

i=1

xbi

)1/b

,

the desired expression.

Part (ii): From the given 1
a
+ 1

b
+ 1

c
= 1 define C such that

1

C
=

1

a
+

1

b
so

1

C
+

1

c
= 1 .

Lets use Hölder’s inequality with the “pairs” xiyi and zi as

n∑

i=1

xiyizi ≤
(

n∑

i=1

(xiyi)
C

)1/C ( n∑

i=1

zci

)1/c

.

Now fromPart (i) above we can bound
(∑n

i=1(xiyi)
C
)1/C

above by (
∑n

i=1 x
a
i )

1/a (∑n
i=1 y

b
i

)1/b

to get the desired result.

A helpful inequality

Exercise 1.92

WWX: working here.
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Problem Book in High-School Mathematics

Rational Equations, Inequalities, and Functions of One Variable

Problem 1

This is
x+ 2 = 3 so x = 1 .

Problem 2

WWX: DP

Problem 3

Part (a): WWX: DP

Part (b): WWX: DP

Problem 4

If a = 0 then all x are solutions. If a 6= 0 then x = a is a solution.

Problem 5

If a = 2 then all x are solutions. If x 6= 2 then x = a + 2.

Problem 6

Write this as
(a− 3)(a+ 3)x = (a+ 3)(a2 − 3a+ 9) .

If a = −3 then all x are solutions. If a 6= −3 then we can write the above as

(a− 3)x = a2 − 3a+ 9 .
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Here we see that if a = 3 then there are no solutions. If a 6= 3 the solution is

x =
a2 − 3a+ 9

a− 3
.
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Chinese Mathematics Competitions and Olympiads: 1981-

1993

1981/82: Paper I

Section 1: Problem 1

Recall some conditions:

• If P is necessary for Q means that Q cannot be true unless P is true.

• If P sufficient for Q means knowing P is true means knowing that Q true but know
¬P does not mean Q is false.

This means that P is necessary for Q, i.e. if Q is true two triangles are congruent then they
have equal areas and two equal sides.

To show that P is not sufficient for Q we can imagine an acute triangle and an obtuse triangle
with two equal sides (one of which is the base) and equal heights. These two triangles would
have the same area but they are not congruent. Thus P is not sufficient for Q.

Then P is necessary but not sufficient for Q.

Section 1: Problem 2

Now P necessary for Q then this means that Q cannot be true unless P is. Now if we take

θ =
π

2
,

then Q
sin(θ) + cos(θ) = a ,

becomes
1√
2
+

1√
2
= a ,

so that a =
√
2. In this case P is

a =
√

1 + sin(θ) =
√
1 + 1 =

√
2 ,

which is true.
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This simple setting of parameters makes me think that maybe if Q is true then P must be
true so that P would be necessary for Q. To try to show that lets square Q to get

1 + 2 sin

(
θ

2

)

cos

(
θ

2

)

= a2 .

But recall that

sin(θ) = 2 sin

(
θ

2

)

cos

(
θ

2

)

,

so Q squared is
sin(θ) + 1 = a2 .

Taking the square root we get √

1 + sin(θ) = a ,

which would be P if a > 0 since then
√
a2 = a. This makes me think that P might not be

true if a < 0 and so in that case P would not be necessary for Q.

Lets find a value for θ so that a < 0 in Q. If we take

θ

2
=

5π

4
so θ =

5π

2
= 2π − π

2
.

Then Q is

− 1√
2
− 1√

2
= a so a = −

√
2 .

While for that value of θ P is √
1− 1 = 0 6= a ,

and thus P is not true. This means that P is not necessary Q.

We ask now if P is sufficient for Q? This is no because if we take θ = 5π
2
(as above) P

√

1 + sin(θ) = a ,

becomes 0 = a while Q is
−
√
2 = a ,

which is a contradiction.

Thus P is not necessary or sufficient for Q.
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Section 1: Problem 3

We can write T as

T =
sin(a) + tan(a)

cos(a) + cot(a)
=

sin(a) + sin(a)
cos(a)

cos(a) + cos(a)
sin(a)

=
sin(a)

cos(a)

(
1 + 1

cos(a)

1 + 1
sin(a)

)

=
sin(a)

cos(a)

(
sin(a) cos(a) + sin(a)

sin(a) cos(a) + cos(a)

)

=
sin(a)2

cos(a)2

(
cos(a) + 1

sin(a) + 1

)

.

Now when a 6= kπ
2

we have cos(a) 6= 0, sin(a) 6= 0, cos(a) + 1 > 0 and sin(a) + 1 > 0. Thus
T > 0.

Section 1: Problem 4

Lets compute the area of each figure.

Part (a): Place this triangle with the side AB along the x-axis of an x-y Cartesian system.
Then the point C is “above” the segment AB. Drop a perpendicular from C towards the
segment AB intersecting AB at a point D. Let CD = h and then from the fact that
∠A = 60◦ we have

CD = h =
√
2 sin(60) =

√
3√
2

AD =
√
2 cos(60) =

1√
2
.

Now as ∠B = 45◦ and triangle △BDC is a right triangle we have BD = CD = h =
√
3√
2
.

The total area of triangle △ABC is then

Aa =
1

2
AD · CD +

1

2
BD · CD =

1

2

(√
3√
2

)

(AD +BD)

=

√
3

4
(1 +

√
3) =

3 +
√
3

4
.

Recalling that
√
3 = 1.73205 the above becomes Aa = 1.18301.

Part (b): Recall that the area of a trapezoid with diagonals of length d1 and d2 and an
angle between them of θ is given by

1

2
d1d2 sin(θ) (1026)
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For this part we then have

Ab =
1

2

√
2
√
3 sin(75◦) <

1

2

√
2
√
3 <

1

2

√
3
√
3 =

3

2
< π .

Part (c): This would be Ac = π = 3.14159.

Part (d): Let the side of the square be s. Then using the Pythagorean theorem we have

that 2s2 = d2 = 2.52 =
(
5
2

)2
. This means that

s =
5

2
√
2
.

The area is then Ad = s2 = 25
8
= 31

8
= 3.125.

Based on these the greatest area is from Part (c).

Section 1: Problem 5

WWX: DP

Section 1: Problem 6

The region M is a triangle and the region N is a region that “straddles” the vertex of
this triangle. This region is then the sum of two trapezoids and each has an area given by
1
2
h[b1 + b2]. Thus the total area is

1

2
(1− t)[t + 1] +

1

2
(t+ 1− 1)[1 + 2− (t+ 1)] .

If we simplify this we get the answer (a).

Section 3: Problem 1

WWX: DP

Section 3: Problem 2

WWX: DP
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Section 3: Problem 3

WWX: DP

Section 3: Problem 4

WWX: DP

1369



1982/83: Paper I

Section 1: Problem 1

WWX: DP

Section 1: Problem 2

If we “clear fractions” we get

p− p cos(θ) + p sin(θ) = 1 ,

or in terms of (x, y) this is
√

x2 + y2 − x+ y = 1 ,

or √

x2 + y2 = 1 + x− y .

If we square this we get

x2 + y2 = 1 + x2 + y2 + 2x− 2y − 2xy ,

or
2xy − 2x+ 2y − 1 = 0 .

We can write this as

xy − x+ y − 1

2
= 0 ,

or

(x+ 1)(y − 1) + 1− 1

2
= 0 .

This is a hyperbola.

Section 1: Problem 3

WWX: DP

Section 1: Problem 4

WWX: DP

Section 1: Problem 5

WWX: DP
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Section 1: Problem 6

Write this expression as
x2 = (k − 2)x− (k2 + 3k + 5) .

Then this means that

x21 + x22 = (k − 2)(x1 + x2)− 2(k2 + 3k + 5) .

As this expression is a quadratic by factoring we see that the sum of the roots is given by

x1 + x2 = −(−(k − 2)) = k − 2 ,

so that

x21 + x22 = (k − 2)2 − 2(k2 + 3k + 5) = −k2 − 10k − 6

= −(k2 + 10k)− 6 = −(k2 + 10k + 25− 25)− 6

= −(k + 5)2 + 19 .

Notice that this is an upside down parabola where the largest this value can be is 19 when
k = −5.

Note that not all values for k will give real roots x1 and x2. To have real roots means that
the discriminant D is positive or

D = (k − 2)2 − 4(k2 + 3k + 5) = −3k2 − 16k − 16 > 0 .

This is equivalent to
(3k + 4)(k + 4) < 0 .

This will be satisfied when −4 < k < −4
3
. The value of k that is closest to the location of

the maximum k = −5 will be the largest this expression can be. Thus k = −4 with a value
of

−1 + 19 = 18 ,

is the largest value we can have for this expression.

Section 1: Problem 7

WWX: do this problem
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1985/86: Paper I

Section 2: Problem 3

WWX: DP

Section 2: Problem 4

Given the condition
x ⋆ y = ax+ by + cxy ,

and what we are told we have

1 ⋆ 2 = a + 2b+ 2c = 3 (1027)

2 ⋆ 3 = 2a + 3b+ 6c = 4 . (1028)

We are looking for a d such that

x ⋆ d = ax+ bd + cxd = x ,

for all x. This last condition is equivalent to

(a− 1 + cd)x+ bd = 0 .

The only way this is possible for all x is if

a− 1 + cd = 0 (1029)

bd = 0 . (1030)

These give us four equations in the four unknowns a, b, c, and d that we need to solve. From
Equation 1030 we have b = 0 or d = 0. As d 6= 0 we must have b = 0. With that our three
remaining equations become

a + 2c = 3 (1031)

2a+ 6c = 4 (1032)

a− 1 + cd = 0 . (1033)

Solving Equations 1031 and 1032 we get a = 5 and c = −1. Putting these into Equation 1033
we get

5− 1 + (−1)d = 0 so d = 4 .
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The 46th Putnam Mathematical Competition

Problem A.1

WWX: DP

Problem A.5

We might see if we can find a pattern for Im. For m = 1 the integrand is P1 = cos(x) and
we have

I1 =

∫ 2π

0

cos(x)dx = sin(x)|2π0 = 0 .

Now lets now consider the expression for I2. We have

P2 = cos(x) cos(2x) =
1

2
(cos(x+ 2x) + cos(x− 2x)) =

1

2
(cos(3x) + cos(x)) . (1034)

From this the value of I2 is

I2 =
1

2

sin(3x)

3

∣
∣
∣
∣

2π

0

+
1

2
sin(x)|2π0 = 0 .

Next consider the integrand in I3 or P3 which using Equation 1034 is

P3 = cos(x) cos(2x) cos(3x) = P2 cos(3x) =
1

2
(cos(3x) + cos(x)) cos(3x)

=
1

2

(
1

2
(cos(6x) + cos(0)) +

1

2
(cos(4x) + cos(2x))

)

=
1

4
cos(6x) +

1

4
+

1

4
cos(4x) +

1

4
cos(2x) . (1035)

This expression will have a nonzero integral due to the 1
4
term.

The pattern we observe at this point is that each Pm can be written like

Pm =
∑

k∈Sm

Ak cos(kx) , (1036)

where Sn is a set of integers and Ak are nonzero constants. When we multiply a sum like
this by a factor cos(nx) we can use the cosign product formula

cos(kx) cos(nx) =
1

2
(cos((k + n)x) + cos((k − n)x)) ,

that will give rise to another sum of the form
∑

k∈Sm+1
A′

k cos(kx) but with a different set of
integers Sm+1. The value for Im will be nonzero only when though this process we end with
an expansion like the above where 0 ∈ Sm.
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As a bit of detail we have P1 = cos(x) and so S1 = {1}. By Equation 1034 we see that
S2 ∈ {1, 3}. By Equation 1035 we see that S3 ∈ {0, 2, 4, 6}. Now in computing S4 we will
take every element in S3 and add and subtract the number four to get

{4, 6, 8, 10,−4,−2, 0, 2} ,

and since cos is an even function we take the absolute value of the above numbers to get

S4 = {0, 2, 4, 6, 8, 10} .

At this point we have argued that I3 and I4 are nonzero (as 0 ∈ S3 and 0 ∈ S4). We
can continue this pattern up to m = 10 to answer the given question. While the above
calculations are simple enough to do by hand I choose to implement them in python to
make sure I don’t make any mistakes (see the code 1985 Putnam A5.py). When we run that
code we get

P_3 has a zero in the set S_3

P_4 has a zero in the set S_4

P_7 has a zero in the set S_7

P_8 has a zero in the set S_8

These are the four integers m where Im 6= 0.
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The 60th Putnam Mathematical Competition

Problem A.1

We must have f , g, and h linear or else there will be regions where the expression on the
left-hand-side will not be linear. Thus we will take

f(x) = f0 + f1x

g(x) = g0 + g1x

h(x) = h0 + h1x .

Now if we take x→ −∞ then the left-hand-side of the given expression will trend to

|f1x| − |g1x|+ h1x = |f1||x| − |g1||x|+ h1x .

as x < 0 this is
−|f1|x+ |g1|x+ h1x = (−|f1|+ |g1|+ h1)x .

As the right-hand-side has no x dependence the coefficient of x must be zero so

h1 = |f1| − |g1| . (1037)

Now if we take x→ +∞ then the left-hand-side of the given expression will trend to

|f1x| − |g1x| + h1x = |f1|x− |g1|x+ h1x .

As the right-hand-side has the coefficient of x of −2 we must have

|f1| − |g1|+ h1 = −2 . (1038)

Using Equation 1037 for |f1|− |g1| in the above we get 2h1 = −2 so h1 = −1. This also gives

h1 = |f1| − |g1| = −1 . (1039)

We have shown that our expression can be written as

|f1x+ f0| − |g1x+ g0| − x+ h0 =







−1 x < −1
3x+ 2 −1 ≤ x ≤ 0
−2x+ 2 x > 0

.

Moving the −x to the right-hand-side this is equivalent to

|f1x+ f0| − |g1x+ g0|+ h0 =







x− 1 x < −1
4x+ 2 −1 ≤ x ≤ 0
−x+ 2 x > 0

.
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Taking x = 0 in the above we can solve for h0 and find

h0 = 2− |f0|+ |g0| .

Putting this into the above and moving the two to the right-hand-side we are left with

|f1x+ f0| − |f0| − |g1x+ g0|+ |g0| =







x− 3 x < −1
4x −1 ≤ x ≤ 0
−x x > 0

. (1040)

Now in the region −1 ≤ x ≤ 0 comparing the coefficient of x between the left and right sides
of the equations means that

|f1| − |g1| = 4 .

With Equation 1039 we now have two equations for |f1| and |g1|. Solving them we find

|f1| =
3

2

|g1| =
5

2
.

These mean that

f1 = sf
3

2

g1 = sg
5

2
,

where sf = ±1 and sg = ±1 are the “signs” of f1 and g1 respectively.

Now from the right-hand-side of Equation 1040 we see that the only “kinks” can happen at
the point x = −1 and x = 0. From the left-hand-side of that equation the kinks happen
when f1x+ f0 = 0 and g1x+ g0 = 0 or at

−f0
f1

and − g0
g1
.

Lets assume that −f0
f1

= −1 and g0
g1

= 0 so that f0 = f1 and g0 = 0. Using these in the
left-hand-side of Equation 1040 we get

∣
∣
∣
∣
sf

3

2
x+ sf

3

2

∣
∣
∣
∣
−
∣
∣
∣
∣
sf

3

2

∣
∣
∣
∣
−
∣
∣
∣
∣
sg
5

2
x

∣
∣
∣
∣
=

3

2
|x+ 1| − 3

2
− 5

2
|x| .

We can evaluate this expression in the regions x < −1, −1 < x < 0 and x > 0 and show
that it equals the right-hand-side of Equation 1040 and we have found a solution.

To see if we have another solution lets now assume that −f0
f1

= 0 and g0
g1

= −1 so that f0 = 0
and g0 = f1. Using these in the left-hand-side of Equation 1040 we get

∣
∣
∣
∣
sf

3

2
x

∣
∣
∣
∣
− 0−

∣
∣
∣
∣
sg
5

2
x+ sg

5

2

∣
∣
∣
∣
+

∣
∣
∣
∣
sg
5

2

∣
∣
∣
∣
=

3

2
|x| − 5

2
|x+ 1|+ 5

2
.
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We can evaluate this expression in the regions x < −1 and find that its not equal to x − 3
as it should be. So we have not found another solution.

Thus is looks like the solutions are

f(x) = ±3

2
(x+ 1)

g(x) = ±5

2
x

h(x) = −x+ h0 = −x+ 2− 3

2
= −x+ 1

2
.

Problem A.2

WWX: DP

Problem A.3

To determine the form for an write the given expression as

1 =

( ∞∑

n=0

anx
n

)

(1− 2x− x2) .

Then expanding the terms on the right-hand-side we get

1 =

∞∑

n=0

anx
n − 2

∞∑

n=0

anx
n+1 −

∞∑

n=0

anx
n+2 ,

or

1 =
∞∑

n=0

anx
n − 2

∞∑

n=1

an−1x
n −

∞∑

n=2

an−2x
n .

or “releasing” some terms we get

1 = a0 + a1x− 2a0x+

∞∑

n=2

(an − 2an−1 − an−2)x
n

= a0 + (a1 − 2a0)x+

∞∑

n=2

(an − 2an−1 − an−2)x
n .

If we equate the terms on the right and left of this expression we see that a0 = 1 and
a1 = 2a0 = 2. In addition to make the coefficient of xn (for n ≥ 2) zero we must have

an − 2an−1 − an−2 = 0 .

This is a second order difference equation with constant coefficients. Solutions of this type
are of the form an = rn. If we substitute that expression into the above we get

rn − 2rn−1 − rn−2 = 0 ,
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or dividing by rn−2 this is the quadratic equation

r2 − 2r − 1 = 0 .

This has solutions given by the quadratic formula or

r =
2±

√

4− 4(−1)

2
= 1±

√
2 .

This means that the general form for an is given by

an = C(1−
√
2)n +D(1 +

√
2)n ,

for two constants C and D. To evaluate those note that

a0 = C +D = 1 . (1041)

and
a1 = C(1−

√
2) +D(1 +

√
2) = 2 .

If we use Equation 1041 in the above we get

−
√
2C +

√
2D = 1 .

Thus C and D satisfy two linear equations. Solving these we get

C = −
(

1−
√
2

2
√
2

)

D =
1 +

√
2

2
√
2

.

Using these we have that

an = − 1

2
√
2
(1−

√
2)n+1 +

1

2
√
2
(1 +

√
2)n+1 . (1042)

We now compute a2n + a2n+1. Using the above formula we find

a2n + a2n+1 =
1

4 · 2(−(1−
√
2)n+1 + (1 +

√
2)n+1)2 +

1

4 · 2(−(1 −
√
2)n+2 + (1 +

√
2)n+2)2

=
1

4 · 2
(

(1−
√
2)2n+2 − 2(1−

√
2)n+1(1 +

√
2)n+1 + (1 +

√
2)2n+2

)

+
1

4 · 2
(

(1−
√
2)2n+4 − 2(1−

√
2)n+2(1 +

√
2)n+2 + (1 +

√
2)2n+4

)

=
1

8

(

(1−
√
2)2n+2 − 2(1− 2)n+1 + (1 +

√
2)2n+2

)

+
1

8

(

(1−
√
2)2n+4 − 2(1− 2)n+2 + (1 +

√
2)2n+4

)

.
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In the above we have used the fact that (1−
√
2)(1 +

√
2) = 1− 2. We now group the first,

second, and third terms together taken from each of the two separate expressions above.
This gives

8(a2n + a2n+1) = (1−
√
2)2n+2

[

(1−
√
2)2 + 1

]

− 2((−1)n+1 + (−1)n+2)

+ (1 +
√
2)2n+2

[

(1 +
√
2)2 + 1

]

= (1−
√
2)2n+2

[

1− 2
√
2 + 2 + 1

]

− 2(−1)n+1(1− 1)

+ (1 +
√
2)2n+2

[

1 + 2
√
2 + 2 + 1

]

= (1−
√
2)2n+2

[

4− 2
√
2
]

+ (1 +
√
2)2n+2

[

4 + 2
√
2
]

.

We now factor out a two from the right-hand-side (and cancel it with a two on the left-hand-
side) to get

4(a2n + a2n+1) = (1−
√
2)2n+2(2−

√
2) + (1 +

√
2)2n+2(2 +

√
2) .

We now factor out a
√
2 from the right-hand-side to get

a2n + a2n+1 =
1

2
√
2
(1−

√
2)2n+2(

√
2− 1) +

1

2
√
2
(1 +

√
2)2n+2(

√
2 + 1) ,

or

a2n + a2n+1 = − 1

2
√
2
(1−

√
2)2n+3 +

1

2
√
2
(1 +

√
2)2n+3 ,

which we recognize as a2n+2.

Problem A.4

WWX: DP

Problem A.5

WWX: DP

Problem A.6

Write this as

an =
6a2n−1

an−2
− 8an−1an−2

an−3
.
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Then divide both sides by an−1 to get

an
an−1

= 6

(
an−1

an−2

)

− 8

(
an−2

an−3

)

.

Based on this form we take rn ≡ an
an−1

for n ≥ 2 and the above becomes

rn = 6rn−1 − 8rn−2 . (1043)

The value of rn for n ∈ {2, 3} are

r2 =
a2
a1

=
2

1
= 2

r3 =
a3
a2

=
24

2
= 12 .

If we take n = 3 in Equation 1043 we find that

r3 = 6r2 − 8r1 .

Using what we know for r3 and r2 we find that r1 = 0.

The general solution of equations like Equation 1043 is to reduce it to characteristic form by
assuming a form rn = xn and find the value for x. When we do that we get the quadratic
equation

x2 = 6x− 8 or (x− 2)(x− 4) = 0 .

Thus the solution for rn is
rn = C2n +D4n ,

for constants C and D. Taking n = 1 and using r1 = 0 in the above we see that C = −2D
so that

rn = D(2n−1 − 1)2n+1 .

Taking n = 2 in the above and using r2 = 2 we see that D = 1
4
= 2−2 and we have

rn = (2n−1 − 1)2n−1 ,

a known function of n for n ≥ 1.

In summary, at this point for an we have shown that

an = rnan−1 , (1044)

for n ≥ 2 and rn is a known function of n. If we iterate Equation 1044 we get

a2 = r2a1

a3 = r3a2 = r3r2a1

a4 = r4a3 = r4r3r2a1
...

an =

(
n∏

i=2

ri

)

a1 .
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Since a1 = 1 and using the known form for ri we have

an =

n∏

i=2

2i−1(2i−1 − 1)

=

n−1∏

i=1

2i(2i − 1) =

(
n−1∏

i=1

2i

)(
n−1∏

i=1

(2i − 1)

)

= 2
n(n−1)

2

(
n−1∏

i=1

(2i − 1)

)

. (1045)

The above give a “functional form” for an.

Now if n = 1 we have an = 1 and thus an is proportional to n in this case. If n > 1 then we
perform a prime factorization of n to write it as n = 2km for m ≥ 1 and an odd number. Of
course for k in this factorization we have

k ≤ n ≤ n(n− 1)

2
.

This means that 2k will divide the expression 2
n(n−1)

2 . Next the question is whether m in the
prime factorization of n will divide the product factor in Equation 1045. Warning: The
solution in the back of the book claims that one of the factors 2i − 1 will in-fact have m as
a divisor. I’m not able to verity that statement. If anyone has a ELI5 (explain it like I’m
five) answer for me please contact me.
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