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Introduction

This is a solution manual to some of the problems in the excellent textbook:

Calculus of Finite Differences and Difference Equations
by Murray Spiegel

I’m currently working aggressively on finishing more of the problems in this book. In the
meantime I’m publishing my partial results for any student who does not want to wait for
the full book to be finished.

One of the benefits of this manual is that I heavily use the R statistical language to perform
any of the needed numerical computations (rather than do them ”by-hand”). Thus if you
work though this manual you will be learning the R language at the same time as you learn
statistics. The R programming language is one of the most desired skills for anyone who
hopes to use data/statistics in their future career. The R code can be found at the following
location:

https://waxworksmath.com/Authors/N_Z/Spiegel/spiegel.html

As a final comment, I’ve worked hard to make these notes as good as I can, but I have no
illusions that they are perfect. If you feel that that there is a better way to accomplish
or explain an exercise or derivation presented in these notes; or that one or more of the
explanations is unclear, incomplete, or misleading, please tell me. If you find an error of
any kind – technical, grammatical, typographical, whatever – please tell me that, too. I’ll
gladly add to the acknowledgments in later printings the name of the first person to bring
each problem to my attention.
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Chapter 1: The Difference Calculus

Notes on Factorial Polynomials

Here I think the expansion of x4 in terms of falling factorial functions is wrong. The expres-
sion given in the book is

x4 = x(4) + 7x(3)h + 6x(2)h2 + x(1)h3 ,

and I think it should be

x4 = x(4) + 6x(3)h + 7x(2)h2 + x(1)h3 .

We will prove this by expanding the right-hand-side of this last expression. We have

RHS = x(x− h)(x− 2h)(x− 3h) + 6x(x− h)(x− 2h)h+ 7x(x− h)h2 + xh3

= x((x− h)(x− 2h)(x− 3h) + 6(x− h)(x− 2h)h+ 7(x− h)h2 + h3)

= x((x− h)(x2 − 5hx+ 6h2) + 6h(x2 − 3hx+ 2h2) + 7xh2 − 7h3 + h3)

= x(x3 − 5hx2 + 6h2x− hx2 + 5h2x− 6h3 + 6hx2 − 18h2x+ 12h3 + 7xh2 − 7h3 + h3)

= x(x3) = x4 ,

as we were trying to show.

Supplementary Problem 1.46

Part (a): We have
S(1 +

√
x) = (1 +

√
x)2 = 1 + 2

√
x+ x .

Part (b): We have

(2S + 3D)(x2 − x) = 2(x2 − x)2 + 3(2x− 1)

= 2(x4 − 2x3 + x2) + 6x− 3

= 2x4 − 4x3 + 2x2 + 6x− 3 .

Part (c): We have
SD(3x+ 2) = S3 = 9 .

Part (d): We have

DS(3x+ 2) = D(3x+ 2)2 = D(9x2 + 12x+ 4) = 18x+ 12 .
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Part (e): We have

(S2 + 2S − 3)(2x− 1) = (2x− 1)4 + 2(2x− 1)2 − 3(2x− 1)

= (2x)3 + 4(2x)3(−1) +

(

4
2

)

(2x)2(−1)2 + 4(2x)(−1)3 + 1 + 2(4x2 − 4x+ 1)− 3(2x− 1)

= 16x4 − 32x3 + 32x− 22x+ 6 ,

when we simplify.

Part (f): We have

(D + 2)(S − 3)x2 = (D + 2)(x4 − 3x2) = 4x3 − 6x+ 2x4 − 6x2 = 2x4 + 4x3 − 6x2 − 6x

Part (g): We have

(S − 3)(D + 2)x2 = (S − 3)(2x+ 2x2) = (2x+ 2x2)2 − 6x− 6x2

= 4x4 + 8x3 − 2x2 − 6x .

Part (h): We have

(xD)3S(x + 1) = (xD)3(x+ 1)2

= (xD)2xD(x+ 1)2 = (xD)2x(2(x+ 1)) = (xD)2(2x2 + 2x)

= (xD)(xD(2x2 + 2x)) = (xD)(x(4x+ 2)) = (xD)(4x2 + 2x)

= x(8x+ 2) = 8x2 + 2x = 2x(4x+ 1) .

Part (i): We have

x3D3S(x+ 1) = x3D3(x+ 1)2 = x3D2(2(x+ 1)) = 2x3D2(x+ 1) = 2x3D(1) = 0 .

Part (j): We have

(xS − Sx)DSx2 = (xS − Sx)Dx4

= (xS − Sx)4x3

= xS(4x3)− Sx(4x3)

= x(16x6)− S(4x4)

= 16x7 − 16x8 = 16x7(1− x) .

Supplementary Problem 1.47

Part (a): We can show that S is not linear by the observation that

S(x+ y) = (x+ y)2 = x2 + y2 + 2xy = S(x) + S(y) + 2xy 6= S(x) + S(y) ,
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in general.

Part (b): Now if S−1 exists then S−1f = g if and only if

Sg = f ,

or
g2 = f .

This means that g = ±
√
f . Note that if f < 0 then g will not exist and in addition as there

are two solutions ±
√
f we see that g is not unique.

Supplementary Problem 1.48

We have
S3f = S2Sf = S2f 2 = SSf 2 = Sf 4 = f 8 ,

and
C2f = CCf = Cf 3 = (f 3)3 = f 9 .

As f 8 6= f 9 in general these two operators are not equal.

Supplementary Problem 1.49

Part (a): The operator αS is to square and then multiply by α while the operator Sα is to
multiply by α and then to square.

Part (b): To see if these are commutative we compute

αSf = αf 2

Sαf = (αf)2 = α2f 2 ,

which are not equal and these operators are not commutative.
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Supplementary Problem 1.50

The operator (xD)4 applied to f gives

(xD)4f = (xD)3xf ′

= (xD)2x(f ′ + xf ′′)

= (xD)(xD)(xf ′ + x2f ′′)

= (xD)x(f ′ + xf ′′ + 2xf ′′ + x2f ′′′)

= xD(xf ′ + 3x2f ′′ + x3f ′′′)

= x(f ′ + xf ′′ + 6xf ′′ + 3x2f ′′′ + 3x2f ′′′ + x3f (iv))

= x(f ′ + 7xf ′′ + 6x2f ′′′ + x3f (iv))

= xf ′ + 7x2f ′′ + 6x3f ′′′ + x4f (iv) .

While
x4D4f = x4f (iv) .

From the above calculation we see that this is not equal to (xD)4f .

Supplementary Problem 1.51

Part (a): We have

(D2x− xD2)f = DDxf − xf ′′ = D(f + xf ′)− xf ′′

= f ′ + f ′ + xf ′′ − xf ′′ = 2f ′ = 2Df .

Part (b): We have

(D3x− xD3)f = D3(xf)− xf ′′′

= D2(f + xf ′)− xf ′′′

= D(f ′ + f ′ + xf ′′)− xf ′′′

= 2f ′′ + f ′′ + xf ′′′ − xf ′′′

= 3f ′′ = 3D2f .

If we generalize these results we would conclude

Dnx− xDn = nDn−1 . (1)

To prove that this is true we will assume that Equation 1 is true and apply D to both sides
to get

Dn+1x−Dn − xDn+1 = nDn ,

or
Dn+1x− xDn+1 = (n+ 1)Dn ,

which shows that Equation 1 is true for n + 1.
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Supplementary Problem 1.52

Part (a): We have

∆(2x− 1)2 = (2(x+ h)− 1)2 − (2x− 1)2 = 4(x+ h)2 − 4(x+ h) + 1− 4x2 + 4x− 1

= 8xh + 4h2 − 4h .

Part (b): We have

E( 3
√
5x− 4) = 3

√

5(x+ h)− 4 =
3
√
5x+ 5h− 4 .

Part (c): We have

∆2(2x2 − 5x) = ∆(2(x+ h)2 − 5(x+ h)− 2x2 + 5x)

= ∆(2x2 + 4xh+ 2h2 − 5x− 5h− 2x2 + 5x)

= ∆(4hx+ 2h2 − 5h)

= 4h(x+ h)− 4hx = 4h2 .

Part (d): We have

3E2(x2 + 1) = 3E((x+ h)2 + 1) = 3((x+ 2h)2 + 1)

= 3(x2 + 4xh+ 4h2 + 1) = 3x2 + 12xh + 12h2 + 3 .

Part (e): If we recall that ∆ + 1 = E − 1 + 1 = E we have

(∆ + 1)2(x+ 1)2 = E2(x+ 1)2 = E((x+ h+ 1)2) = (x+ 2h+ 1)2 .

Part (f): We have

(xE2 + 2xE + 1)x2 = xE(x+ h)2 + 2x(x+ h)2 + x2

= x(x+ 2h)2 + 2x(x+ h)2 + x2

= x(x2 + 4xh+ 4h2) + 2x(x2 + 2xh+ h2) + x2

= x3 + 4x2h+ 4h2x+ 2x3 + 4x2h+ 2xh2 + x2

= 3x3 + (8h+ 1)x2 + 6h2x .

Part (g): We have

∆2E3x = ∆2(x+ 3h) = ∆((x+ 4h)− (x+ 3h)) = ∆h = 0 .
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Part (h): We have

(3∆ + 2)(2E − 1)x2 = (3∆ + 2)(2(x+ h)2 − x2)

= (3∆ + 2)(2x2 + 4xh + 2h2 − x2)

= (3∆ + 2)(x2 + 4xh+ 2h2)

= 3((x+ h)2 + 4(x+ h)h+ 2h2 − x2 − 4xh− 2h2) + 2x2 + 8xh+ 4h2

= 3(2xh+ 5h2) + 2x2 + 8xh + 4h2

= 2x2 + 14xh+ 19h2 .

Part (i): We have

(2E − 1)(3∆ + 2)x2 = (2E − 1)(3(x+ h)2 − x2) + 2x2)

= (2E − 1)(3(x2 + 2xh+ h2 − x2) + 2x2)

= (2E − 1)(3(2xh+ h2) + 2x2)

= (2E − 1)(2x2 + 6xh+ 3h2)

= 2(2(x+ h)2 + 6(x+ h)h+ 3h2)− 2x2 − 6xh− 3h2

= 2(2x2 + 4xh + 2h2 + 6xh + 6h2 + 3h2)− 2x2 − 6xh− 3h2

= 2(2x2 + 10xh + 11h2)− 2x2 − 6xh− 3h2

= 4x2 + 20xh+ 22h2 − 2x2 − 6xh− 3h2

= 2x2 + 14xh+ 19h2 .

Note that this equals the expression in Part (i) as it should since the two operators are
commutative.

Part (j): We have

(x∆E)2x2 = (x∆E)(x∆E)x2

= (x∆E)(x∆(x + h)2)

= (x∆E)(x((x+ 2h)2 − (x+ h)2))

= (x∆E)(x(x2 + 4xh+ 4h2 − (x2 + 2xh + h2))

= (x∆E)(x(2xh + 3h2))

= (x∆E)(2hx2 + 3h2x)

= x∆(2h(x+ h)2 + 3h2(x+ h))

= x∆[2h(x2 + 2xh+ h2) + 3h2x+ 3h3]

= x∆[2hx2 + 4h2x+ 2h3 + 3h2x+ 3h3]

= x∆[2hx2 + 7h2x+ 5h2]

= x[2h[(x+ h)2 − x2] + 7h2h]

= x[2h(x2 + 2xh + h2 − x2) + 7h3]

= x[4h2x+ 2h3 + 7h3]

= 4h2x2 + 9h3x .
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Supplementary Problem 1.53

Part (a): Note that each of the two sides can be written as

(E − 2)(∆ + 3) = E∆+ 3E − 2∆− 6

(∆ + 3)(E − 2) = ∆E − 2∆ + 3E − 6 .

For these two be equal we must have E∆ = ∆E. Lets consider each of the operators applied
to a function f . We have

E∆f = E(f(x+ h)− f(x)) = f(x+ 2h)− f(x+ h)

∆Ef = ∆f(x+ h) = f(x+ 2h)− f(x+ h) .

As these are equal we have shown that (E − 2)(∆ + 3) = (∆ + 3)(E − 2).

Part (b): Now
(E − 2x)(∆ + 3x) = E∆+ 3Ex− 2x∆− 6x2 ,

and
(∆ + 3x)(E − 2) = ∆E − 2∆ + 3xE − 6x .

As we know that E∆ = ∆E for these to be equal we must have

3Ex− 2x∆− 6x2 = −2∆ + 3xE − 6x .

To show that these are not equal lets apply them both to a simple function f(x) = 1. We
find

(3Ex− 2x∆− 6x2)1 = 3Ex− 6x2 = 3(x+ h)− 6x2

(−2∆ + 3xE − 6x)1 = 0 + 3x− 6x = −3x .

As these two expressions are not equal in general the original operator expressions are not
equal either.

Supplementary Problem 1.54

We have

E(f(x) + g(x)) = f(x+ h) + g(x+ h) = Ef(x) + Eg(x)

E(αf(x)) = αf(x+ h) = αEf(x) .

Supplementary Problem 1.55

Part (a): Note that

∆2f(x) = ∆(f(x+ h)− f(x)) = f(x+ 2h)− f(x+ h)− f(x+ h) + f(x))

= f(x+ 2h)− 2f(x+ h) + f(x) .
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Thus we can see that

∆2(af(x) + bg(x)) = a∆2f(x) + b∆2g(x) ,

and ∆2 is a linear operator.

Part (b): As E2f(x) = f(x+ 2h) we also see that E2 will be a linear operator.

Part (c): Yes both will be linear operators.

Supplementary Problem 1.56

To show this we can compute

(E − 1)3f(x) = (E − 1)2(E − 1)f(x) = (E − 1)2(f(x+ h)− f(x))

= (E − 1)(f(x+ 2h)− f(x+ h)− f(x+ h) + f(x))

= (E − 1)(f(x+ 2h)− 2f(x+ h) + f(x))

= (f(x+ 3h)− 2f(x+ 2h) + f(x+ h))− (f(x+ 2h)− 2f(x+ h) + f(x))

= f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

= (E3 − 3E2 + 3E − 1)f(x) .

Supplementary Problem 1.57

Part (a): From the definition we have that

∆ cos(rx) = cos(r(x+ h))− cos(rx) .

Now to prove the desired expression we will use the identity

sin(θ1)− sin(θ2) = 2 sin

(

θ1 − θ2
2

)

cos

(

θ1 + θ2
2

)

. (2)

To show that this is true we will expand each factor in the right-hand-side (RHS) of the
above. Doing this we have

RHS =

(

sin

(

θ1
2

)

cos

(

θ2
2

)

− sin

(

θ2
2

)

cos

(

θ1
2

))(

cos

(

θ1
2

)

cos

(

θ2
2

)

− sin

(

θ2
2

)

sin

(

θ1
2

))

= sin

(

θ1
2

)

cos

(

θ1
2

)

cos2
(

θ2
2

)

− sin2

(

θ1
2

)

sin

(

θ2
2

)

cos

(

θ2
2

)

− sin

(

θ2
2

)

cos2
(

θ1
2

)

cos

(

θ2
2

)

+ sin

(

θ1
2

)

sin2

(

θ2
2

)

cos

(

θ1
2

)

=
1

2
sin(θ1) cos

2

(

θ2
2

)

− 1

2
sin2

(

θ1
2

)

sin(θ2)−
1

2
sin(θ2) cos

(

θ1
2

)

+
1

2
sin(θ1) sin

2

(

θ2
2

)

=
1

2
sin(θ1)−

1

2
sin(θ2) ,
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as we were to show.

Next using the fact that cos(x) = sin(π − x) we can write

cos(θ1)− cos(θ2) = sin(π − θ1)− sin(π − θ2) .

Next using Equation 2 on the above differences of sins we get

cos(θ1)− cos(θ2) = 2 sin

(

π − θ1 − π + θ2
2

)

cos

(

π − θ1 + π − θ2
2

)

= 2 sin

(

θ2 − θ1
2

)

cos

(

2π − θ1 − θ2
2

)

= 2 sin

(

θ2 − θ1
2

)

cos

(

π −
(

θ1 + θ2
2

))

= 2 sin

(

θ2 − θ1
2

)

sin

(

θ1 + θ2
2

)

.

Thus using this we have

∆ cos(rx) = cos(r(x+ h))− cos(rx)

= 2 sin

(

rx− rx− rh

2

)

sin

(

rx+ rh+ rx

2

)

= −2 sin

(

rh

2

)

sin

(

2rx+ rh

2

)

= −2 sin

(

rh

2

)

sin

(

r

(

x+
h

2

))

,

which is the desired expression.

Part (b): For this we have

∆ ln(x) = ln(x+ h)− ln(x) = ln

(

1 +
h

x

)

.

Part (c): For this we have

∆ logb(x) = logb(x+ h)− logb(x) = logb

(

1 +
h

x

)

.

Supplementary Problem 1.58

Part (a): For this note that

(D +∆)f(x) = f ′(x) + f(x+ h)− f(x) = (∆ +D)f(x) .

Part (b): For this note that

D∆f(x) = D(f(x+ h)− f(x)) = f ′(x+ h)− f ′(x) = ∆f ′(x) = ∆Df(x) .
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Supplementary Problem 1.59

Part (a): First we will compute (D∆)f(x) as

(D∆)f(x) = D(f(x+ h)− f(x)) = f ′(x+ h)− f ′(x) .

Then (D∆)Ef(x) is

(D∆)Ef(x) = (D∆)f(x+ h) = f ′(x+ 2h)− f ′(x+ h) .

Next we compute (∆E)f(x) as

(∆E)f(x) = ∆f(x+ h) = f(x+ 2h)− f(x+ h) .

Then D(∆E)f(x) is
D(∆E)f(x) = f ′(x+ 2h)− f ′(x+ h) ,

which is equal to the previous expression, verifying that (D∆)E = D(∆E).

Part (b): Yes because

DEf(x) = Df(x+ h) = f ′(x+ h)

EDf(x) = Ef ′(x) = f ′(x+ h) ,

are equal.

Supplementary Problem 1.60

Part (a): Recalling that ∆x = h we have

lim
∆x→0

∆

∆x
[x(2 − x)] = lim

h→0

(x+ h)(2− x− h)− x(2 − x)

h

= lim
h→0

x(2− x)− xh + h(2− x)− h2 − x(2− x)

h
= lim

h→0
(−x+ 2− x− h) = 2− 2x = 2(1− x) .

Also we have
D[x(2 − x)] = (2− x)− x = 2− 2x ,

showing the desired equivalence.

Part (b): Recall that

∆2f(x) = f(x+ 2h)− 2f(x+ h) + f(x) .
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Using this result we have

∆2(x(2− x)) = (x+ 2h)(2− x− 2h)− 2(x+ h)(2− x− h) + x(2− x)

= (x+ 2h)(2− 2h− x)− 2(x+ h)(2− h− x) + x(2− x)

= (2− 2h)x− x2 + 2h(2− 2h)− 2hx− 2x(2− h− x)− 2h(2− h− x) + 2x− x2

= −x2 + (2− 4h)x+ 4h(1− h)− 2(2− h)x+ 2x2 − 2h(2− h) + 2hx+ 2x− x2

= −2h2 ,

when we simplify. Using ∆x = h this means that

lim
∆x→0

∆2

∆x2
[x(2− x)] = lim

h→0

(−2h2

h2

)

= −2 .

Supplementary Problem 1.61

Part (a): We have
d(x3 − 3x2 + 2x− 1) = (3x2 − 6x+ 2)dx .

Part (b): We have
d2(3x2 + 2x− 5) = d(6x+ 2)dx = 6(dx)2 .

Supplementary Problem 1.62

This is a consequence of the fact that “the limit operation” is distributive over addition.

Supplementary Problem 1.63

To prove this we can use the product rule in the form

D(f(x)g(x)−1) = f ′(x)g(x)−1 − f(x)g(x)−2g′(x)

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
=

Df(x)g(x)− f(x)Dg(x)

g(x)2
.
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Supplementary Problem 1.64

We have

lim
∆x→0

∆cos(rx)

∆x
= lim

h→0

cos(r(x+ h))− cos(rx)

h

= lim
h→0

cos(rx) cos(rh)− sin(rx) sin(rh)− cos(rx)

h

= lim
h→0

cos(rx)(cos(rh)− 1)− sin(rx) sin(rh)

h

= lim
h→0

cos(rx)(−r sin(rh))− sin(rx)r cos(rh)

1
= lim

h→0
(−r sin(rx) cos(rh)) = −r sin(rx) ,

as we were to show.

Supplementary Problem 1.65

We have

lim
∆x→0

∆bx

∆x
= lim

h→0

bx+h − bx

h

= bx lim
h→0

(

bh − 1

h

)

= bx lim
h→0

(

ln(b)bh

1

)

= ln(b)bx .

Here we have used L’Hôpital’s rule and the derivative of bh with respect to h.

Here we derived what the derivative of bh with respect to h is. Starting with y = bh or
ln(y) = h ln(b) and by taking the h derivative of both sides we get 1

y
dy
dh

= ln(b). Solving this

for dy
dh

we get
dy

dh
= y ln(b) = ln(b)bh ,

as we were to show.

Supplementary Problem 1.66

Note that ∆f(x) = f(x+ h)− f(x) so that

∆2f(x) = f(x+ 2h)− f(x+ h)− f(x+ h) + f(x) = f(x+ 2h)− 2f(x+ h) + f(x) ,

which is the expression we are taking the limit of in the expression for D2f(x).
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Supplementary Problem 1.67

Because

D2f(x) = lim
∆→0

1

(∆x)2
∆2f(x) ,

and an application of another “D” operator would mean that

D3f(x) = lim
∆x→0

1

∆x
∆

(

1

(∆x)2
∆2f(x)

)

= lim
∆x→0

1

(∆x)3
∆3f(x) .

This in tern means that

D3f(x) = lim
h→0

1

h3
∆(f(x+ 2h)− 2f(x+ h) + f(x))

= lim
h→0

f(x+ 3h)− 2f(x+ 2h) + f(x+ h)− f(x+ 2h) + 2f(x+ h)− f(x)

h3

= lim
h→0

f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

h3
.

Supplementary Problem 1.68

To work the parts of this problem recall that ∆x(r) = rx(r−1)h.

Part (a): Using the above we have

∆(3x(5) + 5x(4) − 7x(2) + 3x(1) + 6) = (15x(4) + 20x(3) − 14x(1) + 3)h .

Part (b): Using the above we have

∆

∆x
(x(−3) − 3x(−2)) =

(−3x(−4) + 6x(−3))h

h
= −3x(−4) + 6x(−3) .

Part (c): Using the above we have

∆

(

x(2) + x(−2)

2

)

=
1

2
(2x(1) − 2x(−3))h = (x(1) − x(−3))h .

Supplementary Problem 1.69

Part (a): We have

∆(2x(−3) − 3x(−2) + 4x(2)) = (−6x(−4) + 6x(−3) + 8x(1))h ,

and thus
∆2(2x(−3) − 3x(−2) + 4x(2)) = (24x(−5) − 18x(−4) + 8)h2 .
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Part (b): We have
∆(x(4) + x(−4)) = (4x(3) − 4x(−5))h ,

and
∆2(x(4) + x(−4)) = (12x(2) + 20x(−6))h2 ,

and
∆3(x(4) + x(−4)) = (24x(1) − 120x(−7))h3 .

Thus
∆3(x(4) + x(−4))

∆x3
=

∆3(x(4) + x(−4))

h3
= 24x(1) − 120x(−7) .

Supplementary Problem 1.70

Part (a): As one method to solve this we can replace each monomial with its factorial
polynomial expression and then simplifying. Doing this we would get

3x2 − 5x+ 2 = 3(x(2) + x(1)h)− 5x(1) + 2 = 3x(2) + (3h− 5)x(1) + 2 .

As another method to solve this problem we can express the factorial polynomial form of the
polynomial and seek to determine its coefficients. For example we know that we can write

3x2 − 5x+ 2 = A0x
(2) + A1x

(1) + A2 = A0x(x− h) + A1x+ A2 .

If we take x = 0 then A2 = 2. Putting this into the above and simplifying we get

3x2 − 5x = A0x(x− h) + A1x .

If we divide this expression by x we get

3x− 5 = A0(x− h) + A1 . (3)

In this if we take x = h we get
3h− 5 = A1 .

Putting this value of A1 into Equation 3 gives

3x− 5 = A0(x− h) + 3h− 5 ,

which simplifies to
3(x− h) = A0(x− h) .

If we divide this expression by x− h we get A0 = 3.

All of this together means that we have shown

3x2 − 5x+ 2 = 3x(2) + (3h− 5)x(1) + 2 .

18



Part (b): Writing this polynomial in terms of factorial monomials with unknown coefficients
we would have

2x4 + 5x2 − 4x+ 7 = A0x
(4) +A1x

(3) +A2x
(2) +A3x

(1) +A4

= A0x(x− h)(x− 2h)(x − 3h) +A1x(x− h)(x− 2h) +A2x(x− h) +A3x+A4 .

Taking x = 0 we see that A4 = 7. Using this value in the above, simplifying and then
dividing by x we get

2x3 + 5x− 4 = A0(x− h)(x− 2h)(x− 3h) + A1(x− h)(x− 2h) + A2(x− h) + A3 .

If we let x = h we get A3 = 2h3 + 5h− 4. Using this in the above we get

2x3 + 5x = A0(x− h)(x− 2h)(x− 3h) + A1(x− h)(x− 2h) + A2(x− h) + 2h3 + 5h , (4)

or moving things to the left-hand-side

2(x3 − h3) + 5(x− h) = A0(x− h)(x− 2h)(x− 3h) + A1(x− h)(x− 2h) + A2(x− h) . (5)

If we divide this by x− h we get

2(x2 + xh + h2) + 5 = A0(x− 2h)(x− 3h) + A1(x− 2h) + A2 . (6)

In this expression we now take x = 2h to get

A2 = 2(4h2 + 2h2 + h2) + 5 = 14h2 + 5 .

If we put this into Equation 6 we get

2x2 + 2xh− 12h2 = A0(x− 2h)(x− 3h) + A1(x− 2h) .

Lets divide both sides by x− 2h. Then since the left-hand-side can be written as

2x2 + 2hx− 12h2 = (x− 2h)(2x+ 6h) ,

we get
2x+ 6h = A0(x− 3h) + A1 . (7)

If we let x = 3h we get A1 = 12h. If we put that expression for A1 back into Equation 7 we
get

2(x− 3h) = A0(x− 3h) ,

This means that A0 = 2.

Taking what we know about A0, A1, A2, A3, and A4 we have shown that

2x4 + 5x2 − 4x+ 7 = 2x(4) + 12hx(3) + (14h2 + 5)x(2) + (2h3 + 5h− 4)x(1) + 7 .
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Supplementary Problem 1.71

Part (a): Using the definition of ∆ we can write

∆(x4 − 2x2 + 5x− 3) = (x+ h)4 − x4 − 2((x+ h)2 − x2) + 5(x+ h− x) .

Simplifying this into a polynomial in x we get

4hx3 + 6h2x2 + (4h3 − 4h)x+ (h4 − 2h2 + 5h) .

If we divide by ∆x = h we get

∆

∆x
(x4 − 2x2 + 5x− 3) = 4x3 + 6hx2 + (4h2 − 4)x+ (h3 − 2h+ 5) .

Part (b): As this is the second difference of the original polynomial in Part (a) taking the
∆ operator on the result from the above gives

12hx2 + 24h2x+ 14h3 − 4h .

Then dividing this by ∆x = h gives

12x2 + 24hx+ 14h2 − 4 .

Supplementary Problem 1.72

Recall the definition

f(x)(m) = f(x)f(x− h)f(x− 2h) · · · f(x− [m− 1]h) . (8)

Part (a): Using the above we have

(2x− 1)(4) = (2x− 1)(2(x− h)− 1)(2(x− 2h)− 1)(2(x− 3h)− 1)

= (2x− 1)(2x− 1− 2h)(2x− 1− 4h)(2x− 1− 6h) .

If h = 2 this is given by

(2x− 1)(4) = (2x− 1)(2x− 5)(2x− 9)(2x− 13) .

Part (b): Using the above we have

(3x+ 5)(3) = (3x+ 5)(3(x− h) + 5)(3(x− 2h) + 5)

= (3x+ 5)(3x+ 5− 3h)(3x+ 5− 6h) .

If h = 1 this is given by

(3x+ 5)(3) = (3x+ 5)(3x+ 2)(3x− 1) .
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For the next part of this problem recall that

f(x)(−m) =
1

f(x+ h)f(x+ 2h) · · · f(x+mh)
. (9)

Part (c): Using the above we have

(4x− 5)(−2) =
1

(4(x+ h)− 5)(4(x+ 2h)− 5)
=

1

(4x− 5 + 4h)(4x− 5 + 8h)
.

If h = 1 this is
1

(4x− 1)(4x+ 3)
.

Part (d): Using the above we have

(5x+ 2)(−4) =
1

(5(x+ h) + 2)(5(x+ 2h) + 2)(5(x+ 3h) + 2)(5(x+ 4h) + 2)

If h = 2 this is
1

(5x+ 12)(5x+ 22)(5x+ 32)(5x+ 42)
.

Supplementary Problem 1.73

Recall that
f(x)(m) = f(x)f(x− h)f(x− 2h) · · · f(x− [m− 1]h) ,

and thus

(ax+ b)(m) = (ax+ b)(a(x− h) + b)(a(x− 2h) + b) · · · (a(x− [m− 1]h) + b)

= (ax− b)(ax+ b− ah)(ax+ b− 2ah) · · · (ax+ b− [m− 1]ah) . (10)

From this we see that the right-hand-side has m factors.

Part (a): Notice that we have three factors so m = 3 and that we can write this product as

(3x− 2)(3x+ 5)(3x+ 12) = (3x+ 12)(3(x− h) + 12)(3(x− 2h) + 12)

= (3x+ 12)(3x+ 12− 3h)(3x+ 12− 6h) .

To have this expression have a second factor that matches the books given expression we
would need to have 12− 3h = 5 so h = 7

3
.

We can also check that when h = 7
2
we have 12− 6h = −2 which will means that the third

factor matches as well. Thus the given expression is equal to (3x+ 12)(3) with h = 7
2
.

Part (b): If we write the products from the largest value to the smallest value we get

(11 + 2x)(8 + 2x)(5 + 2x)(2 + 2x) .
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Note that there are m = 4 products in the above. From the largest factor we take

ax+ b = 11 + 2x ,

thus we may take a = 2 and b = 11. From the smallest factor we take

2 + 2x = ax+ b− [m− 1]ah = 2x+ 11− [4− 1](2)h .

Solving this we find h = 3
2
. Thus we have shown that this is (11 + 2x)(4) with h = 3

2
.

Part (c): Recall that

(ax+ b)(−m) =
1

(ax+ b+ ah)(ax+ b+ 2ah) · · · (ax+ b+mah)
.

Note that the denominator of the above has m factors and they are ordered in “increasing”
order.

Now considering
1

x(x+ 2)(x+ 4)
.

Thus to match the “smallest” factor we need to have ax+ b+ ah = x so we will take a = 1
and then must have b+ h = 0. Then to match the “largest” factor we also need to have

ax+ b+mah = x+ 4 ,

or
b+ 3h = 4 .

Thus as b = −h this means that h = 2 and so b = −2. All of this taken together mean that
the above is given by (x− 2)(−3) with h = 2.

Part (d): With
1

(2x− 1)(2x+ 3)(2x+ 7)(2x+ 11)
,

we have m = 4 factors. From the “smallest” factor we will need to have ax+ b+ah = 2x−1
so that we should have a = 2 and

b+ 2h = −1 so b = −1 − 2h .

The “largest” factor means that

ax+ b+mah = 2x+ 11 ,

or
−1 − 2h + 4(2)h = 11 ,

which means that h = 2 and then b = −1 − 4 = −5. Thus this expression is

(2x− 5)(−4) ,

with h = 2.
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Supplementary Problem 1.74

Part (a): Now if m ≥ 0 we have

∆(px+ q)(m) = ∆[(px+ q)(p(x− h) + q)(p(x− 2h) + q) · · · (p(x− [m− 1]h) + q)]

= [(p(x+ h) + q)(px+ q)(p(x− h) + q) · · · (p(x− [m− 2]h) + q)]

− [(px+ q)(p(x− h) + q)(p(x− 2h) + q) · · · (p(x− [m− 1]h) + q)]

= [(p(x+ h) + q](px+ q)(m−1) − (px+ q)(m−1)[p(x− [m− 1]h) + q]

= (px+ q)(m−1)[px+ ph+ q − px+ p(m− 1)h− q]

= pmh(px+ q)(m−1) .

This means that as ∆x = h we have

∆(px+ q)(m)

∆x
= pm(px+ q)(m−1) ,

as we were to show.

Part (b): Now if m ≤ −1 then

(px+ q)(−m) =
1

(p(x+ h) + q)(p(x+ 2h) + q)(p(x+ 3h) + q) · · · (p(x+mh) + q)
.

This means that

∆(px+ q)(−m) =
1

(p(x+ 2h) + q)(p(x+ 3h) + q) · · · (p(x+ [m+ 1]h) + q)

− 1

(p(x+ h) + q)(p(x+ 2h) + q)(p(x+ 3h) + q) · · · (p(x+mh) + q)
.

This is the fraction

1

(p(x+ 2h) + q)(p(x+ 3h) + q) · · · (p(x+mh) + q)
,

multiplied by the expression

1

p(x+ [m+ 1]h) + q
− 1

p(x+ h) + q
=

−pmh

(p(x+ [m+ 1]h) + q)(p(x+ h) + q)
.

The total expression for ∆(px + q)(−m) is then a fraction with a numerator −pmh and a
denominator that is the product

(p(x+ h) + q)(p(x+ 2h) + q) · · · (p(x+mh) + q)(p(x+ [m+ 1]h) + q) .

Notice that

1

(p(x+ h) + q)(p(x+ 2h) + q) · · · (p(x+mh) + q)(p(x+ [m+ 1]h) + q)
= (px+ q)(−(m+1)) ,
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and thus we have shown that

∆(px+ q)(−m) = −pmh(px+ q)(−(m+1)) .

This means that as ∆x = h we have

∆(px+ q)(−m)

∆x
= −pm(px+ q)(−(m+1)) ,

as we were to show.

Supplementary Problem 1.75

Part (a): There are probably several ways to write this but one way is to recognize that it
is (x2 − 1)x(−3) with h = 2.

Part (b): In working this problem I’ll assume that the last factor in the denominator is
2x+7 rather than 2x+9. Now there are probably several ways to write this but if we desire
to have

1

(2(x+ h) + 1)(2(x+ 2h) + 1)(2(x+ 3h) + 1)
=

1

(2x+ 3)(2x+ 5)(2x+ 7)
,

we would want to have

2h+ 1 = 3

4h+ 1 = 5

6h+ 1 = 7 .

This can be made true if h = 1. In that case the given expression can be written as

(2x+ 1)(2x+ 1)(−3) .

Supplementary Problem 1.76

For this problem we will use
sn+1
k = snk−1 − nsnk , (11)

with the “boundary” conditions that snn = 1 and snk = 0 for k ≤ 0 and k ≥ n+ 1.

If we take n = 1 then we have snn = s11 = 1 which we can check is correct by noting that

x(1) = s11x
1h1−1 = x1 ,

which is true.
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Next if we use Equation 11 with n = 1 and k = 1 we get

s21 = s10 − 1s11 = −1 .

If we use Equation 11 with n = 1 and k = 2 we get

s22 = s11 − 1s12 = 1 .

We can check this is correct by considering

x(2) = s21x
1h2−1 + s22x

2h2−2 = −x1h + x2 = x2 − xh = x(x− h) ,

which is true.

Next if we use Equation 11 with n = 2 and k = 1 we get

s31 = s20 − 2s21 = 0− 2(−1) = 2 .

If we use Equation 11 with n = 2 and k = 2 we get

s32 = s21 − 2s22 = −1 − 2(1) = −3 .

If we use Equation 11 with n = 2 and k = 3 we get

s33 = s22 − 2s23 = 1− 0 = 1 .

We can check this is correct by considering

x(3) = 2x1h2 − 3x2h1 + 1x3

= x3 − 3hx2 + 2h2x

= x(x2 − 3hx+ 2h2)

= x(x− h)(x− 2h) ,

which is true.

Next if we use Equation 11 with n = 3 and k = 1 we get

s41 = s30 − 3s31 = 0− 3(2) = −6 .

If we use Equation 11 with n = 3 and k = 2 we get

s42 = s31 − 3s32 = 2− 3(−3) = 11 .

If we use Equation 11 with n = 3 and k = 3 we get

s43 = s32 − 3s33 = −3 − 3(1) = −6 .

If we use Equation 11 with n = 3 and k = 4 we get

s44 = s33 − 3s34 = 1− 0 = 1 .

We can check this is correct by considering

x(4) = s41x
1h3 + s42x

2h2 + s43x
3h1 + s44x

4h0

= −6xh3 + 11x2h2 − 6x3h + x4

= x(x3 − 6hx2 + 11h2x− 6h3)

= x(x− h)(x2 − 5hx+ 6h2)

= x(x− h)(x− 2h)(x− 3h) ,

which is true.
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Supplementary Problem 1.77

We will start with Eq. 32 or
Sn+1
k = Sn

k−1 + kSn
k , (12)

where Sn
n = 1 and Sn

k = 0 when k ≤ 0 or k ≥ n+ 1.

Now starting with n = 1 we have S1
1 = 1. We can check that this is correct by considering

x1 = S1
1x

(1)h1−1 = x(1) ,

which is true.

If we take n = 1 in Equation 12 then for k = 1 this is

S2
1 = S1

0 + 1S1
1 = 1 .

For k = 2 this is
S2
2 = S1

1 + 2S1
2 = 1 + 0 = 1 .

We can check that these are correct by computing

x2 = S2
1x

(1)h2−1 + S2
2x

(2)h0

= xh+ x(2) = xh + x(x− h) = x2 ,

which is true.

If we take n = 2 in Equation 12 then for k = 1 this is

S3
1 = S2

0 + 1S2
1 = 1 .

For k = 2 this is
S3
2 = S2

1 + 2S2
2 = 1 + 2(1) = 3 .

For k = 3 this is
S3
3 = S2

2 + 3S2
3 = 1 .

We can check that these are correct by computing

x3 = S3
1x

(1)h2 + S3
2x

(2)h1 + S3
3x

(3)h0

= xh2 + 3x(2)h+ x(3)

= xh2 + 3x(x− h)h + x(x− h)(x− 2h)

= xh2 + 3x2 − 3xh2 + (x2 − hx)(x− 2h)

= 3hx2 − 2h2x+ x3 − 2hx2 − hx2 + 2h2x = x3 ,

which is true.
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Supplementary Problem 1.78

The method of Problem 1.25 is to use ”long division” to express the polynomial x6 in terms
of factorial polynomials x(k) as

xn =

n
∑

k=1

Sn
kx

(k)hn−k . (13)

In a format similar to that presented in the book we have

x6 x5 x4 x3 x2 x 1
1 1 0 0 0 0 0 0

1 1 1 1 1
2 1 1 1 1 1 1

2 6 14 30
3 1 3 7 15 31

3 18 75
4 1 6 25 90

4 40
5 1 10 65

5
6 1 15

The last element in each ”row” is S6
k for 1 ≤ k ≤ 6. Reading these elements we have

x6 = x(6) + 15x(5) + 65x(4) + 90x(3) + 31x(2) + x(1) .

Supplementary Problem 1.79

Note that the definition of the Stirling numbers of the first kind satisfy

x(n) =

n
∑

k=1

snkx
k .

When h = 1 and we take x = 1 then as x(n) = 0 if n ≥ 2 the left-hand-side of the above is
zero and we have

0 =
n
∑

k=1

snk ,

as we were to show. Note that looking at the numbers snk in Appendix A summing “across
rows” gives zero.
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Supplementary Problem 1.80

Part (a): From the definition of the Stirling numbers of the first kind we have

x(n) =
n
∑

k=1

snkx
k ,

where
x(n) = x(x− 1)(x− 2) · · · (x− [n− 1]) .

If we take x = −1 then the left-hand-side of the above is

(−1)(n) = (−1)(−2)(−3) · · · (−(n− 1))(−n) = (−1)nn! ,

while the right-hand-side is

n
∑

k=1

snk(−1)k = −sn1 + sn2 − sn3 + · · ·+ (−1)nsnn .

If we set these two expressions equal to each other and multiply everything by −1 we get

sn1 − sn2 + sn3 − · · ·+ (−1)n−1snn = (−1)n−1n! , (14)

as we were to show.

Part (b): Looking at the numbers in Appendix A we might form the hypothesis that if n
is odd then

snk < 0 for k even

snk > 0 for k odd ,

while if n is even then

snk < 0 for k odd

snk > 0 for k even .

Then in both cases Equation 14 will simplify to the desired expression.

Supplementary Problem 1.81

To start we will quote the Gregory-Newton formula

f(x) = f(a) +
∆f(a)

∆x

(x− a)(1)

1!
+

∆2f(a)

∆x2

(x− a)(2)

2!
+ · · ·+ ∆nf(a)

∆xn

(x− a)(n)

n!
+Rn . (15)

Part (a): If we have f(x) = 3x2 − 5x + 2 with h = 1 and a = 0 then f(a) = 2 and we
compute

∆f(x) = 3(x+ h)2 − 5(x+ h)− 3x2 + 5x

= 3(x2 + 2xh+ h2)− 3x2 − 5x− 5h+ 5x = 6xh + 3h2 − 5h .
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This means that ∆f(a) = 3h2 − 5h. Next we compute

∆2f(x) = 6h(x+ h)− 6hx = 6hx+ 6h2 − 6hx = 6h2

∆2f(a) = 6h2 .

Finally we have ∆3f(x) = 0. Using all of these in the Gregory-Newton formula we get

f(x) = 2 +
(3h2 − 5h)

h

x(1)

1!
+

6h2

h2

x(2)

2!
+ 0

= 2 + (3h− 5)x(1) + 3x(2) .

If h = 1 the above is
f(x) = 2− 2x(1) + 3x(2) .

We can check that the above is correct by expanding the right-hand-side as

2− 2x+ 3x(x− 1) = 2− 2x+ 3x2 − 3x = 2− 5x+ 3x2 .

Part (b): Next for f(x) = 2x4 + 5x2 − 4x+ 7 with h = 1 and a = 0 we first evaluate that
f(a) = −7. Next we compute

∆f(x) = 2[(x+ h)4 − x4] + 5[(x+ h)2 − x2]− 4h

= 2[4x3h + 6x2h2 + 4xh3 + h4] + 5[2hx+ h2]− 4h

= 8hx3 + 12h2x2 + (8h3 + 10h)x+ 2h4 + 5h2 − 4h .

This means that
∆f(a) = 2h4 + 5h2 − 4h .

Next we compute

∆2f(x) = 8h((x+ h)3 − x3) + 12h2((x+ h)2 − x2) + (8h3 + 10h)h

= 8h(3x2h+ 3xh2 + h3) + 12h2(2hx+ h2) + 8h4 + 10h2

= 24h2x2 + 24h3x+ 8h4 + 24h3x+ 12h4 + 8h4 + 10h2

= 24h2x2 + 48h3x+ 28h4 + 10h2 .

This means that
∆2f(a) = 28h4 + 10h2 .

Next we compute

∆3f(x) = 24h2(2xh+ h2) + 48h3(h) = 48h3x+ 72h4 .

This means that
∆3f(a) = 72h4 .

Next we compute
∆4f(x) = 48h4 .
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Which means that
∆4f(a) = 48h4 .

Finally we have ∆5f(x) = 0.

All of this taken together means that we can write f(x) using the Gregory-Newton formula
as

f(x) = 7 +

(

2h4 + 5h2 − 4h

h

)

(

x(1)

1!

)

+

(

28h4 + 10h2

h2

)

(

x(2)

2!

)

+

(

72h4

h3

)

(

x(3)

3!

)

+

(

48h4

h4

)

(

x(4)

4!

)

+ 0

= 7 + (2h3 + 5h − 4)x(1) + (14h2 + 5)x(2) + 12hx(3) + 2x(4) .

Lets verify that this is correct. If we call the right-hand-side of the above RHS then we can
expand the factorial monomials x(m) to get

RHS = 7 + (2h3 + 5h− 4)x+ (14h2 + 5)x(x− h) + 12hx(x − h)(x− 2h) + 2x(x− h)(x− 2h)(x − 3h)

= 7 + (2h3 + 5h− 4)x+ (14h2 + 5)x(x− h) + x(x− h)(x− 2h)[12h + 2x− 6h]

= 7 + (2h3 + 5h− 4)x+ (14h2 + 5)x(x− h) + x(x− h)(x− 2h)(6h + 2x)

= 7 + (2h3 + 5h− 4)x+ x(x− h)[14h2 + 5 + 6hx− 12h2 + 2x2 − 4hx]

= 7 + (2h3 + 5h− 4)x+ x(x− h)[2x2 + 2hx+ 2h2 + 5]

= 7 + x[2h3 + 5h− 4 + 2x3 + 2hx2 + 2h2x+ 5x− 2hx2 − 2h2x− 2h3 − 5h]

= 7 + x[−4 + 2x3 + 5x] = 2x4 + 5x2 − 4x+ 7 ,

as expected.

Supplementary Problem 1.82

From the form of Rn we see that Rn ≡ 0 if f(x) is a function such that f (n+1)(x) = 0 for all
x. This means that f(x) must be a nth order polynomial.

Supplementary Problem 1.83

To start we will assume that h 6= 1 and a 6= 0 with x = a+h. Then using symbolic operations
we have

f(x) = f(a+ h) = Ehf(a) = (1 + ∆)hf(a)

=

(

1 + h∆+
h(h− 1)

2!
∆2 +

h(h− 1)(h− 2)

3!
∆3 + · · ·

)

f(a)

= 1 + h∆f(a) +
h(h− 1)

2!
∆2f(a) +

h(h− 1)(h− 2)

3!
∆3f(a) + . . .

= 1 +∆f(a)h(1) +
∆2f(a)

2!
h(2) +

∆3f(a)

3!
h(3) + . . . .

30



From the definition of x we have that h = x− a so the above becomes

f(x) = 1 + ∆f(a)(x− a)(1) +
∆2f(a)

2!
(x− a)(2) +

∆3f(a)

3!
(x− a)(3) + . . . , (16)

which is the Gregory-Newton formula.

Supplementary Problem 1.84

Now since f(x) ≡ a0x
n+a1x

n−1+a2x
n−2+ · · ·+an−1x+an is O(xn) polynomial if we were to

write it using the Gregory-Newton formula Equation 16 we will have a0 be the coefficient of
the x(n) factor monomial. From the Gregory-Newton formula Equation 16 itself this means
that

∆nf(x)

∆xn

1

n!
= a0 .

Thus
∆n[a0x

n + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an] = n!a0h
n ,

which is what we wanted to show.

Supplementary Problem 1.85

If we take the limit as h → 0 on both sides of the Gregory-Newton formula Equation 16 then
because

lim
h→0

∆nf(a)

∆xn
=

dn

dxn
f(a) ,

and
lim
h→0

x(n) = xn ,

we get

f(x) = f(a)+
f ′(a)

1!
(x− a)1+

f (2)(a)

2!
(x− a)2+

f (3)(a)

3!
(x− a)3+ · · ·+ f (n)(a)

n!
(x− a)n+Rn ,

with Rn given by

Rn =
f (n+1)(ξ)(x− a)n+1

(n + 1)!
.

This is the Taylor series expansion.

Supplementary Problem 1.87

We will use Leibnitz’s rule to evaluate

∆3(x2 · 2x) .
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Recall Leibniz’s rule for n = 3 for the differences of a product of two function fg is given by

∆3(fg) = f∆3g +

(

3
1

)

∆f(∆2Eg) +

(

3
2

)

∆f(∆E2g) +

(

3
3

)

∆3f(E3g) .

For this problem we will take f(x) = x2 and g(x) = 2x. Then to use the above we need to
compute differences of f(x) = x2 as

∆x2 = 2hx+ h2

∆2x2 = 2h2

∆3x2 = 0 .

Also we need to compute differences of g(x) = 2x as

∆2x = 2x+h − 2x = 2x(2h − 1)

∆22x = 2x(2h − 1)2

∆32x = 2x(2h − 1)3 .

This means that

∆3(x22x) = x22x(2h − 1)3 + 3(2hx+ h2)2x+h(2h − 1)2 + 3(2h2)2x+2h(2h − 1) + 1(0) .

If h = 1 this becomes

∆3(x22x) = x22x + 3(2x+ 1)2x+1 + 6 · 2x+2 = x22x + 6(2x+ 1)2x + 24 · 2x

= (x2 + 12x+ 30)2x .

Supplementary Problem 1.88

Leibniz’s rule in this case is given by

∆n(xax) = x∆nax +

(

n
1

)

∆x(∆n−1Eax) +

(

n
2

)

∆2x(∆n−2E2ax) + · · ·

= xax(ah − 1)n + nh∆n−1ax+h + 0

= xax(ah − 1)n + nhahax(ah − 1)n−1

= xax(ah − 1)n + nh(ah − 1)n−1ax+h .

Here we have used the fact that ∆nx = 0 for n ≥ 2.

Supplementary Problem 1.89

Leibniz’s rule in this case is given by

∆n(x2ax) = x2∆nax +

(

n
1

)

∆x2(∆n−1Eax) +

(

n
2

)

∆2x2(∆n−2E2ax) + 0 .
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Here we have used the fact that ∆nx2 = 0 for n ≥ 3. Next we compute

∆x2 = 2xh + h2

∆2x2 = 2h2

∆3x2 = 0 .

This means that we have

∆n(x2ax) = x2ax(ah − 1)n + n(2xh+ h2)ah(ah − 1)n−1ax +
n(n− 1)

2
(2h2)a2h(ah − 1)n−2ax

= x2ax(ah − 1)n + (2xh+ h2)n(ah − 1)n−1ax+h + h2n(n− 1)a2h(ah − 1)n−2ax

= (ah − 1)nx2ax + 2nh(ah − 1)n−1xax+h

+ h2n(ah − 1)n−1ax+h + h2n(n− 1)a2h(ah − 1)n−2ax

= (ah − 1)nx2ax + 2nh(ah − 1)n−1xax+h + nh2(ah − 1)n−2ax+h[(ah − 1) + (n− 1)ah]

= (ah − 1)nx2ax + 2nh(ah − 1)n−1xax+h + nh2(ah − 1)n−2ax+h(nah − 1) .

Supplementary Problem 1.90

If we write down Leibnitz’s rule for differences and divide it by ∆xn = hn and then take the
limit of both sides as h → 0 we get Leibnitz’s rule for derivatives.

Supplementary Problem 1.91

Part (a): Recall that ∇f(x) = f(x)− f(x− h) and thus

∇f(x) = (2x2 + 3x− 5)− (2(x− h)2 + 3(x− h)− 5)

= 2[x2 − (x− h)2] + 3[x− (x− h)]

= 2[2hx− h2] + 3h = 4hx− 2h2 + 3h .

Part (b): Recall that δf(x) = f
(

x+ h
2

)

− f
(

x− h
2

)

and thus

δf(x) = 2

[

(

x+
h

2

)2

−
(

x− h

2

)2
]

+ 3

[(

x+
h

2

)

−
(

x− h

2

)]

= 2

[

x2 + hx+
h2

4
− x2 + hx− h2

4

]

+ 3h

= 4hx+ 3h .

Part (c): Using the above expression for ∇f(x) we have

∇2f(x) = ∇(∇f(x)) = ∇(4hx− 2h2 + 3h)

= 4hx− 4h(x− h) = 4h2 .
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Part (d): Using the above expression for δf(x) we have

δ2f(x) = δ(δf(x)) = δ(4hx+ 3h) = 4h

[(

x+
h

2

)

−
(

x− h

2

)]

= 4h(h) = 4h2 .

Supplementary Problem 1.92

We want to evaluate
(∇2 − 3∇δ + 2δ2)(x2 + 2x) .

To do that first we evaluate

∇(x2 + 2x) = x2 + 2x− (x− h)2 − 2(x− h)

= x2 + 2x− (x2 − 2hx+ h2)− 2x+ 2h

= 2hx− h2 + 2h .

Now using this result we evaluate

∇2(x2 + 2x) = 2hx− (2h(x− h)) = 2h2 .

Next we compute

δ(x2 + 2x) =

(

x+
h

2

)2

+ 2

(

x+
h

2

)

−
(

x− h

2

)2

− 2

(

x− h

2

)

=

(

x2 + hx+
h2

4

)

+ 2

(

x+
h

2

)

−
(

x2 − hx+
h2

4

)

− 2

(

x− h

2

)

= 2hx+ 2h .

Using this result we have

δ2(x2 + 2x) = 2h

(

x+
h

2

)

− 2h

(

x− h

2

)

= h2 + h2 = 2h2 .

In addition we have

∇δ(x2 + 2x) = ∇(2hx+ 2h) = 2hx− 2h(x− h) = 2h2 .

Using these “parts” we can compute

(∇2 − 3∇δ + 2δ2)(x2 + 2x) = 2h2 − 3(2h2) + 2(2h2) = 0 .
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Supplementary Problem 1.93

Part (a): We desire to prove that

∇2 = (∆E−1)2 = ∆2E−2 .

To start that process, first recall that ∇f(x) = f(x)− f(x− h) so that the left-hand-side of
the above can be expressed as

∇2f(x) = f(x)− f(x− h)− (f(x− h)− f(x− 2h)) = f(x)− 2f(x− h) + f(x− 2h) .

Next consider

(∆E−1)2f(x) = (∆E−1)(∆E−1)f(x) = (∆E−1)∆f(x− h)

= (∆E−1)(f(x)− f(x− h)) = ∆(f(x− h)− f(x− 2h))

= f(x)− f(x− h)− (f(x− h)− f(x− 2h))

= f(x)− 2f(x− h) + f(x− 2h) ,

which is the same expression we derived for ∇2f(x) showing that ∇2 = (∆E−1)2.

Finally lets evaluate

∆2E−2f(x) = ∆2f(x− 2h)

= ∆(f(x− h)− f(x− 2h)) = f(x)− f(x− h)− (f(x− h)− f(x− 2h))

= f(x)− 2f(x− h) + f(x− 2h) ,

which is the same expression we derived for ∇2f(x) and (∆E−1)2f(x).

Part (b): We have shown above that

∇n = ∆nE−n , (17)

for n = 2. For n = 1 note that

∇f(x) = f(x)− f(x− h) ,

while
∆E−1f(x) = ∆f(x− h) = f(x)− f(x− h) ,

which equals ∇f(x) from above. This shows that ∇ = ∆E−1 which is Equation 17 for n = 1.
Thus Equation 17 holds for 1 ≤ n ≤ 2.

Perhaps a simpler way to show some of the above is to note that

∇f(x) = f(x)− f(x− h)

= f(x− h+ h)− f(x− h)

= E−1(f(x+ h)− f(x))

= E−1∆f(x) ,
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and that
∇f(x) = f(x)− f(x− h) = ∆f(x− h) = ∆E−1f(x) .

Thus we have that
∇ = E−1∆ = ∆E−1 .

Then to prove Equation 17 for general n we will use induction and some of the results above.
We have

∇n+1 = ∇∇n = ∇(∆nE−n)

= (∆E−1)(∆nE−n) = ∆∆nE−1E−n

= ∆n+1E−(n+1) ,

as we were to show. Here we have used the fact that E−1∆n = ∆nE−1 which we can get by
applying the identity E−1∆ = ∆E−1 multiple (n) times.

Supplementary Problem 1.94

Evaluating ∇δf(x) we have

∇δf(x) = ∇
(

f

(

x+
h

2

)

− f

(

x− h

2

))

= f

(

x+
h

2

)

− f

(

x− h

2

)

−
(

f

(

x− h

2

)

− f

(

x− 3h

2

))

= f

(

x+
h

2

)

− 2f

(

x− h

2

)

+ f

(

x− 3h

2

)

.

Evaluating δ∇f(x) we have

δ∇f(x) = δ(f(x)− f(x− h))

= f

(

x+
h

2

)

− f

(

x− h

2

)

−
(

f

(

x− h

2

)

− f

(

x− 3h

2

))

= f

(

x+
h

2

)

− 2f

(

x− h

2

)

+ f

(

x− 3h

2

)

.

As we see that ∇δf(x) = δ∇f(x) we have that the two operators are commutable.

Supplementary Problem 1.95

We are asked to prove that

E =

(

δ

2
+

√

1 +
δ2

4

)2

.

To start this process we will manipulate this expression some to “remove” the square root in
favor of an identity that involves only products of what I’ll call “simple” operators. Note that
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since E is an increment operator factors like Eα are not really complicated since Eαf(x) =
f(x+ α). This is different from operators like

√

1 +
δ2

4
,

which would have to be expressed in their infinite Taylor series expansion as a function of
δ2.

With that motivation we can write the original expression as

E1/2 − δ

2
=

√

1 +
δ2

4
,

or squaring
(

E1/2 − δ

2

)2

= 1 +
δ2

4
. (18)

Now the left-hand-side (LHS) of this is

LHS =

(

E1/2 − δ

2

)2

=

(

E1/2 − δ

2

)(

E1/2 − δ

2

)

= E − 1

2
E1/2δ − 1

2
δE1/2 +

1

4
δ2 .

Note that E1/2δ = δE1/2 as

E1/2δf(x) = E1/2

(

f

(

x+
h

2

)

− f

(

x− h

2

))

= f(x+ h)− f(x) = ∆f(x)

δE1/2f(x) = δf

(

x+
h

2

)

= f(x+ h)− f(x) = ∆f(x) .

This means that as operators we have

−1

2
E1/2δ − 1

2
δE1/2 = −∆ = −(E − 1) = −E + 1 .

Therefore we have shown that the left-hand-side takes the form

LHS = E − 1

2
E1/2δ − 1

2
δE1/2 +

1

4
δ2

= E − E + 1 +
1

4
δ2 = 1 +

1

4
δ2 ,

the same as the right-hand-side of Equation 18.

Supplementary Problem 1.96

From what we want to prove we have

∇∆f(x) = ∇(f(x+ h)− f(x))

= f(x+ h)− f(x)− (f(x)− f(x− h))

= f(x+ h)− 2f(x) + f(x− h) .
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Next we have

∆∇f(x) = ∆(f(x)− f(x− h))

= f(x+ h)− f(x)− (f(x)− f(x− h))

= f(x+ h)− 2f(x) + f(x− h) ,

which is the same as ∇∆f(x).

Next lets expand

δ2f(x) = δ

(

f

(

x+
h

2

)

− f

(

x− h

2

))

= (f(x+ h)− f(x))− (f(x)− f(x− h))

= f(x+ h)− 2f(x) + f(x− h) ,

which is the same as the two expressions above.

Supplementary Problem 1.97

Both expressions are true. To show this note that

δx =

(

x+
h

2

)

−
(

x− h

2

)

= h

δy = f

(

x+
h

2

)

− f

(

x− h

2

)

.

Thus

lim
δx→0

δy

δx
=

dy

dx
.

In the same way δny is n − 1 applications of δ on “δy” so the limiting procedure applied
above would yield higher order derivatives.

Supplementary Problem 1.98

Part (a): We want to show that M = 1
2
(1 + E). From the definition of M we have

Mf(x) =
1

2
(f(x+ h) + f(x)) =

1

2
(Ef(x) + f(x)) =

1

2
(E + 1)f(x) .

Thus M = 1
2
(1 + E).

Next we consider the operator E − 1
2
∆ on f(x). We have

(

E − 1

2
∆

)

f(x) = f(x+ h)− 1

2
(f(x+ h)− f(x)) =

1

2
(f(x+ h) + f(x)) = Mf(x) ,
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thus E − 1
2
∆ = M .

Part (b): We want to show µ = M
E1/2 or µE1/2 = M . Consider µE1/2 on f(x). We find

µE1/2f(x) = µf

(

x+
h

2

)

=
1

2

[

f(x+ h) + f

(

x+
h

2
− h

2

)]

=
1

2
[f(x+ h) + f(x)] = Mf(x) .

Supplementary Problem 1.99

Part (a): To start we will prove that M∆ = ∆M . The left-hand-side of this applied to a
function f(x) is

M∆f(x) = M(f(x+ h)− f(x))

=
1

2
[(f(x+ 2h)− f(x+ h)) + (f(x+ h)− f(x))]

=
1

2
[f(x+ 2h)− f(x)] .

While the right-hand-side applied to a function f(x) is

∆Mf(x) = ∆

[

1

2
(f(x+ h) + f(x))

]

=
1

2
[(f(x+ 2h) + f(x+ h))− (f(x+ h) + f(x))]

=
1

2
[f(x+ 2h)− f(x)] .

As these two expression are equal we have shown that M∆ = ∆M .

Next we want to prove that MD = DM . The left-hand-side of this expression applied to a
function f(x) is

MDf(x) = Mf ′(x) =
1

2
(f ′(x+ h) + f ′(x)) ,

while the right-hand-side applied to f(x) is

DMf(x) = D

(

1

2
(f(x+ h) + f(x))

)

=
1

2
(f ′(x+ h) + f ′(x)) .

As these two expressions are equal we conclude that MD = DM .

Finally, we want to prove that ME = EM . The two sides of this expression applied to a
function f(x) are given by

MEf(x) = Mf(x+ h) =
1

2
(f(x+ 2h) + f(x+ h))

EMf(x) = E

(

1

2
(f(x+ h) + f(x))

)

=
1

2
(f(x+ 2h) + f(x+ h)) .

As these two expressions are the same we conclude that ME = EM .
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Supplementary Problem 1.100

Part (a): We want to show that

∆ = µδ +
1

2
δ2 .

The first term in the right-hand-side of this expression applied on a function f(x) is

µδf(x) = µ

(

f

(

x+
h

2

)

− f

(

x− h

2

))

=
1

2
(E1/2 + E−1/2)

(

f

(

x+
h

2

)

− f

(

x− h

2

))

=
1

2
(f(x+ h)− f(x) + f(x)− f(x− h))

=
1

2
(f(x+ h)− f(x− h)) .

Next notice that the second term above in the right-hand-side (on a function f(x)) is

1

2
δ2f(x) =

1

2
(E1/2 − E−1/2)2f(x) =

1

2
(E − 2 + E−1)f(x)

=
1

2
(f(x+ h)− 2f(x) + f(x− h)) .

Using both of these and adding we see that

µδ +
1

2
δ2 = f(x+ h)− f(x) ,

which is the same as the left-hand-side showing the desired identity.

Another proof of this identity uses the E notation. From what µ and δ are in terms of E we
can write

µδ +
1

2
δ2 =

1

2
(E1/2 + E−1/2)(E1/2 − E−1/2) +

1

2
(E1/2 −E−1/2)2

=
1

2
(E − 1 + 1−E−1) +

1

2
(E − 2 + E−1)

=
1

2
E − 1

2
E−1 +

1

2
E − 1 +

1

2
E−1 = E − 1 ≡ ∆ .

Supplementary Problem 1.101

Part (a): We have

(A− B)(A+B) = A(A +B)− B(A+B)

= A2 + AB −BA−B2

= A2 − B2 + AB −BA .
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Part (b): This will be true if (AB − BA)f(x) = 0 or ABf(x) = BAf(x).

Part (c): From the above for (∆−D)(∆+D)x2 = (∆2−D2)x2 to be true we need to have
(∆D −D∆)x2 = 0. These are true because

∆Dx2 = ∆(2x) = 2h

D∆x2 = D((x+ h)2 − x2) = 2(x+ h)− 2x = 2h .

We can also compute

(∆2 −D2)x2 = ∆((x+ h)2 − x2)−D(2x)

= (x+ 2h)2 − (x+ h)2 − (x+ h)2 + x2 − 2

= (x+ 2h)2 − 2(x+ h)2 + x2 − 2

= x2 + 4hx+ 4h2 − 2(x2 + 2hx+ h2) + x2 − 2

= 4hx+ 4h2 − 4hx− 2h2 − 2 = 2h2 − 2 .

and

(∆−D)(∆ +D)x2 = (∆−D)((x+ h)2 − x2 + 2x)

= (∆−D)(2hx+ 2x+ h2)

= (2h2 + 2h− (2h+ 2)) = 2h2 − 2 ,

which is the same as above.

Supplementary Problem 1.102

Part (a): We have

∆ sin(px+ q) = sin(p(x+ h) + q)− sin(px+ q) .

To simplify this recall the trigonometric identity

sin(θ1)− sin(θ2) = 2 sin

(

θ1 − θ2
2

)

cos

(

θ1 + θ2
2

)

. (19)

Using this we can write ∆ sin(px+ q) as

∆ sin(px+ q) = 2 sin

(

p(x+ h) + q − px− q

2

)

cos

(

2px+ 2q + ph

2

)

= 2 sin

(

ph

2

)

cos

(

px+ q +
ph

2

)

.

But as
cos(θ) = sin

(

θ +
π

2

)

, (20)

the above can be written

∆ sin(px+ q) = 2 sin

(

ph

2

)

sin

(

px+ q +
ph+ π

2

)

,
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as we were to show.

Part (b): We have

∆ cos(px+ q) = cos(p(x+ h) + q)− cos(px+ q) .

To simplify this recall the trigonometric identity

cos(θ1)− cos(θ2) = −2 sin

(

θ1 + θ2
2

)

sin

(

θ1 − θ2
2

)

. (21)

Using this we can write ∆ cos(px+ q) as

∆ cos(px+ q) = −2 sin

(

px+ q +
ph

2

)

sin

(

ph

2

)

= 2 sin

(

ph

2

)[

− sin

(

px+ q +
ph

2

)]

.

But as
− sin(θ) = cos

(

θ +
π

2

)

, (22)

the above can be written

∆ cos(px+ q) = 2 sin

(

ph

2

)

cos

(

px+ q +
ph+ π

2

)

,

as we were to show.

Supplementary Problem 1.103

Part (a-b): From the previous problem each application of ∆ produces “changes” the value
of q by adding 1

2
(ph+ π) to it and produces factor 2 sin

(

ph
2

)

. Thus we can conclude that

∆m sin(px+ q) =

(

2 sin

(

ph

2

))m

sin
(

px+ q +
m

2
(ph + π)

)

.

A similar argument gives the functional form for ∆m cos(px+ q).

Supplementary Problem 1.104

The derivative we seek to evaluate can be written as

dm

dxm
sin(x) = lim

h→0

∆m sin(x)

hm
.

Using the results from the previous problem with p = 1 and q = 0 we have

lim
h→0

∆m sin(x)

hm
= lim

h→0

(2 sin(h/2))m sin(x+ (m/2)(h+ π))

hm
.
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Now note we could show that

lim
h→0

2 sin(h/2)

h
=

2(h/2)

h
= 1 .

This means that the limit above is equal to

1m · sin
(

x+
mπ

2

)

= sin
(

x+
mπ

2

)

,

as we were to show.

Part (b): Here the limit we need to consider

dm

dxm
cos(x) = lim

h→0

∆m cos(x)

hm
.

Using the results from the previous problem with p = 1 and q = 0 we have

lim
h→0

∆m cos(x)

hm
= lim

h→0

(2 sin(h/2))m cos(x+ (m/2)(h+ π))

hm
.

As before we can evaluate this limit to get

dm

dxm
cos(x) = cos

(

x+
mπ

2

)

.

Supplementary Problem 1.105

Starting with the left-hand-side and the definition of

(

n
r

)

we have

(

n
r

)

+

(

n
r + 1

)

=
n!

(n− r)!r!
+

n!

(n− (r + 1))!(r + 1)!

=
n!

(n− r)!r!
+

n!

(n− r − 1)!(r + 1)!

=
n!

(n− r − 1)!r!

[

1

n− r
+

1

r + 1

]

=
n!

(n− r − 1)!r!

[

r + 1 + n− r

(n− r)(r + 1)

]

=
(n+ 1)!

(n− r)!(r + 1)!
,

as we were to show.
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Supplementary Problem 1.106

Part (a): From the definition of ∆ we have

∆ tan(x) =
sin(x+ h)

cos(x+ h)
− sin(x)

cos(x)

=
sin(x+ h) cos(x)− sin(x) cos(x+ h)

cos(x) cos(x+ h)

=
sin(x) cos(x) cos(h) + cos2(x) sin(h)− cos(x) sin(x) cos(h) + sin2(x) sin(h)

cos(x) cos(x+ h)

=
sin(h)

cos(x) cos(x+ h)
=

tan(h)
cos(x)
cos(h)

cos(x+ h)

=
tan(h)

cos(x)
cos(h)

(cos(x) cos(h)− sin(x) sin(h))

=
tan(h)

cos2(x)− cos(x) sin(x) tan(h)
=

tan(h) sec2(x)

1− tan(x) tan(h)
,

as we were to show.

Part (b): Using the above we have

d

dx
tan(x) = lim

h→0

1

h

(

tan(h) sec2(x)

1− tan(x) tan(h)

)

.

As

lim
h→0

tan(h)

h
= 1 ,

we have that the above limit tends to

sec2(x) ,

as we were to show.

Supplementary Problem 1.107

Part (a): Using the definition of ∆ we have

∆ tan−1(x) = tan−1(x+ h)− tan−1(x) .

Recall that

tan−1(x)− tan−1(y) = tan−1

(

x− y

1 + xy

)

.

This means that

∆ tan−1(x) = tan−1

(

x+ h− x

1 + (x+ h)x

)

= tan−1

(

h

1 + x2 + xh

)

= tan−1

(

h

x2 + hx+ 1

)

,
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as we were to show.

Part (b): From the definition of the derivative we have

d

dx
tan−1(x) = lim

h→0

1

h
∆tan−1(x) = lim

h→0

1

h
tan−1

(

h

x2 + hx+ 1

)

.

Recall the Taylor series for tan−1(x) where we have

tan−1(x) = x− x3

3
+

x5

5
− · · · .

This means that

tan−1

(

h

x2 + hx+ 1

)

≈ h

x2 + hx+ 1
,

which means that

lim
h→0

1

h
tan−1

(

h

x2 + hx+ 1

)

≈ lim
h→0

(

1

x2 + hx+ 1

)

=
1

1 + x2
,

For the last part using the chain rule we have (with v = x
a
) that

d

dx
tan−1

(x

a

)

=
d

dv
tan−1(v)

dv

dx
=

1

a

d

dv
tan−1(v) .

Using what we know about the derivative of tan−1(v) we conclude that

d

dx
tan−1

(x

a

)

=
1

a(1 + v2)
=

1

a
(

1−
(

x
a

)2
) =

a

a2 + x2
,

as we were to show.

Supplementary Problem 1.108

Part (a): We start with the definition of ∆ and have

∆ sin−1(x) = sin−1(x+ h)− sin−1(x) .

Then using the identity

arcsin(x)± arcsin(y) = arcsin(x
√

1− y2 ± y
√
1− x2) , (23)

we can write
∆ sin−1(x) = sin−1((x+ h)

√
1− x2 − x

√

1− (x+ h)2) .

Part (b): Using this we would then have

d

dx
sin−1(x) = lim

h→0

∆sin−1(x)

h
= lim

h→0

(

sin−1((x+ h)
√
1− x2 − x

√

1− (x+ h)2)

h

)

.
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This is a limit of the type 0/0 and we would normally use L’Hospital’s rule to evaluate it.
Here we will use a Taylor expansions. To do this recall that when x ≪ 1 we have

sin−1(x) = x+
x3

6
+

3x5

40
+ · · · , (24)

This means that for small h keeping only one term we have

sin−1((x+ h)
√
1− x2 − x

√

1− (x+ h)2)

h
≈ (x+ h)

√
1− x2 − x

√

1− (x+ h)2

h
.

Next note that

√

1− (x+ h)2 =
√
1− x2 − 2xh− h2 ≈

√
1− x2 − 2xh =

√
1− x2

√

1− 2x

1− x2
h .

Then using the Taylor series

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + · · · , (25)

we have that

√

1− (x+ h)2 ≈
√
1− x2

[

1− x

1− x2
h+O(h2)

]

=
√
1− x2 − x√

1− x2
h +O(h2) .

Using all of this we can now evaluate

lim
h→0

∆sin−1(x)

h
= lim

h→0

(x+ h)
√
1− x2 − x

√
1− x2 + x2

√
1−x2

h

h

=
√
1− x2 +

x2

√
1− x2

=
1− x2 + x2

√
1− x2

=
1√

1− x2
,

as we were to show.

For the last part using the chain rule we have (with v = x
a
) that

d

dx
sin−1

(x

a

)

=
d

dv
sin−1(v)

dv

dx
=

1

a

d

dv
sin−1(v) .

Using what we know about the derivative of sin−1(v) we conclude that

d

dx
sin−1

(x

a

)

=
1

a
√
1− v2

=
1

a
√

1−
(

x
a

)2

=
1√

a2 − x2
,

as we were to show.
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Supplementary Problem 1.109

Part (a): Recall that

x(n) =
n
∑

k=1

snkx
khn−k .

If h = 1 this is

x(n) =
n
∑

k=1

snkx
k .

Lets take k derivatives of both sides of this expression, divide by k!, and evaluate at x = 0.
Then on the right-hand-side we get snk and the identity

snk =
1

k!
Dkx(n)

∣

∣

x=0
,

as we were to show.

Part (b): Recall that

xn =

n
∑

k=1

Sn
kx

(k)hn−k .

If h = 1 this is

xn =
n
∑

k=1

Sn
kx

(k) . (26)

Now note that
∆kx(p) = 0 ,

if p < k. If k = p we have
∆kx(k) = k! ,

when h = 1 and if k < p we have

∆kx(p) = O(x(p−k)) ,

which vanishes when x = 0. Thus to derive the desired result for this part we start with
Equation ??, then we take ∆k of both sides, divide by k!, and evaluate at x = 0. From the
above this gives

Sn
k =

1

k!
∆kxn

∣

∣

x=0
,

as we were to show.

Supplementary Problem 1.110

From Part (b) in the previous problem we have

Sn
k =

1

k!
∆kxn

∣

∣

x=0
.
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Recalling that when ∆ = E − 1 we can write the above as

Sn
k =

1

k!
(E − 1)kxn

∣

∣

x=0

=
1

k!

[

k
∑

p=0

(

k
p

)

Ep(−1)k−p

]

xn

∣

∣

∣

∣

∣

x=0

.

Now when h = 1 we can write this as

Sn
k =

(−1)k

k!

k
∑

p=0

(

k
p

)

(−1)p(x+ p)n

∣

∣

∣

∣

∣

x=0

=
(−1)k

k!

k
∑

p=0

(

k
p

)

(−1)ppn ,

which is what we wanted to show.

Supplementary Problem 1.111

Part (a): To prove this we have

E[f(x)g(x)] = f(x+ h)g(x+ h) = E[f(x)]E[g(x)] .

Part (b): To prove this we have

E[f(x)]n = f(x+ h)n = (E[f(x)])n .

Part (c): To prove this we have

Em[f1(x)f2(x) · · · fn(x)] = f1(x+mh)f2(x+mh) · · · fn(x+mh)

= Emf1(x)E
mf2(x) · · ·Emfn(x) .

Supplementary Problem 1.112

To show that x(m)x(n) 6= x(m+n) we can evaluate both sides for particular values of m = 1
and n = 2. If m = 1 and n = 2 then

x(m)x(n) = x(1)x(2) = x · x(x− h) = x2(x− h) ,

while
x(m+n) = x(3) = x(x− h)(x− 2h) .

These are not equal for all x.
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Supplementary Problem 1.113

Using operator arithmetic we have that

∆n[f(x)g(x)] = (E − 1)n(f(x)g(x))

=

(

n
∑

k=0

(

n
k

)

Ek(−1)n−k

)

f(x)g(x)

=

n
∑

k=0

(−1)k+n

(

n
k

)

f(x+ kh)g(x+ kh) ,

which is what we were to show. This is different than Liebnitz’s rule in that the above
involves only products increments of f(x) and g(x) where as Liebnitz’s rule involves products
of differences i.e. products involving the ∆ operator.

Supplementary Problem 1.114

Using the previous problem with g(x) ≡ 1 we have that

∆nf(x) =

n
∑

k=0

(−1)k+n

(

n
k

)

f(x+ kh) .

If h = 1 this is

∆nf(x) =
n
∑

k=0

(−1)k+n

(

n
k

)

f(x+ k) .

If we take f(x) = xn this becomes

∆nxn =
n
∑

k=0

(

n
k

)

(−1)n−k(x+ k)n .

Now if we take x = 0 in the above notice that the right-hand-side RHS is equal to

RHS =
n
∑

k=0

(

n
k

)

(−1)n−kkn

= nn − n(n− 1)n +

(

n
2

)

(n− 2)n −
(

n
3

)

(n− 3)n + · · · ,

which is the right-hand-side of the expression we are trying to derive.

We now need to evaluate the left-hand-side LHS i.e. ∆nxn|x=0 is equal to. From miscella-
neous problem 1.41 when

f(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · · ,

we have that
∆nf(x) = n!a0h

n .

If a0 = 1 and h = 1 we see that

LHS = ∆nxn|x=0 = n! .
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Supplementary Problem 1.115

Part (a): Using Taylor series in “operator form” we have

Ef(x) = f(x+ h) =

[

1 + hD +
h2D2

2!
+

h3D3

3!
+ · · ·

]

f(x) .

This means that

Ef(x)− f(x) =

(

hD +
h2D2

2!
+

h3D3

3!
+ · · ·

)

f(x) ,

and thus that

∆ ≡
(

hD +
h2D2

2!
+

h3D3

3!
+ · · ·

)

.

Part (b-c): Given the expression for ∆ above we would have

∆2 =

(

hD +
h2D2

2!
+

h3D3

3!
+ · · ·

)2

,

and

∆3 =

(

hD +
h2D2

2!
+

h3D3

3!
+ · · ·

)3

.

In the python code problem 115.py we symbolically evaluate both of these giving results
that match those in the book.

Supplementary Problem 1.116

Part (a): To evaluate ∆2f(x) lets use the result of the previous problem where we derived
an expression for ∆2 in terms of Dk. Notice that

Dk(3x3 − 2x2 + 4x− 6) = 0 ,

if k ≥ 4. Thus for f(x) = 3x3 − 2x2 + 4x− 6 we have that

∆2f(x) = (h2D2 + h3D3)f(x) .

We now compute

D(3x3 − 2x2 + 4x− 6) = 9x2 − 4x+ 4

D2(3x3 − 2x2 + 4x− 6) = 18x− 4

D3(3x3 − 2x2 + 4x− 6) = 18 .

This means that

∆2(3x3 − 2x2 + 4x− 6) = h2(18x− 4) + h3(18) = 18h3 + 18h2x− 4h2 .
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Lets check these results by direct evaluation. We have

∆(3x3 − 2x2 + 4x− 6) = 3((x+ h)3 − x3)− 2((x+ h)2 − x2) + 4h

= 3(3x2h+ 3xh2 + h3)− 2(2hx+ h2) + 4h

= 9hx2 + 9h2x+ 3h3 − 4hx− 2h2 + 4h

= 9hx2 + (9h2 − 4h)x+ 3h3 − 2h2 + 4h .

Using this we can compute

∆2(3x3 − 2x2 + 4x− 6) = 9h((x+ h)2 − x2) + (9h2 − 4h)h

= 9h(2hx+ h2) + 9h3 − 4h2

= 18h3 + 18h2x− 4h2 ,

which is the same as we derived earlier.

Part (b): Here we want to evaluate

∆3((x2 + x)2) = ∆3(x4 + 2x3 + x2) .

Using the expansion for ∆3 in terms of Dk derived in the previous problem but keeping only
the nonzero terms (when applied to x4 + 2x3 + x2) gives

∆3 = h3D3 +
3h4D4

2
.

Thus we need to compute

D(x4 + 2x3 + x2) = 4x3 + 6x2 + 2x

D2(x4 + 2x3 + x2) = 12x2 + 12x+ 2

D3(x4 + 2x3 + x2) = 24x+ 12

D4(x4 + 2x3 + x2) = 24

Dk(x4 + 2x3 + x2) = 0 for k ≥ 5 .

Using these we compute

∆3((x2 + x)2) = h3(24x+ 12) +
3

2
h4(24) = 24h3x+ 12h3 + 36h4 .

Lets check these results by direct evaluation. In this case to do that we will write each of
monomial xk in x4 + 2x3 + x2 in terms of falling factorial functions x(l). Note the comment
at the start of this chapter on the expansion of x4. We have

x4 + 2x3 + x2 = (x(4) + 6hx(3) + 7h2x(2) + h3x(1))

+ 2(x(3) + 3hx(2) + h2x(1))

+ (x(2) + hx(1))

= x(4) + (6h+ 2)x(3) + (7h2 + 6h+ 1)x(2) + (h3 + 2h2 + h)x(1) .
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Then using ∆x(m) = mx(m−1)h we have

∆(x4 + 2x3 + x2) = 4hx(3) + (18h2 + 6h)x(2) + (14h3 + 12h2 + h)x(1) + (h4 + 2h3 + h2)

∆2(x4 + 2x3 + x2) = 12h2x(2) + (36h3 + 12h2)x(1) + (14h4 + 12h3 + h2)

∆3(x4 + 2x3 + x2) = 24h3x(1) + (36h4 + 12h3) .

This last expression agrees with what we computed earlier.

Supplementary Problem 1.117

The U(t) function in Problem 1.33 is given by

U(t) = f(t)− pn(t)−K(x)(t− x0)(t− x1) · · · (t− xn) ,

and by construction has n+2 roots for t ∈ {x, x0, x1, · · · , xn}. Without loss of generally lets
assume that the points fall in the order listed i.e. that

x ≤ x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn .

Rolle’s theorem gives us that between any two of these roots say the n+ 1 pairs

(x, x0) , (x0, x1) · · · (xn−1, xn) ,

there exist n+1 points yj such that U ′(yj) = 0 for 0 ≤ j ≤ n and due to the ordering of the
pairs above we also have that

y0 ≤ y1 ≤ y2 ≤ · · · ≤ yn .

Here

y0 ∈ (x, x0)

y1 ∈ (x0, x1)

...

yn ∈ (xn−1, xn) .

If we consider Rolle’s theorem for the pairs (yj, yj+1) we can get n roots zk such that U ′′(zk) =
0 for 0 ≤ k ≤ n− 1. We will continue this pattern to get the desired result.

The pattern is then

• There exists n+ 2 roots of U(t).

• There exists n+ 1 roots of U ′(t).

• There exists n roots of U ′′(t).

• Continuing

• There exist two roots of U (n)(t).

• There exist one roots of U (n+1)(t).
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Chapter 2: Applications of the Difference Calculus

Supplementary Problem 2.50

Part (a):
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