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Introduction

This is a solution manual to some of the problems in the excellent textbook:

Adaptive Signal Processing
by Bernard Widrow and Samuel D. Stearns

I’m currently working aggressively on finishing more of the problems in this book. In the
meantime I’m publishing my partial results for any student who does not want to wait for
the full book to be finished.

One of the benefits of this manual is that I heavily use the R statistical language to perform
any of the needed numerical computations (rather than do them ”by-hand”). Thus if you
work though this manual you will be learning the R language at the same time as you learn
statistics. The R programming language is one of the most desired skills for anyone who
hopes to use data/statistics in their future career. The R code can be found at the following
location:

https://waxworksmath.com/Authors/N_Z/Widrow/widrow.html

As a final comment, I’ve worked hard to make these notes as good as I can, but I have no
illusions that they are perfect. If you feel that that there is a better way to accomplish
or explain an exercise or derivation presented in these notes; or that one or more of the
explanations is unclear, incomplete, or misleading, please tell me. If you find an error of
any kind – technical, grammatical, typographical, whatever – please tell me that, too. I’ll
gladly add to the acknowledgments in later printings the name of the first person to bring
each problem to my attention.
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Chapter 2: The Adaptive Linear Combiner

Exercise Solutions

Exercise 1

Part (a): Selecting almost any two matrices will show that AB 6= BA in general. For
example if we take

A =

[

2 1
0 1

]

B =

[

1 0
−1 3

]

,

then we see that

AB =

[

2 1
0 1

] [

1 0
−1 3

]

=

[

1 3
−1 3

]

BA =

[

1 0
−1 3

] [

2 1
0 1

]

=

[

2 1
−2 2

]

.

Note that AB 6= BA.

Part (b): This follows from the definition of the matrix product. The ijth element of the
product A(B + C) can be written as

(A(B + C))ij =
∑

k

Aik(B + C)kj

=
∑

k

AikBkj +
∑

k

AikCkj

= (AB)ij + (AC)ij .

The last line is the sum of the ijth elements of the product AB and AC.

Part (c): We first show that (AB)T = BTAT . Recall that the ijth element of the product
AB is

(AB)ij =
∑

k

AikBkj .

This means that the ijth element of (AB)T is then

(AB)ji =
∑

k

AjkBki .

Next, the product of BTAT has an ijth element given by

(BTAT )ij =
∑

k

(BT )ik(A
T )kj =

∑

k

BkiAjk =
∑

k

AjkBkj .
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Notice that this is equal to the ijth element of (AB)T .

Next we show that (AB)−1 = B−1A−1. To do that we will simply verify that the matrix
B−1A−1 has the required properties to be the inverse of the matrix AB. We have

B−1A−1 ·AB = I ,

and that
AB · B−1A−1 = I ,

showing that the matrix product B−1A−1 is the matrix inverse of AB.

Part (d): If A has an inverse then

A · A−1 = I .

If we take the transpose of this and use the above condition on the transpose of a product
we have

(A−1)TAT = I .

As A is symmetric this means that

(A−1)TA = I .

If we multiply “on-the-left” by A−1 we get

(A−1)T = A−1 .

This states that A−1 is symmetric.

Exercise 2

The book’s equation 2.13 is given by

MSE = E[d2k] +W TRW − 2P TW . (1)

If we write this in terms of the components of the matrices and the vectors above we have

MSE = E[d2k] +
∑

t,s

wtRtsws − 2
∑

t

Ptwt .

This means that taking the derivative of this with respect to wl gives

∂MSE

∂wl

=
∑

t,s

δtlRtsws +
∑

t,s

wtRtsδsl − 2
∑

t

Ptδtl

=
∑

s

Rlsws +
∑

t

wtRtl − 2Pl .
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Now the matrix R is symmetric so Rtl = Rlt and the above is

∂MSE

∂wl
=
∑

s

Rlsws +
∑

t

Rltwt − 2Pl

= 2
∑

s

Rlsws − 2Pl .

In vector form this is
∂MSE

∂W
= 2RW − 2P ,

as we were to show.

Exercise 3

For this example we have expressions for R, P , and W ∗ given in the book. Using the
calculated weight vector W ∗ we would have that

yk = w0xk + w1xk−1

= 2.752764xk − 3.402603xk−1

= 2.752764 sin

(

πk

5

)

− 3.402603 sin

(

π(k − 1)

5

)

.

In the R code for this problem we plot this as a function of k along with dk and we see that
the two curves overlap (are identical) as they should be.

Exercise 4

From Figure 2.6 (and the discussion in the text) the square of the root-mean-square or MSE
is denoted by ξ and for this example we have

ξ = 0.5(w2
0 + w2

1) + w0w1 cos

(

2π

N

)

+ 2w1 sin

(

2π

N

)

+ 2 .

Then to satisfy the conditions requested we should have

√

ξ = 2 so ξ = 4 .

Then any weights (w0, w1) that satisfies

0.5(w2
0 + w2

1) + w0w1 cos

(

2π

N

)

+ 2w1 sin

(

2π

N

)

= 2 ,

would work. There will be a family of numbers that will make this true.
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Exercise 5

We have N = 8 and from Eq. 2.25 when w1 = 0 we get

∇ =

[

w0

w0 cos
(

2π
N

)

+ 2 sin
(

2π
N

)

]

.

From the books expression for the MSE ξ when w1 = 0 we have

ξ = 2 + 0.5w2
0 .

If ξ = 2 then w0 = 0. If ξ = 4 then w0 = 2. Using these we can evaluate ∇. We find

[1] 0.000000 1.414214

[1] 2.000000 2.828427

The gradient is steeper in the second case because when ξ = 2 we are at a higher location
on the parabolic bowl (further from the minimum).

Exercise 6

When the switch is open there is no signal from xk (only a delayed signal). This means that
the output from the system at time k is

yk = w1xk−1 .

The vector Xk is then Xk = [xk−1] (a scalar). This means that

R = r = E[x2
k−1] = 1

P = p = E[dkxk−1] = 1 .

The equation for the MSE (that we want to minimize) is then

MSE = ξ = E[ε2k] = E[d2k] +W TRW − 2P TW , (2)

or with W = w1 this becomes

ξ = 4 + rw2
1 − 2pw1 = 4 + w2

1 − 2w1 .

The value of w1 that minimizes this is w∗
1 = 1.

Exercise 7

When the switch is closed there is now an input from xk. This means that the output from
the system at time k is

yk = xk + w1xk−1 .
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The vector Xk is then XT
k = [xk , xk−1] and the weight vector is W T = [1 , w1]. This means

that

R = E[XkX
T
k ]

=

[

E[x2
k] E[xkxk−1]

E[xkxk−1] E[x2
k−1]

]

=

[

1 0.5
0.5 1

]

,

and

P = E[dkXk] =

[

E[dkxk]
E[dkxk−1]

]

=

[

−1
1

]

.

The equation for the MSE (that we want to minimize) is then

MSE = ξ = E[ε2k] = E[d2k] +W TRW − 2P TW ,

or with W =

[

1
w1

]

this becomes

ξ = 4 +
[

1 w1

]

[

1 0.5
0.5 1

] [

1
w1

]

− 2
[

−1 1
]

[

1
w1

]

= 4 +
[

1 w1

]

[

1 + 0.5w1

0.5 + w1

]

− 2(−1 + w1)

= 4 + 1 + 0.5w1 + 0.5w1 + w2
1 + 2− 2w1

= 7− w1 + w2
1 .

The value of w1 that minimizes this is w∗
1 =

1
2
.

Exercise 8

From the previous exercise we see that w∗ = 1 and using that we find ξmin = 3.

Exercise 9

We are told to take N = 5 with

dk = 2 cos

(

2πk

N

)

.

For this function, the book argues that E[d2k] = 2. Now in Figure 2.6 the book compute the
needed statistics for this exercise. From that figure we have

R = r = E[x2
k−1] = 0.5

P = p = E[dkxk−1] = − sin

(

2π

N

)

.
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The equation for the MSE (that we want to minimize) is then

MSE = ξ = E[ε2k] = E[d2k] +W TRW − 2P TW , (3)

or with W = w1 this becomes

ξ = 2 + rw2
1 − 2pw1 = 2 + 0.5w2

1 + 2 sin

(

2π

N

)

w1 .

The value of w1 that minimizes this is

w∗
1 = −2 sin

(

2π

N

)

.

The smallest MSE would be the above expression when w1 = w∗
1.

Exercise 10

We are again told to take N = 5 with

dk = 2 cos

(

2πk

N

)

.

For this function, the book argues that E[d2k] = 2. Now in Figure 2.6 the book compute the
needed statistics for this exercise. From that figure we have

R =

[

E[x2
k] E[xkxk−1]

E[xkxk−1] E[x2
k−1]

]

=

[

0.5 0.5 cos
(

2π
N

)

0.5 cos
(

2π
N

)

0.5

]

=

[

0.5 0.1545085
0.1545085 0.5

]

P =

[

E[dkxk]
E[dkxk−1]

]

=

[

0
− sin

(

2π
N

)

]

=

[

0
−0.9510565

]

.

The equation for the MSE (that we want to minimize) is then

MSE = ξ = E[ε2k] = E[d2k] +W TRW − 2P TW ,

or with W =

[

1
w1

]

(as specified by the architecture given in Exercise 6 with the switch

closed i.e. Exercise 7) this becomes

ξ = 2 +
[

1 w1

]

[

0.5 0.1545085
0.1545085 0.5

] [

1
w1

]

− 2
[

0 −0.9510565
]

[

1
w1

]

= 2.5 + 2.21113w1 + 0.5w2
1 .

The value of w1 that minimizes this is w∗
1 = −2.21113 and gives ξmin = 0.055452.
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Exercise 13

The output of the linear filter is

yk = w0x0k + w1x1k ,

so that the error is

εk = dk − yk = dk −
[

w0 w1

]

[

x0k

x1k

]

= dk − w0x0k − w1x1k .

Part (a): If we start to compute ε4k we get

ε2k = (dk − w0x0k − w1x1k)(dk − w0x0k − w1x1k)

= d2k + w2
0x

2
0k + w2

1x
2
1k − 2w0dkx0k − 2w1dkx1k + 2w0w1x0kx1k .

Next we would need to compute have

ε3k = (d2k + w2
0x

2
0k + w2

1x
2
1k − 2w0dkx0k − 2w1dkx1k + 2w0w1x0kx1k)(dk − w0x0k − w1x1k) .

We would need to multiply by another dk − w0x0k − w1x1k to get ε4k and then take the
expectation of the expression that results.

Part (b): From the above notice that there will be fourth powers of w0 and w1 and so the
expression E[ε4k] is not quadratic.

Part (c): Heuristically, to find the minimum we would need to satisfy the first order opti-
mization conditions (that the first derivative is equal to zero). The first derivative (set equal
to zero) of a fourth order function will be a third order equation which will have three roots
in general. Thus the optimum will not be unique and is not unimodal.
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Chapter 3: Properties of the Quadratic Performance

Surface

Exercise Solutions

Exercise 1

Part (a): Eq. 3.30 is
V TRV = constant . (4)

When there are two weights this would be

[

v0 v1
]

[

r11 r12
r12 r22

] [

v0
v1

]

= F ,

where F is our constant. This is equal to

[

v0 v1
]

[

r11v0 + r12v1
r12v0 + r22v1

]

= F ,

or
r11v

2
0 + r12v0v1 + r12v0v1 + r22v

2
1 = F ,

or
r11v

2
0 + 2r12v0v1 + r22v

2
1 = F .

Now following the hint, this will be an ellipse if using the A ≡ r11, B ≡ 2r12, and C ≡ r22
that this expression indicates we have

(2r12)
2 − 4r11r22 < 0 .

This can be written as
r11r22 − r212 > 0 .

This is equivalent to the condition |R| > 0 that the matrix R must satisfy to be positive
definite. This means that the expression above is an ellipse.

Part (b): When there is one weight Equation 4 would be

r11v
2
0 = F ,

where F is a constant. The solutions v0 to the above are the points ±
√

F
r11

.

Exercise 2

Lets define the function F of the weights V as

F (V ) = V TRV ,
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then taking the derivative of F with respect to the i-th component of V i.e. vi we have

∂F

∂vi
= eTi RV + V TRei = 2eTi RV .

Here ei is the vector of all zeros but with a one in the i-th location. Forming the vector











∂F
∂v0
∂F
∂v1
...

∂F
∂vL











,

we find it is equal to










2eT0RV
2eT1RV

...
2eTLRV











= 2











eT0
eT1
...
eTL











RV = 2RV ,

which is the book’s Eq. 3.31.

Exercise 3

Part (a): The characteristic equation for this R is given by

|R− λI| =
∣

∣

∣

∣

a− λ b
b a− λ

∣

∣

∣

∣

= 0 .

Expanding this we get
(a− λ)2 − b2 = 0 ,

or
λ2 − 2aλ+ a2 − b2 = 0 .

Part (b): The characteristic equation for this R is given by

|R− λI| =

∣

∣

∣

∣

∣

∣

a− λ b c
b a− λ b
c b a− λ

∣

∣

∣

∣

∣

∣

= 0 .

Expanding the determinant along the first column this is

(a− λ)

∣

∣

∣

∣

a− λ b
b a− λ

∣

∣

∣

∣

− b

∣

∣

∣

∣

b c
b a− λ

∣

∣

∣

∣

+ c

∣

∣

∣

∣

b c
a− λ b

∣

∣

∣

∣

= 0 ,

or expanding the 2× 2 determinant we get

(a− λ)((a− λ)2 − b2)− b(b(a− λ)− bc) + c(b2 − c(a− λ)) = 0 ,

13



or in great detail

(a− λ)(a2 − 2aλ+ λ2 − b2)− b(ab − bλ− bc) + cb2 − c2(a− λ) = 0 ,

or

a3 − 2a2λ + aλ2 − ab2 − a2λ+ 2aλ2 − λ3 + b2λ− ab2 + b2λ+ b2c+ cb2 − ac2 + c2λ = 0 .

or

−λ3 + (a+ 2a)λ2 + (−2a2 − a2 + b2 + b2 + c2)λ+ a3 − ab2 − ab2 + b2c+ b2c− ac2 = 0 ,

or
−λ3 + 3aλ2 + (−3a2 + 2b2 + c2)λ+ a3 − 2ab2 + 2b2c− ac2 = 0 ,

or
λ3 − 3aλ2 + (3a2 − 2b2 − c2)λ+ (−a3 + 2ab2 − 2b2c+ ac2) = 0 .

Exercise 4

For this R we have

|R− λI| = 0 ⇒
∣

∣

∣

∣

3− λ 2
2 3− λ

∣

∣

∣

∣

= 0 .

Expanding and simplifying we get

(3− λ)2 = 4 so λ = 3± 2 .

This means that λ ∈ {1, 5}.

Exercise 5

For this R we have

|R− λI| = 0 ⇒
∣

∣

∣

∣

3− λ 1
1 3− λ

∣

∣

∣

∣

= 0 .

Expanding and simplifying we get

(3− λ)2 = 1 so λ = 3± 1 .

This means that λ ∈ {2, 4}.

Exercise 6

Part (a): We have

|R− λI| =
∣

∣

∣

∣

a− λ b
b c− λ

∣

∣

∣

∣

= (a− λ)(c− λ)− b2 .
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Setting this equal to zero and expanding gives

ac− (a+ c)λ+ λ2 − b2 = 0 ,

or
λ2 − (a+ c)λ+ ac− b2 = 0 .

Part (b): We have

|R− λI| =

∣

∣

∣

∣

∣

∣

a− λ b c

b d− λ e

c e f − λ

∣

∣

∣

∣

∣

∣

= (a− λ)

∣

∣

∣

∣

d− λ e

e f − λ

∣

∣

∣

∣

− b

∣

∣

∣

∣

b e

c f − λ

∣

∣

∣

∣

+ c

∣

∣

∣

∣

b d− λ

c e

∣

∣

∣

∣

= (a− λ)[(d − λ)(f − λ)− e2]− b[b(f − λ)− ec] + c[be− c(d− λ)]

= (a− λ)[df − (d+ f)λ+ λ2 − e2]− b[bf − bλ− ec] + c[be− cd+ cλ]

= adf − a(d+ f)λ+ aλ2 − ae2 − dfλ+ (d+ f)λ2 − λ3 + e2λ− b2f + b2λ+ bce+ bce− c2d+ c2λ

= −λ3 + (a+ d+ f)λ2 + (b2 + c2 + e2 − ad− af − df)λ+ adf + 2bce − ae2 − b2f − c2d .

This would be set equal to zero to form the cubic equation we would solve for λ.

Exercise 7

Recall that for a linear combiner with L = 1 the matrix R is given by

R = E

[

x2
0k x0kx1k

x1kx0k x2
1k

]

. (5)

For a single-input linear combiner by stationarity we expect E[x2
0k] = E[x2

1k] and thus this
matrix takes the form

R =

[

a b
b a

]

, (6)

for some constants a and b.

For a linear combiner with L = 2 the matrix R is given by

R = E





x2
0k x0kx1k x0kx2k

x1kx0k x2
1k x1kx2k

x2kx0k x2kx1k x2
2k



 . (7)

For a single-input linear combiner by stationarity we expect E[x2
0k] = E[x2

1k] = E[x2
2k] and

E[x0kx1k] = E[x1kx2k] ,

and thus this matrix takes the form

R =





a b c
b a b
c b a



 ,

15



for some constants a, b, and c. Thus the matrices in Exercise 3 are direct analogs of these
and the matrices in Exercise 6 are under certain constraints on their values.

For a multiple-input linear combiner with L = 1 we don’t have E[x2
0k] = E[x2

1k] since x0k is
from a different signal than x1k and not just a lagged value of xk thus R in this case looks
like

R =

[

a b
b c

]

.

By the same logic for a multiple-input linear combiner with L = 2 many of the expectation
are now different and we have

R =





a b c
b d e
c e f



 .

These matrices better matched the ones given in Exercise 6.

Exercises 8-13

Its helpful to be able to perform these calculations using a programming language as its
unlikely that for larger systems a person would be performing these operations “by hand”.
Thus for these problems I’ve performed them using the python programming language.
Please see the code exercises 8 13.py where we perform all requested manipulations.

Exercise 14

From the problem statement we are told that the input correlation matrix R is given by

R =

[

2 1
1 3

]

,

with the vector of cross correlations given by

P = E[dkXk] =
[

E[dkx0k] E[dkx1k]
]T

=
[

6 4
]T

.

Part (a): The mean-square error ξ we seek to minimize is given by

MSE = ξ = E[εk] = E[d2k] +W TRW − 2P TW

= 36 +
[

w0 w1

]

[

2 1
1 3

] [

w0

w1

]

− 2
[

6 4
]

[

w0

w1

]

= 2w2
0 + 2w0w1 + 3w2

1 − 12w0 − 8w1 + 36 ,

when we simplify.
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Part (b): The optimum weight vector w∗ is given by

w∗ = R−1P =

[

2.8
0.4

]

,

when we invert and multiply.

Part (c): Putting those values into the above expression for ξ gives ξ = 17.6.

Part (d): The eigenvalues and eigenvectors of R are given by

> ev

eigen() decomposition

$values

[1] 3.618034 1.381966

$vectors

[,1] [,2]

[1,] 0.5257311 -0.8506508

[2,] 0.8506508 0.5257311

Exercise 15

A single input linear combiner with two weights will have a correlation matrix R of the form
given by Equation 6 or

R =

[

a b
b a

]

.

To compute the eigenvalues we need to solve |R− λI| = which is
∣

∣

∣

∣

a− λ b
b a− λ

∣

∣

∣

∣

= (a− λ)2 − b2 = 0 .

Solving this gives
λ = a± b .

For the first eigenvector let λ1 = a− b so that

R− λ1I =

[

a b
b a

]

−
[

a− b 0
0 a− b

]

=

[

b b
b b

]

= b

[

1 1
1 1

]

.

This has a null vector of

[

1
−1

]

which normalized is 1√
2

[

1
−1

]

.

For the second eigenvector we have λ2 = a + b so that

R − λ2I =

[

a b
b a

]

−
[

a+ b 0
0 a+ b

]

=

[

−b b
b −b

]

= b

[

−1 1
1 −1

]

.

This has a null vector of

[

1
1

]

which normalized is 1√
2

[

1
1

]

.
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Chapter 4: Searching the Performance Surface

Notes on the Text

Notes on Gradient Search by Newton’s Method

Using the drawing in the text note that the tangent line through the point (w0, f(w0)) will
have a slope given by f ′(w0). When we extend the tangent line until it intersects the x-axis
(at a point (w1, 0)) we can write this slope as f ′(w0) = tan(θ) where θ is the angle from the
x-axis to the tangent line. Now in the right triangle △ABC with A = (w1, 0), B = (w0, 0),
and C = (w0, f(w0)) we can use the definition of the tangent to write

tan(θ) = f ′(w0) =
f(w0)

w0 − w1
.

Solving this for w1 gives

w1 = w0 −
f(w0)

f ′(w0)
, (8)

which is the expression in the book for one step of Newton’s method.

Newton’s Method for Optimization when the Error Surface is a Quadratic

When our error surface is quadratic i.e. ξ(w) = λ(w−w∗)2 then the derivatives of ξ(w) with
respect to w are

dξ

dw
= 2λ(w − w∗) ,

and
d2ξ

dw2
= 2λ .

Now using Equation 8 one step of Newton’s method with f(w) = ξ′(w) on this quadratic
surface is then

w1 = w0 −
ξ′(w0)

ξ′′(w0)
= w0 −

2λ(w0 − w∗)

2λ
= w∗ ,

showing that we step immediately to the optimal solution from any initial guess.

Newton’s Method in Multidimensional Space

Recall from Eq. 2.17 that we have the optimal multidimensional weights given by

W ∗ = R−1P , (9)

and the gradient of the error surface is given by Equation 1 or

∇ = 2RW − 2P ,
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then multiplying this on the left by 1
2
R−1 we get

1

2
R−1∇ = W −R−1P = W −W ∗ .

This means that

W ∗ = W − 1

2
R−1∇ , (10)

which is the book’s Eq. 4.30.

Gradient Search by the Method of Steepest Descent

The method of steepest decent is to update the weights Wk using

Wk+1 = Wk − µ∇k , (11)

with µ the stepsize constant and ∇k given by

∇k = 2RWk − 2P .

Recalling Eq. 9 as P = RR−1P = RW ∗ we can write the weight update equation as

Wk+1 = Wk − µ(2RWk − 2P ) = Wk − µ(2RWk − 2RW ∗)

= Wk + 2µR(W ∗ −Wk) = Wk − 2µRVk , (12)

which is the book’s Eq. 4.37. Grouping all terms involving Wk together we get

Wk+1 = (I − 2µR)Wk + 2µRW ∗ , (13)

which is the book’s Eq. 4.38.

Recall that Vk = Wk −W ∗ so Wk = Vk +W ∗ and Equation 13 can be written as

Vk+1 +W ∗ = (I − 2µR)(Vk +W ∗) + 2µRW ∗

= Vk +W ∗ − 2µRVt − 2µRW ∗ + 2µRW ∗ ,

which simplifies to
Vk+1 = (I − 2µR)Vk , (14)

which is the book’s Eq. 4.39.

As argued in the text for convergence we need to have

|1− 2µλi| < 1 ,

for all i. We can write these inequalities as

−1 < 1− 2µλi < +1 ,

or
−2 < −2µλi < 0 ,
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or
0 < µλi < 1 ,

or

0 < µ <
1

λi
,

for all i. This means that

0 < µ <
1

λmax
, (15)

which is the book’s Eq. 4.45. This is a condition on the stepsize parameter µ for convergence.

Starting with the vector “solution” to Equation 14 which is

V ′
k = (I − 2µΛ)kV ′

0 , (16)

if we multiply this on the left by Q we get

QV ′
k = Q(I − 2µΛ)kV ′

0 . (17)

Then recalling that Λ = Q−1RQ with V ′ = Q−1(W −W ∗) so that the above becomes

Wk −W ∗ = Q(I − 2µΛ)kQ−1(W0 −W ∗) , (18)

which is Eq. 4.50. Now using the relationship that (QAQ−1)k = QAkQ−1 for the matrix A
where A = I − 2µΛ Equation 18 becomes

Wk = W ∗ + (Q(I − 2µΛ)Q−1)k(W0 −W ∗)

= W ∗ + (I − 2µR)k(W0 −W ∗) , (19)

which is the book’s Eq. 4.52.

Comparison of Learning Curves

Now recall that the quadratic mean-square-error function is ξ = ξmin + V TRV and V =
W −W ∗ when we use the Newton update equation

Wk = W ∗ + (1− 2µ)k(W0 −W ∗) , (20)

we find that ξk is given by

ξk = ξmin + (1− 2µ)k(W0 −W ∗)TR(1− 2µ)k(W0 −W ∗)

= ξmin + (1− 2µ)2kV T
0 RV0 , (21)

which is the book’s Eq. 4.54 and represents the learning curve for Newton’s method on a
quadratic surface.

To derive the learning curve for steepest decent recall that we can write the error surface as
ξ = ξmin + V ′TΛV ′ and under steepest decent we have Equation 16 or

V ′
k = (I − 2µΛ)kV ′

0 ,
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so that the error surface at each iteration ξk becomes

ξk = ξmin + V ′
0
T
(I − 2µΛ)kΛ(I − 2µΛ)kV ′

0 (22)

= ξmin + V ′
0
T
(I − 2µΛ)2kΛV ′

0 , (23)

using the fact that the product of diagonal matrices are commutative.

Exercise Solutions

Exercise 1

The example weight performance surface given in the book takes the form

ξ = ξmin + λ(w − w∗)2 .

For the numbers given here this takes the form

ξ = 0 + 0.1(w − 2)2 = 0.1(w − 2)2 .

Exercise 2

Gradient search will update the weights according to

wk+1 = wk − µ∇k .

With this performance surface we have

∇k =
dξ

dw

∣

∣

∣

∣

wk

= 0.2(wk − 2) .

Thus the updates take the form

wk+1 = wk − 0.2µ(wk − 2) . (24)

If µ = 4 then we get
wk+1 = wk − 0.8(wk − 2) = 0.2wk + 1.6 .

Iterating this with w0 = 0 we get

w1 = 0 + 1.6 = 1.6

w2 = 0.2(1.6) + 1.6 = 1.92

w3 = 0.2(1.92) + 1.6 = 1.984

w4 = 0.2(1.984) + 1.6 = 1.9968

w5 = 0.2(1.9968) + 1.6 = 1.99936 .
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Exercise 3

With µ = 8 Equation 24 becomes

wk+1 = wk − 0.2(8)(wk − 2) = wk = 1.6(wk − 2) = −0.6wk + 3.2 .

Iterating this with w0 = 0 gives

w1 = 3.2

w2 = −0.6(3.2) + 3.2 = 1.28

w3 = −0.6(1.28) + 3.2 = 2.432

w4 = −0.6(2.432) + 3.2 = 1.7408

w5 = −0.6(1.7408) + 3.2 = 2.15552 .

Exercise 4

Lets write this performance surface as

ξ = 0.4w2 + 4w + 11 = 0.4(w2 + 10w) + 11 = 0.4[(w + 5)2 − 25] + 11

= 0.4(w + 5)2 + 1 .

Comparing this to
ξ = ξmin + λ(w − w∗)2 , (25)

we see that λ = 0.4. From the discussion in the book we recall that the overdamped region
is given by

0 < µ <
1

2λ
.

For this value of λ we find 1
2λ

= 1.25.

Exercise 5

Note that with a convergence parameter of µ = 1.5 > 1
2λ

= 1.25 these iterations will be be
“underdamped” and we expect the convergence of wk to oscillate “around” w∗. From the
book the error surface at each iteration for simple gradient search is given by

ξk = ξmin + λ(w0 − w∗)2(1− 2µλ)2k . (26)

For Exercise 4 we have ξmin = +1, λ = 0.4, w0 = 0, and w∗ = −5 so the above becomes

ξk = 1 + 10(−0.2)2k = 1 + 10(0.04k) .

We can plot this with the following R code
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ks = 1:10

xi_k = 1 + 10 * (0.04^ks)

plot(ks, xi_k, type=’b’)

grid()

This plot looks much like similar ones given presented in this section.

Exercise 6

Newton’s formula for “finding” an optimum of the function ξ(w) is given by

wk+1 = wk −
ξ′(wk)

ξ′′(wk)
. (27)

To create a “discrete version” of this we need to approximate the derivatives above with
differences. We will approximate the first derivative using

ξ′(wk) =
ξ(wk)− ξ(wk−1)

wk − wk−1
. (28)

Using this we can approximate the second derivative using

ξ′′(wk) =
ξ′(wk)− ξ′(wk−1)

wk − wk−1

=
1

wk − wk−1

[(

ξ(wk)− ξ(wk−1)

wk − wk−1

)

−
(

ξ(wk−1)− ξ(wk−2)

wk−1 − wk−2

)]

=
(ξ(wk)− ξ(wk−1))(wk−1 − wk−2)− (ξ(wk−1)− ξ(wk−2))(wk − wk−1)

(wk − wk−1)2(wk−1 − wk−2)
.

We can then place these two approximations into Equation 27 to derive the “discrete”
Newton’s algorithm.

Exercise 7

The surface in Figure 4.5 is given by the formula

ξ = 1− 1

26
[(1− w2)(4 + 3w)2 + 1] .

Newton’s method for finding an optima of ξ(w) is given in Equation 27 or

wk+1 = wk −
ξ′(wk)

ξ′′(wk)
. (29)
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To evaluate the above derivatives we will write ξ(w) above as

ξ(w) = 1− 1

26
[(1− w2)(16 + 24w + 9w2) + 1]

= 1− 1

26
[16 + 24w + 9w2 − 16w2 − 24w3 − 9w4 + 1]

= 1− 1

26
[17 + 24w − 7w2 − 24w3 − 9w4] .

Using this we have that

ξ′(w) = − 1

26
[24− 14w − 72w2 − 36w3]

= − 1

13
[12− 7w − 36w2 − 18w3] ,

and

ξ′′(w) = − 1

13
(−7− 72w − 54w2) .

With these derivatives Newton’s method is ξ(w) is given by

wk+1 = wk −
12− 7wk − 36w2

k − 18w3
k

−7− 72wk − 54w2
k

= wk −
18w3

k + 36w2
k + 7wk − 12

54w2
k + 72wk + 7

.

Notice that a root of the numerator is w = −4
3
. This means that w + 4

3
is a factor of the

numerator. If we factor this out we can write Newton’s method above as

wk+1 = wk −
(3wk + 4)(6w2

k + 4wk − 3)

54w2
k + 72wk + 7

.

Exercise 8

This problem is worked in the R code chap 4 exercise 8 N 9.R.

Starting with w0 = 0 (and using the above formula) the first seven weight values are given
by

[1] "w_1= 1.714286"

[1] "w_2= 1.034719"

[1] "w_3= 0.649067"

[1] "w_4= 0.483907"

[1] "w_5= 0.449825"

[1] "w_6= 0.448405"

[1] "w_7= 0.448403"
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Exercise 9

This problem is worked in the R code chap 4 exercise 8 N 9.R.

Here we print the second approximate optimum w1, and the “final” approximate optimum
when we start with various initial values w0. Running the above R code gives

[1] "w0= +0.0000; w1= +1.7143; w_inf= +0.4484"

[1] "w0= -0.0800; w1= +7.7018; w_inf= +0.4484"

[1] "w0= -0.1400; w1= -6.2361; w_inf= -1.3335"

[1] "w0= -1.2000; w1= -0.9951; w_inf= -1.1151"

[1] "w0= -1.3000; w1= -1.3416; w_inf= -1.3333"

This shows the classic result that Newton’s algorithm will converge to a given root if you
start the iteration process “close enough”. Starting farther away from the root will find a
“different” one.

Exercise 10

Figure 3.2 is a plot of the quadratic MSE surface ξ given by

ξ = 42 +
[

w0 w1

]

[

2 1
1 2

] [

w0

w1

]

− 2
[

7 8
]

[

w0

w1

]

. (30)

Comparing this to Equation 9 we see that R =

[

2 1
1 2

]

and P =

[

7
8

]

and E[d2k] = 42.

Now the book’s Eq. 4.31 is given by

Wk+1 = Wk −
1

2
R−1∇k , (31)

and for a quadratic error surface we have

∇k = 2RWk − 2P . (32)

Now for the numbers given in this exercise the inverse of R is given by

R−1 =
1

3

[

2 −1
−1 2

]

,

and the gradient is given by

∇k = 2

[

2 1
1 2

] [

w0,k

w1,k

]

− 2

[

7
8

]

.
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Thus 1
2
R−1∇k is given by

1

2
R−1∇k =

[

w0,k

w1,k

]

−R−1

[

7
8

]

=

[

w0,k

w1,k

]

− 1

3

[

2 −1
−1 2

] [

7
8

]

=

[

w0,k

w1,k

]

−
[

2
3

]

.

Thus Equation 31 becomes

Wk+1 =

[

w0,k

w1,k

]

−
([

w0,k

w1,k

]

−
[

2
3

])

=

[

2
3

]

,

which is

[

w∗
0

w∗
1

]

. This means that from any locationWk in one iteration we find the optimum.

Exercise 11

From the book Eq. 4.32 (with a quadratic MSE surface) is given by

Wk+1 = Wk − µR−1∇k and (33)

∇k = 2RWk − 2P .

This exercise seeks to iterate this expression starting with W0 =

[

5
2

]

to find the value of

W20.

This problem is worked in the R code chap 4 exercise 11.R. When that problem is run we
get the following

0 1 2 3 4 5 20

[1,] 5 4.4 3.92 3.536 3.2288 2.98304 2.034588

[2,] 2 2.2 2.36 2.488 2.5904 2.67232 2.988471

Here each column is the value of Wk and the “index” on the column tells the value of k. I
print the first five values of Wk and then W20.

Exercise 12

Newton’s method with a convergence parameter µ is given by Equation 33. For the variables
given here we find

Wk+1 = Wk − µR−1∇k

=

[

w0,k

w1,k

]

− µ

[

ρ0 ρ1
ρ1 ρ0

] [

α
β

]

=

[

w0,k

w1,k

]

− µ

[

ρ0α+ ρ1β
ρ1α+ ρ0β

]

=

[

w0,k − µ(ρ0α + ρ1β)
w1,k − µ(ρ1α + ρ0β)

]

.
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Next steepest decent with a convergence parameter µ in this case is given by

Wk+1 = Wk − µ∇k

=

[

w0

w1

]

− µ

[

α
β

]

=

[

w0 − µα
w1 − µβ

]

.

Exercise 13

When applied to a quadratic MSE surface (where the derivative can be evaluated explicitly)
the book’s Eq. 4.34 (Newton’s method) is given by

Wk+1 = (1− 2µ)Wk + 2µW ∗ , (34)

while the book’s Eq. 4.38 (the steepest-descent method) is given by Equation 13 or

Wk+1 = (I − 2µR)Wk + 2µRW ∗ .

For this problem we have W ∗ = R−1P =

[

2
3

]

when we compute. Then in terms of the

components of Wk Newton’s method Equation 34 is
[

w0,k+1

w1,k+1

]

= (1− 2µ)

[

w0,k

w1,k

]

+ 2µ

[

2
3

]

.

Notice that there is no “cross coupling” in these equations that is wi,k and wj,k are not
dependent on each other if i 6= j.

In terms of the components of Wk the steepest-decent algorithm Equation 13 is
[

w0,k+1

w1,k+1

]

=

([

1 0
0 1

]

− 2µ

[

2 1
1 2

])[

w0,k

w1,k

]

+ 2µ

[

2 1
1 2

] [

2
3

]

=

[

1− 4µ −2µ
−2µ 1− 4µ

] [

w0,k

w1,k

]

+ 2µ

[

7
7

]

.

This are the two equations

w0,k+1 = (1− 4µ)w0,k − 2µw1,k + 14µ

w1,k+1 = −2µw0,k + (1− 4µ)w1,k + 14µ .

These equations have “cross coupling” in that the equation for wi,k depends on wj,k for j 6= i.

Exercise 14

The steepest-decent algorithm is given by Equation 11 or

Wk+1 = Wk − µ∇k ,
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and when our MSE surface is quadratic we have the gradient ∇k given by

∇k = 2RWk − 2P . (35)

We seek to iterate the above starting with W0 =

[

5
2

]

.

This problem is worked in the R code chap 4 exercise 14.R. When that problem is run we
get the following

0 1 2 3 4 5 20

[1,] 5 4.0 3.44 3.088 2.8448 2.66560 2.023058

[2,] 2 1.8 1.88 2.040 2.2064 2.35488 2.976942

Here each column is the value of Wk and the “index” on the column tells the value of k. I
print the first five values of Wk and then W20.

Exercise 15

Numerically this problem is worked in the R code chap 4 exercise 15.R. Running that code
we plot the learning curve for this problem.

Here we derive the analytic representation of the learning curve for Newton’s method. Recall
that the book’s Eq. 3.44 is given by Equation 30 which we can write as

ξ = ξmin + V TRV ,

were V = W −W ∗ = W − R−1P and

ξmin = E[d2k]− P TW ∗ = E[d2k]− P TR−1P .

From the text the learning curve at each iteration Wk takes the form given in Equation 21.
For this problem we can evaluate the given expressions above. We find

W ∗ = R−1P =

[

2
3

]

ξmin = 42−
[

7 8
]

[

2
3

]

= 4

V0 = W0 −W ∗ =

[

0
0

]

−
[

2
3

]

=

[

−2
−3

]

V T
0 RV0 =

[

2 3
]

[

2 1
1 2

] [

2
3

]

= 38 .

Thus Equation 21 becomes

ξk = 4 + (1− 0.1)2k(38) = 4 + 38(0.9)2k .
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Exercise 16

Newton’s method is the derivation of the book’s Equation 4.54 which is presented in the
above notes ending at Equation 21. The steepest-descent method is the derivation of the
book’s Equation 4.58 which is presented in the above notes ending at Equation 23.

Exercise 17

Here we derive the analytic representation of the learning curve for the steepest-decent
method. Recall that the steepest-decent method has a learning-curve that looks like Equa-
tion 23. To “use” this expression we first note that we have calculated ξmin = 4 (in a previous
problem), that V ′

0 = Q−1(W0 −W ∗), and R = QΛQ−1. For this matrix R (and given in the
book) we have

Λ =

[

1 0
0 3

]

with Q =
1√
2

[

1 1
−1 1

]

and Q−1 = QT =
1√
2

[

1 −1
1 1

]

.

We are told to take W0 =

[

0
0

]

and W ∗ =

[

2
3

]

. Using these we find

V ′
0 =

1√
2

[

1 −1
1 1

] [

−2
−3

]

=
1√
2

[

1
−5

]

,

and

I − 2µΛ =

[

1 0
0 1

]

− 0.1

[

1 0
0 3

]

=

[

0.9 0
0 0.7

]

.

This means that

(I − 2µΛ)2k =

[

0.92k 0
0 0.72k

]

,

so that

(I − 2µΛ)2kΛ =

[

0.92k 0
0 0.72k

] [

1 0
0 3

]

=

[

0.92k 0
0 3(0.7)2k

]

,

and

V ′
0
T
(I − 2µΛ)2kΛV ′

0 =
1√
2

[

1 −5
]

[

0.92k 0
0 3(0.7)2k

] [

1
−5

]

1√
2

=
1

2
(0.92k + 75(0.72k)) .

Adding ξmin to this gives Equation 23 or the desired expression for ξk.

Exercise 18

Now (I − 2µΛ)2kΛ is a diagonal matrix with diagonal elements given by

(1− 2µλn)
2kλn for 0 ≤ n ≤ L .

The scalar V ′
0
T (I − 2µΛ)2kΛV ′

0 is then the sum of each of the diagonal elements above
multiplied by v′0n

2 which is the book’s Eq. 4.59.

29



Exercise 19

Now Wk is dimensionless while the dimensions of MSE is signal power. This means that ∇k

also has dimensions of signal power. Then in gradient-decent given by Equation 11 we see
that µ must have units of reciprocal signal power.

As R = E[XkX
T
k ] we see that it has dimensions of signal power, so R−1 has dimensions of

reciprocal signal power. This means that R−1∇k is dimensionless so in Newton’s method
given by Equation 33 we see that µ must be dimensionless.
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Chapter 5: Gradient Estimation and Its Effects on Adap-

tation

Notes on the Text

Notes on the Variance of the Gradient Estimate

In computing αr if r is even then we have

αr =
1

2σ
√
3

(

ǫr+1

r + 1

∣

∣

∣

∣

σ
√
3

−σ
√
3

=
1

2σ
√
3(r + 1)

(

σr+1 + σr+1
)

(
√
3)r+1

=
(
√
3)rσr

r + 1
=

σr3r/2

r + 1
.

Then Var
(

ξ̂
)

is given by

Var
(

ξ̂
)

=
1

N

[

σ432

5
−
(

σ23

3

)2
]

=
σ4

N

[

9

5
− 9

3

]

=
4σ4

5N
,

when we simplify.

Notes on the Derivation of cov [V ′
k ]

Here I work thought the algebra needed to derive the results in this section. We start with

cov [V ′
k] = E[V ′

kV
′T
k ] ,

then using the books Eq. 5.39 or

V ′
k = (1− 2µ)V ′

k−1 − µΛ−1N ′
k−1 , (36)

the above is

V ′
kV

′T
k = [(1− 2µ)V ′

k−1 − µΛ−1N ′
k−1][(1− 2µ)V ′T

k−1 − µN ′T
k−1(Λ

−1)T ]

= (1− 2µ)2V ′
k−1V

′T
k−1 + µ2Λ−1N ′

k−1N
′T
k−1(Λ

−1)T

− µ(1− 2µ)Λ−1N ′
k−1V

′T
k−1 − µ(1− 2µ)Λ−1V ′

k−1N
′T
k−1(Λ

−1)T , (37)

which is the books Eq. 5.49. Taking the expectation of this we get

cov [V ′
k ] = (1− 2µ)2cov [V ′

k] + µ2E[(Λ−1N ′
k−1)(Λ

−1N ′
k−1)

T ]

= (1− 2µ)2cov [V ′
k] + µ2Λ−1cov

[

N ′
k−1

]

Λ−1

= (1− 2µ)2cov [V ′
k] + µ2(Λ−1)2cov

[

N ′
k−1

]

.
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Here we have used the fact that both Λ−1 and cov
[

N ′
k−1

]

are diagonal matrices and thus
commute. Expanding the argument in front of cov [V ′

k ] we get

cov [V ′
k ] = (1− 4µ+ 4µ2)cov

[

V ′
k−1

]

+ µ2(Λ−1)2cov
[

N ′
k−1

]

.

On canceling cov [V ′
k ] from both sides this can be written as

(4µ− 4µ2)cov
[

V ′
k−1

]

= µ2(Λ−1)2cov
[

N ′
k−1

]

.

Solving this for cov
[

V ′
k−1

]

we get

cov
[

V ′
k−1

]

=
µ(Λ−1)2

4(1− µ)
cov

[

N ′
k−1

]

, (38)

which is the books Eq. 5.50.

To derive the similar result in the steepest decent case we recall the books Eq. 5.45 or

V ′
k = (I − 2µΛ)V ′

k−1 − µN ′
k−1 , (39)

and put this in the above expression for V ′
kV

′T
k to get

V ′
kV

′T
k = (I − 2µΛ)2V ′

k−1V
′T
k−1(I − 2µΛ)T − µ(I − 2µΛ)V ′

k−1N
′T
k−1

− µN ′
k−1(I − 2µΛ)T + µ2N ′

k−1N
′T
k−1 , (40)

which is the books Eq. 5.51. Taking the expectation of this we get

cov [V ′
k ] = (I − 2µΛ)2cov [V ′

k ] + µ2cov [N ′
k] .

If we expand the first term on the right-hand-side of the above we get

cov [V ′
k ] = cov [V ′

k ]− 4µΛcov [V ′
k ] + 4µ2Λ2cov [V ′

k ] + µ2cov [N ′
k] .

Solving for cov [V ′
k ] we get

cov [V ′
k ] =

µ

4
(Λ− µΛ2)−1cov [N ′

k] , (41)

which is the books Eq. 5.52.

Now recalling that N ′ = Q−1N (so that N = QN ′) and that ∇̂k = ∇k +Nk we have

N ′
k = Q−1Nk = Q−1(∇̂k −∇k) ,

so that

cov [N ′
k] = Q−1E[(∇̂k −∇k)(∇̂k −∇k)

T ]Q

= Q−1cov
[

∇̂k

]

Q =
ξ2min

Nδ2
I , (42)

which is the books Eq. 5.53.
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Using Equation 42 in Equation 38 (Newton’s method) we have that

cov [V ′
k ] =

µ(Λ−1)2

4(1− µ)

ξ2min

Nδ2
, (43)

which is the books Eq. 5.54.

Using Equation 42 in Equation 41 (the steepest decent method) we have that

cov [V ′
k] =

µ

4
(Λ− µΛ2)−1 ξ

2
min

Nδ2
, (44)

which is the books Eq. 5.55.

To express these in terms of the unprimed coordinate system we recall that

cov [Vk] = E[VkV
T
k ] = QE[V ′

kV
′T
k ]Q−1 = Qcov [V ′

k ]Q
−1 , (45)

which is the books Eq. 5.56. This equation allows one to derive the books Eq. 5.57 and
Eq. 5.58.

Lets now evaluate the excess MSE from E[V ′
kΛV

′
k ] for Newton’s method where

V ′
k = −µΛ−1

∞
∑

n=0

(1− 2µ)nN ′
k−n−1 , (46)

to get

excess MSE = E[V ′
kΛVk]

= µ2E

[(

∞
∑

n=0

rnN ′T
k−n−1Λ

−1

)

Λ

(

∞
∑

m=0

rmN ′T
k−m−1Λ

−1

)]

= µ2
∞
∑

n=0

∞
∑

m=0

rn+mE[N ′T
k−n−1Λ

−1N ′
k−m−1] .

As only the terms with n = m don’t evaluate to zero the above becomes

excess MSE = µ2

∞
∑

n=0

r2nE[N ′T
k−n−1Λ

−1N ′
k−n−1] . (47)

The rest of the steps are explained in the book.

To evaluate the excess MSE from E[V ′
kΛV

′
k ] for the method of steepest decent where

V ′
k = −µ

∞
∑

n=0

(I − 2µΛ)nN ′
k−n−1 , (48)

to get

excess MSE = E[V ′
kΛVk]

= µ2E

[

∞
∑

n=0

N ′T
k−n−1[(I − 2µΛ)T ]n × Λ×

∞
∑

m=0

(I − 2µΛ)mN ′
k−m−1

]

= µ2
∞
∑

n=0

∞
∑

m=0

E[N ′T
k−n−1Λ(I − 2µΛ)n+mN ′

k−m−1] . (49)
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Again as only the terms with n = m don’t evaluate to zero the above becomes

excess MSE = µ2
∞
∑

n=0

E[N ′T
k Λ(I − 2µΛ)2nN ′

k]

= µ2E

[

N ′T
k Λ

(

∞
∑

n=0

(I − 2µΛ)2n

)

N ′
k

]

. (50)

Now using
∑∞

n=0D
n = (I −D)−1 we have

∞
∑

n=0

(I − 2µΛ)2n =

∞
∑

n=0

[(I − 2µΛ)2]n = [I − (I − 2µΛ)2]−1

= [I − (I − 4µΛ+ 4µ2Λ2)]−1

= (4µΛ− 4µ2Λ2)−1

=
1

4µ
(Λ− µΛ2)−1 , (51)

which is the books Eq. 5.78. The rest of the steps are explained in the book.

Exercise Solutions

Exercise 1

When the performance surface ξ is a quadratic i.e. when it takes the form ξ(v) = ξmin + λv2

then the first and second derivatives are

ξ′(v) = 2λv

ξ′′(v) = 2λ .

Notice that when using the central difference formulas from the book on a quadratic surface
like ξ(v) we get the exact derivatives above

dξ

dv
≈ ξ(v + δ)− ξ(v − δ)

2δ
= 2λv

d2ξ

dv2
≈ ξ(v + δ) + 2ξ(v)− ξ(v − δ)

δ2
= 2λ .

These calculations are done in this chapter.

Exercise 2

We can write this ξ(w) as

ξ(v) = 5(w2 − 4w) + 23

= 5(w2 − 4w + 4)− 20 + 23 = 5(w − 2)2 + 3 .
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Thus we see that ξmin = 3, w∗ = 2, and λ = 5.

If we now compute the performance penalty γ using

γ = λδ2 , (52)

we find γ = 5.

Exercise 3

As the performance penalty can be written as γ = λδ2 and λ > 0 this function is convex up.
If γ < 0 then λ < 0 and ξ(v) = ξmin + λv2 points “downwards” which is not possible for the
type of error surfaces we are discussing in this book.

Exercise 4

From the text the perturbation “P” is defined as

P =
γ

ξmin
=

λδ2

ξmin
. (53)

For the numbers in Exercise 2 this means that P = 5(12)
3

= 5
3
.

Exercise 5

We can write this in the standard form as

ξ = 2w2
0 + 2w2

1 + 2w0w1 − 14w0 − 16w1 + 42

=
[

w0 w1

]

[

2 1
1 2

] [

w0

w1

]

− 2
[

7 8
]

[

w0

w1

]

+ 42 ,

so that L = 1, R =

[

2 1
1 2

]

and P =

[

7
8

]

. From other problems with this covariance

matrix R we can show that R has eigenvalues of 1 and 3. For these two values for the
eigenvalues we compute

λav =
1

2
(1 + 3) = 2

(

1

λ

)

av

=
1

2

(

1

1
+

1

3

)

=
2

3
.

From the section entitled “A Second Example” in Chapter 3 we can show that for this
optimization problem that ξmin = 4.
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Then the perturbation P is given by

P =
δ2λav

ξmin

. (54)

Using the numbers above we find P = 2δ2

4
= δ2

2
.

Exercise 6

Adding another weight will increase the dimension of R and that might change the value of
the average eigenvalue or λav of R. Equation 54 then shows how that would change P . If
the trace of R does not change with this additional weight then the average eigenvalue will
get smaller so P will get smaller.

Exercise 7

If we have that εk ∼ U(1, 3) then

α4 =

∫

εk
4p(εk)dεk =

∫ 3

1

εk
4

(

1

3− 1

)

dεk =
1

2

(

εk
5

5

∣

∣

∣

∣

3

1

=
242

10
= 24.2 .

Exercise 8

The mean and variance of εk ∼ U(1, 3) are given by

α1 = E[εk] = 2

σ2 =
(3− 1)2

12
=

4

12
=

1

3
.

Based on these numbers for this exercise we are to assume that εk ∼ N
(

2, 1
3

)

.

Recall that the fourth moment of a normal random variable N (µ, σ2) is

E[X4] = µ4 + 6µ2σ2 + 3σ4 .

Thus for the case considered here we would find

α4 = E[ε4k] = 24 + 6(22)

(

1

3

)

+ 3

(

1

9

)

=
73

3
= 24.3333 .
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Exercise 9

Here we are told that ε ∼ N (0, 3). From the text we have

Var
(

ξ̂
)

=
α4 − α2

2

N
=

3σ4
ε − σ4

ε

N
=

2σ4
ε

N
. (55)

For the numbers given in this problem we have

Var
(

ξ̂
)

=
2σ4

ε

10
=

σ4
ε

5
=

32

5
=

9

5
.

Exercise 10

Recall that the non-central moments of a random variable ε are defined as

α1 = E[ε]

α2 = E[ε2]

α3 = E[ε3]

...

αp = E[εp] .

Using these we can write the variance σ2 as

σ2 = E[(ε− α1)
2] = E[ε2]− α2

1 = α2 − α2
1 .

Next recall that Eq. 5.25 gives

Var
(

ξ̂
)

= Var (α̂2) =
α4 − α2

2

N
. (56)

If we have that εk ∼ N (α1, σ
2) then we can expand the higher moment expressions above in

terms of lower moments using (from a text on statistics)

α4 = α4
1 + 6α2

1σ
2 + 3σ4

α2 = α2
1 + σ2 ,

Then using these in Equation 56 I compute

Var
(

ξ̂
)

=
α4
1 + 6α2

1σ
2 + 3σ4 − (α2

1 + σ2)2

N
=

4α2
1σ

2 + 2σ4

N
=

2(2α2
1σ

2 + σ4)

N

=

(

2α2
1σ

2 + σ4

ξ2

)(

2ξ2

N

)

.

Now when εk has α1 6= 0 then

ξ = E[ε2k] = α2
1 + σ2 so ξ2 = (α2

1 + σ2)2 , (57)
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Thus we have

Var
(

ξ̂
)

=

(

2α2
1σ

2 + σ4

(α2
1 + σ2)2

)(

2ξ2

N

)

=
1 + 2

(

α2

1

σ2

)

(

1 +
α2

1

σ2

)2

(

2ξ2

N

)

.

Setting this equal to Kξ2

N
we see that

K

2
=

1 + 2
(

α2

1

σ2

)

(

1 +
α2

1

σ2

)2 <
1 + 2

(

α2

1

σ2

)

+
(

α2

1

σ2

)2

(

1 +
α2

1

σ2

)2 =

(

1 +
α2

1

σ2

)2

(

1 +
α2

1

σ2

)2 = 1 .

Thus we have that K < 2.

Exercise 11

Part (a): This derived from Part (d) of this exercise when we take α1 = 0.

Part (b): This derived from Part (f) of this exercise when we take α1 = 0.

Part (c): This is done in the previous exercise above.

Part (d): From the diagram the density p(ε) takes the form

p(ε) =

{

1
6σ2 (x− α1 + σ

√
6) α1 − σ

√
6 < ε < α1

1
σ
√
6
− 1

6σ2 (x− α1) α1 < ε < α1 + σ
√
6

This means that

E[ε2] =

∫ α1

α1−σ
√
6

ε2p(ε)dε+

∫ α1+σ
√
6

α1

ε2p(ε)dε

The expression for E[ε4] is computed in the same way. These integrals are tedious to evaluate.
Using Mathematica (after factoring out 6σ2) I find

E[ε2] =
6α2

1σ
2 + 6σ4

6σ2
= α2

1 + σ2

E[ε4] =
1

6σ2

(

6

5
σ2(5α4

1 + 30α2
1σ

2 + 12σ4

)

= α4
1 + 6α2

1σ
2 +

12

5
σ4 .

This means that

E[ε4]−E[ε2]2 = 4α2
1σ

2 +
7

5
σ4 ,

when we simplify. Next using Equation 56 and 57 we compute

Var
(

ξ̂
)

=

(

ξ2

N

)(

4α2
1σ

2 + 7
5
σ4

(α2
1 + σ2)2

)

=
ξ2

5N

(

7 + 20α2
1/σ

2

(1 + α2
1/σ

2)2

)

. (58)

38



Part (e): For this density we find

E[ε2] =
1

2σ
√
3

∫ α1+σ
√
3

α1−σ
√
3

ε2dε = α2
1 + σ2

E[ε4] =
1

2σ
√
3

∫ α1+σ
√
3

α1−σ
√
3

ε4dε =
1

5
(5α4

1 + 30α2
1σ

2 + 9σ4) .

This means that

E[ε4]−E[ε2]2 = 4α2
1σ

2 +
4

5
σ4 ,

when we simplify. Next using Equation 56 and 57 we compute

Var
(

ξ̂
)

=

(

4ξ2

N

)(

α2
1σ

2 + 1
5
σ4

(α2
1 + σ2)2

)

=
4ξ2

5N

(

1 + 5α2
1/σ

2

(1 + α2
1/σ

2)2

)

. (59)

Part (f): For this density we find that

E[ε2] =
1

2
(α1 − σ)2 +

1

2
(α1 + σ)2

E[ε4] =
1

2
(α1 − σ)4 +

1

2
(α1 + σ)4 .

Then using these in Equation 56 we get

Var
(

ξ̂
)

=
1

4N

[

2(α1 − σ)4 + 2(α1 + σ)4 −
(

(α1 − σ)2 + (α1 + σ)2
)2
]

=
1

4N
(16α2

1σ
2) =

4

N
α2
1σ

2 .

Using Equation 57 we can write this as

Var
(

ξ̂
)

=
ξ2

N

(

4α2
1σ

2

ξ2

)

=
ξ2

N

(

4α2
1σ

2

(α2
1 + σ2)2

)

=
ξ2

N

(

4α2
1/σ

2

(1 + α2
1/σ

2)
2

)

, (60)

which is the expression desired.

Part (g): In Equation 58 if we define r ≡ α2
1/σ

2 then we see that r > 0 and in this case

when Var
(

ξ̂
)

= Kξ2

N
that K is given by

K(r) =
7 + 20r

5(1 + r)2
.

One optimal value for K(r) could be when r = 0 where K(0) = 7
5
= 1.4. Using calculus to

look for other extreme values for K(r) we need to solve

K ′(r) =
20

5(1 + r)2
− 2(7 + 20r)

5(1 + r)3
= 0 ,
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which has r = 3
10
. The value of K at this r is

K

(

3

10

)

=
20

13
= 1.53846 .

For this value of r we find
α1

σ
=

√

3

10
= 0.547723 .

Part (h): In Equation 59 if we define r ≡ α2
1/σ

2 then we see that r > 0 and in this case

when Var
(

ξ̂
)

= Kξ2

N
that K is given by

K(r) =
4 + 20r

5(1 + r)2
.

One optimal value for K(r) could be when r = 0 where K(0) = 4
5
= 0.8. Using calculus to

look for other extreme values for K(r) we need to solve

K ′(r) =
20

5(1 + r)2
− 2(4 + 20r)

5(1 + r)3
= 0 ,

which has r = 3
5
. The value of K at this r is

K

(

3

5

)

=
5

4
= 1.25 .

For this value of r we find
α1

σ
=

√

5

4
= 1.11803 .

Exercise 12

If K = 0 then we must have

α2
1

σ2
→ ∞ so

∣

∣

∣

α1

σ

∣

∣

∣
→ ∞ .

If K = 2 then defining r ≡ α2

1

σ2 we must have

2 + 4r

(1 + r)2
= 2 .

This has the solution r = 0 or equivalently
∣

∣

α1

σ

∣

∣→ 0.
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Exercise 13

Part (a): This is worked in Part (g) in Exercise 11 above.

Part (b): This is worked in Part (h) in Exercise 11 above.

Part (c): In Equation 60 if we define r ≡ α2
1/σ

2 then we see that r > 0 and in this case

when Var
(

ξ̂
)

= Kξ2

N
that K is given by

K(r) =
4r

(1 + r)2
.

One optimal value for K(r) could be when r = 0 where K(0) = 0. Using calculus to look
for other extreme values for K(r) we need to solve

K ′(r) =
4

(1 + r)2
− 8r

(1 + r)3
= 0 ,

which has r = 1. The value of K at this r is

K(1) = 1 .

For this value of r we find
α1

σ
=

√
1 = 1 .

Exercise 14

From the book, the variance of the derivative estimate is given by

Var

(

∂ξ̂

∂v

)

=
ξ2min

Nδ2
. (61)

On Page 35 we have specified the parameters needed to evaluate the above and with N = 5
we find

Var

(

∂ξ̂

∂v

)

=
32

5(12)
= 1.8 .

Exercise 15

From the book, the covariance of the derivative estimate is given by

Var
(

∇̂k

)

=
ξ2min

Nδ2
I . (62)

On Page 34 we have specified the parameters needed to evaluate the above and with N = 50
we find

Var
(

∇̂k

)

=
42

50δ2
I =

8

25δ2
I .
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Exercise 16

For k = 0 this is
x0 = by0 .

For k = 1 this is
x1 = ax0 + by1 = aby0 + by1 = b(y1 + ay0) .

For k = 2 this is
x2 = ab(y1 + ay0) + by2 = b(y2 + ay1 + a2y0) .

Based on these examples it looks like the general solution is

xk = b
k
∑

i=0

yk−ia
i . (63)

We can check this is a solution to the given first order recurrence relation by computing
axk−1 + byk. We find

axk−1 + byk = a

(

b
k−1
∑

i=0

yk−1−ia
i

)

+ byk

= b

(

yk +
k−1
∑

i=0

yk−1−ia
i+1

)

= b

(

yk +

k
∑

i=1

yk−ia
i

)

= b

k
∑

i=0

yk−ia
i ,

which is the same as Equation 63 showing that we have indeed found a solution.

Exercise 17

Recall that in the one-dimensional case that

ξ(v) = ξmin + λ(w − w∗)2 ,

and thus R = λ and so R−1 = λ−1.

From the book for Newton’s method the weight-vector covariance is given by

cov [Vk] =
µξ2min(R

−1)2

4Nδ2(1− µ)
. (64)

For the steepest-descent method the weight-vector covariance is given by

cov [Vk] =
µξ2min(R − µR2)−1

4Nδ2
. (65)
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Exercise 18

The book’s Equation 5.54 is

cov [V ′
k ] =

µ(Λ−1)2ξ2min

4Nδ2(1− µ)
, (66)

Now recall that Vk = QV ′
k so that V ′

k = QTVk. Because of this we have

cov [V ′
k ] = E[(x− µ)(x− µ)T ] = cov

[

QTVk

]

= QT cov [Vk]Q .

Thus Equation 66 in terms of Vk becomes

QT cov [Vk]Q =
µ(Λ−1)2ξ2min

4Nδ2(1− µ)
,

or solving for cov [Vk] and using QTQ = I we have

Q(Λ−1)2QT = QΛ−1QTQΛ−1QT = (R−1)2 .

In the above we have noted that from R = QΛQT we have Λ = QTRQ so Λ−1 = QTR−1Q.
Using this we have

cov [Vk] =
µ(R−1)2ξ2min

4Nδ2(1− µ)
,

as we were to show.

Deriving Equation 5.58 is done in the same way.

Exercise 19

On Page 35 we have determined the parameters for Exercise 5.

Recall that for the steepest-decent algorithm the stability range for µ is

0 < µ <
1

λmax
,

For Exercise 5 we have that λmax = 3 so from the problem statement we have µ = 1
2

(

1
3

)

= 1
6
.

To use Equation 65 we need to compute

(R− µR2)−1 =
1

15

[

14 −4
−4 14

]

.

Using this with the rest of Equation 65 and N = 10 we compute

cov [V ] =
1

225δ2

[

14 −4
−4 14

]

.
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Exercise 20

The (i, i)th element of the matrix
∑∞

n=0D
n would be

∞
∑

n=0

dnii =
1

1− dii
,

with all other elements (i, j) zero. This means that

∞
∑

n=0

Dn = Diag

(

1

1− d11
,

1

1− d22
,

1

1− d33
, · · · , 1

1− dnn

)

= (Diag (1− d11 , 1− d22 , 1− d33 , . . . , 1− dnn))
−1

= (I −D)−1 ,

as we were to show.

For this to be true we must have
|dii| < 1 ,

for all i.

Exercise 21

Part (a): Recall that for Newton’s method we have

excess MSE =
(L+ 1)ξminλav

(

1
λ

)

av

8NPτ
. (67)

with P given by Equation 54 or

P =
δ2

ξmin

∑L
n=0 λn

L+ 1
=

δ2

ξmin
λav .

The stability of the convergence parameters µ in Newton’s method is 0 < µ < 1 so for this
problem we are told to take µ = 1

2
.

For Newton’s method, the time constant of weight convergence is given by

µ =
1

2τ
or τ =

1

2µ
.

Using the numbers needed to compute the above we find

P =
δ2(2)

2
= δ2

τ =
1

2(1/2)
= 1

excess MSE =
(2)(2)(2)

(

2
3

)

8(10)δ2(1)
=

1

15δ2
.
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Part (b): Recall that for the steepest decent method we have

excess MSE =
(L+ 1)ξmin

8P

(

1

Tmse

)

av

. (68)

with P again given by Equation 54. We can compute
(

1
Tmse

)

av
using

µλav ≈
N(L+ 1)

2

(

1

Tmse

)

av

. (69)

The stability of the convergence parameters µ under the steepest decent method is

0 < µ <
1

λmax
=

1

3
,

so for this problem we are told to take µ = 1
2

(

1
3

)

= 1
6
. From the numbers for Exercise 5 we

compute
(

1

Tmse

)

av

=
2(1/6)(2)

10(2)
=

1

30
so

excess MSE =
22(2)

8δ2

(

1

6

)

=
1

6δ2
.

Exercise 22

The time constant for weight convergence is denoted τ and the time constant for the learning
curve is denoted τmse. In this problem we have L = 0 (one weight) and µ = 0.01.

Part (a): For Newton’s method we have τ = 1
2µ

= 50 and τmse =
τ
2
= 25.

Part (b): For the method of steepest decent we have τ0 = 1
2µλ0

= 50
λ0

(since there is only

one eigenvalue) and (τmse)0 =
τ0
2
= 25

λ0

.

Exercise 23

Part (a): For Newton’s method we have

Tmse = 2(L+ 1)Nτmse , (70)

which can be computed given the numbers in this problem and the answers in the previous
problem.

Part (b): For the method of steepest decent we have

(Tmse)n = 2N(L+ 1)(τmse)n , (71)

which can be computed given the numbers in this problem and the answers in the previous
problem.

45



Exercise 24

We would evaluate the formulas for the excess mean-square error in Exercise 21 with δ = 0.05
and N = 5 (rather than N = 10).

Exercise 25

The correlation matrix R is given by

R = E

[

x2
0 x0x1

x1x0 x2
1

]

=

[

3 2
2 3

]

.

This has eigenvalues λ ∈ {1, 5} so

λav =
1

2
(1 + 5) = 3

(

1

λ

)

av

=
1

2

(

1

1
+

1

5

)

=
3

5
.

Part (a): The misadjustment for Newton’s method is given by

M ≈
(L+ 1)λav

(

1
λ

)

av

8NPτ
. (72)

and

τ =
1

2µ
, (73)

For the numbers given in this Exercise we compute

M =
2(3)

(

3
5

)

8(80)0.05
(

1
2(0.01)

) ,

which could be evaluated.

Part (b): The misadjustment for the steepest decent method method is given by

M ≈ (L+ 1)2

8P

(

1

Tmse

)

av

. (74)

Here we use Equation 71 to compute (Tmse)n for n = 0 and n = 1 as

(Tmse)n = 2N(L+ 1)(τmse)n = N(L+ 1)τn = N(L+ 1)

(

1

2µλn

)

.

We can then compute 1
(Tmse)n

for each n and average these numbers as needed to compute
(

1
Tmse

)

av
. Evaluating the above for M is simple to do.
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Chapter 6: The LMS Algorithm

Exercise Solutions

Exercise 1

WWX: Working here.
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Chapter 7: The z-Transform in Adaptive Signal Pro-

cessing

Exercise Solutions

Exercise 1

WWX: Working here.
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